1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <cstdlib>
147 #include <functional>
148 #include <iterator>
149 #include <limits>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 /// @{
161 /// Metadata attribute names
162 static const char *const LLVMLoopVectorizeFollowupAll =
163     "llvm.loop.vectorize.followup_all";
164 static const char *const LLVMLoopVectorizeFollowupVectorized =
165     "llvm.loop.vectorize.followup_vectorized";
166 static const char *const LLVMLoopVectorizeFollowupEpilogue =
167     "llvm.loop.vectorize.followup_epilogue";
168 /// @}
169 
170 STATISTIC(LoopsVectorized, "Number of loops vectorized");
171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
172 
173 /// Loops with a known constant trip count below this number are vectorized only
174 /// if no scalar iteration overheads are incurred.
175 static cl::opt<unsigned> TinyTripCountVectorThreshold(
176     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
177     cl::desc("Loops with a constant trip count that is smaller than this "
178              "value are vectorized only if no scalar iteration overheads "
179              "are incurred."));
180 
181 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
182 // that predication is preferred, and this lists all options. I.e., the
183 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
184 // and predicate the instructions accordingly. If tail-folding fails, there are
185 // different fallback strategies depending on these values:
186 namespace PreferPredicateTy {
187   enum Option {
188     ScalarEpilogue = 0,
189     PredicateElseScalarEpilogue,
190     PredicateOrDontVectorize
191   };
192 } // namespace PreferPredicateTy
193 
194 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
195     "prefer-predicate-over-epilogue",
196     cl::init(PreferPredicateTy::ScalarEpilogue),
197     cl::Hidden,
198     cl::desc("Tail-folding and predication preferences over creating a scalar "
199              "epilogue loop."),
200     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
201                          "scalar-epilogue",
202                          "Don't tail-predicate loops, create scalar epilogue"),
203               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
204                          "predicate-else-scalar-epilogue",
205                          "prefer tail-folding, create scalar epilogue if tail "
206                          "folding fails."),
207               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
208                          "predicate-dont-vectorize",
209                          "prefers tail-folding, don't attempt vectorization if "
210                          "tail-folding fails.")));
211 
212 static cl::opt<bool> MaximizeBandwidth(
213     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
214     cl::desc("Maximize bandwidth when selecting vectorization factor which "
215              "will be determined by the smallest type in loop."));
216 
217 static cl::opt<bool> EnableInterleavedMemAccesses(
218     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
219     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
220 
221 /// An interleave-group may need masking if it resides in a block that needs
222 /// predication, or in order to mask away gaps.
223 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
224     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
225     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
226 
227 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
228     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
229     cl::desc("We don't interleave loops with a estimated constant trip count "
230              "below this number"));
231 
232 static cl::opt<unsigned> ForceTargetNumScalarRegs(
233     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
234     cl::desc("A flag that overrides the target's number of scalar registers."));
235 
236 static cl::opt<unsigned> ForceTargetNumVectorRegs(
237     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
238     cl::desc("A flag that overrides the target's number of vector registers."));
239 
240 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
241     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
242     cl::desc("A flag that overrides the target's max interleave factor for "
243              "scalar loops."));
244 
245 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
246     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
247     cl::desc("A flag that overrides the target's max interleave factor for "
248              "vectorized loops."));
249 
250 static cl::opt<unsigned> ForceTargetInstructionCost(
251     "force-target-instruction-cost", cl::init(0), cl::Hidden,
252     cl::desc("A flag that overrides the target's expected cost for "
253              "an instruction to a single constant value. Mostly "
254              "useful for getting consistent testing."));
255 
256 static cl::opt<unsigned> SmallLoopCost(
257     "small-loop-cost", cl::init(20), cl::Hidden,
258     cl::desc(
259         "The cost of a loop that is considered 'small' by the interleaver."));
260 
261 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
262     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
263     cl::desc("Enable the use of the block frequency analysis to access PGO "
264              "heuristics minimizing code growth in cold regions and being more "
265              "aggressive in hot regions."));
266 
267 // Runtime interleave loops for load/store throughput.
268 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
269     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
270     cl::desc(
271         "Enable runtime interleaving until load/store ports are saturated"));
272 
273 /// Interleave small loops with scalar reductions.
274 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
275     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
276     cl::desc("Enable interleaving for loops with small iteration counts that "
277              "contain scalar reductions to expose ILP."));
278 
279 /// The number of stores in a loop that are allowed to need predication.
280 static cl::opt<unsigned> NumberOfStoresToPredicate(
281     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
282     cl::desc("Max number of stores to be predicated behind an if."));
283 
284 static cl::opt<bool> EnableIndVarRegisterHeur(
285     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
286     cl::desc("Count the induction variable only once when interleaving"));
287 
288 static cl::opt<bool> EnableCondStoresVectorization(
289     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
290     cl::desc("Enable if predication of stores during vectorization."));
291 
292 static cl::opt<unsigned> MaxNestedScalarReductionIC(
293     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
294     cl::desc("The maximum interleave count to use when interleaving a scalar "
295              "reduction in a nested loop."));
296 
297 static cl::opt<bool>
298     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
299                            cl::Hidden,
300                            cl::desc("Prefer in-loop vector reductions, "
301                                     "overriding the targets preference."));
302 
303 static cl::opt<bool> PreferPredicatedReductionSelect(
304     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
305     cl::desc(
306         "Prefer predicating a reduction operation over an after loop select."));
307 
308 cl::opt<bool> EnableVPlanNativePath(
309     "enable-vplan-native-path", cl::init(false), cl::Hidden,
310     cl::desc("Enable VPlan-native vectorization path with "
311              "support for outer loop vectorization."));
312 
313 // FIXME: Remove this switch once we have divergence analysis. Currently we
314 // assume divergent non-backedge branches when this switch is true.
315 cl::opt<bool> EnableVPlanPredication(
316     "enable-vplan-predication", cl::init(false), cl::Hidden,
317     cl::desc("Enable VPlan-native vectorization path predicator with "
318              "support for outer loop vectorization."));
319 
320 // This flag enables the stress testing of the VPlan H-CFG construction in the
321 // VPlan-native vectorization path. It must be used in conjuction with
322 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
323 // verification of the H-CFGs built.
324 static cl::opt<bool> VPlanBuildStressTest(
325     "vplan-build-stress-test", cl::init(false), cl::Hidden,
326     cl::desc(
327         "Build VPlan for every supported loop nest in the function and bail "
328         "out right after the build (stress test the VPlan H-CFG construction "
329         "in the VPlan-native vectorization path)."));
330 
331 cl::opt<bool> llvm::EnableLoopInterleaving(
332     "interleave-loops", cl::init(true), cl::Hidden,
333     cl::desc("Enable loop interleaving in Loop vectorization passes"));
334 cl::opt<bool> llvm::EnableLoopVectorization(
335     "vectorize-loops", cl::init(true), cl::Hidden,
336     cl::desc("Run the Loop vectorization passes"));
337 
338 /// A helper function that returns the type of loaded or stored value.
339 static Type *getMemInstValueType(Value *I) {
340   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
341          "Expected Load or Store instruction");
342   if (auto *LI = dyn_cast<LoadInst>(I))
343     return LI->getType();
344   return cast<StoreInst>(I)->getValueOperand()->getType();
345 }
346 
347 /// A helper function that returns true if the given type is irregular. The
348 /// type is irregular if its allocated size doesn't equal the store size of an
349 /// element of the corresponding vector type at the given vectorization factor.
350 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) {
351   assert(!VF.isScalable() && "scalable vectors not yet supported.");
352   // Determine if an array of VF elements of type Ty is "bitcast compatible"
353   // with a <VF x Ty> vector.
354   if (VF.isVector()) {
355     auto *VectorTy = VectorType::get(Ty, VF);
356     return TypeSize::get(VF.getKnownMinValue() *
357                              DL.getTypeAllocSize(Ty).getFixedValue(),
358                          VF.isScalable()) != DL.getTypeStoreSize(VectorTy);
359   }
360 
361   // If the vectorization factor is one, we just check if an array of type Ty
362   // requires padding between elements.
363   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
364 }
365 
366 /// A helper function that returns the reciprocal of the block probability of
367 /// predicated blocks. If we return X, we are assuming the predicated block
368 /// will execute once for every X iterations of the loop header.
369 ///
370 /// TODO: We should use actual block probability here, if available. Currently,
371 ///       we always assume predicated blocks have a 50% chance of executing.
372 static unsigned getReciprocalPredBlockProb() { return 2; }
373 
374 /// A helper function that adds a 'fast' flag to floating-point operations.
375 static Value *addFastMathFlag(Value *V) {
376   if (isa<FPMathOperator>(V))
377     cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast());
378   return V;
379 }
380 
381 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
382   if (isa<FPMathOperator>(V))
383     cast<Instruction>(V)->setFastMathFlags(FMF);
384   return V;
385 }
386 
387 /// A helper function that returns an integer or floating-point constant with
388 /// value C.
389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
390   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
391                            : ConstantFP::get(Ty, C);
392 }
393 
394 /// Returns "best known" trip count for the specified loop \p L as defined by
395 /// the following procedure:
396 ///   1) Returns exact trip count if it is known.
397 ///   2) Returns expected trip count according to profile data if any.
398 ///   3) Returns upper bound estimate if it is known.
399 ///   4) Returns None if all of the above failed.
400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
401   // Check if exact trip count is known.
402   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
403     return ExpectedTC;
404 
405   // Check if there is an expected trip count available from profile data.
406   if (LoopVectorizeWithBlockFrequency)
407     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
408       return EstimatedTC;
409 
410   // Check if upper bound estimate is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
412     return ExpectedTC;
413 
414   return None;
415 }
416 
417 namespace llvm {
418 
419 /// InnerLoopVectorizer vectorizes loops which contain only one basic
420 /// block to a specified vectorization factor (VF).
421 /// This class performs the widening of scalars into vectors, or multiple
422 /// scalars. This class also implements the following features:
423 /// * It inserts an epilogue loop for handling loops that don't have iteration
424 ///   counts that are known to be a multiple of the vectorization factor.
425 /// * It handles the code generation for reduction variables.
426 /// * Scalarization (implementation using scalars) of un-vectorizable
427 ///   instructions.
428 /// InnerLoopVectorizer does not perform any vectorization-legality
429 /// checks, and relies on the caller to check for the different legality
430 /// aspects. The InnerLoopVectorizer relies on the
431 /// LoopVectorizationLegality class to provide information about the induction
432 /// and reduction variables that were found to a given vectorization factor.
433 class InnerLoopVectorizer {
434 public:
435   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
436                       LoopInfo *LI, DominatorTree *DT,
437                       const TargetLibraryInfo *TLI,
438                       const TargetTransformInfo *TTI, AssumptionCache *AC,
439                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
440                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
441                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
442                       ProfileSummaryInfo *PSI)
443       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
444         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
445         Builder(PSE.getSE()->getContext()),
446         VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM),
447         BFI(BFI), PSI(PSI) {
448     // Query this against the original loop and save it here because the profile
449     // of the original loop header may change as the transformation happens.
450     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
451         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
452   }
453 
454   virtual ~InnerLoopVectorizer() = default;
455 
456   /// Create a new empty loop that will contain vectorized instructions later
457   /// on, while the old loop will be used as the scalar remainder. Control flow
458   /// is generated around the vectorized (and scalar epilogue) loops consisting
459   /// of various checks and bypasses. Return the pre-header block of the new
460   /// loop.
461   BasicBlock *createVectorizedLoopSkeleton();
462 
463   /// Widen a single instruction within the innermost loop.
464   void widenInstruction(Instruction &I, VPUser &Operands,
465                         VPTransformState &State);
466 
467   /// Widen a single call instruction within the innermost loop.
468   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
469                             VPTransformState &State);
470 
471   /// Widen a single select instruction within the innermost loop.
472   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
473                               bool InvariantCond, VPTransformState &State);
474 
475   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
476   void fixVectorizedLoop();
477 
478   // Return true if any runtime check is added.
479   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
480 
481   /// A type for vectorized values in the new loop. Each value from the
482   /// original loop, when vectorized, is represented by UF vector values in the
483   /// new unrolled loop, where UF is the unroll factor.
484   using VectorParts = SmallVector<Value *, 2>;
485 
486   /// Vectorize a single GetElementPtrInst based on information gathered and
487   /// decisions taken during planning.
488   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
489                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
490                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
491 
492   /// Vectorize a single PHINode in a block. This method handles the induction
493   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
494   /// arbitrary length vectors.
495   void widenPHIInstruction(Instruction *PN, unsigned UF, ElementCount VF);
496 
497   /// A helper function to scalarize a single Instruction in the innermost loop.
498   /// Generates a sequence of scalar instances for each lane between \p MinLane
499   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
500   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
501   /// Instr's operands.
502   void scalarizeInstruction(Instruction *Instr, VPUser &Operands,
503                             const VPIteration &Instance, bool IfPredicateInstr,
504                             VPTransformState &State);
505 
506   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
507   /// is provided, the integer induction variable will first be truncated to
508   /// the corresponding type.
509   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
510 
511   /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
512   /// vector or scalar value on-demand if one is not yet available. When
513   /// vectorizing a loop, we visit the definition of an instruction before its
514   /// uses. When visiting the definition, we either vectorize or scalarize the
515   /// instruction, creating an entry for it in the corresponding map. (In some
516   /// cases, such as induction variables, we will create both vector and scalar
517   /// entries.) Then, as we encounter uses of the definition, we derive values
518   /// for each scalar or vector use unless such a value is already available.
519   /// For example, if we scalarize a definition and one of its uses is vector,
520   /// we build the required vector on-demand with an insertelement sequence
521   /// when visiting the use. Otherwise, if the use is scalar, we can use the
522   /// existing scalar definition.
523   ///
524   /// Return a value in the new loop corresponding to \p V from the original
525   /// loop at unroll index \p Part. If the value has already been vectorized,
526   /// the corresponding vector entry in VectorLoopValueMap is returned. If,
527   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
528   /// a new vector value on-demand by inserting the scalar values into a vector
529   /// with an insertelement sequence. If the value has been neither vectorized
530   /// nor scalarized, it must be loop invariant, so we simply broadcast the
531   /// value into a vector.
532   Value *getOrCreateVectorValue(Value *V, unsigned Part);
533 
534   void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) {
535     VectorLoopValueMap.setVectorValue(Scalar, Part, Vector);
536   }
537 
538   /// Return a value in the new loop corresponding to \p V from the original
539   /// loop at unroll and vector indices \p Instance. If the value has been
540   /// vectorized but not scalarized, the necessary extractelement instruction
541   /// will be generated.
542   Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
543 
544   /// Construct the vector value of a scalarized value \p V one lane at a time.
545   void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
546 
547   /// Try to vectorize interleaved access group \p Group with the base address
548   /// given in \p Addr, optionally masking the vector operations if \p
549   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
550   /// values in the vectorized loop.
551   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
552                                 VPTransformState &State, VPValue *Addr,
553                                 VPValue *BlockInMask = nullptr);
554 
555   /// Vectorize Load and Store instructions with the base address given in \p
556   /// Addr, optionally masking the vector operations if \p BlockInMask is
557   /// non-null. Use \p State to translate given VPValues to IR values in the
558   /// vectorized loop.
559   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
560                                   VPValue *Def, VPValue *Addr,
561                                   VPValue *StoredValue, VPValue *BlockInMask);
562 
563   /// Set the debug location in the builder using the debug location in
564   /// the instruction.
565   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
566 
567   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
568   void fixNonInductionPHIs(void);
569 
570 protected:
571   friend class LoopVectorizationPlanner;
572 
573   /// A small list of PHINodes.
574   using PhiVector = SmallVector<PHINode *, 4>;
575 
576   /// A type for scalarized values in the new loop. Each value from the
577   /// original loop, when scalarized, is represented by UF x VF scalar values
578   /// in the new unrolled loop, where UF is the unroll factor and VF is the
579   /// vectorization factor.
580   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
581 
582   /// Set up the values of the IVs correctly when exiting the vector loop.
583   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
584                     Value *CountRoundDown, Value *EndValue,
585                     BasicBlock *MiddleBlock);
586 
587   /// Create a new induction variable inside L.
588   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
589                                    Value *Step, Instruction *DL);
590 
591   /// Handle all cross-iteration phis in the header.
592   void fixCrossIterationPHIs();
593 
594   /// Fix a first-order recurrence. This is the second phase of vectorizing
595   /// this phi node.
596   void fixFirstOrderRecurrence(PHINode *Phi);
597 
598   /// Fix a reduction cross-iteration phi. This is the second phase of
599   /// vectorizing this phi node.
600   void fixReduction(PHINode *Phi);
601 
602   /// Clear NSW/NUW flags from reduction instructions if necessary.
603   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc);
604 
605   /// The Loop exit block may have single value PHI nodes with some
606   /// incoming value. While vectorizing we only handled real values
607   /// that were defined inside the loop and we should have one value for
608   /// each predecessor of its parent basic block. See PR14725.
609   void fixLCSSAPHIs();
610 
611   /// Iteratively sink the scalarized operands of a predicated instruction into
612   /// the block that was created for it.
613   void sinkScalarOperands(Instruction *PredInst);
614 
615   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
616   /// represented as.
617   void truncateToMinimalBitwidths();
618 
619   /// Create a broadcast instruction. This method generates a broadcast
620   /// instruction (shuffle) for loop invariant values and for the induction
621   /// value. If this is the induction variable then we extend it to N, N+1, ...
622   /// this is needed because each iteration in the loop corresponds to a SIMD
623   /// element.
624   virtual Value *getBroadcastInstrs(Value *V);
625 
626   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
627   /// to each vector element of Val. The sequence starts at StartIndex.
628   /// \p Opcode is relevant for FP induction variable.
629   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
630                                Instruction::BinaryOps Opcode =
631                                Instruction::BinaryOpsEnd);
632 
633   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
634   /// variable on which to base the steps, \p Step is the size of the step, and
635   /// \p EntryVal is the value from the original loop that maps to the steps.
636   /// Note that \p EntryVal doesn't have to be an induction variable - it
637   /// can also be a truncate instruction.
638   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
639                         const InductionDescriptor &ID);
640 
641   /// Create a vector induction phi node based on an existing scalar one. \p
642   /// EntryVal is the value from the original loop that maps to the vector phi
643   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
644   /// truncate instruction, instead of widening the original IV, we widen a
645   /// version of the IV truncated to \p EntryVal's type.
646   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
647                                        Value *Step, Instruction *EntryVal);
648 
649   /// Returns true if an instruction \p I should be scalarized instead of
650   /// vectorized for the chosen vectorization factor.
651   bool shouldScalarizeInstruction(Instruction *I) const;
652 
653   /// Returns true if we should generate a scalar version of \p IV.
654   bool needsScalarInduction(Instruction *IV) const;
655 
656   /// If there is a cast involved in the induction variable \p ID, which should
657   /// be ignored in the vectorized loop body, this function records the
658   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
659   /// cast. We had already proved that the casted Phi is equal to the uncasted
660   /// Phi in the vectorized loop (under a runtime guard), and therefore
661   /// there is no need to vectorize the cast - the same value can be used in the
662   /// vector loop for both the Phi and the cast.
663   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
664   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
665   ///
666   /// \p EntryVal is the value from the original loop that maps to the vector
667   /// phi node and is used to distinguish what is the IV currently being
668   /// processed - original one (if \p EntryVal is a phi corresponding to the
669   /// original IV) or the "newly-created" one based on the proof mentioned above
670   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
671   /// latter case \p EntryVal is a TruncInst and we must not record anything for
672   /// that IV, but it's error-prone to expect callers of this routine to care
673   /// about that, hence this explicit parameter.
674   void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
675                                              const Instruction *EntryVal,
676                                              Value *VectorLoopValue,
677                                              unsigned Part,
678                                              unsigned Lane = UINT_MAX);
679 
680   /// Generate a shuffle sequence that will reverse the vector Vec.
681   virtual Value *reverseVector(Value *Vec);
682 
683   /// Returns (and creates if needed) the original loop trip count.
684   Value *getOrCreateTripCount(Loop *NewLoop);
685 
686   /// Returns (and creates if needed) the trip count of the widened loop.
687   Value *getOrCreateVectorTripCount(Loop *NewLoop);
688 
689   /// Returns a bitcasted value to the requested vector type.
690   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
691   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
692                                 const DataLayout &DL);
693 
694   /// Emit a bypass check to see if the vector trip count is zero, including if
695   /// it overflows.
696   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
697 
698   /// Emit a bypass check to see if all of the SCEV assumptions we've
699   /// had to make are correct.
700   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
701 
702   /// Emit bypass checks to check any memory assumptions we may have made.
703   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
704 
705   /// Compute the transformed value of Index at offset StartValue using step
706   /// StepValue.
707   /// For integer induction, returns StartValue + Index * StepValue.
708   /// For pointer induction, returns StartValue[Index * StepValue].
709   /// FIXME: The newly created binary instructions should contain nsw/nuw
710   /// flags, which can be found from the original scalar operations.
711   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
712                               const DataLayout &DL,
713                               const InductionDescriptor &ID) const;
714 
715   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
716   /// vector loop preheader, middle block and scalar preheader. Also
717   /// allocate a loop object for the new vector loop and return it.
718   Loop *createVectorLoopSkeleton(StringRef Prefix);
719 
720   /// Create new phi nodes for the induction variables to resume iteration count
721   /// in the scalar epilogue, from where the vectorized loop left off (given by
722   /// \p VectorTripCount).
723   void createInductionResumeValues(Loop *L, Value *VectorTripCount);
724 
725   /// Complete the loop skeleton by adding debug MDs, creating appropriate
726   /// conditional branches in the middle block, preparing the builder and
727   /// running the verifier. Take in the vector loop \p L as argument, and return
728   /// the preheader of the completed vector loop.
729   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
730 
731   /// Add additional metadata to \p To that was not present on \p Orig.
732   ///
733   /// Currently this is used to add the noalias annotations based on the
734   /// inserted memchecks.  Use this for instructions that are *cloned* into the
735   /// vector loop.
736   void addNewMetadata(Instruction *To, const Instruction *Orig);
737 
738   /// Add metadata from one instruction to another.
739   ///
740   /// This includes both the original MDs from \p From and additional ones (\see
741   /// addNewMetadata).  Use this for *newly created* instructions in the vector
742   /// loop.
743   void addMetadata(Instruction *To, Instruction *From);
744 
745   /// Similar to the previous function but it adds the metadata to a
746   /// vector of instructions.
747   void addMetadata(ArrayRef<Value *> To, Instruction *From);
748 
749   /// The original loop.
750   Loop *OrigLoop;
751 
752   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
753   /// dynamic knowledge to simplify SCEV expressions and converts them to a
754   /// more usable form.
755   PredicatedScalarEvolution &PSE;
756 
757   /// Loop Info.
758   LoopInfo *LI;
759 
760   /// Dominator Tree.
761   DominatorTree *DT;
762 
763   /// Alias Analysis.
764   AAResults *AA;
765 
766   /// Target Library Info.
767   const TargetLibraryInfo *TLI;
768 
769   /// Target Transform Info.
770   const TargetTransformInfo *TTI;
771 
772   /// Assumption Cache.
773   AssumptionCache *AC;
774 
775   /// Interface to emit optimization remarks.
776   OptimizationRemarkEmitter *ORE;
777 
778   /// LoopVersioning.  It's only set up (non-null) if memchecks were
779   /// used.
780   ///
781   /// This is currently only used to add no-alias metadata based on the
782   /// memchecks.  The actually versioning is performed manually.
783   std::unique_ptr<LoopVersioning> LVer;
784 
785   /// The vectorization SIMD factor to use. Each vector will have this many
786   /// vector elements.
787   ElementCount VF;
788 
789   /// The vectorization unroll factor to use. Each scalar is vectorized to this
790   /// many different vector instructions.
791   unsigned UF;
792 
793   /// The builder that we use
794   IRBuilder<> Builder;
795 
796   // --- Vectorization state ---
797 
798   /// The vector-loop preheader.
799   BasicBlock *LoopVectorPreHeader;
800 
801   /// The scalar-loop preheader.
802   BasicBlock *LoopScalarPreHeader;
803 
804   /// Middle Block between the vector and the scalar.
805   BasicBlock *LoopMiddleBlock;
806 
807   /// The ExitBlock of the scalar loop.
808   BasicBlock *LoopExitBlock;
809 
810   /// The vector loop body.
811   BasicBlock *LoopVectorBody;
812 
813   /// The scalar loop body.
814   BasicBlock *LoopScalarBody;
815 
816   /// A list of all bypass blocks. The first block is the entry of the loop.
817   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
818 
819   /// The new Induction variable which was added to the new block.
820   PHINode *Induction = nullptr;
821 
822   /// The induction variable of the old basic block.
823   PHINode *OldInduction = nullptr;
824 
825   /// Maps values from the original loop to their corresponding values in the
826   /// vectorized loop. A key value can map to either vector values, scalar
827   /// values or both kinds of values, depending on whether the key was
828   /// vectorized and scalarized.
829   VectorizerValueMap VectorLoopValueMap;
830 
831   /// Store instructions that were predicated.
832   SmallVector<Instruction *, 4> PredicatedInstructions;
833 
834   /// Trip count of the original loop.
835   Value *TripCount = nullptr;
836 
837   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
838   Value *VectorTripCount = nullptr;
839 
840   /// The legality analysis.
841   LoopVectorizationLegality *Legal;
842 
843   /// The profitablity analysis.
844   LoopVectorizationCostModel *Cost;
845 
846   // Record whether runtime checks are added.
847   bool AddedSafetyChecks = false;
848 
849   // Holds the end values for each induction variable. We save the end values
850   // so we can later fix-up the external users of the induction variables.
851   DenseMap<PHINode *, Value *> IVEndValues;
852 
853   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
854   // fixed up at the end of vector code generation.
855   SmallVector<PHINode *, 8> OrigPHIsToFix;
856 
857   /// BFI and PSI are used to check for profile guided size optimizations.
858   BlockFrequencyInfo *BFI;
859   ProfileSummaryInfo *PSI;
860 
861   // Whether this loop should be optimized for size based on profile guided size
862   // optimizatios.
863   bool OptForSizeBasedOnProfile;
864 };
865 
866 class InnerLoopUnroller : public InnerLoopVectorizer {
867 public:
868   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
869                     LoopInfo *LI, DominatorTree *DT,
870                     const TargetLibraryInfo *TLI,
871                     const TargetTransformInfo *TTI, AssumptionCache *AC,
872                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
873                     LoopVectorizationLegality *LVL,
874                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
875                     ProfileSummaryInfo *PSI)
876       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
877                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
878                             BFI, PSI) {}
879 
880 private:
881   Value *getBroadcastInstrs(Value *V) override;
882   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
883                        Instruction::BinaryOps Opcode =
884                        Instruction::BinaryOpsEnd) override;
885   Value *reverseVector(Value *Vec) override;
886 };
887 
888 } // end namespace llvm
889 
890 /// Look for a meaningful debug location on the instruction or it's
891 /// operands.
