1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask);
548 
549   /// Set the debug location in the builder \p Ptr using the debug location in
550   /// \p V. If \p Ptr is None then it uses the class member's Builder.
551   void setDebugLocFromInst(const Value *V,
552                            Optional<IRBuilder<> *> CustomBuilder = None);
553 
554   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
555   void fixNonInductionPHIs(VPTransformState &State);
556 
557   /// Returns true if the reordering of FP operations is not allowed, but we are
558   /// able to vectorize with strict in-order reductions for the given RdxDesc.
559   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
560 
561   /// Create a broadcast instruction. This method generates a broadcast
562   /// instruction (shuffle) for loop invariant values and for the induction
563   /// value. If this is the induction variable then we extend it to N, N+1, ...
564   /// this is needed because each iteration in the loop corresponds to a SIMD
565   /// element.
566   virtual Value *getBroadcastInstrs(Value *V);
567 
568 protected:
569   friend class LoopVectorizationPlanner;
570 
571   /// A small list of PHINodes.
572   using PhiVector = SmallVector<PHINode *, 4>;
573 
574   /// A type for scalarized values in the new loop. Each value from the
575   /// original loop, when scalarized, is represented by UF x VF scalar values
576   /// in the new unrolled loop, where UF is the unroll factor and VF is the
577   /// vectorization factor.
578   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
579 
580   /// Set up the values of the IVs correctly when exiting the vector loop.
581   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
582                     Value *CountRoundDown, Value *EndValue,
583                     BasicBlock *MiddleBlock);
584 
585   /// Create a new induction variable inside L.
586   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
587                                    Value *Step, Instruction *DL);
588 
589   /// Handle all cross-iteration phis in the header.
590   void fixCrossIterationPHIs(VPTransformState &State);
591 
592   /// Create the exit value of first order recurrences in the middle block and
593   /// update their users.
594   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
595 
596   /// Create code for the loop exit value of the reduction.
597   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
598 
599   /// Clear NSW/NUW flags from reduction instructions if necessary.
600   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
601                                VPTransformState &State);
602 
603   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
604   /// means we need to add the appropriate incoming value from the middle
605   /// block as exiting edges from the scalar epilogue loop (if present) are
606   /// already in place, and we exit the vector loop exclusively to the middle
607   /// block.
608   void fixLCSSAPHIs(VPTransformState &State);
609 
610   /// Iteratively sink the scalarized operands of a predicated instruction into
611   /// the block that was created for it.
612   void sinkScalarOperands(Instruction *PredInst);
613 
614   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
615   /// represented as.
616   void truncateToMinimalBitwidths(VPTransformState &State);
617 
618   /// This function adds
619   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
620   /// to each vector element of Val. The sequence starts at StartIndex.
621   /// \p Opcode is relevant for FP induction variable.
622   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
623                                Instruction::BinaryOps Opcode =
624                                Instruction::BinaryOpsEnd);
625 
626   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
627   /// variable on which to base the steps, \p Step is the size of the step, and
628   /// \p EntryVal is the value from the original loop that maps to the steps.
629   /// Note that \p EntryVal doesn't have to be an induction variable - it
630   /// can also be a truncate instruction.
631   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
632                         const InductionDescriptor &ID, VPValue *Def,
633                         VPValue *CastDef, VPTransformState &State);
634 
635   /// Create a vector induction phi node based on an existing scalar one. \p
636   /// EntryVal is the value from the original loop that maps to the vector phi
637   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
638   /// truncate instruction, instead of widening the original IV, we widen a
639   /// version of the IV truncated to \p EntryVal's type.
640   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
641                                        Value *Step, Value *Start,
642                                        Instruction *EntryVal, VPValue *Def,
643                                        VPValue *CastDef,
644                                        VPTransformState &State);
645 
646   /// Returns true if an instruction \p I should be scalarized instead of
647   /// vectorized for the chosen vectorization factor.
648   bool shouldScalarizeInstruction(Instruction *I) const;
649 
650   /// Returns true if we should generate a scalar version of \p IV.
651   bool needsScalarInduction(Instruction *IV) const;
652 
653   /// If there is a cast involved in the induction variable \p ID, which should
654   /// be ignored in the vectorized loop body, this function records the
655   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
656   /// cast. We had already proved that the casted Phi is equal to the uncasted
657   /// Phi in the vectorized loop (under a runtime guard), and therefore
658   /// there is no need to vectorize the cast - the same value can be used in the
659   /// vector loop for both the Phi and the cast.
660   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
661   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
662   ///
663   /// \p EntryVal is the value from the original loop that maps to the vector
664   /// phi node and is used to distinguish what is the IV currently being
665   /// processed - original one (if \p EntryVal is a phi corresponding to the
666   /// original IV) or the "newly-created" one based on the proof mentioned above
667   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
668   /// latter case \p EntryVal is a TruncInst and we must not record anything for
669   /// that IV, but it's error-prone to expect callers of this routine to care
670   /// about that, hence this explicit parameter.
671   void recordVectorLoopValueForInductionCast(
672       const InductionDescriptor &ID, const Instruction *EntryVal,
673       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
674       unsigned Part, unsigned Lane = UINT_MAX);
675 
676   /// Generate a shuffle sequence that will reverse the vector Vec.
677   virtual Value *reverseVector(Value *Vec);
678 
679   /// Returns (and creates if needed) the original loop trip count.
680   Value *getOrCreateTripCount(Loop *NewLoop);
681 
682   /// Returns (and creates if needed) the trip count of the widened loop.
683   Value *getOrCreateVectorTripCount(Loop *NewLoop);
684 
685   /// Returns a bitcasted value to the requested vector type.
686   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
687   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
688                                 const DataLayout &DL);
689 
690   /// Emit a bypass check to see if the vector trip count is zero, including if
691   /// it overflows.
692   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
693 
694   /// Emit a bypass check to see if all of the SCEV assumptions we've
695   /// had to make are correct. Returns the block containing the checks or
696   /// nullptr if no checks have been added.
697   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit bypass checks to check any memory assumptions we may have made.
700   /// Returns the block containing the checks or nullptr if no checks have been
701   /// added.
702   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Compute the transformed value of Index at offset StartValue using step
705   /// StepValue.
706   /// For integer induction, returns StartValue + Index * StepValue.
707   /// For pointer induction, returns StartValue[Index * StepValue].
708   /// FIXME: The newly created binary instructions should contain nsw/nuw
709   /// flags, which can be found from the original scalar operations.
710   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
711                               const DataLayout &DL,
712                               const InductionDescriptor &ID) const;
713 
714   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
715   /// vector loop preheader, middle block and scalar preheader. Also
716   /// allocate a loop object for the new vector loop and return it.
717   Loop *createVectorLoopSkeleton(StringRef Prefix);
718 
719   /// Create new phi nodes for the induction variables to resume iteration count
720   /// in the scalar epilogue, from where the vectorized loop left off (given by
721   /// \p VectorTripCount).
722   /// In cases where the loop skeleton is more complicated (eg. epilogue
723   /// vectorization) and the resume values can come from an additional bypass
724   /// block, the \p AdditionalBypass pair provides information about the bypass
725   /// block and the end value on the edge from bypass to this loop.
726   void createInductionResumeValues(
727       Loop *L, Value *VectorTripCount,
728       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
729 
730   /// Complete the loop skeleton by adding debug MDs, creating appropriate
731   /// conditional branches in the middle block, preparing the builder and
732   /// running the verifier. Take in the vector loop \p L as argument, and return
733   /// the preheader of the completed vector loop.
734   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
735 
736   /// Add additional metadata to \p To that was not present on \p Orig.
737   ///
738   /// Currently this is used to add the noalias annotations based on the
739   /// inserted memchecks.  Use this for instructions that are *cloned* into the
740   /// vector loop.
741   void addNewMetadata(Instruction *To, const Instruction *Orig);
742 
743   /// Add metadata from one instruction to another.
744   ///
745   /// This includes both the original MDs from \p From and additional ones (\see
746   /// addNewMetadata).  Use this for *newly created* instructions in the vector
747   /// loop.
748   void addMetadata(Instruction *To, Instruction *From);
749 
750   /// Similar to the previous function but it adds the metadata to a
751   /// vector of instructions.
752   void addMetadata(ArrayRef<Value *> To, Instruction *From);
753 
754   /// Allow subclasses to override and print debug traces before/after vplan
755   /// execution, when trace information is requested.
756   virtual void printDebugTracesAtStart(){};
757   virtual void printDebugTracesAtEnd(){};
758 
759   /// The original loop.
760   Loop *OrigLoop;
761 
762   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
763   /// dynamic knowledge to simplify SCEV expressions and converts them to a
764   /// more usable form.
765   PredicatedScalarEvolution &PSE;
766 
767   /// Loop Info.
768   LoopInfo *LI;
769 
770   /// Dominator Tree.
771   DominatorTree *DT;
772 
773   /// Alias Analysis.
774   AAResults *AA;
775 
776   /// Target Library Info.
777   const TargetLibraryInfo *TLI;
778 
779   /// Target Transform Info.
780   const TargetTransformInfo *TTI;
781 
782   /// Assumption Cache.
783   AssumptionCache *AC;
784 
785   /// Interface to emit optimization remarks.
786   OptimizationRemarkEmitter *ORE;
787 
788   /// LoopVersioning.  It's only set up (non-null) if memchecks were
789   /// used.
790   ///
791   /// This is currently only used to add no-alias metadata based on the
792   /// memchecks.  The actually versioning is performed manually.
793   std::unique_ptr<LoopVersioning> LVer;
794 
795   /// The vectorization SIMD factor to use. Each vector will have this many
796   /// vector elements.
797   ElementCount VF;
798 
799   /// The vectorization unroll factor to use. Each scalar is vectorized to this
800   /// many different vector instructions.
801   unsigned UF;
802 
803   /// The builder that we use
804   IRBuilder<> Builder;
805 
806   // --- Vectorization state ---
807 
808   /// The vector-loop preheader.
809   BasicBlock *LoopVectorPreHeader;
810 
811   /// The scalar-loop preheader.
812   BasicBlock *LoopScalarPreHeader;
813 
814   /// Middle Block between the vector and the scalar.
815   BasicBlock *LoopMiddleBlock;
816 
817   /// The unique ExitBlock of the scalar loop if one exists.  Note that
818   /// there can be multiple exiting edges reaching this block.
819   BasicBlock *LoopExitBlock;
820 
821   /// The vector loop body.
822   BasicBlock *LoopVectorBody;
823 
824   /// The scalar loop body.
825   BasicBlock *LoopScalarBody;
826 
827   /// A list of all bypass blocks. The first block is the entry of the loop.
828   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
829 
830   /// The new Induction variable which was added to the new block.
831   PHINode *Induction = nullptr;
832 
833   /// The induction variable of the old basic block.
834   PHINode *OldInduction = nullptr;
835 
836   /// Store instructions that were predicated.
837   SmallVector<Instruction *, 4> PredicatedInstructions;
838 
839   /// Trip count of the original loop.
840   Value *TripCount = nullptr;
841 
842   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
843   Value *VectorTripCount = nullptr;
844 
845   /// The legality analysis.
846   LoopVectorizationLegality *Legal;
847 
848   /// The profitablity analysis.
849   LoopVectorizationCostModel *Cost;
850 
851   // Record whether runtime checks are added.
852   bool AddedSafetyChecks = false;
853 
854   // Holds the end values for each induction variable. We save the end values
855   // so we can later fix-up the external users of the induction variables.
856   DenseMap<PHINode *, Value *> IVEndValues;
857 
858   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
859   // fixed up at the end of vector code generation.
860   SmallVector<PHINode *, 8> OrigPHIsToFix;
861 
862   /// BFI and PSI are used to check for profile guided size optimizations.
863   BlockFrequencyInfo *BFI;
864   ProfileSummaryInfo *PSI;
865 
866   // Whether this loop should be optimized for size based on profile guided size
867   // optimizatios.
868   bool OptForSizeBasedOnProfile;
869 
870   /// Structure to hold information about generated runtime checks, responsible
871   /// for cleaning the checks, if vectorization turns out unprofitable.
872   GeneratedRTChecks &RTChecks;
873 };
874 
875 class InnerLoopUnroller : public InnerLoopVectorizer {
876 public:
877   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
878                     LoopInfo *LI, DominatorTree *DT,
879                     const TargetLibraryInfo *TLI,
880                     const TargetTransformInfo *TTI, AssumptionCache *AC,
881                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
882                     LoopVectorizationLegality *LVL,
883                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
884                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
885       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
886                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
887                             BFI, PSI, Check) {}
888 
889 private:
890   Value *getBroadcastInstrs(Value *V) override;
891   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
892                        Instruction::BinaryOps Opcode =
893                        Instruction::BinaryOpsEnd) override;
894   Value *reverseVector(Value *Vec) override;
895 };
896 
897 /// Encapsulate information regarding vectorization of a loop and its epilogue.
898 /// This information is meant to be updated and used across two stages of
899 /// epilogue vectorization.
900 struct EpilogueLoopVectorizationInfo {
901   ElementCount MainLoopVF = ElementCount::getFixed(0);
902   unsigned MainLoopUF = 0;
903   ElementCount EpilogueVF = ElementCount::getFixed(0);
904   unsigned EpilogueUF = 0;
905   BasicBlock *MainLoopIterationCountCheck = nullptr;
906   BasicBlock *EpilogueIterationCountCheck = nullptr;
907   BasicBlock *SCEVSafetyCheck = nullptr;
908   BasicBlock *MemSafetyCheck = nullptr;
909   Value *TripCount = nullptr;
910   Value *VectorTripCount = nullptr;
911 
912   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
913                                 ElementCount EVF, unsigned EUF)
914       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
915     assert(EUF == 1 &&
916            "A high UF for the epilogue loop is likely not beneficial.");
917   }
918 };
919 
920 /// An extension of the inner loop vectorizer that creates a skeleton for a
921 /// vectorized loop that has its epilogue (residual) also vectorized.
922 /// The idea is to run the vplan on a given loop twice, firstly to setup the
923 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
924 /// from the first step and vectorize the epilogue.  This is achieved by
925 /// deriving two concrete strategy classes from this base class and invoking
926 /// them in succession from the loop vectorizer planner.
927 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
928 public:
929   InnerLoopAndEpilogueVectorizer(
930       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
931       DominatorTree *DT, const TargetLibraryInfo *TLI,
932       const TargetTransformInfo *TTI, AssumptionCache *AC,
933       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
934       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
935       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
936       GeneratedRTChecks &Checks)
937       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
938                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
939                             Checks),
940         EPI(EPI) {}
941 
942   // Override this function to handle the more complex control flow around the
943   // three loops.
944   BasicBlock *createVectorizedLoopSkeleton() final override {
945     return createEpilogueVectorizedLoopSkeleton();
946   }
947 
948   /// The interface for creating a vectorized skeleton using one of two
949   /// different strategies, each corresponding to one execution of the vplan
950   /// as described above.
951   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
952 
953   /// Holds and updates state information required to vectorize the main loop
954   /// and its epilogue in two separate passes. This setup helps us avoid
955   /// regenerating and recomputing runtime safety checks. It also helps us to
956   /// shorten the iteration-count-check path length for the cases where the
957   /// iteration count of the loop is so small that the main vector loop is
958   /// completely skipped.
959   EpilogueLoopVectorizationInfo &EPI;
960 };
961 
962 /// A specialized derived class of inner loop vectorizer that performs
963 /// vectorization of *main* loops in the process of vectorizing loops and their
964 /// epilogues.
965 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
966 public:
967   EpilogueVectorizerMainLoop(
968       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
969       DominatorTree *DT, const TargetLibraryInfo *TLI,
970       const TargetTransformInfo *TTI, AssumptionCache *AC,
971       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
972       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
973       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
974       GeneratedRTChecks &Check)
975       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
976                                        EPI, LVL, CM, BFI, PSI, Check) {}
977   /// Implements the interface for creating a vectorized skeleton using the
978   /// *main loop* strategy (ie the first pass of vplan execution).
979   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
980 
981 protected:
982   /// Emits an iteration count bypass check once for the main loop (when \p
983   /// ForEpilogue is false) and once for the epilogue loop (when \p
984   /// ForEpilogue is true).
985   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
986                                              bool ForEpilogue);
987   void printDebugTracesAtStart() override;
988   void printDebugTracesAtEnd() override;
989 };
990 
991 // A specialized derived class of inner loop vectorizer that performs
992 // vectorization of *epilogue* loops in the process of vectorizing loops and
993 // their epilogues.
994 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
995 public:
996   EpilogueVectorizerEpilogueLoop(
997       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
998       DominatorTree *DT, const TargetLibraryInfo *TLI,
999       const TargetTransformInfo *TTI, AssumptionCache *AC,
1000       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1001       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1002       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1003       GeneratedRTChecks &Checks)
1004       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1005                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1006   /// Implements the interface for creating a vectorized skeleton using the
1007   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1008   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1009 
1010 protected:
1011   /// Emits an iteration count bypass check after the main vector loop has
1012   /// finished to see if there are any iterations left to execute by either
1013   /// the vector epilogue or the scalar epilogue.
1014   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1015                                                       BasicBlock *Bypass,
1016                                                       BasicBlock *Insert);
1017   void printDebugTracesAtStart() override;
1018   void printDebugTracesAtEnd() override;
1019 };
1020 } // end namespace llvm
1021 
1022 /// Look for a meaningful debug location on the instruction or it's
1023 /// operands.
1024 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1025   if (!I)
1026     return I;
1027 
1028   DebugLoc Empty;
1029   if (I->getDebugLoc() != Empty)
1030     return I;
1031 
1032   for (Use &Op : I->operands()) {
1033     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1034       if (OpInst->getDebugLoc() != Empty)
1035         return OpInst;
1036   }
1037 
1038   return I;
1039 }
1040 
1041 void InnerLoopVectorizer::setDebugLocFromInst(
1042     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1043   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1044   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1045     const DILocation *DIL = Inst->getDebugLoc();
1046 
1047     // When a FSDiscriminator is enabled, we don't need to add the multiply
1048     // factors to the discriminators.
1049     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1050         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1051       // FIXME: For scalable vectors, assume vscale=1.
1052       auto NewDIL =
1053           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1054       if (NewDIL)
1055         B->SetCurrentDebugLocation(NewDIL.getValue());
1056       else
1057         LLVM_DEBUG(dbgs()
1058                    << "Failed to create new discriminator: "
1059                    << DIL->getFilename() << " Line: " << DIL->getLine());
1060     } else
1061       B->SetCurrentDebugLocation(DIL);
1062   } else
1063     B->SetCurrentDebugLocation(DebugLoc());
1064 }
1065 
1066 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1067 /// is passed, the message relates to that particular instruction.
1068 #ifndef NDEBUG
1069 static void debugVectorizationMessage(const StringRef Prefix,
1070                                       const StringRef DebugMsg,
1071                                       Instruction *I) {
1072   dbgs() << "LV: " << Prefix << DebugMsg;
1073   if (I != nullptr)
1074     dbgs() << " " << *I;
1075   else
1076     dbgs() << '.';
1077   dbgs() << '\n';
1078 }
1079 #endif
1080 
1081 /// Create an analysis remark that explains why vectorization failed
1082 ///
1083 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1084 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1085 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1086 /// the location of the remark.  \return the remark object that can be
1087 /// streamed to.
1088 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1089     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1090   Value *CodeRegion = TheLoop->getHeader();
1091   DebugLoc DL = TheLoop->getStartLoc();
1092 
1093   if (I) {
1094     CodeRegion = I->getParent();
1095     // If there is no debug location attached to the instruction, revert back to
1096     // using the loop's.
1097     if (I->getDebugLoc())
1098       DL = I->getDebugLoc();
1099   }
1100 
1101   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1102 }
1103 
1104 /// Return a value for Step multiplied by VF.
1105 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1106   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1107   Constant *StepVal = ConstantInt::get(
1108       Step->getType(),
1109       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1110   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1111 }
1112 
1113 namespace llvm {
1114 
1115 /// Return the runtime value for VF.
1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1117   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1118   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1119 }
1120 
1121 void reportVectorizationFailure(const StringRef DebugMsg,
1122                                 const StringRef OREMsg, const StringRef ORETag,
1123                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1124                                 Instruction *I) {
1125   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1126   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1127   ORE->emit(
1128       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1129       << "loop not vectorized: " << OREMsg);
1130 }
1131 
1132 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1133                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1134                              Instruction *I) {
1135   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1136   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1137   ORE->emit(
1138       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1139       << Msg);
1140 }
1141 
1142 } // end namespace llvm
1143 
1144 #ifndef NDEBUG
1145 /// \return string containing a file name and a line # for the given loop.
1146 static std::string getDebugLocString(const Loop *L) {
1147   std::string Result;
1148   if (L) {
1149     raw_string_ostream OS(Result);
1150     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1151       LoopDbgLoc.print(OS);
1152     else
1153       // Just print the module name.
1154       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1155     OS.flush();
1156   }
1157   return Result;
1158 }
1159 #endif
1160 
1161 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1162                                          const Instruction *Orig) {
1163   // If the loop was versioned with memchecks, add the corresponding no-alias
1164   // metadata.
1165   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1166     LVer->annotateInstWithNoAlias(To, Orig);
1167 }
1168 
1169 void InnerLoopVectorizer::addMetadata(Instruction *To,
1170                                       Instruction *From) {
1171   propagateMetadata(To, From);
1172   addNewMetadata(To, From);
1173 }
1174 
1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1176                                       Instruction *From) {
1177   for (Value *V : To) {
1178     if (Instruction *I = dyn_cast<Instruction>(V))
1179       addMetadata(I, From);
1180   }
1181 }
1182 
1183 namespace llvm {
1184 
1185 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1186 // lowered.
1187 enum ScalarEpilogueLowering {
1188 
1189   // The default: allowing scalar epilogues.
1190   CM_ScalarEpilogueAllowed,
1191 
1192   // Vectorization with OptForSize: don't allow epilogues.
1193   CM_ScalarEpilogueNotAllowedOptSize,
1194 
1195   // A special case of vectorisation with OptForSize: loops with a very small
1196   // trip count are considered for vectorization under OptForSize, thereby
1197   // making sure the cost of their loop body is dominant, free of runtime
1198   // guards and scalar iteration overheads.
1199   CM_ScalarEpilogueNotAllowedLowTripLoop,
1200 
1201   // Loop hint predicate indicating an epilogue is undesired.
1202   CM_ScalarEpilogueNotNeededUsePredicate,
1203 
1204   // Directive indicating we must either tail fold or not vectorize
1205   CM_ScalarEpilogueNotAllowedUsePredicate
1206 };
1207 
1208 /// ElementCountComparator creates a total ordering for ElementCount
1209 /// for the purposes of using it in a set structure.
1210 struct ElementCountComparator {
1211   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1212     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1213            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1214   }
1215 };
1216 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1217 
1218 /// LoopVectorizationCostModel - estimates the expected speedups due to
1219 /// vectorization.
1220 /// In many cases vectorization is not profitable. This can happen because of
1221 /// a number of reasons. In this class we mainly attempt to predict the
1222 /// expected speedup/slowdowns due to the supported instruction set. We use the
1223 /// TargetTransformInfo to query the different backends for the cost of
1224 /// different operations.
1225 class LoopVectorizationCostModel {
1226 public:
1227   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1228                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1229                              LoopVectorizationLegality *Legal,
1230                              const TargetTransformInfo &TTI,
1231                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1232                              AssumptionCache *AC,
1233                              OptimizationRemarkEmitter *ORE, const Function *F,
1234                              const LoopVectorizeHints *Hints,
1235                              InterleavedAccessInfo &IAI)
1236       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1237         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1238         Hints(Hints), InterleaveInfo(IAI) {}
1239 
1240   /// \return An upper bound for the vectorization factors (both fixed and
1241   /// scalable). If the factors are 0, vectorization and interleaving should be
1242   /// avoided up front.
1243   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1244 
1245   /// \return True if runtime checks are required for vectorization, and false
1246   /// otherwise.
1247   bool runtimeChecksRequired();
1248 
1249   /// \return The most profitable vectorization factor and the cost of that VF.
1250   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1251   /// then this vectorization factor will be selected if vectorization is
1252   /// possible.
1253   VectorizationFactor
1254   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1255 
1256   VectorizationFactor
1257   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1258                                     const LoopVectorizationPlanner &LVP);
1259 
1260   /// Setup cost-based decisions for user vectorization factor.
1261   /// \return true if the UserVF is a feasible VF to be chosen.
1262   bool selectUserVectorizationFactor(ElementCount UserVF) {
1263     collectUniformsAndScalars(UserVF);
1264     collectInstsToScalarize(UserVF);
1265     return expectedCost(UserVF).first.isValid();
1266   }
1267 
1268   /// \return The size (in bits) of the smallest and widest types in the code
1269   /// that needs to be vectorized. We ignore values that remain scalar such as
1270   /// 64 bit loop indices.
1271   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1272 
1273   /// \return The desired interleave count.
1274   /// If interleave count has been specified by metadata it will be returned.
1275   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1276   /// are the selected vectorization factor and the cost of the selected VF.
1277   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1278 
1279   /// Memory access instruction may be vectorized in more than one way.
1280   /// Form of instruction after vectorization depends on cost.
1281   /// This function takes cost-based decisions for Load/Store instructions
1282   /// and collects them in a map. This decisions map is used for building
1283   /// the lists of loop-uniform and loop-scalar instructions.
1284   /// The calculated cost is saved with widening decision in order to
1285   /// avoid redundant calculations.
1286   void setCostBasedWideningDecision(ElementCount VF);
1287 
1288   /// A struct that represents some properties of the register usage
1289   /// of a loop.
1290   struct RegisterUsage {
1291     /// Holds the number of loop invariant values that are used in the loop.
1292     /// The key is ClassID of target-provided register class.
1293     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1294     /// Holds the maximum number of concurrent live intervals in the loop.
1295     /// The key is ClassID of target-provided register class.
1296     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1297   };
1298 
1299   /// \return Returns information about the register usages of the loop for the
1300   /// given vectorization factors.
1301   SmallVector<RegisterUsage, 8>
1302   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1303 
1304   /// Collect values we want to ignore in the cost model.
1305   void collectValuesToIgnore();
1306 
1307   /// Collect all element types in the loop for which widening is needed.
1308   void collectElementTypesForWidening();
1309 
1310   /// Split reductions into those that happen in the loop, and those that happen
1311   /// outside. In loop reductions are collected into InLoopReductionChains.
1312   void collectInLoopReductions();
1313 
1314   /// Returns true if we should use strict in-order reductions for the given
1315   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1316   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1317   /// of FP operations.
1318   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1319     return !Hints->allowReordering() && RdxDesc.isOrdered();
1320   }
1321 
1322   /// \returns The smallest bitwidth each instruction can be represented with.
1323   /// The vector equivalents of these instructions should be truncated to this
1324   /// type.
1325   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1326     return MinBWs;
1327   }
1328 
1329   /// \returns True if it is more profitable to scalarize instruction \p I for
1330   /// vectorization factor \p VF.
1331   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1332     assert(VF.isVector() &&
1333            "Profitable to scalarize relevant only for VF > 1.");
1334 
1335     // Cost model is not run in the VPlan-native path - return conservative
1336     // result until this changes.
1337     if (EnableVPlanNativePath)
1338       return false;
1339 
1340     auto Scalars = InstsToScalarize.find(VF);
1341     assert(Scalars != InstsToScalarize.end() &&
1342            "VF not yet analyzed for scalarization profitability");
1343     return Scalars->second.find(I) != Scalars->second.end();
1344   }
1345 
1346   /// Returns true if \p I is known to be uniform after vectorization.
1347   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1348     if (VF.isScalar())
1349       return true;
1350 
1351     // Cost model is not run in the VPlan-native path - return conservative
1352     // result until this changes.
1353     if (EnableVPlanNativePath)
1354       return false;
1355 
1356     auto UniformsPerVF = Uniforms.find(VF);
1357     assert(UniformsPerVF != Uniforms.end() &&
1358            "VF not yet analyzed for uniformity");
1359     return UniformsPerVF->second.count(I);
1360   }
1361 
1362   /// Returns true if \p I is known to be scalar after vectorization.
1363   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1364     if (VF.isScalar())
1365       return true;
1366 
1367     // Cost model is not run in the VPlan-native path - return conservative
1368     // result until this changes.
1369     if (EnableVPlanNativePath)
1370       return false;
1371 
1372     auto ScalarsPerVF = Scalars.find(VF);
1373     assert(ScalarsPerVF != Scalars.end() &&
1374            "Scalar values are not calculated for VF");
1375     return ScalarsPerVF->second.count(I);
1376   }
1377 
1378   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1379   /// for vectorization factor \p VF.
1380   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1381     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1382            !isProfitableToScalarize(I, VF) &&
1383            !isScalarAfterVectorization(I, VF);
1384   }
1385 
1386   /// Decision that was taken during cost calculation for memory instruction.
1387   enum InstWidening {
1388     CM_Unknown,
1389     CM_Widen,         // For consecutive accesses with stride +1.
1390     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1391     CM_Interleave,
1392     CM_GatherScatter,
1393     CM_Scalarize
1394   };
1395 
1396   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1397   /// instruction \p I and vector width \p VF.
1398   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1399                            InstructionCost Cost) {
1400     assert(VF.isVector() && "Expected VF >=2");
1401     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1402   }
1403 
1404   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1405   /// interleaving group \p Grp and vector width \p VF.
1406   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1407                            ElementCount VF, InstWidening W,
1408                            InstructionCost Cost) {
1409     assert(VF.isVector() && "Expected VF >=2");
1410     /// Broadcast this decicion to all instructions inside the group.
1411     /// But the cost will be assigned to one instruction only.
1412     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1413       if (auto *I = Grp->getMember(i)) {
1414         if (Grp->getInsertPos() == I)
1415           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1416         else
1417           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1418       }
1419     }
1420   }
1421 
1422   /// Return the cost model decision for the given instruction \p I and vector
1423   /// width \p VF. Return CM_Unknown if this instruction did not pass
1424   /// through the cost modeling.
1425   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1426     assert(VF.isVector() && "Expected VF to be a vector VF");
1427     // Cost model is not run in the VPlan-native path - return conservative
1428     // result until this changes.
1429     if (EnableVPlanNativePath)
1430       return CM_GatherScatter;
1431 
1432     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1433     auto Itr = WideningDecisions.find(InstOnVF);
1434     if (Itr == WideningDecisions.end())
1435       return CM_Unknown;
1436     return Itr->second.first;
1437   }
1438 
1439   /// Return the vectorization cost for the given instruction \p I and vector
1440   /// width \p VF.
1441   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1442     assert(VF.isVector() && "Expected VF >=2");
1443     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1444     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1445            "The cost is not calculated");
1446     return WideningDecisions[InstOnVF].second;
1447   }
1448 
1449   /// Return True if instruction \p I is an optimizable truncate whose operand
1450   /// is an induction variable. Such a truncate will be removed by adding a new
1451   /// induction variable with the destination type.
1452   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1453     // If the instruction is not a truncate, return false.
1454     auto *Trunc = dyn_cast<TruncInst>(I);
1455     if (!Trunc)
1456       return false;
1457 
1458     // Get the source and destination types of the truncate.
1459     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1460     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1461 
1462     // If the truncate is free for the given types, return false. Replacing a
1463     // free truncate with an induction variable would add an induction variable
1464     // update instruction to each iteration of the loop. We exclude from this
1465     // check the primary induction variable since it will need an update
1466     // instruction regardless.
1467     Value *Op = Trunc->getOperand(0);
1468     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1469       return false;
1470 
1471     // If the truncated value is not an induction variable, return false.
1472     return Legal->isInductionPhi(Op);
1473   }
1474 
1475   /// Collects the instructions to scalarize for each predicated instruction in
1476   /// the loop.
1477   void collectInstsToScalarize(ElementCount VF);
1478 
1479   /// Collect Uniform and Scalar values for the given \p VF.
1480   /// The sets depend on CM decision for Load/Store instructions
1481   /// that may be vectorized as interleave, gather-scatter or scalarized.
1482   void collectUniformsAndScalars(ElementCount VF) {
1483     // Do the analysis once.
1484     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1485       return;
1486     setCostBasedWideningDecision(VF);
1487     collectLoopUniforms(VF);
1488     collectLoopScalars(VF);
1489   }
1490 
1491   /// Returns true if the target machine supports masked store operation
1492   /// for the given \p DataType and kind of access to \p Ptr.
1493   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1494     return Legal->isConsecutivePtr(DataType, Ptr) &&
1495            TTI.isLegalMaskedStore(DataType, Alignment);
1496   }
1497 
1498   /// Returns true if the target machine supports masked load operation
1499   /// for the given \p DataType and kind of access to \p Ptr.
1500   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1501     return Legal->isConsecutivePtr(DataType, Ptr) &&
1502            TTI.isLegalMaskedLoad(DataType, Alignment);
1503   }
1504 
1505   /// Returns true if the target machine can represent \p V as a masked gather
1506   /// or scatter operation.
1507   bool isLegalGatherOrScatter(Value *V) {
1508     bool LI = isa<LoadInst>(V);
1509     bool SI = isa<StoreInst>(V);
1510     if (!LI && !SI)
1511       return false;
1512     auto *Ty = getLoadStoreType(V);
1513     Align Align = getLoadStoreAlignment(V);
1514     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1515            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1516   }
1517 
1518   /// Returns true if the target machine supports all of the reduction
1519   /// variables found for the given VF.
1520   bool canVectorizeReductions(ElementCount VF) const {
1521     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1522       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1523       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1524     }));
1525   }
1526 
1527   /// Returns true if \p I is an instruction that will be scalarized with
1528   /// predication. Such instructions include conditional stores and
1529   /// instructions that may divide by zero.
1530   /// If a non-zero VF has been calculated, we check if I will be scalarized
1531   /// predication for that VF.
1532   bool isScalarWithPredication(Instruction *I) const;
1533 
1534   // Returns true if \p I is an instruction that will be predicated either
1535   // through scalar predication or masked load/store or masked gather/scatter.
1536   // Superset of instructions that return true for isScalarWithPredication.
1537   bool isPredicatedInst(Instruction *I) {
1538     if (!blockNeedsPredication(I->getParent()))
1539       return false;
1540     // Loads and stores that need some form of masked operation are predicated
1541     // instructions.
1542     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1543       return Legal->isMaskRequired(I);
1544     return isScalarWithPredication(I);
1545   }
1546 
1547   /// Returns true if \p I is a memory instruction with consecutive memory
1548   /// access that can be widened.
1549   bool
1550   memoryInstructionCanBeWidened(Instruction *I,
1551                                 ElementCount VF = ElementCount::getFixed(1));
1552 
1553   /// Returns true if \p I is a memory instruction in an interleaved-group
1554   /// of memory accesses that can be vectorized with wide vector loads/stores
1555   /// and shuffles.
1556   bool
1557   interleavedAccessCanBeWidened(Instruction *I,
1558                                 ElementCount VF = ElementCount::getFixed(1));
1559 
1560   /// Check if \p Instr belongs to any interleaved access group.
1561   bool isAccessInterleaved(Instruction *Instr) {
1562     return InterleaveInfo.isInterleaved(Instr);
1563   }
1564 
1565   /// Get the interleaved access group that \p Instr belongs to.
1566   const InterleaveGroup<Instruction> *
1567   getInterleavedAccessGroup(Instruction *Instr) {
1568     return InterleaveInfo.getInterleaveGroup(Instr);
1569   }
1570 
1571   /// Returns true if we're required to use a scalar epilogue for at least
1572   /// the final iteration of the original loop.
1573   bool requiresScalarEpilogue(ElementCount VF) const {
1574     if (!isScalarEpilogueAllowed())
1575       return false;
1576     // If we might exit from anywhere but the latch, must run the exiting
1577     // iteration in scalar form.
1578     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1579       return true;
1580     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1581   }
1582 
1583   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1584   /// loop hint annotation.
1585   bool isScalarEpilogueAllowed() const {
1586     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1587   }
1588 
1589   /// Returns true if all loop blocks should be masked to fold tail loop.
1590   bool foldTailByMasking() const { return FoldTailByMasking; }
1591 
1592   bool blockNeedsPredication(BasicBlock *BB) const {
1593     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1594   }
1595 
1596   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1597   /// nodes to the chain of instructions representing the reductions. Uses a
1598   /// MapVector to ensure deterministic iteration order.
1599   using ReductionChainMap =
1600       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1601 
1602   /// Return the chain of instructions representing an inloop reduction.
1603   const ReductionChainMap &getInLoopReductionChains() const {
1604     return InLoopReductionChains;
1605   }
1606 
1607   /// Returns true if the Phi is part of an inloop reduction.
1608   bool isInLoopReduction(PHINode *Phi) const {
1609     return InLoopReductionChains.count(Phi);
1610   }
1611 
1612   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1613   /// with factor VF.  Return the cost of the instruction, including
1614   /// scalarization overhead if it's needed.
1615   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1616 
1617   /// Estimate cost of a call instruction CI if it were vectorized with factor
1618   /// VF. Return the cost of the instruction, including scalarization overhead
1619   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1620   /// scalarized -
1621   /// i.e. either vector version isn't available, or is too expensive.
1622   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1623                                     bool &NeedToScalarize) const;
1624 
1625   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1626   /// that of B.
1627   bool isMoreProfitable(const VectorizationFactor &A,
1628                         const VectorizationFactor &B) const;
1629 
1630   /// Invalidates decisions already taken by the cost model.
1631   void invalidateCostModelingDecisions() {
1632     WideningDecisions.clear();
1633     Uniforms.clear();
1634     Scalars.clear();
1635   }
1636 
1637 private:
1638   unsigned NumPredStores = 0;
1639 
1640   /// \return An upper bound for the vectorization factors for both
1641   /// fixed and scalable vectorization, where the minimum-known number of
1642   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1643   /// disabled or unsupported, then the scalable part will be equal to
1644   /// ElementCount::getScalable(0).
1645   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1646                                            ElementCount UserVF);
1647 
1648   /// \return the maximized element count based on the targets vector
1649   /// registers and the loop trip-count, but limited to a maximum safe VF.
1650   /// This is a helper function of computeFeasibleMaxVF.
1651   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1652   /// issue that occurred on one of the buildbots which cannot be reproduced
1653   /// without having access to the properietary compiler (see comments on
1654   /// D98509). The issue is currently under investigation and this workaround
1655   /// will be removed as soon as possible.
1656   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1657                                        unsigned SmallestType,
1658                                        unsigned WidestType,
1659                                        const ElementCount &MaxSafeVF);
1660 
1661   /// \return the maximum legal scalable VF, based on the safe max number
1662   /// of elements.
1663   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1664 
1665   /// The vectorization cost is a combination of the cost itself and a boolean
1666   /// indicating whether any of the contributing operations will actually
1667   /// operate on vector values after type legalization in the backend. If this
1668   /// latter value is false, then all operations will be scalarized (i.e. no
1669   /// vectorization has actually taken place).
1670   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1671 
1672   /// Returns the expected execution cost. The unit of the cost does
1673   /// not matter because we use the 'cost' units to compare different
1674   /// vector widths. The cost that is returned is *not* normalized by
1675   /// the factor width. If \p Invalid is not nullptr, this function
1676   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1677   /// each instruction that has an Invalid cost for the given VF.
1678   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1679   VectorizationCostTy
1680   expectedCost(ElementCount VF,
1681                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1682 
1683   /// Returns the execution time cost of an instruction for a given vector
1684   /// width. Vector width of one means scalar.
1685   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1686 
1687   /// The cost-computation logic from getInstructionCost which provides
1688   /// the vector type as an output parameter.
1689   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1690                                      Type *&VectorTy);
1691 
1692   /// Return the cost of instructions in an inloop reduction pattern, if I is
1693   /// part of that pattern.
1694   Optional<InstructionCost>
1695   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1696                           TTI::TargetCostKind CostKind);
1697 
1698   /// Calculate vectorization cost of memory instruction \p I.
1699   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1700 
1701   /// The cost computation for scalarized memory instruction.
1702   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1703 
1704   /// The cost computation for interleaving group of memory instructions.
1705   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1706 
1707   /// The cost computation for Gather/Scatter instruction.
1708   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1709 
1710   /// The cost computation for widening instruction \p I with consecutive
1711   /// memory access.
1712   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1713 
1714   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1715   /// Load: scalar load + broadcast.
1716   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1717   /// element)
1718   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1719 
1720   /// Estimate the overhead of scalarizing an instruction. This is a
1721   /// convenience wrapper for the type-based getScalarizationOverhead API.
1722   InstructionCost getScalarizationOverhead(Instruction *I,
1723                                            ElementCount VF) const;
1724 
1725   /// Returns whether the instruction is a load or store and will be a emitted
1726   /// as a vector operation.
1727   bool isConsecutiveLoadOrStore(Instruction *I);
1728 
1729   /// Returns true if an artificially high cost for emulated masked memrefs
1730   /// should be used.
1731   bool useEmulatedMaskMemRefHack(Instruction *I);
1732 
1733   /// Map of scalar integer values to the smallest bitwidth they can be legally
1734   /// represented as. The vector equivalents of these values should be truncated
1735   /// to this type.
1736   MapVector<Instruction *, uint64_t> MinBWs;
1737 
1738   /// A type representing the costs for instructions if they were to be
1739   /// scalarized rather than vectorized. The entries are Instruction-Cost
1740   /// pairs.
1741   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1742 
1743   /// A set containing all BasicBlocks that are known to present after
1744   /// vectorization as a predicated block.
1745   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1746 
1747   /// Records whether it is allowed to have the original scalar loop execute at
1748   /// least once. This may be needed as a fallback loop in case runtime
1749   /// aliasing/dependence checks fail, or to handle the tail/remainder
1750   /// iterations when the trip count is unknown or doesn't divide by the VF,
1751   /// or as a peel-loop to handle gaps in interleave-groups.