892 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
893   if (!I)
894     return I;
895 
896   DebugLoc Empty;
897   if (I->getDebugLoc() != Empty)
898     return I;
899 
900   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
901     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
902       if (OpInst->getDebugLoc() != Empty)
903         return OpInst;
904   }
905 
906   return I;
907 }
908 
909 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
910   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
911     const DILocation *DIL = Inst->getDebugLoc();
912     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
913         !isa<DbgInfoIntrinsic>(Inst)) {
914       assert(!VF.isScalable() && "scalable vectors not yet supported.");
915       auto NewDIL =
916           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
917       if (NewDIL)
918         B.SetCurrentDebugLocation(NewDIL.getValue());
919       else
920         LLVM_DEBUG(dbgs()
921                    << "Failed to create new discriminator: "
922                    << DIL->getFilename() << " Line: " << DIL->getLine());
923     }
924     else
925       B.SetCurrentDebugLocation(DIL);
926   } else
927     B.SetCurrentDebugLocation(DebugLoc());
928 }
929 
930 /// Write a record \p DebugMsg about vectorization failure to the debug
931 /// output stream. If \p I is passed, it is an instruction that prevents
932 /// vectorization.
933 #ifndef NDEBUG
934 static void debugVectorizationFailure(const StringRef DebugMsg,
935     Instruction *I) {
936   dbgs() << "LV: Not vectorizing: " << DebugMsg;
937   if (I != nullptr)
938     dbgs() << " " << *I;
939   else
940     dbgs() << '.';
941   dbgs() << '\n';
942 }
943 #endif
944 
945 /// Create an analysis remark that explains why vectorization failed
946 ///
947 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
948 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
949 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
950 /// the location of the remark.  \return the remark object that can be
951 /// streamed to.
952 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
953     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
954   Value *CodeRegion = TheLoop->getHeader();
955   DebugLoc DL = TheLoop->getStartLoc();
956 
957   if (I) {
958     CodeRegion = I->getParent();
959     // If there is no debug location attached to the instruction, revert back to
960     // using the loop's.
961     if (I->getDebugLoc())
962       DL = I->getDebugLoc();
963   }
964 
965   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
966   R << "loop not vectorized: ";
967   return R;
968 }
969 
970 namespace llvm {
971 
972 void reportVectorizationFailure(const StringRef DebugMsg,
973     const StringRef OREMsg, const StringRef ORETag,
974     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
975   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
976   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
977   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
978                 ORETag, TheLoop, I) << OREMsg);
979 }
980 
981 } // end namespace llvm
982 
983 #ifndef NDEBUG
984 /// \return string containing a file name and a line # for the given loop.
985 static std::string getDebugLocString(const Loop *L) {
986   std::string Result;
987   if (L) {
988     raw_string_ostream OS(Result);
989     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
990       LoopDbgLoc.print(OS);
991     else
992       // Just print the module name.
993       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
994     OS.flush();
995   }
996   return Result;
997 }
998 #endif
999 
1000 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1001                                          const Instruction *Orig) {
1002   // If the loop was versioned with memchecks, add the corresponding no-alias
1003   // metadata.
1004   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1005     LVer->annotateInstWithNoAlias(To, Orig);
1006 }
1007 
1008 void InnerLoopVectorizer::addMetadata(Instruction *To,
1009                                       Instruction *From) {
1010   propagateMetadata(To, From);
1011   addNewMetadata(To, From);
1012 }
1013 
1014 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1015                                       Instruction *From) {
1016   for (Value *V : To) {
1017     if (Instruction *I = dyn_cast<Instruction>(V))
1018       addMetadata(I, From);
1019   }
1020 }
1021 
1022 namespace llvm {
1023 
1024 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1025 // lowered.
1026 enum ScalarEpilogueLowering {
1027 
1028   // The default: allowing scalar epilogues.
1029   CM_ScalarEpilogueAllowed,
1030 
1031   // Vectorization with OptForSize: don't allow epilogues.
1032   CM_ScalarEpilogueNotAllowedOptSize,
1033 
1034   // A special case of vectorisation with OptForSize: loops with a very small
1035   // trip count are considered for vectorization under OptForSize, thereby
1036   // making sure the cost of their loop body is dominant, free of runtime
1037   // guards and scalar iteration overheads.
1038   CM_ScalarEpilogueNotAllowedLowTripLoop,
1039 
1040   // Loop hint predicate indicating an epilogue is undesired.
1041   CM_ScalarEpilogueNotNeededUsePredicate
1042 };
1043 
1044 /// LoopVectorizationCostModel - estimates the expected speedups due to
1045 /// vectorization.
1046 /// In many cases vectorization is not profitable. This can happen because of
1047 /// a number of reasons. In this class we mainly attempt to predict the
1048 /// expected speedup/slowdowns due to the supported instruction set. We use the
1049 /// TargetTransformInfo to query the different backends for the cost of
1050 /// different operations.
1051 class LoopVectorizationCostModel {
1052 public:
1053   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1054                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1055                              LoopVectorizationLegality *Legal,
1056                              const TargetTransformInfo &TTI,
1057                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1058                              AssumptionCache *AC,
1059                              OptimizationRemarkEmitter *ORE, const Function *F,
1060                              const LoopVectorizeHints *Hints,
1061                              InterleavedAccessInfo &IAI)
1062       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1063         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1064         Hints(Hints), InterleaveInfo(IAI) {}
1065 
1066   /// \return An upper bound for the vectorization factor, or None if
1067   /// vectorization and interleaving should be avoided up front.
1068   Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC);
1069 
1070   /// \return True if runtime checks are required for vectorization, and false
1071   /// otherwise.
1072   bool runtimeChecksRequired();
1073 
1074   /// \return The most profitable vectorization factor and the cost of that VF.
1075   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1076   /// then this vectorization factor will be selected if vectorization is
1077   /// possible.
1078   VectorizationFactor selectVectorizationFactor(ElementCount MaxVF);
1079 
1080   /// Setup cost-based decisions for user vectorization factor.
1081   void selectUserVectorizationFactor(ElementCount UserVF) {
1082     collectUniformsAndScalars(UserVF);
1083     collectInstsToScalarize(UserVF);
1084   }
1085 
1086   /// \return The size (in bits) of the smallest and widest types in the code
1087   /// that needs to be vectorized. We ignore values that remain scalar such as
1088   /// 64 bit loop indices.
1089   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1090 
1091   /// \return The desired interleave count.
1092   /// If interleave count has been specified by metadata it will be returned.
1093   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1094   /// are the selected vectorization factor and the cost of the selected VF.
1095   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1096 
1097   /// Memory access instruction may be vectorized in more than one way.
1098   /// Form of instruction after vectorization depends on cost.
1099   /// This function takes cost-based decisions for Load/Store instructions
1100   /// and collects them in a map. This decisions map is used for building
1101   /// the lists of loop-uniform and loop-scalar instructions.
1102   /// The calculated cost is saved with widening decision in order to
1103   /// avoid redundant calculations.
1104   void setCostBasedWideningDecision(ElementCount VF);
1105 
1106   /// A struct that represents some properties of the register usage
1107   /// of a loop.
1108   struct RegisterUsage {
1109     /// Holds the number of loop invariant values that are used in the loop.
1110     /// The key is ClassID of target-provided register class.
1111     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1112     /// Holds the maximum number of concurrent live intervals in the loop.
1113     /// The key is ClassID of target-provided register class.
1114     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1115   };
1116 
1117   /// \return Returns information about the register usages of the loop for the
1118   /// given vectorization factors.
1119   SmallVector<RegisterUsage, 8>
1120   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1121 
1122   /// Collect values we want to ignore in the cost model.
1123   void collectValuesToIgnore();
1124 
1125   /// Split reductions into those that happen in the loop, and those that happen
1126   /// outside. In loop reductions are collected into InLoopReductionChains.
1127   void collectInLoopReductions();
1128 
1129   /// \returns The smallest bitwidth each instruction can be represented with.
1130   /// The vector equivalents of these instructions should be truncated to this
1131   /// type.
1132   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1133     return MinBWs;
1134   }
1135 
1136   /// \returns True if it is more profitable to scalarize instruction \p I for
1137   /// vectorization factor \p VF.
1138   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1139     assert(VF.isVector() &&
1140            "Profitable to scalarize relevant only for VF > 1.");
1141 
1142     // Cost model is not run in the VPlan-native path - return conservative
1143     // result until this changes.
1144     if (EnableVPlanNativePath)
1145       return false;
1146 
1147     auto Scalars = InstsToScalarize.find(VF);
1148     assert(Scalars != InstsToScalarize.end() &&
1149            "VF not yet analyzed for scalarization profitability");
1150     return Scalars->second.find(I) != Scalars->second.end();
1151   }
1152 
1153   /// Returns true if \p I is known to be uniform after vectorization.
1154   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1155     if (VF.isScalar())
1156       return true;
1157 
1158     // Cost model is not run in the VPlan-native path - return conservative
1159     // result until this changes.
1160     if (EnableVPlanNativePath)
1161       return false;
1162 
1163     auto UniformsPerVF = Uniforms.find(VF);
1164     assert(UniformsPerVF != Uniforms.end() &&
1165            "VF not yet analyzed for uniformity");
1166     return UniformsPerVF->second.count(I);
1167   }
1168 
1169   /// Returns true if \p I is known to be scalar after vectorization.
1170   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1171     if (VF.isScalar())
1172       return true;
1173 
1174     // Cost model is not run in the VPlan-native path - return conservative
1175     // result until this changes.
1176     if (EnableVPlanNativePath)
1177       return false;
1178 
1179     auto ScalarsPerVF = Scalars.find(VF);
1180     assert(ScalarsPerVF != Scalars.end() &&
1181            "Scalar values are not calculated for VF");
1182     return ScalarsPerVF->second.count(I);
1183   }
1184 
1185   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1186   /// for vectorization factor \p VF.
1187   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1188     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1189            !isProfitableToScalarize(I, VF) &&
1190            !isScalarAfterVectorization(I, VF);
1191   }
1192 
1193   /// Decision that was taken during cost calculation for memory instruction.
1194   enum InstWidening {
1195     CM_Unknown,
1196     CM_Widen,         // For consecutive accesses with stride +1.
1197     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1198     CM_Interleave,
1199     CM_GatherScatter,
1200     CM_Scalarize
1201   };
1202 
1203   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1204   /// instruction \p I and vector width \p VF.
1205   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1206                            unsigned Cost) {
1207     assert(VF.isVector() && "Expected VF >=2");
1208     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1209   }
1210 
1211   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1212   /// interleaving group \p Grp and vector width \p VF.
1213   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1214                            ElementCount VF, InstWidening W, unsigned Cost) {
1215     assert(VF.isVector() && "Expected VF >=2");
1216     /// Broadcast this decicion to all instructions inside the group.
1217     /// But the cost will be assigned to one instruction only.
1218     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1219       if (auto *I = Grp->getMember(i)) {
1220         if (Grp->getInsertPos() == I)
1221           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1222         else
1223           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1224       }
1225     }
1226   }
1227 
1228   /// Return the cost model decision for the given instruction \p I and vector
1229   /// width \p VF. Return CM_Unknown if this instruction did not pass
1230   /// through the cost modeling.
1231   InstWidening getWideningDecision(Instruction *I, ElementCount VF) {
1232     assert(!VF.isScalable() && "scalable vectors not yet supported.");
1233     assert(VF.isVector() && "Expected VF >=2");
1234 
1235     // Cost model is not run in the VPlan-native path - return conservative
1236     // result until this changes.
1237     if (EnableVPlanNativePath)
1238       return CM_GatherScatter;
1239 
1240     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1241     auto Itr = WideningDecisions.find(InstOnVF);
1242     if (Itr == WideningDecisions.end())
1243       return CM_Unknown;
1244     return Itr->second.first;
1245   }
1246 
1247   /// Return the vectorization cost for the given instruction \p I and vector
1248   /// width \p VF.
1249   unsigned getWideningCost(Instruction *I, ElementCount VF) {
1250     assert(VF.isVector() && "Expected VF >=2");
1251     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1252     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1253            "The cost is not calculated");
1254     return WideningDecisions[InstOnVF].second;
1255   }
1256 
1257   /// Return True if instruction \p I is an optimizable truncate whose operand
1258   /// is an induction variable. Such a truncate will be removed by adding a new
1259   /// induction variable with the destination type.
1260   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1261     // If the instruction is not a truncate, return false.
1262     auto *Trunc = dyn_cast<TruncInst>(I);
1263     if (!Trunc)
1264       return false;
1265 
1266     // Get the source and destination types of the truncate.
1267     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1268     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1269 
1270     // If the truncate is free for the given types, return false. Replacing a
1271     // free truncate with an induction variable would add an induction variable
1272     // update instruction to each iteration of the loop. We exclude from this
1273     // check the primary induction variable since it will need an update
1274     // instruction regardless.
1275     Value *Op = Trunc->getOperand(0);
1276     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1277       return false;
1278 
1279     // If the truncated value is not an induction variable, return false.
1280     return Legal->isInductionPhi(Op);
1281   }
1282 
1283   /// Collects the instructions to scalarize for each predicated instruction in
1284   /// the loop.
1285   void collectInstsToScalarize(ElementCount VF);
1286 
1287   /// Collect Uniform and Scalar values for the given \p VF.
1288   /// The sets depend on CM decision for Load/Store instructions
1289   /// that may be vectorized as interleave, gather-scatter or scalarized.
1290   void collectUniformsAndScalars(ElementCount VF) {
1291     // Do the analysis once.
1292     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1293       return;
1294     setCostBasedWideningDecision(VF);
1295     collectLoopUniforms(VF);
1296     collectLoopScalars(VF);
1297   }
1298 
1299   /// Returns true if the target machine supports masked store operation
1300   /// for the given \p DataType and kind of access to \p Ptr.
1301   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) {
1302     return Legal->isConsecutivePtr(Ptr) &&
1303            TTI.isLegalMaskedStore(DataType, Alignment);
1304   }
1305 
1306   /// Returns true if the target machine supports masked load operation
1307   /// for the given \p DataType and kind of access to \p Ptr.
1308   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) {
1309     return Legal->isConsecutivePtr(Ptr) &&
1310            TTI.isLegalMaskedLoad(DataType, Alignment);
1311   }
1312 
1313   /// Returns true if the target machine supports masked scatter operation
1314   /// for the given \p DataType.
1315   bool isLegalMaskedScatter(Type *DataType, Align Alignment) {
1316     return TTI.isLegalMaskedScatter(DataType, Alignment);
1317   }
1318 
1319   /// Returns true if the target machine supports masked gather operation
1320   /// for the given \p DataType.
1321   bool isLegalMaskedGather(Type *DataType, Align Alignment) {
1322     return TTI.isLegalMaskedGather(DataType, Alignment);
1323   }
1324 
1325   /// Returns true if the target machine can represent \p V as a masked gather
1326   /// or scatter operation.
1327   bool isLegalGatherOrScatter(Value *V) {
1328     bool LI = isa<LoadInst>(V);
1329     bool SI = isa<StoreInst>(V);
1330     if (!LI && !SI)
1331       return false;
1332     auto *Ty = getMemInstValueType(V);
1333     Align Align = getLoadStoreAlignment(V);
1334     return (LI && isLegalMaskedGather(Ty, Align)) ||
1335            (SI && isLegalMaskedScatter(Ty, Align));
1336   }
1337 
1338   /// Returns true if \p I is an instruction that will be scalarized with
1339   /// predication. Such instructions include conditional stores and
1340   /// instructions that may divide by zero.
1341   /// If a non-zero VF has been calculated, we check if I will be scalarized
1342   /// predication for that VF.
1343   bool isScalarWithPredication(Instruction *I,
1344                                ElementCount VF = ElementCount::getFixed(1));
1345 
1346   // Returns true if \p I is an instruction that will be predicated either
1347   // through scalar predication or masked load/store or masked gather/scatter.
1348   // Superset of instructions that return true for isScalarWithPredication.
1349   bool isPredicatedInst(Instruction *I) {
1350     if (!blockNeedsPredication(I->getParent()))
1351       return false;
1352     // Loads and stores that need some form of masked operation are predicated
1353     // instructions.
1354     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1355       return Legal->isMaskRequired(I);
1356     return isScalarWithPredication(I);
1357   }
1358 
1359   /// Returns true if \p I is a memory instruction with consecutive memory
1360   /// access that can be widened.
1361   bool
1362   memoryInstructionCanBeWidened(Instruction *I,
1363                                 ElementCount VF = ElementCount::getFixed(1));
1364 
1365   /// Returns true if \p I is a memory instruction in an interleaved-group
1366   /// of memory accesses that can be vectorized with wide vector loads/stores
1367   /// and shuffles.
1368   bool
1369   interleavedAccessCanBeWidened(Instruction *I,
1370                                 ElementCount VF = ElementCount::getFixed(1));
1371 
1372   /// Check if \p Instr belongs to any interleaved access group.
1373   bool isAccessInterleaved(Instruction *Instr) {
1374     return InterleaveInfo.isInterleaved(Instr);
1375   }
1376 
1377   /// Get the interleaved access group that \p Instr belongs to.
1378   const InterleaveGroup<Instruction> *
1379   getInterleavedAccessGroup(Instruction *Instr) {
1380     return InterleaveInfo.getInterleaveGroup(Instr);
1381   }
1382 
1383   /// Returns true if an interleaved group requires a scalar iteration
1384   /// to handle accesses with gaps, and there is nothing preventing us from
1385   /// creating a scalar epilogue.
1386   bool requiresScalarEpilogue() const {
1387     return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue();
1388   }
1389 
1390   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1391   /// loop hint annotation.
1392   bool isScalarEpilogueAllowed() const {
1393     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1394   }
1395 
1396   /// Returns true if all loop blocks should be masked to fold tail loop.
1397   bool foldTailByMasking() const { return FoldTailByMasking; }
1398 
1399   bool blockNeedsPredication(BasicBlock *BB) {
1400     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1401   }
1402 
1403   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1404   /// nodes to the chain of instructions representing the reductions. Uses a
1405   /// MapVector to ensure deterministic iteration order.
1406   using ReductionChainMap =
1407       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1408 
1409   /// Return the chain of instructions representing an inloop reduction.
1410   const ReductionChainMap &getInLoopReductionChains() const {
1411     return InLoopReductionChains;
1412   }
1413 
1414   /// Returns true if the Phi is part of an inloop reduction.
1415   bool isInLoopReduction(PHINode *Phi) const {
1416     return InLoopReductionChains.count(Phi);
1417   }
1418 
1419   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1420   /// with factor VF.  Return the cost of the instruction, including
1421   /// scalarization overhead if it's needed.
1422   unsigned getVectorIntrinsicCost(CallInst *CI, ElementCount VF);
1423 
1424   /// Estimate cost of a call instruction CI if it were vectorized with factor
1425   /// VF. Return the cost of the instruction, including scalarization overhead
1426   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1427   /// scalarized -
1428   /// i.e. either vector version isn't available, or is too expensive.
1429   unsigned getVectorCallCost(CallInst *CI, ElementCount VF,
1430                              bool &NeedToScalarize);
1431 
1432   /// Invalidates decisions already taken by the cost model.
1433   void invalidateCostModelingDecisions() {
1434     WideningDecisions.clear();
1435     Uniforms.clear();
1436     Scalars.clear();
1437   }
1438 
1439 private:
1440   unsigned NumPredStores = 0;
1441 
1442   /// \return An upper bound for the vectorization factor, a power-of-2 larger
1443   /// than zero. One is returned if vectorization should best be avoided due
1444   /// to cost.
1445   ElementCount computeFeasibleMaxVF(unsigned ConstTripCount);
1446 
1447   /// The vectorization cost is a combination of the cost itself and a boolean
1448   /// indicating whether any of the contributing operations will actually
1449   /// operate on
1450   /// vector values after type legalization in the backend. If this latter value
1451   /// is
1452   /// false, then all operations will be scalarized (i.e. no vectorization has
1453   /// actually taken place).
1454   using VectorizationCostTy = std::pair<unsigned, bool>;
1455 
1456   /// Returns the expected execution cost. The unit of the cost does
1457   /// not matter because we use the 'cost' units to compare different
1458   /// vector widths. The cost that is returned is *not* normalized by
1459   /// the factor width.
1460   VectorizationCostTy expectedCost(ElementCount VF);
1461 
1462   /// Returns the execution time cost of an instruction for a given vector
1463   /// width. Vector width of one means scalar.
1464   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1465 
1466   /// The cost-computation logic from getInstructionCost which provides
1467   /// the vector type as an output parameter.
1468   unsigned getInstructionCost(Instruction *I, ElementCount VF, Type *&VectorTy);
1469 
1470   /// Calculate vectorization cost of memory instruction \p I.
1471   unsigned getMemoryInstructionCost(Instruction *I, ElementCount VF);
1472 
1473   /// The cost computation for scalarized memory instruction.
1474   unsigned getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1475 
1476   /// The cost computation for interleaving group of memory instructions.
1477   unsigned getInterleaveGroupCost(Instruction *I, ElementCount VF);
1478 
1479   /// The cost computation for Gather/Scatter instruction.
1480   unsigned getGatherScatterCost(Instruction *I, ElementCount VF);
1481 
1482   /// The cost computation for widening instruction \p I with consecutive
1483   /// memory access.
1484   unsigned getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1485 
1486   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1487   /// Load: scalar load + broadcast.
1488   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1489   /// element)
1490   unsigned getUniformMemOpCost(Instruction *I, ElementCount VF);
1491 
1492   /// Estimate the overhead of scalarizing an instruction. This is a
1493   /// convenience wrapper for the type-based getScalarizationOverhead API.
1494   unsigned getScalarizationOverhead(Instruction *I, ElementCount VF);
1495 
1496   /// Returns whether the instruction is a load or store and will be a emitted
1497   /// as a vector operation.
1498   bool isConsecutiveLoadOrStore(Instruction *I);
1499 
1500   /// Returns true if an artificially high cost for emulated masked memrefs
1501   /// should be used.
1502   bool useEmulatedMaskMemRefHack(Instruction *I);
1503 
1504   /// Map of scalar integer values to the smallest bitwidth they can be legally
1505   /// represented as. The vector equivalents of these values should be truncated
1506   /// to this type.
1507   MapVector<Instruction *, uint64_t> MinBWs;
1508 
1509   /// A type representing the costs for instructions if they were to be
1510   /// scalarized rather than vectorized. The entries are Instruction-Cost
1511   /// pairs.
1512   using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
1513 
1514   /// A set containing all BasicBlocks that are known to present after
1515   /// vectorization as a predicated block.
1516   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1517 
1518   /// Records whether it is allowed to have the original scalar loop execute at
1519   /// least once. This may be needed as a fallback loop in case runtime
1520   /// aliasing/dependence checks fail, or to handle the tail/remainder
1521   /// iterations when the trip count is unknown or doesn't divide by the VF,
1522   /// or as a peel-loop to handle gaps in interleave-groups.
1523   /// Under optsize and when the trip count is very small we don't allow any
1524   /// iterations to execute in the scalar loop.
1525   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1526 
1527   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1528   bool FoldTailByMasking = false;
1529 
1530   /// A map holding scalar costs for different vectorization factors. The
1531   /// presence of a cost for an instruction in the mapping indicates that the
1532   /// instruction will be scalarized when vectorizing with the associated
1533   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1534   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1535 
1536   /// Holds the instructions known to be uniform after vectorization.
1537   /// The data is collected per VF.
1538   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1539 
1540   /// Holds the instructions known to be scalar after vectorization.
1541   /// The data is collected per VF.
1542   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1543 
1544   /// Holds the instructions (address computations) that are forced to be
1545   /// scalarized.
1546   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1547 
1548   /// PHINodes of the reductions that should be expanded in-loop along with
1549   /// their associated chains of reduction operations, in program order from top
1550   /// (PHI) to bottom
1551   ReductionChainMap InLoopReductionChains;
1552 
1553   /// Returns the expected difference in cost from scalarizing the expression
1554   /// feeding a predicated instruction \p PredInst. The instructions to
1555   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1556   /// non-negative return value implies the expression will be scalarized.
1557   /// Currently, only single-use chains are considered for scalarization.
1558   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1559                               ElementCount VF);
1560 
1561   /// Collect the instructions that are uniform after vectorization. An
1562   /// instruction is uniform if we represent it with a single scalar value in
1563   /// the vectorized loop corresponding to each vector iteration. Examples of
1564   /// uniform instructions include pointer operands of consecutive or
1565   /// interleaved memory accesses. Note that although uniformity implies an
1566   /// instruction will be scalar, the reverse is not true. In general, a
1567   /// scalarized instruction will be represented by VF scalar values in the
1568   /// vectorized loop, each corresponding to an iteration of the original
1569   /// scalar loop.
1570   void collectLoopUniforms(ElementCount VF);
1571 
1572   /// Collect the instructions that are scalar after vectorization. An
1573   /// instruction is scalar if it is known to be uniform or will be scalarized
1574   /// during vectorization. Non-uniform scalarized instructions will be
1575   /// represented by VF values in the vectorized loop, each corresponding to an
1576   /// iteration of the original scalar loop.
1577   void collectLoopScalars(ElementCount VF);
1578 
1579   /// Keeps cost model vectorization decision and cost for instructions.
1580   /// Right now it is used for memory instructions only.
1581   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1582                                 std::pair<InstWidening, unsigned>>;
1583 
1584   DecisionList WideningDecisions;
1585 
1586   /// Returns true if \p V is expected to be vectorized and it needs to be
1587   /// extracted.
1588   bool needsExtract(Value *V, ElementCount VF) const {
1589     Instruction *I = dyn_cast<Instruction>(V);
1590     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1591         TheLoop->isLoopInvariant(I))
1592       return false;
1593 
1594     // Assume we can vectorize V (and hence we need extraction) if the
1595     // scalars are not computed yet. This can happen, because it is called
1596     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1597     // the scalars are collected. That should be a safe assumption in most
1598     // cases, because we check if the operands have vectorizable types
1599     // beforehand in LoopVectorizationLegality.
1600     return Scalars.find(VF) == Scalars.end() ||
1601            !isScalarAfterVectorization(I, VF);
1602   };
1603 
1604   /// Returns a range containing only operands needing to be extracted.
1605   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1606                                                    ElementCount VF) {
1607     return SmallVector<Value *, 4>(make_filter_range(
1608         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1609   }
1610 
1611 public:
1612   /// The loop that we evaluate.
1613   Loop *TheLoop;
1614 
1615   /// Predicated scalar evolution analysis.
1616   PredicatedScalarEvolution &PSE;
1617 
1618   /// Loop Info analysis.
1619   LoopInfo *LI;
1620 
1621   /// Vectorization legality.
1622   LoopVectorizationLegality *Legal;
1623 
1624   /// Vector target information.
1625   const TargetTransformInfo &TTI;
1626 
1627   /// Target Library Info.
1628   const TargetLibraryInfo *TLI;
1629 
1630   /// Demanded bits analysis.
1631   DemandedBits *DB;
1632 
1633   /// Assumption cache.
1634   AssumptionCache *AC;
1635 
1636   /// Interface to emit optimization remarks.
1637   OptimizationRemarkEmitter *ORE;
1638 
1639   const Function *TheFunction;
1640 
1641   /// Loop Vectorize Hint.
1642   const LoopVectorizeHints *Hints;
1643 
1644   /// The interleave access information contains groups of interleaved accesses
1645   /// with the same stride and close to each other.
1646   InterleavedAccessInfo &InterleaveInfo;
1647 
1648   /// Values to ignore in the cost model.
1649   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1650 
1651   /// Values to ignore in the cost model when VF > 1.
1652   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1653 };
1654 
1655 } // end namespace llvm
1656 
1657 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
1658 // vectorization. The loop needs to be annotated with #pragma omp simd
1659 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
1660 // vector length information is not provided, vectorization is not considered
1661 // explicit. Interleave hints are not allowed either. These limitations will be
1662 // relaxed in the future.
1663 // Please, note that we are currently forced to abuse the pragma 'clang
1664 // vectorize' semantics. This pragma provides *auto-vectorization hints*
1665 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
1666 // provides *explicit vectorization hints* (LV can bypass legal checks and
1667 // assume that vectorization is legal). However, both hints are implemented
1668 // using the same metadata (llvm.loop.vectorize, processed by
1669 // LoopVectorizeHints). This will be fixed in the future when the native IR
1670 // representation for pragma 'omp simd' is introduced.
1671 static bool isExplicitVecOuterLoop(Loop *OuterLp,
1672                                    OptimizationRemarkEmitter *ORE) {
1673   assert(!OuterLp->isInnermost() && "This is not an outer loop");
1674   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
1675 
1676   // Only outer loops with an explicit vectorization hint are supported.
1677   // Unannotated outer loops are ignored.
1678   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
1679     return false;
1680 
1681   Function *Fn = OuterLp->getHeader()->getParent();
1682   if (!Hints.allowVectorization(Fn, OuterLp,
1683                                 true /*VectorizeOnlyWhenForced*/)) {
1684     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
1685     return false;
1686   }
1687 
1688   if (Hints.getInterleave() > 1) {
1689     // TODO: Interleave support is future work.
1690     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
1691                          "outer loops.\n");
1692     Hints.emitRemarkWithHints();
1693     return false;
1694   }
1695 
1696   return true;
1697 }
1698 
1699 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
1700                                   OptimizationRemarkEmitter *ORE,
1701                                   SmallVectorImpl<Loop *> &V) {
1702   // Collect inner loops and outer loops without irreducible control flow. For
1703   // now, only collect outer loops that have explicit vectorization hints. If we
1704   // are stress testing the VPlan H-CFG construction, we collect the outermost
1705   // loop of every loop nest.
1706   if (L.isInnermost() || VPlanBuildStressTest ||
1707       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
1708     LoopBlocksRPO RPOT(&L);
1709     RPOT.perform(LI);
1710     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
1711       V.push_back(&L);
1712       // TODO: Collect inner loops inside marked outer loops in case
1713       // vectorization fails for the outer loop. Do not invoke
1714       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
1715       // already known to be reducible. We can use an inherited attribute for
1716       // that.
1717       return;
1718     }
1719   }
1720   for (Loop *InnerL : L)
1721     collectSupportedLoops(*InnerL, LI, ORE, V);
1722 }
1723 
1724 namespace {
1725 
1726 /// The LoopVectorize Pass.
1727 struct LoopVectorize : public FunctionPass {
1728   /// Pass identification, replacement for typeid
1729   static char ID;
1730 
1731   LoopVectorizePass Impl;
1732 
1733   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
1734                          bool VectorizeOnlyWhenForced = false)
1735       : FunctionPass(ID),
1736         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
1737     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1738   }
1739 
1740   bool runOnFunction(Function &F) override {
1741     if (skipFunction(F))
1742       return false;
1743 
1744     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1745     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1746     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1747     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1748     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1749     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1750     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
1751     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1752     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1753     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1754     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1755     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1756     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1757 
1758     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1759         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1760 
1761     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1762                         GetLAA, *ORE, PSI).MadeAnyChange;
1763   }
1764 
1765   void getAnalysisUsage(AnalysisUsage &AU) const override {
1766     AU.addRequired<AssumptionCacheTracker>();
1767     AU.addRequired<BlockFrequencyInfoWrapperPass>();
1768     AU.addRequired<DominatorTreeWrapperPass>();
1769     AU.addRequired<LoopInfoWrapperPass>();
1770     AU.addRequired<ScalarEvolutionWrapperPass>();
1771     AU.addRequired<TargetTransformInfoWrapperPass>();
1772     AU.addRequired<AAResultsWrapperPass>();
1773     AU.addRequired<LoopAccessLegacyAnalysis>();
1774     AU.addRequired<DemandedBitsWrapperPass>();
1775     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1776     AU.addRequired<InjectTLIMappingsLegacy>();
1777 
1778     // We currently do not preserve loopinfo/dominator analyses with outer loop
1779     // vectorization. Until this is addressed, mark these analyses as preserved
1780     // only for non-VPlan-native path.
1781     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
1782     if (!EnableVPlanNativePath) {
1783       AU.addPreserved<LoopInfoWrapperPass>();
1784       AU.addPreserved<DominatorTreeWrapperPass>();
1785     }
1786 
1787     AU.addPreserved<BasicAAWrapperPass>();
1788     AU.addPreserved<GlobalsAAWrapperPass>();
1789     AU.addRequired<ProfileSummaryInfoWrapperPass>();
1790   }
1791 };
1792 
1793 } // end anonymous namespace
1794 
1795 //===----------------------------------------------------------------------===//
1796 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1797 // LoopVectorizationCostModel and LoopVectorizationPlanner.
1798 //===----------------------------------------------------------------------===//
1799 
1800 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1801   // We need to place the broadcast of invariant variables outside the loop,
1802   // but only if it's proven safe to do so. Else, broadcast will be inside
1803   // vector loop body.
1804   Instruction *Instr = dyn_cast<Instruction>(V);
1805   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
1806                      (!Instr ||
1807                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
1808   // Place the code for broadcasting invariant variables in the new preheader.
1809   IRBuilder<>::InsertPointGuard Guard(Builder);
1810   if (SafeToHoist)
1811     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1812 
1813   // Broadcast the scalar into all locations in the vector.
1814   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1815 
1816   return Shuf;
1817 }
1818 
1819 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
1820     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
1821   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1822          "Expected either an induction phi-node or a truncate of it!");
1823   Value *Start = II.getStartValue();
1824 
1825   // Construct the initial value of the vector IV in the vector loop preheader
1826   auto CurrIP = Builder.saveIP();
1827   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1828   if (isa<TruncInst>(EntryVal)) {
1829     assert(Start->getType()->isIntegerTy() &&
1830            "Truncation requires an integer type");
1831     auto *TruncType = cast<IntegerType>(EntryVal->getType());
1832     Step = Builder.CreateTrunc(Step, TruncType);
1833     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1834   }
1835   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1836   Value *SteppedStart =
1837       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
1838 
1839   // We create vector phi nodes for both integer and floating-point induction
1840   // variables. Here, we determine the kind of arithmetic we will perform.
1841   Instruction::BinaryOps AddOp;
1842   Instruction::BinaryOps MulOp;
1843   if (Step->getType()->isIntegerTy()) {
1844     AddOp = Instruction::Add;
1845     MulOp = Instruction::Mul;
1846   } else {
1847     AddOp = II.getInductionOpcode();
1848     MulOp = Instruction::FMul;
1849   }
1850 
1851   // Multiply the vectorization factor by the step using integer or
1852   // floating-point arithmetic as appropriate.
1853   Value *ConstVF =
1854       getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue());
1855   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
1856 
1857   // Create a vector splat to use in the induction update.
1858   //
1859   // FIXME: If the step is non-constant, we create the vector splat with
1860   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
1861   //        handle a constant vector splat.
1862   assert(!VF.isScalable() && "scalable vectors not yet supported.");
1863   Value *SplatVF = isa<Constant>(Mul)
1864                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
1865                        : Builder.CreateVectorSplat(VF, Mul);
1866   Builder.restoreIP(CurrIP);
1867 
1868   // We may need to add the step a number of times, depending on the unroll
1869   // factor. The last of those goes into the PHI.
1870   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1871                                     &*LoopVectorBody->getFirstInsertionPt());
1872   VecInd->setDebugLoc(EntryVal->getDebugLoc());
1873   Instruction *LastInduction = VecInd;
1874   for (unsigned Part = 0; Part < UF; ++Part) {
1875     VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
1876 
1877     if (isa<TruncInst>(EntryVal))
1878       addMetadata(LastInduction, EntryVal);
1879     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
1880 
1881     LastInduction = cast<Instruction>(addFastMathFlag(
1882         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
1883     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
1884   }
1885 
1886   // Move the last step to the end of the latch block. This ensures consistent
1887   // placement of all induction updates.
1888   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
1889   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
1890   auto *ICmp = cast<Instruction>(Br->getCondition());
1891   LastInduction->moveBefore(ICmp);
1892   LastInduction->setName("vec.ind.next");
1893 
1894   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1895   VecInd->addIncoming(LastInduction, LoopVectorLatch);
1896 }
1897 
1898 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
1899   return Cost->isScalarAfterVectorization(I, VF) ||
1900          Cost->isProfitableToScalarize(I, VF);
1901 }
1902 
1903 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
1904   if (shouldScalarizeInstruction(IV))
1905     return true;
1906   auto isScalarInst = [&](User *U) -> bool {
1907     auto *I = cast<Instruction>(U);
1908     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
1909   };
1910   return llvm::any_of(IV->users(), isScalarInst);
1911 }
1912 
1913 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
1914     const InductionDescriptor &ID, const Instruction *EntryVal,
1915     Value *VectorLoopVal, unsigned Part, unsigned Lane) {
1916   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1917          "Expected either an induction phi-node or a truncate of it!");
1918 
1919   // This induction variable is not the phi from the original loop but the
1920   // newly-created IV based on the proof that casted Phi is equal to the
1921   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
1922   // re-uses the same InductionDescriptor that original IV uses but we don't
1923   // have to do any recording in this case - that is done when original IV is
1924   // processed.
1925   if (isa<TruncInst>(EntryVal))
1926     return;
1927 
1928   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
1929   if (Casts.empty())
1930     return;
1931   // Only the first Cast instruction in the Casts vector is of interest.
1932   // The rest of the Casts (if exist) have no uses outside the
1933   // induction update chain itself.
1934   Instruction *CastInst = *Casts.begin();
1935   if (Lane < UINT_MAX)
1936     VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
1937   else
1938     VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
1939 }
1940 
1941 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
1942   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
1943          "Primary induction variable must have an integer type");
1944 
1945   auto II = Legal->getInductionVars().find(IV);
1946   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
1947 
1948   auto ID = II->second;
1949   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1950 
1951   // The value from the original loop to which we are mapping the new induction
1952   // variable.
1953   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
1954 
1955   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1956 
1957   // Generate code for the induction step. Note that induction steps are
1958   // required to be loop-invariant
1959   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
1960     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
1961            "Induction step should be loop invariant");
1962     if (PSE.getSE()->isSCEVable(IV->getType())) {
1963       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1964       return Exp.expandCodeFor(Step, Step->getType(),
1965                                LoopVectorPreHeader->getTerminator());
1966     }
1967     return cast<SCEVUnknown>(Step)->getValue();
1968   };
1969 
1970   // The scalar value to broadcast. This is derived from the canonical
1971   // induction variable. If a truncation type is given, truncate the canonical
1972   // induction variable and step. Otherwise, derive these values from the
1973   // induction descriptor.
1974   auto CreateScalarIV = [&](Value *&Step) -> Value * {
1975     Value *ScalarIV = Induction;
1976     if (IV != OldInduction) {
1977       ScalarIV = IV->getType()->isIntegerTy()
1978                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
1979                      : Builder.CreateCast(Instruction::SIToFP, Induction,
1980                                           IV->getType());
1981       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
1982       ScalarIV->setName("offset.idx");
1983     }
1984     if (Trunc) {
1985       auto *TruncType = cast<IntegerType>(Trunc->getType());
1986       assert(Step->getType()->isIntegerTy() &&
1987              "Truncation requires an integer step");
1988       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
1989       Step = Builder.CreateTrunc(Step, TruncType);
1990     }
1991     return ScalarIV;
1992   };
1993 
1994   // Create the vector values from the scalar IV, in the absence of creating a
1995   // vector IV.
1996   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
1997     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1998     for (unsigned Part = 0; Part < UF; ++Part) {
1999       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2000       Value *EntryPart =
2001           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2002                         ID.getInductionOpcode());
2003       VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
2004       if (Trunc)
2005         addMetadata(EntryPart, Trunc);
2006       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
2007     }
2008   };
2009 
2010   // Now do the actual transformations, and start with creating the step value.
2011   Value *Step = CreateStepValue(ID.getStep());
2012   if (VF.isZero() || VF.isScalar()) {
2013     Value *ScalarIV = CreateScalarIV(Step);
2014     CreateSplatIV(ScalarIV, Step);
2015     return;
2016   }
2017 
2018   // Determine if we want a scalar version of the induction variable. This is
2019   // true if the induction variable itself is not widened, or if it has at
2020   // least one user in the loop that is not widened.
2021   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2022   if (!NeedsScalarIV) {
2023     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
2024     return;
2025   }
2026 
2027   // Try to create a new independent vector induction variable. If we can't
2028   // create the phi node, we will splat the scalar induction variable in each
2029   // loop iteration.
2030   if (!shouldScalarizeInstruction(EntryVal)) {
2031     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
2032     Value *ScalarIV = CreateScalarIV(Step);
2033     // Create scalar steps that can be used by instructions we will later
2034     // scalarize. Note that the addition of the scalar steps will not increase
2035     // the number of instructions in the loop in the common case prior to
2036     // InstCombine. We will be trading one vector extract for each scalar step.
2037     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
2038     return;
2039   }
2040 
2041   // All IV users are scalar instructions, so only emit a scalar IV, not a
2042   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2043   // predicate used by the masked loads/stores.
2044   Value *ScalarIV = CreateScalarIV(Step);
2045   if (!Cost->isScalarEpilogueAllowed())
2046     CreateSplatIV(ScalarIV, Step);
2047   buildScalarSteps(ScalarIV, Step, EntryVal, ID);
2048 }
2049 
2050 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2051                                           Instruction::BinaryOps BinOp) {
2052   // Create and check the types.
2053   auto *ValVTy = cast<FixedVectorType>(Val->getType());
2054   int VLen = ValVTy->getNumElements();
2055 
2056   Type *STy = Val->getType()->getScalarType();
2057   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2058          "Induction Step must be an integer or FP");
2059   assert(Step->getType() == STy && "Step has wrong type");
2060 
2061   SmallVector<Constant *, 8> Indices;
2062 
2063   if (STy->isIntegerTy()) {
2064     // Create a vector of consecutive numbers from zero to VF.
2065     for (int i = 0; i < VLen; ++i)
2066       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
2067 
2068     // Add the consecutive indices to the vector value.
2069     Constant *Cv = ConstantVector::get(Indices);
2070     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
2071     Step = Builder.CreateVectorSplat(VLen, Step);
2072     assert(Step->getType() == Val->getType() && "Invalid step vec");
2073     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2074     // which can be found from the original scalar operations.
2075     Step = Builder.CreateMul(Cv, Step);
2076     return Builder.CreateAdd(Val, Step, "induction");
2077   }
2078 
2079   // Floating point induction.
2080   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2081          "Binary Opcode should be specified for FP induction");
2082   // Create a vector of consecutive numbers from zero to VF.
2083   for (int i = 0; i < VLen; ++i)
2084     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
2085 
2086   // Add the consecutive indices to the vector value.
2087   Constant *Cv = ConstantVector::get(Indices);
2088 
2089   Step = Builder.CreateVectorSplat(VLen, Step);
2090 
2091   // Floating point operations had to be 'fast' to enable the induction.
2092   FastMathFlags Flags;
2093   Flags.setFast();
2094 
2095   Value *MulOp = Builder.CreateFMul(Cv, Step);
2096   if (isa<Instruction>(MulOp))
2097     // Have to check, MulOp may be a constant
2098     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
2099 
2100   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2101   if (isa<Instruction>(BOp))
2102     cast<Instruction>(BOp)->setFastMathFlags(Flags);
2103   return BOp;
2104 }
2105 
2106 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2107                                            Instruction *EntryVal,
2108                                            const InductionDescriptor &ID) {
2109   // We shouldn't have to build scalar steps if we aren't vectorizing.
2110   assert(VF.isVector() && "VF should be greater than one");
2111   assert(!VF.isScalable() &&
2112          "the code below assumes a fixed number of elements at compile time");
2113   // Get the value type and ensure it and the step have the same integer type.
2114   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2115   assert(ScalarIVTy == Step->getType() &&
2116          "Val and Step should have the same type");
2117 
2118   // We build scalar steps for both integer and floating-point induction
2119   // variables. Here, we determine the kind of arithmetic we will perform.
2120   Instruction::BinaryOps AddOp;
2121   Instruction::BinaryOps MulOp;
2122   if (ScalarIVTy->isIntegerTy()) {
2123     AddOp = Instruction::Add;
2124     MulOp = Instruction::Mul;
2125   } else {
2126     AddOp = ID.getInductionOpcode();
2127     MulOp = Instruction::FMul;
2128   }
2129 
2130   // Determine the number of scalars we need to generate for each unroll
2131   // iteration. If EntryVal is uniform, we only need to generate the first
2132   // lane. Otherwise, we generate all VF values.
2133   unsigned Lanes =
2134       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF)
2135           ? 1
2136           : VF.getKnownMinValue();
2137   // Compute the scalar steps and save the results in VectorLoopValueMap.
2138   for (unsigned Part = 0; Part < UF; ++Part) {
2139     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2140       auto *StartIdx = getSignedIntOrFpConstant(
2141           ScalarIVTy, VF.getKnownMinValue() * Part + Lane);
2142       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2143       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2144       VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2145       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2146     }
2147   }
2148 }
2149 
2150 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2151   assert(V != Induction && "The new induction variable should not be used.");
2152   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2153   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2154 
2155   // If we have a stride that is replaced by one, do it here. Defer this for
2156   // the VPlan-native path until we start running Legal checks in that path.
2157   if (!EnableVPlanNativePath && Legal->hasStride(V))
2158     V = ConstantInt::get(V->getType(), 1);
2159 
2160   // If we have a vector mapped to this value, return it.
2161   if (VectorLoopValueMap.hasVectorValue(V, Part))
2162     return VectorLoopValueMap.getVectorValue(V, Part);
2163 
2164   // If the value has not been vectorized, check if it has been scalarized
2165   // instead. If it has been scalarized, and we actually need the value in
2166   // vector form, we will construct the vector values on demand.
2167   if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2168     Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2169 
2170     // If we've scalarized a value, that value should be an instruction.
2171     auto *I = cast<Instruction>(V);
2172 
2173     // If we aren't vectorizing, we can just copy the scalar map values over to
2174     // the vector map.
2175     if (VF.isScalar()) {
2176       VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2177       return ScalarValue;
2178     }
2179 
2180     // Get the last scalar instruction we generated for V and Part. If the value
2181     // is known to be uniform after vectorization, this corresponds to lane zero
2182     // of the Part unroll iteration. Otherwise, the last instruction is the one
2183     // we created for the last vector lane of the Part unroll iteration.
2184     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2185     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF)
2186                             ? 0
2187                             : VF.getKnownMinValue() - 1;
2188     auto *LastInst = cast<Instruction>(
2189         VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2190 
2191     // Set the insert point after the last scalarized instruction. This ensures
2192     // the insertelement sequence will directly follow the scalar definitions.
2193     auto OldIP = Builder.saveIP();
2194     auto NewIP = std::next(BasicBlock::iterator(LastInst));
2195     Builder.SetInsertPoint(&*NewIP);
2196 
2197     // However, if we are vectorizing, we need to construct the vector values.
2198     // If the value is known to be uniform after vectorization, we can just
2199     // broadcast the scalar value corresponding to lane zero for each unroll
2200     // iteration. Otherwise, we construct the vector values using insertelement
2201     // instructions. Since the resulting vectors are stored in
2202     // VectorLoopValueMap, we will only generate the insertelements once.
2203     Value *VectorValue = nullptr;
2204     if (Cost->isUniformAfterVectorization(I, VF)) {
2205       VectorValue = getBroadcastInstrs(ScalarValue);
2206       VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2207     } else {
2208       // Initialize packing with insertelements to start from undef.
2209       assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2210       Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
2211       VectorLoopValueMap.setVectorValue(V, Part, Undef);
2212       for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
2213         packScalarIntoVectorValue(V, {Part, Lane});
2214       VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2215     }
2216     Builder.restoreIP(OldIP);
2217     return VectorValue;
2218   }
2219 
2220   // If this scalar is unknown, assume that it is a constant or that it is
2221   // loop invariant. Broadcast V and save the value for future uses.
2222   Value *B = getBroadcastInstrs(V);
2223   VectorLoopValueMap.setVectorValue(V, Part, B);
2224   return B;
2225 }
2226 
2227 Value *
2228 InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2229                                             const VPIteration &Instance) {
2230   // If the value is not an instruction contained in the loop, it should
2231   // already be scalar.
2232   if (OrigLoop->isLoopInvariant(V))
2233     return V;
2234 
2235   assert(Instance.Lane > 0
2236              ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2237              : true && "Uniform values only have lane zero");
2238 
2239   // If the value from the original loop has not been vectorized, it is
2240   // represented by UF x VF scalar values in the new loop. Return the requested
2241   // scalar value.
2242   if (VectorLoopValueMap.hasScalarValue(V, Instance))
2243     return VectorLoopValueMap.getScalarValue(V, Instance);
2244 
2245   // If the value has not been scalarized, get its entry in VectorLoopValueMap
2246   // for the given unroll part. If this entry is not a vector type (i.e., the
2247   // vectorization factor is one), there is no need to generate an
2248   // extractelement instruction.
2249   auto *U = getOrCreateVectorValue(V, Instance.Part);
2250   if (!U->getType()->isVectorTy()) {
2251     assert(VF.isScalar() && "Value not scalarized has non-vector type");
2252     return U;
2253   }
2254 
2255   // Otherwise, the value from the original loop has been vectorized and is
2256   // represented by UF vector values. Extract and return the requested scalar
2257   // value from the appropriate vector lane.
2258   return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2259 }
2260 
2261 void InnerLoopVectorizer::packScalarIntoVectorValue(
2262     Value *V, const VPIteration &Instance) {
2263   assert(V != Induction && "The new induction variable should not be used.");
2264   assert(!V->getType()->isVectorTy() && "Can't pack a vector");
2265   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2266 
2267   Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2268   Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2269   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2270                                             Builder.getInt32(Instance.Lane));
2271   VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2272 }
2273 
2274 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2275   assert(Vec->getType()->isVectorTy() && "Invalid type");
2276   assert(!VF.isScalable() && "Cannot reverse scalable vectors");
2277   SmallVector<int, 8> ShuffleMask;
2278   for (unsigned i = 0; i < VF.getKnownMinValue(); ++i)
2279     ShuffleMask.push_back(VF.getKnownMinValue() - i - 1);
2280 
2281   return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse");
2282 }
2283 
2284 // Return whether we allow using masked interleave-groups (for dealing with
2285 // strided loads/stores that reside in predicated blocks, or for dealing
2286 // with gaps).
2287 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2288   // If an override option has been passed in for interleaved accesses, use it.
2289   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2290     return EnableMaskedInterleavedMemAccesses;
2291 
2292   return TTI.enableMaskedInterleavedAccessVectorization();
2293 }
2294 
2295 // Try to vectorize the interleave group that \p Instr belongs to.
2296 //
2297 // E.g. Translate following interleaved load group (factor = 3):
2298 //   for (i = 0; i < N; i+=3) {
2299 //     R = Pic[i];             // Member of index 0
2300 //     G = Pic[i+1];           // Member of index 1
2301 //     B = Pic[i+2];           // Member of index 2
2302 //     ... // do something to R, G, B
2303 //   }
2304 // To:
2305 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2306 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2307 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2308 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2309 //
2310 // Or translate following interleaved store group (factor = 3):
2311 //   for (i = 0; i < N; i+=3) {
2312 //     ... do something to R, G, B
2313 //     Pic[i]   = R;           // Member of index 0
2314 //     Pic[i+1] = G;           // Member of index 1
2315 //     Pic[i+2] = B;           // Member of index 2
2316 //   }
2317 // To:
2318 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2319 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2320 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2321 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2322 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2323 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2324     const InterleaveGroup<Instruction> *Group, VPTransformState &State,
2325     VPValue *Addr, VPValue *BlockInMask) {
2326   Instruction *Instr = Group->getInsertPos();
2327   const DataLayout &DL = Instr->getModule()->getDataLayout();
2328 
2329   // Prepare for the vector type of the interleaved load/store.
2330   Type *ScalarTy = getMemInstValueType(Instr);
2331   unsigned InterleaveFactor = Group->getFactor();
2332   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2333   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2334 
2335   // Prepare for the new pointers.
2336   SmallVector<Value *, 2> AddrParts;
2337   unsigned Index = Group->getIndex(Instr);
2338 
2339   // TODO: extend the masked interleaved-group support to reversed access.
2340   assert((!BlockInMask || !Group->isReverse()) &&
2341          "Reversed masked interleave-group not supported.");
2342 
2343   // If the group is reverse, adjust the index to refer to the last vector lane
2344   // instead of the first. We adjust the index from the first vector lane,
2345   // rather than directly getting the pointer for lane VF - 1, because the
2346   // pointer operand of the interleaved access is supposed to be uniform. For
2347   // uniform instructions, we're only required to generate a value for the
2348   // first vector lane in each unroll iteration.
2349   assert(!VF.isScalable() &&
2350          "scalable vector reverse operation is not implemented");
2351   if (Group->isReverse())
2352     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2353 
2354   for (unsigned Part = 0; Part < UF; Part++) {
2355     Value *AddrPart = State.get(Addr, {Part, 0});
2356     setDebugLocFromInst(Builder, AddrPart);
2357 
2358     // Notice current instruction could be any index. Need to adjust the address
2359     // to the member of index 0.
2360     //
2361     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2362     //       b = A[i];       // Member of index 0
2363     // Current pointer is pointed to A[i+1], adjust it to A[i].
2364     //
2365     // E.g.  A[i+1] = a;     // Member of index 1
2366     //       A[i]   = b;     // Member of index 0
2367     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2368     // Current pointer is pointed to A[i+2], adjust it to A[i].
2369 
2370     bool InBounds = false;
2371     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2372       InBounds = gep->isInBounds();
2373     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2374     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2375 
2376     // Cast to the vector pointer type.
2377     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2378     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2379     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2380   }
2381 
2382   setDebugLocFromInst(Builder, Instr);
2383   Value *UndefVec = UndefValue::get(VecTy);
2384 
2385   Value *MaskForGaps = nullptr;
2386   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2387     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2388     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2389     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2390   }
2391 
2392   // Vectorize the interleaved load group.
2393   if (isa<LoadInst>(Instr)) {
2394     // For each unroll part, create a wide load for the group.