1752   /// Under optsize and when the trip count is very small we don't allow any
1753   /// iterations to execute in the scalar loop.
1754   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1755 
1756   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1757   bool FoldTailByMasking = false;
1758 
1759   /// A map holding scalar costs for different vectorization factors. The
1760   /// presence of a cost for an instruction in the mapping indicates that the
1761   /// instruction will be scalarized when vectorizing with the associated
1762   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1763   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1764 
1765   /// Holds the instructions known to be uniform after vectorization.
1766   /// The data is collected per VF.
1767   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1768 
1769   /// Holds the instructions known to be scalar after vectorization.
1770   /// The data is collected per VF.
1771   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1772 
1773   /// Holds the instructions (address computations) that are forced to be
1774   /// scalarized.
1775   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1776 
1777   /// PHINodes of the reductions that should be expanded in-loop along with
1778   /// their associated chains of reduction operations, in program order from top
1779   /// (PHI) to bottom
1780   ReductionChainMap InLoopReductionChains;
1781 
1782   /// A Map of inloop reduction operations and their immediate chain operand.
1783   /// FIXME: This can be removed once reductions can be costed correctly in
1784   /// vplan. This was added to allow quick lookup to the inloop operations,
1785   /// without having to loop through InLoopReductionChains.
1786   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1787 
1788   /// Returns the expected difference in cost from scalarizing the expression
1789   /// feeding a predicated instruction \p PredInst. The instructions to
1790   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1791   /// non-negative return value implies the expression will be scalarized.
1792   /// Currently, only single-use chains are considered for scalarization.
1793   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1794                               ElementCount VF);
1795 
1796   /// Collect the instructions that are uniform after vectorization. An
1797   /// instruction is uniform if we represent it with a single scalar value in
1798   /// the vectorized loop corresponding to each vector iteration. Examples of
1799   /// uniform instructions include pointer operands of consecutive or
1800   /// interleaved memory accesses. Note that although uniformity implies an
1801   /// instruction will be scalar, the reverse is not true. In general, a
1802   /// scalarized instruction will be represented by VF scalar values in the
1803   /// vectorized loop, each corresponding to an iteration of the original
1804   /// scalar loop.
1805   void collectLoopUniforms(ElementCount VF);
1806 
1807   /// Collect the instructions that are scalar after vectorization. An
1808   /// instruction is scalar if it is known to be uniform or will be scalarized
1809   /// during vectorization. Non-uniform scalarized instructions will be
1810   /// represented by VF values in the vectorized loop, each corresponding to an
1811   /// iteration of the original scalar loop.
1812   void collectLoopScalars(ElementCount VF);
1813 
1814   /// Keeps cost model vectorization decision and cost for instructions.
1815   /// Right now it is used for memory instructions only.
1816   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1817                                 std::pair<InstWidening, InstructionCost>>;
1818 
1819   DecisionList WideningDecisions;
1820 
1821   /// Returns true if \p V is expected to be vectorized and it needs to be
1822   /// extracted.
1823   bool needsExtract(Value *V, ElementCount VF) const {
1824     Instruction *I = dyn_cast<Instruction>(V);
1825     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1826         TheLoop->isLoopInvariant(I))
1827       return false;
1828 
1829     // Assume we can vectorize V (and hence we need extraction) if the
1830     // scalars are not computed yet. This can happen, because it is called
1831     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1832     // the scalars are collected. That should be a safe assumption in most
1833     // cases, because we check if the operands have vectorizable types
1834     // beforehand in LoopVectorizationLegality.
1835     return Scalars.find(VF) == Scalars.end() ||
1836            !isScalarAfterVectorization(I, VF);
1837   };
1838 
1839   /// Returns a range containing only operands needing to be extracted.
1840   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1841                                                    ElementCount VF) const {
1842     return SmallVector<Value *, 4>(make_filter_range(
1843         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1844   }
1845 
1846   /// Determines if we have the infrastructure to vectorize loop \p L and its
1847   /// epilogue, assuming the main loop is vectorized by \p VF.
1848   bool isCandidateForEpilogueVectorization(const Loop &L,
1849                                            const ElementCount VF) const;
1850 
1851   /// Returns true if epilogue vectorization is considered profitable, and
1852   /// false otherwise.
1853   /// \p VF is the vectorization factor chosen for the original loop.
1854   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1855 
1856 public:
1857   /// The loop that we evaluate.
1858   Loop *TheLoop;
1859 
1860   /// Predicated scalar evolution analysis.
1861   PredicatedScalarEvolution &PSE;
1862 
1863   /// Loop Info analysis.
1864   LoopInfo *LI;
1865 
1866   /// Vectorization legality.
1867   LoopVectorizationLegality *Legal;
1868 
1869   /// Vector target information.
1870   const TargetTransformInfo &TTI;
1871 
1872   /// Target Library Info.
1873   const TargetLibraryInfo *TLI;
1874 
1875   /// Demanded bits analysis.
1876   DemandedBits *DB;
1877 
1878   /// Assumption cache.
1879   AssumptionCache *AC;
1880 
1881   /// Interface to emit optimization remarks.
1882   OptimizationRemarkEmitter *ORE;
1883 
1884   const Function *TheFunction;
1885 
1886   /// Loop Vectorize Hint.
1887   const LoopVectorizeHints *Hints;
1888 
1889   /// The interleave access information contains groups of interleaved accesses
1890   /// with the same stride and close to each other.
1891   InterleavedAccessInfo &InterleaveInfo;
1892 
1893   /// Values to ignore in the cost model.
1894   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1895 
1896   /// Values to ignore in the cost model when VF > 1.
1897   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1898 
1899   /// All element types found in the loop.
1900   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1901 
1902   /// Profitable vector factors.
1903   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1904 };
1905 } // end namespace llvm
1906 
1907 /// Helper struct to manage generating runtime checks for vectorization.
1908 ///
1909 /// The runtime checks are created up-front in temporary blocks to allow better
1910 /// estimating the cost and un-linked from the existing IR. After deciding to
1911 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1912 /// temporary blocks are completely removed.
1913 class GeneratedRTChecks {
1914   /// Basic block which contains the generated SCEV checks, if any.
1915   BasicBlock *SCEVCheckBlock = nullptr;
1916 
1917   /// The value representing the result of the generated SCEV checks. If it is
1918   /// nullptr, either no SCEV checks have been generated or they have been used.
1919   Value *SCEVCheckCond = nullptr;
1920 
1921   /// Basic block which contains the generated memory runtime checks, if any.
1922   BasicBlock *MemCheckBlock = nullptr;
1923 
1924   /// The value representing the result of the generated memory runtime checks.
1925   /// If it is nullptr, either no memory runtime checks have been generated or
1926   /// they have been used.
1927   Instruction *MemRuntimeCheckCond = nullptr;
1928 
1929   DominatorTree *DT;
1930   LoopInfo *LI;
1931 
1932   SCEVExpander SCEVExp;
1933   SCEVExpander MemCheckExp;
1934 
1935 public:
1936   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1937                     const DataLayout &DL)
1938       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1939         MemCheckExp(SE, DL, "scev.check") {}
1940 
1941   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1942   /// accurately estimate the cost of the runtime checks. The blocks are
1943   /// un-linked from the IR and is added back during vector code generation. If
1944   /// there is no vector code generation, the check blocks are removed
1945   /// completely.
1946   void Create(Loop *L, const LoopAccessInfo &LAI,
1947               const SCEVUnionPredicate &UnionPred) {
1948 
1949     BasicBlock *LoopHeader = L->getHeader();
1950     BasicBlock *Preheader = L->getLoopPreheader();
1951 
1952     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1953     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1954     // may be used by SCEVExpander. The blocks will be un-linked from their
1955     // predecessors and removed from LI & DT at the end of the function.
1956     if (!UnionPred.isAlwaysTrue()) {
1957       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1958                                   nullptr, "vector.scevcheck");
1959 
1960       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1961           &UnionPred, SCEVCheckBlock->getTerminator());
1962     }
1963 
1964     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1965     if (RtPtrChecking.Need) {
1966       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1967       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1968                                  "vector.memcheck");
1969 
1970       std::tie(std::ignore, MemRuntimeCheckCond) =
1971           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1972                            RtPtrChecking.getChecks(), MemCheckExp);
1973       assert(MemRuntimeCheckCond &&
1974              "no RT checks generated although RtPtrChecking "
1975              "claimed checks are required");
1976     }
1977 
1978     if (!MemCheckBlock && !SCEVCheckBlock)
1979       return;
1980 
1981     // Unhook the temporary block with the checks, update various places
1982     // accordingly.
1983     if (SCEVCheckBlock)
1984       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1985     if (MemCheckBlock)
1986       MemCheckBlock->replaceAllUsesWith(Preheader);
1987 
1988     if (SCEVCheckBlock) {
1989       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1990       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1991       Preheader->getTerminator()->eraseFromParent();
1992     }
1993     if (MemCheckBlock) {
1994       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1995       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1996       Preheader->getTerminator()->eraseFromParent();
1997     }
1998 
1999     DT->changeImmediateDominator(LoopHeader, Preheader);
2000     if (MemCheckBlock) {
2001       DT->eraseNode(MemCheckBlock);
2002       LI->removeBlock(MemCheckBlock);
2003     }
2004     if (SCEVCheckBlock) {
2005       DT->eraseNode(SCEVCheckBlock);
2006       LI->removeBlock(SCEVCheckBlock);
2007     }
2008   }
2009 
2010   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2011   /// unused.
2012   ~GeneratedRTChecks() {
2013     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2014     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2015     if (!SCEVCheckCond)
2016       SCEVCleaner.markResultUsed();
2017 
2018     if (!MemRuntimeCheckCond)
2019       MemCheckCleaner.markResultUsed();
2020 
2021     if (MemRuntimeCheckCond) {
2022       auto &SE = *MemCheckExp.getSE();
2023       // Memory runtime check generation creates compares that use expanded
2024       // values. Remove them before running the SCEVExpanderCleaners.
2025       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2026         if (MemCheckExp.isInsertedInstruction(&I))
2027           continue;
2028         SE.forgetValue(&I);
2029         SE.eraseValueFromMap(&I);
2030         I.eraseFromParent();
2031       }
2032     }
2033     MemCheckCleaner.cleanup();
2034     SCEVCleaner.cleanup();
2035 
2036     if (SCEVCheckCond)
2037       SCEVCheckBlock->eraseFromParent();
2038     if (MemRuntimeCheckCond)
2039       MemCheckBlock->eraseFromParent();
2040   }
2041 
2042   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2043   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2044   /// depending on the generated condition.
2045   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2046                              BasicBlock *LoopVectorPreHeader,
2047                              BasicBlock *LoopExitBlock) {
2048     if (!SCEVCheckCond)
2049       return nullptr;
2050     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2051       if (C->isZero())
2052         return nullptr;
2053 
2054     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2055 
2056     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2057     // Create new preheader for vector loop.
2058     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2059       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2060 
2061     SCEVCheckBlock->getTerminator()->eraseFromParent();
2062     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2063     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2064                                                 SCEVCheckBlock);
2065 
2066     DT->addNewBlock(SCEVCheckBlock, Pred);
2067     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2068 
2069     ReplaceInstWithInst(
2070         SCEVCheckBlock->getTerminator(),
2071         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2072     // Mark the check as used, to prevent it from being removed during cleanup.
2073     SCEVCheckCond = nullptr;
2074     return SCEVCheckBlock;
2075   }
2076 
2077   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2078   /// the branches to branch to the vector preheader or \p Bypass, depending on
2079   /// the generated condition.
2080   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2081                                    BasicBlock *LoopVectorPreHeader) {
2082     // Check if we generated code that checks in runtime if arrays overlap.
2083     if (!MemRuntimeCheckCond)
2084       return nullptr;
2085 
2086     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2087     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2088                                                 MemCheckBlock);
2089 
2090     DT->addNewBlock(MemCheckBlock, Pred);
2091     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2092     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2093 
2094     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2095       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2096 
2097     ReplaceInstWithInst(
2098         MemCheckBlock->getTerminator(),
2099         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2100     MemCheckBlock->getTerminator()->setDebugLoc(
2101         Pred->getTerminator()->getDebugLoc());
2102 
2103     // Mark the check as used, to prevent it from being removed during cleanup.
2104     MemRuntimeCheckCond = nullptr;
2105     return MemCheckBlock;
2106   }
2107 };
2108 
2109 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2110 // vectorization. The loop needs to be annotated with #pragma omp simd
2111 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2112 // vector length information is not provided, vectorization is not considered
2113 // explicit. Interleave hints are not allowed either. These limitations will be
2114 // relaxed in the future.
2115 // Please, note that we are currently forced to abuse the pragma 'clang
2116 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2117 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2118 // provides *explicit vectorization hints* (LV can bypass legal checks and
2119 // assume that vectorization is legal). However, both hints are implemented
2120 // using the same metadata (llvm.loop.vectorize, processed by
2121 // LoopVectorizeHints). This will be fixed in the future when the native IR
2122 // representation for pragma 'omp simd' is introduced.
2123 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2124                                    OptimizationRemarkEmitter *ORE) {
2125   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2126   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2127 
2128   // Only outer loops with an explicit vectorization hint are supported.
2129   // Unannotated outer loops are ignored.
2130   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2131     return false;
2132 
2133   Function *Fn = OuterLp->getHeader()->getParent();
2134   if (!Hints.allowVectorization(Fn, OuterLp,
2135                                 true /*VectorizeOnlyWhenForced*/)) {
2136     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2137     return false;
2138   }
2139 
2140   if (Hints.getInterleave() > 1) {
2141     // TODO: Interleave support is future work.
2142     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2143                          "outer loops.\n");
2144     Hints.emitRemarkWithHints();
2145     return false;
2146   }
2147 
2148   return true;
2149 }
2150 
2151 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2152                                   OptimizationRemarkEmitter *ORE,
2153                                   SmallVectorImpl<Loop *> &V) {
2154   // Collect inner loops and outer loops without irreducible control flow. For
2155   // now, only collect outer loops that have explicit vectorization hints. If we
2156   // are stress testing the VPlan H-CFG construction, we collect the outermost
2157   // loop of every loop nest.
2158   if (L.isInnermost() || VPlanBuildStressTest ||
2159       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2160     LoopBlocksRPO RPOT(&L);
2161     RPOT.perform(LI);
2162     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2163       V.push_back(&L);
2164       // TODO: Collect inner loops inside marked outer loops in case
2165       // vectorization fails for the outer loop. Do not invoke
2166       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2167       // already known to be reducible. We can use an inherited attribute for
2168       // that.
2169       return;
2170     }
2171   }
2172   for (Loop *InnerL : L)
2173     collectSupportedLoops(*InnerL, LI, ORE, V);
2174 }
2175 
2176 namespace {
2177 
2178 /// The LoopVectorize Pass.
2179 struct LoopVectorize : public FunctionPass {
2180   /// Pass identification, replacement for typeid
2181   static char ID;
2182 
2183   LoopVectorizePass Impl;
2184 
2185   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2186                          bool VectorizeOnlyWhenForced = false)
2187       : FunctionPass(ID),
2188         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2189     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2190   }
2191 
2192   bool runOnFunction(Function &F) override {
2193     if (skipFunction(F))
2194       return false;
2195 
2196     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2197     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2198     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2199     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2200     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2201     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2202     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2203     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2204     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2205     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2206     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2207     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2208     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2209 
2210     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2211         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2212 
2213     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2214                         GetLAA, *ORE, PSI).MadeAnyChange;
2215   }
2216 
2217   void getAnalysisUsage(AnalysisUsage &AU) const override {
2218     AU.addRequired<AssumptionCacheTracker>();
2219     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2220     AU.addRequired<DominatorTreeWrapperPass>();
2221     AU.addRequired<LoopInfoWrapperPass>();
2222     AU.addRequired<ScalarEvolutionWrapperPass>();
2223     AU.addRequired<TargetTransformInfoWrapperPass>();
2224     AU.addRequired<AAResultsWrapperPass>();
2225     AU.addRequired<LoopAccessLegacyAnalysis>();
2226     AU.addRequired<DemandedBitsWrapperPass>();
2227     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2228     AU.addRequired<InjectTLIMappingsLegacy>();
2229 
2230     // We currently do not preserve loopinfo/dominator analyses with outer loop
2231     // vectorization. Until this is addressed, mark these analyses as preserved
2232     // only for non-VPlan-native path.
2233     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2234     if (!EnableVPlanNativePath) {
2235       AU.addPreserved<LoopInfoWrapperPass>();
2236       AU.addPreserved<DominatorTreeWrapperPass>();
2237     }
2238 
2239     AU.addPreserved<BasicAAWrapperPass>();
2240     AU.addPreserved<GlobalsAAWrapperPass>();
2241     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2242   }
2243 };
2244 
2245 } // end anonymous namespace
2246 
2247 //===----------------------------------------------------------------------===//
2248 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2249 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2250 //===----------------------------------------------------------------------===//
2251 
2252 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2253   // We need to place the broadcast of invariant variables outside the loop,
2254   // but only if it's proven safe to do so. Else, broadcast will be inside
2255   // vector loop body.
2256   Instruction *Instr = dyn_cast<Instruction>(V);
2257   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2258                      (!Instr ||
2259                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2260   // Place the code for broadcasting invariant variables in the new preheader.
2261   IRBuilder<>::InsertPointGuard Guard(Builder);
2262   if (SafeToHoist)
2263     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2264 
2265   // Broadcast the scalar into all locations in the vector.
2266   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2267 
2268   return Shuf;
2269 }
2270 
2271 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2272     const InductionDescriptor &II, Value *Step, Value *Start,
2273     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2274     VPTransformState &State) {
2275   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2276          "Expected either an induction phi-node or a truncate of it!");
2277 
2278   // Construct the initial value of the vector IV in the vector loop preheader
2279   auto CurrIP = Builder.saveIP();
2280   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2281   if (isa<TruncInst>(EntryVal)) {
2282     assert(Start->getType()->isIntegerTy() &&
2283            "Truncation requires an integer type");
2284     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2285     Step = Builder.CreateTrunc(Step, TruncType);
2286     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2287   }
2288   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2289   Value *SteppedStart =
2290       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2291 
2292   // We create vector phi nodes for both integer and floating-point induction
2293   // variables. Here, we determine the kind of arithmetic we will perform.
2294   Instruction::BinaryOps AddOp;
2295   Instruction::BinaryOps MulOp;
2296   if (Step->getType()->isIntegerTy()) {
2297     AddOp = Instruction::Add;
2298     MulOp = Instruction::Mul;
2299   } else {
2300     AddOp = II.getInductionOpcode();
2301     MulOp = Instruction::FMul;
2302   }
2303 
2304   // Multiply the vectorization factor by the step using integer or
2305   // floating-point arithmetic as appropriate.
2306   Type *StepType = Step->getType();
2307   if (Step->getType()->isFloatingPointTy())
2308     StepType = IntegerType::get(StepType->getContext(),
2309                                 StepType->getScalarSizeInBits());
2310   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2311   if (Step->getType()->isFloatingPointTy())
2312     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2313   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2314 
2315   // Create a vector splat to use in the induction update.
2316   //
2317   // FIXME: If the step is non-constant, we create the vector splat with
2318   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2319   //        handle a constant vector splat.
2320   Value *SplatVF = isa<Constant>(Mul)
2321                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2322                        : Builder.CreateVectorSplat(VF, Mul);
2323   Builder.restoreIP(CurrIP);
2324 
2325   // We may need to add the step a number of times, depending on the unroll
2326   // factor. The last of those goes into the PHI.
2327   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2328                                     &*LoopVectorBody->getFirstInsertionPt());
2329   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2330   Instruction *LastInduction = VecInd;
2331   for (unsigned Part = 0; Part < UF; ++Part) {
2332     State.set(Def, LastInduction, Part);
2333 
2334     if (isa<TruncInst>(EntryVal))
2335       addMetadata(LastInduction, EntryVal);
2336     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2337                                           State, Part);
2338 
2339     LastInduction = cast<Instruction>(
2340         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2341     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2342   }
2343 
2344   // Move the last step to the end of the latch block. This ensures consistent
2345   // placement of all induction updates.
2346   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2347   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2348   auto *ICmp = cast<Instruction>(Br->getCondition());
2349   LastInduction->moveBefore(ICmp);
2350   LastInduction->setName("vec.ind.next");
2351 
2352   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2353   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2354 }
2355 
2356 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2357   return Cost->isScalarAfterVectorization(I, VF) ||
2358          Cost->isProfitableToScalarize(I, VF);
2359 }
2360 
2361 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2362   if (shouldScalarizeInstruction(IV))
2363     return true;
2364   auto isScalarInst = [&](User *U) -> bool {
2365     auto *I = cast<Instruction>(U);
2366     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2367   };
2368   return llvm::any_of(IV->users(), isScalarInst);
2369 }
2370 
2371 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2372     const InductionDescriptor &ID, const Instruction *EntryVal,
2373     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2374     unsigned Part, unsigned Lane) {
2375   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2376          "Expected either an induction phi-node or a truncate of it!");
2377 
2378   // This induction variable is not the phi from the original loop but the
2379   // newly-created IV based on the proof that casted Phi is equal to the
2380   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2381   // re-uses the same InductionDescriptor that original IV uses but we don't
2382   // have to do any recording in this case - that is done when original IV is
2383   // processed.
2384   if (isa<TruncInst>(EntryVal))
2385     return;
2386 
2387   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2388   if (Casts.empty())
2389     return;
2390   // Only the first Cast instruction in the Casts vector is of interest.
2391   // The rest of the Casts (if exist) have no uses outside the
2392   // induction update chain itself.
2393   if (Lane < UINT_MAX)
2394     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2395   else
2396     State.set(CastDef, VectorLoopVal, Part);
2397 }
2398 
2399 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2400                                                 TruncInst *Trunc, VPValue *Def,
2401                                                 VPValue *CastDef,
2402                                                 VPTransformState &State) {
2403   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2404          "Primary induction variable must have an integer type");
2405 
2406   auto II = Legal->getInductionVars().find(IV);
2407   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2408 
2409   auto ID = II->second;
2410   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2411 
2412   // The value from the original loop to which we are mapping the new induction
2413   // variable.
2414   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2415 
2416   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2417 
2418   // Generate code for the induction step. Note that induction steps are
2419   // required to be loop-invariant
2420   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2421     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2422            "Induction step should be loop invariant");
2423     if (PSE.getSE()->isSCEVable(IV->getType())) {
2424       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2425       return Exp.expandCodeFor(Step, Step->getType(),
2426                                LoopVectorPreHeader->getTerminator());
2427     }
2428     return cast<SCEVUnknown>(Step)->getValue();
2429   };
2430 
2431   // The scalar value to broadcast. This is derived from the canonical
2432   // induction variable. If a truncation type is given, truncate the canonical
2433   // induction variable and step. Otherwise, derive these values from the
2434   // induction descriptor.
2435   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2436     Value *ScalarIV = Induction;
2437     if (IV != OldInduction) {
2438       ScalarIV = IV->getType()->isIntegerTy()
2439                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2440                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2441                                           IV->getType());
2442       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2443       ScalarIV->setName("offset.idx");
2444     }
2445     if (Trunc) {
2446       auto *TruncType = cast<IntegerType>(Trunc->getType());
2447       assert(Step->getType()->isIntegerTy() &&
2448              "Truncation requires an integer step");
2449       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2450       Step = Builder.CreateTrunc(Step, TruncType);
2451     }
2452     return ScalarIV;
2453   };
2454 
2455   // Create the vector values from the scalar IV, in the absence of creating a
2456   // vector IV.
2457   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2458     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2459     for (unsigned Part = 0; Part < UF; ++Part) {
2460       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2461       Value *EntryPart =
2462           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2463                         ID.getInductionOpcode());
2464       State.set(Def, EntryPart, Part);
2465       if (Trunc)
2466         addMetadata(EntryPart, Trunc);
2467       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2468                                             State, Part);
2469     }
2470   };
2471 
2472   // Fast-math-flags propagate from the original induction instruction.
2473   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2474   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2475     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2476 
2477   // Now do the actual transformations, and start with creating the step value.
2478   Value *Step = CreateStepValue(ID.getStep());
2479   if (VF.isZero() || VF.isScalar()) {
2480     Value *ScalarIV = CreateScalarIV(Step);
2481     CreateSplatIV(ScalarIV, Step);
2482     return;
2483   }
2484 
2485   // Determine if we want a scalar version of the induction variable. This is
2486   // true if the induction variable itself is not widened, or if it has at
2487   // least one user in the loop that is not widened.
2488   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2489   if (!NeedsScalarIV) {
2490     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2491                                     State);
2492     return;
2493   }
2494 
2495   // Try to create a new independent vector induction variable. If we can't
2496   // create the phi node, we will splat the scalar induction variable in each
2497   // loop iteration.
2498   if (!shouldScalarizeInstruction(EntryVal)) {
2499     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2500                                     State);
2501     Value *ScalarIV = CreateScalarIV(Step);
2502     // Create scalar steps that can be used by instructions we will later
2503     // scalarize. Note that the addition of the scalar steps will not increase
2504     // the number of instructions in the loop in the common case prior to
2505     // InstCombine. We will be trading one vector extract for each scalar step.
2506     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2507     return;
2508   }
2509 
2510   // All IV users are scalar instructions, so only emit a scalar IV, not a
2511   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2512   // predicate used by the masked loads/stores.
2513   Value *ScalarIV = CreateScalarIV(Step);
2514   if (!Cost->isScalarEpilogueAllowed())
2515     CreateSplatIV(ScalarIV, Step);
2516   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2517 }
2518 
2519 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2520                                           Instruction::BinaryOps BinOp) {
2521   // Create and check the types.
2522   auto *ValVTy = cast<VectorType>(Val->getType());
2523   ElementCount VLen = ValVTy->getElementCount();
2524 
2525   Type *STy = Val->getType()->getScalarType();
2526   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2527          "Induction Step must be an integer or FP");
2528   assert(Step->getType() == STy && "Step has wrong type");
2529 
2530   SmallVector<Constant *, 8> Indices;
2531 
2532   // Create a vector of consecutive numbers from zero to VF.
2533   VectorType *InitVecValVTy = ValVTy;
2534   Type *InitVecValSTy = STy;
2535   if (STy->isFloatingPointTy()) {
2536     InitVecValSTy =
2537         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2538     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2539   }
2540   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2541 
2542   // Add on StartIdx
2543   Value *StartIdxSplat = Builder.CreateVectorSplat(
2544       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2545   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2546 
2547   if (STy->isIntegerTy()) {
2548     Step = Builder.CreateVectorSplat(VLen, Step);
2549     assert(Step->getType() == Val->getType() && "Invalid step vec");
2550     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2551     // which can be found from the original scalar operations.
2552     Step = Builder.CreateMul(InitVec, Step);
2553     return Builder.CreateAdd(Val, Step, "induction");
2554   }
2555 
2556   // Floating point induction.
2557   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2558          "Binary Opcode should be specified for FP induction");
2559   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2560   Step = Builder.CreateVectorSplat(VLen, Step);
2561   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2562   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2563 }
2564 
2565 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2566                                            Instruction *EntryVal,
2567                                            const InductionDescriptor &ID,
2568                                            VPValue *Def, VPValue *CastDef,
2569                                            VPTransformState &State) {
2570   // We shouldn't have to build scalar steps if we aren't vectorizing.
2571   assert(VF.isVector() && "VF should be greater than one");
2572   // Get the value type and ensure it and the step have the same integer type.
2573   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2574   assert(ScalarIVTy == Step->getType() &&
2575          "Val and Step should have the same type");
2576 
2577   // We build scalar steps for both integer and floating-point induction
2578   // variables. Here, we determine the kind of arithmetic we will perform.
2579   Instruction::BinaryOps AddOp;
2580   Instruction::BinaryOps MulOp;
2581   if (ScalarIVTy->isIntegerTy()) {
2582     AddOp = Instruction::Add;
2583     MulOp = Instruction::Mul;
2584   } else {
2585     AddOp = ID.getInductionOpcode();
2586     MulOp = Instruction::FMul;
2587   }
2588 
2589   // Determine the number of scalars we need to generate for each unroll
2590   // iteration. If EntryVal is uniform, we only need to generate the first
2591   // lane. Otherwise, we generate all VF values.
2592   bool IsUniform =
2593       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2594   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2595   // Compute the scalar steps and save the results in State.
2596   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2597                                      ScalarIVTy->getScalarSizeInBits());
2598   Type *VecIVTy = nullptr;
2599   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2600   if (!IsUniform && VF.isScalable()) {
2601     VecIVTy = VectorType::get(ScalarIVTy, VF);
2602     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2603     SplatStep = Builder.CreateVectorSplat(VF, Step);
2604     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2605   }
2606 
2607   for (unsigned Part = 0; Part < UF; ++Part) {
2608     Value *StartIdx0 =
2609         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2610 
2611     if (!IsUniform && VF.isScalable()) {
2612       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2613       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2614       if (ScalarIVTy->isFloatingPointTy())
2615         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2616       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2617       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2618       State.set(Def, Add, Part);
2619       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2620                                             Part);
2621       // It's useful to record the lane values too for the known minimum number
2622       // of elements so we do those below. This improves the code quality when
2623       // trying to extract the first element, for example.
2624     }
2625 
2626     if (ScalarIVTy->isFloatingPointTy())
2627       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2628 
2629     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2630       Value *StartIdx = Builder.CreateBinOp(
2631           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2632       // The step returned by `createStepForVF` is a runtime-evaluated value
2633       // when VF is scalable. Otherwise, it should be folded into a Constant.
2634       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2635              "Expected StartIdx to be folded to a constant when VF is not "
2636              "scalable");
2637       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2638       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2639       State.set(Def, Add, VPIteration(Part, Lane));
2640       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2641                                             Part, Lane);
2642     }
2643   }
2644 }
2645 
2646 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2647                                                     const VPIteration &Instance,
2648                                                     VPTransformState &State) {
2649   Value *ScalarInst = State.get(Def, Instance);
2650   Value *VectorValue = State.get(Def, Instance.Part);
2651   VectorValue = Builder.CreateInsertElement(
2652       VectorValue, ScalarInst,
2653       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2654   State.set(Def, VectorValue, Instance.Part);
2655 }
2656 
2657 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2658   assert(Vec->getType()->isVectorTy() && "Invalid type");
2659   return Builder.CreateVectorReverse(Vec, "reverse");
2660 }
2661 
2662 // Return whether we allow using masked interleave-groups (for dealing with
2663 // strided loads/stores that reside in predicated blocks, or for dealing
2664 // with gaps).
2665 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2666   // If an override option has been passed in for interleaved accesses, use it.
2667   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2668     return EnableMaskedInterleavedMemAccesses;
2669 
2670   return TTI.enableMaskedInterleavedAccessVectorization();
2671 }
2672 
2673 // Try to vectorize the interleave group that \p Instr belongs to.
2674 //
2675 // E.g. Translate following interleaved load group (factor = 3):
2676 //   for (i = 0; i < N; i+=3) {
2677 //     R = Pic[i];             // Member of index 0
2678 //     G = Pic[i+1];           // Member of index 1
2679 //     B = Pic[i+2];           // Member of index 2
2680 //     ... // do something to R, G, B
2681 //   }
2682 // To:
2683 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2684 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2685 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2686 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2687 //
2688 // Or translate following interleaved store group (factor = 3):
2689 //   for (i = 0; i < N; i+=3) {
2690 //     ... do something to R, G, B
2691 //     Pic[i]   = R;           // Member of index 0
2692 //     Pic[i+1] = G;           // Member of index 1
2693 //     Pic[i+2] = B;           // Member of index 2
2694 //   }
2695 // To:
2696 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2697 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2698 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2699 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2700 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2701 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2702     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2703     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2704     VPValue *BlockInMask) {
2705   Instruction *Instr = Group->getInsertPos();
2706   const DataLayout &DL = Instr->getModule()->getDataLayout();
2707 
2708   // Prepare for the vector type of the interleaved load/store.
2709   Type *ScalarTy = getLoadStoreType(Instr);
2710   unsigned InterleaveFactor = Group->getFactor();
2711   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2712   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2713 
2714   // Prepare for the new pointers.
2715   SmallVector<Value *, 2> AddrParts;
2716   unsigned Index = Group->getIndex(Instr);
2717 
2718   // TODO: extend the masked interleaved-group support to reversed access.
2719   assert((!BlockInMask || !Group->isReverse()) &&
2720          "Reversed masked interleave-group not supported.");
2721 
2722   // If the group is reverse, adjust the index to refer to the last vector lane
2723   // instead of the first. We adjust the index from the first vector lane,
2724   // rather than directly getting the pointer for lane VF - 1, because the
2725   // pointer operand of the interleaved access is supposed to be uniform. For
2726   // uniform instructions, we're only required to generate a value for the
2727   // first vector lane in each unroll iteration.
2728   if (Group->isReverse())
2729     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2730 
2731   for (unsigned Part = 0; Part < UF; Part++) {
2732     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2733     setDebugLocFromInst(AddrPart);
2734 
2735     // Notice current instruction could be any index. Need to adjust the address
2736     // to the member of index 0.
2737     //
2738     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2739     //       b = A[i];       // Member of index 0
2740     // Current pointer is pointed to A[i+1], adjust it to A[i].
2741     //
2742     // E.g.  A[i+1] = a;     // Member of index 1
2743     //       A[i]   = b;     // Member of index 0
2744     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2745     // Current pointer is pointed to A[i+2], adjust it to A[i].
2746 
2747     bool InBounds = false;
2748     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2749       InBounds = gep->isInBounds();
2750     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2751     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2752 
2753     // Cast to the vector pointer type.
2754     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2755     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2756     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2757   }
2758 
2759   setDebugLocFromInst(Instr);
2760   Value *PoisonVec = PoisonValue::get(VecTy);
2761 
2762   Value *MaskForGaps = nullptr;
2763   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2764     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2765     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2766   }
2767 
2768   // Vectorize the interleaved load group.
2769   if (isa<LoadInst>(Instr)) {
2770     // For each unroll part, create a wide load for the group.
2771     SmallVector<Value *, 2> NewLoads;
2772     for (unsigned Part = 0; Part < UF; Part++) {
2773       Instruction *NewLoad;
2774       if (BlockInMask || MaskForGaps) {
2775         assert(useMaskedInterleavedAccesses(*TTI) &&
2776                "masked interleaved groups are not allowed.");
2777         Value *GroupMask = MaskForGaps;
2778         if (BlockInMask) {
2779           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2780           Value *ShuffledMask = Builder.CreateShuffleVector(
2781               BlockInMaskPart,
2782               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2783               "interleaved.mask");
2784           GroupMask = MaskForGaps
2785                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2786                                                 MaskForGaps)
2787                           : ShuffledMask;
2788         }
2789         NewLoad =
2790             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2791                                      GroupMask, PoisonVec, "wide.masked.vec");
2792       }
2793       else
2794         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2795                                             Group->getAlign(), "wide.vec");
2796       Group->addMetadata(NewLoad);
2797       NewLoads.push_back(NewLoad);
2798     }
2799 
2800     // For each member in the group, shuffle out the appropriate data from the
2801     // wide loads.
2802     unsigned J = 0;
2803     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2804       Instruction *Member = Group->getMember(I);
2805 
2806       // Skip the gaps in the group.
2807       if (!Member)
2808         continue;
2809 
2810       auto StrideMask =
2811           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2812       for (unsigned Part = 0; Part < UF; Part++) {
2813         Value *StridedVec = Builder.CreateShuffleVector(
2814             NewLoads[Part], StrideMask, "strided.vec");
2815 
2816         // If this member has different type, cast the result type.
2817         if (Member->getType() != ScalarTy) {
2818           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2819           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2820           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2821         }
2822 
2823         if (Group->isReverse())
2824           StridedVec = reverseVector(StridedVec);
2825 
2826         State.set(VPDefs[J], StridedVec, Part);
2827       }
2828       ++J;
2829     }
2830     return;
2831   }
2832 
2833   // The sub vector type for current instruction.
2834   auto *SubVT = VectorType::get(ScalarTy, VF);
2835 
2836   // Vectorize the interleaved store group.
2837   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2838   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2839          "masked interleaved groups are not allowed.");
2840   assert((!MaskForGaps || !VF.isScalable()) &&
2841          "masking gaps for scalable vectors is not yet supported.");
2842   for (unsigned Part = 0; Part < UF; Part++) {
2843     // Collect the stored vector from each member.
2844     SmallVector<Value *, 4> StoredVecs;
2845     for (unsigned i = 0; i < InterleaveFactor; i++) {
2846       assert((Group->getMember(i) || MaskForGaps) &&
2847              "Fail to get a member from an interleaved store group");
2848       Instruction *Member = Group->getMember(i);
2849 
2850       // Skip the gaps in the group.
2851       if (!Member) {
2852         Value *Undef = PoisonValue::get(SubVT);
2853         StoredVecs.push_back(Undef);
2854         continue;
2855       }
2856 
2857       Value *StoredVec = State.get(StoredValues[i], Part);
2858 
2859       if (Group->isReverse())
2860         StoredVec = reverseVector(StoredVec);
2861 
2862       // If this member has different type, cast it to a unified type.
2863 
2864       if (StoredVec->getType() != SubVT)
2865         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2866 
2867       StoredVecs.push_back(StoredVec);
2868     }
2869 
2870     // Concatenate all vectors into a wide vector.
2871     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2872 
2873     // Interleave the elements in the wide vector.
2874     Value *IVec = Builder.CreateShuffleVector(
2875         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2876         "interleaved.vec");
2877 
2878     Instruction *NewStoreInstr;
2879     if (BlockInMask || MaskForGaps) {
2880       Value *GroupMask = MaskForGaps;
2881       if (BlockInMask) {
2882         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2883         Value *ShuffledMask = Builder.CreateShuffleVector(
2884             BlockInMaskPart,
2885             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2886             "interleaved.mask");
2887         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2888                                                       ShuffledMask, MaskForGaps)
2889                                 : ShuffledMask;
2890       }
2891       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2892                                                 Group->getAlign(), GroupMask);
2893     } else
2894       NewStoreInstr =
2895           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2896 
2897     Group->addMetadata(NewStoreInstr);
2898   }
2899 }
2900 
2901 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2902     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2903     VPValue *StoredValue, VPValue *BlockInMask) {
2904   // Attempt to issue a wide load.
2905   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2906   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2907 
2908   assert((LI || SI) && "Invalid Load/Store instruction");
2909   assert((!SI || StoredValue) && "No stored value provided for widened store");
2910   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2911 
2912   LoopVectorizationCostModel::InstWidening Decision =
2913       Cost->getWideningDecision(Instr, VF);
2914   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2915           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2916           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2917          "CM decision is not to widen the memory instruction");
2918 
2919   Type *ScalarDataTy = getLoadStoreType(Instr);
2920 
2921   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2922   const Align Alignment = getLoadStoreAlignment(Instr);
2923 
2924   // Determine if the pointer operand of the access is either consecutive or
2925   // reverse consecutive.
2926   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2927   bool ConsecutiveStride =
2928       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2929   bool CreateGatherScatter =
2930       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2931 
2932   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2933   // gather/scatter. Otherwise Decision should have been to Scalarize.
2934   assert((ConsecutiveStride || CreateGatherScatter) &&
2935          "The instruction should be scalarized");
2936   (void)ConsecutiveStride;
2937 
2938   VectorParts BlockInMaskParts(UF);
2939   bool isMaskRequired = BlockInMask;
2940   if (isMaskRequired)
2941     for (unsigned Part = 0; Part < UF; ++Part)
2942       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2943 
2944   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2945     // Calculate the pointer for the specific unroll-part.
2946     GetElementPtrInst *PartPtr = nullptr;
2947 
2948     bool InBounds = false;
2949     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2950       InBounds = gep->isInBounds();
2951     if (Reverse) {
2952       // If the address is consecutive but reversed, then the
2953       // wide store needs to start at the last vector element.
2954       // RunTimeVF =  VScale * VF.getKnownMinValue()
2955       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2956       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2957       // NumElt = -Part * RunTimeVF
2958       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2959       // LastLane = 1 - RunTimeVF
2960       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2961       PartPtr =
2962           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2963       PartPtr->setIsInBounds(InBounds);
2964       PartPtr = cast<GetElementPtrInst>(
2965           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2966       PartPtr->setIsInBounds(InBounds);
2967       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2968         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2969     } else {
2970       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2971       PartPtr = cast<GetElementPtrInst>(
2972           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2973       PartPtr->setIsInBounds(InBounds);
2974     }
2975 
2976     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2977     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2978   };
2979 
2980   // Handle Stores:
2981   if (SI) {
2982     setDebugLocFromInst(SI);
2983 
2984     for (unsigned Part = 0; Part < UF; ++Part) {
2985       Instruction *NewSI = nullptr;
2986       Value *StoredVal = State.get(StoredValue, Part);
2987       if (CreateGatherScatter) {
2988         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2989         Value *VectorGep = State.get(Addr, Part);
2990         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2991                                             MaskPart);
2992       } else {
2993         if (Reverse) {
2994           // If we store to reverse consecutive memory locations, then we need
2995           // to reverse the order of elements in the stored value.
2996           StoredVal = reverseVector(StoredVal);
2997           // We don't want to update the value in the map as it might be used in
2998           // another expression. So don't call resetVectorValue(StoredVal).
2999         }
3000         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3001         if (isMaskRequired)
3002           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3003                                             BlockInMaskParts[Part]);
3004         else
3005           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3006       }
3007       addMetadata(NewSI, SI);
3008     }
3009     return;
3010   }
3011 
3012   // Handle loads.
3013   assert(LI && "Must have a load instruction");
3014   setDebugLocFromInst(LI);
3015   for (unsigned Part = 0; Part < UF; ++Part) {
3016     Value *NewLI;
3017     if (CreateGatherScatter) {
3018       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3019       Value *VectorGep = State.get(Addr, Part);
3020       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3021                                          nullptr, "wide.masked.gather");
3022       addMetadata(NewLI, LI);
3023     } else {
3024       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3025       if (isMaskRequired)
3026         NewLI = Builder.CreateMaskedLoad(
3027             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3028             PoisonValue::get(DataTy), "wide.masked.load");
3029       else
3030         NewLI =
3031             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3032 
3033       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3034       addMetadata(NewLI, LI);
3035       if (Reverse)
3036         NewLI = reverseVector(NewLI);
3037     }
3038 
3039     State.set(Def, NewLI, Part);
3040   }
3041 }
3042 
3043 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3044                                                VPUser &User,
3045                                                const VPIteration &Instance,
3046                                                bool IfPredicateInstr,
3047                                                VPTransformState &State) {
3048   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3049 
3050   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3051   // the first lane and part.
3052   if (isa<NoAliasScopeDeclInst>(Instr))
3053     if (!Instance.isFirstIteration())
3054       return;
3055 
3056   setDebugLocFromInst(Instr);
3057 
3058   // Does this instruction return a value ?
3059   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3060 
3061   Instruction *Cloned = Instr->clone();
3062   if (!IsVoidRetTy)
3063     Cloned->setName(Instr->getName() + ".cloned");
3064 
3065   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3066                                Builder.GetInsertPoint());
3067   // Replace the operands of the cloned instructions with their scalar
3068   // equivalents in the new loop.
3069   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3070     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3071     auto InputInstance = Instance;
3072     if (!Operand || !OrigLoop->contains(Operand) ||
3073         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3074       InputInstance.Lane = VPLane::getFirstLane();
3075     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3076     Cloned->setOperand(op, NewOp);
3077   }
3078   addNewMetadata(Cloned, Instr);
3079 
3080   // Place the cloned scalar in the new loop.
3081   Builder.Insert(Cloned);
3082 
3083   State.set(Def, Cloned, Instance);
3084 
3085   // If we just cloned a new assumption, add it the assumption cache.
3086   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3087     AC->registerAssumption(II);
3088 
3089   // End if-block.
3090   if (IfPredicateInstr)
3091     PredicatedInstructions.push_back(Cloned);
3092 }
3093 
3094 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3095                                                       Value *End, Value *Step,
3096                                                       Instruction *DL) {
3097   BasicBlock *Header = L->getHeader();
3098   BasicBlock *Latch = L->getLoopLatch();
3099   // As we're just creating this loop, it's possible no latch exists
3100   // yet. If so, use the header as this will be a single block loop.
3101   if (!Latch)
3102     Latch = Header;
3103 
3104   IRBuilder<> B(&*Header->getFirstInsertionPt());
3105   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3106   setDebugLocFromInst(OldInst, &B);
3107   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3108 
3109   B.SetInsertPoint(Latch->getTerminator());
3110   setDebugLocFromInst(OldInst, &B);
3111 
3112   // Create i+1 and fill the PHINode.
3113   //
3114   // If the tail is not folded, we know that End - Start >= Step (either
3115   // statically or through the minimum iteration checks). We also know that both
3116   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3117   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3118   // overflows and we can mark the induction increment as NUW.
3119   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3120                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3121   Induction->addIncoming(Start, L->getLoopPreheader());
3122   Induction->addIncoming(Next, Latch);
3123   // Create the compare.
3124   Value *ICmp = B.CreateICmpEQ(Next, End);
3125   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3126 
3127   // Now we have two terminators. Remove the old one from the block.
3128   Latch->getTerminator()->eraseFromParent();
3129 
3130   return Induction;
3131 }
3132 
3133 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3134   if (TripCount)
3135     return TripCount;
3136 
3137   assert(L && "Create Trip Count for null loop.");
3138   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3139   // Find the loop boundaries.
3140   ScalarEvolution *SE = PSE.getSE();
3141   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3142   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3143          "Invalid loop count");
3144 
3145   Type *IdxTy = Legal->getWidestInductionType();
3146   assert(IdxTy && "No type for induction");
3147 
3148   // The exit count might have the type of i64 while the phi is i32. This can
3149   // happen if we have an induction variable that is sign extended before the
3150   // compare. The only way that we get a backedge taken count is that the
3151   // induction variable was signed and as such will not overflow. In such a case
3152   // truncation is legal.
3153   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3154       IdxTy->getPrimitiveSizeInBits())
3155     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3156   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3157 
3158   // Get the total trip count from the count by adding 1.
3159   const SCEV *ExitCount = SE->getAddExpr(
3160       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3161 
3162   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3163 
3164   // Expand the trip count and place the new instructions in the preheader.
3165   // Notice that the pre-header does not change, only the loop body.
3166   SCEVExpander Exp(*SE, DL, "induction");
3167 
3168   // Count holds the overall loop count (N).
3169   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3170                                 L->getLoopPreheader()->getTerminator());
3171 
3172   if (TripCount->getType()->isPointerTy())
3173     TripCount =
3174         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3175                                     L->getLoopPreheader()->getTerminator());
3176 
3177   return TripCount;
3178 }
3179 
3180 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3181   if (VectorTripCount)
3182     return VectorTripCount;
3183 
3184   Value *TC = getOrCreateTripCount(L);
3185   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3186 
3187   Type *Ty = TC->getType();
3188   // This is where we can make the step a runtime constant.
3189   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3190 
3191   // If the tail is to be folded by masking, round the number of iterations N
3192   // up to a multiple of Step instead of rounding down. This is done by first
3193   // adding Step-1 and then rounding down. Note that it's ok if this addition
3194   // overflows: the vector induction variable will eventually wrap to zero given
3195   // that it starts at zero and its Step is a power of two; the loop will then
3196   // exit, with the last early-exit vector comparison also producing all-true.
3197   if (Cost->foldTailByMasking()) {
3198     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3199            "VF*UF must be a power of 2 when folding tail by masking");
3200     assert(!VF.isScalable() &&
3201            "Tail folding not yet supported for scalable vectors");
3202     TC = Builder.CreateAdd(
3203         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3204   }
3205 
3206   // Now we need to generate the expression for the part of the loop that the
3207   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3208   // iterations are not required for correctness, or N - Step, otherwise. Step
3209   // is equal to the vectorization factor (number of SIMD elements) times the
3210   // unroll factor (number of SIMD instructions).
3211   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3212 
3213   // There are cases where we *must* run at least one iteration in the remainder
3214   // loop.  See the cost model for when this can happen.  If the step evenly
3215   // divides the trip count, we set the remainder to be equal to the step. If
3216   // the step does not evenly divide the trip count, no adjustment is necessary
3217   // since there will already be scalar iterations. Note that the minimum
3218   // iterations check ensures that N >= Step.
3219   if (Cost->requiresScalarEpilogue(VF)) {
3220     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3221     R = Builder.CreateSelect(IsZero, Step, R);
3222   }
3223 
3224   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3225 
3226   return VectorTripCount;
3227 }
3228 
3229 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3230                                                    const DataLayout &DL) {
3231   // Verify that V is a vector type with same number of elements as DstVTy.
3232   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3233   unsigned VF = DstFVTy->getNumElements();
3234   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3235   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3236   Type *SrcElemTy = SrcVecTy->getElementType();
3237   Type *DstElemTy = DstFVTy->getElementType();
3238   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3239          "Vector elements must have same size");
3240 
3241   // Do a direct cast if element types are castable.
3242   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3243     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3244   }
3245   // V cannot be directly casted to desired vector type.
3246   // May happen when V is a floating point vector but DstVTy is a vector of
3247   // pointers or vice-versa. Handle this using a two-step bitcast using an
3248   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3249   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3250          "Only one type should be a pointer type");
3251   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3252          "Only one type should be a floating point type");
3253   Type *IntTy =
3254       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3255   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3256   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3257   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3258 }
3259 
3260 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3261                                                          BasicBlock *Bypass) {
3262   Value *Count = getOrCreateTripCount(L);
3263   // Reuse existing vector loop preheader for TC checks.
3264   // Note that new preheader block is generated for vector loop.
3265   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3266   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3267 
3268   // Generate code to check if the loop's trip count is less than VF * UF, or
3269   // equal to it in case a scalar epilogue is required; this implies that the
3270   // vector trip count is zero. This check also covers the case where adding one
3271   // to the backedge-taken count overflowed leading to an incorrect trip count
3272   // of zero. In this case we will also jump to the scalar loop.
3273   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3274                                             : ICmpInst::ICMP_ULT;
3275 
3276   // If tail is to be folded, vector loop takes care of all iterations.
3277   Value *CheckMinIters = Builder.getFalse();
3278   if (!Cost->foldTailByMasking()) {
3279     Value *Step =
3280         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3281     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3282   }
3283   // Create new preheader for vector loop.
3284   LoopVectorPreHeader =
3285       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3286                  "vector.ph");
3287 
3288   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3289                                DT->getNode(Bypass)->getIDom()) &&
3290          "TC check is expected to dominate Bypass");
3291 
3292   // Update dominator for Bypass & LoopExit (if needed).
3293   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3294   if (!Cost->requiresScalarEpilogue(VF))
3295     // If there is an epilogue which must run, there's no edge from the
3296     // middle block to exit blocks  and thus no need to update the immediate
3297     // dominator of the exit blocks.
3298     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3299 
3300   ReplaceInstWithInst(
3301       TCCheckBlock->getTerminator(),
3302       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3303   LoopBypassBlocks.push_back(TCCheckBlock);
3304 }
3305 
3306 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3307 
3308   BasicBlock *const SCEVCheckBlock =
3309       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3310   if (!SCEVCheckBlock)
3311     return nullptr;
3312 
3313   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3314            (OptForSizeBasedOnProfile &&
3315             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3316          "Cannot SCEV check stride or overflow when optimizing for size");
3317 
3318 
3319   // Update dominator only if this is first RT check.
3320   if (LoopBypassBlocks.empty()) {
3321     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3322     if (!Cost->requiresScalarEpilogue(VF))
3323       // If there is an epilogue which must run, there's no edge from the
3324       // middle block to exit blocks  and thus no need to update the immediate
3325       // dominator of the exit blocks.
3326       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3327   }
3328 
3329   LoopBypassBlocks.push_back(SCEVCheckBlock);
3330   AddedSafetyChecks = true;
3331   return SCEVCheckBlock;
3332 }
3333 
3334 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3335                                                       BasicBlock *Bypass) {
3336   // VPlan-native path does not do any analysis for runtime checks currently.
3337   if (EnableVPlanNativePath)
3338     return nullptr;
3339 
3340   BasicBlock *const MemCheckBlock =
3341       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3342 
3343   // Check if we generated code that checks in runtime if arrays overlap. We put
3344   // the checks into a separate block to make the more common case of few
3345   // elements faster.
3346   if (!MemCheckBlock)
3347     return nullptr;
3348 
3349   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3350     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3351            "Cannot emit memory checks when optimizing for size, unless forced "
3352            "to vectorize.");
3353     ORE->emit([&]() {
3354       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3355                                         L->getStartLoc(), L->getHeader())
3356              << "Code-size may be reduced by not forcing "
3357                 "vectorization, or by source-code modifications "
3358                 "eliminating the need for runtime checks "
3359                 "(e.g., adding 'restrict').";
3360     });
3361   }
3362 
3363   LoopBypassBlocks.push_back(MemCheckBlock);
3364 
3365   AddedSafetyChecks = true;
3366 
3367   // We currently don't use LoopVersioning for the actual loop cloning but we
3368   // still use it to add the noalias metadata.
3369   LVer = std::make_unique<LoopVersioning>(
3370       *Legal->getLAI(),
3371       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3372       DT, PSE.getSE());
3373   LVer->prepareNoAliasMetadata();
3374   return MemCheckBlock;
3375 }
3376 
3377 Value *InnerLoopVectorizer::emitTransformedIndex(
3378     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3379     const InductionDescriptor &ID) const {
3380 
3381   SCEVExpander Exp(*SE, DL, "induction");
3382   auto Step = ID.getStep();
3383   auto StartValue = ID.getStartValue();
3384   assert(Index->getType()->getScalarType() == Step->getType() &&
3385          "Index scalar type does not match StepValue type");
3386 
3387   // Note: the IR at this point is broken. We cannot use SE to create any new
3388   // SCEV and then expand it, hoping that SCEV's simplification will give us
3389   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3390   // lead to various SCEV crashes. So all we can do is to use builder and rely
3391   // on InstCombine for future simplifications. Here we handle some trivial
3392   // cases only.
3393   auto CreateAdd = [&B](Value *X, Value *Y) {
3394     assert(X->getType() == Y->getType() && "Types don't match!");
3395     if (auto *CX = dyn_cast<ConstantInt>(X))
3396       if (CX->isZero())
3397         return Y;
3398     if (auto *CY = dyn_cast<ConstantInt>(Y))
3399       if (CY->isZero())
3400         return X;
3401     return B.CreateAdd(X, Y);
3402   };
3403 
3404   // We allow X to be a vector type, in which case Y will potentially be
3405   // splatted into a vector with the same element count.
3406   auto CreateMul = [&B](Value *X, Value *Y) {
3407     assert(X->getType()->getScalarType() == Y->getType() &&
3408            "Types don't match!");
3409     if (auto *CX = dyn_cast<ConstantInt>(X))
3410       if (CX->isOne())
3411         return Y;
3412     if (auto *CY = dyn_cast<ConstantInt>(Y))
3413       if (CY->isOne())
3414         return X;
3415     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3416     if (XVTy && !isa<VectorType>(Y->getType()))
3417       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3418     return B.CreateMul(X, Y);
3419   };
3420 
3421   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3422   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3423   // the DomTree is not kept up-to-date for additional blocks generated in the
3424   // vector loop. By using the header as insertion point, we guarantee that the
3425   // expanded instructions dominate all their uses.
3426   auto GetInsertPoint = [this, &B]() {
3427     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3428     if (InsertBB != LoopVectorBody &&
3429         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3430       return LoopVectorBody->getTerminator();
3431     return &*B.GetInsertPoint();
3432   };
3433 
3434   switch (ID.getKind()) {
3435   case InductionDescriptor::IK_IntInduction: {
3436     assert(!isa<VectorType>(Index->getType()) &&
3437            "Vector indices not supported for integer inductions yet");
3438     assert(Index->getType() == StartValue->getType() &&
3439            "Index type does not match StartValue type");
3440     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3441       return B.CreateSub(StartValue, Index);
3442     auto *Offset = CreateMul(
3443         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3444     return CreateAdd(StartValue, Offset);
3445   }
3446   case InductionDescriptor::IK_PtrInduction: {
3447     assert(isa<SCEVConstant>(Step) &&
3448            "Expected constant step for pointer induction");
3449     return B.CreateGEP(
3450         ID.getElementType(), StartValue,
3451         CreateMul(Index,
3452                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3453                                     GetInsertPoint())));
3454   }
3455   case InductionDescriptor::IK_FpInduction: {
3456     assert(!isa<VectorType>(Index->getType()) &&
3457            "Vector indices not supported for FP inductions yet");
3458     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3459     auto InductionBinOp = ID.getInductionBinOp();
3460     assert(InductionBinOp &&
3461            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3462             InductionBinOp->getOpcode() == Instruction::FSub) &&
3463            "Original bin op should be defined for FP induction");
3464 
3465     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3466     Value *MulExp = B.CreateFMul(StepValue, Index);
3467     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3468                          "induction");
3469   }
3470   case InductionDescriptor::IK_NoInduction:
3471     return nullptr;
3472   }
3473   llvm_unreachable("invalid enum");
3474 }
3475 
3476 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3477   LoopScalarBody = OrigLoop->getHeader();
3478   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3479   assert(LoopVectorPreHeader && "Invalid loop structure");
3480   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3481   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3482          "multiple exit loop without required epilogue?");
3483 
3484   LoopMiddleBlock =
3485       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3486                  LI, nullptr, Twine(Prefix) + "middle.block");
3487   LoopScalarPreHeader =
3488       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3489                  nullptr, Twine(Prefix) + "scalar.ph");
3490 
3491   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3492 
3493   // Set up the middle block terminator.  Two cases:
3494   // 1) If we know that we must execute the scalar epilogue, emit an
3495   //    unconditional branch.
3496   // 2) Otherwise, we must have a single unique exit block (due to how we
3497   //    implement the multiple exit case).  In this case, set up a conditonal
3498   //    branch from the middle block to the loop scalar preheader, and the
3499   //    exit block.  completeLoopSkeleton will update the condition to use an
3500   //    iteration check, if required to decide whether to execute the remainder.
3501   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3502     BranchInst::Create(LoopScalarPreHeader) :
3503     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3504                        Builder.getTrue());
3505   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3506   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3507 
3508   // We intentionally don't let SplitBlock to update LoopInfo since
3509   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3510   // LoopVectorBody is explicitly added to the correct place few lines later.
3511   LoopVectorBody =
3512       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3513                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3514 
3515   // Update dominator for loop exit.
3516   if (!Cost->requiresScalarEpilogue(VF))
3517     // If there is an epilogue which must run, there's no edge from the
3518     // middle block to exit blocks  and thus no need to update the immediate
3519     // dominator of the exit blocks.
3520     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3521 
3522   // Create and register the new vector loop.
3523   Loop *Lp = LI->AllocateLoop();
3524   Loop *ParentLoop = OrigLoop->getParentLoop();
3525 
3526   // Insert the new loop into the loop nest and register the new basic blocks
3527   // before calling any utilities such as SCEV that require valid LoopInfo.
3528   if (ParentLoop) {
3529     ParentLoop->addChildLoop(Lp);
3530   } else {
3531     LI->addTopLevelLoop(Lp);
3532   }
3533   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3534   return Lp;
3535 }
3536 
3537 void InnerLoopVectorizer::createInductionResumeValues(
3538     Loop *L, Value *VectorTripCount,
3539     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3540   assert(VectorTripCount && L && "Expected valid arguments");
3541   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3542           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3543          "Inconsistent information about additional bypass.");
3544   // We are going to resume the execution of the scalar loop.
3545   // Go over all of the induction variables that we found and fix the
3546   // PHIs that are left in the scalar version of the loop.
3547   // The starting values of PHI nodes depend on the counter of the last
3548   // iteration in the vectorized loop.
3549   // If we come from a bypass edge then we need to start from the original
3550   // start value.
3551   for (auto &InductionEntry : Legal->getInductionVars()) {
3552     PHINode *OrigPhi = InductionEntry.first;
3553     InductionDescriptor II = InductionEntry.second;
3554 
3555     // Create phi nodes to merge from the  backedge-taken check block.
3556     PHINode *BCResumeVal =
3557         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3558                         LoopScalarPreHeader->getTerminator());
3559     // Copy original phi DL over to the new one.
3560     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3561     Value *&EndValue = IVEndValues[OrigPhi];
3562     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3563     if (OrigPhi == OldInduction) {
3564       // We know what the end value is.
3565       EndValue = VectorTripCount;
3566     } else {
3567       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3568 
3569       // Fast-math-flags propagate from the original induction instruction.
3570       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3571         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3572 
3573       Type *StepType = II.getStep()->getType();
3574       Instruction::CastOps CastOp =
3575           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3576       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3577       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3578       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3579       EndValue->setName("ind.end");
3580 
3581       // Compute the end value for the additional bypass (if applicable).
3582       if (AdditionalBypass.first) {
3583         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3584         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3585                                          StepType, true);
3586         CRD =
3587             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3588         EndValueFromAdditionalBypass =
3589             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3590         EndValueFromAdditionalBypass->setName("ind.end");
3591       }
3592     }
3593     // The new PHI merges the original incoming value, in case of a bypass,
3594     // or the value at the end of the vectorized loop.
3595     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3596 
3597     // Fix the scalar body counter (PHI node).
3598     // The old induction's phi node in the scalar body needs the truncated
3599     // value.
3600     for (BasicBlock *BB : LoopBypassBlocks)
3601       BCResumeVal->addIncoming(II.getStartValue(), BB);
3602 
3603     if (AdditionalBypass.first)
3604       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3605                                             EndValueFromAdditionalBypass);
3606 
3607     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3608   }
3609 }
3610 
3611 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3612                                                       MDNode *OrigLoopID) {
3613   assert(L && "Expected valid loop.");
3614 
3615   // The trip counts should be cached by now.
3616   Value *Count = getOrCreateTripCount(L);
3617   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3618 
3619   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3620 
3621   // Add a check in the middle block to see if we have completed
3622   // all of the iterations in the first vector loop.  Three cases:
3623   // 1) If we require a scalar epilogue, there is no conditional branch as
3624   //    we unconditionally branch to the scalar preheader.  Do nothing.
3625   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3626   //    Thus if tail is to be folded, we know we don't need to run the
3627   //    remainder and we can use the previous value for the condition (true).
3628   // 3) Otherwise, construct a runtime check.
3629   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3630     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3631                                         Count, VectorTripCount, "cmp.n",
3632                                         LoopMiddleBlock->getTerminator());
3633 
3634     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3635     // of the corresponding compare because they may have ended up with
3636     // different line numbers and we want to avoid awkward line stepping while
3637     // debugging. Eg. if the compare has got a line number inside the loop.
3638     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3639     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3640   }
3641 
3642   // Get ready to start creating new instructions into the vectorized body.
3643   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3644          "Inconsistent vector loop preheader");
3645   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3646 
3647   Optional<MDNode *> VectorizedLoopID =
3648       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3649                                       LLVMLoopVectorizeFollowupVectorized});
3650   if (VectorizedLoopID.hasValue()) {
3651     L->setLoopID(VectorizedLoopID.getValue());
3652 
3653     // Do not setAlreadyVectorized if loop attributes have been defined
3654     // explicitly.
3655     return LoopVectorPreHeader;
3656   }
3657 
3658   // Keep all loop hints from the original loop on the vector loop (we'll
3659   // replace the vectorizer-specific hints below).
3660   if (MDNode *LID = OrigLoop->getLoopID())
3661     L->setLoopID(LID);
3662 
3663   LoopVectorizeHints Hints(L, true, *ORE);
3664   Hints.setAlreadyVectorized();
3665 
3666 #ifdef EXPENSIVE_CHECKS
3667   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3668   LI->verify(*DT);
3669 #endif
3670 
3671   return LoopVectorPreHeader;
3672 }
3673 
3674 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3675   /*
3676    In this function we generate a new loop. The new loop will contain
3677    the vectorized instructions while the old loop will continue to run the
3678    scalar remainder.
3679 
3680        [ ] <-- loop iteration number check.
3681     /   |
3682    /    v
3683   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3684   |  /  |
3685   | /   v
3686   ||   [ ]     <-- vector pre header.
3687   |/    |
3688   |     v
3689   |    [  ] \
3690   |    [  ]_|   <-- vector loop.
3691   |     |
3692   |     v
3693   \   -[ ]   <--- middle-block.
3694    \/   |
3695    /\   v
3696    | ->[ ]     <--- new preheader.
3697    |    |
3698  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3699    |   [ ] \
3700    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3701     \   |
3702      \  v
3703       >[ ]     <-- exit block(s).
3704    ...
3705    */
3706 
3707   // Get the metadata of the original loop before it gets modified.
3708   MDNode *OrigLoopID = OrigLoop->getLoopID();
3709 
3710   // Workaround!  Compute the trip count of the original loop and cache it
3711   // before we start modifying the CFG.  This code has a systemic problem
3712   // wherein it tries to run analysis over partially constructed IR; this is
3713   // wrong, and not simply for SCEV.  The trip count of the original loop
3714   // simply happens to be prone to hitting this in practice.  In theory, we
3715   // can hit the same issue for any SCEV, or ValueTracking query done during
3716   // mutation.  See PR49900.
3717   getOrCreateTripCount(OrigLoop);
3718 
3719   // Create an empty vector loop, and prepare basic blocks for the runtime
3720   // checks.
3721   Loop *Lp = createVectorLoopSkeleton("");
3722 
3723   // Now, compare the new count to zero. If it is zero skip the vector loop and
3724   // jump to the scalar loop. This check also covers the case where the
3725   // backedge-taken count is uint##_max: adding one to it will overflow leading
3726   // to an incorrect trip count of zero. In this (rare) case we will also jump
3727   // to the scalar loop.
3728   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3729 
3730   // Generate the code to check any assumptions that we've made for SCEV
3731   // expressions.
3732   emitSCEVChecks(Lp, LoopScalarPreHeader);
3733 
3734   // Generate the code that checks in runtime if arrays overlap. We put the
3735   // checks into a separate block to make the more common case of few elements
3736   // faster.
3737   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3738 
3739   // Some loops have a single integer induction variable, while other loops
3740   // don't. One example is c++ iterators that often have multiple pointer
3741   // induction variables. In the code below we also support a case where we
3742   // don't have a single induction variable.
3743   //
3744   // We try to obtain an induction variable from the original loop as hard
3745   // as possible. However if we don't find one that:
3746   //   - is an integer
3747   //   - counts from zero, stepping by one
3748   //   - is the size of the widest induction variable type
3749   // then we create a new one.
3750   OldInduction = Legal->getPrimaryInduction();
3751   Type *IdxTy = Legal->getWidestInductionType();
3752   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3753   // The loop step is equal to the vectorization factor (num of SIMD elements)
3754   // times the unroll factor (num of SIMD instructions).
3755   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3756   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3757   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3758   Induction =
3759       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3760                               getDebugLocFromInstOrOperands(OldInduction));
3761 
3762   // Emit phis for the new starting index of the scalar loop.
3763   createInductionResumeValues(Lp, CountRoundDown);
3764 
3765   return completeLoopSkeleton(Lp, OrigLoopID);
3766 }
3767 
3768 // Fix up external users of the induction variable. At this point, we are
3769 // in LCSSA form, with all external PHIs that use the IV having one input value,
3770 // coming from the remainder loop. We need those PHIs to also have a correct
3771 // value for the IV when arriving directly from the middle block.
3772 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3773                                        const InductionDescriptor &II,
3774                                        Value *CountRoundDown, Value *EndValue,
3775                                        BasicBlock *MiddleBlock) {
3776   // There are two kinds of external IV usages - those that use the value
3777   // computed in the last iteration (the PHI) and those that use the penultimate
3778   // value (the value that feeds into the phi from the loop latch).
3779   // We allow both, but they, obviously, have different values.
3780 
3781   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3782 
3783   DenseMap<Value *, Value *> MissingVals;
3784 
3785   // An external user of the last iteration's value should see the value that
3786   // the remainder loop uses to initialize its own IV.
3787   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3788   for (User *U : PostInc->users()) {
3789     Instruction *UI = cast<Instruction>(U);
3790     if (!OrigLoop->contains(UI)) {
3791       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3792       MissingVals[UI] = EndValue;
3793     }
3794   }
3795 
3796   // An external user of the penultimate value need to see EndValue - Step.
3797   // The simplest way to get this is to recompute it from the constituent SCEVs,
3798   // that is Start + (Step * (CRD - 1)).
3799   for (User *U : OrigPhi->users()) {
3800     auto *UI = cast<Instruction>(U);
3801     if (!OrigLoop->contains(UI)) {
3802       const DataLayout &DL =
3803           OrigLoop->getHeader()->getModule()->getDataLayout();
3804       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3805 
3806       IRBuilder<> B(MiddleBlock->getTerminator());
3807 
3808       // Fast-math-flags propagate from the original induction instruction.
3809       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3810         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3811 
3812       Value *CountMinusOne = B.CreateSub(
3813           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3814       Value *CMO =
3815           !II.getStep()->getType()->isIntegerTy()
3816               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3817                              II.getStep()->getType())
3818               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3819       CMO->setName("cast.cmo");
3820       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3821       Escape->setName("ind.escape");
3822       MissingVals[UI] = Escape;
3823     }
3824   }
3825 
3826   for (auto &I : MissingVals) {
3827     PHINode *PHI = cast<PHINode>(I.first);
3828     // One corner case we have to handle is two IVs "chasing" each-other,
3829     // that is %IV2 = phi [...], [ %IV1, %latch ]
3830     // In this case, if IV1 has an external use, we need to avoid adding both
3831     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3832     // don't already have an incoming value for the middle block.
3833     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3834       PHI->addIncoming(I.second, MiddleBlock);
3835   }
3836 }
3837 
3838 namespace {
3839 
3840 struct CSEDenseMapInfo {
3841   static bool canHandle(const Instruction *I) {
3842     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3843            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3844   }
3845 
3846   static inline Instruction *getEmptyKey() {
3847     return DenseMapInfo<Instruction *>::getEmptyKey();
3848   }
3849 
3850   static inline Instruction *getTombstoneKey() {
3851     return DenseMapInfo<Instruction *>::getTombstoneKey();
3852   }
3853 
3854   static unsigned getHashValue(const Instruction *I) {
3855     assert(canHandle(I) && "Unknown instruction!");
3856     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3857                                                            I->value_op_end()));
3858   }
3859 
3860   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3861     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3862         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3863       return LHS == RHS;
3864     return LHS->isIdenticalTo(RHS);
3865   }
3866 };
3867 
3868 } // end anonymous namespace
3869 
3870 ///Perform cse of induction variable instructions.
3871 static void cse(BasicBlock *BB) {
3872   // Perform simple cse.
3873   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3874   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3875     Instruction *In = &*I++;
3876 
3877     if (!CSEDenseMapInfo::canHandle(In))
3878       continue;
3879 
3880     // Check if we can replace this instruction with any of the
3881     // visited instructions.
3882     if (Instruction *V = CSEMap.lookup(In)) {
3883       In->replaceAllUsesWith(V);
3884       In->eraseFromParent();
3885       continue;
3886     }
3887 
3888     CSEMap[In] = In;
3889   }
3890 }
3891 
3892 InstructionCost
3893 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3894                                               bool &NeedToScalarize) const {
3895   Function *F = CI->getCalledFunction();
3896   Type *ScalarRetTy = CI->getType();
3897   SmallVector<Type *, 4> Tys, ScalarTys;
3898   for (auto &ArgOp : CI->arg_operands())
3899     ScalarTys.push_back(ArgOp->getType());
3900 
3901   // Estimate cost of scalarized vector call. The source operands are assumed
3902   // to be vectors, so we need to extract individual elements from there,
3903   // execute VF scalar calls, and then gather the result into the vector return
3904   // value.
3905   InstructionCost ScalarCallCost =
3906       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3907   if (VF.isScalar())
3908     return ScalarCallCost;
3909 
3910   // Compute corresponding vector type for return value and arguments.
3911   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3912   for (Type *ScalarTy : ScalarTys)
3913     Tys.push_back(ToVectorTy(ScalarTy, VF));
3914 
3915   // Compute costs of unpacking argument values for the scalar calls and
3916   // packing the return values to a vector.
3917   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3918 
3919   InstructionCost Cost =
3920       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3921 
3922   // If we can't emit a vector call for this function, then the currently found
3923   // cost is the cost we need to return.
3924   NeedToScalarize = true;
3925   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3926   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3927 
3928   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3929     return Cost;
3930 
3931   // If the corresponding vector cost is cheaper, return its cost.
3932   InstructionCost VectorCallCost =
3933       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3934   if (VectorCallCost < Cost) {
3935     NeedToScalarize = false;
3936     Cost = VectorCallCost;
3937   }
3938   return Cost;
3939 }
3940 
3941 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3942   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3943     return Elt;
3944   return VectorType::get(Elt, VF);
3945 }
3946 
3947 InstructionCost
3948 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3949                                                    ElementCount VF) const {
3950   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3951   assert(ID && "Expected intrinsic call!");
3952   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3953   FastMathFlags FMF;
3954   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3955     FMF = FPMO->getFastMathFlags();
3956 
3957   SmallVector<const Value *> Arguments(CI->args());
3958   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3959   SmallVector<Type *> ParamTys;
3960   std::transform(FTy->param_begin(), FTy->param_end(),
3961                  std::back_inserter(ParamTys),
3962                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3963 
3964   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3965                                     dyn_cast<IntrinsicInst>(CI));
3966   return TTI.getIntrinsicInstrCost(CostAttrs,
3967                                    TargetTransformInfo::TCK_RecipThroughput);
3968 }
3969 
3970 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3971   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3972   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3973   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3974 }
3975 
3976 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3977   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3978   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3979   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3980 }
3981 
3982 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3983   // For every instruction `I` in MinBWs, truncate the operands, create a
3984   // truncated version of `I` and reextend its result. InstCombine runs
3985   // later and will remove any ext/trunc pairs.
3986   SmallPtrSet<Value *, 4> Erased;
3987   for (const auto &KV : Cost->getMinimalBitwidths()) {
3988     // If the value wasn't vectorized, we must maintain the original scalar
3989     // type. The absence of the value from State indicates that it
3990     // wasn't vectorized.
3991     // FIXME: Should not rely on getVPValue at this point.
3992     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3993     if (!State.hasAnyVectorValue(Def))
3994       continue;
3995     for (unsigned Part = 0; Part < UF; ++Part) {
3996       Value *I = State.get(Def, Part);
3997       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3998         continue;
3999       Type *OriginalTy = I->getType();
4000       Type *ScalarTruncatedTy =
4001           IntegerType::get(OriginalTy->getContext(), KV.second);
4002       auto *TruncatedTy = VectorType::get(
4003           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4004       if (TruncatedTy == OriginalTy)
4005         continue;
4006 
4007       IRBuilder<> B(cast<Instruction>(I));
4008       auto ShrinkOperand = [&](Value *V) -> Value * {
4009         if (auto *ZI = dyn_cast<ZExtInst>(V))
4010           if (ZI->getSrcTy() == TruncatedTy)
4011             return ZI->getOperand(0);
4012         return B.CreateZExtOrTrunc(V, TruncatedTy);
4013       };
4014 
4015       // The actual instruction modification depends on the instruction type,
4016       // unfortunately.
4017       Value *NewI = nullptr;
4018       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4019         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4020                              ShrinkOperand(BO->getOperand(1)));
4021 
4022         // Any wrapping introduced by shrinking this operation shouldn't be
4023         // considered undefined behavior. So, we can't unconditionally copy
4024         // arithmetic wrapping flags to NewI.
4025         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4026       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4027         NewI =
4028             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4029                          ShrinkOperand(CI->getOperand(1)));
4030       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4031         NewI = B.CreateSelect(SI->getCondition(),
4032                               ShrinkOperand(SI->getTrueValue()),
4033                               ShrinkOperand(SI->getFalseValue()));
4034       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4035         switch (CI->getOpcode()) {
4036         default:
4037           llvm_unreachable("Unhandled cast!");
4038         case Instruction::Trunc:
4039           NewI = ShrinkOperand(CI->getOperand(0));
4040           break;
4041         case Instruction::SExt:
4042           NewI = B.CreateSExtOrTrunc(
4043               CI->getOperand(0),
4044               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4045           break;
4046         case Instruction::ZExt:
4047           NewI = B.CreateZExtOrTrunc(
4048               CI->getOperand(0),
4049               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4050           break;
4051         }
4052       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4053         auto Elements0 =
4054             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4055         auto *O0 = B.CreateZExtOrTrunc(
4056             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4057         auto Elements1 =
4058             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4059         auto *O1 = B.CreateZExtOrTrunc(
4060             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4061 
4062         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4063       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4064         // Don't do anything with the operands, just extend the result.
4065         continue;
4066       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4067         auto Elements =
4068             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4069         auto *O0 = B.CreateZExtOrTrunc(
4070             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4071         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4072         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4073       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4074         auto Elements =
4075             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4076         auto *O0 = B.CreateZExtOrTrunc(
4077             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4078         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4079       } else {
4080         // If we don't know what to do, be conservative and don't do anything.
4081         continue;
4082       }
4083 
4084       // Lastly, extend the result.
4085       NewI->takeName(cast<Instruction>(I));
4086       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4087       I->replaceAllUsesWith(Res);
4088       cast<Instruction>(I)->eraseFromParent();
4089       Erased.insert(I);
4090       State.reset(Def, Res, Part);
4091     }
4092   }
4093 
4094   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4095   for (const auto &KV : Cost->getMinimalBitwidths()) {
4096     // If the value wasn't vectorized, we must maintain the original scalar
4097     // type. The absence of the value from State indicates that it
4098     // wasn't vectorized.
4099     // FIXME: Should not rely on getVPValue at this point.
4100     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4101     if (!State.hasAnyVectorValue(Def))
4102       continue;
4103     for (unsigned Part = 0; Part < UF; ++Part) {
4104       Value *I = State.get(Def, Part);
4105       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4106       if (Inst && Inst->use_empty()) {
4107         Value *NewI = Inst->getOperand(0);
4108         Inst->eraseFromParent();
4109         State.reset(Def, NewI, Part);
4110       }
4111     }
4112   }
4113 }
4114 
4115 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4116   // Insert truncates and extends for any truncated instructions as hints to
4117   // InstCombine.
4118   if (VF.isVector())
4119     truncateToMinimalBitwidths(State);
4120 
4121   // Fix widened non-induction PHIs by setting up the PHI operands.
4122   if (OrigPHIsToFix.size()) {
4123     assert(EnableVPlanNativePath &&
4124            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4125     fixNonInductionPHIs(State);
4126   }
4127 
4128   // At this point every instruction in the original loop is widened to a
4129   // vector form. Now we need to fix the recurrences in the loop. These PHI
4130   // nodes are currently empty because we did not want to introduce cycles.
4131   // This is the second stage of vectorizing recurrences.
4132   fixCrossIterationPHIs(State);
4133 
4134   // Forget the original basic block.
4135   PSE.getSE()->forgetLoop(OrigLoop);
4136 
4137   // If we inserted an edge from the middle block to the unique exit block,
4138   // update uses outside the loop (phis) to account for the newly inserted
4139   // edge.
4140   if (!Cost->requiresScalarEpilogue(VF)) {
4141     // Fix-up external users of the induction variables.
4142     for (auto &Entry : Legal->getInductionVars())
4143       fixupIVUsers(Entry.first, Entry.second,
4144                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4145                    IVEndValues[Entry.first], LoopMiddleBlock);
4146 
4147     fixLCSSAPHIs(State);
4148   }
4149 
4150   for (Instruction *PI : PredicatedInstructions)
4151     sinkScalarOperands(&*PI);
4152 
4153   // Remove redundant induction instructions.
4154   cse(LoopVectorBody);
4155 
4156   // Set/update profile weights for the vector and remainder loops as original
4157   // loop iterations are now distributed among them. Note that original loop
4158   // represented by LoopScalarBody becomes remainder loop after vectorization.
4159   //
4160   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4161   // end up getting slightly roughened result but that should be OK since
4162   // profile is not inherently precise anyway. Note also possible bypass of
4163   // vector code caused by legality checks is ignored, assigning all the weight
4164   // to the vector loop, optimistically.
4165   //
4166   // For scalable vectorization we can't know at compile time how many iterations
4167   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4168   // vscale of '1'.
4169   setProfileInfoAfterUnrolling(
4170       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4171       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4172 }
4173 
4174 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4175   // In order to support recurrences we need to be able to vectorize Phi nodes.
4176   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4177   // stage #2: We now need to fix the recurrences by adding incoming edges to
4178   // the currently empty PHI nodes. At this point every instruction in the
4179   // original loop is widened to a vector form so we can use them to construct
4180   // the incoming edges.
4181   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4182   for (VPRecipeBase &R : Header->phis()) {
4183     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4184       fixReduction(ReductionPhi, State);
4185     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4186       fixFirstOrderRecurrence(FOR, State);
4187   }
4188 }
4189 
4190 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4191                                                   VPTransformState &State) {
4192   // This is the second phase of vectorizing first-order recurrences. An
4193   // overview of the transformation is described below. Suppose we have the
4194   // following loop.
4195   //
4196   //   for (int i = 0; i < n; ++i)
4197   //     b[i] = a[i] - a[i - 1];
4198   //
4199   // There is a first-order recurrence on "a". For this loop, the shorthand
4200   // scalar IR looks like:
4201   //
4202   //   scalar.ph:
4203   //     s_init = a[-1]
4204   //     br scalar.body
4205   //
4206   //   scalar.body:
4207   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4208   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4209   //     s2 = a[i]
4210   //     b[i] = s2 - s1
4211   //     br cond, scalar.body, ...
4212   //
4213   // In this example, s1 is a recurrence because it's value depends on the
4214   // previous iteration. In the first phase of vectorization, we created a
4215   // vector phi v1 for s1. We now complete the vectorization and produce the
4216   // shorthand vector IR shown below (for VF = 4, UF = 1).
4217   //
4218   //   vector.ph:
4219   //     v_init = vector(..., ..., ..., a[-1])
4220   //     br vector.body
4221   //
4222   //   vector.body
4223   //     i = phi [0, vector.ph], [i+4, vector.body]
4224   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4225   //     v2 = a[i, i+1, i+2, i+3];
4226   //     v3 = vector(v1(3), v2(0, 1, 2))
4227   //     b[i, i+1, i+2, i+3] = v2 - v3
4228   //     br cond, vector.body, middle.block
4229   //
4230   //   middle.block:
4231   //     x = v2(3)
4232   //     br scalar.ph
4233   //
4234   //   scalar.ph:
4235   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4236   //     br scalar.body
4237   //
4238   // After execution completes the vector loop, we extract the next value of
4239   // the recurrence (x) to use as the initial value in the scalar loop.
4240 
4241   // Extract the last vector element in the middle block. This will be the
4242   // initial value for the recurrence when jumping to the scalar loop.
4243   VPValue *PreviousDef = PhiR->getBackedgeValue();
4244   Value *Incoming = State.get(PreviousDef, UF - 1);
4245   auto *ExtractForScalar = Incoming;
4246   auto *IdxTy = Builder.getInt32Ty();
4247   if (VF.isVector()) {
4248     auto *One = ConstantInt::get(IdxTy, 1);
4249     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4250     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4251     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4252     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4253                                                     "vector.recur.extract");
4254   }
4255   // Extract the second last element in the middle block if the
4256   // Phi is used outside the loop. We need to extract the phi itself
4257   // and not the last element (the phi update in the current iteration). This
4258   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4259   // when the scalar loop is not run at all.