2395     SmallVector<Value *, 2> NewLoads;
2396     for (unsigned Part = 0; Part < UF; Part++) {
2397       Instruction *NewLoad;
2398       if (BlockInMask || MaskForGaps) {
2399         assert(useMaskedInterleavedAccesses(*TTI) &&
2400                "masked interleaved groups are not allowed.");
2401         Value *GroupMask = MaskForGaps;
2402         if (BlockInMask) {
2403           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2404           assert(!VF.isScalable() && "scalable vectors not yet supported.");
2405           Value *ShuffledMask = Builder.CreateShuffleVector(
2406               BlockInMaskPart,
2407               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2408               "interleaved.mask");
2409           GroupMask = MaskForGaps
2410                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2411                                                 MaskForGaps)
2412                           : ShuffledMask;
2413         }
2414         NewLoad =
2415             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2416                                      GroupMask, UndefVec, "wide.masked.vec");
2417       }
2418       else
2419         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2420                                             Group->getAlign(), "wide.vec");
2421       Group->addMetadata(NewLoad);
2422       NewLoads.push_back(NewLoad);
2423     }
2424 
2425     // For each member in the group, shuffle out the appropriate data from the
2426     // wide loads.
2427     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2428       Instruction *Member = Group->getMember(I);
2429 
2430       // Skip the gaps in the group.
2431       if (!Member)
2432         continue;
2433 
2434       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2435       auto StrideMask =
2436           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2437       for (unsigned Part = 0; Part < UF; Part++) {
2438         Value *StridedVec = Builder.CreateShuffleVector(
2439             NewLoads[Part], StrideMask, "strided.vec");
2440 
2441         // If this member has different type, cast the result type.
2442         if (Member->getType() != ScalarTy) {
2443           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2444           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2445           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2446         }
2447 
2448         if (Group->isReverse())
2449           StridedVec = reverseVector(StridedVec);
2450 
2451         VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2452       }
2453     }
2454     return;
2455   }
2456 
2457   // The sub vector type for current instruction.
2458   assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2459   auto *SubVT = VectorType::get(ScalarTy, VF);
2460 
2461   // Vectorize the interleaved store group.
2462   for (unsigned Part = 0; Part < UF; Part++) {
2463     // Collect the stored vector from each member.
2464     SmallVector<Value *, 4> StoredVecs;
2465     for (unsigned i = 0; i < InterleaveFactor; i++) {
2466       // Interleaved store group doesn't allow a gap, so each index has a member
2467       Instruction *Member = Group->getMember(i);
2468       assert(Member && "Fail to get a member from an interleaved store group");
2469 
2470       Value *StoredVec = getOrCreateVectorValue(
2471           cast<StoreInst>(Member)->getValueOperand(), Part);
2472       if (Group->isReverse())
2473         StoredVec = reverseVector(StoredVec);
2474 
2475       // If this member has different type, cast it to a unified type.
2476 
2477       if (StoredVec->getType() != SubVT)
2478         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2479 
2480       StoredVecs.push_back(StoredVec);
2481     }
2482 
2483     // Concatenate all vectors into a wide vector.
2484     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2485 
2486     // Interleave the elements in the wide vector.
2487     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2488     Value *IVec = Builder.CreateShuffleVector(
2489         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2490         "interleaved.vec");
2491 
2492     Instruction *NewStoreInstr;
2493     if (BlockInMask) {
2494       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2495       Value *ShuffledMask = Builder.CreateShuffleVector(
2496           BlockInMaskPart,
2497           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2498           "interleaved.mask");
2499       NewStoreInstr = Builder.CreateMaskedStore(
2500           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2501     }
2502     else
2503       NewStoreInstr =
2504           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2505 
2506     Group->addMetadata(NewStoreInstr);
2507   }
2508 }
2509 
2510 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2511     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2512     VPValue *StoredValue, VPValue *BlockInMask) {
2513   // Attempt to issue a wide load.
2514   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2515   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2516 
2517   assert((LI || SI) && "Invalid Load/Store instruction");
2518   assert((!SI || StoredValue) && "No stored value provided for widened store");
2519   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2520 
2521   LoopVectorizationCostModel::InstWidening Decision =
2522       Cost->getWideningDecision(Instr, VF);
2523   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2524           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2525           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2526          "CM decision is not to widen the memory instruction");
2527 
2528   Type *ScalarDataTy = getMemInstValueType(Instr);
2529 
2530   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2531   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2532   const Align Alignment = getLoadStoreAlignment(Instr);
2533 
2534   // Determine if the pointer operand of the access is either consecutive or
2535   // reverse consecutive.
2536   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2537   bool ConsecutiveStride =
2538       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2539   bool CreateGatherScatter =
2540       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2541 
2542   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2543   // gather/scatter. Otherwise Decision should have been to Scalarize.
2544   assert((ConsecutiveStride || CreateGatherScatter) &&
2545          "The instruction should be scalarized");
2546   (void)ConsecutiveStride;
2547 
2548   VectorParts BlockInMaskParts(UF);
2549   bool isMaskRequired = BlockInMask;
2550   if (isMaskRequired)
2551     for (unsigned Part = 0; Part < UF; ++Part)
2552       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2553 
2554   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2555     // Calculate the pointer for the specific unroll-part.
2556     GetElementPtrInst *PartPtr = nullptr;
2557 
2558     bool InBounds = false;
2559     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2560       InBounds = gep->isInBounds();
2561 
2562     if (Reverse) {
2563       // If the address is consecutive but reversed, then the
2564       // wide store needs to start at the last vector element.
2565       PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP(
2566           ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue())));
2567       PartPtr->setIsInBounds(InBounds);
2568       PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP(
2569           ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue())));
2570       PartPtr->setIsInBounds(InBounds);
2571       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2572         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2573     } else {
2574       PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP(
2575           ScalarDataTy, Ptr, Builder.getInt32(Part * VF.getKnownMinValue())));
2576       PartPtr->setIsInBounds(InBounds);
2577     }
2578 
2579     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2580     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2581   };
2582 
2583   // Handle Stores:
2584   if (SI) {
2585     setDebugLocFromInst(Builder, SI);
2586 
2587     for (unsigned Part = 0; Part < UF; ++Part) {
2588       Instruction *NewSI = nullptr;
2589       Value *StoredVal = State.get(StoredValue, Part);
2590       if (CreateGatherScatter) {
2591         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2592         Value *VectorGep = State.get(Addr, Part);
2593         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2594                                             MaskPart);
2595       } else {
2596         if (Reverse) {
2597           // If we store to reverse consecutive memory locations, then we need
2598           // to reverse the order of elements in the stored value.
2599           StoredVal = reverseVector(StoredVal);
2600           // We don't want to update the value in the map as it might be used in
2601           // another expression. So don't call resetVectorValue(StoredVal).
2602         }
2603         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2604         if (isMaskRequired)
2605           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2606                                             BlockInMaskParts[Part]);
2607         else
2608           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2609       }
2610       addMetadata(NewSI, SI);
2611     }
2612     return;
2613   }
2614 
2615   // Handle loads.
2616   assert(LI && "Must have a load instruction");
2617   setDebugLocFromInst(Builder, LI);
2618   for (unsigned Part = 0; Part < UF; ++Part) {
2619     Value *NewLI;
2620     if (CreateGatherScatter) {
2621       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2622       Value *VectorGep = State.get(Addr, Part);
2623       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2624                                          nullptr, "wide.masked.gather");
2625       addMetadata(NewLI, LI);
2626     } else {
2627       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2628       if (isMaskRequired)
2629         NewLI = Builder.CreateMaskedLoad(
2630             VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy),
2631             "wide.masked.load");
2632       else
2633         NewLI =
2634             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2635 
2636       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2637       addMetadata(NewLI, LI);
2638       if (Reverse)
2639         NewLI = reverseVector(NewLI);
2640     }
2641 
2642     State.set(Def, Instr, NewLI, Part);
2643   }
2644 }
2645 
2646 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User,
2647                                                const VPIteration &Instance,
2648                                                bool IfPredicateInstr,
2649                                                VPTransformState &State) {
2650   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2651 
2652   setDebugLocFromInst(Builder, Instr);
2653 
2654   // Does this instruction return a value ?
2655   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2656 
2657   Instruction *Cloned = Instr->clone();
2658   if (!IsVoidRetTy)
2659     Cloned->setName(Instr->getName() + ".cloned");
2660 
2661   // Replace the operands of the cloned instructions with their scalar
2662   // equivalents in the new loop.
2663   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
2664     auto *NewOp = State.get(User.getOperand(op), Instance);
2665     Cloned->setOperand(op, NewOp);
2666   }
2667   addNewMetadata(Cloned, Instr);
2668 
2669   // Place the cloned scalar in the new loop.
2670   Builder.Insert(Cloned);
2671 
2672   // Add the cloned scalar to the scalar map entry.
2673   VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
2674 
2675   // If we just cloned a new assumption, add it the assumption cache.
2676   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2677     if (II->getIntrinsicID() == Intrinsic::assume)
2678       AC->registerAssumption(II);
2679 
2680   // End if-block.
2681   if (IfPredicateInstr)
2682     PredicatedInstructions.push_back(Cloned);
2683 }
2684 
2685 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2686                                                       Value *End, Value *Step,
2687                                                       Instruction *DL) {
2688   BasicBlock *Header = L->getHeader();
2689   BasicBlock *Latch = L->getLoopLatch();
2690   // As we're just creating this loop, it's possible no latch exists
2691   // yet. If so, use the header as this will be a single block loop.
2692   if (!Latch)
2693     Latch = Header;
2694 
2695   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2696   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
2697   setDebugLocFromInst(Builder, OldInst);
2698   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2699 
2700   Builder.SetInsertPoint(Latch->getTerminator());
2701   setDebugLocFromInst(Builder, OldInst);
2702 
2703   // Create i+1 and fill the PHINode.
2704   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2705   Induction->addIncoming(Start, L->getLoopPreheader());
2706   Induction->addIncoming(Next, Latch);
2707   // Create the compare.
2708   Value *ICmp = Builder.CreateICmpEQ(Next, End);
2709   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2710 
2711   // Now we have two terminators. Remove the old one from the block.
2712   Latch->getTerminator()->eraseFromParent();
2713 
2714   return Induction;
2715 }
2716 
2717 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2718   if (TripCount)
2719     return TripCount;
2720 
2721   assert(L && "Create Trip Count for null loop.");
2722   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2723   // Find the loop boundaries.
2724   ScalarEvolution *SE = PSE.getSE();
2725   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2726   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2727          "Invalid loop count");
2728 
2729   Type *IdxTy = Legal->getWidestInductionType();
2730   assert(IdxTy && "No type for induction");
2731 
2732   // The exit count might have the type of i64 while the phi is i32. This can
2733   // happen if we have an induction variable that is sign extended before the
2734   // compare. The only way that we get a backedge taken count is that the
2735   // induction variable was signed and as such will not overflow. In such a case
2736   // truncation is legal.
2737   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2738       IdxTy->getPrimitiveSizeInBits())
2739     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2740   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2741 
2742   // Get the total trip count from the count by adding 1.
2743   const SCEV *ExitCount = SE->getAddExpr(
2744       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2745 
2746   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2747 
2748   // Expand the trip count and place the new instructions in the preheader.
2749   // Notice that the pre-header does not change, only the loop body.
2750   SCEVExpander Exp(*SE, DL, "induction");
2751 
2752   // Count holds the overall loop count (N).
2753   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2754                                 L->getLoopPreheader()->getTerminator());
2755 
2756   if (TripCount->getType()->isPointerTy())
2757     TripCount =
2758         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2759                                     L->getLoopPreheader()->getTerminator());
2760 
2761   return TripCount;
2762 }
2763 
2764 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2765   if (VectorTripCount)
2766     return VectorTripCount;
2767 
2768   Value *TC = getOrCreateTripCount(L);
2769   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2770 
2771   Type *Ty = TC->getType();
2772   // This is where we can make the step a runtime constant.
2773   assert(!VF.isScalable() && "scalable vectorization is not supported yet");
2774   Constant *Step = ConstantInt::get(Ty, VF.getKnownMinValue() * UF);
2775 
2776   // If the tail is to be folded by masking, round the number of iterations N
2777   // up to a multiple of Step instead of rounding down. This is done by first
2778   // adding Step-1 and then rounding down. Note that it's ok if this addition
2779   // overflows: the vector induction variable will eventually wrap to zero given
2780   // that it starts at zero and its Step is a power of two; the loop will then
2781   // exit, with the last early-exit vector comparison also producing all-true.
2782   if (Cost->foldTailByMasking()) {
2783     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2784            "VF*UF must be a power of 2 when folding tail by masking");
2785     TC = Builder.CreateAdd(
2786         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
2787   }
2788 
2789   // Now we need to generate the expression for the part of the loop that the
2790   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2791   // iterations are not required for correctness, or N - Step, otherwise. Step
2792   // is equal to the vectorization factor (number of SIMD elements) times the
2793   // unroll factor (number of SIMD instructions).
2794   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2795 
2796   // If there is a non-reversed interleaved group that may speculatively access
2797   // memory out-of-bounds, we need to ensure that there will be at least one
2798   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2799   // the trip count, we set the remainder to be equal to the step. If the step
2800   // does not evenly divide the trip count, no adjustment is necessary since
2801   // there will already be scalar iterations. Note that the minimum iterations
2802   // check ensures that N >= Step.
2803   if (VF.isVector() && Cost->requiresScalarEpilogue()) {
2804     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2805     R = Builder.CreateSelect(IsZero, Step, R);
2806   }
2807 
2808   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2809 
2810   return VectorTripCount;
2811 }
2812 
2813 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2814                                                    const DataLayout &DL) {
2815   // Verify that V is a vector type with same number of elements as DstVTy.
2816   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2817   unsigned VF = DstFVTy->getNumElements();
2818   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2819   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2820   Type *SrcElemTy = SrcVecTy->getElementType();
2821   Type *DstElemTy = DstFVTy->getElementType();
2822   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2823          "Vector elements must have same size");
2824 
2825   // Do a direct cast if element types are castable.
2826   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2827     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2828   }
2829   // V cannot be directly casted to desired vector type.
2830   // May happen when V is a floating point vector but DstVTy is a vector of
2831   // pointers or vice-versa. Handle this using a two-step bitcast using an
2832   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2833   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2834          "Only one type should be a pointer type");
2835   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2836          "Only one type should be a floating point type");
2837   Type *IntTy =
2838       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2839   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2840   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2841   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2842 }
2843 
2844 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2845                                                          BasicBlock *Bypass) {
2846   Value *Count = getOrCreateTripCount(L);
2847   // Reuse existing vector loop preheader for TC checks.
2848   // Note that new preheader block is generated for vector loop.
2849   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2850   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2851 
2852   // Generate code to check if the loop's trip count is less than VF * UF, or
2853   // equal to it in case a scalar epilogue is required; this implies that the
2854   // vector trip count is zero. This check also covers the case where adding one
2855   // to the backedge-taken count overflowed leading to an incorrect trip count
2856   // of zero. In this case we will also jump to the scalar loop.
2857   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
2858                                           : ICmpInst::ICMP_ULT;
2859 
2860   // If tail is to be folded, vector loop takes care of all iterations.
2861   Value *CheckMinIters = Builder.getFalse();
2862   if (!Cost->foldTailByMasking()) {
2863     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2864     CheckMinIters = Builder.CreateICmp(
2865         P, Count,
2866         ConstantInt::get(Count->getType(), VF.getKnownMinValue() * UF),
2867         "min.iters.check");
2868   }
2869   // Create new preheader for vector loop.
2870   LoopVectorPreHeader =
2871       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2872                  "vector.ph");
2873 
2874   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2875                                DT->getNode(Bypass)->getIDom()) &&
2876          "TC check is expected to dominate Bypass");
2877 
2878   // Update dominator for Bypass & LoopExit.
2879   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2880   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2881 
2882   ReplaceInstWithInst(
2883       TCCheckBlock->getTerminator(),
2884       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2885   LoopBypassBlocks.push_back(TCCheckBlock);
2886 }
2887 
2888 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2889   // Reuse existing vector loop preheader for SCEV checks.
2890   // Note that new preheader block is generated for vector loop.
2891   BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader;
2892 
2893   // Generate the code to check that the SCEV assumptions that we made.
2894   // We want the new basic block to start at the first instruction in a
2895   // sequence of instructions that form a check.
2896   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2897                    "scev.check");
2898   Value *SCEVCheck = Exp.expandCodeForPredicate(
2899       &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator());
2900 
2901   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2902     if (C->isZero())
2903       return;
2904 
2905   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
2906            (OptForSizeBasedOnProfile &&
2907             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
2908          "Cannot SCEV check stride or overflow when optimizing for size");
2909 
2910   SCEVCheckBlock->setName("vector.scevcheck");
2911   // Create new preheader for vector loop.
2912   LoopVectorPreHeader =
2913       SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI,
2914                  nullptr, "vector.ph");
2915 
2916   // Update dominator only if this is first RT check.
2917   if (LoopBypassBlocks.empty()) {
2918     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
2919     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
2920   }
2921 
2922   ReplaceInstWithInst(
2923       SCEVCheckBlock->getTerminator(),
2924       BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck));
2925   LoopBypassBlocks.push_back(SCEVCheckBlock);
2926   AddedSafetyChecks = true;
2927 }
2928 
2929 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2930   // VPlan-native path does not do any analysis for runtime checks currently.
2931   if (EnableVPlanNativePath)
2932     return;
2933 
2934   // Reuse existing vector loop preheader for runtime memory checks.
2935   // Note that new preheader block is generated for vector loop.
2936   BasicBlock *const MemCheckBlock = L->getLoopPreheader();
2937 
2938   // Generate the code that checks in runtime if arrays overlap. We put the
2939   // checks into a separate block to make the more common case of few elements
2940   // faster.
2941   auto *LAI = Legal->getLAI();
2942   const auto &RtPtrChecking = *LAI->getRuntimePointerChecking();
2943   if (!RtPtrChecking.Need)
2944     return;
2945 
2946   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
2947     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
2948            "Cannot emit memory checks when optimizing for size, unless forced "
2949            "to vectorize.");
2950     ORE->emit([&]() {
2951       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
2952                                         L->getStartLoc(), L->getHeader())
2953              << "Code-size may be reduced by not forcing "
2954                 "vectorization, or by source-code modifications "
2955                 "eliminating the need for runtime checks "
2956                 "(e.g., adding 'restrict').";
2957     });
2958   }
2959 
2960   MemCheckBlock->setName("vector.memcheck");
2961   // Create new preheader for vector loop.
2962   LoopVectorPreHeader =
2963       SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr,
2964                  "vector.ph");
2965 
2966   auto *CondBranch = cast<BranchInst>(
2967       Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader));
2968   ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch);
2969   LoopBypassBlocks.push_back(MemCheckBlock);
2970   AddedSafetyChecks = true;
2971 
2972   // Update dominator only if this is first RT check.
2973   if (LoopBypassBlocks.empty()) {
2974     DT->changeImmediateDominator(Bypass, MemCheckBlock);
2975     DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock);
2976   }
2977 
2978   Instruction *FirstCheckInst;
2979   Instruction *MemRuntimeCheck;
2980   std::tie(FirstCheckInst, MemRuntimeCheck) =
2981       addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop,
2982                        RtPtrChecking.getChecks(), RtPtrChecking.getSE());
2983   assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking "
2984                             "claimed checks are required");
2985   CondBranch->setCondition(MemRuntimeCheck);
2986 
2987   // We currently don't use LoopVersioning for the actual loop cloning but we
2988   // still use it to add the noalias metadata.
2989   LVer = std::make_unique<LoopVersioning>(
2990       *Legal->getLAI(),
2991       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
2992       DT, PSE.getSE());
2993   LVer->prepareNoAliasMetadata();
2994 }
2995 
2996 Value *InnerLoopVectorizer::emitTransformedIndex(
2997     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
2998     const InductionDescriptor &ID) const {
2999 
3000   SCEVExpander Exp(*SE, DL, "induction");
3001   auto Step = ID.getStep();
3002   auto StartValue = ID.getStartValue();
3003   assert(Index->getType() == Step->getType() &&
3004          "Index type does not match StepValue type");
3005 
3006   // Note: the IR at this point is broken. We cannot use SE to create any new
3007   // SCEV and then expand it, hoping that SCEV's simplification will give us
3008   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3009   // lead to various SCEV crashes. So all we can do is to use builder and rely
3010   // on InstCombine for future simplifications. Here we handle some trivial
3011   // cases only.
3012   auto CreateAdd = [&B](Value *X, Value *Y) {
3013     assert(X->getType() == Y->getType() && "Types don't match!");
3014     if (auto *CX = dyn_cast<ConstantInt>(X))
3015       if (CX->isZero())
3016         return Y;
3017     if (auto *CY = dyn_cast<ConstantInt>(Y))
3018       if (CY->isZero())
3019         return X;
3020     return B.CreateAdd(X, Y);
3021   };
3022 
3023   auto CreateMul = [&B](Value *X, Value *Y) {
3024     assert(X->getType() == Y->getType() && "Types don't match!");
3025     if (auto *CX = dyn_cast<ConstantInt>(X))
3026       if (CX->isOne())
3027         return Y;
3028     if (auto *CY = dyn_cast<ConstantInt>(Y))
3029       if (CY->isOne())
3030         return X;
3031     return B.CreateMul(X, Y);
3032   };
3033 
3034   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3035   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3036   // the DomTree is not kept up-to-date for additional blocks generated in the
3037   // vector loop. By using the header as insertion point, we guarantee that the
3038   // expanded instructions dominate all their uses.
3039   auto GetInsertPoint = [this, &B]() {
3040     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3041     if (InsertBB != LoopVectorBody &&
3042         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3043       return LoopVectorBody->getTerminator();
3044     return &*B.GetInsertPoint();
3045   };
3046   switch (ID.getKind()) {
3047   case InductionDescriptor::IK_IntInduction: {
3048     assert(Index->getType() == StartValue->getType() &&
3049            "Index type does not match StartValue type");
3050     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3051       return B.CreateSub(StartValue, Index);
3052     auto *Offset = CreateMul(
3053         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3054     return CreateAdd(StartValue, Offset);
3055   }
3056   case InductionDescriptor::IK_PtrInduction: {
3057     assert(isa<SCEVConstant>(Step) &&
3058            "Expected constant step for pointer induction");
3059     return B.CreateGEP(
3060         StartValue->getType()->getPointerElementType(), StartValue,
3061         CreateMul(Index,
3062                   Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())));
3063   }
3064   case InductionDescriptor::IK_FpInduction: {
3065     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3066     auto InductionBinOp = ID.getInductionBinOp();
3067     assert(InductionBinOp &&
3068            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3069             InductionBinOp->getOpcode() == Instruction::FSub) &&
3070            "Original bin op should be defined for FP induction");
3071 
3072     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3073 
3074     // Floating point operations had to be 'fast' to enable the induction.
3075     FastMathFlags Flags;
3076     Flags.setFast();
3077 
3078     Value *MulExp = B.CreateFMul(StepValue, Index);
3079     if (isa<Instruction>(MulExp))
3080       // We have to check, the MulExp may be a constant.
3081       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
3082 
3083     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3084                                "induction");
3085     if (isa<Instruction>(BOp))
3086       cast<Instruction>(BOp)->setFastMathFlags(Flags);
3087 
3088     return BOp;
3089   }
3090   case InductionDescriptor::IK_NoInduction:
3091     return nullptr;
3092   }
3093   llvm_unreachable("invalid enum");
3094 }
3095 
3096 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3097   LoopScalarBody = OrigLoop->getHeader();
3098   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3099   LoopExitBlock = OrigLoop->getExitBlock();
3100   assert(LoopExitBlock && "Must have an exit block");
3101   assert(LoopVectorPreHeader && "Invalid loop structure");
3102 
3103   LoopMiddleBlock =
3104       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3105                  LI, nullptr, Twine(Prefix) + "middle.block");
3106   LoopScalarPreHeader =
3107       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3108                  nullptr, Twine(Prefix) + "scalar.ph");
3109   // We intentionally don't let SplitBlock to update LoopInfo since
3110   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3111   // LoopVectorBody is explicitly added to the correct place few lines later.
3112   LoopVectorBody =
3113       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3114                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3115 
3116   // Update dominator for loop exit.
3117   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3118 
3119   // Create and register the new vector loop.
3120   Loop *Lp = LI->AllocateLoop();
3121   Loop *ParentLoop = OrigLoop->getParentLoop();
3122 
3123   // Insert the new loop into the loop nest and register the new basic blocks
3124   // before calling any utilities such as SCEV that require valid LoopInfo.
3125   if (ParentLoop) {
3126     ParentLoop->addChildLoop(Lp);
3127   } else {
3128     LI->addTopLevelLoop(Lp);
3129   }
3130   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3131   return Lp;
3132 }
3133 
3134 void InnerLoopVectorizer::createInductionResumeValues(Loop *L,
3135                                                       Value *VectorTripCount) {
3136   assert(VectorTripCount && L && "Expected valid arguments");
3137   // We are going to resume the execution of the scalar loop.
3138   // Go over all of the induction variables that we found and fix the
3139   // PHIs that are left in the scalar version of the loop.
3140   // The starting values of PHI nodes depend on the counter of the last
3141   // iteration in the vectorized loop.
3142   // If we come from a bypass edge then we need to start from the original
3143   // start value.
3144   for (auto &InductionEntry : Legal->getInductionVars()) {
3145     PHINode *OrigPhi = InductionEntry.first;
3146     InductionDescriptor II = InductionEntry.second;
3147 
3148     // Create phi nodes to merge from the  backedge-taken check block.
3149     PHINode *BCResumeVal =
3150         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3151                         LoopScalarPreHeader->getTerminator());
3152     // Copy original phi DL over to the new one.
3153     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3154     Value *&EndValue = IVEndValues[OrigPhi];
3155     if (OrigPhi == OldInduction) {
3156       // We know what the end value is.
3157       EndValue = VectorTripCount;
3158     } else {
3159       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3160       Type *StepType = II.getStep()->getType();
3161       Instruction::CastOps CastOp =
3162           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3163       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3164       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3165       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3166       EndValue->setName("ind.end");
3167     }
3168 
3169     // The new PHI merges the original incoming value, in case of a bypass,
3170     // or the value at the end of the vectorized loop.
3171     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3172 
3173     // Fix the scalar body counter (PHI node).
3174     // The old induction's phi node in the scalar body needs the truncated
3175     // value.
3176     for (BasicBlock *BB : LoopBypassBlocks)
3177       BCResumeVal->addIncoming(II.getStartValue(), BB);
3178     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3179   }
3180 }
3181 
3182 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3183                                                       MDNode *OrigLoopID) {
3184   assert(L && "Expected valid loop.");
3185 
3186   // The trip counts should be cached by now.
3187   Value *Count = getOrCreateTripCount(L);
3188   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3189 
3190   // We need the OrigLoop (scalar loop part) latch terminator to help
3191   // produce correct debug info for the middle block BB instructions.
3192   // The legality check stage guarantees that the loop will have a single
3193   // latch.
3194   assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) &&
3195          "Scalar loop latch terminator isn't a branch");
3196   BranchInst *ScalarLatchBr =
3197       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
3198 
3199   // Add a check in the middle block to see if we have completed
3200   // all of the iterations in the first vector loop.
3201   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3202   // If tail is to be folded, we know we don't need to run the remainder.
3203   Value *CmpN = Builder.getTrue();
3204   if (!Cost->foldTailByMasking()) {
3205     CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3206                            VectorTripCount, "cmp.n",
3207                            LoopMiddleBlock->getTerminator());
3208 
3209     // Here we use the same DebugLoc as the scalar loop latch branch instead
3210     // of the corresponding compare because they may have ended up with
3211     // different line numbers and we want to avoid awkward line stepping while
3212     // debugging. Eg. if the compare has got a line number inside the loop.