4260   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4261   if (VF.isVector()) {
4262     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4263     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4264     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4265         Incoming, Idx, "vector.recur.extract.for.phi");
4266   } else if (UF > 1)
4267     // When loop is unrolled without vectorizing, initialize
4268     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4269     // of `Incoming`. This is analogous to the vectorized case above: extracting
4270     // the second last element when VF > 1.
4271     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4272 
4273   // Fix the initial value of the original recurrence in the scalar loop.
4274   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4275   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4276   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4277   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4278   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4279     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4280     Start->addIncoming(Incoming, BB);
4281   }
4282 
4283   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4284   Phi->setName("scalar.recur");
4285 
4286   // Finally, fix users of the recurrence outside the loop. The users will need
4287   // either the last value of the scalar recurrence or the last value of the
4288   // vector recurrence we extracted in the middle block. Since the loop is in
4289   // LCSSA form, we just need to find all the phi nodes for the original scalar
4290   // recurrence in the exit block, and then add an edge for the middle block.
4291   // Note that LCSSA does not imply single entry when the original scalar loop
4292   // had multiple exiting edges (as we always run the last iteration in the
4293   // scalar epilogue); in that case, there is no edge from middle to exit and
4294   // and thus no phis which needed updated.
4295   if (!Cost->requiresScalarEpilogue(VF))
4296     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4297       if (any_of(LCSSAPhi.incoming_values(),
4298                  [Phi](Value *V) { return V == Phi; }))
4299         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4300 }
4301 
4302 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4303                                        VPTransformState &State) {
4304   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4305   // Get it's reduction variable descriptor.
4306   assert(Legal->isReductionVariable(OrigPhi) &&
4307          "Unable to find the reduction variable");
4308   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4309 
4310   RecurKind RK = RdxDesc.getRecurrenceKind();
4311   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4312   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4313   setDebugLocFromInst(ReductionStartValue);
4314 
4315   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4316   // This is the vector-clone of the value that leaves the loop.
4317   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4318 
4319   // Wrap flags are in general invalid after vectorization, clear them.
4320   clearReductionWrapFlags(RdxDesc, State);
4321 
4322   // Before each round, move the insertion point right between
4323   // the PHIs and the values we are going to write.
4324   // This allows us to write both PHINodes and the extractelement
4325   // instructions.
4326   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4327 
4328   setDebugLocFromInst(LoopExitInst);
4329 
4330   Type *PhiTy = OrigPhi->getType();
4331   // If tail is folded by masking, the vector value to leave the loop should be
4332   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4333   // instead of the former. For an inloop reduction the reduction will already
4334   // be predicated, and does not need to be handled here.
4335   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4336     for (unsigned Part = 0; Part < UF; ++Part) {
4337       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4338       Value *Sel = nullptr;
4339       for (User *U : VecLoopExitInst->users()) {
4340         if (isa<SelectInst>(U)) {
4341           assert(!Sel && "Reduction exit feeding two selects");
4342           Sel = U;
4343         } else
4344           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4345       }
4346       assert(Sel && "Reduction exit feeds no select");
4347       State.reset(LoopExitInstDef, Sel, Part);
4348 
4349       // If the target can create a predicated operator for the reduction at no
4350       // extra cost in the loop (for example a predicated vadd), it can be
4351       // cheaper for the select to remain in the loop than be sunk out of it,
4352       // and so use the select value for the phi instead of the old
4353       // LoopExitValue.
4354       if (PreferPredicatedReductionSelect ||
4355           TTI->preferPredicatedReductionSelect(
4356               RdxDesc.getOpcode(), PhiTy,
4357               TargetTransformInfo::ReductionFlags())) {
4358         auto *VecRdxPhi =
4359             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4360         VecRdxPhi->setIncomingValueForBlock(
4361             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4362       }
4363     }
4364   }
4365 
4366   // If the vector reduction can be performed in a smaller type, we truncate
4367   // then extend the loop exit value to enable InstCombine to evaluate the
4368   // entire expression in the smaller type.
4369   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4370     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4371     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4372     Builder.SetInsertPoint(
4373         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4374     VectorParts RdxParts(UF);
4375     for (unsigned Part = 0; Part < UF; ++Part) {
4376       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4377       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4378       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4379                                         : Builder.CreateZExt(Trunc, VecTy);
4380       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4381            UI != RdxParts[Part]->user_end();)
4382         if (*UI != Trunc) {
4383           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4384           RdxParts[Part] = Extnd;
4385         } else {
4386           ++UI;
4387         }
4388     }
4389     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4390     for (unsigned Part = 0; Part < UF; ++Part) {
4391       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4392       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4393     }
4394   }
4395 
4396   // Reduce all of the unrolled parts into a single vector.
4397   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4398   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4399 
4400   // The middle block terminator has already been assigned a DebugLoc here (the
4401   // OrigLoop's single latch terminator). We want the whole middle block to
4402   // appear to execute on this line because: (a) it is all compiler generated,
4403   // (b) these instructions are always executed after evaluating the latch
4404   // conditional branch, and (c) other passes may add new predecessors which
4405   // terminate on this line. This is the easiest way to ensure we don't
4406   // accidentally cause an extra step back into the loop while debugging.
4407   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4408   if (PhiR->isOrdered())
4409     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4410   else {
4411     // Floating-point operations should have some FMF to enable the reduction.
4412     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4413     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4414     for (unsigned Part = 1; Part < UF; ++Part) {
4415       Value *RdxPart = State.get(LoopExitInstDef, Part);
4416       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4417         ReducedPartRdx = Builder.CreateBinOp(
4418             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4419       } else {
4420         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4421       }
4422     }
4423   }
4424 
4425   // Create the reduction after the loop. Note that inloop reductions create the
4426   // target reduction in the loop using a Reduction recipe.
4427   if (VF.isVector() && !PhiR->isInLoop()) {
4428     ReducedPartRdx =
4429         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4430     // If the reduction can be performed in a smaller type, we need to extend
4431     // the reduction to the wider type before we branch to the original loop.
4432     if (PhiTy != RdxDesc.getRecurrenceType())
4433       ReducedPartRdx = RdxDesc.isSigned()
4434                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4435                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4436   }
4437 
4438   // Create a phi node that merges control-flow from the backedge-taken check
4439   // block and the middle block.
4440   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4441                                         LoopScalarPreHeader->getTerminator());
4442   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4443     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4444   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4445 
4446   // Now, we need to fix the users of the reduction variable
4447   // inside and outside of the scalar remainder loop.
4448 
4449   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4450   // in the exit blocks.  See comment on analogous loop in
4451   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4452   if (!Cost->requiresScalarEpilogue(VF))
4453     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4454       if (any_of(LCSSAPhi.incoming_values(),
4455                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4456         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4457 
4458   // Fix the scalar loop reduction variable with the incoming reduction sum
4459   // from the vector body and from the backedge value.
4460   int IncomingEdgeBlockIdx =
4461       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4462   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4463   // Pick the other block.
4464   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4465   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4466   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4467 }
4468 
4469 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4470                                                   VPTransformState &State) {
4471   RecurKind RK = RdxDesc.getRecurrenceKind();
4472   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4473     return;
4474 
4475   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4476   assert(LoopExitInstr && "null loop exit instruction");
4477   SmallVector<Instruction *, 8> Worklist;
4478   SmallPtrSet<Instruction *, 8> Visited;
4479   Worklist.push_back(LoopExitInstr);
4480   Visited.insert(LoopExitInstr);
4481 
4482   while (!Worklist.empty()) {
4483     Instruction *Cur = Worklist.pop_back_val();
4484     if (isa<OverflowingBinaryOperator>(Cur))
4485       for (unsigned Part = 0; Part < UF; ++Part) {
4486         // FIXME: Should not rely on getVPValue at this point.
4487         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4488         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4489       }
4490 
4491     for (User *U : Cur->users()) {
4492       Instruction *UI = cast<Instruction>(U);
4493       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4494           Visited.insert(UI).second)
4495         Worklist.push_back(UI);
4496     }
4497   }
4498 }
4499 
4500 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4501   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4502     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4503       // Some phis were already hand updated by the reduction and recurrence
4504       // code above, leave them alone.
4505       continue;
4506 
4507     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4508     // Non-instruction incoming values will have only one value.
4509 
4510     VPLane Lane = VPLane::getFirstLane();
4511     if (isa<Instruction>(IncomingValue) &&
4512         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4513                                            VF))
4514       Lane = VPLane::getLastLaneForVF(VF);
4515 
4516     // Can be a loop invariant incoming value or the last scalar value to be
4517     // extracted from the vectorized loop.
4518     // FIXME: Should not rely on getVPValue at this point.
4519     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4520     Value *lastIncomingValue =
4521         OrigLoop->isLoopInvariant(IncomingValue)
4522             ? IncomingValue
4523             : State.get(State.Plan->getVPValue(IncomingValue, true),
4524                         VPIteration(UF - 1, Lane));
4525     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4526   }
4527 }
4528 
4529 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4530   // The basic block and loop containing the predicated instruction.
4531   auto *PredBB = PredInst->getParent();
4532   auto *VectorLoop = LI->getLoopFor(PredBB);
4533 
4534   // Initialize a worklist with the operands of the predicated instruction.
4535   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4536 
4537   // Holds instructions that we need to analyze again. An instruction may be
4538   // reanalyzed if we don't yet know if we can sink it or not.
4539   SmallVector<Instruction *, 8> InstsToReanalyze;
4540 
4541   // Returns true if a given use occurs in the predicated block. Phi nodes use
4542   // their operands in their corresponding predecessor blocks.
4543   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4544     auto *I = cast<Instruction>(U.getUser());
4545     BasicBlock *BB = I->getParent();
4546     if (auto *Phi = dyn_cast<PHINode>(I))
4547       BB = Phi->getIncomingBlock(
4548           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4549     return BB == PredBB;
4550   };
4551 
4552   // Iteratively sink the scalarized operands of the predicated instruction
4553   // into the block we created for it. When an instruction is sunk, it's
4554   // operands are then added to the worklist. The algorithm ends after one pass
4555   // through the worklist doesn't sink a single instruction.
4556   bool Changed;
4557   do {
4558     // Add the instructions that need to be reanalyzed to the worklist, and
4559     // reset the changed indicator.
4560     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4561     InstsToReanalyze.clear();
4562     Changed = false;
4563 
4564     while (!Worklist.empty()) {
4565       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4566 
4567       // We can't sink an instruction if it is a phi node, is not in the loop,
4568       // or may have side effects.
4569       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4570           I->mayHaveSideEffects())
4571         continue;
4572 
4573       // If the instruction is already in PredBB, check if we can sink its
4574       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4575       // sinking the scalar instruction I, hence it appears in PredBB; but it
4576       // may have failed to sink I's operands (recursively), which we try
4577       // (again) here.
4578       if (I->getParent() == PredBB) {
4579         Worklist.insert(I->op_begin(), I->op_end());
4580         continue;
4581       }
4582 
4583       // It's legal to sink the instruction if all its uses occur in the
4584       // predicated block. Otherwise, there's nothing to do yet, and we may
4585       // need to reanalyze the instruction.
4586       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4587         InstsToReanalyze.push_back(I);
4588         continue;
4589       }
4590 
4591       // Move the instruction to the beginning of the predicated block, and add
4592       // it's operands to the worklist.
4593       I->moveBefore(&*PredBB->getFirstInsertionPt());
4594       Worklist.insert(I->op_begin(), I->op_end());
4595 
4596       // The sinking may have enabled other instructions to be sunk, so we will
4597       // need to iterate.
4598       Changed = true;
4599     }
4600   } while (Changed);
4601 }
4602 
4603 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4604   for (PHINode *OrigPhi : OrigPHIsToFix) {
4605     VPWidenPHIRecipe *VPPhi =
4606         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4607     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4608     // Make sure the builder has a valid insert point.
4609     Builder.SetInsertPoint(NewPhi);
4610     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4611       VPValue *Inc = VPPhi->getIncomingValue(i);
4612       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4613       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4614     }
4615   }
4616 }
4617 
4618 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4619   return Cost->useOrderedReductions(RdxDesc);
4620 }
4621 
4622 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4623                                    VPUser &Operands, unsigned UF,
4624                                    ElementCount VF, bool IsPtrLoopInvariant,
4625                                    SmallBitVector &IsIndexLoopInvariant,
4626                                    VPTransformState &State) {
4627   // Construct a vector GEP by widening the operands of the scalar GEP as
4628   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4629   // results in a vector of pointers when at least one operand of the GEP
4630   // is vector-typed. Thus, to keep the representation compact, we only use
4631   // vector-typed operands for loop-varying values.
4632 
4633   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4634     // If we are vectorizing, but the GEP has only loop-invariant operands,
4635     // the GEP we build (by only using vector-typed operands for
4636     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4637     // produce a vector of pointers, we need to either arbitrarily pick an
4638     // operand to broadcast, or broadcast a clone of the original GEP.
4639     // Here, we broadcast a clone of the original.
4640     //
4641     // TODO: If at some point we decide to scalarize instructions having
4642     //       loop-invariant operands, this special case will no longer be
4643     //       required. We would add the scalarization decision to
4644     //       collectLoopScalars() and teach getVectorValue() to broadcast
4645     //       the lane-zero scalar value.
4646     auto *Clone = Builder.Insert(GEP->clone());
4647     for (unsigned Part = 0; Part < UF; ++Part) {
4648       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4649       State.set(VPDef, EntryPart, Part);
4650       addMetadata(EntryPart, GEP);
4651     }
4652   } else {
4653     // If the GEP has at least one loop-varying operand, we are sure to
4654     // produce a vector of pointers. But if we are only unrolling, we want
4655     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4656     // produce with the code below will be scalar (if VF == 1) or vector
4657     // (otherwise). Note that for the unroll-only case, we still maintain
4658     // values in the vector mapping with initVector, as we do for other
4659     // instructions.
4660     for (unsigned Part = 0; Part < UF; ++Part) {
4661       // The pointer operand of the new GEP. If it's loop-invariant, we
4662       // won't broadcast it.
4663       auto *Ptr = IsPtrLoopInvariant
4664                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4665                       : State.get(Operands.getOperand(0), Part);
4666 
4667       // Collect all the indices for the new GEP. If any index is
4668       // loop-invariant, we won't broadcast it.
4669       SmallVector<Value *, 4> Indices;
4670       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4671         VPValue *Operand = Operands.getOperand(I);
4672         if (IsIndexLoopInvariant[I - 1])
4673           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4674         else
4675           Indices.push_back(State.get(Operand, Part));
4676       }
4677 
4678       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4679       // but it should be a vector, otherwise.
4680       auto *NewGEP =
4681           GEP->isInBounds()
4682               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4683                                           Indices)
4684               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4685       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4686              "NewGEP is not a pointer vector");
4687       State.set(VPDef, NewGEP, Part);
4688       addMetadata(NewGEP, GEP);
4689     }
4690   }
4691 }
4692 
4693 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4694                                               VPWidenPHIRecipe *PhiR,
4695                                               VPTransformState &State) {
4696   PHINode *P = cast<PHINode>(PN);
4697   if (EnableVPlanNativePath) {
4698     // Currently we enter here in the VPlan-native path for non-induction
4699     // PHIs where all control flow is uniform. We simply widen these PHIs.
4700     // Create a vector phi with no operands - the vector phi operands will be
4701     // set at the end of vector code generation.
4702     Type *VecTy = (State.VF.isScalar())
4703                       ? PN->getType()
4704                       : VectorType::get(PN->getType(), State.VF);
4705     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4706     State.set(PhiR, VecPhi, 0);
4707     OrigPHIsToFix.push_back(P);
4708 
4709     return;
4710   }
4711 
4712   assert(PN->getParent() == OrigLoop->getHeader() &&
4713          "Non-header phis should have been handled elsewhere");
4714 
4715   // In order to support recurrences we need to be able to vectorize Phi nodes.
4716   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4717   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4718   // this value when we vectorize all of the instructions that use the PHI.
4719 
4720   assert(!Legal->isReductionVariable(P) &&
4721          "reductions should be handled elsewhere");
4722 
4723   setDebugLocFromInst(P);
4724 
4725   // This PHINode must be an induction variable.
4726   // Make sure that we know about it.
4727   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4728 
4729   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4730   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4731 
4732   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4733   // which can be found from the original scalar operations.
4734   switch (II.getKind()) {
4735   case InductionDescriptor::IK_NoInduction:
4736     llvm_unreachable("Unknown induction");
4737   case InductionDescriptor::IK_IntInduction:
4738   case InductionDescriptor::IK_FpInduction:
4739     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4740   case InductionDescriptor::IK_PtrInduction: {
4741     // Handle the pointer induction variable case.
4742     assert(P->getType()->isPointerTy() && "Unexpected type.");
4743 
4744     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4745       // This is the normalized GEP that starts counting at zero.
4746       Value *PtrInd =
4747           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4748       // Determine the number of scalars we need to generate for each unroll
4749       // iteration. If the instruction is uniform, we only need to generate the
4750       // first lane. Otherwise, we generate all VF values.
4751       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4752       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4753 
4754       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4755       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4756       if (NeedsVectorIndex) {
4757         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4758         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4759         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4760       }
4761 
4762       for (unsigned Part = 0; Part < UF; ++Part) {
4763         Value *PartStart = createStepForVF(
4764             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4765 
4766         if (NeedsVectorIndex) {
4767           // Here we cache the whole vector, which means we can support the
4768           // extraction of any lane. However, in some cases the extractelement
4769           // instruction that is generated for scalar uses of this vector (e.g.
4770           // a load instruction) is not folded away. Therefore we still
4771           // calculate values for the first n lanes to avoid redundant moves
4772           // (when extracting the 0th element) and to produce scalar code (i.e.
4773           // additional add/gep instructions instead of expensive extractelement
4774           // instructions) when extracting higher-order elements.
4775           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4776           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4777           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4778           Value *SclrGep =
4779               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4780           SclrGep->setName("next.gep");
4781           State.set(PhiR, SclrGep, Part);
4782         }
4783 
4784         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4785           Value *Idx = Builder.CreateAdd(
4786               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4787           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4788           Value *SclrGep =
4789               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4790           SclrGep->setName("next.gep");
4791           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4792         }
4793       }
4794       return;
4795     }
4796     assert(isa<SCEVConstant>(II.getStep()) &&
4797            "Induction step not a SCEV constant!");
4798     Type *PhiType = II.getStep()->getType();
4799 
4800     // Build a pointer phi
4801     Value *ScalarStartValue = II.getStartValue();
4802     Type *ScStValueType = ScalarStartValue->getType();
4803     PHINode *NewPointerPhi =
4804         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4805     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4806 
4807     // A pointer induction, performed by using a gep
4808     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4809     Instruction *InductionLoc = LoopLatch->getTerminator();
4810     const SCEV *ScalarStep = II.getStep();
4811     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4812     Value *ScalarStepValue =
4813         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4814     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4815     Value *NumUnrolledElems =
4816         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4817     Value *InductionGEP = GetElementPtrInst::Create(
4818         II.getElementType(), NewPointerPhi,
4819         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4820         InductionLoc);
4821     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4822 
4823     // Create UF many actual address geps that use the pointer
4824     // phi as base and a vectorized version of the step value
4825     // (<step*0, ..., step*N>) as offset.
4826     for (unsigned Part = 0; Part < State.UF; ++Part) {
4827       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4828       Value *StartOffsetScalar =
4829           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4830       Value *StartOffset =
4831           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4832       // Create a vector of consecutive numbers from zero to VF.
4833       StartOffset =
4834           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4835 
4836       Value *GEP = Builder.CreateGEP(
4837           II.getElementType(), NewPointerPhi,
4838           Builder.CreateMul(
4839               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4840               "vector.gep"));
4841       State.set(PhiR, GEP, Part);
4842     }
4843   }
4844   }
4845 }
4846 
4847 /// A helper function for checking whether an integer division-related
4848 /// instruction may divide by zero (in which case it must be predicated if
4849 /// executed conditionally in the scalar code).
4850 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4851 /// Non-zero divisors that are non compile-time constants will not be
4852 /// converted into multiplication, so we will still end up scalarizing
4853 /// the division, but can do so w/o predication.
4854 static bool mayDivideByZero(Instruction &I) {
4855   assert((I.getOpcode() == Instruction::UDiv ||
4856           I.getOpcode() == Instruction::SDiv ||
4857           I.getOpcode() == Instruction::URem ||
4858           I.getOpcode() == Instruction::SRem) &&
4859          "Unexpected instruction");
4860   Value *Divisor = I.getOperand(1);
4861   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4862   return !CInt || CInt->isZero();
4863 }
4864 
4865 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4866                                            VPUser &User,
4867                                            VPTransformState &State) {
4868   switch (I.getOpcode()) {
4869   case Instruction::Call:
4870   case Instruction::Br:
4871   case Instruction::PHI:
4872   case Instruction::GetElementPtr:
4873   case Instruction::Select:
4874     llvm_unreachable("This instruction is handled by a different recipe.");
4875   case Instruction::UDiv:
4876   case Instruction::SDiv:
4877   case Instruction::SRem:
4878   case Instruction::URem:
4879   case Instruction::Add:
4880   case Instruction::FAdd:
4881   case Instruction::Sub:
4882   case Instruction::FSub:
4883   case Instruction::FNeg:
4884   case Instruction::Mul:
4885   case Instruction::FMul:
4886   case Instruction::FDiv:
4887   case Instruction::FRem:
4888   case Instruction::Shl:
4889   case Instruction::LShr:
4890   case Instruction::AShr:
4891   case Instruction::And:
4892   case Instruction::Or:
4893   case Instruction::Xor: {
4894     // Just widen unops and binops.
4895     setDebugLocFromInst(&I);
4896 
4897     for (unsigned Part = 0; Part < UF; ++Part) {
4898       SmallVector<Value *, 2> Ops;
4899       for (VPValue *VPOp : User.operands())
4900         Ops.push_back(State.get(VPOp, Part));
4901 
4902       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4903 
4904       if (auto *VecOp = dyn_cast<Instruction>(V))
4905         VecOp->copyIRFlags(&I);
4906 
4907       // Use this vector value for all users of the original instruction.
4908       State.set(Def, V, Part);
4909       addMetadata(V, &I);
4910     }
4911 
4912     break;
4913   }
4914   case Instruction::ICmp:
4915   case Instruction::FCmp: {
4916     // Widen compares. Generate vector compares.
4917     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4918     auto *Cmp = cast<CmpInst>(&I);
4919     setDebugLocFromInst(Cmp);
4920     for (unsigned Part = 0; Part < UF; ++Part) {
4921       Value *A = State.get(User.getOperand(0), Part);
4922       Value *B = State.get(User.getOperand(1), Part);
4923       Value *C = nullptr;
4924       if (FCmp) {
4925         // Propagate fast math flags.
4926         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4927         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4928         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4929       } else {
4930         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4931       }
4932       State.set(Def, C, Part);
4933       addMetadata(C, &I);
4934     }
4935 
4936     break;
4937   }
4938 
4939   case Instruction::ZExt:
4940   case Instruction::SExt:
4941   case Instruction::FPToUI:
4942   case Instruction::FPToSI:
4943   case Instruction::FPExt:
4944   case Instruction::PtrToInt:
4945   case Instruction::IntToPtr:
4946   case Instruction::SIToFP:
4947   case Instruction::UIToFP:
4948   case Instruction::Trunc:
4949   case Instruction::FPTrunc:
4950   case Instruction::BitCast: {
4951     auto *CI = cast<CastInst>(&I);
4952     setDebugLocFromInst(CI);
4953 
4954     /// Vectorize casts.
4955     Type *DestTy =
4956         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4957 
4958     for (unsigned Part = 0; Part < UF; ++Part) {
4959       Value *A = State.get(User.getOperand(0), Part);
4960       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4961       State.set(Def, Cast, Part);
4962       addMetadata(Cast, &I);
4963     }
4964     break;
4965   }
4966   default:
4967     // This instruction is not vectorized by simple widening.
4968     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4969     llvm_unreachable("Unhandled instruction!");
4970   } // end of switch.
4971 }
4972 
4973 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4974                                                VPUser &ArgOperands,
4975                                                VPTransformState &State) {
4976   assert(!isa<DbgInfoIntrinsic>(I) &&
4977          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4978   setDebugLocFromInst(&I);
4979 
4980   Module *M = I.getParent()->getParent()->getParent();
4981   auto *CI = cast<CallInst>(&I);
4982 
4983   SmallVector<Type *, 4> Tys;
4984   for (Value *ArgOperand : CI->arg_operands())
4985     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4986 
4987   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4988 
4989   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4990   // version of the instruction.
4991   // Is it beneficial to perform intrinsic call compared to lib call?
4992   bool NeedToScalarize = false;
4993   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4994   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4995   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4996   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4997          "Instruction should be scalarized elsewhere.");
4998   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4999          "Either the intrinsic cost or vector call cost must be valid");
5000 
5001   for (unsigned Part = 0; Part < UF; ++Part) {
5002     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5003     SmallVector<Value *, 4> Args;
5004     for (auto &I : enumerate(ArgOperands.operands())) {
5005       // Some intrinsics have a scalar argument - don't replace it with a
5006       // vector.
5007       Value *Arg;
5008       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5009         Arg = State.get(I.value(), Part);
5010       else {
5011         Arg = State.get(I.value(), VPIteration(0, 0));
5012         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5013           TysForDecl.push_back(Arg->getType());
5014       }
5015       Args.push_back(Arg);
5016     }
5017 
5018     Function *VectorF;
5019     if (UseVectorIntrinsic) {
5020       // Use vector version of the intrinsic.
5021       if (VF.isVector())
5022         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5023       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5024       assert(VectorF && "Can't retrieve vector intrinsic.");
5025     } else {
5026       // Use vector version of the function call.
5027       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5028 #ifndef NDEBUG
5029       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5030              "Can't create vector function.");
5031 #endif
5032         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5033     }
5034       SmallVector<OperandBundleDef, 1> OpBundles;
5035       CI->getOperandBundlesAsDefs(OpBundles);
5036       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5037 
5038       if (isa<FPMathOperator>(V))
5039         V->copyFastMathFlags(CI);
5040 
5041       State.set(Def, V, Part);
5042       addMetadata(V, &I);
5043   }
5044 }
5045 
5046 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5047                                                  VPUser &Operands,
5048                                                  bool InvariantCond,
5049                                                  VPTransformState &State) {
5050   setDebugLocFromInst(&I);
5051 
5052   // The condition can be loop invariant  but still defined inside the
5053   // loop. This means that we can't just use the original 'cond' value.
5054   // We have to take the 'vectorized' value and pick the first lane.
5055   // Instcombine will make this a no-op.
5056   auto *InvarCond = InvariantCond
5057                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5058                         : nullptr;
5059 
5060   for (unsigned Part = 0; Part < UF; ++Part) {
5061     Value *Cond =
5062         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5063     Value *Op0 = State.get(Operands.getOperand(1), Part);
5064     Value *Op1 = State.get(Operands.getOperand(2), Part);
5065     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5066     State.set(VPDef, Sel, Part);
5067     addMetadata(Sel, &I);
5068   }
5069 }
5070 
5071 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5072   // We should not collect Scalars more than once per VF. Right now, this
5073   // function is called from collectUniformsAndScalars(), which already does
5074   // this check. Collecting Scalars for VF=1 does not make any sense.
5075   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5076          "This function should not be visited twice for the same VF");
5077 
5078   SmallSetVector<Instruction *, 8> Worklist;
5079 
5080   // These sets are used to seed the analysis with pointers used by memory
5081   // accesses that will remain scalar.
5082   SmallSetVector<Instruction *, 8> ScalarPtrs;
5083   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5084   auto *Latch = TheLoop->getLoopLatch();
5085 
5086   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5087   // The pointer operands of loads and stores will be scalar as long as the
5088   // memory access is not a gather or scatter operation. The value operand of a
5089   // store will remain scalar if the store is scalarized.
5090   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5091     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5092     assert(WideningDecision != CM_Unknown &&
5093            "Widening decision should be ready at this moment");
5094     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5095       if (Ptr == Store->getValueOperand())
5096         return WideningDecision == CM_Scalarize;
5097     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5098            "Ptr is neither a value or pointer operand");
5099     return WideningDecision != CM_GatherScatter;
5100   };
5101 
5102   // A helper that returns true if the given value is a bitcast or
5103   // getelementptr instruction contained in the loop.
5104   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5105     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5106             isa<GetElementPtrInst>(V)) &&
5107            !TheLoop->isLoopInvariant(V);
5108   };
5109 
5110   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5111     if (!isa<PHINode>(Ptr) ||
5112         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5113       return false;
5114     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5115     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5116       return false;
5117     return isScalarUse(MemAccess, Ptr);
5118   };
5119 
5120   // A helper that evaluates a memory access's use of a pointer. If the
5121   // pointer is actually the pointer induction of a loop, it is being
5122   // inserted into Worklist. If the use will be a scalar use, and the
5123   // pointer is only used by memory accesses, we place the pointer in
5124   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5125   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5126     if (isScalarPtrInduction(MemAccess, Ptr)) {
5127       Worklist.insert(cast<Instruction>(Ptr));
5128       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5129                         << "\n");
5130 
5131       Instruction *Update = cast<Instruction>(
5132           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5133       ScalarPtrs.insert(Update);
5134       return;
5135     }
5136     // We only care about bitcast and getelementptr instructions contained in
5137     // the loop.
5138     if (!isLoopVaryingBitCastOrGEP(Ptr))
5139       return;
5140 
5141     // If the pointer has already been identified as scalar (e.g., if it was
5142     // also identified as uniform), there's nothing to do.
5143     auto *I = cast<Instruction>(Ptr);
5144     if (Worklist.count(I))
5145       return;
5146 
5147     // If the use of the pointer will be a scalar use, and all users of the
5148     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5149     // place the pointer in PossibleNonScalarPtrs.
5150     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5151           return isa<LoadInst>(U) || isa<StoreInst>(U);
5152         }))
5153       ScalarPtrs.insert(I);
5154     else
5155       PossibleNonScalarPtrs.insert(I);
5156   };
5157 
5158   // We seed the scalars analysis with three classes of instructions: (1)
5159   // instructions marked uniform-after-vectorization and (2) bitcast,
5160   // getelementptr and (pointer) phi instructions used by memory accesses
5161   // requiring a scalar use.
5162   //
5163   // (1) Add to the worklist all instructions that have been identified as
5164   // uniform-after-vectorization.
5165   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5166 
5167   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5168   // memory accesses requiring a scalar use. The pointer operands of loads and
5169   // stores will be scalar as long as the memory accesses is not a gather or
5170   // scatter operation. The value operand of a store will remain scalar if the
5171   // store is scalarized.
5172   for (auto *BB : TheLoop->blocks())
5173     for (auto &I : *BB) {
5174       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5175         evaluatePtrUse(Load, Load->getPointerOperand());
5176       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5177         evaluatePtrUse(Store, Store->getPointerOperand());
5178         evaluatePtrUse(Store, Store->getValueOperand());
5179       }
5180     }
5181   for (auto *I : ScalarPtrs)
5182     if (!PossibleNonScalarPtrs.count(I)) {
5183       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5184       Worklist.insert(I);
5185     }
5186 
5187   // Insert the forced scalars.
5188   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5189   // induction variable when the PHI user is scalarized.
5190   auto ForcedScalar = ForcedScalars.find(VF);
5191   if (ForcedScalar != ForcedScalars.end())
5192     for (auto *I : ForcedScalar->second)
5193       Worklist.insert(I);
5194 
5195   // Expand the worklist by looking through any bitcasts and getelementptr
5196   // instructions we've already identified as scalar. This is similar to the
5197   // expansion step in collectLoopUniforms(); however, here we're only
5198   // expanding to include additional bitcasts and getelementptr instructions.
5199   unsigned Idx = 0;
5200   while (Idx != Worklist.size()) {
5201     Instruction *Dst = Worklist[Idx++];
5202     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5203       continue;
5204     auto *Src = cast<Instruction>(Dst->getOperand(0));
5205     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5206           auto *J = cast<Instruction>(U);
5207           return !TheLoop->contains(J) || Worklist.count(J) ||
5208                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5209                   isScalarUse(J, Src));
5210         })) {
5211       Worklist.insert(Src);
5212       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5213     }
5214   }
5215 
5216   // An induction variable will remain scalar if all users of the induction
5217   // variable and induction variable update remain scalar.
5218   for (auto &Induction : Legal->getInductionVars()) {
5219     auto *Ind = Induction.first;
5220     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5221 
5222     // If tail-folding is applied, the primary induction variable will be used
5223     // to feed a vector compare.
5224     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5225       continue;
5226 
5227     // Determine if all users of the induction variable are scalar after
5228     // vectorization.
5229     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5230       auto *I = cast<Instruction>(U);
5231       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5232     });
5233     if (!ScalarInd)
5234       continue;
5235 
5236     // Determine if all users of the induction variable update instruction are
5237     // scalar after vectorization.
5238     auto ScalarIndUpdate =
5239         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5240           auto *I = cast<Instruction>(U);
5241           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5242         });
5243     if (!ScalarIndUpdate)
5244       continue;
5245 
5246     // The induction variable and its update instruction will remain scalar.
5247     Worklist.insert(Ind);
5248     Worklist.insert(IndUpdate);
5249     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5250     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5251                       << "\n");
5252   }
5253 
5254   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5255 }
5256 
5257 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5258   if (!blockNeedsPredication(I->getParent()))
5259     return false;
5260   switch(I->getOpcode()) {
5261   default:
5262     break;
5263   case Instruction::Load:
5264   case Instruction::Store: {
5265     if (!Legal->isMaskRequired(I))
5266       return false;
5267     auto *Ptr = getLoadStorePointerOperand(I);
5268     auto *Ty = getLoadStoreType(I);
5269     const Align Alignment = getLoadStoreAlignment(I);
5270     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5271                                 TTI.isLegalMaskedGather(Ty, Alignment))
5272                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5273                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5274   }
5275   case Instruction::UDiv:
5276   case Instruction::SDiv:
5277   case Instruction::SRem:
5278   case Instruction::URem:
5279     return mayDivideByZero(*I);
5280   }
5281   return false;
5282 }
5283 
5284 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5285     Instruction *I, ElementCount VF) {
5286   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5287   assert(getWideningDecision(I, VF) == CM_Unknown &&
5288          "Decision should not be set yet.");
5289   auto *Group = getInterleavedAccessGroup(I);
5290   assert(Group && "Must have a group.");
5291 
5292   // If the instruction's allocated size doesn't equal it's type size, it
5293   // requires padding and will be scalarized.
5294   auto &DL = I->getModule()->getDataLayout();
5295   auto *ScalarTy = getLoadStoreType(I);
5296   if (hasIrregularType(ScalarTy, DL))
5297     return false;
5298 
5299   // Check if masking is required.
5300   // A Group may need masking for one of two reasons: it resides in a block that
5301   // needs predication, or it was decided to use masking to deal with gaps
5302   // (either a gap at the end of a load-access that may result in a speculative
5303   // load, or any gaps in a store-access).
5304   bool PredicatedAccessRequiresMasking =
5305       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5306   bool LoadAccessWithGapsRequiresEpilogMasking =
5307       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5308       !isScalarEpilogueAllowed();
5309   bool StoreAccessWithGapsRequiresMasking =
5310       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5311   if (!PredicatedAccessRequiresMasking &&
5312       !LoadAccessWithGapsRequiresEpilogMasking &&
5313       !StoreAccessWithGapsRequiresMasking)
5314     return true;
5315 
5316   // If masked interleaving is required, we expect that the user/target had
5317   // enabled it, because otherwise it either wouldn't have been created or
5318   // it should have been invalidated by the CostModel.
5319   assert(useMaskedInterleavedAccesses(TTI) &&
5320          "Masked interleave-groups for predicated accesses are not enabled.");
5321 
5322   auto *Ty = getLoadStoreType(I);
5323   const Align Alignment = getLoadStoreAlignment(I);
5324   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5325                           : TTI.isLegalMaskedStore(Ty, Alignment);
5326 }
5327 
5328 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5329     Instruction *I, ElementCount VF) {
5330   // Get and ensure we have a valid memory instruction.
5331   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
5332 
5333   auto *Ptr = getLoadStorePointerOperand(I);
5334   auto *ScalarTy = getLoadStoreType(I);
5335 
5336   // In order to be widened, the pointer should be consecutive, first of all.
5337   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
5338     return false;
5339 
5340   // If the instruction is a store located in a predicated block, it will be
5341   // scalarized.
5342   if (isScalarWithPredication(I))
5343     return false;
5344 
5345   // If the instruction's allocated size doesn't equal it's type size, it
5346   // requires padding and will be scalarized.
5347   auto &DL = I->getModule()->getDataLayout();
5348   if (hasIrregularType(ScalarTy, DL))
5349     return false;
5350 
5351   return true;
5352 }
5353 
5354 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5355   // We should not collect Uniforms more than once per VF. Right now,
5356   // this function is called from collectUniformsAndScalars(), which
5357   // already does this check. Collecting Uniforms for VF=1 does not make any
5358   // sense.
5359 
5360   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5361          "This function should not be visited twice for the same VF");
5362 
5363   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5364   // not analyze again.  Uniforms.count(VF) will return 1.
5365   Uniforms[VF].clear();
5366 
5367   // We now know that the loop is vectorizable!
5368   // Collect instructions inside the loop that will remain uniform after
5369   // vectorization.
5370 
5371   // Global values, params and instructions outside of current loop are out of
5372   // scope.
5373   auto isOutOfScope = [&](Value *V) -> bool {
5374     Instruction *I = dyn_cast<Instruction>(V);
5375     return (!I || !TheLoop->contains(I));
5376   };
5377 
5378   SetVector<Instruction *> Worklist;
5379   BasicBlock *Latch = TheLoop->getLoopLatch();
5380 
5381   // Instructions that are scalar with predication must not be considered
5382   // uniform after vectorization, because that would create an erroneous
5383   // replicating region where only a single instance out of VF should be formed.
5384   // TODO: optimize such seldom cases if found important, see PR40816.
5385   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5386     if (isOutOfScope(I)) {
5387       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5388                         << *I << "\n");
5389       return;
5390     }
5391     if (isScalarWithPredication(I)) {
5392       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5393                         << *I << "\n");
5394       return;
5395     }
5396     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5397     Worklist.insert(I);
5398   };
5399 
5400   // Start with the conditional branch. If the branch condition is an
5401   // instruction contained in the loop that is only used by the branch, it is
5402   // uniform.
5403   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5404   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5405     addToWorklistIfAllowed(Cmp);
5406 
5407   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5408     InstWidening WideningDecision = getWideningDecision(I, VF);
5409     assert(WideningDecision != CM_Unknown &&
5410            "Widening decision should be ready at this moment");
5411 
5412     // A uniform memory op is itself uniform.  We exclude uniform stores
5413     // here as they demand the last lane, not the first one.
5414     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5415       assert(WideningDecision == CM_Scalarize);
5416       return true;
5417     }
5418 
5419     return (WideningDecision == CM_Widen ||
5420             WideningDecision == CM_Widen_Reverse ||
5421             WideningDecision == CM_Interleave);
5422   };
5423 
5424 
5425   // Returns true if Ptr is the pointer operand of a memory access instruction
5426   // I, and I is known to not require scalarization.
5427   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5428     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5429   };
5430 
5431   // Holds a list of values which are known to have at least one uniform use.
5432   // Note that there may be other uses which aren't uniform.  A "uniform use"
5433   // here is something which only demands lane 0 of the unrolled iterations;
5434   // it does not imply that all lanes produce the same value (e.g. this is not
5435   // the usual meaning of uniform)
5436   SetVector<Value *> HasUniformUse;
5437 
5438   // Scan the loop for instructions which are either a) known to have only
5439   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5440   for (auto *BB : TheLoop->blocks())
5441     for (auto &I : *BB) {
5442       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5443         switch (II->getIntrinsicID()) {
5444         case Intrinsic::sideeffect:
5445         case Intrinsic::experimental_noalias_scope_decl:
5446         case Intrinsic::assume:
5447         case Intrinsic::lifetime_start:
5448         case Intrinsic::lifetime_end:
5449           if (TheLoop->hasLoopInvariantOperands(&I))
5450             addToWorklistIfAllowed(&I);
5451           break;
5452         default:
5453           break;
5454         }
5455       }
5456 
5457       // ExtractValue instructions must be uniform, because the operands are
5458       // known to be loop-invariant.
5459       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5460         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5461                "Expected aggregate value to be loop invariant");
5462         addToWorklistIfAllowed(EVI);
5463         continue;
5464       }
5465 
5466       // If there's no pointer operand, there's nothing to do.
5467       auto *Ptr = getLoadStorePointerOperand(&I);
5468       if (!Ptr)
5469         continue;
5470 
5471       // A uniform memory op is itself uniform.  We exclude uniform stores
5472       // here as they demand the last lane, not the first one.
5473       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5474         addToWorklistIfAllowed(&I);
5475 
5476       if (isUniformDecision(&I, VF)) {
5477         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5478         HasUniformUse.insert(Ptr);
5479       }
5480     }
5481 
5482   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5483   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5484   // disallows uses outside the loop as well.
5485   for (auto *V : HasUniformUse) {
5486     if (isOutOfScope(V))
5487       continue;
5488     auto *I = cast<Instruction>(V);
5489     auto UsersAreMemAccesses =
5490       llvm::all_of(I->users(), [&](User *U) -> bool {
5491         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5492       });
5493     if (UsersAreMemAccesses)
5494       addToWorklistIfAllowed(I);
5495   }
5496 
5497   // Expand Worklist in topological order: whenever a new instruction
5498   // is added , its users should be already inside Worklist.  It ensures
5499   // a uniform instruction will only be used by uniform instructions.
5500   unsigned idx = 0;
5501   while (idx != Worklist.size()) {
5502     Instruction *I = Worklist[idx++];
5503 
5504     for (auto OV : I->operand_values()) {
5505       // isOutOfScope operands cannot be uniform instructions.