3213     cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc());
3214   }
3215 
3216   BranchInst *BrInst =
3217       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN);
3218   BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc());
3219   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3220 
3221   // Get ready to start creating new instructions into the vectorized body.
3222   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3223          "Inconsistent vector loop preheader");
3224   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3225 
3226   Optional<MDNode *> VectorizedLoopID =
3227       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3228                                       LLVMLoopVectorizeFollowupVectorized});
3229   if (VectorizedLoopID.hasValue()) {
3230     L->setLoopID(VectorizedLoopID.getValue());
3231 
3232     // Do not setAlreadyVectorized if loop attributes have been defined
3233     // explicitly.
3234     return LoopVectorPreHeader;
3235   }
3236 
3237   // Keep all loop hints from the original loop on the vector loop (we'll
3238   // replace the vectorizer-specific hints below).
3239   if (MDNode *LID = OrigLoop->getLoopID())
3240     L->setLoopID(LID);
3241 
3242   LoopVectorizeHints Hints(L, true, *ORE);
3243   Hints.setAlreadyVectorized();
3244 
3245 #ifdef EXPENSIVE_CHECKS
3246   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3247   LI->verify(*DT);
3248 #endif
3249 
3250   return LoopVectorPreHeader;
3251 }
3252 
3253 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3254   /*
3255    In this function we generate a new loop. The new loop will contain
3256    the vectorized instructions while the old loop will continue to run the
3257    scalar remainder.
3258 
3259        [ ] <-- loop iteration number check.
3260     /   |
3261    /    v
3262   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3263   |  /  |
3264   | /   v
3265   ||   [ ]     <-- vector pre header.
3266   |/    |
3267   |     v
3268   |    [  ] \
3269   |    [  ]_|   <-- vector loop.
3270   |     |
3271   |     v
3272   |   -[ ]   <--- middle-block.
3273   |  /  |
3274   | /   v
3275   -|- >[ ]     <--- new preheader.
3276    |    |
3277    |    v
3278    |   [ ] \
3279    |   [ ]_|   <-- old scalar loop to handle remainder.
3280     \   |
3281      \  v
3282       >[ ]     <-- exit block.
3283    ...
3284    */
3285 
3286   // Get the metadata of the original loop before it gets modified.
3287   MDNode *OrigLoopID = OrigLoop->getLoopID();
3288 
3289   // Create an empty vector loop, and prepare basic blocks for the runtime
3290   // checks.
3291   Loop *Lp = createVectorLoopSkeleton("");
3292 
3293   // Now, compare the new count to zero. If it is zero skip the vector loop and
3294   // jump to the scalar loop. This check also covers the case where the
3295   // backedge-taken count is uint##_max: adding one to it will overflow leading
3296   // to an incorrect trip count of zero. In this (rare) case we will also jump
3297   // to the scalar loop.
3298   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3299 
3300   // Generate the code to check any assumptions that we've made for SCEV
3301   // expressions.
3302   emitSCEVChecks(Lp, LoopScalarPreHeader);
3303 
3304   // Generate the code that checks in runtime if arrays overlap. We put the
3305   // checks into a separate block to make the more common case of few elements
3306   // faster.
3307   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3308 
3309   // Some loops have a single integer induction variable, while other loops
3310   // don't. One example is c++ iterators that often have multiple pointer
3311   // induction variables. In the code below we also support a case where we
3312   // don't have a single induction variable.
3313   //
3314   // We try to obtain an induction variable from the original loop as hard
3315   // as possible. However if we don't find one that:
3316   //   - is an integer
3317   //   - counts from zero, stepping by one
3318   //   - is the size of the widest induction variable type
3319   // then we create a new one.
3320   OldInduction = Legal->getPrimaryInduction();
3321   Type *IdxTy = Legal->getWidestInductionType();
3322   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3323   // The loop step is equal to the vectorization factor (num of SIMD elements)
3324   // times the unroll factor (num of SIMD instructions).
3325   assert(!VF.isScalable() && "scalable vectors not yet supported.");
3326   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
3327   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3328   Induction =
3329       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3330                               getDebugLocFromInstOrOperands(OldInduction));
3331 
3332   // Emit phis for the new starting index of the scalar loop.
3333   createInductionResumeValues(Lp, CountRoundDown);
3334 
3335   return completeLoopSkeleton(Lp, OrigLoopID);
3336 }
3337 
3338 // Fix up external users of the induction variable. At this point, we are
3339 // in LCSSA form, with all external PHIs that use the IV having one input value,
3340 // coming from the remainder loop. We need those PHIs to also have a correct
3341 // value for the IV when arriving directly from the middle block.
3342 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3343                                        const InductionDescriptor &II,
3344                                        Value *CountRoundDown, Value *EndValue,
3345                                        BasicBlock *MiddleBlock) {
3346   // There are two kinds of external IV usages - those that use the value
3347   // computed in the last iteration (the PHI) and those that use the penultimate
3348   // value (the value that feeds into the phi from the loop latch).
3349   // We allow both, but they, obviously, have different values.
3350 
3351   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3352 
3353   DenseMap<Value *, Value *> MissingVals;
3354 
3355   // An external user of the last iteration's value should see the value that
3356   // the remainder loop uses to initialize its own IV.
3357   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3358   for (User *U : PostInc->users()) {
3359     Instruction *UI = cast<Instruction>(U);
3360     if (!OrigLoop->contains(UI)) {
3361       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3362       MissingVals[UI] = EndValue;
3363     }
3364   }
3365 
3366   // An external user of the penultimate value need to see EndValue - Step.
3367   // The simplest way to get this is to recompute it from the constituent SCEVs,
3368   // that is Start + (Step * (CRD - 1)).
3369   for (User *U : OrigPhi->users()) {
3370     auto *UI = cast<Instruction>(U);
3371     if (!OrigLoop->contains(UI)) {
3372       const DataLayout &DL =
3373           OrigLoop->getHeader()->getModule()->getDataLayout();
3374       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3375 
3376       IRBuilder<> B(MiddleBlock->getTerminator());
3377       Value *CountMinusOne = B.CreateSub(
3378           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3379       Value *CMO =
3380           !II.getStep()->getType()->isIntegerTy()
3381               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3382                              II.getStep()->getType())
3383               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3384       CMO->setName("cast.cmo");
3385       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3386       Escape->setName("ind.escape");
3387       MissingVals[UI] = Escape;
3388     }
3389   }
3390 
3391   for (auto &I : MissingVals) {
3392     PHINode *PHI = cast<PHINode>(I.first);
3393     // One corner case we have to handle is two IVs "chasing" each-other,
3394     // that is %IV2 = phi [...], [ %IV1, %latch ]
3395     // In this case, if IV1 has an external use, we need to avoid adding both
3396     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3397     // don't already have an incoming value for the middle block.
3398     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3399       PHI->addIncoming(I.second, MiddleBlock);
3400   }
3401 }
3402 
3403 namespace {
3404 
3405 struct CSEDenseMapInfo {
3406   static bool canHandle(const Instruction *I) {
3407     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3408            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3409   }
3410 
3411   static inline Instruction *getEmptyKey() {
3412     return DenseMapInfo<Instruction *>::getEmptyKey();
3413   }
3414 
3415   static inline Instruction *getTombstoneKey() {
3416     return DenseMapInfo<Instruction *>::getTombstoneKey();
3417   }
3418 
3419   static unsigned getHashValue(const Instruction *I) {
3420     assert(canHandle(I) && "Unknown instruction!");
3421     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3422                                                            I->value_op_end()));
3423   }
3424 
3425   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3426     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3427         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3428       return LHS == RHS;
3429     return LHS->isIdenticalTo(RHS);
3430   }
3431 };
3432 
3433 } // end anonymous namespace
3434 
3435 ///Perform cse of induction variable instructions.
3436 static void cse(BasicBlock *BB) {
3437   // Perform simple cse.
3438   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3439   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3440     Instruction *In = &*I++;
3441 
3442     if (!CSEDenseMapInfo::canHandle(In))
3443       continue;
3444 
3445     // Check if we can replace this instruction with any of the
3446     // visited instructions.
3447     if (Instruction *V = CSEMap.lookup(In)) {
3448       In->replaceAllUsesWith(V);
3449       In->eraseFromParent();
3450       continue;
3451     }
3452 
3453     CSEMap[In] = In;
3454   }
3455 }
3456 
3457 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI,
3458                                                        ElementCount VF,
3459                                                        bool &NeedToScalarize) {
3460   assert(!VF.isScalable() && "scalable vectors not yet supported.");
3461   Function *F = CI->getCalledFunction();
3462   Type *ScalarRetTy = CI->getType();
3463   SmallVector<Type *, 4> Tys, ScalarTys;
3464   for (auto &ArgOp : CI->arg_operands())
3465     ScalarTys.push_back(ArgOp->getType());
3466 
3467   // Estimate cost of scalarized vector call. The source operands are assumed
3468   // to be vectors, so we need to extract individual elements from there,
3469   // execute VF scalar calls, and then gather the result into the vector return
3470   // value.
3471   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys,
3472                                                  TTI::TCK_RecipThroughput);
3473   if (VF.isScalar())
3474     return ScalarCallCost;
3475 
3476   // Compute corresponding vector type for return value and arguments.
3477   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3478   for (Type *ScalarTy : ScalarTys)
3479     Tys.push_back(ToVectorTy(ScalarTy, VF));
3480 
3481   // Compute costs of unpacking argument values for the scalar calls and
3482   // packing the return values to a vector.
3483   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF);
3484 
3485   unsigned Cost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3486 
3487   // If we can't emit a vector call for this function, then the currently found
3488   // cost is the cost we need to return.
3489   NeedToScalarize = true;
3490   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3491   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3492 
3493   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3494     return Cost;
3495 
3496   // If the corresponding vector cost is cheaper, return its cost.
3497   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys,
3498                                                  TTI::TCK_RecipThroughput);
3499   if (VectorCallCost < Cost) {
3500     NeedToScalarize = false;
3501     return VectorCallCost;
3502   }
3503   return Cost;
3504 }
3505 
3506 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3507                                                             ElementCount VF) {
3508   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3509   assert(ID && "Expected intrinsic call!");
3510 
3511   IntrinsicCostAttributes CostAttrs(ID, *CI, VF);
3512   return TTI.getIntrinsicInstrCost(CostAttrs,
3513                                    TargetTransformInfo::TCK_RecipThroughput);
3514 }
3515 
3516 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3517   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3518   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3519   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3520 }
3521 
3522 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3523   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3524   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3525   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3526 }
3527 
3528 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3529   // For every instruction `I` in MinBWs, truncate the operands, create a
3530   // truncated version of `I` and reextend its result. InstCombine runs
3531   // later and will remove any ext/trunc pairs.
3532   SmallPtrSet<Value *, 4> Erased;
3533   for (const auto &KV : Cost->getMinimalBitwidths()) {
3534     // If the value wasn't vectorized, we must maintain the original scalar
3535     // type. The absence of the value from VectorLoopValueMap indicates that it
3536     // wasn't vectorized.
3537     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3538       continue;
3539     for (unsigned Part = 0; Part < UF; ++Part) {
3540       Value *I = getOrCreateVectorValue(KV.first, Part);
3541       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3542         continue;
3543       Type *OriginalTy = I->getType();
3544       Type *ScalarTruncatedTy =
3545           IntegerType::get(OriginalTy->getContext(), KV.second);
3546       auto *TruncatedTy = FixedVectorType::get(
3547           ScalarTruncatedTy,
3548           cast<FixedVectorType>(OriginalTy)->getNumElements());
3549       if (TruncatedTy == OriginalTy)
3550         continue;
3551 
3552       IRBuilder<> B(cast<Instruction>(I));
3553       auto ShrinkOperand = [&](Value *V) -> Value * {
3554         if (auto *ZI = dyn_cast<ZExtInst>(V))
3555           if (ZI->getSrcTy() == TruncatedTy)
3556             return ZI->getOperand(0);
3557         return B.CreateZExtOrTrunc(V, TruncatedTy);
3558       };
3559 
3560       // The actual instruction modification depends on the instruction type,
3561       // unfortunately.
3562       Value *NewI = nullptr;
3563       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3564         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3565                              ShrinkOperand(BO->getOperand(1)));
3566 
3567         // Any wrapping introduced by shrinking this operation shouldn't be
3568         // considered undefined behavior. So, we can't unconditionally copy
3569         // arithmetic wrapping flags to NewI.
3570         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3571       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3572         NewI =
3573             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3574                          ShrinkOperand(CI->getOperand(1)));
3575       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3576         NewI = B.CreateSelect(SI->getCondition(),
3577                               ShrinkOperand(SI->getTrueValue()),
3578                               ShrinkOperand(SI->getFalseValue()));
3579       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3580         switch (CI->getOpcode()) {
3581         default:
3582           llvm_unreachable("Unhandled cast!");
3583         case Instruction::Trunc:
3584           NewI = ShrinkOperand(CI->getOperand(0));
3585           break;
3586         case Instruction::SExt:
3587           NewI = B.CreateSExtOrTrunc(
3588               CI->getOperand(0),
3589               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3590           break;
3591         case Instruction::ZExt:
3592           NewI = B.CreateZExtOrTrunc(
3593               CI->getOperand(0),
3594               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3595           break;
3596         }
3597       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3598         auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType())
3599                              ->getNumElements();
3600         auto *O0 = B.CreateZExtOrTrunc(
3601             SI->getOperand(0),
3602             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3603         auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType())
3604                              ->getNumElements();
3605         auto *O1 = B.CreateZExtOrTrunc(
3606             SI->getOperand(1),
3607             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3608 
3609         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3610       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3611         // Don't do anything with the operands, just extend the result.
3612         continue;
3613       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3614         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
3615                             ->getNumElements();
3616         auto *O0 = B.CreateZExtOrTrunc(
3617             IE->getOperand(0),
3618             FixedVectorType::get(ScalarTruncatedTy, Elements));
3619         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3620         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3621       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3622         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
3623                             ->getNumElements();
3624         auto *O0 = B.CreateZExtOrTrunc(
3625             EE->getOperand(0),
3626             FixedVectorType::get(ScalarTruncatedTy, Elements));
3627         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3628       } else {
3629         // If we don't know what to do, be conservative and don't do anything.
3630         continue;
3631       }
3632 
3633       // Lastly, extend the result.
3634       NewI->takeName(cast<Instruction>(I));
3635       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3636       I->replaceAllUsesWith(Res);
3637       cast<Instruction>(I)->eraseFromParent();
3638       Erased.insert(I);
3639       VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3640     }
3641   }
3642 
3643   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3644   for (const auto &KV : Cost->getMinimalBitwidths()) {
3645     // If the value wasn't vectorized, we must maintain the original scalar
3646     // type. The absence of the value from VectorLoopValueMap indicates that it
3647     // wasn't vectorized.
3648     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3649       continue;
3650     for (unsigned Part = 0; Part < UF; ++Part) {
3651       Value *I = getOrCreateVectorValue(KV.first, Part);
3652       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3653       if (Inst && Inst->use_empty()) {
3654         Value *NewI = Inst->getOperand(0);
3655         Inst->eraseFromParent();
3656         VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3657       }
3658     }
3659   }
3660 }
3661 
3662 void InnerLoopVectorizer::fixVectorizedLoop() {
3663   // Insert truncates and extends for any truncated instructions as hints to
3664   // InstCombine.
3665   if (VF.isVector())
3666     truncateToMinimalBitwidths();
3667 
3668   // Fix widened non-induction PHIs by setting up the PHI operands.
3669   if (OrigPHIsToFix.size()) {
3670     assert(EnableVPlanNativePath &&
3671            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3672     fixNonInductionPHIs();
3673   }
3674 
3675   // At this point every instruction in the original loop is widened to a
3676   // vector form. Now we need to fix the recurrences in the loop. These PHI
3677   // nodes are currently empty because we did not want to introduce cycles.
3678   // This is the second stage of vectorizing recurrences.
3679   fixCrossIterationPHIs();
3680 
3681   // Forget the original basic block.
3682   PSE.getSE()->forgetLoop(OrigLoop);
3683 
3684   // Fix-up external users of the induction variables.
3685   for (auto &Entry : Legal->getInductionVars())
3686     fixupIVUsers(Entry.first, Entry.second,
3687                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3688                  IVEndValues[Entry.first], LoopMiddleBlock);
3689 
3690   fixLCSSAPHIs();
3691   for (Instruction *PI : PredicatedInstructions)
3692     sinkScalarOperands(&*PI);
3693 
3694   // Remove redundant induction instructions.
3695   cse(LoopVectorBody);
3696 
3697   // Set/update profile weights for the vector and remainder loops as original
3698   // loop iterations are now distributed among them. Note that original loop
3699   // represented by LoopScalarBody becomes remainder loop after vectorization.
3700   //
3701   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3702   // end up getting slightly roughened result but that should be OK since
3703   // profile is not inherently precise anyway. Note also possible bypass of
3704   // vector code caused by legality checks is ignored, assigning all the weight
3705   // to the vector loop, optimistically.
3706   assert(!VF.isScalable() &&
3707          "cannot use scalable ElementCount to determine unroll factor");
3708   setProfileInfoAfterUnrolling(
3709       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
3710       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
3711 }
3712 
3713 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3714   // In order to support recurrences we need to be able to vectorize Phi nodes.
3715   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3716   // stage #2: We now need to fix the recurrences by adding incoming edges to
3717   // the currently empty PHI nodes. At this point every instruction in the
3718   // original loop is widened to a vector form so we can use them to construct
3719   // the incoming edges.
3720   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3721     // Handle first-order recurrences and reductions that need to be fixed.
3722     if (Legal->isFirstOrderRecurrence(&Phi))
3723       fixFirstOrderRecurrence(&Phi);
3724     else if (Legal->isReductionVariable(&Phi))
3725       fixReduction(&Phi);
3726   }
3727 }
3728 
3729 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3730   // This is the second phase of vectorizing first-order recurrences. An
3731   // overview of the transformation is described below. Suppose we have the
3732   // following loop.
3733   //
3734   //   for (int i = 0; i < n; ++i)
3735   //     b[i] = a[i] - a[i - 1];
3736   //
3737   // There is a first-order recurrence on "a". For this loop, the shorthand
3738   // scalar IR looks like:
3739   //
3740   //   scalar.ph:
3741   //     s_init = a[-1]
3742   //     br scalar.body
3743   //
3744   //   scalar.body:
3745   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3746   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3747   //     s2 = a[i]
3748   //     b[i] = s2 - s1
3749   //     br cond, scalar.body, ...
3750   //
3751   // In this example, s1 is a recurrence because it's value depends on the
3752   // previous iteration. In the first phase of vectorization, we created a
3753   // temporary value for s1. We now complete the vectorization and produce the
3754   // shorthand vector IR shown below (for VF = 4, UF = 1).
3755   //
3756   //   vector.ph:
3757   //     v_init = vector(..., ..., ..., a[-1])
3758   //     br vector.body
3759   //
3760   //   vector.body
3761   //     i = phi [0, vector.ph], [i+4, vector.body]
3762   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3763   //     v2 = a[i, i+1, i+2, i+3];
3764   //     v3 = vector(v1(3), v2(0, 1, 2))
3765   //     b[i, i+1, i+2, i+3] = v2 - v3
3766   //     br cond, vector.body, middle.block
3767   //
3768   //   middle.block:
3769   //     x = v2(3)
3770   //     br scalar.ph
3771   //
3772   //   scalar.ph:
3773   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3774   //     br scalar.body
3775   //
3776   // After execution completes the vector loop, we extract the next value of
3777   // the recurrence (x) to use as the initial value in the scalar loop.
3778 
3779   // Get the original loop preheader and single loop latch.
3780   auto *Preheader = OrigLoop->getLoopPreheader();
3781   auto *Latch = OrigLoop->getLoopLatch();
3782 
3783   // Get the initial and previous values of the scalar recurrence.
3784   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3785   auto *Previous = Phi->getIncomingValueForBlock(Latch);
3786 
3787   // Create a vector from the initial value.
3788   auto *VectorInit = ScalarInit;
3789   if (VF.isVector()) {
3790     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3791     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
3792     VectorInit = Builder.CreateInsertElement(
3793         UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
3794         Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init");
3795   }
3796 
3797   // We constructed a temporary phi node in the first phase of vectorization.
3798   // This phi node will eventually be deleted.
3799   Builder.SetInsertPoint(
3800       cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
3801 
3802   // Create a phi node for the new recurrence. The current value will either be
3803   // the initial value inserted into a vector or loop-varying vector value.
3804   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3805   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3806 
3807   // Get the vectorized previous value of the last part UF - 1. It appears last
3808   // among all unrolled iterations, due to the order of their construction.
3809   Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
3810 
3811   // Find and set the insertion point after the previous value if it is an
3812   // instruction.
3813   BasicBlock::iterator InsertPt;
3814   // Note that the previous value may have been constant-folded so it is not
3815   // guaranteed to be an instruction in the vector loop.
3816   // FIXME: Loop invariant values do not form recurrences. We should deal with
3817   //        them earlier.
3818   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
3819     InsertPt = LoopVectorBody->getFirstInsertionPt();
3820   else {
3821     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
3822     if (isa<PHINode>(PreviousLastPart))
3823       // If the previous value is a phi node, we should insert after all the phi
3824       // nodes in the block containing the PHI to avoid breaking basic block
3825       // verification. Note that the basic block may be different to
3826       // LoopVectorBody, in case we predicate the loop.
3827       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
3828     else
3829       InsertPt = ++PreviousInst->getIterator();
3830   }
3831   Builder.SetInsertPoint(&*InsertPt);
3832 
3833   // We will construct a vector for the recurrence by combining the values for
3834   // the current and previous iterations. This is the required shuffle mask.
3835   assert(!VF.isScalable());
3836   SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue());
3837   ShuffleMask[0] = VF.getKnownMinValue() - 1;
3838   for (unsigned I = 1; I < VF.getKnownMinValue(); ++I)
3839     ShuffleMask[I] = I + VF.getKnownMinValue() - 1;
3840 
3841   // The vector from which to take the initial value for the current iteration
3842   // (actual or unrolled). Initially, this is the vector phi node.
3843   Value *Incoming = VecPhi;
3844 
3845   // Shuffle the current and previous vector and update the vector parts.
3846   for (unsigned Part = 0; Part < UF; ++Part) {
3847     Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
3848     Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
3849     auto *Shuffle =
3850         VF.isVector()
3851             ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask)
3852             : Incoming;
3853     PhiPart->replaceAllUsesWith(Shuffle);
3854     cast<Instruction>(PhiPart)->eraseFromParent();
3855     VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
3856     Incoming = PreviousPart;
3857   }
3858 
3859   // Fix the latch value of the new recurrence in the vector loop.
3860   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3861 
3862   // Extract the last vector element in the middle block. This will be the
3863   // initial value for the recurrence when jumping to the scalar loop.
3864   auto *ExtractForScalar = Incoming;
3865   if (VF.isVector()) {
3866     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3867     ExtractForScalar = Builder.CreateExtractElement(
3868         ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1),
3869         "vector.recur.extract");
3870   }
3871   // Extract the second last element in the middle block if the
3872   // Phi is used outside the loop. We need to extract the phi itself
3873   // and not the last element (the phi update in the current iteration). This
3874   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3875   // when the scalar loop is not run at all.
3876   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3877   if (VF.isVector())
3878     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3879         Incoming, Builder.getInt32(VF.getKnownMinValue() - 2),
3880         "vector.recur.extract.for.phi");
3881   // When loop is unrolled without vectorizing, initialize
3882   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
3883   // `Incoming`. This is analogous to the vectorized case above: extracting the
3884   // second last element when VF > 1.
3885   else if (UF > 1)
3886     ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
3887 
3888   // Fix the initial value of the original recurrence in the scalar loop.
3889   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3890   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3891   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3892     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3893     Start->addIncoming(Incoming, BB);
3894   }
3895 
3896   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3897   Phi->setName("scalar.recur");
3898 
3899   // Finally, fix users of the recurrence outside the loop. The users will need
3900   // either the last value of the scalar recurrence or the last value of the
3901   // vector recurrence we extracted in the middle block. Since the loop is in
3902   // LCSSA form, we just need to find all the phi nodes for the original scalar
3903   // recurrence in the exit block, and then add an edge for the middle block.
3904   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3905     if (LCSSAPhi.getIncomingValue(0) == Phi) {
3906       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3907     }
3908   }
3909 }
3910 
3911 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
3912   Constant *Zero = Builder.getInt32(0);
3913 
3914   // Get it's reduction variable descriptor.
3915   assert(Legal->isReductionVariable(Phi) &&
3916          "Unable to find the reduction variable");
3917   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
3918 
3919   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3920   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3921   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3922   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3923     RdxDesc.getMinMaxRecurrenceKind();
3924   setDebugLocFromInst(Builder, ReductionStartValue);
3925   bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi);
3926 
3927   // We need to generate a reduction vector from the incoming scalar.
3928   // To do so, we need to generate the 'identity' vector and override
3929   // one of the elements with the incoming scalar reduction. We need
3930   // to do it in the vector-loop preheader.
3931   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3932 
3933   // This is the vector-clone of the value that leaves the loop.
3934   Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
3935 
3936   // Find the reduction identity variable. Zero for addition, or, xor,
3937   // one for multiplication, -1 for And.
3938   Value *Identity;
3939   Value *VectorStart;
3940   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3941       RK == RecurrenceDescriptor::RK_FloatMinMax) {
3942     // MinMax reduction have the start value as their identify.
3943     if (VF.isScalar() || IsInLoopReductionPhi) {
3944       VectorStart = Identity = ReductionStartValue;
3945     } else {
3946       VectorStart = Identity =
3947         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3948     }
3949   } else {
3950     // Handle other reduction kinds:
3951     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3952         RK, MinMaxKind, VecTy->getScalarType());
3953     if (VF.isScalar() || IsInLoopReductionPhi) {
3954       Identity = Iden;
3955       // This vector is the Identity vector where the first element is the
3956       // incoming scalar reduction.
3957       VectorStart = ReductionStartValue;
3958     } else {
3959       Identity = ConstantVector::getSplat(VF, Iden);
3960 
3961       // This vector is the Identity vector where the first element is the
3962       // incoming scalar reduction.
3963       VectorStart =
3964         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3965     }
3966   }
3967 
3968   // Wrap flags are in general invalid after vectorization, clear them.
3969   clearReductionWrapFlags(RdxDesc);
3970 
3971   // Fix the vector-loop phi.
3972 
3973   // Reductions do not have to start at zero. They can start with
3974   // any loop invariant values.
3975   BasicBlock *Latch = OrigLoop->getLoopLatch();
3976   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3977 
3978   for (unsigned Part = 0; Part < UF; ++Part) {
3979     Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
3980     Value *Val = getOrCreateVectorValue(LoopVal, Part);
3981     // Make sure to add the reduction start value only to the
3982     // first unroll part.
3983     Value *StartVal = (Part == 0) ? VectorStart : Identity;
3984     cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
3985     cast<PHINode>(VecRdxPhi)
3986       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3987   }
3988 
3989   // Before each round, move the insertion point right between
3990   // the PHIs and the values we are going to write.
3991   // This allows us to write both PHINodes and the extractelement
3992   // instructions.