5506       if (isOutOfScope(OV))
5507         continue;
5508       // First order recurrence Phi's should typically be considered
5509       // non-uniform.
5510       auto *OP = dyn_cast<PHINode>(OV);
5511       if (OP && Legal->isFirstOrderRecurrence(OP))
5512         continue;
5513       // If all the users of the operand are uniform, then add the
5514       // operand into the uniform worklist.
5515       auto *OI = cast<Instruction>(OV);
5516       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5517             auto *J = cast<Instruction>(U);
5518             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5519           }))
5520         addToWorklistIfAllowed(OI);
5521     }
5522   }
5523 
5524   // For an instruction to be added into Worklist above, all its users inside
5525   // the loop should also be in Worklist. However, this condition cannot be
5526   // true for phi nodes that form a cyclic dependence. We must process phi
5527   // nodes separately. An induction variable will remain uniform if all users
5528   // of the induction variable and induction variable update remain uniform.
5529   // The code below handles both pointer and non-pointer induction variables.
5530   for (auto &Induction : Legal->getInductionVars()) {
5531     auto *Ind = Induction.first;
5532     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5533 
5534     // Determine if all users of the induction variable are uniform after
5535     // vectorization.
5536     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5537       auto *I = cast<Instruction>(U);
5538       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5539              isVectorizedMemAccessUse(I, Ind);
5540     });
5541     if (!UniformInd)
5542       continue;
5543 
5544     // Determine if all users of the induction variable update instruction are
5545     // uniform after vectorization.
5546     auto UniformIndUpdate =
5547         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5548           auto *I = cast<Instruction>(U);
5549           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5550                  isVectorizedMemAccessUse(I, IndUpdate);
5551         });
5552     if (!UniformIndUpdate)
5553       continue;
5554 
5555     // The induction variable and its update instruction will remain uniform.
5556     addToWorklistIfAllowed(Ind);
5557     addToWorklistIfAllowed(IndUpdate);
5558   }
5559 
5560   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5561 }
5562 
5563 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5564   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5565 
5566   if (Legal->getRuntimePointerChecking()->Need) {
5567     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5568         "runtime pointer checks needed. Enable vectorization of this "
5569         "loop with '#pragma clang loop vectorize(enable)' when "
5570         "compiling with -Os/-Oz",
5571         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5572     return true;
5573   }
5574 
5575   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5576     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5577         "runtime SCEV checks needed. Enable vectorization of this "
5578         "loop with '#pragma clang loop vectorize(enable)' when "
5579         "compiling with -Os/-Oz",
5580         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5581     return true;
5582   }
5583 
5584   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5585   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5586     reportVectorizationFailure("Runtime stride check for small trip count",
5587         "runtime stride == 1 checks needed. Enable vectorization of "
5588         "this loop without such check by compiling with -Os/-Oz",
5589         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5590     return true;
5591   }
5592 
5593   return false;
5594 }
5595 
5596 ElementCount
5597 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5598   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5599     return ElementCount::getScalable(0);
5600 
5601   if (Hints->isScalableVectorizationDisabled()) {
5602     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5603                             "ScalableVectorizationDisabled", ORE, TheLoop);
5604     return ElementCount::getScalable(0);
5605   }
5606 
5607   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5608 
5609   auto MaxScalableVF = ElementCount::getScalable(
5610       std::numeric_limits<ElementCount::ScalarTy>::max());
5611 
5612   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5613   // FIXME: While for scalable vectors this is currently sufficient, this should
5614   // be replaced by a more detailed mechanism that filters out specific VFs,
5615   // instead of invalidating vectorization for a whole set of VFs based on the
5616   // MaxVF.
5617 
5618   // Disable scalable vectorization if the loop contains unsupported reductions.
5619   if (!canVectorizeReductions(MaxScalableVF)) {
5620     reportVectorizationInfo(
5621         "Scalable vectorization not supported for the reduction "
5622         "operations found in this loop.",
5623         "ScalableVFUnfeasible", ORE, TheLoop);
5624     return ElementCount::getScalable(0);
5625   }
5626 
5627   // Disable scalable vectorization if the loop contains any instructions
5628   // with element types not supported for scalable vectors.
5629   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5630         return !Ty->isVoidTy() &&
5631                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5632       })) {
5633     reportVectorizationInfo("Scalable vectorization is not supported "
5634                             "for all element types found in this loop.",
5635                             "ScalableVFUnfeasible", ORE, TheLoop);
5636     return ElementCount::getScalable(0);
5637   }
5638 
5639   if (Legal->isSafeForAnyVectorWidth())
5640     return MaxScalableVF;
5641 
5642   // Limit MaxScalableVF by the maximum safe dependence distance.
5643   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5644   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5645     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5646                              .getVScaleRangeArgs()
5647                              .second;
5648     if (VScaleMax > 0)
5649       MaxVScale = VScaleMax;
5650   }
5651   MaxScalableVF = ElementCount::getScalable(
5652       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5653   if (!MaxScalableVF)
5654     reportVectorizationInfo(
5655         "Max legal vector width too small, scalable vectorization "
5656         "unfeasible.",
5657         "ScalableVFUnfeasible", ORE, TheLoop);
5658 
5659   return MaxScalableVF;
5660 }
5661 
5662 FixedScalableVFPair
5663 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5664                                                  ElementCount UserVF) {
5665   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5666   unsigned SmallestType, WidestType;
5667   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5668 
5669   // Get the maximum safe dependence distance in bits computed by LAA.
5670   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5671   // the memory accesses that is most restrictive (involved in the smallest
5672   // dependence distance).
5673   unsigned MaxSafeElements =
5674       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5675 
5676   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5677   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5678 
5679   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5680                     << ".\n");
5681   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5682                     << ".\n");
5683 
5684   // First analyze the UserVF, fall back if the UserVF should be ignored.
5685   if (UserVF) {
5686     auto MaxSafeUserVF =
5687         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5688 
5689     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5690       // If `VF=vscale x N` is safe, then so is `VF=N`
5691       if (UserVF.isScalable())
5692         return FixedScalableVFPair(
5693             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5694       else
5695         return UserVF;
5696     }
5697 
5698     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5699 
5700     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5701     // is better to ignore the hint and let the compiler choose a suitable VF.
5702     if (!UserVF.isScalable()) {
5703       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5704                         << " is unsafe, clamping to max safe VF="
5705                         << MaxSafeFixedVF << ".\n");
5706       ORE->emit([&]() {
5707         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5708                                           TheLoop->getStartLoc(),
5709                                           TheLoop->getHeader())
5710                << "User-specified vectorization factor "
5711                << ore::NV("UserVectorizationFactor", UserVF)
5712                << " is unsafe, clamping to maximum safe vectorization factor "
5713                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5714       });
5715       return MaxSafeFixedVF;
5716     }
5717 
5718     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5719       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5720                         << " is ignored because scalable vectors are not "
5721                            "available.\n");
5722       ORE->emit([&]() {
5723         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5724                                           TheLoop->getStartLoc(),
5725                                           TheLoop->getHeader())
5726                << "User-specified vectorization factor "
5727                << ore::NV("UserVectorizationFactor", UserVF)
5728                << " is ignored because the target does not support scalable "
5729                   "vectors. The compiler will pick a more suitable value.";
5730       });
5731     } else {
5732       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5733                         << " is unsafe. Ignoring scalable UserVF.\n");
5734       ORE->emit([&]() {
5735         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5736                                           TheLoop->getStartLoc(),
5737                                           TheLoop->getHeader())
5738                << "User-specified vectorization factor "
5739                << ore::NV("UserVectorizationFactor", UserVF)
5740                << " is unsafe. Ignoring the hint to let the compiler pick a "
5741                   "more suitable value.";
5742       });
5743     }
5744   }
5745 
5746   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5747                     << " / " << WidestType << " bits.\n");
5748 
5749   FixedScalableVFPair Result(ElementCount::getFixed(1),
5750                              ElementCount::getScalable(0));
5751   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5752                                            WidestType, MaxSafeFixedVF))
5753     Result.FixedVF = MaxVF;
5754 
5755   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5756                                            WidestType, MaxSafeScalableVF))
5757     if (MaxVF.isScalable()) {
5758       Result.ScalableVF = MaxVF;
5759       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5760                         << "\n");
5761     }
5762 
5763   return Result;
5764 }
5765 
5766 FixedScalableVFPair
5767 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5768   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5769     // TODO: It may by useful to do since it's still likely to be dynamically
5770     // uniform if the target can skip.
5771     reportVectorizationFailure(
5772         "Not inserting runtime ptr check for divergent target",
5773         "runtime pointer checks needed. Not enabled for divergent target",
5774         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5775     return FixedScalableVFPair::getNone();
5776   }
5777 
5778   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5779   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5780   if (TC == 1) {
5781     reportVectorizationFailure("Single iteration (non) loop",
5782         "loop trip count is one, irrelevant for vectorization",
5783         "SingleIterationLoop", ORE, TheLoop);
5784     return FixedScalableVFPair::getNone();
5785   }
5786 
5787   switch (ScalarEpilogueStatus) {
5788   case CM_ScalarEpilogueAllowed:
5789     return computeFeasibleMaxVF(TC, UserVF);
5790   case CM_ScalarEpilogueNotAllowedUsePredicate:
5791     LLVM_FALLTHROUGH;
5792   case CM_ScalarEpilogueNotNeededUsePredicate:
5793     LLVM_DEBUG(
5794         dbgs() << "LV: vector predicate hint/switch found.\n"
5795                << "LV: Not allowing scalar epilogue, creating predicated "
5796                << "vector loop.\n");
5797     break;
5798   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5799     // fallthrough as a special case of OptForSize
5800   case CM_ScalarEpilogueNotAllowedOptSize:
5801     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5802       LLVM_DEBUG(
5803           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5804     else
5805       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5806                         << "count.\n");
5807 
5808     // Bail if runtime checks are required, which are not good when optimising
5809     // for size.
5810     if (runtimeChecksRequired())
5811       return FixedScalableVFPair::getNone();
5812 
5813     break;
5814   }
5815 
5816   // The only loops we can vectorize without a scalar epilogue, are loops with
5817   // a bottom-test and a single exiting block. We'd have to handle the fact
5818   // that not every instruction executes on the last iteration.  This will
5819   // require a lane mask which varies through the vector loop body.  (TODO)
5820   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5821     // If there was a tail-folding hint/switch, but we can't fold the tail by
5822     // masking, fallback to a vectorization with a scalar epilogue.
5823     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5824       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5825                            "scalar epilogue instead.\n");
5826       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5827       return computeFeasibleMaxVF(TC, UserVF);
5828     }
5829     return FixedScalableVFPair::getNone();
5830   }
5831 
5832   // Now try the tail folding
5833 
5834   // Invalidate interleave groups that require an epilogue if we can't mask
5835   // the interleave-group.
5836   if (!useMaskedInterleavedAccesses(TTI)) {
5837     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5838            "No decisions should have been taken at this point");
5839     // Note: There is no need to invalidate any cost modeling decisions here, as
5840     // non where taken so far.
5841     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5842   }
5843 
5844   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5845   // Avoid tail folding if the trip count is known to be a multiple of any VF
5846   // we chose.
5847   // FIXME: The condition below pessimises the case for fixed-width vectors,
5848   // when scalable VFs are also candidates for vectorization.
5849   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5850     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5851     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5852            "MaxFixedVF must be a power of 2");
5853     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5854                                    : MaxFixedVF.getFixedValue();
5855     ScalarEvolution *SE = PSE.getSE();
5856     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5857     const SCEV *ExitCount = SE->getAddExpr(
5858         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5859     const SCEV *Rem = SE->getURemExpr(
5860         SE->applyLoopGuards(ExitCount, TheLoop),
5861         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5862     if (Rem->isZero()) {
5863       // Accept MaxFixedVF if we do not have a tail.
5864       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5865       return MaxFactors;
5866     }
5867   }
5868 
5869   // For scalable vectors, don't use tail folding as this is currently not yet
5870   // supported. The code is likely to have ended up here if the tripcount is
5871   // low, in which case it makes sense not to use scalable vectors.
5872   if (MaxFactors.ScalableVF.isVector())
5873     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5874 
5875   // If we don't know the precise trip count, or if the trip count that we
5876   // found modulo the vectorization factor is not zero, try to fold the tail
5877   // by masking.
5878   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5879   if (Legal->prepareToFoldTailByMasking()) {
5880     FoldTailByMasking = true;
5881     return MaxFactors;
5882   }
5883 
5884   // If there was a tail-folding hint/switch, but we can't fold the tail by
5885   // masking, fallback to a vectorization with a scalar epilogue.
5886   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5887     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5888                          "scalar epilogue instead.\n");
5889     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5890     return MaxFactors;
5891   }
5892 
5893   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5894     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5895     return FixedScalableVFPair::getNone();
5896   }
5897 
5898   if (TC == 0) {
5899     reportVectorizationFailure(
5900         "Unable to calculate the loop count due to complex control flow",
5901         "unable to calculate the loop count due to complex control flow",
5902         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5903     return FixedScalableVFPair::getNone();
5904   }
5905 
5906   reportVectorizationFailure(
5907       "Cannot optimize for size and vectorize at the same time.",
5908       "cannot optimize for size and vectorize at the same time. "
5909       "Enable vectorization of this loop with '#pragma clang loop "
5910       "vectorize(enable)' when compiling with -Os/-Oz",
5911       "NoTailLoopWithOptForSize", ORE, TheLoop);
5912   return FixedScalableVFPair::getNone();
5913 }
5914 
5915 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5916     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5917     const ElementCount &MaxSafeVF) {
5918   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5919   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5920       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5921                            : TargetTransformInfo::RGK_FixedWidthVector);
5922 
5923   // Convenience function to return the minimum of two ElementCounts.
5924   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5925     assert((LHS.isScalable() == RHS.isScalable()) &&
5926            "Scalable flags must match");
5927     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5928   };
5929 
5930   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5931   // Note that both WidestRegister and WidestType may not be a powers of 2.
5932   auto MaxVectorElementCount = ElementCount::get(
5933       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5934       ComputeScalableMaxVF);
5935   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5936   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5937                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5938 
5939   if (!MaxVectorElementCount) {
5940     LLVM_DEBUG(dbgs() << "LV: The target has no "
5941                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5942                       << " vector registers.\n");
5943     return ElementCount::getFixed(1);
5944   }
5945 
5946   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5947   if (ConstTripCount &&
5948       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5949       isPowerOf2_32(ConstTripCount)) {
5950     // We need to clamp the VF to be the ConstTripCount. There is no point in
5951     // choosing a higher viable VF as done in the loop below. If
5952     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5953     // the TC is less than or equal to the known number of lanes.
5954     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5955                       << ConstTripCount << "\n");
5956     return TripCountEC;
5957   }
5958 
5959   ElementCount MaxVF = MaxVectorElementCount;
5960   if (TTI.shouldMaximizeVectorBandwidth() ||
5961       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5962     auto MaxVectorElementCountMaxBW = ElementCount::get(
5963         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5964         ComputeScalableMaxVF);
5965     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5966 
5967     // Collect all viable vectorization factors larger than the default MaxVF
5968     // (i.e. MaxVectorElementCount).
5969     SmallVector<ElementCount, 8> VFs;
5970     for (ElementCount VS = MaxVectorElementCount * 2;
5971          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5972       VFs.push_back(VS);
5973 
5974     // For each VF calculate its register usage.
5975     auto RUs = calculateRegisterUsage(VFs);
5976 
5977     // Select the largest VF which doesn't require more registers than existing
5978     // ones.
5979     for (int i = RUs.size() - 1; i >= 0; --i) {
5980       bool Selected = true;
5981       for (auto &pair : RUs[i].MaxLocalUsers) {
5982         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5983         if (pair.second > TargetNumRegisters)
5984           Selected = false;
5985       }
5986       if (Selected) {
5987         MaxVF = VFs[i];
5988         break;
5989       }
5990     }
5991     if (ElementCount MinVF =
5992             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5993       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5994         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5995                           << ") with target's minimum: " << MinVF << '\n');
5996         MaxVF = MinVF;
5997       }
5998     }
5999   }
6000   return MaxVF;
6001 }
6002 
6003 bool LoopVectorizationCostModel::isMoreProfitable(
6004     const VectorizationFactor &A, const VectorizationFactor &B) const {
6005   InstructionCost CostA = A.Cost;
6006   InstructionCost CostB = B.Cost;
6007 
6008   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6009 
6010   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6011       MaxTripCount) {
6012     // If we are folding the tail and the trip count is a known (possibly small)
6013     // constant, the trip count will be rounded up to an integer number of
6014     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6015     // which we compare directly. When not folding the tail, the total cost will
6016     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6017     // approximated with the per-lane cost below instead of using the tripcount
6018     // as here.
6019     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6020     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6021     return RTCostA < RTCostB;
6022   }
6023 
6024   // When set to preferred, for now assume vscale may be larger than 1, so
6025   // that scalable vectorization is slightly favorable over fixed-width
6026   // vectorization.
6027   if (Hints->isScalableVectorizationPreferred())
6028     if (A.Width.isScalable() && !B.Width.isScalable())
6029       return (CostA * B.Width.getKnownMinValue()) <=
6030              (CostB * A.Width.getKnownMinValue());
6031 
6032   // To avoid the need for FP division:
6033   //      (CostA / A.Width) < (CostB / B.Width)
6034   // <=>  (CostA * B.Width) < (CostB * A.Width)
6035   return (CostA * B.Width.getKnownMinValue()) <
6036          (CostB * A.Width.getKnownMinValue());
6037 }
6038 
6039 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6040     const ElementCountSet &VFCandidates) {
6041   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6042   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6043   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6044   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6045          "Expected Scalar VF to be a candidate");
6046 
6047   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6048   VectorizationFactor ChosenFactor = ScalarCost;
6049 
6050   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6051   if (ForceVectorization && VFCandidates.size() > 1) {
6052     // Ignore scalar width, because the user explicitly wants vectorization.
6053     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6054     // evaluation.
6055     ChosenFactor.Cost = InstructionCost::getMax();
6056   }
6057 
6058   SmallVector<InstructionVFPair> InvalidCosts;
6059   for (const auto &i : VFCandidates) {
6060     // The cost for scalar VF=1 is already calculated, so ignore it.
6061     if (i.isScalar())
6062       continue;
6063 
6064     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6065     VectorizationFactor Candidate(i, C.first);
6066     LLVM_DEBUG(
6067         dbgs() << "LV: Vector loop of width " << i << " costs: "
6068                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6069                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6070                << ".\n");
6071 
6072     if (!C.second && !ForceVectorization) {
6073       LLVM_DEBUG(
6074           dbgs() << "LV: Not considering vector loop of width " << i
6075                  << " because it will not generate any vector instructions.\n");
6076       continue;
6077     }
6078 
6079     // If profitable add it to ProfitableVF list.
6080     if (isMoreProfitable(Candidate, ScalarCost))
6081       ProfitableVFs.push_back(Candidate);
6082 
6083     if (isMoreProfitable(Candidate, ChosenFactor))
6084       ChosenFactor = Candidate;
6085   }
6086 
6087   // Emit a report of VFs with invalid costs in the loop.
6088   if (!InvalidCosts.empty()) {
6089     // Group the remarks per instruction, keeping the instruction order from
6090     // InvalidCosts.
6091     std::map<Instruction *, unsigned> Numbering;
6092     unsigned I = 0;
6093     for (auto &Pair : InvalidCosts)
6094       if (!Numbering.count(Pair.first))
6095         Numbering[Pair.first] = I++;
6096 
6097     // Sort the list, first on instruction(number) then on VF.
6098     llvm::sort(InvalidCosts,
6099                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6100                  if (Numbering[A.first] != Numbering[B.first])
6101                    return Numbering[A.first] < Numbering[B.first];
6102                  ElementCountComparator ECC;
6103                  return ECC(A.second, B.second);
6104                });
6105 
6106     // For a list of ordered instruction-vf pairs:
6107     //   [(load, vf1), (load, vf2), (store, vf1)]
6108     // Group the instructions together to emit separate remarks for:
6109     //   load  (vf1, vf2)
6110     //   store (vf1)
6111     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6112     auto Subset = ArrayRef<InstructionVFPair>();
6113     do {
6114       if (Subset.empty())
6115         Subset = Tail.take_front(1);
6116 
6117       Instruction *I = Subset.front().first;
6118 
6119       // If the next instruction is different, or if there are no other pairs,
6120       // emit a remark for the collated subset. e.g.
6121       //   [(load, vf1), (load, vf2))]
6122       // to emit:
6123       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6124       if (Subset == Tail || Tail[Subset.size()].first != I) {
6125         std::string OutString;
6126         raw_string_ostream OS(OutString);
6127         assert(!Subset.empty() && "Unexpected empty range");
6128         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6129         for (auto &Pair : Subset)
6130           OS << (Pair.second == Subset.front().second ? "" : ", ")
6131              << Pair.second;
6132         OS << "):";
6133         if (auto *CI = dyn_cast<CallInst>(I))
6134           OS << " call to " << CI->getCalledFunction()->getName();
6135         else
6136           OS << " " << I->getOpcodeName();
6137         OS.flush();
6138         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6139         Tail = Tail.drop_front(Subset.size());
6140         Subset = {};
6141       } else
6142         // Grow the subset by one element
6143         Subset = Tail.take_front(Subset.size() + 1);
6144     } while (!Tail.empty());
6145   }
6146 
6147   if (!EnableCondStoresVectorization && NumPredStores) {
6148     reportVectorizationFailure("There are conditional stores.",
6149         "store that is conditionally executed prevents vectorization",
6150         "ConditionalStore", ORE, TheLoop);
6151     ChosenFactor = ScalarCost;
6152   }
6153 
6154   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6155                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6156              << "LV: Vectorization seems to be not beneficial, "
6157              << "but was forced by a user.\n");
6158   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6159   return ChosenFactor;
6160 }
6161 
6162 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6163     const Loop &L, ElementCount VF) const {
6164   // Cross iteration phis such as reductions need special handling and are
6165   // currently unsupported.
6166   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6167         return Legal->isFirstOrderRecurrence(&Phi) ||
6168                Legal->isReductionVariable(&Phi);
6169       }))
6170     return false;
6171 
6172   // Phis with uses outside of the loop require special handling and are
6173   // currently unsupported.
6174   for (auto &Entry : Legal->getInductionVars()) {
6175     // Look for uses of the value of the induction at the last iteration.
6176     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6177     for (User *U : PostInc->users())
6178       if (!L.contains(cast<Instruction>(U)))
6179         return false;
6180     // Look for uses of penultimate value of the induction.
6181     for (User *U : Entry.first->users())
6182       if (!L.contains(cast<Instruction>(U)))
6183         return false;
6184   }
6185 
6186   // Induction variables that are widened require special handling that is
6187   // currently not supported.
6188   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6189         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6190                  this->isProfitableToScalarize(Entry.first, VF));
6191       }))
6192     return false;
6193 
6194   // Epilogue vectorization code has not been auditted to ensure it handles
6195   // non-latch exits properly.  It may be fine, but it needs auditted and
6196   // tested.
6197   if (L.getExitingBlock() != L.getLoopLatch())
6198     return false;
6199 
6200   return true;
6201 }
6202 
6203 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6204     const ElementCount VF) const {
6205   // FIXME: We need a much better cost-model to take different parameters such
6206   // as register pressure, code size increase and cost of extra branches into
6207   // account. For now we apply a very crude heuristic and only consider loops
6208   // with vectorization factors larger than a certain value.
6209   // We also consider epilogue vectorization unprofitable for targets that don't
6210   // consider interleaving beneficial (eg. MVE).
6211   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6212     return false;
6213   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6214     return true;
6215   return false;
6216 }
6217 
6218 VectorizationFactor
6219 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6220     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6221   VectorizationFactor Result = VectorizationFactor::Disabled();
6222   if (!EnableEpilogueVectorization) {
6223     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6224     return Result;
6225   }
6226 
6227   if (!isScalarEpilogueAllowed()) {
6228     LLVM_DEBUG(
6229         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6230                   "allowed.\n";);
6231     return Result;
6232   }
6233 
6234   // FIXME: This can be fixed for scalable vectors later, because at this stage
6235   // the LoopVectorizer will only consider vectorizing a loop with scalable
6236   // vectors when the loop has a hint to enable vectorization for a given VF.
6237   if (MainLoopVF.isScalable()) {
6238     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6239                          "yet supported.\n");
6240     return Result;
6241   }
6242 
6243   // Not really a cost consideration, but check for unsupported cases here to
6244   // simplify the logic.
6245   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6246     LLVM_DEBUG(
6247         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6248                   "not a supported candidate.\n";);
6249     return Result;
6250   }
6251 
6252   if (EpilogueVectorizationForceVF > 1) {
6253     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6254     if (LVP.hasPlanWithVFs(
6255             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6256       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6257     else {
6258       LLVM_DEBUG(
6259           dbgs()
6260               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6261       return Result;
6262     }
6263   }
6264 
6265   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6266       TheLoop->getHeader()->getParent()->hasMinSize()) {
6267     LLVM_DEBUG(
6268         dbgs()
6269             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6270     return Result;
6271   }
6272 
6273   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6274     return Result;
6275 
6276   for (auto &NextVF : ProfitableVFs)
6277     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6278         (Result.Width.getFixedValue() == 1 ||
6279          isMoreProfitable(NextVF, Result)) &&
6280         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6281       Result = NextVF;
6282 
6283   if (Result != VectorizationFactor::Disabled())
6284     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6285                       << Result.Width.getFixedValue() << "\n";);
6286   return Result;
6287 }
6288 
6289 std::pair<unsigned, unsigned>
6290 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6291   unsigned MinWidth = -1U;
6292   unsigned MaxWidth = 8;
6293   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6294   for (Type *T : ElementTypesInLoop) {
6295     MinWidth = std::min<unsigned>(
6296         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6297     MaxWidth = std::max<unsigned>(
6298         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6299   }
6300   return {MinWidth, MaxWidth};
6301 }
6302 
6303 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6304   ElementTypesInLoop.clear();
6305   // For each block.
6306   for (BasicBlock *BB : TheLoop->blocks()) {
6307     // For each instruction in the loop.
6308     for (Instruction &I : BB->instructionsWithoutDebug()) {
6309       Type *T = I.getType();
6310 
6311       // Skip ignored values.
6312       if (ValuesToIgnore.count(&I))
6313         continue;
6314 
6315       // Only examine Loads, Stores and PHINodes.
6316       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6317         continue;
6318 
6319       // Examine PHI nodes that are reduction variables. Update the type to
6320       // account for the recurrence type.
6321       if (auto *PN = dyn_cast<PHINode>(&I)) {
6322         if (!Legal->isReductionVariable(PN))
6323           continue;
6324         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6325         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6326             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6327                                       RdxDesc.getRecurrenceType(),
6328                                       TargetTransformInfo::ReductionFlags()))
6329           continue;
6330         T = RdxDesc.getRecurrenceType();
6331       }
6332 
6333       // Examine the stored values.
6334       if (auto *ST = dyn_cast<StoreInst>(&I))
6335         T = ST->getValueOperand()->getType();
6336 
6337       // Ignore loaded pointer types and stored pointer types that are not
6338       // vectorizable.
6339       //
6340       // FIXME: The check here attempts to predict whether a load or store will
6341       //        be vectorized. We only know this for certain after a VF has
6342       //        been selected. Here, we assume that if an access can be
6343       //        vectorized, it will be. We should also look at extending this
6344       //        optimization to non-pointer types.
6345       //
6346       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6347           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6348         continue;
6349 
6350       ElementTypesInLoop.insert(T);
6351     }
6352   }
6353 }
6354 
6355 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6356                                                            unsigned LoopCost) {
6357   // -- The interleave heuristics --
6358   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6359   // There are many micro-architectural considerations that we can't predict
6360   // at this level. For example, frontend pressure (on decode or fetch) due to
6361   // code size, or the number and capabilities of the execution ports.
6362   //
6363   // We use the following heuristics to select the interleave count:
6364   // 1. If the code has reductions, then we interleave to break the cross
6365   // iteration dependency.
6366   // 2. If the loop is really small, then we interleave to reduce the loop
6367   // overhead.
6368   // 3. We don't interleave if we think that we will spill registers to memory
6369   // due to the increased register pressure.
6370 
6371   if (!isScalarEpilogueAllowed())
6372     return 1;
6373 
6374   // We used the distance for the interleave count.
6375   if (Legal->getMaxSafeDepDistBytes() != -1U)
6376     return 1;
6377 
6378   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6379   const bool HasReductions = !Legal->getReductionVars().empty();
6380   // Do not interleave loops with a relatively small known or estimated trip
6381   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6382   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6383   // because with the above conditions interleaving can expose ILP and break
6384   // cross iteration dependences for reductions.
6385   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6386       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6387     return 1;
6388 
6389   RegisterUsage R = calculateRegisterUsage({VF})[0];
6390   // We divide by these constants so assume that we have at least one
6391   // instruction that uses at least one register.
6392   for (auto& pair : R.MaxLocalUsers) {
6393     pair.second = std::max(pair.second, 1U);
6394   }
6395 
6396   // We calculate the interleave count using the following formula.
6397   // Subtract the number of loop invariants from the number of available
6398   // registers. These registers are used by all of the interleaved instances.
6399   // Next, divide the remaining registers by the number of registers that is
6400   // required by the loop, in order to estimate how many parallel instances
6401   // fit without causing spills. All of this is rounded down if necessary to be
6402   // a power of two. We want power of two interleave count to simplify any
6403   // addressing operations or alignment considerations.
6404   // We also want power of two interleave counts to ensure that the induction
6405   // variable of the vector loop wraps to zero, when tail is folded by masking;
6406   // this currently happens when OptForSize, in which case IC is set to 1 above.
6407   unsigned IC = UINT_MAX;
6408 
6409   for (auto& pair : R.MaxLocalUsers) {
6410     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6411     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6412                       << " registers of "
6413                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6414     if (VF.isScalar()) {
6415       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6416         TargetNumRegisters = ForceTargetNumScalarRegs;
6417     } else {
6418       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6419         TargetNumRegisters = ForceTargetNumVectorRegs;
6420     }
6421     unsigned MaxLocalUsers = pair.second;
6422     unsigned LoopInvariantRegs = 0;
6423     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6424       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6425 
6426     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6427     // Don't count the induction variable as interleaved.
6428     if (EnableIndVarRegisterHeur) {
6429       TmpIC =
6430           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6431                         std::max(1U, (MaxLocalUsers - 1)));
6432     }
6433 
6434     IC = std::min(IC, TmpIC);
6435   }
6436 
6437   // Clamp the interleave ranges to reasonable counts.
6438   unsigned MaxInterleaveCount =
6439       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6440 
6441   // Check if the user has overridden the max.
6442   if (VF.isScalar()) {
6443     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6444       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6445   } else {
6446     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6447       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6448   }
6449 
6450   // If trip count is known or estimated compile time constant, limit the
6451   // interleave count to be less than the trip count divided by VF, provided it
6452   // is at least 1.
6453   //
6454   // For scalable vectors we can't know if interleaving is beneficial. It may
6455   // not be beneficial for small loops if none of the lanes in the second vector
6456   // iterations is enabled. However, for larger loops, there is likely to be a
6457   // similar benefit as for fixed-width vectors. For now, we choose to leave
6458   // the InterleaveCount as if vscale is '1', although if some information about
6459   // the vector is known (e.g. min vector size), we can make a better decision.
6460   if (BestKnownTC) {
6461     MaxInterleaveCount =
6462         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6463     // Make sure MaxInterleaveCount is greater than 0.
6464     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6465   }
6466 
6467   assert(MaxInterleaveCount > 0 &&
6468          "Maximum interleave count must be greater than 0");
6469 
6470   // Clamp the calculated IC to be between the 1 and the max interleave count
6471   // that the target and trip count allows.
6472   if (IC > MaxInterleaveCount)
6473     IC = MaxInterleaveCount;
6474   else
6475     // Make sure IC is greater than 0.
6476     IC = std::max(1u, IC);
6477 
6478   assert(IC > 0 && "Interleave count must be greater than 0.");
6479 
6480   // If we did not calculate the cost for VF (because the user selected the VF)
6481   // then we calculate the cost of VF here.
6482   if (LoopCost == 0) {
6483     InstructionCost C = expectedCost(VF).first;
6484     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6485     LoopCost = *C.getValue();
6486   }
6487 
6488   assert(LoopCost && "Non-zero loop cost expected");
6489 
6490   // Interleave if we vectorized this loop and there is a reduction that could
6491   // benefit from interleaving.
6492   if (VF.isVector() && HasReductions) {
6493     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6494     return IC;
6495   }
6496 
6497   // Note that if we've already vectorized the loop we will have done the
6498   // runtime check and so interleaving won't require further checks.
6499   bool InterleavingRequiresRuntimePointerCheck =
6500       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6501 
6502   // We want to interleave small loops in order to reduce the loop overhead and
6503   // potentially expose ILP opportunities.
6504   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6505                     << "LV: IC is " << IC << '\n'
6506                     << "LV: VF is " << VF << '\n');
6507   const bool AggressivelyInterleaveReductions =
6508       TTI.enableAggressiveInterleaving(HasReductions);
6509   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6510     // We assume that the cost overhead is 1 and we use the cost model
6511     // to estimate the cost of the loop and interleave until the cost of the
6512     // loop overhead is about 5% of the cost of the loop.
6513     unsigned SmallIC =
6514         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6515 
6516     // Interleave until store/load ports (estimated by max interleave count) are
6517     // saturated.
6518     unsigned NumStores = Legal->getNumStores();
6519     unsigned NumLoads = Legal->getNumLoads();
6520     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6521     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6522 
6523     // If we have a scalar reduction (vector reductions are already dealt with
6524     // by this point), we can increase the critical path length if the loop
6525     // we're interleaving is inside another loop. For tree-wise reductions
6526     // set the limit to 2, and for ordered reductions it's best to disable
6527     // interleaving entirely.
6528     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6529       bool HasOrderedReductions =
6530           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6531             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6532             return RdxDesc.isOrdered();
6533           });
6534       if (HasOrderedReductions) {
6535         LLVM_DEBUG(
6536             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6537         return 1;
6538       }
6539 
6540       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6541       SmallIC = std::min(SmallIC, F);
6542       StoresIC = std::min(StoresIC, F);
6543       LoadsIC = std::min(LoadsIC, F);
6544     }
6545 
6546     if (EnableLoadStoreRuntimeInterleave &&
6547         std::max(StoresIC, LoadsIC) > SmallIC) {
6548       LLVM_DEBUG(
6549           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6550       return std::max(StoresIC, LoadsIC);
6551     }
6552 
6553     // If there are scalar reductions and TTI has enabled aggressive
6554     // interleaving for reductions, we will interleave to expose ILP.
6555     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6556         AggressivelyInterleaveReductions) {
6557       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6558       // Interleave no less than SmallIC but not as aggressive as the normal IC
6559       // to satisfy the rare situation when resources are too limited.
6560       return std::max(IC / 2, SmallIC);
6561     } else {
6562       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6563       return SmallIC;
6564     }
6565   }
6566 
6567   // Interleave if this is a large loop (small loops are already dealt with by
6568   // this point) that could benefit from interleaving.
6569   if (AggressivelyInterleaveReductions) {
6570     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6571     return IC;
6572   }
6573 
6574   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6575   return 1;
6576 }
6577 
6578 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6579 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6580   // This function calculates the register usage by measuring the highest number
6581   // of values that are alive at a single location. Obviously, this is a very
6582   // rough estimation. We scan the loop in a topological order in order and
6583   // assign a number to each instruction. We use RPO to ensure that defs are
6584   // met before their users. We assume that each instruction that has in-loop
6585   // users starts an interval. We record every time that an in-loop value is
6586   // used, so we have a list of the first and last occurrences of each
6587   // instruction. Next, we transpose this data structure into a multi map that
6588   // holds the list of intervals that *end* at a specific location. This multi
6589   // map allows us to perform a linear search. We scan the instructions linearly
6590   // and record each time that a new interval starts, by placing it in a set.
6591   // If we find this value in the multi-map then we remove it from the set.
6592   // The max register usage is the maximum size of the set.
6593   // We also search for instructions that are defined outside the loop, but are
6594   // used inside the loop. We need this number separately from the max-interval
6595   // usage number because when we unroll, loop-invariant values do not take
6596   // more register.
6597   LoopBlocksDFS DFS(TheLoop);
6598   DFS.perform(LI);
6599 
6600   RegisterUsage RU;
6601 
6602   // Each 'key' in the map opens a new interval. The values
6603   // of the map are the index of the 'last seen' usage of the
6604   // instruction that is the key.
6605   using IntervalMap = DenseMap<Instruction *, unsigned>;
6606 
6607   // Maps instruction to its index.
6608   SmallVector<Instruction *, 64> IdxToInstr;
6609   // Marks the end of each interval.
6610   IntervalMap EndPoint;
6611   // Saves the list of instruction indices that are used in the loop.
6612   SmallPtrSet<Instruction *, 8> Ends;
6613   // Saves the list of values that are used in the loop but are
6614   // defined outside the loop, such as arguments and constants.
6615   SmallPtrSet<Value *, 8> LoopInvariants;
6616 
6617   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6618     for (Instruction &I : BB->instructionsWithoutDebug()) {
6619       IdxToInstr.push_back(&I);
6620 
6621       // Save the end location of each USE.
6622       for (Value *U : I.operands()) {
6623         auto *Instr = dyn_cast<Instruction>(U);
6624 
6625         // Ignore non-instruction values such as arguments, constants, etc.
6626         if (!Instr)
6627           continue;
6628 
6629         // If this instruction is outside the loop then record it and continue.
6630         if (!TheLoop->contains(Instr)) {
6631           LoopInvariants.insert(Instr);
6632           continue;
6633         }
6634 
6635         // Overwrite previous end points.
6636         EndPoint[Instr] = IdxToInstr.size();
6637         Ends.insert(Instr);
6638       }
6639     }
6640   }
6641 
6642   // Saves the list of intervals that end with the index in 'key'.
6643   using InstrList = SmallVector<Instruction *, 2>;
6644   DenseMap<unsigned, InstrList> TransposeEnds;
6645 
6646   // Transpose the EndPoints to a list of values that end at each index.
6647   for (auto &Interval : EndPoint)
6648     TransposeEnds[Interval.second].push_back(Interval.first);
6649 
6650   SmallPtrSet<Instruction *, 8> OpenIntervals;
6651   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6652   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6653 
6654   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6655 
6656   // A lambda that gets the register usage for the given type and VF.
6657   const auto &TTICapture = TTI;
6658   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6659     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6660       return 0;
6661     InstructionCost::CostType RegUsage =
6662         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6663     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6664            "Nonsensical values for register usage.");
6665     return RegUsage;
6666   };
6667 
6668   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6669     Instruction *I = IdxToInstr[i];
6670 
6671     // Remove all of the instructions that end at this location.
6672     InstrList &List = TransposeEnds[i];
6673     for (Instruction *ToRemove : List)
6674       OpenIntervals.erase(ToRemove);
6675 
6676     // Ignore instructions that are never used within the loop.
6677     if (!Ends.count(I))
6678       continue;
6679 
6680     // Skip ignored values.
6681     if (ValuesToIgnore.count(I))
6682       continue;
6683 
6684     // For each VF find the maximum usage of registers.
6685     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6686       // Count the number of live intervals.
6687       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6688 
6689       if (VFs[j].isScalar()) {
6690         for (auto Inst : OpenIntervals) {
6691           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6692           if (RegUsage.find(ClassID) == RegUsage.end())
6693             RegUsage[ClassID] = 1;
6694           else
6695             RegUsage[ClassID] += 1;
6696         }
6697       } else {
6698         collectUniformsAndScalars(VFs[j]);
6699         for (auto Inst : OpenIntervals) {
6700           // Skip ignored values for VF > 1.
6701           if (VecValuesToIgnore.count(Inst))
6702             continue;
6703           if (isScalarAfterVectorization(Inst, VFs[j])) {
6704             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6705             if (RegUsage.find(ClassID) == RegUsage.end())
6706               RegUsage[ClassID] = 1;
6707             else
6708               RegUsage[ClassID] += 1;
6709           } else {
6710             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6711             if (RegUsage.find(ClassID) == RegUsage.end())
6712               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6713             else
6714               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6715           }
6716         }
6717       }
6718 
6719       for (auto& pair : RegUsage) {
6720         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6721           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6722         else
6723           MaxUsages[j][pair.first] = pair.second;
6724       }
6725     }
6726 
6727     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6728                       << OpenIntervals.size() << '\n');
6729 
6730     // Add the current instruction to the list of open intervals.
6731     OpenIntervals.insert(I);
6732   }
6733 
6734   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6735     SmallMapVector<unsigned, unsigned, 4> Invariant;
6736 
6737     for (auto Inst : LoopInvariants) {
6738       unsigned Usage =
6739           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6740       unsigned ClassID =
6741           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6742       if (Invariant.find(ClassID) == Invariant.end())
6743         Invariant[ClassID] = Usage;
6744       else
6745         Invariant[ClassID] += Usage;
6746     }
6747 
6748     LLVM_DEBUG({
6749       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6750       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6751              << " item\n";
6752       for (const auto &pair : MaxUsages[i]) {
6753         dbgs() << "LV(REG): RegisterClass: "
6754                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6755                << " registers\n";
6756       }
6757       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6758              << " item\n";
6759       for (const auto &pair : Invariant) {
6760         dbgs() << "LV(REG): RegisterClass: "
6761                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6762                << " registers\n";
6763       }
6764     });
6765 
6766     RU.LoopInvariantRegs = Invariant;
6767     RU.MaxLocalUsers = MaxUsages[i];
6768     RUs[i] = RU;
6769   }
6770 
6771   return RUs;
6772 }
6773 
6774 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6775   // TODO: Cost model for emulated masked load/store is completely
6776   // broken. This hack guides the cost model to use an artificially
6777   // high enough value to practically disable vectorization with such
6778   // operations, except where previously deployed legality hack allowed
6779   // using very low cost values. This is to avoid regressions coming simply
6780   // from moving "masked load/store" check from legality to cost model.
6781   // Masked Load/Gather emulation was previously never allowed.
6782   // Limited number of Masked Store/Scatter emulation was allowed.
6783   assert(isPredicatedInst(I) &&
6784          "Expecting a scalar emulated instruction");
6785   return isa<LoadInst>(I) ||
6786          (isa<StoreInst>(I) &&
6787           NumPredStores > NumberOfStoresToPredicate);
6788 }
6789 
6790 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6791   // If we aren't vectorizing the loop, or if we've already collected the
6792   // instructions to scalarize, there's nothing to do. Collection may already
6793   // have occurred if we have a user-selected VF and are now computing the
6794   // expected cost for interleaving.
6795   if (VF.isScalar() || VF.isZero() ||
6796       InstsToScalarize.find(VF) != InstsToScalarize.end())
6797     return;
6798 
6799   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6800   // not profitable to scalarize any instructions, the presence of VF in the
6801   // map will indicate that we've analyzed it already.
6802   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6803 
6804   // Find all the instructions that are scalar with predication in the loop and
6805   // determine if it would be better to not if-convert the blocks they are in.
6806   // If so, we also record the instructions to scalarize.
6807   for (BasicBlock *BB : TheLoop->blocks()) {
6808     if (!blockNeedsPredication(BB))
6809       continue;
6810     for (Instruction &I : *BB)
6811       if (isScalarWithPredication(&I)) {
6812         ScalarCostsTy ScalarCosts;
6813         // Do not apply discount if scalable, because that would lead to
6814         // invalid scalarization costs.
6815         // Do not apply discount logic if hacked cost is needed
6816         // for emulated masked memrefs.
6817         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6818             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6819           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6820         // Remember that BB will remain after vectorization.
6821         PredicatedBBsAfterVectorization.insert(BB);
6822       }
6823   }
6824 }
6825 
6826 int LoopVectorizationCostModel::computePredInstDiscount(
6827     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6828   assert(!isUniformAfterVectorization(PredInst, VF) &&
6829          "Instruction marked uniform-after-vectorization will be predicated");
6830 
6831   // Initialize the discount to zero, meaning that the scalar version and the
6832   // vector version cost the same.
6833   InstructionCost Discount = 0;
6834 
6835   // Holds instructions to analyze. The instructions we visit are mapped in
6836   // ScalarCosts. Those instructions are the ones that would be scalarized if
6837   // we find that the scalar version costs less.
6838   SmallVector<Instruction *, 8> Worklist;
6839 
6840   // Returns true if the given instruction can be scalarized.
6841   auto canBeScalarized = [&](Instruction *I) -> bool {
6842     // We only attempt to scalarize instructions forming a single-use chain
6843     // from the original predicated block that would otherwise be vectorized.
6844     // Although not strictly necessary, we give up on instructions we know will
6845     // already be scalar to avoid traversing chains that are unlikely to be
6846     // beneficial.
6847     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6848         isScalarAfterVectorization(I, VF))
6849       return false;
6850 
6851     // If the instruction is scalar with predication, it will be analyzed
6852     // separately. We ignore it within the context of PredInst.
6853     if (isScalarWithPredication(I))
6854       return false;
6855 
6856     // If any of the instruction's operands are uniform after vectorization,
6857     // the instruction cannot be scalarized. This prevents, for example, a
6858     // masked load from being scalarized.
6859     //
6860     // We assume we will only emit a value for lane zero of an instruction
6861     // marked uniform after vectorization, rather than VF identical values.
6862     // Thus, if we scalarize an instruction that uses a uniform, we would
6863     // create uses of values corresponding to the lanes we aren't emitting code
6864     // for. This behavior can be changed by allowing getScalarValue to clone
6865     // the lane zero values for uniforms rather than asserting.
6866     for (Use &U : I->operands())
6867       if (auto *J = dyn_cast<Instruction>(U.get()))
6868         if (isUniformAfterVectorization(J, VF))
6869           return false;
6870 
6871     // Otherwise, we can scalarize the instruction.
6872     return true;
6873   };
6874 
6875   // Compute the expected cost discount from scalarizing the entire expression
6876   // feeding the predicated instruction. We currently only consider expressions
6877   // that are single-use instruction chains.
6878   Worklist.push_back(PredInst);
6879   while (!Worklist.empty()) {
6880     Instruction *I = Worklist.pop_back_val();
6881 
6882     // If we've already analyzed the instruction, there's nothing to do.
6883     if (ScalarCosts.find(I) != ScalarCosts.end())
6884       continue;
6885 
6886     // Compute the cost of the vector instruction. Note that this cost already
6887     // includes the scalarization overhead of the predicated instruction.
6888     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6889 
6890     // Compute the cost of the scalarized instruction. This cost is the cost of
6891     // the instruction as if it wasn't if-converted and instead remained in the
6892     // predicated block. We will scale this cost by block probability after
6893     // computing the scalarization overhead.
6894     InstructionCost ScalarCost =
6895         VF.getFixedValue() *
6896         getInstructionCost(I, ElementCount::getFixed(1)).first;
6897 
6898     // Compute the scalarization overhead of needed insertelement instructions
6899     // and phi nodes.
6900     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6901       ScalarCost += TTI.getScalarizationOverhead(
6902           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6903           APInt::getAllOnes(VF.getFixedValue()), true, false);
6904       ScalarCost +=
6905           VF.getFixedValue() *
6906           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6907     }
6908 
6909     // Compute the scalarization overhead of needed extractelement
6910     // instructions. For each of the instruction's operands, if the operand can
6911     // be scalarized, add it to the worklist; otherwise, account for the
6912     // overhead.
6913     for (Use &U : I->operands())
6914       if (auto *J = dyn_cast<Instruction>(U.get())) {
6915         assert(VectorType::isValidElementType(J->getType()) &&
6916                "Instruction has non-scalar type");
6917         if (canBeScalarized(J))
6918           Worklist.push_back(J);
6919         else if (needsExtract(J, VF)) {
6920           ScalarCost += TTI.getScalarizationOverhead(
6921               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6922               APInt::getAllOnes(VF.getFixedValue()), false, true);
6923         }
6924       }
6925 
6926     // Scale the total scalar cost by block probability.
6927     ScalarCost /= getReciprocalPredBlockProb();
6928 
6929     // Compute the discount. A non-negative discount means the vector version
6930     // of the instruction costs more, and scalarizing would be beneficial.
6931     Discount += VectorCost - ScalarCost;
6932     ScalarCosts[I] = ScalarCost;
6933   }
6934 
6935   return *Discount.getValue();
6936 }
6937 
6938 LoopVectorizationCostModel::VectorizationCostTy
6939 LoopVectorizationCostModel::expectedCost(
6940     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6941   VectorizationCostTy Cost;
6942 
6943   // For each block.
6944   for (BasicBlock *BB : TheLoop->blocks()) {
6945     VectorizationCostTy BlockCost;
6946 
6947     // For each instruction in the old loop.
6948     for (Instruction &I : BB->instructionsWithoutDebug()) {
6949       // Skip ignored values.
6950       if (ValuesToIgnore.count(&I) ||
6951           (VF.isVector() && VecValuesToIgnore.count(&I)))
6952         continue;
6953 
6954       VectorizationCostTy C = getInstructionCost(&I, VF);
6955 
6956       // Check if we should override the cost.
6957       if (C.first.isValid() &&
6958           ForceTargetInstructionCost.getNumOccurrences() > 0)
6959         C.first = InstructionCost(ForceTargetInstructionCost);
6960 
6961       // Keep a list of instructions with invalid costs.
6962       if (Invalid && !C.first.isValid())
6963         Invalid->emplace_back(&I, VF);
6964 
6965       BlockCost.first += C.first;
6966       BlockCost.second |= C.second;
6967       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6968                         << " for VF " << VF << " For instruction: " << I
6969                         << '\n');
6970     }
6971 
6972     // If we are vectorizing a predicated block, it will have been
6973     // if-converted. This means that the block's instructions (aside from
6974     // stores and instructions that may divide by zero) will now be
6975     // unconditionally executed. For the scalar case, we may not always execute
6976     // the predicated block, if it is an if-else block. Thus, scale the block's
6977     // cost by the probability of executing it. blockNeedsPredication from
6978     // Legal is used so as to not include all blocks in tail folded loops.
6979     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6980       BlockCost.first /= getReciprocalPredBlockProb();
6981 
6982     Cost.first += BlockCost.first;
6983     Cost.second |= BlockCost.second;
6984   }
6985 
6986   return Cost;
6987 }
6988 
6989 /// Gets Address Access SCEV after verifying that the access pattern
6990 /// is loop invariant except the induction variable dependence.
6991 ///
6992 /// This SCEV can be sent to the Target in order to estimate the address
6993 /// calculation cost.
6994 static const SCEV *getAddressAccessSCEV(
6995               Value *Ptr,
6996               LoopVectorizationLegality *Legal,
6997               PredicatedScalarEvolution &PSE,
6998               const Loop *TheLoop) {
6999 
7000   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
7001   if (!Gep)
7002     return nullptr;
7003 
7004   // We are looking for a gep with all loop invariant indices except for one
7005   // which should be an induction variable.
7006   auto SE = PSE.getSE();
7007   unsigned NumOperands = Gep->getNumOperands();
7008   for (unsigned i = 1; i < NumOperands; ++i) {
7009     Value *Opd = Gep->getOperand(i);
7010     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7011         !Legal->isInductionVariable(Opd))
7012       return nullptr;
7013   }
7014 
7015   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7016   return PSE.getSCEV(Ptr);
7017 }
7018 
7019 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7020   return Legal->hasStride(I->getOperand(0)) ||
7021          Legal->hasStride(I->getOperand(1));
7022 }
7023 
7024 InstructionCost
7025 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7026                                                         ElementCount VF) {
7027   assert(VF.isVector() &&
7028          "Scalarization cost of instruction implies vectorization.");
7029   if (VF.isScalable())
7030     return InstructionCost::getInvalid();
7031 
7032   Type *ValTy = getLoadStoreType(I);
7033   auto SE = PSE.getSE();
7034 
7035   unsigned AS = getLoadStoreAddressSpace(I);
7036   Value *Ptr = getLoadStorePointerOperand(I);
7037   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7038 
7039   // Figure out whether the access is strided and get the stride value
7040   // if it's known in compile time
7041   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7042 
7043   // Get the cost of the scalar memory instruction and address computation.
7044   InstructionCost Cost =
7045       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7046 
7047   // Don't pass *I here, since it is scalar but will actually be part of a
7048   // vectorized loop where the user of it is a vectorized instruction.
7049   const Align Alignment = getLoadStoreAlignment(I);
7050   Cost += VF.getKnownMinValue() *
7051           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7052                               AS, TTI::TCK_RecipThroughput);
7053 
7054   // Get the overhead of the extractelement and insertelement instructions
7055   // we might create due to scalarization.
7056   Cost += getScalarizationOverhead(I, VF);
7057 
7058   // If we have a predicated load/store, it will need extra i1 extracts and
7059   // conditional branches, but may not be executed for each vector lane. Scale
7060   // the cost by the probability of executing the predicated block.
7061   if (isPredicatedInst(I)) {
7062     Cost /= getReciprocalPredBlockProb();
7063 
7064     // Add the cost of an i1 extract and a branch
7065     auto *Vec_i1Ty =
7066         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7067     Cost += TTI.getScalarizationOverhead(
7068         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7069         /*Insert=*/false, /*Extract=*/true);
7070     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7071 
7072     if (useEmulatedMaskMemRefHack(I))
7073       // Artificially setting to a high enough value to practically disable
7074       // vectorization with such operations.
7075       Cost = 3000000;
7076   }
7077 
7078   return Cost;
7079 }
7080 
7081 InstructionCost
7082 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7083                                                     ElementCount VF) {
7084   Type *ValTy = getLoadStoreType(I);
7085   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7086   Value *Ptr = getLoadStorePointerOperand(I);
7087   unsigned AS = getLoadStoreAddressSpace(I);
7088   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
7089   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7090 
7091   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7092          "Stride should be 1 or -1 for consecutive memory access");
7093   const Align Alignment = getLoadStoreAlignment(I);
7094   InstructionCost Cost = 0;
7095   if (Legal->isMaskRequired(I))
7096     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7097                                       CostKind);
7098   else
7099     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7100                                 CostKind, I);
7101 
7102   bool Reverse = ConsecutiveStride < 0;
7103   if (Reverse)
7104     Cost +=
7105         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7106   return Cost;
7107 }
7108 
7109 InstructionCost
7110 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7111                                                 ElementCount VF) {
7112   assert(Legal->isUniformMemOp(*I));
7113 
7114   Type *ValTy = getLoadStoreType(I);
7115   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7116   const Align Alignment = getLoadStoreAlignment(I);
7117   unsigned AS = getLoadStoreAddressSpace(I);
7118   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7119   if (isa<LoadInst>(I)) {
7120     return TTI.getAddressComputationCost(ValTy) +
7121            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7122                                CostKind) +
7123            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7124   }
7125   StoreInst *SI = cast<StoreInst>(I);
7126 
7127   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7128   return TTI.getAddressComputationCost(ValTy) +
7129          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7130                              CostKind) +
7131          (isLoopInvariantStoreValue
7132               ? 0
7133               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7134                                        VF.getKnownMinValue() - 1));
7135 }
7136 
7137 InstructionCost
7138 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7139                                                  ElementCount VF) {
7140   Type *ValTy = getLoadStoreType(I);
7141   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7142   const Align Alignment = getLoadStoreAlignment(I);
7143   const Value *Ptr = getLoadStorePointerOperand(I);
7144 
7145   return TTI.getAddressComputationCost(VectorTy) +
7146          TTI.getGatherScatterOpCost(
7147              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7148              TargetTransformInfo::TCK_RecipThroughput, I);
7149 }
7150 
7151 InstructionCost
7152 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7153                                                    ElementCount VF) {
7154   // TODO: Once we have support for interleaving with scalable vectors
7155   // we can calculate the cost properly here.
7156   if (VF.isScalable())
7157     return InstructionCost::getInvalid();
7158 
7159   Type *ValTy = getLoadStoreType(I);
7160   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7161   unsigned AS = getLoadStoreAddressSpace(I);
7162 
7163   auto Group = getInterleavedAccessGroup(I);
7164   assert(Group && "Fail to get an interleaved access group.");
7165 
7166   unsigned InterleaveFactor = Group->getFactor();
7167   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7168 
7169   // Holds the indices of existing members in the interleaved group.
7170   SmallVector<unsigned, 4> Indices;
7171   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7172     if (Group->getMember(IF))
7173       Indices.push_back(IF);
7174 
7175   // Calculate the cost of the whole interleaved group.
7176   bool UseMaskForGaps =
7177       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7178       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7179   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7180       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7181       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7182 
7183   if (Group->isReverse()) {
7184     // TODO: Add support for reversed masked interleaved access.
7185     assert(!Legal->isMaskRequired(I) &&
7186            "Reverse masked interleaved access not supported.");
7187     Cost +=
7188         Group->getNumMembers() *
7189         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7190   }
7191   return Cost;
7192 }
7193 
7194 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7195     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7196   using namespace llvm::PatternMatch;
7197   // Early exit for no inloop reductions
7198   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7199     return None;
7200   auto *VectorTy = cast<VectorType>(Ty);
7201 
7202   // We are looking for a pattern of, and finding the minimal acceptable cost:
7203   //  reduce(mul(ext(A), ext(B))) or
7204   //  reduce(mul(A, B)) or
7205   //  reduce(ext(A)) or
7206   //  reduce(A).
7207   // The basic idea is that we walk down the tree to do that, finding the root
7208   // reduction instruction in InLoopReductionImmediateChains. From there we find
7209   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7210   // of the components. If the reduction cost is lower then we return it for the
7211   // reduction instruction and 0 for the other instructions in the pattern. If
7212   // it is not we return an invalid cost specifying the orignal cost method
7213   // should be used.
7214   Instruction *RetI = I;
7215   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7216     if (!RetI->hasOneUser())
7217       return None;
7218     RetI = RetI->user_back();
7219   }
7220   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7221       RetI->user_back()->getOpcode() == Instruction::Add) {
7222     if (!RetI->hasOneUser())
7223       return None;
7224     RetI = RetI->user_back();
7225   }
7226 
7227   // Test if the found instruction is a reduction, and if not return an invalid
7228   // cost specifying the parent to use the original cost modelling.
7229   if (!InLoopReductionImmediateChains.count(RetI))
7230     return None;
7231 
7232   // Find the reduction this chain is a part of and calculate the basic cost of
7233   // the reduction on its own.
7234   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7235   Instruction *ReductionPhi = LastChain;
7236   while (!isa<PHINode>(ReductionPhi))
7237     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7238 
7239   const RecurrenceDescriptor &RdxDesc =
7240       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7241 
7242   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7243       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7244 
7245   // If we're using ordered reductions then we can just return the base cost
7246   // here, since getArithmeticReductionCost calculates the full ordered
7247   // reduction cost when FP reassociation is not allowed.
7248   if (useOrderedReductions(RdxDesc))
7249     return BaseCost;
7250 
7251   // Get the operand that was not the reduction chain and match it to one of the
7252   // patterns, returning the better cost if it is found.
7253   Instruction *RedOp = RetI->getOperand(1) == LastChain
7254                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7255                            : dyn_cast<Instruction>(RetI->getOperand(1));
7256 
7257   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7258 
7259   Instruction *Op0, *Op1;
7260   if (RedOp &&
7261       match(RedOp,
7262             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7263       match(Op0, m_ZExtOrSExt(m_Value())) &&
7264       Op0->getOpcode() == Op1->getOpcode() &&
7265       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7266       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7267       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7268 
7269     // Matched reduce(ext(mul(ext(A), ext(B)))
7270     // Note that the extend opcodes need to all match, or if A==B they will have
7271     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7272     // which is equally fine.
7273     bool IsUnsigned = isa<ZExtInst>(Op0);
7274     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7275     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7276 
7277     InstructionCost ExtCost =
7278         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7279                              TTI::CastContextHint::None, CostKind, Op0);
7280     InstructionCost MulCost =
7281         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7282     InstructionCost Ext2Cost =
7283         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7284                              TTI::CastContextHint::None, CostKind, RedOp);
7285 
7286     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7287         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7288         CostKind);
7289 
7290     if (RedCost.isValid() &&
7291         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7292       return I == RetI ? RedCost : 0;
7293   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7294              !TheLoop->isLoopInvariant(RedOp)) {
7295     // Matched reduce(ext(A))
7296     bool IsUnsigned = isa<ZExtInst>(RedOp);
7297     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7298     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7299         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7300         CostKind);
7301 
7302     InstructionCost ExtCost =
7303         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7304                              TTI::CastContextHint::None, CostKind, RedOp);
7305     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7306       return I == RetI ? RedCost : 0;
7307   } else if (RedOp &&
7308              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7309     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7310         Op0->getOpcode() == Op1->getOpcode() &&
7311         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7312         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7313       bool IsUnsigned = isa<ZExtInst>(Op0);
7314       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7315       // Matched reduce(mul(ext, ext))
7316       InstructionCost ExtCost =
7317           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7318                                TTI::CastContextHint::None, CostKind, Op0);
7319       InstructionCost MulCost =
7320           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7321 
7322       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7323           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7324           CostKind);
7325 
7326       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7327         return I == RetI ? RedCost : 0;
7328     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7329       // Matched reduce(mul())
7330       InstructionCost MulCost =
7331           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7332 
7333       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7334           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7335           CostKind);
7336 
7337       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7338         return I == RetI ? RedCost : 0;
7339     }
7340   }
7341 
7342   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7343 }
7344 
7345 InstructionCost
7346 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7347                                                      ElementCount VF) {
7348   // Calculate scalar cost only. Vectorization cost should be ready at this
7349   // moment.
7350   if (VF.isScalar()) {
7351     Type *ValTy = getLoadStoreType(I);
7352     const Align Alignment = getLoadStoreAlignment(I);
7353     unsigned AS = getLoadStoreAddressSpace(I);
7354 
7355     return TTI.getAddressComputationCost(ValTy) +
7356            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7357                                TTI::TCK_RecipThroughput, I);
7358   }
7359   return getWideningCost(I, VF);
7360 }
7361 
7362 LoopVectorizationCostModel::VectorizationCostTy
7363 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7364                                                ElementCount VF) {
7365   // If we know that this instruction will remain uniform, check the cost of
7366   // the scalar version.
7367   if (isUniformAfterVectorization(I, VF))
7368     VF = ElementCount::getFixed(1);
7369 
7370   if (VF.isVector() && isProfitableToScalarize(I, VF))
7371     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7372 
7373   // Forced scalars do not have any scalarization overhead.
7374   auto ForcedScalar = ForcedScalars.find(VF);
7375   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7376     auto InstSet = ForcedScalar->second;
7377     if (InstSet.count(I))
7378       return VectorizationCostTy(
7379           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7380            VF.getKnownMinValue()),
7381           false);
7382   }
7383 
7384   Type *VectorTy;
7385   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7386 
7387   bool TypeNotScalarized =
7388       VF.isVector() && VectorTy->isVectorTy() &&
7389       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7390   return VectorizationCostTy(C, TypeNotScalarized);
7391 }
7392 
7393 InstructionCost
7394 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7395                                                      ElementCount VF) const {
7396 
7397   // There is no mechanism yet to create a scalable scalarization loop,
7398   // so this is currently Invalid.
7399   if (VF.isScalable())
7400     return InstructionCost::getInvalid();
7401 
7402   if (VF.isScalar())
7403     return 0;
7404 
7405   InstructionCost Cost = 0;
7406   Type *RetTy = ToVectorTy(I->getType(), VF);
7407   if (!RetTy->isVoidTy() &&
7408       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7409     Cost += TTI.getScalarizationOverhead(
7410         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7411         false);
7412 
7413   // Some targets keep addresses scalar.
7414   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7415     return Cost;
7416 
7417   // Some targets support efficient element stores.
7418   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7419     return Cost;
7420 
7421   // Collect operands to consider.
7422   CallInst *CI = dyn_cast<CallInst>(I);
7423   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7424 
7425   // Skip operands that do not require extraction/scalarization and do not incur
7426   // any overhead.
7427   SmallVector<Type *> Tys;
7428   for (auto *V : filterExtractingOperands(Ops, VF))
7429     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7430   return Cost + TTI.getOperandsScalarizationOverhead(
7431                     filterExtractingOperands(Ops, VF), Tys);
7432 }
7433 
7434 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7435   if (VF.isScalar())
7436     return;
7437   NumPredStores = 0;
7438   for (BasicBlock *BB : TheLoop->blocks()) {
7439     // For each instruction in the old loop.
7440     for (Instruction &I : *BB) {
7441       Value *Ptr =  getLoadStorePointerOperand(&I);
7442       if (!Ptr)
7443         continue;
7444 
7445       // TODO: We should generate better code and update the cost model for
7446       // predicated uniform stores. Today they are treated as any other
7447       // predicated store (see added test cases in
7448       // invariant-store-vectorization.ll).
7449       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7450         NumPredStores++;
7451 
7452       if (Legal->isUniformMemOp(I)) {
7453         // TODO: Avoid replicating loads and stores instead of
7454         // relying on instcombine to remove them.
7455         // Load: Scalar load + broadcast
7456         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7457         InstructionCost Cost;
7458         if (isa<StoreInst>(&I) && VF.isScalable() &&
7459             isLegalGatherOrScatter(&I)) {
7460           Cost = getGatherScatterCost(&I, VF);
7461           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7462         } else {
7463           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7464                  "Cannot yet scalarize uniform stores");
7465           Cost = getUniformMemOpCost(&I, VF);
7466           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7467         }
7468         continue;
7469       }
7470 
7471       // We assume that widening is the best solution when possible.
7472       if (memoryInstructionCanBeWidened(&I, VF)) {
7473         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7474         int ConsecutiveStride = Legal->isConsecutivePtr(
7475             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7476         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7477                "Expected consecutive stride.");
7478         InstWidening Decision =
7479             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7480         setWideningDecision(&I, VF, Decision, Cost);
7481         continue;
7482       }
7483 
7484       // Choose between Interleaving, Gather/Scatter or Scalarization.
7485       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7486       unsigned NumAccesses = 1;
7487       if (isAccessInterleaved(&I)) {
7488         auto Group = getInterleavedAccessGroup(&I);
7489         assert(Group && "Fail to get an interleaved access group.");
7490 
7491         // Make one decision for the whole group.
7492         if (getWideningDecision(&I, VF) != CM_Unknown)
7493           continue;
7494 
7495         NumAccesses = Group->getNumMembers();
7496         if (interleavedAccessCanBeWidened(&I, VF))
7497           InterleaveCost = getInterleaveGroupCost(&I, VF);
7498       }
7499 
7500       InstructionCost GatherScatterCost =
7501           isLegalGatherOrScatter(&I)
7502               ? getGatherScatterCost(&I, VF) * NumAccesses
7503               : InstructionCost::getInvalid();
7504 
7505       InstructionCost ScalarizationCost =
7506           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7507 
7508       // Choose better solution for the current VF,
7509       // write down this decision and use it during vectorization.
7510       InstructionCost Cost;
7511       InstWidening Decision;
7512       if (InterleaveCost <= GatherScatterCost &&
7513           InterleaveCost < ScalarizationCost) {
7514         Decision = CM_Interleave;
7515         Cost = InterleaveCost;
7516       } else if (GatherScatterCost < ScalarizationCost) {
7517         Decision = CM_GatherScatter;
7518         Cost = GatherScatterCost;
7519       } else {
7520         Decision = CM_Scalarize;
7521         Cost = ScalarizationCost;
7522       }
7523       // If the instructions belongs to an interleave group, the whole group
7524       // receives the same decision. The whole group receives the cost, but
7525       // the cost will actually be assigned to one instruction.
7526       if (auto Group = getInterleavedAccessGroup(&I))
7527         setWideningDecision(Group, VF, Decision, Cost);
7528       else
7529         setWideningDecision(&I, VF, Decision, Cost);
7530     }
7531   }
7532 
7533   // Make sure that any load of address and any other address computation
7534   // remains scalar unless there is gather/scatter support. This avoids
7535   // inevitable extracts into address registers, and also has the benefit of
7536   // activating LSR more, since that pass can't optimize vectorized
7537   // addresses.
7538   if (TTI.prefersVectorizedAddressing())
7539     return;
7540 
7541   // Start with all scalar pointer uses.
7542   SmallPtrSet<Instruction *, 8> AddrDefs;
7543   for (BasicBlock *BB : TheLoop->blocks())
7544     for (Instruction &I : *BB) {
7545       Instruction *PtrDef =
7546         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7547       if (PtrDef && TheLoop->contains(PtrDef) &&
7548           getWideningDecision(&I, VF) != CM_GatherScatter)
7549         AddrDefs.insert(PtrDef);
7550     }
7551 
7552   // Add all instructions used to generate the addresses.
7553   SmallVector<Instruction *, 4> Worklist;
7554   append_range(Worklist, AddrDefs);
7555   while (!Worklist.empty()) {
7556     Instruction *I = Worklist.pop_back_val();
7557     for (auto &Op : I->operands())
7558       if (auto *InstOp = dyn_cast<Instruction>(Op))
7559         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7560             AddrDefs.insert(InstOp).second)
7561           Worklist.push_back(InstOp);
7562   }
7563 
7564   for (auto *I : AddrDefs) {
7565     if (isa<LoadInst>(I)) {
7566       // Setting the desired widening decision should ideally be handled in
7567       // by cost functions, but since this involves the task of finding out
7568       // if the loaded register is involved in an address computation, it is
7569       // instead changed here when we know this is the case.
7570       InstWidening Decision = getWideningDecision(I, VF);
7571       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7572         // Scalarize a widened load of address.
7573         setWideningDecision(
7574             I, VF, CM_Scalarize,
7575             (VF.getKnownMinValue() *
7576              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7577       else if (auto Group = getInterleavedAccessGroup(I)) {
7578         // Scalarize an interleave group of address loads.
7579         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7580           if (Instruction *Member = Group->getMember(I))
7581             setWideningDecision(
7582                 Member, VF, CM_Scalarize,
7583                 (VF.getKnownMinValue() *
7584                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7585         }
7586       }
7587     } else
7588       // Make sure I gets scalarized and a cost estimate without
7589       // scalarization overhead.
7590       ForcedScalars[VF].insert(I);
7591   }
7592 }
7593 
7594 InstructionCost
7595 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7596                                                Type *&VectorTy) {
7597   Type *RetTy = I->getType();
7598   if (canTruncateToMinimalBitwidth(I, VF))
7599     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7600   auto SE = PSE.getSE();
7601   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7602 
7603   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7604                                                 ElementCount VF) -> bool {
7605     if (VF.isScalar())
7606       return true;
7607 
7608     auto Scalarized = InstsToScalarize.find(VF);
7609     assert(Scalarized != InstsToScalarize.end() &&
7610            "VF not yet analyzed for scalarization profitability");
7611     return !Scalarized->second.count(I) &&
7612            llvm::all_of(I->users(), [&](User *U) {
7613              auto *UI = cast<Instruction>(U);
7614              return !Scalarized->second.count(UI);
7615            });
7616   };
7617   (void) hasSingleCopyAfterVectorization;
7618 
7619   if (isScalarAfterVectorization(I, VF)) {
7620     // With the exception of GEPs and PHIs, after scalarization there should
7621     // only be one copy of the instruction generated in the loop. This is
7622     // because the VF is either 1, or any instructions that need scalarizing
7623     // have already been dealt with by the the time we get here. As a result,
7624     // it means we don't have to multiply the instruction cost by VF.
7625     assert(I->getOpcode() == Instruction::GetElementPtr ||
7626            I->getOpcode() == Instruction::PHI ||
7627            (I->getOpcode() == Instruction::BitCast &&
7628             I->getType()->isPointerTy()) ||
7629            hasSingleCopyAfterVectorization(I, VF));
7630     VectorTy = RetTy;
7631   } else
7632     VectorTy = ToVectorTy(RetTy, VF);
7633 
7634   // TODO: We need to estimate the cost of intrinsic calls.
7635   switch (I->getOpcode()) {
7636   case Instruction::GetElementPtr:
7637     // We mark this instruction as zero-cost because the cost of GEPs in
7638     // vectorized code depends on whether the corresponding memory instruction
7639     // is scalarized or not. Therefore, we handle GEPs with the memory
7640     // instruction cost.
7641     return 0;
7642   case Instruction::Br: {
7643     // In cases of scalarized and predicated instructions, there will be VF
7644     // predicated blocks in the vectorized loop. Each branch around these
7645     // blocks requires also an extract of its vector compare i1 element.
7646     bool ScalarPredicatedBB = false;
7647     BranchInst *BI = cast<BranchInst>(I);
7648     if (VF.isVector() && BI->isConditional() &&
7649         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7650          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7651       ScalarPredicatedBB = true;
7652 
7653     if (ScalarPredicatedBB) {
7654       // Not possible to scalarize scalable vector with predicated instructions.
7655       if (VF.isScalable())
7656         return InstructionCost::getInvalid();
7657       // Return cost for branches around scalarized and predicated blocks.
7658       auto *Vec_i1Ty =
7659           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7660       return (
7661           TTI.getScalarizationOverhead(
7662               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7663           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7664     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7665       // The back-edge branch will remain, as will all scalar branches.
7666       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7667     else
7668       // This branch will be eliminated by if-conversion.
7669       return 0;
7670     // Note: We currently assume zero cost for an unconditional branch inside
7671     // a predicated block since it will become a fall-through, although we
7672     // may decide in the future to call TTI for all branches.
7673   }
7674   case Instruction::PHI: {
7675     auto *Phi = cast<PHINode>(I);
7676 
7677     // First-order recurrences are replaced by vector shuffles inside the loop.
7678     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7679     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7680       return TTI.getShuffleCost(
7681           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7682           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7683 
7684     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7685     // converted into select instructions. We require N - 1 selects per phi
7686     // node, where N is the number of incoming values.
7687     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7688       return (Phi->getNumIncomingValues() - 1) *
7689              TTI.getCmpSelInstrCost(
7690                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7691                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7692                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7693 
7694     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7695   }
7696   case Instruction::UDiv:
7697   case Instruction::SDiv:
7698   case Instruction::URem:
7699   case Instruction::SRem:
7700     // If we have a predicated instruction, it may not be executed for each
7701     // vector lane. Get the scalarization cost and scale this amount by the
7702     // probability of executing the predicated block. If the instruction is not
7703     // predicated, we fall through to the next case.
7704     if (VF.isVector() && isScalarWithPredication(I)) {
7705       InstructionCost Cost = 0;
7706 
7707       // These instructions have a non-void type, so account for the phi nodes
7708       // that we will create. This cost is likely to be zero. The phi node
7709       // cost, if any, should be scaled by the block probability because it
7710       // models a copy at the end of each predicated block.
7711       Cost += VF.getKnownMinValue() *
7712               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7713 
7714       // The cost of the non-predicated instruction.
7715       Cost += VF.getKnownMinValue() *
7716               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7717 
7718       // The cost of insertelement and extractelement instructions needed for
7719       // scalarization.
7720       Cost += getScalarizationOverhead(I, VF);
7721 
7722       // Scale the cost by the probability of executing the predicated blocks.
7723       // This assumes the predicated block for each vector lane is equally
7724       // likely.
7725       return Cost / getReciprocalPredBlockProb();
7726     }
7727     LLVM_FALLTHROUGH;
7728   case Instruction::Add:
7729   case Instruction::FAdd:
7730   case Instruction::Sub:
7731   case Instruction::FSub:
7732   case Instruction::Mul:
7733   case Instruction::FMul:
7734   case Instruction::FDiv:
7735   case Instruction::FRem:
7736   case Instruction::Shl:
7737   case Instruction::LShr:
7738   case Instruction::AShr:
7739   case Instruction::And:
7740   case Instruction::Or:
7741   case Instruction::Xor: {
7742     // Since we will replace the stride by 1 the multiplication should go away.
7743     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7744       return 0;
7745 
7746     // Detect reduction patterns
7747     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7748       return *RedCost;
7749 
7750     // Certain instructions can be cheaper to vectorize if they have a constant
7751     // second vector operand. One example of this are shifts on x86.
7752     Value *Op2 = I->getOperand(1);
7753     TargetTransformInfo::OperandValueProperties Op2VP;
7754     TargetTransformInfo::OperandValueKind Op2VK =
7755         TTI.getOperandInfo(Op2, Op2VP);
7756     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7757       Op2VK = TargetTransformInfo::OK_UniformValue;
7758 
7759     SmallVector<const Value *, 4> Operands(I->operand_values());
7760     return TTI.getArithmeticInstrCost(
7761         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7762         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7763   }
7764   case Instruction::FNeg: {
7765     return TTI.getArithmeticInstrCost(
7766         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7767         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7768         TargetTransformInfo::OP_None, I->getOperand(0), I);
7769   }
7770   case Instruction::Select: {
7771     SelectInst *SI = cast<SelectInst>(I);
7772     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7773     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7774 
7775     const Value *Op0, *Op1;
7776     using namespace llvm::PatternMatch;
7777     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7778                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7779       // select x, y, false --> x & y
7780       // select x, true, y --> x | y
7781       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7782       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7783       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7784       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7785       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7786               Op1->getType()->getScalarSizeInBits() == 1);
7787 
7788       SmallVector<const Value *, 2> Operands{Op0, Op1};
7789       return TTI.getArithmeticInstrCost(
7790           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7791           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7792     }
7793 
7794     Type *CondTy = SI->getCondition()->getType();
7795     if (!ScalarCond)
7796       CondTy = VectorType::get(CondTy, VF);
7797     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7798                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7799   }
7800   case Instruction::ICmp:
7801   case Instruction::FCmp: {
7802     Type *ValTy = I->getOperand(0)->getType();
7803     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7804     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7805       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7806     VectorTy = ToVectorTy(ValTy, VF);
7807     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7808                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7809   }
7810   case Instruction::Store:
7811   case Instruction::Load: {
7812     ElementCount Width = VF;
7813     if (Width.isVector()) {
7814       InstWidening Decision = getWideningDecision(I, Width);
7815       assert(Decision != CM_Unknown &&
7816              "CM decision should be taken at this point");
7817       if (Decision == CM_Scalarize)
7818         Width = ElementCount::getFixed(1);
7819     }
7820     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7821     return getMemoryInstructionCost(I, VF);
7822   }
7823   case Instruction::BitCast:
7824     if (I->getType()->isPointerTy())
7825       return 0;
7826     LLVM_FALLTHROUGH;
7827   case Instruction::ZExt:
7828   case Instruction::SExt:
7829   case Instruction::FPToUI:
7830   case Instruction::FPToSI:
7831   case Instruction::FPExt:
7832   case Instruction::PtrToInt:
7833   case Instruction::IntToPtr:
7834   case Instruction::SIToFP:
7835   case Instruction::UIToFP:
7836   case Instruction::Trunc:
7837   case Instruction::FPTrunc: {
7838     // Computes the CastContextHint from a Load/Store instruction.
7839     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7840       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7841              "Expected a load or a store!");
7842 
7843       if (VF.isScalar() || !TheLoop->contains(I))
7844         return TTI::CastContextHint::Normal;
7845 
7846       switch (getWideningDecision(I, VF)) {
7847       case LoopVectorizationCostModel::CM_GatherScatter:
7848         return TTI::CastContextHint::GatherScatter;
7849       case LoopVectorizationCostModel::CM_Interleave:
7850         return TTI::CastContextHint::Interleave;
7851       case LoopVectorizationCostModel::CM_Scalarize:
7852       case LoopVectorizationCostModel::CM_Widen:
7853         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7854                                         : TTI::CastContextHint::Normal;
7855       case LoopVectorizationCostModel::CM_Widen_Reverse:
7856         return TTI::CastContextHint::Reversed;
7857       case LoopVectorizationCostModel::CM_Unknown:
7858         llvm_unreachable("Instr did not go through cost modelling?");
7859       }
7860 
7861       llvm_unreachable("Unhandled case!");
7862     };
7863 
7864     unsigned Opcode = I->getOpcode();
7865     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7866     // For Trunc, the context is the only user, which must be a StoreInst.
7867     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7868       if (I->hasOneUse())
7869         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7870           CCH = ComputeCCH(Store);
7871     }
7872     // For Z/Sext, the context is the operand, which must be a LoadInst.
7873     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7874              Opcode == Instruction::FPExt) {
7875       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7876         CCH = ComputeCCH(Load);
7877     }
7878 
7879     // We optimize the truncation of induction variables having constant
7880     // integer steps. The cost of these truncations is the same as the scalar
7881     // operation.
7882     if (isOptimizableIVTruncate(I, VF)) {
7883       auto *Trunc = cast<TruncInst>(I);
7884       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7885                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7886     }
7887 
7888     // Detect reduction patterns
7889     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7890       return *RedCost;
7891 
7892     Type *SrcScalarTy = I->getOperand(0)->getType();
7893     Type *SrcVecTy =
7894         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7895     if (canTruncateToMinimalBitwidth(I, VF)) {
7896       // This cast is going to be shrunk. This may remove the cast or it might
7897       // turn it into slightly different cast. For example, if MinBW == 16,
7898       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7899       //
7900       // Calculate the modified src and dest types.
7901       Type *MinVecTy = VectorTy;
7902       if (Opcode == Instruction::Trunc) {
7903         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7904         VectorTy =
7905             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7906       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7907         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7908         VectorTy =
7909             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7910       }
7911     }
7912 
7913     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7914   }
7915   case Instruction::Call: {
7916     bool NeedToScalarize;
7917     CallInst *CI = cast<CallInst>(I);
7918     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7919     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7920       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7921       return std::min(CallCost, IntrinsicCost);
7922     }
7923     return CallCost;
7924   }
7925   case Instruction::ExtractValue:
7926     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7927   case Instruction::Alloca:
7928     // We cannot easily widen alloca to a scalable alloca, as
7929     // the result would need to be a vector of pointers.
7930     if (VF.isScalable())
7931       return InstructionCost::getInvalid();
7932     LLVM_FALLTHROUGH;
7933   default:
7934     // This opcode is unknown. Assume that it is the same as 'mul'.
7935     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7936   } // end of switch.
7937 }
7938 
7939 char LoopVectorize::ID = 0;
7940 
7941 static const char lv_name[] = "Loop Vectorization";
7942 
7943 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7944 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7945 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7946 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7947 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7948 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7949 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7950 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7951 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7952 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7953 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7954 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7955 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7956 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7957 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7958 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7959 
7960 namespace llvm {
7961 
7962 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7963 
7964 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7965                               bool VectorizeOnlyWhenForced) {
7966   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7967 }
7968 
7969 } // end namespace llvm
7970 
7971 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7972   // Check if the pointer operand of a load or store instruction is
7973   // consecutive.
7974   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7975     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7976   return false;
7977 }
7978 
7979 void LoopVectorizationCostModel::collectValuesToIgnore() {
7980   // Ignore ephemeral values.
7981   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7982 
7983   // Ignore type-promoting instructions we identified during reduction
7984   // detection.
7985   for (auto &Reduction : Legal->getReductionVars()) {
7986     RecurrenceDescriptor &RedDes = Reduction.second;
7987     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7988     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7989   }
7990   // Ignore type-casting instructions we identified during induction
7991   // detection.
7992   for (auto &Induction : Legal->getInductionVars()) {
7993     InductionDescriptor &IndDes = Induction.second;
7994     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7995     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7996   }
7997 }
7998 
7999 void LoopVectorizationCostModel::collectInLoopReductions() {
8000   for (auto &Reduction : Legal->getReductionVars()) {
8001     PHINode *Phi = Reduction.first;
8002     RecurrenceDescriptor &RdxDesc = Reduction.second;
8003 
8004     // We don't collect reductions that are type promoted (yet).