3993   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3994 
3995   setDebugLocFromInst(Builder, LoopExitInst);
3996 
3997   // If tail is folded by masking, the vector value to leave the loop should be
3998   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3999   // instead of the former. For an inloop reduction the reduction will already
4000   // be predicated, and does not need to be handled here.
4001   if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) {
4002     for (unsigned Part = 0; Part < UF; ++Part) {
4003       Value *VecLoopExitInst =
4004           VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4005       Value *Sel = nullptr;
4006       for (User *U : VecLoopExitInst->users()) {
4007         if (isa<SelectInst>(U)) {
4008           assert(!Sel && "Reduction exit feeding two selects");
4009           Sel = U;
4010         } else
4011           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4012       }
4013       assert(Sel && "Reduction exit feeds no select");
4014       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel);
4015 
4016       // If the target can create a predicated operator for the reduction at no
4017       // extra cost in the loop (for example a predicated vadd), it can be
4018       // cheaper for the select to remain in the loop than be sunk out of it,
4019       // and so use the select value for the phi instead of the old
4020       // LoopExitValue.
4021       RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
4022       if (PreferPredicatedReductionSelect ||
4023           TTI->preferPredicatedReductionSelect(
4024               RdxDesc.getRecurrenceBinOp(), Phi->getType(),
4025               TargetTransformInfo::ReductionFlags())) {
4026         auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part));
4027         VecRdxPhi->setIncomingValueForBlock(
4028             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4029       }
4030     }
4031   }
4032 
4033   // If the vector reduction can be performed in a smaller type, we truncate
4034   // then extend the loop exit value to enable InstCombine to evaluate the
4035   // entire expression in the smaller type.
4036   if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) {
4037     assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!");
4038     assert(!VF.isScalable() && "scalable vectors not yet supported.");
4039     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4040     Builder.SetInsertPoint(
4041         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4042     VectorParts RdxParts(UF);
4043     for (unsigned Part = 0; Part < UF; ++Part) {
4044       RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4045       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4046       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4047                                         : Builder.CreateZExt(Trunc, VecTy);
4048       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4049            UI != RdxParts[Part]->user_end();)
4050         if (*UI != Trunc) {
4051           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4052           RdxParts[Part] = Extnd;
4053         } else {
4054           ++UI;
4055         }
4056     }
4057     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4058     for (unsigned Part = 0; Part < UF; ++Part) {
4059       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4060       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
4061     }
4062   }
4063 
4064   // Reduce all of the unrolled parts into a single vector.
4065   Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
4066   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
4067 
4068   // The middle block terminator has already been assigned a DebugLoc here (the
4069   // OrigLoop's single latch terminator). We want the whole middle block to
4070   // appear to execute on this line because: (a) it is all compiler generated,
4071   // (b) these instructions are always executed after evaluating the latch
4072   // conditional branch, and (c) other passes may add new predecessors which
4073   // terminate on this line. This is the easiest way to ensure we don't
4074   // accidentally cause an extra step back into the loop while debugging.
4075   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
4076   for (unsigned Part = 1; Part < UF; ++Part) {
4077     Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4078     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
4079       // Floating point operations had to be 'fast' to enable the reduction.
4080       ReducedPartRdx = addFastMathFlag(
4081           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
4082                               ReducedPartRdx, "bin.rdx"),
4083           RdxDesc.getFastMathFlags());
4084     else
4085       ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
4086                                       RdxPart);
4087   }
4088 
4089   // Create the reduction after the loop. Note that inloop reductions create the
4090   // target reduction in the loop using a Reduction recipe.
4091   if (VF.isVector() && !IsInLoopReductionPhi) {
4092     bool NoNaN = Legal->hasFunNoNaNAttr();
4093     ReducedPartRdx =
4094         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
4095     // If the reduction can be performed in a smaller type, we need to extend
4096     // the reduction to the wider type before we branch to the original loop.
4097     if (Phi->getType() != RdxDesc.getRecurrenceType())
4098       ReducedPartRdx =
4099         RdxDesc.isSigned()
4100         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
4101         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
4102   }
4103 
4104   // Create a phi node that merges control-flow from the backedge-taken check
4105   // block and the middle block.
4106   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
4107                                         LoopScalarPreHeader->getTerminator());
4108   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4109     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4110   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4111 
4112   // Now, we need to fix the users of the reduction variable
4113   // inside and outside of the scalar remainder loop.
4114   // We know that the loop is in LCSSA form. We need to update the
4115   // PHI nodes in the exit blocks.
4116   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4117     // All PHINodes need to have a single entry edge, or two if
4118     // we already fixed them.
4119     assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
4120 
4121     // We found a reduction value exit-PHI. Update it with the
4122     // incoming bypass edge.
4123     if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
4124       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4125   } // end of the LCSSA phi scan.
4126 
4127     // Fix the scalar loop reduction variable with the incoming reduction sum
4128     // from the vector body and from the backedge value.
4129   int IncomingEdgeBlockIdx =
4130     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4131   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4132   // Pick the other block.
4133   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4134   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4135   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4136 }
4137 
4138 void InnerLoopVectorizer::clearReductionWrapFlags(
4139     RecurrenceDescriptor &RdxDesc) {
4140   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
4141   if (RK != RecurrenceDescriptor::RK_IntegerAdd &&
4142       RK != RecurrenceDescriptor::RK_IntegerMult)
4143     return;
4144 
4145   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4146   assert(LoopExitInstr && "null loop exit instruction");
4147   SmallVector<Instruction *, 8> Worklist;
4148   SmallPtrSet<Instruction *, 8> Visited;
4149   Worklist.push_back(LoopExitInstr);
4150   Visited.insert(LoopExitInstr);
4151 
4152   while (!Worklist.empty()) {
4153     Instruction *Cur = Worklist.pop_back_val();
4154     if (isa<OverflowingBinaryOperator>(Cur))
4155       for (unsigned Part = 0; Part < UF; ++Part) {
4156         Value *V = getOrCreateVectorValue(Cur, Part);
4157         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4158       }
4159 
4160     for (User *U : Cur->users()) {
4161       Instruction *UI = cast<Instruction>(U);
4162       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4163           Visited.insert(UI).second)
4164         Worklist.push_back(UI);
4165     }
4166   }
4167 }
4168 
4169 void InnerLoopVectorizer::fixLCSSAPHIs() {
4170   assert(!VF.isScalable() && "the code below assumes fixed width vectors");
4171   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4172     if (LCSSAPhi.getNumIncomingValues() == 1) {
4173       auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4174       // Non-instruction incoming values will have only one value.
4175       unsigned LastLane = 0;
4176       if (isa<Instruction>(IncomingValue))
4177         LastLane = Cost->isUniformAfterVectorization(
4178                        cast<Instruction>(IncomingValue), VF)
4179                        ? 0
4180                        : VF.getKnownMinValue() - 1;
4181       // Can be a loop invariant incoming value or the last scalar value to be
4182       // extracted from the vectorized loop.
4183       Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4184       Value *lastIncomingValue =
4185           getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
4186       LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4187     }
4188   }
4189 }
4190 
4191 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4192   // The basic block and loop containing the predicated instruction.
4193   auto *PredBB = PredInst->getParent();
4194   auto *VectorLoop = LI->getLoopFor(PredBB);
4195 
4196   // Initialize a worklist with the operands of the predicated instruction.
4197   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4198 
4199   // Holds instructions that we need to analyze again. An instruction may be
4200   // reanalyzed if we don't yet know if we can sink it or not.
4201   SmallVector<Instruction *, 8> InstsToReanalyze;
4202 
4203   // Returns true if a given use occurs in the predicated block. Phi nodes use
4204   // their operands in their corresponding predecessor blocks.
4205   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4206     auto *I = cast<Instruction>(U.getUser());
4207     BasicBlock *BB = I->getParent();
4208     if (auto *Phi = dyn_cast<PHINode>(I))
4209       BB = Phi->getIncomingBlock(
4210           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4211     return BB == PredBB;
4212   };
4213 
4214   // Iteratively sink the scalarized operands of the predicated instruction
4215   // into the block we created for it. When an instruction is sunk, it's
4216   // operands are then added to the worklist. The algorithm ends after one pass
4217   // through the worklist doesn't sink a single instruction.
4218   bool Changed;
4219   do {
4220     // Add the instructions that need to be reanalyzed to the worklist, and
4221     // reset the changed indicator.
4222     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4223     InstsToReanalyze.clear();
4224     Changed = false;
4225 
4226     while (!Worklist.empty()) {
4227       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4228 
4229       // We can't sink an instruction if it is a phi node, is already in the
4230       // predicated block, is not in the loop, or may have side effects.
4231       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4232           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4233         continue;
4234 
4235       // It's legal to sink the instruction if all its uses occur in the
4236       // predicated block. Otherwise, there's nothing to do yet, and we may
4237       // need to reanalyze the instruction.
4238       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4239         InstsToReanalyze.push_back(I);
4240         continue;
4241       }
4242 
4243       // Move the instruction to the beginning of the predicated block, and add
4244       // it's operands to the worklist.
4245       I->moveBefore(&*PredBB->getFirstInsertionPt());
4246       Worklist.insert(I->op_begin(), I->op_end());
4247 
4248       // The sinking may have enabled other instructions to be sunk, so we will
4249       // need to iterate.
4250       Changed = true;
4251     }
4252   } while (Changed);
4253 }
4254 
4255 void InnerLoopVectorizer::fixNonInductionPHIs() {
4256   for (PHINode *OrigPhi : OrigPHIsToFix) {
4257     PHINode *NewPhi =
4258         cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
4259     unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
4260 
4261     SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
4262         predecessors(OrigPhi->getParent()));
4263     SmallVector<BasicBlock *, 2> VectorBBPredecessors(
4264         predecessors(NewPhi->getParent()));
4265     assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
4266            "Scalar and Vector BB should have the same number of predecessors");
4267 
4268     // The insertion point in Builder may be invalidated by the time we get
4269     // here. Force the Builder insertion point to something valid so that we do
4270     // not run into issues during insertion point restore in
4271     // getOrCreateVectorValue calls below.
4272     Builder.SetInsertPoint(NewPhi);
4273 
4274     // The predecessor order is preserved and we can rely on mapping between
4275     // scalar and vector block predecessors.
4276     for (unsigned i = 0; i < NumIncomingValues; ++i) {
4277       BasicBlock *NewPredBB = VectorBBPredecessors[i];
4278 
4279       // When looking up the new scalar/vector values to fix up, use incoming
4280       // values from original phi.
4281       Value *ScIncV =
4282           OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
4283 
4284       // Scalar incoming value may need a broadcast
4285       Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
4286       NewPhi->addIncoming(NewIncV, NewPredBB);
4287     }
4288   }
4289 }
4290 
4291 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4292                                    VPUser &Operands, unsigned UF,
4293                                    ElementCount VF, bool IsPtrLoopInvariant,
4294                                    SmallBitVector &IsIndexLoopInvariant,
4295                                    VPTransformState &State) {
4296   // Construct a vector GEP by widening the operands of the scalar GEP as
4297   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4298   // results in a vector of pointers when at least one operand of the GEP
4299   // is vector-typed. Thus, to keep the representation compact, we only use
4300   // vector-typed operands for loop-varying values.
4301 
4302   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4303     // If we are vectorizing, but the GEP has only loop-invariant operands,
4304     // the GEP we build (by only using vector-typed operands for
4305     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4306     // produce a vector of pointers, we need to either arbitrarily pick an
4307     // operand to broadcast, or broadcast a clone of the original GEP.
4308     // Here, we broadcast a clone of the original.
4309     //
4310     // TODO: If at some point we decide to scalarize instructions having
4311     //       loop-invariant operands, this special case will no longer be
4312     //       required. We would add the scalarization decision to
4313     //       collectLoopScalars() and teach getVectorValue() to broadcast
4314     //       the lane-zero scalar value.
4315     auto *Clone = Builder.Insert(GEP->clone());
4316     for (unsigned Part = 0; Part < UF; ++Part) {
4317       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4318       VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart);
4319       addMetadata(EntryPart, GEP);
4320     }
4321   } else {
4322     // If the GEP has at least one loop-varying operand, we are sure to
4323     // produce a vector of pointers. But if we are only unrolling, we want
4324     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4325     // produce with the code below will be scalar (if VF == 1) or vector
4326     // (otherwise). Note that for the unroll-only case, we still maintain
4327     // values in the vector mapping with initVector, as we do for other
4328     // instructions.
4329     for (unsigned Part = 0; Part < UF; ++Part) {
4330       // The pointer operand of the new GEP. If it's loop-invariant, we
4331       // won't broadcast it.
4332       auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0})
4333                                      : State.get(Operands.getOperand(0), Part);
4334 
4335       // Collect all the indices for the new GEP. If any index is
4336       // loop-invariant, we won't broadcast it.
4337       SmallVector<Value *, 4> Indices;
4338       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4339         VPValue *Operand = Operands.getOperand(I);
4340         if (IsIndexLoopInvariant[I - 1])
4341           Indices.push_back(State.get(Operand, {0, 0}));
4342         else
4343           Indices.push_back(State.get(Operand, Part));
4344       }
4345 
4346       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4347       // but it should be a vector, otherwise.
4348       auto *NewGEP =
4349           GEP->isInBounds()
4350               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4351                                           Indices)
4352               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4353       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4354              "NewGEP is not a pointer vector");
4355       VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP);
4356       addMetadata(NewGEP, GEP);
4357     }
4358   }
4359 }
4360 
4361 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4362                                               ElementCount VF) {
4363   assert(!VF.isScalable() && "scalable vectors not yet supported.");
4364   PHINode *P = cast<PHINode>(PN);
4365   if (EnableVPlanNativePath) {
4366     // Currently we enter here in the VPlan-native path for non-induction
4367     // PHIs where all control flow is uniform. We simply widen these PHIs.
4368     // Create a vector phi with no operands - the vector phi operands will be
4369     // set at the end of vector code generation.
4370     Type *VecTy =
4371         (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF);
4372     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4373     VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
4374     OrigPHIsToFix.push_back(P);
4375 
4376     return;
4377   }
4378 
4379   assert(PN->getParent() == OrigLoop->getHeader() &&
4380          "Non-header phis should have been handled elsewhere");
4381 
4382   // In order to support recurrences we need to be able to vectorize Phi nodes.
4383   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4384   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4385   // this value when we vectorize all of the instructions that use the PHI.
4386   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4387     for (unsigned Part = 0; Part < UF; ++Part) {
4388       // This is phase one of vectorizing PHIs.
4389       bool ScalarPHI =
4390           (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN));
4391       Type *VecTy =
4392           ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF);
4393       Value *EntryPart = PHINode::Create(
4394           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4395       VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4396     }
4397     return;
4398   }
4399 
4400   setDebugLocFromInst(Builder, P);
4401 
4402   // This PHINode must be an induction variable.
4403   // Make sure that we know about it.
4404   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4405 
4406   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4407   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4408 
4409   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4410   // which can be found from the original scalar operations.
4411   switch (II.getKind()) {
4412   case InductionDescriptor::IK_NoInduction:
4413     llvm_unreachable("Unknown induction");
4414   case InductionDescriptor::IK_IntInduction:
4415   case InductionDescriptor::IK_FpInduction:
4416     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4417   case InductionDescriptor::IK_PtrInduction: {
4418     // Handle the pointer induction variable case.
4419     assert(P->getType()->isPointerTy() && "Unexpected type.");
4420 
4421     if (Cost->isScalarAfterVectorization(P, VF)) {
4422       // This is the normalized GEP that starts counting at zero.
4423       Value *PtrInd =
4424           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4425       // Determine the number of scalars we need to generate for each unroll
4426       // iteration. If the instruction is uniform, we only need to generate the
4427       // first lane. Otherwise, we generate all VF values.
4428       unsigned Lanes =
4429           Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue();
4430       for (unsigned Part = 0; Part < UF; ++Part) {
4431         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4432           Constant *Idx = ConstantInt::get(PtrInd->getType(),
4433                                            Lane + Part * VF.getKnownMinValue());
4434           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4435           Value *SclrGep =
4436               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4437           SclrGep->setName("next.gep");
4438           VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4439         }
4440       }
4441       return;
4442     }
4443     assert(isa<SCEVConstant>(II.getStep()) &&
4444            "Induction step not a SCEV constant!");
4445     Type *PhiType = II.getStep()->getType();
4446 
4447     // Build a pointer phi
4448     Value *ScalarStartValue = II.getStartValue();
4449     Type *ScStValueType = ScalarStartValue->getType();
4450     PHINode *NewPointerPhi =
4451         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4452     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4453 
4454     // A pointer induction, performed by using a gep
4455     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4456     Instruction *InductionLoc = LoopLatch->getTerminator();
4457     const SCEV *ScalarStep = II.getStep();
4458     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4459     Value *ScalarStepValue =
4460         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4461     Value *InductionGEP = GetElementPtrInst::Create(
4462         ScStValueType->getPointerElementType(), NewPointerPhi,
4463         Builder.CreateMul(
4464             ScalarStepValue,
4465             ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)),
4466         "ptr.ind", InductionLoc);
4467     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4468 
4469     // Create UF many actual address geps that use the pointer
4470     // phi as base and a vectorized version of the step value
4471     // (<step*0, ..., step*N>) as offset.
4472     for (unsigned Part = 0; Part < UF; ++Part) {
4473       SmallVector<Constant *, 8> Indices;
4474       // Create a vector of consecutive numbers from zero to VF.
4475       for (unsigned i = 0; i < VF.getKnownMinValue(); ++i)
4476         Indices.push_back(
4477             ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue()));
4478       Constant *StartOffset = ConstantVector::get(Indices);
4479 
4480       Value *GEP = Builder.CreateGEP(
4481           ScStValueType->getPointerElementType(), NewPointerPhi,
4482           Builder.CreateMul(
4483               StartOffset,
4484               Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue),
4485               "vector.gep"));
4486       VectorLoopValueMap.setVectorValue(P, Part, GEP);
4487     }
4488   }
4489   }
4490 }
4491 
4492 /// A helper function for checking whether an integer division-related
4493 /// instruction may divide by zero (in which case it must be predicated if
4494 /// executed conditionally in the scalar code).
4495 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4496 /// Non-zero divisors that are non compile-time constants will not be
4497 /// converted into multiplication, so we will still end up scalarizing
4498 /// the division, but can do so w/o predication.
4499 static bool mayDivideByZero(Instruction &I) {
4500   assert((I.getOpcode() == Instruction::UDiv ||
4501           I.getOpcode() == Instruction::SDiv ||
4502           I.getOpcode() == Instruction::URem ||
4503           I.getOpcode() == Instruction::SRem) &&
4504          "Unexpected instruction");
4505   Value *Divisor = I.getOperand(1);
4506   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4507   return !CInt || CInt->isZero();
4508 }
4509 
4510 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User,
4511                                            VPTransformState &State) {
4512   assert(!VF.isScalable() && "scalable vectors not yet supported.");
4513   switch (I.getOpcode()) {
4514   case Instruction::Call:
4515   case Instruction::Br:
4516   case Instruction::PHI:
4517   case Instruction::GetElementPtr:
4518   case Instruction::Select:
4519     llvm_unreachable("This instruction is handled by a different recipe.");
4520   case Instruction::UDiv:
4521   case Instruction::SDiv:
4522   case Instruction::SRem:
4523   case Instruction::URem:
4524   case Instruction::Add:
4525   case Instruction::FAdd:
4526   case Instruction::Sub:
4527   case Instruction::FSub:
4528   case Instruction::FNeg:
4529   case Instruction::Mul:
4530   case Instruction::FMul:
4531   case Instruction::FDiv:
4532   case Instruction::FRem:
4533   case Instruction::Shl:
4534   case Instruction::LShr:
4535   case Instruction::AShr:
4536   case Instruction::And:
4537   case Instruction::Or:
4538   case Instruction::Xor: {
4539     // Just widen unops and binops.
4540     setDebugLocFromInst(Builder, &I);
4541 
4542     for (unsigned Part = 0; Part < UF; ++Part) {
4543       SmallVector<Value *, 2> Ops;
4544       for (VPValue *VPOp : User.operands())
4545         Ops.push_back(State.get(VPOp, Part));
4546 
4547       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4548 
4549       if (auto *VecOp = dyn_cast<Instruction>(V))
4550         VecOp->copyIRFlags(&I);
4551 
4552       // Use this vector value for all users of the original instruction.
4553       VectorLoopValueMap.setVectorValue(&I, Part, V);
4554       addMetadata(V, &I);
4555     }
4556 
4557     break;
4558   }
4559   case Instruction::ICmp:
4560   case Instruction::FCmp: {
4561     // Widen compares. Generate vector compares.
4562     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4563     auto *Cmp = cast<CmpInst>(&I);
4564     setDebugLocFromInst(Builder, Cmp);
4565     for (unsigned Part = 0; Part < UF; ++Part) {
4566       Value *A = State.get(User.getOperand(0), Part);
4567       Value *B = State.get(User.getOperand(1), Part);
4568       Value *C = nullptr;
4569       if (FCmp) {
4570         // Propagate fast math flags.
4571         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4572         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4573         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4574       } else {
4575         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4576       }
4577       VectorLoopValueMap.setVectorValue(&I, Part, C);
4578       addMetadata(C, &I);
4579     }
4580 
4581     break;
4582   }
4583 
4584   case Instruction::ZExt:
4585   case Instruction::SExt:
4586   case Instruction::FPToUI:
4587   case Instruction::FPToSI:
4588   case Instruction::FPExt:
4589   case Instruction::PtrToInt:
4590   case Instruction::IntToPtr:
4591   case Instruction::SIToFP:
4592   case Instruction::UIToFP:
4593   case Instruction::Trunc:
4594   case Instruction::FPTrunc:
4595   case Instruction::BitCast: {
4596     auto *CI = cast<CastInst>(&I);
4597     setDebugLocFromInst(Builder, CI);
4598 
4599     /// Vectorize casts.
4600     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
4601     Type *DestTy =
4602         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4603 
4604     for (unsigned Part = 0; Part < UF; ++Part) {
4605       Value *A = State.get(User.getOperand(0), Part);
4606       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4607       VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4608       addMetadata(Cast, &I);
4609     }
4610     break;
4611   }
4612   default:
4613     // This instruction is not vectorized by simple widening.
4614     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4615     llvm_unreachable("Unhandled instruction!");
4616   } // end of switch.
4617 }
4618 
4619 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4620                                                VPUser &ArgOperands,
4621                                                VPTransformState &State) {
4622   assert(!isa<DbgInfoIntrinsic>(I) &&
4623          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4624   setDebugLocFromInst(Builder, &I);
4625 
4626   Module *M = I.getParent()->getParent()->getParent();
4627   auto *CI = cast<CallInst>(&I);
4628 
4629   SmallVector<Type *, 4> Tys;
4630   for (Value *ArgOperand : CI->arg_operands())
4631     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4632 
4633   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4634 
4635   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4636   // version of the instruction.
4637   // Is it beneficial to perform intrinsic call compared to lib call?
4638   bool NeedToScalarize = false;
4639   unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4640   bool UseVectorIntrinsic =
4641       ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost;
4642   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4643          "Instruction should be scalarized elsewhere.");
4644 
4645   for (unsigned Part = 0; Part < UF; ++Part) {
4646     SmallVector<Value *, 4> Args;
4647     for (auto &I : enumerate(ArgOperands.operands())) {
4648       // Some intrinsics have a scalar argument - don't replace it with a
4649       // vector.
4650       Value *Arg;
4651       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4652         Arg = State.get(I.value(), Part);
4653       else
4654         Arg = State.get(I.value(), {0, 0});
4655       Args.push_back(Arg);
4656     }
4657 
4658     Function *VectorF;
4659     if (UseVectorIntrinsic) {
4660       // Use vector version of the intrinsic.
4661       Type *TysForDecl[] = {CI->getType()};
4662       if (VF.isVector()) {
4663         assert(!VF.isScalable() && "VF is assumed to be non scalable.");
4664         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4665       }
4666       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4667       assert(VectorF && "Can't retrieve vector intrinsic.");
4668     } else {
4669       // Use vector version of the function call.
4670       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4671 #ifndef NDEBUG
4672       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4673              "Can't create vector function.");
4674 #endif
4675         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4676     }
4677       SmallVector<OperandBundleDef, 1> OpBundles;
4678       CI->getOperandBundlesAsDefs(OpBundles);
4679       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4680 
4681       if (isa<FPMathOperator>(V))
4682         V->copyFastMathFlags(CI);
4683 
4684       State.set(Def, &I, V, Part);
4685       addMetadata(V, &I);
4686   }
4687 }
4688 
4689 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
4690                                                  VPUser &Operands,
4691                                                  bool InvariantCond,
4692                                                  VPTransformState &State) {
4693   setDebugLocFromInst(Builder, &I);
4694 
4695   // The condition can be loop invariant  but still defined inside the
4696   // loop. This means that we can't just use the original 'cond' value.
4697   // We have to take the 'vectorized' value and pick the first lane.
4698   // Instcombine will make this a no-op.
4699   auto *InvarCond =
4700       InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr;
4701 
4702   for (unsigned Part = 0; Part < UF; ++Part) {
4703     Value *Cond =
4704         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
4705     Value *Op0 = State.get(Operands.getOperand(1), Part);
4706     Value *Op1 = State.get(Operands.getOperand(2), Part);
4707     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
4708     State.set(VPDef, &I, Sel, Part);
4709     addMetadata(Sel, &I);
4710   }
4711 }
4712 
4713 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4714   // We should not collect Scalars more than once per VF. Right now, this
4715   // function is called from collectUniformsAndScalars(), which already does
4716   // this check. Collecting Scalars for VF=1 does not make any sense.
4717   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4718          "This function should not be visited twice for the same VF");
4719 
4720   SmallSetVector<Instruction *, 8> Worklist;
4721 
4722   // These sets are used to seed the analysis with pointers used by memory
4723   // accesses that will remain scalar.
4724   SmallSetVector<Instruction *, 8> ScalarPtrs;
4725   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4726   auto *Latch = TheLoop->getLoopLatch();
4727 
4728   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4729   // The pointer operands of loads and stores will be scalar as long as the
4730   // memory access is not a gather or scatter operation. The value operand of a
4731   // store will remain scalar if the store is scalarized.
4732   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4733     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4734     assert(WideningDecision != CM_Unknown &&
4735            "Widening decision should be ready at this moment");
4736     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4737       if (Ptr == Store->getValueOperand())
4738         return WideningDecision == CM_Scalarize;
4739     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4740            "Ptr is neither a value or pointer operand");
4741     return WideningDecision != CM_GatherScatter;
4742   };
4743 
4744   // A helper that returns true if the given value is a bitcast or
4745   // getelementptr instruction contained in the loop.
4746   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4747     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4748             isa<GetElementPtrInst>(V)) &&
4749            !TheLoop->isLoopInvariant(V);
4750   };
4751 
4752   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
4753     if (!isa<PHINode>(Ptr) ||
4754         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
4755       return false;
4756     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
4757     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
4758       return false;
4759     return isScalarUse(MemAccess, Ptr);
4760   };
4761 
4762   // A helper that evaluates a memory access's use of a pointer. If the
4763   // pointer is actually the pointer induction of a loop, it is being
4764   // inserted into Worklist. If the use will be a scalar use, and the
4765   // pointer is only used by memory accesses, we place the pointer in
4766   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
4767   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4768     if (isScalarPtrInduction(MemAccess, Ptr)) {
4769       Worklist.insert(cast<Instruction>(Ptr));
4770       Instruction *Update = cast<Instruction>(
4771           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
4772       Worklist.insert(Update);
4773       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
4774                         << "\n");
4775       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
4776                         << "\n");
4777       return;
4778     }
4779     // We only care about bitcast and getelementptr instructions contained in
4780     // the loop.