8005     if (RdxDesc.getRecurrenceType() != Phi->getType())
8006       continue;
8007 
8008     // If the target would prefer this reduction to happen "in-loop", then we
8009     // want to record it as such.
8010     unsigned Opcode = RdxDesc.getOpcode();
8011     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8012         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8013                                    TargetTransformInfo::ReductionFlags()))
8014       continue;
8015 
8016     // Check that we can correctly put the reductions into the loop, by
8017     // finding the chain of operations that leads from the phi to the loop
8018     // exit value.
8019     SmallVector<Instruction *, 4> ReductionOperations =
8020         RdxDesc.getReductionOpChain(Phi, TheLoop);
8021     bool InLoop = !ReductionOperations.empty();
8022     if (InLoop) {
8023       InLoopReductionChains[Phi] = ReductionOperations;
8024       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8025       Instruction *LastChain = Phi;
8026       for (auto *I : ReductionOperations) {
8027         InLoopReductionImmediateChains[I] = LastChain;
8028         LastChain = I;
8029       }
8030     }
8031     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8032                       << " reduction for phi: " << *Phi << "\n");
8033   }
8034 }
8035 
8036 // TODO: we could return a pair of values that specify the max VF and
8037 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8038 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8039 // doesn't have a cost model that can choose which plan to execute if
8040 // more than one is generated.
8041 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8042                                  LoopVectorizationCostModel &CM) {
8043   unsigned WidestType;
8044   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8045   return WidestVectorRegBits / WidestType;
8046 }
8047 
8048 VectorizationFactor
8049 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8050   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8051   ElementCount VF = UserVF;
8052   // Outer loop handling: They may require CFG and instruction level
8053   // transformations before even evaluating whether vectorization is profitable.
8054   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8055   // the vectorization pipeline.
8056   if (!OrigLoop->isInnermost()) {
8057     // If the user doesn't provide a vectorization factor, determine a
8058     // reasonable one.
8059     if (UserVF.isZero()) {
8060       VF = ElementCount::getFixed(determineVPlanVF(
8061           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8062               .getFixedSize(),
8063           CM));
8064       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8065 
8066       // Make sure we have a VF > 1 for stress testing.
8067       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8068         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8069                           << "overriding computed VF.\n");
8070         VF = ElementCount::getFixed(4);
8071       }
8072     }
8073     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8074     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8075            "VF needs to be a power of two");
8076     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8077                       << "VF " << VF << " to build VPlans.\n");
8078     buildVPlans(VF, VF);
8079 
8080     // For VPlan build stress testing, we bail out after VPlan construction.
8081     if (VPlanBuildStressTest)
8082       return VectorizationFactor::Disabled();
8083 
8084     return {VF, 0 /*Cost*/};
8085   }
8086 
8087   LLVM_DEBUG(
8088       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8089                 "VPlan-native path.\n");
8090   return VectorizationFactor::Disabled();
8091 }
8092 
8093 Optional<VectorizationFactor>
8094 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8095   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8096   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8097   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8098     return None;
8099 
8100   // Invalidate interleave groups if all blocks of loop will be predicated.
8101   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8102       !useMaskedInterleavedAccesses(*TTI)) {
8103     LLVM_DEBUG(
8104         dbgs()
8105         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8106            "which requires masked-interleaved support.\n");
8107     if (CM.InterleaveInfo.invalidateGroups())
8108       // Invalidating interleave groups also requires invalidating all decisions
8109       // based on them, which includes widening decisions and uniform and scalar
8110       // values.
8111       CM.invalidateCostModelingDecisions();
8112   }
8113 
8114   ElementCount MaxUserVF =
8115       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8116   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8117   if (!UserVF.isZero() && UserVFIsLegal) {
8118     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8119            "VF needs to be a power of two");
8120     // Collect the instructions (and their associated costs) that will be more
8121     // profitable to scalarize.
8122     if (CM.selectUserVectorizationFactor(UserVF)) {
8123       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8124       CM.collectInLoopReductions();
8125       buildVPlansWithVPRecipes(UserVF, UserVF);
8126       LLVM_DEBUG(printPlans(dbgs()));
8127       return {{UserVF, 0}};
8128     } else
8129       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8130                               "InvalidCost", ORE, OrigLoop);
8131   }
8132 
8133   // Populate the set of Vectorization Factor Candidates.
8134   ElementCountSet VFCandidates;
8135   for (auto VF = ElementCount::getFixed(1);
8136        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8137     VFCandidates.insert(VF);
8138   for (auto VF = ElementCount::getScalable(1);
8139        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8140     VFCandidates.insert(VF);
8141 
8142   for (const auto &VF : VFCandidates) {
8143     // Collect Uniform and Scalar instructions after vectorization with VF.
8144     CM.collectUniformsAndScalars(VF);
8145 
8146     // Collect the instructions (and their associated costs) that will be more
8147     // profitable to scalarize.
8148     if (VF.isVector())
8149       CM.collectInstsToScalarize(VF);
8150   }
8151 
8152   CM.collectInLoopReductions();
8153   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8154   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8155 
8156   LLVM_DEBUG(printPlans(dbgs()));
8157   if (!MaxFactors.hasVector())
8158     return VectorizationFactor::Disabled();
8159 
8160   // Select the optimal vectorization factor.
8161   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8162 
8163   // Check if it is profitable to vectorize with runtime checks.
8164   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8165   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8166     bool PragmaThresholdReached =
8167         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8168     bool ThresholdReached =
8169         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8170     if ((ThresholdReached && !Hints.allowReordering()) ||
8171         PragmaThresholdReached) {
8172       ORE->emit([&]() {
8173         return OptimizationRemarkAnalysisAliasing(
8174                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8175                    OrigLoop->getHeader())
8176                << "loop not vectorized: cannot prove it is safe to reorder "
8177                   "memory operations";
8178       });
8179       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8180       Hints.emitRemarkWithHints();
8181       return VectorizationFactor::Disabled();
8182     }
8183   }
8184   return SelectedVF;
8185 }
8186 
8187 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8188   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8189                     << '\n');
8190   BestVF = VF;
8191   BestUF = UF;
8192 
8193   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8194     return !Plan->hasVF(VF);
8195   });
8196   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8197 }
8198 
8199 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8200                                            DominatorTree *DT) {
8201   // Perform the actual loop transformation.
8202 
8203   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8204   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8205   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8206 
8207   VPTransformState State{
8208       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8209   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8210   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8211   State.CanonicalIV = ILV.Induction;
8212 
8213   ILV.printDebugTracesAtStart();
8214 
8215   //===------------------------------------------------===//
8216   //
8217   // Notice: any optimization or new instruction that go
8218   // into the code below should also be implemented in
8219   // the cost-model.
8220   //
8221   //===------------------------------------------------===//
8222 
8223   // 2. Copy and widen instructions from the old loop into the new loop.
8224   VPlans.front()->execute(&State);
8225 
8226   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8227   //    predication, updating analyses.
8228   ILV.fixVectorizedLoop(State);
8229 
8230   ILV.printDebugTracesAtEnd();
8231 }
8232 
8233 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8234 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8235   for (const auto &Plan : VPlans)
8236     if (PrintVPlansInDotFormat)
8237       Plan->printDOT(O);
8238     else
8239       Plan->print(O);
8240 }
8241 #endif
8242 
8243 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8244     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8245 
8246   // We create new control-flow for the vectorized loop, so the original exit
8247   // conditions will be dead after vectorization if it's only used by the
8248   // terminator
8249   SmallVector<BasicBlock*> ExitingBlocks;
8250   OrigLoop->getExitingBlocks(ExitingBlocks);
8251   for (auto *BB : ExitingBlocks) {
8252     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8253     if (!Cmp || !Cmp->hasOneUse())
8254       continue;
8255 
8256     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8257     if (!DeadInstructions.insert(Cmp).second)
8258       continue;
8259 
8260     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8261     // TODO: can recurse through operands in general
8262     for (Value *Op : Cmp->operands()) {
8263       if (isa<TruncInst>(Op) && Op->hasOneUse())
8264           DeadInstructions.insert(cast<Instruction>(Op));
8265     }
8266   }
8267 
8268   // We create new "steps" for induction variable updates to which the original
8269   // induction variables map. An original update instruction will be dead if
8270   // all its users except the induction variable are dead.
8271   auto *Latch = OrigLoop->getLoopLatch();
8272   for (auto &Induction : Legal->getInductionVars()) {
8273     PHINode *Ind = Induction.first;
8274     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8275 
8276     // If the tail is to be folded by masking, the primary induction variable,
8277     // if exists, isn't dead: it will be used for masking. Don't kill it.
8278     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8279       continue;
8280 
8281     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8282           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8283         }))
8284       DeadInstructions.insert(IndUpdate);
8285 
8286     // We record as "Dead" also the type-casting instructions we had identified
8287     // during induction analysis. We don't need any handling for them in the
8288     // vectorized loop because we have proven that, under a proper runtime
8289     // test guarding the vectorized loop, the value of the phi, and the casted
8290     // value of the phi, are the same. The last instruction in this casting chain
8291     // will get its scalar/vector/widened def from the scalar/vector/widened def
8292     // of the respective phi node. Any other casts in the induction def-use chain
8293     // have no other uses outside the phi update chain, and will be ignored.
8294     InductionDescriptor &IndDes = Induction.second;
8295     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8296     DeadInstructions.insert(Casts.begin(), Casts.end());
8297   }
8298 }
8299 
8300 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8301 
8302 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8303 
8304 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8305                                         Instruction::BinaryOps BinOp) {
8306   // When unrolling and the VF is 1, we only need to add a simple scalar.
8307   Type *Ty = Val->getType();
8308   assert(!Ty->isVectorTy() && "Val must be a scalar");
8309 
8310   if (Ty->isFloatingPointTy()) {
8311     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8312 
8313     // Floating-point operations inherit FMF via the builder's flags.
8314     Value *MulOp = Builder.CreateFMul(C, Step);
8315     return Builder.CreateBinOp(BinOp, Val, MulOp);
8316   }
8317   Constant *C = ConstantInt::get(Ty, StartIdx);
8318   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8319 }
8320 
8321 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8322   SmallVector<Metadata *, 4> MDs;
8323   // Reserve first location for self reference to the LoopID metadata node.
8324   MDs.push_back(nullptr);
8325   bool IsUnrollMetadata = false;
8326   MDNode *LoopID = L->getLoopID();
8327   if (LoopID) {
8328     // First find existing loop unrolling disable metadata.
8329     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8330       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8331       if (MD) {
8332         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8333         IsUnrollMetadata =
8334             S && S->getString().startswith("llvm.loop.unroll.disable");
8335       }
8336       MDs.push_back(LoopID->getOperand(i));
8337     }
8338   }
8339 
8340   if (!IsUnrollMetadata) {
8341     // Add runtime unroll disable metadata.
8342     LLVMContext &Context = L->getHeader()->getContext();
8343     SmallVector<Metadata *, 1> DisableOperands;
8344     DisableOperands.push_back(
8345         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8346     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8347     MDs.push_back(DisableNode);
8348     MDNode *NewLoopID = MDNode::get(Context, MDs);
8349     // Set operand 0 to refer to the loop id itself.
8350     NewLoopID->replaceOperandWith(0, NewLoopID);
8351     L->setLoopID(NewLoopID);
8352   }
8353 }
8354 
8355 //===--------------------------------------------------------------------===//
8356 // EpilogueVectorizerMainLoop
8357 //===--------------------------------------------------------------------===//
8358 
8359 /// This function is partially responsible for generating the control flow
8360 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8361 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8362   MDNode *OrigLoopID = OrigLoop->getLoopID();
8363   Loop *Lp = createVectorLoopSkeleton("");
8364 
8365   // Generate the code to check the minimum iteration count of the vector
8366   // epilogue (see below).
8367   EPI.EpilogueIterationCountCheck =
8368       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8369   EPI.EpilogueIterationCountCheck->setName("iter.check");
8370 
8371   // Generate the code to check any assumptions that we've made for SCEV
8372   // expressions.
8373   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8374 
8375   // Generate the code that checks at runtime if arrays overlap. We put the
8376   // checks into a separate block to make the more common case of few elements
8377   // faster.
8378   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8379 
8380   // Generate the iteration count check for the main loop, *after* the check
8381   // for the epilogue loop, so that the path-length is shorter for the case
8382   // that goes directly through the vector epilogue. The longer-path length for
8383   // the main loop is compensated for, by the gain from vectorizing the larger
8384   // trip count. Note: the branch will get updated later on when we vectorize
8385   // the epilogue.
8386   EPI.MainLoopIterationCountCheck =
8387       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8388 
8389   // Generate the induction variable.
8390   OldInduction = Legal->getPrimaryInduction();
8391   Type *IdxTy = Legal->getWidestInductionType();
8392   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8393   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8394   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8395   EPI.VectorTripCount = CountRoundDown;
8396   Induction =
8397       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8398                               getDebugLocFromInstOrOperands(OldInduction));
8399 
8400   // Skip induction resume value creation here because they will be created in
8401   // the second pass. If we created them here, they wouldn't be used anyway,
8402   // because the vplan in the second pass still contains the inductions from the
8403   // original loop.
8404 
8405   return completeLoopSkeleton(Lp, OrigLoopID);
8406 }
8407 
8408 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8409   LLVM_DEBUG({
8410     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8411            << "Main Loop VF:" << EPI.MainLoopVF
8412            << ", Main Loop UF:" << EPI.MainLoopUF
8413            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8414            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8415   });
8416 }
8417 
8418 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8419   DEBUG_WITH_TYPE(VerboseDebug, {
8420     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8421   });
8422 }
8423 
8424 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8425     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8426   assert(L && "Expected valid Loop.");
8427   assert(Bypass && "Expected valid bypass basic block.");
8428   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8429   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8430   Value *Count = getOrCreateTripCount(L);
8431   // Reuse existing vector loop preheader for TC checks.
8432   // Note that new preheader block is generated for vector loop.
8433   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8434   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8435 
8436   // Generate code to check if the loop's trip count is less than VF * UF of the
8437   // main vector loop.
8438   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8439       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8440 
8441   Value *CheckMinIters = Builder.CreateICmp(
8442       P, Count, getRuntimeVF(Builder, Count->getType(), VFactor * UFactor),
8443       "min.iters.check");
8444 
8445   if (!ForEpilogue)
8446     TCCheckBlock->setName("vector.main.loop.iter.check");
8447 
8448   // Create new preheader for vector loop.
8449   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8450                                    DT, LI, nullptr, "vector.ph");
8451 
8452   if (ForEpilogue) {
8453     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8454                                  DT->getNode(Bypass)->getIDom()) &&
8455            "TC check is expected to dominate Bypass");
8456 
8457     // Update dominator for Bypass & LoopExit.
8458     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8459     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8460       // For loops with multiple exits, there's no edge from the middle block
8461       // to exit blocks (as the epilogue must run) and thus no need to update
8462       // the immediate dominator of the exit blocks.
8463       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8464 
8465     LoopBypassBlocks.push_back(TCCheckBlock);
8466 
8467     // Save the trip count so we don't have to regenerate it in the
8468     // vec.epilog.iter.check. This is safe to do because the trip count
8469     // generated here dominates the vector epilog iter check.
8470     EPI.TripCount = Count;
8471   }
8472 
8473   ReplaceInstWithInst(
8474       TCCheckBlock->getTerminator(),
8475       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8476 
8477   return TCCheckBlock;
8478 }
8479 
8480 //===--------------------------------------------------------------------===//
8481 // EpilogueVectorizerEpilogueLoop
8482 //===--------------------------------------------------------------------===//
8483 
8484 /// This function is partially responsible for generating the control flow
8485 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8486 BasicBlock *
8487 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8488   MDNode *OrigLoopID = OrigLoop->getLoopID();
8489   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8490 
8491   // Now, compare the remaining count and if there aren't enough iterations to
8492   // execute the vectorized epilogue skip to the scalar part.
8493   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8494   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8495   LoopVectorPreHeader =
8496       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8497                  LI, nullptr, "vec.epilog.ph");
8498   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8499                                           VecEpilogueIterationCountCheck);
8500 
8501   // Adjust the control flow taking the state info from the main loop
8502   // vectorization into account.
8503   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8504          "expected this to be saved from the previous pass.");
8505   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8506       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8507 
8508   DT->changeImmediateDominator(LoopVectorPreHeader,
8509                                EPI.MainLoopIterationCountCheck);
8510 
8511   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8512       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8513 
8514   if (EPI.SCEVSafetyCheck)
8515     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8516         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8517   if (EPI.MemSafetyCheck)
8518     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8519         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8520 
8521   DT->changeImmediateDominator(
8522       VecEpilogueIterationCountCheck,
8523       VecEpilogueIterationCountCheck->getSinglePredecessor());
8524 
8525   DT->changeImmediateDominator(LoopScalarPreHeader,
8526                                EPI.EpilogueIterationCountCheck);
8527   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8528     // If there is an epilogue which must run, there's no edge from the
8529     // middle block to exit blocks  and thus no need to update the immediate
8530     // dominator of the exit blocks.
8531     DT->changeImmediateDominator(LoopExitBlock,
8532                                  EPI.EpilogueIterationCountCheck);
8533 
8534   // Keep track of bypass blocks, as they feed start values to the induction
8535   // phis in the scalar loop preheader.
8536   if (EPI.SCEVSafetyCheck)
8537     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8538   if (EPI.MemSafetyCheck)
8539     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8540   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8541 
8542   // Generate a resume induction for the vector epilogue and put it in the
8543   // vector epilogue preheader
8544   Type *IdxTy = Legal->getWidestInductionType();
8545   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8546                                          LoopVectorPreHeader->getFirstNonPHI());
8547   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8548   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8549                            EPI.MainLoopIterationCountCheck);
8550 
8551   // Generate the induction variable.
8552   OldInduction = Legal->getPrimaryInduction();
8553   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8554   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8555   Value *StartIdx = EPResumeVal;
8556   Induction =
8557       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8558                               getDebugLocFromInstOrOperands(OldInduction));
8559 
8560   // Generate induction resume values. These variables save the new starting
8561   // indexes for the scalar loop. They are used to test if there are any tail
8562   // iterations left once the vector loop has completed.
8563   // Note that when the vectorized epilogue is skipped due to iteration count
8564   // check, then the resume value for the induction variable comes from
8565   // the trip count of the main vector loop, hence passing the AdditionalBypass
8566   // argument.
8567   createInductionResumeValues(Lp, CountRoundDown,
8568                               {VecEpilogueIterationCountCheck,
8569                                EPI.VectorTripCount} /* AdditionalBypass */);
8570 
8571   AddRuntimeUnrollDisableMetaData(Lp);
8572   return completeLoopSkeleton(Lp, OrigLoopID);
8573 }
8574 
8575 BasicBlock *
8576 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8577     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8578 
8579   assert(EPI.TripCount &&
8580          "Expected trip count to have been safed in the first pass.");
8581   assert(
8582       (!isa<Instruction>(EPI.TripCount) ||
8583        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8584       "saved trip count does not dominate insertion point.");
8585   Value *TC = EPI.TripCount;
8586   IRBuilder<> Builder(Insert->getTerminator());
8587   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8588 
8589   // Generate code to check if the loop's trip count is less than VF * UF of the
8590   // vector epilogue loop.
8591   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8592       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8593 
8594   Value *CheckMinIters = Builder.CreateICmp(
8595       P, Count,
8596       getRuntimeVF(Builder, Count->getType(), EPI.EpilogueVF * EPI.EpilogueUF),
8597       "min.epilog.iters.check");
8598 
8599   ReplaceInstWithInst(
8600       Insert->getTerminator(),
8601       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8602 
8603   LoopBypassBlocks.push_back(Insert);
8604   return Insert;
8605 }
8606 
8607 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8608   LLVM_DEBUG({
8609     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8610            << "Epilogue Loop VF:" << EPI.EpilogueVF
8611            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8612   });
8613 }
8614 
8615 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8616   DEBUG_WITH_TYPE(VerboseDebug, {
8617     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8618   });
8619 }
8620 
8621 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8622     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8623   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8624   bool PredicateAtRangeStart = Predicate(Range.Start);
8625 
8626   for (ElementCount TmpVF = Range.Start * 2;
8627        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8628     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8629       Range.End = TmpVF;
8630       break;
8631     }
8632 
8633   return PredicateAtRangeStart;
8634 }
8635 
8636 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8637 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8638 /// of VF's starting at a given VF and extending it as much as possible. Each
8639 /// vectorization decision can potentially shorten this sub-range during
8640 /// buildVPlan().
8641 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8642                                            ElementCount MaxVF) {
8643   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8644   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8645     VFRange SubRange = {VF, MaxVFPlusOne};
8646     VPlans.push_back(buildVPlan(SubRange));
8647     VF = SubRange.End;
8648   }
8649 }
8650 
8651 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8652                                          VPlanPtr &Plan) {
8653   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8654 
8655   // Look for cached value.
8656   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8657   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8658   if (ECEntryIt != EdgeMaskCache.end())
8659     return ECEntryIt->second;
8660 
8661   VPValue *SrcMask = createBlockInMask(Src, Plan);
8662 
8663   // The terminator has to be a branch inst!
8664   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8665   assert(BI && "Unexpected terminator found");
8666 
8667   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8668     return EdgeMaskCache[Edge] = SrcMask;
8669 
8670   // If source is an exiting block, we know the exit edge is dynamically dead
8671   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8672   // adding uses of an otherwise potentially dead instruction.
8673   if (OrigLoop->isLoopExiting(Src))
8674     return EdgeMaskCache[Edge] = SrcMask;
8675 
8676   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8677   assert(EdgeMask && "No Edge Mask found for condition");
8678 
8679   if (BI->getSuccessor(0) != Dst)
8680     EdgeMask = Builder.createNot(EdgeMask);
8681 
8682   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8683     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8684     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8685     // The select version does not introduce new UB if SrcMask is false and
8686     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8687     VPValue *False = Plan->getOrAddVPValue(
8688         ConstantInt::getFalse(BI->getCondition()->getType()));
8689     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8690   }
8691 
8692   return EdgeMaskCache[Edge] = EdgeMask;
8693 }
8694 
8695 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8696   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8697 
8698   // Look for cached value.
8699   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8700   if (BCEntryIt != BlockMaskCache.end())
8701     return BCEntryIt->second;
8702 
8703   // All-one mask is modelled as no-mask following the convention for masked
8704   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8705   VPValue *BlockMask = nullptr;
8706 
8707   if (OrigLoop->getHeader() == BB) {
8708     if (!CM.blockNeedsPredication(BB))
8709       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8710 
8711     // Create the block in mask as the first non-phi instruction in the block.
8712     VPBuilder::InsertPointGuard Guard(Builder);
8713     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8714     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8715 
8716     // Introduce the early-exit compare IV <= BTC to form header block mask.
8717     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8718     // Start by constructing the desired canonical IV.
8719     VPValue *IV = nullptr;
8720     if (Legal->getPrimaryInduction())
8721       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8722     else {
8723       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8724       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8725       IV = IVRecipe->getVPSingleValue();
8726     }
8727     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8728     bool TailFolded = !CM.isScalarEpilogueAllowed();
8729 
8730     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8731       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8732       // as a second argument, we only pass the IV here and extract the
8733       // tripcount from the transform state where codegen of the VP instructions
8734       // happen.
8735       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8736     } else {
8737       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8738     }
8739     return BlockMaskCache[BB] = BlockMask;
8740   }
8741 
8742   // This is the block mask. We OR all incoming edges.
8743   for (auto *Predecessor : predecessors(BB)) {
8744     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8745     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8746       return BlockMaskCache[BB] = EdgeMask;
8747 
8748     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8749       BlockMask = EdgeMask;
8750       continue;
8751     }
8752 
8753     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8754   }
8755 
8756   return BlockMaskCache[BB] = BlockMask;
8757 }
8758 
8759 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8760                                                 ArrayRef<VPValue *> Operands,
8761                                                 VFRange &Range,
8762                                                 VPlanPtr &Plan) {
8763   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8764          "Must be called with either a load or store");
8765 
8766   auto willWiden = [&](ElementCount VF) -> bool {
8767     if (VF.isScalar())
8768       return false;
8769     LoopVectorizationCostModel::InstWidening Decision =
8770         CM.getWideningDecision(I, VF);
8771     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8772            "CM decision should be taken at this point.");
8773     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8774       return true;
8775     if (CM.isScalarAfterVectorization(I, VF) ||
8776         CM.isProfitableToScalarize(I, VF))
8777       return false;
8778     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8779   };
8780 
8781   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8782     return nullptr;
8783 
8784   VPValue *Mask = nullptr;
8785   if (Legal->isMaskRequired(I))
8786     Mask = createBlockInMask(I->getParent(), Plan);
8787 
8788   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8789     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8790 
8791   StoreInst *Store = cast<StoreInst>(I);
8792   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8793                                             Mask);
8794 }
8795 
8796 VPWidenIntOrFpInductionRecipe *
8797 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8798                                            ArrayRef<VPValue *> Operands) const {
8799   // Check if this is an integer or fp induction. If so, build the recipe that
8800   // produces its scalar and vector values.
8801   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8802   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8803       II.getKind() == InductionDescriptor::IK_FpInduction) {
8804     assert(II.getStartValue() ==
8805            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8806     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8807     return new VPWidenIntOrFpInductionRecipe(
8808         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8809   }
8810 
8811   return nullptr;
8812 }
8813 
8814 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8815     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8816     VPlan &Plan) const {
8817   // Optimize the special case where the source is a constant integer
8818   // induction variable. Notice that we can only optimize the 'trunc' case
8819   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8820   // (c) other casts depend on pointer size.
8821 
8822   // Determine whether \p K is a truncation based on an induction variable that
8823   // can be optimized.
8824   auto isOptimizableIVTruncate =
8825       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8826     return [=](ElementCount VF) -> bool {
8827       return CM.isOptimizableIVTruncate(K, VF);
8828     };
8829   };
8830 
8831   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8832           isOptimizableIVTruncate(I), Range)) {
8833 
8834     InductionDescriptor II =
8835         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8836     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8837     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8838                                              Start, nullptr, I);
8839   }
8840   return nullptr;
8841 }
8842 
8843 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8844                                                 ArrayRef<VPValue *> Operands,
8845                                                 VPlanPtr &Plan) {
8846   // If all incoming values are equal, the incoming VPValue can be used directly
8847   // instead of creating a new VPBlendRecipe.
8848   VPValue *FirstIncoming = Operands[0];
8849   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8850         return FirstIncoming == Inc;
8851       })) {
8852     return Operands[0];
8853   }
8854 
8855   // We know that all PHIs in non-header blocks are converted into selects, so
8856   // we don't have to worry about the insertion order and we can just use the
8857   // builder. At this point we generate the predication tree. There may be
8858   // duplications since this is a simple recursive scan, but future
8859   // optimizations will clean it up.
8860   SmallVector<VPValue *, 2> OperandsWithMask;
8861   unsigned NumIncoming = Phi->getNumIncomingValues();
8862 
8863   for (unsigned In = 0; In < NumIncoming; In++) {
8864     VPValue *EdgeMask =
8865       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8866     assert((EdgeMask || NumIncoming == 1) &&
8867            "Multiple predecessors with one having a full mask");
8868     OperandsWithMask.push_back(Operands[In]);
8869     if (EdgeMask)
8870       OperandsWithMask.push_back(EdgeMask);
8871   }
8872   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8873 }
8874 
8875 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8876                                                    ArrayRef<VPValue *> Operands,
8877                                                    VFRange &Range) const {
8878 
8879   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8880       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8881       Range);
8882 
8883   if (IsPredicated)
8884     return nullptr;
8885 
8886   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8887   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8888              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8889              ID == Intrinsic::pseudoprobe ||
8890              ID == Intrinsic::experimental_noalias_scope_decl))
8891     return nullptr;
8892 
8893   auto willWiden = [&](ElementCount VF) -> bool {
8894     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8895     // The following case may be scalarized depending on the VF.
8896     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8897     // version of the instruction.
8898     // Is it beneficial to perform intrinsic call compared to lib call?
8899     bool NeedToScalarize = false;
8900     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8901     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8902     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8903     return UseVectorIntrinsic || !NeedToScalarize;
8904   };
8905 
8906   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8907     return nullptr;
8908 
8909   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8910   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8911 }
8912 
8913 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8914   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8915          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8916   // Instruction should be widened, unless it is scalar after vectorization,
8917   // scalarization is profitable or it is predicated.
8918   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8919     return CM.isScalarAfterVectorization(I, VF) ||
8920            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8921   };
8922   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8923                                                              Range);
8924 }
8925 
8926 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8927                                            ArrayRef<VPValue *> Operands) const {
8928   auto IsVectorizableOpcode = [](unsigned Opcode) {
8929     switch (Opcode) {
8930     case Instruction::Add:
8931     case Instruction::And:
8932     case Instruction::AShr:
8933     case Instruction::BitCast:
8934     case Instruction::FAdd:
8935     case Instruction::FCmp:
8936     case Instruction::FDiv:
8937     case Instruction::FMul:
8938     case Instruction::FNeg:
8939     case Instruction::FPExt:
8940     case Instruction::FPToSI:
8941     case Instruction::FPToUI:
8942     case Instruction::FPTrunc:
8943     case Instruction::FRem:
8944     case Instruction::FSub:
8945     case Instruction::ICmp:
8946     case Instruction::IntToPtr:
8947     case Instruction::LShr:
8948     case Instruction::Mul:
8949     case Instruction::Or:
8950     case Instruction::PtrToInt:
8951     case Instruction::SDiv:
8952     case Instruction::Select:
8953     case Instruction::SExt:
8954     case Instruction::Shl:
8955     case Instruction::SIToFP:
8956     case Instruction::SRem:
8957     case Instruction::Sub:
8958     case Instruction::Trunc:
8959     case Instruction::UDiv:
8960     case Instruction::UIToFP:
8961     case Instruction::URem:
8962     case Instruction::Xor:
8963     case Instruction::ZExt:
8964       return true;
8965     }
8966     return false;
8967   };
8968 
8969   if (!IsVectorizableOpcode(I->getOpcode()))
8970     return nullptr;
8971 
8972   // Success: widen this instruction.
8973   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8974 }
8975 
8976 void VPRecipeBuilder::fixHeaderPhis() {
8977   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8978   for (VPWidenPHIRecipe *R : PhisToFix) {
8979     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8980     VPRecipeBase *IncR =
8981         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8982     R->addOperand(IncR->getVPSingleValue());
8983   }
8984 }
8985 
8986 VPBasicBlock *VPRecipeBuilder::handleReplication(
8987     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8988     VPlanPtr &Plan) {
8989   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8990       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8991       Range);
8992 
8993   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8994       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8995 
8996   // Even if the instruction is not marked as uniform, there are certain
8997   // intrinsic calls that can be effectively treated as such, so we check for
8998   // them here. Conservatively, we only do this for scalable vectors, since
8999   // for fixed-width VFs we can always fall back on full scalarization.
9000   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9001     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9002     case Intrinsic::assume:
9003     case Intrinsic::lifetime_start:
9004     case Intrinsic::lifetime_end:
9005       // For scalable vectors if one of the operands is variant then we still
9006       // want to mark as uniform, which will generate one instruction for just
9007       // the first lane of the vector. We can't scalarize the call in the same
9008       // way as for fixed-width vectors because we don't know how many lanes
9009       // there are.
9010       //
9011       // The reasons for doing it this way for scalable vectors are:
9012       //   1. For the assume intrinsic generating the instruction for the first
9013       //      lane is still be better than not generating any at all. For
9014       //      example, the input may be a splat across all lanes.
9015       //   2. For the lifetime start/end intrinsics the pointer operand only
9016       //      does anything useful when the input comes from a stack object,
9017       //      which suggests it should always be uniform. For non-stack objects
9018       //      the effect is to poison the object, which still allows us to
9019       //      remove the call.
9020       IsUniform = true;
9021       break;
9022     default:
9023       break;
9024     }
9025   }
9026 
9027   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9028                                        IsUniform, IsPredicated);
9029   setRecipe(I, Recipe);
9030   Plan->addVPValue(I, Recipe);
9031 
9032   // Find if I uses a predicated instruction. If so, it will use its scalar
9033   // value. Avoid hoisting the insert-element which packs the scalar value into
9034   // a vector value, as that happens iff all users use the vector value.
9035   for (VPValue *Op : Recipe->operands()) {
9036     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9037     if (!PredR)
9038       continue;
9039     auto *RepR =
9040         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9041     assert(RepR->isPredicated() &&
9042            "expected Replicate recipe to be predicated");
9043     RepR->setAlsoPack(false);
9044   }
9045 
9046   // Finalize the recipe for Instr, first if it is not predicated.
9047   if (!IsPredicated) {
9048     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9049     VPBB->appendRecipe(Recipe);
9050     return VPBB;
9051   }
9052   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9053   assert(VPBB->getSuccessors().empty() &&
9054          "VPBB has successors when handling predicated replication.");
9055   // Record predicated instructions for above packing optimizations.
9056   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9057   VPBlockUtils::insertBlockAfter(Region, VPBB);
9058   auto *RegSucc = new VPBasicBlock();
9059   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9060   return RegSucc;
9061 }
9062 
9063 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9064                                                       VPRecipeBase *PredRecipe,
9065                                                       VPlanPtr &Plan) {
9066   // Instructions marked for predication are replicated and placed under an
9067   // if-then construct to prevent side-effects.
9068 
9069   // Generate recipes to compute the block mask for this region.
9070   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9071 
9072   // Build the triangular if-then region.
9073   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9074   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9075   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9076   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9077   auto *PHIRecipe = Instr->getType()->isVoidTy()
9078                         ? nullptr
9079                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9080   if (PHIRecipe) {
9081     Plan->removeVPValueFor(Instr);
9082     Plan->addVPValue(Instr, PHIRecipe);
9083   }
9084   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9085   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9086   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9087 
9088   // Note: first set Entry as region entry and then connect successors starting
9089   // from it in order, to propagate the "parent" of each VPBasicBlock.
9090   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9091   VPBlockUtils::connectBlocks(Pred, Exit);
9092 
9093   return Region;
9094 }
9095 
9096 VPRecipeOrVPValueTy
9097 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9098                                         ArrayRef<VPValue *> Operands,
9099                                         VFRange &Range, VPlanPtr &Plan) {
9100   // First, check for specific widening recipes that deal with calls, memory
9101   // operations, inductions and Phi nodes.
9102   if (auto *CI = dyn_cast<CallInst>(Instr))
9103     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9104 
9105   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9106     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9107 
9108   VPRecipeBase *Recipe;
9109   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9110     if (Phi->getParent() != OrigLoop->getHeader())
9111       return tryToBlend(Phi, Operands, Plan);
9112     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9113       return toVPRecipeResult(Recipe);
9114 
9115     VPWidenPHIRecipe *PhiRecipe = nullptr;
9116     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9117       VPValue *StartV = Operands[0];
9118       if (Legal->isReductionVariable(Phi)) {
9119         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9120         assert(RdxDesc.getRecurrenceStartValue() ==
9121                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9122         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9123                                              CM.isInLoopReduction(Phi),
9124                                              CM.useOrderedReductions(RdxDesc));
9125       } else {
9126         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9127       }
9128 
9129       // Record the incoming value from the backedge, so we can add the incoming
9130       // value from the backedge after all recipes have been created.
9131       recordRecipeOf(cast<Instruction>(
9132           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9133       PhisToFix.push_back(PhiRecipe);
9134     } else {
9135       // TODO: record start and backedge value for remaining pointer induction
9136       // phis.
9137       assert(Phi->getType()->isPointerTy() &&
9138              "only pointer phis should be handled here");
9139       PhiRecipe = new VPWidenPHIRecipe(Phi);
9140     }
9141 
9142     return toVPRecipeResult(PhiRecipe);
9143   }
9144 
9145   if (isa<TruncInst>(Instr) &&
9146       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9147                                                Range, *Plan)))
9148     return toVPRecipeResult(Recipe);
9149 
9150   if (!shouldWiden(Instr, Range))
9151     return nullptr;
9152 
9153   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9154     return toVPRecipeResult(new VPWidenGEPRecipe(
9155         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9156 
9157   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9158     bool InvariantCond =
9159         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9160     return toVPRecipeResult(new VPWidenSelectRecipe(
9161         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9162   }
9163 
9164   return toVPRecipeResult(tryToWiden(Instr, Operands));
9165 }
9166 
9167 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9168                                                         ElementCount MaxVF) {
9169   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9170 
9171   // Collect instructions from the original loop that will become trivially dead
9172   // in the vectorized loop. We don't need to vectorize these instructions. For
9173   // example, original induction update instructions can become dead because we
9174   // separately emit induction "steps" when generating code for the new loop.
9175   // Similarly, we create a new latch condition when setting up the structure
9176   // of the new loop, so the old one can become dead.
9177   SmallPtrSet<Instruction *, 4> DeadInstructions;
9178   collectTriviallyDeadInstructions(DeadInstructions);
9179 
9180   // Add assume instructions we need to drop to DeadInstructions, to prevent
9181   // them from being added to the VPlan.
9182   // TODO: We only need to drop assumes in blocks that get flattend. If the
9183   // control flow is preserved, we should keep them.
9184   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9185   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9186 
9187   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9188   // Dead instructions do not need sinking. Remove them from SinkAfter.
9189   for (Instruction *I : DeadInstructions)
9190     SinkAfter.erase(I);
9191 
9192   // Cannot sink instructions after dead instructions (there won't be any
9193   // recipes for them). Instead, find the first non-dead previous instruction.
9194   for (auto &P : Legal->getSinkAfter()) {
9195     Instruction *SinkTarget = P.second;
9196     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9197     (void)FirstInst;
9198     while (DeadInstructions.contains(SinkTarget)) {
9199       assert(
9200           SinkTarget != FirstInst &&
9201           "Must find a live instruction (at least the one feeding the "
9202           "first-order recurrence PHI) before reaching beginning of the block");
9203       SinkTarget = SinkTarget->getPrevNode();
9204       assert(SinkTarget != P.first &&
9205              "sink source equals target, no sinking required");
9206     }
9207     P.second = SinkTarget;
9208   }
9209 
9210   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9211   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9212     VFRange SubRange = {VF, MaxVFPlusOne};
9213     VPlans.push_back(
9214         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9215     VF = SubRange.End;
9216   }
9217 }
9218 
9219 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9220     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9221     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9222 
9223   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9224 
9225   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9226 
9227   // ---------------------------------------------------------------------------
9228   // Pre-construction: record ingredients whose recipes we'll need to further
9229   // process after constructing the initial VPlan.
9230   // ---------------------------------------------------------------------------
9231 
9232   // Mark instructions we'll need to sink later and their targets as
9233   // ingredients whose recipe we'll need to record.
9234   for (auto &Entry : SinkAfter) {
9235     RecipeBuilder.recordRecipeOf(Entry.first);
9236     RecipeBuilder.recordRecipeOf(Entry.second);
9237   }
9238   for (auto &Reduction : CM.getInLoopReductionChains()) {
9239     PHINode *Phi = Reduction.first;
9240     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9241     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9242 
9243     RecipeBuilder.recordRecipeOf(Phi);
9244     for (auto &R : ReductionOperations) {
9245       RecipeBuilder.recordRecipeOf(R);
9246       // For min/max reducitons, where we have a pair of icmp/select, we also
9247       // need to record the ICmp recipe, so it can be removed later.
9248       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9249         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9250     }
9251   }
9252 
9253   // For each interleave group which is relevant for this (possibly trimmed)
9254   // Range, add it to the set of groups to be later applied to the VPlan and add
9255   // placeholders for its members' Recipes which we'll be replacing with a
9256   // single VPInterleaveRecipe.
9257   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9258     auto applyIG = [IG, this](ElementCount VF) -> bool {
9259       return (VF.isVector() && // Query is illegal for VF == 1
9260               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9261                   LoopVectorizationCostModel::CM_Interleave);
9262     };
9263     if (!getDecisionAndClampRange(applyIG, Range))
9264       continue;
9265     InterleaveGroups.insert(IG);
9266     for (unsigned i = 0; i < IG->getFactor(); i++)
9267       if (Instruction *Member = IG->getMember(i))
9268         RecipeBuilder.recordRecipeOf(Member);
9269   };
9270 
9271   // ---------------------------------------------------------------------------
9272   // Build initial VPlan: Scan the body of the loop in a topological order to
9273   // visit each basic block after having visited its predecessor basic blocks.
9274   // ---------------------------------------------------------------------------
9275 
9276   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9277   auto Plan = std::make_unique<VPlan>();
9278   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9279   Plan->setEntry(VPBB);
9280 
9281   // Scan the body of the loop in a topological order to visit each basic block
9282   // after having visited its predecessor basic blocks.
9283   LoopBlocksDFS DFS(OrigLoop);
9284   DFS.perform(LI);
9285 
9286   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9287     // Relevant instructions from basic block BB will be grouped into VPRecipe
9288     // ingredients and fill a new VPBasicBlock.
9289     unsigned VPBBsForBB = 0;
9290     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9291     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9292     VPBB = FirstVPBBForBB;
9293     Builder.setInsertPoint(VPBB);
9294 
9295     // Introduce each ingredient into VPlan.
9296     // TODO: Model and preserve debug instrinsics in VPlan.
9297     for (Instruction &I : BB->instructionsWithoutDebug()) {
9298       Instruction *Instr = &I;
9299 
9300       // First filter out irrelevant instructions, to ensure no recipes are
9301       // built for them.
9302       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9303         continue;
9304 
9305       SmallVector<VPValue *, 4> Operands;
9306       auto *Phi = dyn_cast<PHINode>(Instr);
9307       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9308         Operands.push_back(Plan->getOrAddVPValue(
9309             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9310       } else {
9311         auto OpRange = Plan->mapToVPValues(Instr->operands());
9312         Operands = {OpRange.begin(), OpRange.end()};
9313       }
9314       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9315               Instr, Operands, Range, Plan)) {
9316         // If Instr can be simplified to an existing VPValue, use it.