4781     if (!isLoopVaryingBitCastOrGEP(Ptr))
4782       return;
4783 
4784     // If the pointer has already been identified as scalar (e.g., if it was
4785     // also identified as uniform), there's nothing to do.
4786     auto *I = cast<Instruction>(Ptr);
4787     if (Worklist.count(I))
4788       return;
4789 
4790     // If the use of the pointer will be a scalar use, and all users of the
4791     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4792     // place the pointer in PossibleNonScalarPtrs.
4793     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4794           return isa<LoadInst>(U) || isa<StoreInst>(U);
4795         }))
4796       ScalarPtrs.insert(I);
4797     else
4798       PossibleNonScalarPtrs.insert(I);
4799   };
4800 
4801   // We seed the scalars analysis with three classes of instructions: (1)
4802   // instructions marked uniform-after-vectorization and (2) bitcast,
4803   // getelementptr and (pointer) phi instructions used by memory accesses
4804   // requiring a scalar use.
4805   //
4806   // (1) Add to the worklist all instructions that have been identified as
4807   // uniform-after-vectorization.
4808   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4809 
4810   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4811   // memory accesses requiring a scalar use. The pointer operands of loads and
4812   // stores will be scalar as long as the memory accesses is not a gather or
4813   // scatter operation. The value operand of a store will remain scalar if the
4814   // store is scalarized.
4815   for (auto *BB : TheLoop->blocks())
4816     for (auto &I : *BB) {
4817       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4818         evaluatePtrUse(Load, Load->getPointerOperand());
4819       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4820         evaluatePtrUse(Store, Store->getPointerOperand());
4821         evaluatePtrUse(Store, Store->getValueOperand());
4822       }
4823     }
4824   for (auto *I : ScalarPtrs)
4825     if (!PossibleNonScalarPtrs.count(I)) {
4826       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4827       Worklist.insert(I);
4828     }
4829 
4830   // Insert the forced scalars.
4831   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4832   // induction variable when the PHI user is scalarized.
4833   auto ForcedScalar = ForcedScalars.find(VF);
4834   if (ForcedScalar != ForcedScalars.end())
4835     for (auto *I : ForcedScalar->second)
4836       Worklist.insert(I);
4837 
4838   // Expand the worklist by looking through any bitcasts and getelementptr
4839   // instructions we've already identified as scalar. This is similar to the
4840   // expansion step in collectLoopUniforms(); however, here we're only
4841   // expanding to include additional bitcasts and getelementptr instructions.
4842   unsigned Idx = 0;
4843   while (Idx != Worklist.size()) {
4844     Instruction *Dst = Worklist[Idx++];
4845     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4846       continue;
4847     auto *Src = cast<Instruction>(Dst->getOperand(0));
4848     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4849           auto *J = cast<Instruction>(U);
4850           return !TheLoop->contains(J) || Worklist.count(J) ||
4851                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4852                   isScalarUse(J, Src));
4853         })) {
4854       Worklist.insert(Src);
4855       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4856     }
4857   }
4858 
4859   // An induction variable will remain scalar if all users of the induction
4860   // variable and induction variable update remain scalar.
4861   for (auto &Induction : Legal->getInductionVars()) {
4862     auto *Ind = Induction.first;
4863     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4864 
4865     // If tail-folding is applied, the primary induction variable will be used
4866     // to feed a vector compare.
4867     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4868       continue;
4869 
4870     // Determine if all users of the induction variable are scalar after
4871     // vectorization.
4872     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4873       auto *I = cast<Instruction>(U);
4874       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
4875     });
4876     if (!ScalarInd)
4877       continue;
4878 
4879     // Determine if all users of the induction variable update instruction are
4880     // scalar after vectorization.
4881     auto ScalarIndUpdate =
4882         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4883           auto *I = cast<Instruction>(U);
4884           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
4885         });
4886     if (!ScalarIndUpdate)
4887       continue;
4888 
4889     // The induction variable and its update instruction will remain scalar.
4890     Worklist.insert(Ind);
4891     Worklist.insert(IndUpdate);
4892     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4893     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4894                       << "\n");
4895   }
4896 
4897   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4898 }
4899 
4900 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I,
4901                                                          ElementCount VF) {
4902   assert(!VF.isScalable() && "scalable vectors not yet supported.");
4903   if (!blockNeedsPredication(I->getParent()))
4904     return false;
4905   switch(I->getOpcode()) {
4906   default:
4907     break;
4908   case Instruction::Load:
4909   case Instruction::Store: {
4910     if (!Legal->isMaskRequired(I))
4911       return false;
4912     auto *Ptr = getLoadStorePointerOperand(I);
4913     auto *Ty = getMemInstValueType(I);
4914     // We have already decided how to vectorize this instruction, get that
4915     // result.
4916     if (VF.isVector()) {
4917       InstWidening WideningDecision = getWideningDecision(I, VF);
4918       assert(WideningDecision != CM_Unknown &&
4919              "Widening decision should be ready at this moment");
4920       return WideningDecision == CM_Scalarize;
4921     }
4922     const Align Alignment = getLoadStoreAlignment(I);
4923     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4924                                 isLegalMaskedGather(Ty, Alignment))
4925                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4926                                 isLegalMaskedScatter(Ty, Alignment));
4927   }
4928   case Instruction::UDiv:
4929   case Instruction::SDiv:
4930   case Instruction::SRem:
4931   case Instruction::URem:
4932     return mayDivideByZero(*I);
4933   }
4934   return false;
4935 }
4936 
4937 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4938     Instruction *I, ElementCount VF) {
4939   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4940   assert(getWideningDecision(I, VF) == CM_Unknown &&
4941          "Decision should not be set yet.");
4942   auto *Group = getInterleavedAccessGroup(I);
4943   assert(Group && "Must have a group.");
4944 
4945   // If the instruction's allocated size doesn't equal it's type size, it
4946   // requires padding and will be scalarized.
4947   auto &DL = I->getModule()->getDataLayout();
4948   auto *ScalarTy = getMemInstValueType(I);
4949   if (hasIrregularType(ScalarTy, DL, VF))
4950     return false;
4951 
4952   // Check if masking is required.
4953   // A Group may need masking for one of two reasons: it resides in a block that
4954   // needs predication, or it was decided to use masking to deal with gaps.
4955   bool PredicatedAccessRequiresMasking =
4956       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
4957   bool AccessWithGapsRequiresMasking =
4958       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
4959   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
4960     return true;
4961 
4962   // If masked interleaving is required, we expect that the user/target had
4963   // enabled it, because otherwise it either wouldn't have been created or
4964   // it should have been invalidated by the CostModel.
4965   assert(useMaskedInterleavedAccesses(TTI) &&
4966          "Masked interleave-groups for predicated accesses are not enabled.");
4967 
4968   auto *Ty = getMemInstValueType(I);
4969   const Align Alignment = getLoadStoreAlignment(I);
4970   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4971                           : TTI.isLegalMaskedStore(Ty, Alignment);
4972 }
4973 
4974 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4975     Instruction *I, ElementCount VF) {
4976   // Get and ensure we have a valid memory instruction.
4977   LoadInst *LI = dyn_cast<LoadInst>(I);
4978   StoreInst *SI = dyn_cast<StoreInst>(I);
4979   assert((LI || SI) && "Invalid memory instruction");
4980 
4981   auto *Ptr = getLoadStorePointerOperand(I);
4982 
4983   // In order to be widened, the pointer should be consecutive, first of all.
4984   if (!Legal->isConsecutivePtr(Ptr))
4985     return false;
4986 
4987   // If the instruction is a store located in a predicated block, it will be
4988   // scalarized.
4989   if (isScalarWithPredication(I))
4990     return false;
4991 
4992   // If the instruction's allocated size doesn't equal it's type size, it
4993   // requires padding and will be scalarized.
4994   auto &DL = I->getModule()->getDataLayout();
4995   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
4996   if (hasIrregularType(ScalarTy, DL, VF))
4997     return false;
4998 
4999   return true;
5000 }
5001 
5002 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5003   // We should not collect Uniforms more than once per VF. Right now,
5004   // this function is called from collectUniformsAndScalars(), which
5005   // already does this check. Collecting Uniforms for VF=1 does not make any
5006   // sense.
5007 
5008   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5009          "This function should not be visited twice for the same VF");
5010 
5011   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5012   // not analyze again.  Uniforms.count(VF) will return 1.
5013   Uniforms[VF].clear();
5014 
5015   // We now know that the loop is vectorizable!
5016   // Collect instructions inside the loop that will remain uniform after
5017   // vectorization.
5018 
5019   // Global values, params and instructions outside of current loop are out of
5020   // scope.
5021   auto isOutOfScope = [&](Value *V) -> bool {
5022     Instruction *I = dyn_cast<Instruction>(V);
5023     return (!I || !TheLoop->contains(I));
5024   };
5025 
5026   SetVector<Instruction *> Worklist;
5027   BasicBlock *Latch = TheLoop->getLoopLatch();
5028 
5029   // Instructions that are scalar with predication must not be considered
5030   // uniform after vectorization, because that would create an erroneous
5031   // replicating region where only a single instance out of VF should be formed.
5032   // TODO: optimize such seldom cases if found important, see PR40816.
5033   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5034     if (isScalarWithPredication(I, VF)) {
5035       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5036                         << *I << "\n");
5037       return;
5038     }
5039     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5040     Worklist.insert(I);
5041   };
5042 
5043   // Start with the conditional branch. If the branch condition is an
5044   // instruction contained in the loop that is only used by the branch, it is
5045   // uniform.
5046   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5047   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5048     addToWorklistIfAllowed(Cmp);
5049 
5050   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
5051   // are pointers that are treated like consecutive pointers during
5052   // vectorization. The pointer operands of interleaved accesses are an
5053   // example.
5054   SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
5055 
5056   // Holds pointer operands of instructions that are possibly non-uniform.
5057   SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
5058 
5059   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5060     InstWidening WideningDecision = getWideningDecision(I, VF);
5061     assert(WideningDecision != CM_Unknown &&
5062            "Widening decision should be ready at this moment");
5063 
5064     return (WideningDecision == CM_Widen ||
5065             WideningDecision == CM_Widen_Reverse ||
5066             WideningDecision == CM_Interleave);
5067   };
5068   // Iterate over the instructions in the loop, and collect all
5069   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
5070   // that a consecutive-like pointer operand will be scalarized, we collect it
5071   // in PossibleNonUniformPtrs instead. We use two sets here because a single
5072   // getelementptr instruction can be used by both vectorized and scalarized
5073   // memory instructions. For example, if a loop loads and stores from the same
5074   // location, but the store is conditional, the store will be scalarized, and
5075   // the getelementptr won't remain uniform.
5076   for (auto *BB : TheLoop->blocks())
5077     for (auto &I : *BB) {
5078       // If there's no pointer operand, there's nothing to do.
5079       auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
5080       if (!Ptr)
5081         continue;
5082 
5083       // True if all users of Ptr are memory accesses that have Ptr as their
5084       // pointer operand.
5085       auto UsersAreMemAccesses =
5086           llvm::all_of(Ptr->users(), [&](User *U) -> bool {
5087             return getLoadStorePointerOperand(U) == Ptr;
5088           });
5089 
5090       // Ensure the memory instruction will not be scalarized or used by
5091       // gather/scatter, making its pointer operand non-uniform. If the pointer
5092       // operand is used by any instruction other than a memory access, we
5093       // conservatively assume the pointer operand may be non-uniform.
5094       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
5095         PossibleNonUniformPtrs.insert(Ptr);
5096 
5097       // If the memory instruction will be vectorized and its pointer operand
5098       // is consecutive-like, or interleaving - the pointer operand should
5099       // remain uniform.
5100       else
5101         ConsecutiveLikePtrs.insert(Ptr);
5102     }
5103 
5104   // Add to the Worklist all consecutive and consecutive-like pointers that
5105   // aren't also identified as possibly non-uniform.
5106   for (auto *V : ConsecutiveLikePtrs)
5107     if (!PossibleNonUniformPtrs.count(V))
5108       addToWorklistIfAllowed(V);
5109 
5110   // Expand Worklist in topological order: whenever a new instruction
5111   // is added , its users should be already inside Worklist.  It ensures
5112   // a uniform instruction will only be used by uniform instructions.
5113   unsigned idx = 0;
5114   while (idx != Worklist.size()) {
5115     Instruction *I = Worklist[idx++];
5116 
5117     for (auto OV : I->operand_values()) {
5118       // isOutOfScope operands cannot be uniform instructions.
5119       if (isOutOfScope(OV))
5120         continue;
5121       // First order recurrence Phi's should typically be considered
5122       // non-uniform.
5123       auto *OP = dyn_cast<PHINode>(OV);
5124       if (OP && Legal->isFirstOrderRecurrence(OP))
5125         continue;
5126       // If all the users of the operand are uniform, then add the
5127       // operand into the uniform worklist.
5128       auto *OI = cast<Instruction>(OV);
5129       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5130             auto *J = cast<Instruction>(U);
5131             return Worklist.count(J) ||
5132                    (OI == getLoadStorePointerOperand(J) &&
5133                     isUniformDecision(J, VF));
5134           }))
5135         addToWorklistIfAllowed(OI);
5136     }
5137   }
5138 
5139   // Returns true if Ptr is the pointer operand of a memory access instruction
5140   // I, and I is known to not require scalarization.
5141   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5142     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5143   };
5144 
5145   // For an instruction to be added into Worklist above, all its users inside
5146   // the loop should also be in Worklist. However, this condition cannot be
5147   // true for phi nodes that form a cyclic dependence. We must process phi
5148   // nodes separately. An induction variable will remain uniform if all users
5149   // of the induction variable and induction variable update remain uniform.
5150   // The code below handles both pointer and non-pointer induction variables.
5151   for (auto &Induction : Legal->getInductionVars()) {
5152     auto *Ind = Induction.first;
5153     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5154 
5155     // Determine if all users of the induction variable are uniform after
5156     // vectorization.
5157     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5158       auto *I = cast<Instruction>(U);
5159       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5160              isVectorizedMemAccessUse(I, Ind);
5161     });
5162     if (!UniformInd)
5163       continue;
5164 
5165     // Determine if all users of the induction variable update instruction are
5166     // uniform after vectorization.
5167     auto UniformIndUpdate =
5168         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5169           auto *I = cast<Instruction>(U);
5170           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5171                  isVectorizedMemAccessUse(I, IndUpdate);
5172         });
5173     if (!UniformIndUpdate)
5174       continue;
5175 
5176     // The induction variable and its update instruction will remain uniform.
5177     addToWorklistIfAllowed(Ind);
5178     addToWorklistIfAllowed(IndUpdate);
5179   }
5180 
5181   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5182 }
5183 
5184 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5185   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5186 
5187   if (Legal->getRuntimePointerChecking()->Need) {
5188     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5189         "runtime pointer checks needed. Enable vectorization of this "
5190         "loop with '#pragma clang loop vectorize(enable)' when "
5191         "compiling with -Os/-Oz",
5192         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5193     return true;
5194   }
5195 
5196   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5197     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5198         "runtime SCEV checks needed. Enable vectorization of this "
5199         "loop with '#pragma clang loop vectorize(enable)' when "
5200         "compiling with -Os/-Oz",
5201         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5202     return true;
5203   }
5204 
5205   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5206   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5207     reportVectorizationFailure("Runtime stride check for small trip count",
5208         "runtime stride == 1 checks needed. Enable vectorization of "
5209         "this loop without such check by compiling with -Os/-Oz",
5210         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5211     return true;
5212   }
5213 
5214   return false;
5215 }
5216 
5217 Optional<ElementCount>
5218 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5219   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5220     // TODO: It may by useful to do since it's still likely to be dynamically
5221     // uniform if the target can skip.
5222     reportVectorizationFailure(
5223         "Not inserting runtime ptr check for divergent target",
5224         "runtime pointer checks needed. Not enabled for divergent target",
5225         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5226     return None;
5227   }
5228 
5229   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5230   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5231   if (TC == 1) {
5232     reportVectorizationFailure("Single iteration (non) loop",
5233         "loop trip count is one, irrelevant for vectorization",
5234         "SingleIterationLoop", ORE, TheLoop);
5235     return None;
5236   }
5237 
5238   switch (ScalarEpilogueStatus) {
5239   case CM_ScalarEpilogueAllowed:
5240     return UserVF ? UserVF : computeFeasibleMaxVF(TC);
5241   case CM_ScalarEpilogueNotNeededUsePredicate:
5242     LLVM_DEBUG(
5243         dbgs() << "LV: vector predicate hint/switch found.\n"
5244                << "LV: Not allowing scalar epilogue, creating predicated "
5245                << "vector loop.\n");
5246     break;
5247   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5248     // fallthrough as a special case of OptForSize
5249   case CM_ScalarEpilogueNotAllowedOptSize:
5250     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5251       LLVM_DEBUG(
5252           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5253     else
5254       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5255                         << "count.\n");
5256 
5257     // Bail if runtime checks are required, which are not good when optimising
5258     // for size.
5259     if (runtimeChecksRequired())
5260       return None;
5261     break;
5262   }
5263 
5264   // Now try the tail folding
5265 
5266   // Invalidate interleave groups that require an epilogue if we can't mask
5267   // the interleave-group.
5268   if (!useMaskedInterleavedAccesses(TTI)) {
5269     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5270            "No decisions should have been taken at this point");
5271     // Note: There is no need to invalidate any cost modeling decisions here, as
5272     // non where taken so far.
5273     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5274   }
5275 
5276   ElementCount MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC);
5277   assert(!MaxVF.isScalable() &&
5278          "Scalable vectors do not yet support tail folding");
5279   assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) &&
5280          "MaxVF must be a power of 2");
5281   unsigned MaxVFtimesIC =
5282       UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue();
5283   if (TC > 0 && TC % MaxVFtimesIC == 0) {
5284     // Accept MaxVF if we do not have a tail.
5285     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5286     return MaxVF;
5287   }
5288 
5289   // If we don't know the precise trip count, or if the trip count that we
5290   // found modulo the vectorization factor is not zero, try to fold the tail
5291   // by masking.
5292   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5293   if (Legal->prepareToFoldTailByMasking()) {
5294     FoldTailByMasking = true;
5295     return MaxVF;
5296   }
5297 
5298   // If there was a tail-folding hint/switch, but we can't fold the tail by
5299   // masking, fallback to a vectorization with a scalar epilogue.
5300   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5301     if (PreferPredicateOverEpilogue == PreferPredicateTy::PredicateOrDontVectorize) {
5302       LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5303       return None;
5304     }
5305     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5306                          "scalar epilogue instead.\n");
5307     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5308     return MaxVF;
5309   }
5310 
5311   if (TC == 0) {
5312     reportVectorizationFailure(
5313         "Unable to calculate the loop count due to complex control flow",
5314         "unable to calculate the loop count due to complex control flow",
5315         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5316     return None;
5317   }
5318 
5319   reportVectorizationFailure(
5320       "Cannot optimize for size and vectorize at the same time.",
5321       "cannot optimize for size and vectorize at the same time. "
5322       "Enable vectorization of this loop with '#pragma clang loop "
5323       "vectorize(enable)' when compiling with -Os/-Oz",
5324       "NoTailLoopWithOptForSize", ORE, TheLoop);
5325   return None;
5326 }
5327 
5328 ElementCount
5329 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) {
5330   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5331   unsigned SmallestType, WidestType;
5332   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5333   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5334 
5335   // Get the maximum safe dependence distance in bits computed by LAA.
5336   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5337   // the memory accesses that is most restrictive (involved in the smallest
5338   // dependence distance).
5339   unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
5340 
5341   WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
5342 
5343   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5344   // Note that both WidestRegister and WidestType may not be a powers of 2.
5345   unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType);
5346 
5347   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5348                     << " / " << WidestType << " bits.\n");
5349   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5350                     << WidestRegister << " bits.\n");
5351 
5352   assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
5353                                  " into one vector!");
5354   if (MaxVectorSize == 0) {
5355     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5356     MaxVectorSize = 1;
5357     return ElementCount::getFixed(MaxVectorSize);
5358   } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
5359              isPowerOf2_32(ConstTripCount)) {
5360     // We need to clamp the VF to be the ConstTripCount. There is no point in
5361     // choosing a higher viable VF as done in the loop below.
5362     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5363                       << ConstTripCount << "\n");
5364     MaxVectorSize = ConstTripCount;
5365     return ElementCount::getFixed(MaxVectorSize);
5366   }
5367 
5368   unsigned MaxVF = MaxVectorSize;
5369   if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5370       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5371     // Collect all viable vectorization factors larger than the default MaxVF
5372     // (i.e. MaxVectorSize).
5373     SmallVector<ElementCount, 8> VFs;
5374     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5375     for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
5376       VFs.push_back(ElementCount::getFixed(VS));
5377 
5378     // For each VF calculate its register usage.
5379     auto RUs = calculateRegisterUsage(VFs);
5380 
5381     // Select the largest VF which doesn't require more registers than existing
5382     // ones.
5383     for (int i = RUs.size() - 1; i >= 0; --i) {
5384       bool Selected = true;
5385       for (auto& pair : RUs[i].MaxLocalUsers) {
5386         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5387         if (pair.second > TargetNumRegisters)
5388           Selected = false;
5389       }
5390       if (Selected) {
5391         MaxVF = VFs[i].getKnownMinValue();
5392         break;
5393       }
5394     }
5395     if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
5396       if (MaxVF < MinVF) {
5397         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5398                           << ") with target's minimum: " << MinVF << '\n');
5399         MaxVF = MinVF;
5400       }
5401     }
5402   }
5403   return ElementCount::getFixed(MaxVF);
5404 }
5405 
5406 VectorizationFactor
5407 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) {
5408   assert(!MaxVF.isScalable() && "scalable vectors not yet supported");
5409 
5410   float Cost = expectedCost(ElementCount::getFixed(1)).first;
5411   const float ScalarCost = Cost;
5412   unsigned Width = 1;
5413   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5414 
5415   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5416   if (ForceVectorization && MaxVF.isVector()) {
5417     // Ignore scalar width, because the user explicitly wants vectorization.
5418     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5419     // evaluation.
5420     Cost = std::numeric_limits<float>::max();
5421   }
5422 
5423   for (unsigned i = 2; i <= MaxVF.getFixedValue(); i *= 2) {
5424     // Notice that the vector loop needs to be executed less times, so
5425     // we need to divide the cost of the vector loops by the width of
5426     // the vector elements.
5427     VectorizationCostTy C = expectedCost(ElementCount::getFixed(i));
5428     float VectorCost = C.first / (float)i;
5429     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5430                       << " costs: " << (int)VectorCost << ".\n");
5431     if (!C.second && !ForceVectorization) {
5432       LLVM_DEBUG(
5433           dbgs() << "LV: Not considering vector loop of width " << i
5434                  << " because it will not generate any vector instructions.\n");
5435       continue;
5436     }
5437     if (VectorCost < Cost) {
5438       Cost = VectorCost;
5439       Width = i;
5440     }
5441   }
5442 
5443   if (!EnableCondStoresVectorization && NumPredStores) {
5444     reportVectorizationFailure("There are conditional stores.",
5445         "store that is conditionally executed prevents vectorization",
5446         "ConditionalStore", ORE, TheLoop);
5447     Width = 1;
5448     Cost = ScalarCost;
5449   }
5450 
5451   LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5452              << "LV: Vectorization seems to be not beneficial, "
5453              << "but was forced by a user.\n");
5454   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5455   VectorizationFactor Factor = {ElementCount::getFixed(Width),
5456                                 (unsigned)(Width * Cost)};
5457   return Factor;
5458 }
5459 
5460 std::pair<unsigned, unsigned>
5461 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5462   unsigned MinWidth = -1U;
5463   unsigned MaxWidth = 8;
5464   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5465 
5466   // For each block.
5467   for (BasicBlock *BB : TheLoop->blocks()) {
5468     // For each instruction in the loop.
5469     for (Instruction &I : BB->instructionsWithoutDebug()) {
5470       Type *T = I.getType();
5471 
5472       // Skip ignored values.
5473       if (ValuesToIgnore.count(&I))
5474         continue;
5475 
5476       // Only examine Loads, Stores and PHINodes.
5477       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5478         continue;
5479 
5480       // Examine PHI nodes that are reduction variables. Update the type to
5481       // account for the recurrence type.
5482       if (auto *PN = dyn_cast<PHINode>(&I)) {
5483         if (!Legal->isReductionVariable(PN))
5484           continue;
5485         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
5486         T = RdxDesc.getRecurrenceType();
5487       }
5488 
5489       // Examine the stored values.
5490       if (auto *ST = dyn_cast<StoreInst>(&I))
5491         T = ST->getValueOperand()->getType();
5492 
5493       // Ignore loaded pointer types and stored pointer types that are not
5494       // vectorizable.
5495       //
5496       // FIXME: The check here attempts to predict whether a load or store will
5497       //        be vectorized. We only know this for certain after a VF has
5498       //        been selected. Here, we assume that if an access can be
5499       //        vectorized, it will be. We should also look at extending this
5500       //        optimization to non-pointer types.
5501       //
5502       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
5503           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
5504         continue;
5505 
5506       MinWidth = std::min(MinWidth,
5507                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5508       MaxWidth = std::max(MaxWidth,
5509                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5510     }
5511   }
5512 
5513   return {MinWidth, MaxWidth};
5514 }
5515 
5516 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5517                                                            unsigned LoopCost) {
5518   // -- The interleave heuristics --
5519   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5520   // There are many micro-architectural considerations that we can't predict
5521   // at this level. For example, frontend pressure (on decode or fetch) due to
5522   // code size, or the number and capabilities of the execution ports.
5523   //
5524   // We use the following heuristics to select the interleave count:
5525   // 1. If the code has reductions, then we interleave to break the cross
5526   // iteration dependency.
5527   // 2. If the loop is really small, then we interleave to reduce the loop
5528   // overhead.
5529   // 3. We don't interleave if we think that we will spill registers to memory
5530   // due to the increased register pressure.
5531 
5532   if (!isScalarEpilogueAllowed())
5533     return 1;
5534 
5535   // We used the distance for the interleave count.
5536   if (Legal->getMaxSafeDepDistBytes() != -1U)
5537     return 1;
5538 
5539   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5540   const bool HasReductions = !Legal->getReductionVars().empty();
5541   // Do not interleave loops with a relatively small known or estimated trip
5542   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5543   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5544   // because with the above conditions interleaving can expose ILP and break
5545   // cross iteration dependences for reductions.
5546   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5547       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5548     return 1;
5549 
5550   RegisterUsage R = calculateRegisterUsage({VF})[0];
5551   // We divide by these constants so assume that we have at least one
5552   // instruction that uses at least one register.
5553   for (auto& pair : R.MaxLocalUsers) {
5554     pair.second = std::max(pair.second, 1U);
5555   }
5556 
5557   // We calculate the interleave count using the following formula.