9317         if (RecipeOrValue.is<VPValue *>()) {
9318           auto *VPV = RecipeOrValue.get<VPValue *>();
9319           Plan->addVPValue(Instr, VPV);
9320           // If the re-used value is a recipe, register the recipe for the
9321           // instruction, in case the recipe for Instr needs to be recorded.
9322           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9323             RecipeBuilder.setRecipe(Instr, R);
9324           continue;
9325         }
9326         // Otherwise, add the new recipe.
9327         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9328         for (auto *Def : Recipe->definedValues()) {
9329           auto *UV = Def->getUnderlyingValue();
9330           Plan->addVPValue(UV, Def);
9331         }
9332 
9333         RecipeBuilder.setRecipe(Instr, Recipe);
9334         VPBB->appendRecipe(Recipe);
9335         continue;
9336       }
9337 
9338       // Otherwise, if all widening options failed, Instruction is to be
9339       // replicated. This may create a successor for VPBB.
9340       VPBasicBlock *NextVPBB =
9341           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9342       if (NextVPBB != VPBB) {
9343         VPBB = NextVPBB;
9344         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9345                                     : "");
9346       }
9347     }
9348   }
9349 
9350   RecipeBuilder.fixHeaderPhis();
9351 
9352   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9353   // may also be empty, such as the last one VPBB, reflecting original
9354   // basic-blocks with no recipes.
9355   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9356   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9357   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9358   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9359   delete PreEntry;
9360 
9361   // ---------------------------------------------------------------------------
9362   // Transform initial VPlan: Apply previously taken decisions, in order, to
9363   // bring the VPlan to its final state.
9364   // ---------------------------------------------------------------------------
9365 
9366   // Apply Sink-After legal constraints.
9367   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9368     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9369     if (Region && Region->isReplicator()) {
9370       assert(Region->getNumSuccessors() == 1 &&
9371              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9372       assert(R->getParent()->size() == 1 &&
9373              "A recipe in an original replicator region must be the only "
9374              "recipe in its block");
9375       return Region;
9376     }
9377     return nullptr;
9378   };
9379   for (auto &Entry : SinkAfter) {
9380     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9381     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9382 
9383     auto *TargetRegion = GetReplicateRegion(Target);
9384     auto *SinkRegion = GetReplicateRegion(Sink);
9385     if (!SinkRegion) {
9386       // If the sink source is not a replicate region, sink the recipe directly.
9387       if (TargetRegion) {
9388         // The target is in a replication region, make sure to move Sink to
9389         // the block after it, not into the replication region itself.
9390         VPBasicBlock *NextBlock =
9391             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9392         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9393       } else
9394         Sink->moveAfter(Target);
9395       continue;
9396     }
9397 
9398     // The sink source is in a replicate region. Unhook the region from the CFG.
9399     auto *SinkPred = SinkRegion->getSinglePredecessor();
9400     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9401     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9402     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9403     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9404 
9405     if (TargetRegion) {
9406       // The target recipe is also in a replicate region, move the sink region
9407       // after the target region.
9408       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9409       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9410       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9411       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9412     } else {
9413       // The sink source is in a replicate region, we need to move the whole
9414       // replicate region, which should only contain a single recipe in the
9415       // main block.
9416       auto *SplitBlock =
9417           Target->getParent()->splitAt(std::next(Target->getIterator()));
9418 
9419       auto *SplitPred = SplitBlock->getSinglePredecessor();
9420 
9421       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9422       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9423       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9424       if (VPBB == SplitPred)
9425         VPBB = SplitBlock;
9426     }
9427   }
9428 
9429   // Adjust the recipes for any inloop reductions.
9430   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9431 
9432   // Introduce a recipe to combine the incoming and previous values of a
9433   // first-order recurrence.
9434   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9435     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9436     if (!RecurPhi)
9437       continue;
9438 
9439     auto *RecurSplice = cast<VPInstruction>(
9440         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9441                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9442 
9443     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9444     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9445       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9446       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9447     } else
9448       RecurSplice->moveAfter(PrevRecipe);
9449     RecurPhi->replaceAllUsesWith(RecurSplice);
9450     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9451     // all users.
9452     RecurSplice->setOperand(0, RecurPhi);
9453   }
9454 
9455   // Interleave memory: for each Interleave Group we marked earlier as relevant
9456   // for this VPlan, replace the Recipes widening its memory instructions with a
9457   // single VPInterleaveRecipe at its insertion point.
9458   for (auto IG : InterleaveGroups) {
9459     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9460         RecipeBuilder.getRecipe(IG->getInsertPos()));
9461     SmallVector<VPValue *, 4> StoredValues;
9462     for (unsigned i = 0; i < IG->getFactor(); ++i)
9463       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9464         auto *StoreR =
9465             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9466         StoredValues.push_back(StoreR->getStoredValue());
9467       }
9468 
9469     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9470                                         Recipe->getMask());
9471     VPIG->insertBefore(Recipe);
9472     unsigned J = 0;
9473     for (unsigned i = 0; i < IG->getFactor(); ++i)
9474       if (Instruction *Member = IG->getMember(i)) {
9475         if (!Member->getType()->isVoidTy()) {
9476           VPValue *OriginalV = Plan->getVPValue(Member);
9477           Plan->removeVPValueFor(Member);
9478           Plan->addVPValue(Member, VPIG->getVPValue(J));
9479           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9480           J++;
9481         }
9482         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9483       }
9484   }
9485 
9486   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9487   // in ways that accessing values using original IR values is incorrect.
9488   Plan->disableValue2VPValue();
9489 
9490   VPlanTransforms::sinkScalarOperands(*Plan);
9491   VPlanTransforms::mergeReplicateRegions(*Plan);
9492 
9493   std::string PlanName;
9494   raw_string_ostream RSO(PlanName);
9495   ElementCount VF = Range.Start;
9496   Plan->addVF(VF);
9497   RSO << "Initial VPlan for VF={" << VF;
9498   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9499     Plan->addVF(VF);
9500     RSO << "," << VF;
9501   }
9502   RSO << "},UF>=1";
9503   RSO.flush();
9504   Plan->setName(PlanName);
9505 
9506   return Plan;
9507 }
9508 
9509 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9510   // Outer loop handling: They may require CFG and instruction level
9511   // transformations before even evaluating whether vectorization is profitable.
9512   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9513   // the vectorization pipeline.
9514   assert(!OrigLoop->isInnermost());
9515   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9516 
9517   // Create new empty VPlan
9518   auto Plan = std::make_unique<VPlan>();
9519 
9520   // Build hierarchical CFG
9521   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9522   HCFGBuilder.buildHierarchicalCFG();
9523 
9524   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9525        VF *= 2)
9526     Plan->addVF(VF);
9527 
9528   if (EnableVPlanPredication) {
9529     VPlanPredicator VPP(*Plan);
9530     VPP.predicate();
9531 
9532     // Avoid running transformation to recipes until masked code generation in
9533     // VPlan-native path is in place.
9534     return Plan;
9535   }
9536 
9537   SmallPtrSet<Instruction *, 1> DeadInstructions;
9538   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9539                                              Legal->getInductionVars(),
9540                                              DeadInstructions, *PSE.getSE());
9541   return Plan;
9542 }
9543 
9544 // Adjust the recipes for reductions. For in-loop reductions the chain of
9545 // instructions leading from the loop exit instr to the phi need to be converted
9546 // to reductions, with one operand being vector and the other being the scalar
9547 // reduction chain. For other reductions, a select is introduced between the phi
9548 // and live-out recipes when folding the tail.
9549 void LoopVectorizationPlanner::adjustRecipesForReductions(
9550     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9551     ElementCount MinVF) {
9552   for (auto &Reduction : CM.getInLoopReductionChains()) {
9553     PHINode *Phi = Reduction.first;
9554     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9555     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9556 
9557     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9558       continue;
9559 
9560     // ReductionOperations are orders top-down from the phi's use to the
9561     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9562     // which of the two operands will remain scalar and which will be reduced.
9563     // For minmax the chain will be the select instructions.
9564     Instruction *Chain = Phi;
9565     for (Instruction *R : ReductionOperations) {
9566       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9567       RecurKind Kind = RdxDesc.getRecurrenceKind();
9568 
9569       VPValue *ChainOp = Plan->getVPValue(Chain);
9570       unsigned FirstOpId;
9571       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9572         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9573                "Expected to replace a VPWidenSelectSC");
9574         FirstOpId = 1;
9575       } else {
9576         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9577                "Expected to replace a VPWidenSC");
9578         FirstOpId = 0;
9579       }
9580       unsigned VecOpId =
9581           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9582       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9583 
9584       auto *CondOp = CM.foldTailByMasking()
9585                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9586                          : nullptr;
9587       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9588           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9589       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9590       Plan->removeVPValueFor(R);
9591       Plan->addVPValue(R, RedRecipe);
9592       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9593       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9594       WidenRecipe->eraseFromParent();
9595 
9596       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9597         VPRecipeBase *CompareRecipe =
9598             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9599         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9600                "Expected to replace a VPWidenSC");
9601         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9602                "Expected no remaining users");
9603         CompareRecipe->eraseFromParent();
9604       }
9605       Chain = R;
9606     }
9607   }
9608 
9609   // If tail is folded by masking, introduce selects between the phi
9610   // and the live-out instruction of each reduction, at the end of the latch.
9611   if (CM.foldTailByMasking()) {
9612     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9613       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9614       if (!PhiR || PhiR->isInLoop())
9615         continue;
9616       Builder.setInsertPoint(LatchVPBB);
9617       VPValue *Cond =
9618           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9619       VPValue *Red = PhiR->getBackedgeValue();
9620       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9621     }
9622   }
9623 }
9624 
9625 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9626 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9627                                VPSlotTracker &SlotTracker) const {
9628   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9629   IG->getInsertPos()->printAsOperand(O, false);
9630   O << ", ";
9631   getAddr()->printAsOperand(O, SlotTracker);
9632   VPValue *Mask = getMask();
9633   if (Mask) {
9634     O << ", ";
9635     Mask->printAsOperand(O, SlotTracker);
9636   }
9637 
9638   unsigned OpIdx = 0;
9639   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9640     if (!IG->getMember(i))
9641       continue;
9642     if (getNumStoreOperands() > 0) {
9643       O << "\n" << Indent << "  store ";
9644       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9645       O << " to index " << i;
9646     } else {
9647       O << "\n" << Indent << "  ";
9648       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9649       O << " = load from index " << i;
9650     }
9651     ++OpIdx;
9652   }
9653 }
9654 #endif
9655 
9656 void VPWidenCallRecipe::execute(VPTransformState &State) {
9657   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9658                                   *this, State);
9659 }
9660 
9661 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9662   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9663                                     this, *this, InvariantCond, State);
9664 }
9665 
9666 void VPWidenRecipe::execute(VPTransformState &State) {
9667   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9668 }
9669 
9670 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9671   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9672                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9673                       IsIndexLoopInvariant, State);
9674 }
9675 
9676 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9677   assert(!State.Instance && "Int or FP induction being replicated.");
9678   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9679                                    getTruncInst(), getVPValue(0),
9680                                    getCastValue(), State);
9681 }
9682 
9683 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9684   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9685                                  State);
9686 }
9687 
9688 void VPBlendRecipe::execute(VPTransformState &State) {
9689   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9690   // We know that all PHIs in non-header blocks are converted into
9691   // selects, so we don't have to worry about the insertion order and we
9692   // can just use the builder.
9693   // At this point we generate the predication tree. There may be
9694   // duplications since this is a simple recursive scan, but future
9695   // optimizations will clean it up.
9696 
9697   unsigned NumIncoming = getNumIncomingValues();
9698 
9699   // Generate a sequence of selects of the form:
9700   // SELECT(Mask3, In3,
9701   //        SELECT(Mask2, In2,
9702   //               SELECT(Mask1, In1,
9703   //                      In0)))
9704   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9705   // are essentially undef are taken from In0.
9706   InnerLoopVectorizer::VectorParts Entry(State.UF);
9707   for (unsigned In = 0; In < NumIncoming; ++In) {
9708     for (unsigned Part = 0; Part < State.UF; ++Part) {
9709       // We might have single edge PHIs (blocks) - use an identity
9710       // 'select' for the first PHI operand.
9711       Value *In0 = State.get(getIncomingValue(In), Part);
9712       if (In == 0)
9713         Entry[Part] = In0; // Initialize with the first incoming value.
9714       else {
9715         // Select between the current value and the previous incoming edge
9716         // based on the incoming mask.
9717         Value *Cond = State.get(getMask(In), Part);
9718         Entry[Part] =
9719             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9720       }
9721     }
9722   }
9723   for (unsigned Part = 0; Part < State.UF; ++Part)
9724     State.set(this, Entry[Part], Part);
9725 }
9726 
9727 void VPInterleaveRecipe::execute(VPTransformState &State) {
9728   assert(!State.Instance && "Interleave group being replicated.");
9729   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9730                                       getStoredValues(), getMask());
9731 }
9732 
9733 void VPReductionRecipe::execute(VPTransformState &State) {
9734   assert(!State.Instance && "Reduction being replicated.");
9735   Value *PrevInChain = State.get(getChainOp(), 0);
9736   for (unsigned Part = 0; Part < State.UF; ++Part) {
9737     RecurKind Kind = RdxDesc->getRecurrenceKind();
9738     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9739     Value *NewVecOp = State.get(getVecOp(), Part);
9740     if (VPValue *Cond = getCondOp()) {
9741       Value *NewCond = State.get(Cond, Part);
9742       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9743       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9744           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9745       Constant *IdenVec =
9746           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9747       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9748       NewVecOp = Select;
9749     }
9750     Value *NewRed;
9751     Value *NextInChain;
9752     if (IsOrdered) {
9753       if (State.VF.isVector())
9754         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9755                                         PrevInChain);
9756       else
9757         NewRed = State.Builder.CreateBinOp(
9758             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9759             PrevInChain, NewVecOp);
9760       PrevInChain = NewRed;
9761     } else {
9762       PrevInChain = State.get(getChainOp(), Part);
9763       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9764     }
9765     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9766       NextInChain =
9767           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9768                          NewRed, PrevInChain);
9769     } else if (IsOrdered)
9770       NextInChain = NewRed;
9771     else {
9772       NextInChain = State.Builder.CreateBinOp(
9773           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9774           PrevInChain);
9775     }
9776     State.set(this, NextInChain, Part);
9777   }
9778 }
9779 
9780 void VPReplicateRecipe::execute(VPTransformState &State) {
9781   if (State.Instance) { // Generate a single instance.
9782     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9783     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9784                                     *State.Instance, IsPredicated, State);
9785     // Insert scalar instance packing it into a vector.
9786     if (AlsoPack && State.VF.isVector()) {
9787       // If we're constructing lane 0, initialize to start from poison.
9788       if (State.Instance->Lane.isFirstLane()) {
9789         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9790         Value *Poison = PoisonValue::get(
9791             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9792         State.set(this, Poison, State.Instance->Part);
9793       }
9794       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9795     }
9796     return;
9797   }
9798 
9799   // Generate scalar instances for all VF lanes of all UF parts, unless the
9800   // instruction is uniform inwhich case generate only the first lane for each
9801   // of the UF parts.
9802   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9803   assert((!State.VF.isScalable() || IsUniform) &&
9804          "Can't scalarize a scalable vector");
9805   for (unsigned Part = 0; Part < State.UF; ++Part)
9806     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9807       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9808                                       VPIteration(Part, Lane), IsPredicated,
9809                                       State);
9810 }
9811 
9812 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9813   assert(State.Instance && "Branch on Mask works only on single instance.");
9814 
9815   unsigned Part = State.Instance->Part;
9816   unsigned Lane = State.Instance->Lane.getKnownLane();
9817 
9818   Value *ConditionBit = nullptr;
9819   VPValue *BlockInMask = getMask();
9820   if (BlockInMask) {
9821     ConditionBit = State.get(BlockInMask, Part);
9822     if (ConditionBit->getType()->isVectorTy())
9823       ConditionBit = State.Builder.CreateExtractElement(
9824           ConditionBit, State.Builder.getInt32(Lane));
9825   } else // Block in mask is all-one.
9826     ConditionBit = State.Builder.getTrue();
9827 
9828   // Replace the temporary unreachable terminator with a new conditional branch,
9829   // whose two destinations will be set later when they are created.
9830   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9831   assert(isa<UnreachableInst>(CurrentTerminator) &&
9832          "Expected to replace unreachable terminator with conditional branch.");
9833   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9834   CondBr->setSuccessor(0, nullptr);
9835   ReplaceInstWithInst(CurrentTerminator, CondBr);
9836 }
9837 
9838 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9839   assert(State.Instance && "Predicated instruction PHI works per instance.");
9840   Instruction *ScalarPredInst =
9841       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9842   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9843   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9844   assert(PredicatingBB && "Predicated block has no single predecessor.");
9845   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9846          "operand must be VPReplicateRecipe");
9847 
9848   // By current pack/unpack logic we need to generate only a single phi node: if
9849   // a vector value for the predicated instruction exists at this point it means
9850   // the instruction has vector users only, and a phi for the vector value is
9851   // needed. In this case the recipe of the predicated instruction is marked to
9852   // also do that packing, thereby "hoisting" the insert-element sequence.
9853   // Otherwise, a phi node for the scalar value is needed.
9854   unsigned Part = State.Instance->Part;
9855   if (State.hasVectorValue(getOperand(0), Part)) {
9856     Value *VectorValue = State.get(getOperand(0), Part);
9857     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9858     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9859     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9860     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9861     if (State.hasVectorValue(this, Part))
9862       State.reset(this, VPhi, Part);
9863     else
9864       State.set(this, VPhi, Part);
9865     // NOTE: Currently we need to update the value of the operand, so the next
9866     // predicated iteration inserts its generated value in the correct vector.
9867     State.reset(getOperand(0), VPhi, Part);
9868   } else {
9869     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9870     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9871     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9872                      PredicatingBB);
9873     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9874     if (State.hasScalarValue(this, *State.Instance))
9875       State.reset(this, Phi, *State.Instance);
9876     else
9877       State.set(this, Phi, *State.Instance);
9878     // NOTE: Currently we need to update the value of the operand, so the next
9879     // predicated iteration inserts its generated value in the correct vector.
9880     State.reset(getOperand(0), Phi, *State.Instance);
9881   }
9882 }
9883 
9884 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9885   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9886   State.ILV->vectorizeMemoryInstruction(
9887       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9888       StoredValue, getMask());
9889 }
9890 
9891 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9892 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9893 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9894 // for predication.
9895 static ScalarEpilogueLowering getScalarEpilogueLowering(
9896     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9897     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9898     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9899     LoopVectorizationLegality &LVL) {
9900   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9901   // don't look at hints or options, and don't request a scalar epilogue.
9902   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9903   // LoopAccessInfo (due to code dependency and not being able to reliably get
9904   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9905   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9906   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9907   // back to the old way and vectorize with versioning when forced. See D81345.)
9908   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9909                                                       PGSOQueryType::IRPass) &&
9910                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9911     return CM_ScalarEpilogueNotAllowedOptSize;
9912 
9913   // 2) If set, obey the directives
9914   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9915     switch (PreferPredicateOverEpilogue) {
9916     case PreferPredicateTy::ScalarEpilogue:
9917       return CM_ScalarEpilogueAllowed;
9918     case PreferPredicateTy::PredicateElseScalarEpilogue:
9919       return CM_ScalarEpilogueNotNeededUsePredicate;
9920     case PreferPredicateTy::PredicateOrDontVectorize:
9921       return CM_ScalarEpilogueNotAllowedUsePredicate;
9922     };
9923   }
9924 
9925   // 3) If set, obey the hints
9926   switch (Hints.getPredicate()) {
9927   case LoopVectorizeHints::FK_Enabled:
9928     return CM_ScalarEpilogueNotNeededUsePredicate;
9929   case LoopVectorizeHints::FK_Disabled:
9930     return CM_ScalarEpilogueAllowed;
9931   };
9932 
9933   // 4) if the TTI hook indicates this is profitable, request predication.
9934   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9935                                        LVL.getLAI()))
9936     return CM_ScalarEpilogueNotNeededUsePredicate;
9937 
9938   return CM_ScalarEpilogueAllowed;
9939 }
9940 
9941 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9942   // If Values have been set for this Def return the one relevant for \p Part.
9943   if (hasVectorValue(Def, Part))
9944     return Data.PerPartOutput[Def][Part];
9945 
9946   if (!hasScalarValue(Def, {Part, 0})) {
9947     Value *IRV = Def->getLiveInIRValue();
9948     Value *B = ILV->getBroadcastInstrs(IRV);
9949     set(Def, B, Part);
9950     return B;
9951   }
9952 
9953   Value *ScalarValue = get(Def, {Part, 0});
9954   // If we aren't vectorizing, we can just copy the scalar map values over
9955   // to the vector map.
9956   if (VF.isScalar()) {
9957     set(Def, ScalarValue, Part);
9958     return ScalarValue;
9959   }
9960 
9961   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9962   bool IsUniform = RepR && RepR->isUniform();
9963 
9964   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9965   // Check if there is a scalar value for the selected lane.
9966   if (!hasScalarValue(Def, {Part, LastLane})) {
9967     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9968     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9969            "unexpected recipe found to be invariant");
9970     IsUniform = true;
9971     LastLane = 0;
9972   }
9973 
9974   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9975   // Set the insert point after the last scalarized instruction or after the
9976   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9977   // will directly follow the scalar definitions.
9978   auto OldIP = Builder.saveIP();
9979   auto NewIP =
9980       isa<PHINode>(LastInst)
9981           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9982           : std::next(BasicBlock::iterator(LastInst));
9983   Builder.SetInsertPoint(&*NewIP);
9984 
9985   // However, if we are vectorizing, we need to construct the vector values.
9986   // If the value is known to be uniform after vectorization, we can just
9987   // broadcast the scalar value corresponding to lane zero for each unroll
9988   // iteration. Otherwise, we construct the vector values using
9989   // insertelement instructions. Since the resulting vectors are stored in
9990   // State, we will only generate the insertelements once.
9991   Value *VectorValue = nullptr;
9992   if (IsUniform) {
9993     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9994     set(Def, VectorValue, Part);
9995   } else {
9996     // Initialize packing with insertelements to start from undef.
9997     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9998     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9999     set(Def, Undef, Part);
10000     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10001       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10002     VectorValue = get(Def, Part);
10003   }
10004   Builder.restoreIP(OldIP);
10005   return VectorValue;
10006 }
10007 
10008 // Process the loop in the VPlan-native vectorization path. This path builds
10009 // VPlan upfront in the vectorization pipeline, which allows to apply
10010 // VPlan-to-VPlan transformations from the very beginning without modifying the
10011 // input LLVM IR.
10012 static bool processLoopInVPlanNativePath(
10013     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10014     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10015     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10016     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10017     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10018     LoopVectorizationRequirements &Requirements) {
10019 
10020   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10021     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10022     return false;
10023   }
10024   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10025   Function *F = L->getHeader()->getParent();
10026   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10027 
10028   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10029       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10030 
10031   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10032                                 &Hints, IAI);
10033   // Use the planner for outer loop vectorization.
10034   // TODO: CM is not used at this point inside the planner. Turn CM into an
10035   // optional argument if we don't need it in the future.
10036   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10037                                Requirements, ORE);
10038 
10039   // Get user vectorization factor.
10040   ElementCount UserVF = Hints.getWidth();
10041 
10042   CM.collectElementTypesForWidening();
10043 
10044   // Plan how to best vectorize, return the best VF and its cost.
10045   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10046 
10047   // If we are stress testing VPlan builds, do not attempt to generate vector
10048   // code. Masked vector code generation support will follow soon.
10049   // Also, do not attempt to vectorize if no vector code will be produced.
10050   if (VPlanBuildStressTest || EnableVPlanPredication ||
10051       VectorizationFactor::Disabled() == VF)
10052     return false;
10053 
10054   LVP.setBestPlan(VF.Width, 1);
10055 
10056   {
10057     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10058                              F->getParent()->getDataLayout());
10059     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10060                            &CM, BFI, PSI, Checks);
10061     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10062                       << L->getHeader()->getParent()->getName() << "\"\n");
10063     LVP.executePlan(LB, DT);
10064   }
10065 
10066   // Mark the loop as already vectorized to avoid vectorizing again.
10067   Hints.setAlreadyVectorized();
10068   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10069   return true;
10070 }
10071 
10072 // Emit a remark if there are stores to floats that required a floating point
10073 // extension. If the vectorized loop was generated with floating point there
10074 // will be a performance penalty from the conversion overhead and the change in
10075 // the vector width.
10076 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10077   SmallVector<Instruction *, 4> Worklist;
10078   for (BasicBlock *BB : L->getBlocks()) {
10079     for (Instruction &Inst : *BB) {
10080       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10081         if (S->getValueOperand()->getType()->isFloatTy())
10082           Worklist.push_back(S);
10083       }
10084     }
10085   }
10086 
10087   // Traverse the floating point stores upwards searching, for floating point
10088   // conversions.
10089   SmallPtrSet<const Instruction *, 4> Visited;
10090   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10091   while (!Worklist.empty()) {
10092     auto *I = Worklist.pop_back_val();
10093     if (!L->contains(I))
10094       continue;
10095     if (!Visited.insert(I).second)
10096       continue;
10097 
10098     // Emit a remark if the floating point store required a floating
10099     // point conversion.
10100     // TODO: More work could be done to identify the root cause such as a
10101     // constant or a function return type and point the user to it.
10102     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10103       ORE->emit([&]() {
10104         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10105                                           I->getDebugLoc(), L->getHeader())
10106                << "floating point conversion changes vector width. "
10107                << "Mixed floating point precision requires an up/down "
10108                << "cast that will negatively impact performance.";
10109       });
10110 
10111     for (Use &Op : I->operands())
10112       if (auto *OpI = dyn_cast<Instruction>(Op))
10113         Worklist.push_back(OpI);
10114   }
10115 }
10116 
10117 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10118     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10119                                !EnableLoopInterleaving),
10120       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10121                               !EnableLoopVectorization) {}
10122 
10123 bool LoopVectorizePass::processLoop(Loop *L) {
10124   assert((EnableVPlanNativePath || L->isInnermost()) &&
10125          "VPlan-native path is not enabled. Only process inner loops.");
10126 
10127 #ifndef NDEBUG
10128   const std::string DebugLocStr = getDebugLocString(L);
10129 #endif /* NDEBUG */
10130 
10131   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10132                     << L->getHeader()->getParent()->getName() << "\" from "
10133                     << DebugLocStr << "\n");
10134 
10135   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10136 
10137   LLVM_DEBUG(
10138       dbgs() << "LV: Loop hints:"
10139              << " force="
10140              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10141                      ? "disabled"
10142                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10143                             ? "enabled"
10144                             : "?"))
10145              << " width=" << Hints.getWidth()
10146              << " interleave=" << Hints.getInterleave() << "\n");
10147 
10148   // Function containing loop
10149   Function *F = L->getHeader()->getParent();
10150 
10151   // Looking at the diagnostic output is the only way to determine if a loop
10152   // was vectorized (other than looking at the IR or machine code), so it
10153   // is important to generate an optimization remark for each loop. Most of
10154   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10155   // generated as OptimizationRemark and OptimizationRemarkMissed are
10156   // less verbose reporting vectorized loops and unvectorized loops that may
10157   // benefit from vectorization, respectively.
10158 
10159   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10160     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10161     return false;
10162   }
10163 
10164   PredicatedScalarEvolution PSE(*SE, *L);
10165 
10166   // Check if it is legal to vectorize the loop.
10167   LoopVectorizationRequirements Requirements;
10168   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10169                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10170   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10171     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10172     Hints.emitRemarkWithHints();
10173     return false;
10174   }
10175 
10176   // Check the function attributes and profiles to find out if this function
10177   // should be optimized for size.
10178   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10179       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10180 
10181   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10182   // here. They may require CFG and instruction level transformations before
10183   // even evaluating whether vectorization is profitable. Since we cannot modify
10184   // the incoming IR, we need to build VPlan upfront in the vectorization
10185   // pipeline.
10186   if (!L->isInnermost())
10187     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10188                                         ORE, BFI, PSI, Hints, Requirements);
10189 
10190   assert(L->isInnermost() && "Inner loop expected.");
10191 
10192   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10193   // count by optimizing for size, to minimize overheads.
10194   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10195   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10196     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10197                       << "This loop is worth vectorizing only if no scalar "
10198                       << "iteration overheads are incurred.");
10199     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10200       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10201     else {
10202       LLVM_DEBUG(dbgs() << "\n");
10203       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10204     }
10205   }
10206 
10207   // Check the function attributes to see if implicit floats are allowed.
10208   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10209   // an integer loop and the vector instructions selected are purely integer
10210   // vector instructions?
10211   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10212     reportVectorizationFailure(
10213         "Can't vectorize when the NoImplicitFloat attribute is used",
10214         "loop not vectorized due to NoImplicitFloat attribute",
10215         "NoImplicitFloat", ORE, L);
10216     Hints.emitRemarkWithHints();
10217     return false;
10218   }
10219 
10220   // Check if the target supports potentially unsafe FP vectorization.
10221   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10222   // for the target we're vectorizing for, to make sure none of the
10223   // additional fp-math flags can help.
10224   if (Hints.isPotentiallyUnsafe() &&
10225       TTI->isFPVectorizationPotentiallyUnsafe()) {
10226     reportVectorizationFailure(
10227         "Potentially unsafe FP op prevents vectorization",
10228         "loop not vectorized due to unsafe FP support.",
10229         "UnsafeFP", ORE, L);
10230     Hints.emitRemarkWithHints();
10231     return false;
10232   }
10233 
10234   bool AllowOrderedReductions;
10235   // If the flag is set, use that instead and override the TTI behaviour.
10236   if (ForceOrderedReductions.getNumOccurrences() > 0)
10237     AllowOrderedReductions = ForceOrderedReductions;
10238   else
10239     AllowOrderedReductions = TTI->enableOrderedReductions();
10240   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10241     ORE->emit([&]() {
10242       auto *ExactFPMathInst = Requirements.getExactFPInst();
10243       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10244                                                  ExactFPMathInst->getDebugLoc(),
10245                                                  ExactFPMathInst->getParent())
10246              << "loop not vectorized: cannot prove it is safe to reorder "
10247                 "floating-point operations";
10248     });
10249     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10250                          "reorder floating-point operations\n");
10251     Hints.emitRemarkWithHints();
10252     return false;
10253   }
10254 
10255   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10256   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10257 
10258   // If an override option has been passed in for interleaved accesses, use it.
10259   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10260     UseInterleaved = EnableInterleavedMemAccesses;
10261 
10262   // Analyze interleaved memory accesses.
10263   if (UseInterleaved) {
10264     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10265   }
10266 
10267   // Use the cost model.
10268   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10269                                 F, &Hints, IAI);
10270   CM.collectValuesToIgnore();
10271   CM.collectElementTypesForWidening();
10272 
10273   // Use the planner for vectorization.
10274   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10275                                Requirements, ORE);
10276 
10277   // Get user vectorization factor and interleave count.
10278   ElementCount UserVF = Hints.getWidth();
10279   unsigned UserIC = Hints.getInterleave();
10280 
10281   // Plan how to best vectorize, return the best VF and its cost.
10282   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10283 
10284   VectorizationFactor VF = VectorizationFactor::Disabled();
10285   unsigned IC = 1;
10286 
10287   if (MaybeVF) {
10288     VF = *MaybeVF;
10289     // Select the interleave count.
10290     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10291   }
10292 
10293   // Identify the diagnostic messages that should be produced.
10294   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10295   bool VectorizeLoop = true, InterleaveLoop = true;
10296   if (VF.Width.isScalar()) {
10297     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10298     VecDiagMsg = std::make_pair(
10299         "VectorizationNotBeneficial",
10300         "the cost-model indicates that vectorization is not beneficial");
10301     VectorizeLoop = false;
10302   }
10303 
10304   if (!MaybeVF && UserIC > 1) {
10305     // Tell the user interleaving was avoided up-front, despite being explicitly
10306     // requested.
10307     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10308                          "interleaving should be avoided up front\n");
10309     IntDiagMsg = std::make_pair(
10310         "InterleavingAvoided",
10311         "Ignoring UserIC, because interleaving was avoided up front");
10312     InterleaveLoop = false;
10313   } else if (IC == 1 && UserIC <= 1) {
10314     // Tell the user interleaving is not beneficial.
10315     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10316     IntDiagMsg = std::make_pair(
10317         "InterleavingNotBeneficial",
10318         "the cost-model indicates that interleaving is not beneficial");
10319     InterleaveLoop = false;
10320     if (UserIC == 1) {
10321       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10322       IntDiagMsg.second +=
10323           " and is explicitly disabled or interleave count is set to 1";
10324     }
10325   } else if (IC > 1 && UserIC == 1) {
10326     // Tell the user interleaving is beneficial, but it explicitly disabled.
10327     LLVM_DEBUG(
10328         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10329     IntDiagMsg = std::make_pair(
10330         "InterleavingBeneficialButDisabled",
10331         "the cost-model indicates that interleaving is beneficial "
10332         "but is explicitly disabled or interleave count is set to 1");
10333     InterleaveLoop = false;
10334   }
10335 
10336   // Override IC if user provided an interleave count.
10337   IC = UserIC > 0 ? UserIC : IC;
10338 
10339   // Emit diagnostic messages, if any.
10340   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10341   if (!VectorizeLoop && !InterleaveLoop) {
10342     // Do not vectorize or interleaving the loop.
10343     ORE->emit([&]() {
10344       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10345                                       L->getStartLoc(), L->getHeader())
10346              << VecDiagMsg.second;
10347     });
10348     ORE->emit([&]() {
10349       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10350                                       L->getStartLoc(), L->getHeader())
10351              << IntDiagMsg.second;
10352     });
10353     return false;
10354   } else if (!VectorizeLoop && InterleaveLoop) {
10355     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10356     ORE->emit([&]() {
10357       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10358                                         L->getStartLoc(), L->getHeader())
10359              << VecDiagMsg.second;
10360     });
10361   } else if (VectorizeLoop && !InterleaveLoop) {
10362     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10363                       << ") in " << DebugLocStr << '\n');
10364     ORE->emit([&]() {
10365       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10366                                         L->getStartLoc(), L->getHeader())
10367              << IntDiagMsg.second;
10368     });
10369   } else if (VectorizeLoop && InterleaveLoop) {
10370     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10371                       << ") in " << DebugLocStr << '\n');
10372     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10373   }
10374 
10375   bool DisableRuntimeUnroll = false;
10376   MDNode *OrigLoopID = L->getLoopID();
10377   {
10378     // Optimistically generate runtime checks. Drop them if they turn out to not
10379     // be profitable. Limit the scope of Checks, so the cleanup happens
10380     // immediately after vector codegeneration is done.
10381     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10382                              F->getParent()->getDataLayout());
10383     if (!VF.Width.isScalar() || IC > 1)
10384       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10385     LVP.setBestPlan(VF.Width, IC);
10386 
10387     using namespace ore;
10388     if (!VectorizeLoop) {
10389       assert(IC > 1 && "interleave count should not be 1 or 0");
10390       // If we decided that it is not legal to vectorize the loop, then
10391       // interleave it.
10392       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10393                                  &CM, BFI, PSI, Checks);
10394       LVP.executePlan(Unroller, DT);
10395 
10396       ORE->emit([&]() {
10397         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10398                                   L->getHeader())
10399                << "interleaved loop (interleaved count: "
10400                << NV("InterleaveCount", IC) << ")";
10401       });
10402     } else {
10403       // If we decided that it is *legal* to vectorize the loop, then do it.
10404 
10405       // Consider vectorizing the epilogue too if it's profitable.
10406       VectorizationFactor EpilogueVF =
10407           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10408       if (EpilogueVF.Width.isVector()) {
10409 
10410         // The first pass vectorizes the main loop and creates a scalar epilogue
10411         // to be vectorized by executing the plan (potentially with a different
10412         // factor) again shortly afterwards.
10413         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10414         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10415                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10416 
10417         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10418         LVP.executePlan(MainILV, DT);
10419         ++LoopsVectorized;
10420 
10421         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10422         formLCSSARecursively(*L, *DT, LI, SE);
10423 
10424         // Second pass vectorizes the epilogue and adjusts the control flow
10425         // edges from the first pass.
10426         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10427         EPI.MainLoopVF = EPI.EpilogueVF;
10428         EPI.MainLoopUF = EPI.EpilogueUF;
10429         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10430                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10431                                                  Checks);
10432         LVP.executePlan(EpilogILV, DT);
10433         ++LoopsEpilogueVectorized;
10434 
10435         if (!MainILV.areSafetyChecksAdded())
10436           DisableRuntimeUnroll = true;
10437       } else {
10438         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10439                                &LVL, &CM, BFI, PSI, Checks);
10440         LVP.executePlan(LB, DT);
10441         ++LoopsVectorized;
10442 
10443         // Add metadata to disable runtime unrolling a scalar loop when there
10444         // are no runtime checks about strides and memory. A scalar loop that is
10445         // rarely used is not worth unrolling.
10446         if (!LB.areSafetyChecksAdded())
10447           DisableRuntimeUnroll = true;
10448       }
10449       // Report the vectorization decision.
10450       ORE->emit([&]() {
10451         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10452                                   L->getHeader())
10453                << "vectorized loop (vectorization width: "
10454                << NV("VectorizationFactor", VF.Width)
10455                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10456       });
10457     }
10458 
10459     if (ORE->allowExtraAnalysis(LV_NAME))
10460       checkMixedPrecision(L, ORE);
10461   }
10462 
10463   Optional<MDNode *> RemainderLoopID =
10464       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10465                                       LLVMLoopVectorizeFollowupEpilogue});
10466   if (RemainderLoopID.hasValue()) {
10467     L->setLoopID(RemainderLoopID.getValue());
10468   } else {
10469     if (DisableRuntimeUnroll)
10470       AddRuntimeUnrollDisableMetaData(L);
10471 
10472     // Mark the loop as already vectorized to avoid vectorizing again.
10473     Hints.setAlreadyVectorized();
10474   }
10475 
10476   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10477   return true;
10478 }
10479 
10480 LoopVectorizeResult LoopVectorizePass::runImpl(
10481     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10482     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10483     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10484     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10485     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10486   SE = &SE_;
10487   LI = &LI_;
10488   TTI = &TTI_;
10489   DT = &DT_;
10490   BFI = &BFI_;
10491   TLI = TLI_;
10492   AA = &AA_;
10493   AC = &AC_;
10494   GetLAA = &GetLAA_;
10495   DB = &DB_;
10496   ORE = &ORE_;
10497   PSI = PSI_;
10498 
10499   // Don't attempt if
10500   // 1. the target claims to have no vector registers, and
10501   // 2. interleaving won't help ILP.
10502   //
10503   // The second condition is necessary because, even if the target has no
10504   // vector registers, loop vectorization may still enable scalar
10505   // interleaving.
10506   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10507       TTI->getMaxInterleaveFactor(1) < 2)
10508     return LoopVectorizeResult(false, false);
10509 
10510   bool Changed = false, CFGChanged = false;
10511 
10512   // The vectorizer requires loops to be in simplified form.
10513   // Since simplification may add new inner loops, it has to run before the
10514   // legality and profitability checks. This means running the loop vectorizer
10515   // will simplify all loops, regardless of whether anything end up being
10516   // vectorized.
10517   for (auto &L : *LI)
10518     Changed |= CFGChanged |=
10519         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10520 
10521   // Build up a worklist of inner-loops to vectorize. This is necessary as
10522   // the act of vectorizing or partially unrolling a loop creates new loops
10523   // and can invalidate iterators across the loops.
10524   SmallVector<Loop *, 8> Worklist;
10525 
10526   for (Loop *L : *LI)
10527     collectSupportedLoops(*L, LI, ORE, Worklist);
10528 
10529   LoopsAnalyzed += Worklist.size();
10530 
10531   // Now walk the identified inner loops.
10532   while (!Worklist.empty()) {
10533     Loop *L = Worklist.pop_back_val();
10534 
10535     // For the inner loops we actually process, form LCSSA to simplify the
10536     // transform.
10537     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10538 
10539     Changed |= CFGChanged |= processLoop(L);
10540   }
10541 
10542   // Process each loop nest in the function.
10543   return LoopVectorizeResult(Changed, CFGChanged);
10544 }
10545 
10546 PreservedAnalyses LoopVectorizePass::run(Function &F,
10547                                          FunctionAnalysisManager &AM) {
10548     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10549     auto &LI = AM.getResult<LoopAnalysis>(F);
10550     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10551     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10552     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10553     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10554     auto &AA = AM.getResult<AAManager>(F);
10555     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10556     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10557     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10558 
10559     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10560     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10561         [&](Loop &L) -> const LoopAccessInfo & {
10562       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10563                                         TLI, TTI, nullptr, nullptr};
10564       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10565     };
10566     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10567     ProfileSummaryInfo *PSI =
10568         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10569     LoopVectorizeResult Result =
10570         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10571     if (!Result.MadeAnyChange)
10572       return PreservedAnalyses::all();
10573     PreservedAnalyses PA;
10574 
10575     // We currently do not preserve loopinfo/dominator analyses with outer loop
10576     // vectorization. Until this is addressed, mark these analyses as preserved
10577     // only for non-VPlan-native path.
10578     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10579     if (!EnableVPlanNativePath) {
10580       PA.preserve<LoopAnalysis>();
10581       PA.preserve<DominatorTreeAnalysis>();
10582     }
10583     if (!Result.MadeCFGChange)
10584       PA.preserveSet<CFGAnalyses>();
10585     return PA;
10586 }
10587