5558   // Subtract the number of loop invariants from the number of available
5559   // registers. These registers are used by all of the interleaved instances.
5560   // Next, divide the remaining registers by the number of registers that is
5561   // required by the loop, in order to estimate how many parallel instances
5562   // fit without causing spills. All of this is rounded down if necessary to be
5563   // a power of two. We want power of two interleave count to simplify any
5564   // addressing operations or alignment considerations.
5565   // We also want power of two interleave counts to ensure that the induction
5566   // variable of the vector loop wraps to zero, when tail is folded by masking;
5567   // this currently happens when OptForSize, in which case IC is set to 1 above.
5568   unsigned IC = UINT_MAX;
5569 
5570   for (auto& pair : R.MaxLocalUsers) {
5571     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5572     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5573                       << " registers of "
5574                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5575     if (VF.isScalar()) {
5576       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5577         TargetNumRegisters = ForceTargetNumScalarRegs;
5578     } else {
5579       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5580         TargetNumRegisters = ForceTargetNumVectorRegs;
5581     }
5582     unsigned MaxLocalUsers = pair.second;
5583     unsigned LoopInvariantRegs = 0;
5584     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5585       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5586 
5587     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5588     // Don't count the induction variable as interleaved.
5589     if (EnableIndVarRegisterHeur) {
5590       TmpIC =
5591           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5592                         std::max(1U, (MaxLocalUsers - 1)));
5593     }
5594 
5595     IC = std::min(IC, TmpIC);
5596   }
5597 
5598   // Clamp the interleave ranges to reasonable counts.
5599   assert(!VF.isScalable() && "scalable vectors not yet supported.");
5600   unsigned MaxInterleaveCount =
5601       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5602 
5603   // Check if the user has overridden the max.
5604   if (VF.isScalar()) {
5605     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5606       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5607   } else {
5608     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5609       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5610   }
5611 
5612   // If trip count is known or estimated compile time constant, limit the
5613   // interleave count to be less than the trip count divided by VF, provided it
5614   // is at least 1.
5615   if (BestKnownTC) {
5616     MaxInterleaveCount =
5617         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5618     // Make sure MaxInterleaveCount is greater than 0.
5619     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5620   }
5621 
5622   assert(MaxInterleaveCount > 0 &&
5623          "Maximum interleave count must be greater than 0");
5624 
5625   // Clamp the calculated IC to be between the 1 and the max interleave count
5626   // that the target and trip count allows.
5627   if (IC > MaxInterleaveCount)
5628     IC = MaxInterleaveCount;
5629   else
5630     // Make sure IC is greater than 0.
5631     IC = std::max(1u, IC);
5632 
5633   assert(IC > 0 && "Interleave count must be greater than 0.");
5634 
5635   // If we did not calculate the cost for VF (because the user selected the VF)
5636   // then we calculate the cost of VF here.
5637   if (LoopCost == 0)
5638     LoopCost = expectedCost(VF).first;
5639 
5640   assert(LoopCost && "Non-zero loop cost expected");
5641 
5642   // Interleave if we vectorized this loop and there is a reduction that could
5643   // benefit from interleaving.
5644   if (VF.isVector() && HasReductions) {
5645     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5646     return IC;
5647   }
5648 
5649   // Note that if we've already vectorized the loop we will have done the
5650   // runtime check and so interleaving won't require further checks.
5651   bool InterleavingRequiresRuntimePointerCheck =
5652       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5653 
5654   // We want to interleave small loops in order to reduce the loop overhead and
5655   // potentially expose ILP opportunities.
5656   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5657                     << "LV: IC is " << IC << '\n'
5658                     << "LV: VF is " << VF.getKnownMinValue() << '\n');
5659   const bool AggressivelyInterleaveReductions =
5660       TTI.enableAggressiveInterleaving(HasReductions);
5661   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5662     // We assume that the cost overhead is 1 and we use the cost model
5663     // to estimate the cost of the loop and interleave until the cost of the
5664     // loop overhead is about 5% of the cost of the loop.
5665     unsigned SmallIC =
5666         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5667 
5668     // Interleave until store/load ports (estimated by max interleave count) are
5669     // saturated.
5670     unsigned NumStores = Legal->getNumStores();
5671     unsigned NumLoads = Legal->getNumLoads();
5672     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5673     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5674 
5675     // If we have a scalar reduction (vector reductions are already dealt with
5676     // by this point), we can increase the critical path length if the loop
5677     // we're interleaving is inside another loop. Limit, by default to 2, so the
5678     // critical path only gets increased by one reduction operation.
5679     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5680       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5681       SmallIC = std::min(SmallIC, F);
5682       StoresIC = std::min(StoresIC, F);
5683       LoadsIC = std::min(LoadsIC, F);
5684     }
5685 
5686     if (EnableLoadStoreRuntimeInterleave &&
5687         std::max(StoresIC, LoadsIC) > SmallIC) {
5688       LLVM_DEBUG(
5689           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5690       return std::max(StoresIC, LoadsIC);
5691     }
5692 
5693     // If there are scalar reductions and TTI has enabled aggressive
5694     // interleaving for reductions, we will interleave to expose ILP.
5695     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5696         AggressivelyInterleaveReductions) {
5697       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5698       // Interleave no less than SmallIC but not as aggressive as the normal IC
5699       // to satisfy the rare situation when resources are too limited.
5700       return std::max(IC / 2, SmallIC);
5701     } else {
5702       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5703       return SmallIC;
5704     }
5705   }
5706 
5707   // Interleave if this is a large loop (small loops are already dealt with by
5708   // this point) that could benefit from interleaving.
5709   if (AggressivelyInterleaveReductions) {
5710     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5711     return IC;
5712   }
5713 
5714   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5715   return 1;
5716 }
5717 
5718 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5719 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5720   // This function calculates the register usage by measuring the highest number
5721   // of values that are alive at a single location. Obviously, this is a very
5722   // rough estimation. We scan the loop in a topological order in order and
5723   // assign a number to each instruction. We use RPO to ensure that defs are
5724   // met before their users. We assume that each instruction that has in-loop
5725   // users starts an interval. We record every time that an in-loop value is
5726   // used, so we have a list of the first and last occurrences of each
5727   // instruction. Next, we transpose this data structure into a multi map that
5728   // holds the list of intervals that *end* at a specific location. This multi
5729   // map allows us to perform a linear search. We scan the instructions linearly
5730   // and record each time that a new interval starts, by placing it in a set.
5731   // If we find this value in the multi-map then we remove it from the set.
5732   // The max register usage is the maximum size of the set.
5733   // We also search for instructions that are defined outside the loop, but are
5734   // used inside the loop. We need this number separately from the max-interval
5735   // usage number because when we unroll, loop-invariant values do not take
5736   // more register.
5737   LoopBlocksDFS DFS(TheLoop);
5738   DFS.perform(LI);
5739 
5740   RegisterUsage RU;
5741 
5742   // Each 'key' in the map opens a new interval. The values
5743   // of the map are the index of the 'last seen' usage of the
5744   // instruction that is the key.
5745   using IntervalMap = DenseMap<Instruction *, unsigned>;
5746 
5747   // Maps instruction to its index.
5748   SmallVector<Instruction *, 64> IdxToInstr;
5749   // Marks the end of each interval.
5750   IntervalMap EndPoint;
5751   // Saves the list of instruction indices that are used in the loop.
5752   SmallPtrSet<Instruction *, 8> Ends;
5753   // Saves the list of values that are used in the loop but are
5754   // defined outside the loop, such as arguments and constants.
5755   SmallPtrSet<Value *, 8> LoopInvariants;
5756 
5757   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5758     for (Instruction &I : BB->instructionsWithoutDebug()) {
5759       IdxToInstr.push_back(&I);
5760 
5761       // Save the end location of each USE.
5762       for (Value *U : I.operands()) {
5763         auto *Instr = dyn_cast<Instruction>(U);
5764 
5765         // Ignore non-instruction values such as arguments, constants, etc.
5766         if (!Instr)
5767           continue;
5768 
5769         // If this instruction is outside the loop then record it and continue.
5770         if (!TheLoop->contains(Instr)) {
5771           LoopInvariants.insert(Instr);
5772           continue;
5773         }
5774 
5775         // Overwrite previous end points.
5776         EndPoint[Instr] = IdxToInstr.size();
5777         Ends.insert(Instr);
5778       }
5779     }
5780   }
5781 
5782   // Saves the list of intervals that end with the index in 'key'.
5783   using InstrList = SmallVector<Instruction *, 2>;
5784   DenseMap<unsigned, InstrList> TransposeEnds;
5785 
5786   // Transpose the EndPoints to a list of values that end at each index.
5787   for (auto &Interval : EndPoint)
5788     TransposeEnds[Interval.second].push_back(Interval.first);
5789 
5790   SmallPtrSet<Instruction *, 8> OpenIntervals;
5791 
5792   // Get the size of the widest register.
5793   unsigned MaxSafeDepDist = -1U;
5794   if (Legal->getMaxSafeDepDistBytes() != -1U)
5795     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5796   unsigned WidestRegister =
5797       std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5798   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5799 
5800   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5801   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5802 
5803   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5804 
5805   // A lambda that gets the register usage for the given type and VF.
5806   auto GetRegUsage = [&DL, WidestRegister](Type *Ty, ElementCount VF) {
5807     if (Ty->isTokenTy())
5808       return 0U;
5809     unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5810     assert(!VF.isScalable() && "scalable vectors not yet supported.");
5811     return std::max<unsigned>(1, VF.getKnownMinValue() * TypeSize /
5812                                      WidestRegister);
5813   };
5814 
5815   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5816     Instruction *I = IdxToInstr[i];
5817 
5818     // Remove all of the instructions that end at this location.
5819     InstrList &List = TransposeEnds[i];
5820     for (Instruction *ToRemove : List)
5821       OpenIntervals.erase(ToRemove);
5822 
5823     // Ignore instructions that are never used within the loop.
5824     if (!Ends.count(I))
5825       continue;
5826 
5827     // Skip ignored values.
5828     if (ValuesToIgnore.count(I))
5829       continue;
5830 
5831     // For each VF find the maximum usage of registers.
5832     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5833       // Count the number of live intervals.
5834       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5835 
5836       if (VFs[j].isScalar()) {
5837         for (auto Inst : OpenIntervals) {
5838           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5839           if (RegUsage.find(ClassID) == RegUsage.end())
5840             RegUsage[ClassID] = 1;
5841           else
5842             RegUsage[ClassID] += 1;
5843         }
5844       } else {
5845         collectUniformsAndScalars(VFs[j]);
5846         for (auto Inst : OpenIntervals) {
5847           // Skip ignored values for VF > 1.
5848           if (VecValuesToIgnore.count(Inst))
5849             continue;
5850           if (isScalarAfterVectorization(Inst, VFs[j])) {
5851             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5852             if (RegUsage.find(ClassID) == RegUsage.end())
5853               RegUsage[ClassID] = 1;
5854             else
5855               RegUsage[ClassID] += 1;
5856           } else {
5857             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
5858             if (RegUsage.find(ClassID) == RegUsage.end())
5859               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
5860             else
5861               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
5862           }
5863         }
5864       }
5865 
5866       for (auto& pair : RegUsage) {
5867         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
5868           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
5869         else
5870           MaxUsages[j][pair.first] = pair.second;
5871       }
5872     }
5873 
5874     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5875                       << OpenIntervals.size() << '\n');
5876 
5877     // Add the current instruction to the list of open intervals.
5878     OpenIntervals.insert(I);
5879   }
5880 
5881   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5882     SmallMapVector<unsigned, unsigned, 4> Invariant;
5883 
5884     for (auto Inst : LoopInvariants) {
5885       unsigned Usage =
5886           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
5887       unsigned ClassID =
5888           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
5889       if (Invariant.find(ClassID) == Invariant.end())
5890         Invariant[ClassID] = Usage;
5891       else
5892         Invariant[ClassID] += Usage;
5893     }
5894 
5895     LLVM_DEBUG({
5896       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
5897       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
5898              << " item\n";
5899       for (const auto &pair : MaxUsages[i]) {
5900         dbgs() << "LV(REG): RegisterClass: "
5901                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5902                << " registers\n";
5903       }
5904       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
5905              << " item\n";
5906       for (const auto &pair : Invariant) {
5907         dbgs() << "LV(REG): RegisterClass: "
5908                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5909                << " registers\n";
5910       }
5911     });
5912 
5913     RU.LoopInvariantRegs = Invariant;
5914     RU.MaxLocalUsers = MaxUsages[i];
5915     RUs[i] = RU;
5916   }
5917 
5918   return RUs;
5919 }
5920 
5921 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
5922   // TODO: Cost model for emulated masked load/store is completely
5923   // broken. This hack guides the cost model to use an artificially
5924   // high enough value to practically disable vectorization with such
5925   // operations, except where previously deployed legality hack allowed
5926   // using very low cost values. This is to avoid regressions coming simply
5927   // from moving "masked load/store" check from legality to cost model.
5928   // Masked Load/Gather emulation was previously never allowed.
5929   // Limited number of Masked Store/Scatter emulation was allowed.
5930   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
5931   return isa<LoadInst>(I) ||
5932          (isa<StoreInst>(I) &&
5933           NumPredStores > NumberOfStoresToPredicate);
5934 }
5935 
5936 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
5937   // If we aren't vectorizing the loop, or if we've already collected the
5938   // instructions to scalarize, there's nothing to do. Collection may already
5939   // have occurred if we have a user-selected VF and are now computing the
5940   // expected cost for interleaving.
5941   if (VF.isScalar() || VF.isZero() ||
5942       InstsToScalarize.find(VF) != InstsToScalarize.end())
5943     return;
5944 
5945   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5946   // not profitable to scalarize any instructions, the presence of VF in the
5947   // map will indicate that we've analyzed it already.
5948   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5949 
5950   // Find all the instructions that are scalar with predication in the loop and
5951   // determine if it would be better to not if-convert the blocks they are in.
5952   // If so, we also record the instructions to scalarize.
5953   for (BasicBlock *BB : TheLoop->blocks()) {
5954     if (!blockNeedsPredication(BB))
5955       continue;
5956     for (Instruction &I : *BB)
5957       if (isScalarWithPredication(&I)) {
5958         ScalarCostsTy ScalarCosts;
5959         // Do not apply discount logic if hacked cost is needed
5960         // for emulated masked memrefs.
5961         if (!useEmulatedMaskMemRefHack(&I) &&
5962             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
5963           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
5964         // Remember that BB will remain after vectorization.
5965         PredicatedBBsAfterVectorization.insert(BB);
5966       }
5967   }
5968 }
5969 
5970 int LoopVectorizationCostModel::computePredInstDiscount(
5971     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
5972     ElementCount VF) {
5973   assert(!isUniformAfterVectorization(PredInst, VF) &&
5974          "Instruction marked uniform-after-vectorization will be predicated");
5975 
5976   // Initialize the discount to zero, meaning that the scalar version and the
5977   // vector version cost the same.
5978   int Discount = 0;
5979 
5980   // Holds instructions to analyze. The instructions we visit are mapped in
5981   // ScalarCosts. Those instructions are the ones that would be scalarized if
5982   // we find that the scalar version costs less.
5983   SmallVector<Instruction *, 8> Worklist;
5984 
5985   // Returns true if the given instruction can be scalarized.
5986   auto canBeScalarized = [&](Instruction *I) -> bool {
5987     // We only attempt to scalarize instructions forming a single-use chain
5988     // from the original predicated block that would otherwise be vectorized.
5989     // Although not strictly necessary, we give up on instructions we know will
5990     // already be scalar to avoid traversing chains that are unlikely to be
5991     // beneficial.
5992     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5993         isScalarAfterVectorization(I, VF))
5994       return false;
5995 
5996     // If the instruction is scalar with predication, it will be analyzed
5997     // separately. We ignore it within the context of PredInst.
5998     if (isScalarWithPredication(I))
5999       return false;
6000 
6001     // If any of the instruction's operands are uniform after vectorization,
6002     // the instruction cannot be scalarized. This prevents, for example, a
6003     // masked load from being scalarized.
6004     //
6005     // We assume we will only emit a value for lane zero of an instruction
6006     // marked uniform after vectorization, rather than VF identical values.
6007     // Thus, if we scalarize an instruction that uses a uniform, we would
6008     // create uses of values corresponding to the lanes we aren't emitting code
6009     // for. This behavior can be changed by allowing getScalarValue to clone
6010     // the lane zero values for uniforms rather than asserting.
6011     for (Use &U : I->operands())
6012       if (auto *J = dyn_cast<Instruction>(U.get()))
6013         if (isUniformAfterVectorization(J, VF))
6014           return false;
6015 
6016     // Otherwise, we can scalarize the instruction.
6017     return true;
6018   };
6019 
6020   // Compute the expected cost discount from scalarizing the entire expression
6021   // feeding the predicated instruction. We currently only consider expressions
6022   // that are single-use instruction chains.
6023   Worklist.push_back(PredInst);
6024   while (!Worklist.empty()) {
6025     Instruction *I = Worklist.pop_back_val();
6026 
6027     // If we've already analyzed the instruction, there's nothing to do.
6028     if (ScalarCosts.find(I) != ScalarCosts.end())
6029       continue;
6030 
6031     // Compute the cost of the vector instruction. Note that this cost already
6032     // includes the scalarization overhead of the predicated instruction.
6033     unsigned VectorCost = getInstructionCost(I, VF).first;
6034 
6035     // Compute the cost of the scalarized instruction. This cost is the cost of
6036     // the instruction as if it wasn't if-converted and instead remained in the
6037     // predicated block. We will scale this cost by block probability after
6038     // computing the scalarization overhead.
6039     assert(!VF.isScalable() && "scalable vectors not yet supported.");
6040     unsigned ScalarCost =
6041         VF.getKnownMinValue() *
6042         getInstructionCost(I, ElementCount::getFixed(1)).first;
6043 
6044     // Compute the scalarization overhead of needed insertelement instructions
6045     // and phi nodes.
6046     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6047       ScalarCost += TTI.getScalarizationOverhead(
6048           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6049           APInt::getAllOnesValue(VF.getKnownMinValue()), true, false);
6050       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6051       ScalarCost +=
6052           VF.getKnownMinValue() *
6053           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6054     }
6055 
6056     // Compute the scalarization overhead of needed extractelement
6057     // instructions. For each of the instruction's operands, if the operand can
6058     // be scalarized, add it to the worklist; otherwise, account for the
6059     // overhead.
6060     for (Use &U : I->operands())
6061       if (auto *J = dyn_cast<Instruction>(U.get())) {
6062         assert(VectorType::isValidElementType(J->getType()) &&
6063                "Instruction has non-scalar type");
6064         if (canBeScalarized(J))
6065           Worklist.push_back(J);
6066         else if (needsExtract(J, VF)) {
6067           assert(!VF.isScalable() && "scalable vectors not yet supported.");
6068           ScalarCost += TTI.getScalarizationOverhead(
6069               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6070               APInt::getAllOnesValue(VF.getKnownMinValue()), false, true);
6071         }
6072       }
6073 
6074     // Scale the total scalar cost by block probability.
6075     ScalarCost /= getReciprocalPredBlockProb();
6076 
6077     // Compute the discount. A non-negative discount means the vector version
6078     // of the instruction costs more, and scalarizing would be beneficial.
6079     Discount += VectorCost - ScalarCost;
6080     ScalarCosts[I] = ScalarCost;
6081   }
6082 
6083   return Discount;
6084 }
6085 
6086 LoopVectorizationCostModel::VectorizationCostTy
6087 LoopVectorizationCostModel::expectedCost(ElementCount VF) {
6088   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6089   VectorizationCostTy Cost;
6090 
6091   // For each block.
6092   for (BasicBlock *BB : TheLoop->blocks()) {
6093     VectorizationCostTy BlockCost;
6094 
6095     // For each instruction in the old loop.
6096     for (Instruction &I : BB->instructionsWithoutDebug()) {
6097       // Skip ignored values.
6098       if (ValuesToIgnore.count(&I) ||
6099           (VF.isVector() && VecValuesToIgnore.count(&I)))
6100         continue;
6101 
6102       VectorizationCostTy C = getInstructionCost(&I, VF);
6103 
6104       // Check if we should override the cost.
6105       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6106         C.first = ForceTargetInstructionCost;
6107 
6108       BlockCost.first += C.first;
6109       BlockCost.second |= C.second;
6110       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6111                         << " for VF " << VF << " For instruction: " << I
6112                         << '\n');
6113     }
6114 
6115     // If we are vectorizing a predicated block, it will have been
6116     // if-converted. This means that the block's instructions (aside from
6117     // stores and instructions that may divide by zero) will now be
6118     // unconditionally executed. For the scalar case, we may not always execute
6119     // the predicated block. Thus, scale the block's cost by the probability of
6120     // executing it.
6121     if (VF.isScalar() && blockNeedsPredication(BB))
6122       BlockCost.first /= getReciprocalPredBlockProb();
6123 
6124     Cost.first += BlockCost.first;
6125     Cost.second |= BlockCost.second;
6126   }
6127 
6128   return Cost;
6129 }
6130 
6131 /// Gets Address Access SCEV after verifying that the access pattern
6132 /// is loop invariant except the induction variable dependence.
6133 ///
6134 /// This SCEV can be sent to the Target in order to estimate the address
6135 /// calculation cost.
6136 static const SCEV *getAddressAccessSCEV(
6137               Value *Ptr,
6138               LoopVectorizationLegality *Legal,
6139               PredicatedScalarEvolution &PSE,
6140               const Loop *TheLoop) {
6141 
6142   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6143   if (!Gep)
6144     return nullptr;
6145 
6146   // We are looking for a gep with all loop invariant indices except for one
6147   // which should be an induction variable.
6148   auto SE = PSE.getSE();
6149   unsigned NumOperands = Gep->getNumOperands();
6150   for (unsigned i = 1; i < NumOperands; ++i) {
6151     Value *Opd = Gep->getOperand(i);
6152     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6153         !Legal->isInductionVariable(Opd))
6154       return nullptr;
6155   }
6156 
6157   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6158   return PSE.getSCEV(Ptr);
6159 }
6160 
6161 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6162   return Legal->hasStride(I->getOperand(0)) ||
6163          Legal->hasStride(I->getOperand(1));
6164 }
6165 
6166 unsigned
6167 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6168                                                         ElementCount VF) {
6169   assert(VF.isVector() &&
6170          "Scalarization cost of instruction implies vectorization.");
6171   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6172   Type *ValTy = getMemInstValueType(I);
6173   auto SE = PSE.getSE();
6174 
6175   unsigned AS = getLoadStoreAddressSpace(I);
6176   Value *Ptr = getLoadStorePointerOperand(I);
6177   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6178 
6179   // Figure out whether the access is strided and get the stride value
6180   // if it's known in compile time
6181   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6182 
6183   // Get the cost of the scalar memory instruction and address computation.
6184   unsigned Cost =
6185       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6186 
6187   // Don't pass *I here, since it is scalar but will actually be part of a
6188   // vectorized loop where the user of it is a vectorized instruction.
6189   const Align Alignment = getLoadStoreAlignment(I);
6190   Cost += VF.getKnownMinValue() *
6191           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6192                               AS, TTI::TCK_RecipThroughput);
6193 
6194   // Get the overhead of the extractelement and insertelement instructions
6195   // we might create due to scalarization.
6196   Cost += getScalarizationOverhead(I, VF);
6197 
6198   // If we have a predicated store, it may not be executed for each vector
6199   // lane. Scale the cost by the probability of executing the predicated
6200   // block.
6201   if (isPredicatedInst(I)) {
6202     Cost /= getReciprocalPredBlockProb();
6203 
6204     if (useEmulatedMaskMemRefHack(I))
6205       // Artificially setting to a high enough value to practically disable
6206       // vectorization with such operations.
6207       Cost = 3000000;
6208   }
6209 
6210   return Cost;
6211 }
6212 
6213 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6214                                                              ElementCount VF) {
6215   Type *ValTy = getMemInstValueType(I);
6216   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6217   Value *Ptr = getLoadStorePointerOperand(I);
6218   unsigned AS = getLoadStoreAddressSpace(I);
6219   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6220   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6221 
6222   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6223          "Stride should be 1 or -1 for consecutive memory access");
6224   const Align Alignment = getLoadStoreAlignment(I);
6225   unsigned Cost = 0;
6226   if (Legal->isMaskRequired(I))
6227     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6228                                       CostKind);
6229   else
6230     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6231                                 CostKind, I);
6232 
6233   bool Reverse = ConsecutiveStride < 0;
6234   if (Reverse)
6235     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6236   return Cost;
6237 }
6238 
6239 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6240                                                          ElementCount VF) {
6241   Type *ValTy = getMemInstValueType(I);
6242   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6243   const Align Alignment = getLoadStoreAlignment(I);
6244   unsigned AS = getLoadStoreAddressSpace(I);
6245   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6246   if (isa<LoadInst>(I)) {
6247     return TTI.getAddressComputationCost(ValTy) +
6248            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6249                                CostKind) +
6250            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6251   }
6252   StoreInst *SI = cast<StoreInst>(I);
6253 
6254   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6255   return TTI.getAddressComputationCost(ValTy) +
6256          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6257                              CostKind) +
6258          (isLoopInvariantStoreValue
6259               ? 0
6260               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6261                                        VF.getKnownMinValue() - 1));
6262 }
6263 
6264 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6265                                                           ElementCount VF) {
6266   Type *ValTy = getMemInstValueType(I);
6267   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6268   const Align Alignment = getLoadStoreAlignment(I);
6269   const Value *Ptr = getLoadStorePointerOperand(I);
6270 
6271   return TTI.getAddressComputationCost(VectorTy) +
6272          TTI.getGatherScatterOpCost(
6273              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6274              TargetTransformInfo::TCK_RecipThroughput, I);
6275 }
6276 
6277 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6278                                                             ElementCount VF) {
6279   Type *ValTy = getMemInstValueType(I);
6280   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6281   unsigned AS = getLoadStoreAddressSpace(I);
6282 
6283   auto Group = getInterleavedAccessGroup(I);
6284   assert(Group && "Fail to get an interleaved access group.");
6285 
6286   unsigned InterleaveFactor = Group->getFactor();
6287   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6288   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6289 
6290   // Holds the indices of existing members in an interleaved load group.
6291   // An interleaved store group doesn't need this as it doesn't allow gaps.
6292   SmallVector<unsigned, 4> Indices;
6293   if (isa<LoadInst>(I)) {
6294     for (unsigned i = 0; i < InterleaveFactor; i++)
6295       if (Group->getMember(i))
6296         Indices.push_back(i);
6297   }
6298 
6299   // Calculate the cost of the whole interleaved group.
6300   bool UseMaskForGaps =
6301       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
6302   unsigned Cost = TTI.getInterleavedMemoryOpCost(
6303       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6304       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6305 
6306   if (Group->isReverse()) {
6307     // TODO: Add support for reversed masked interleaved access.
6308     assert(!Legal->isMaskRequired(I) &&
6309            "Reverse masked interleaved access not supported.");
6310     Cost += Group->getNumMembers() *
6311             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6312   }
6313   return Cost;
6314 }
6315 
6316 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6317                                                               ElementCount VF) {
6318   // Calculate scalar cost only. Vectorization cost should be ready at this
6319   // moment.
6320   if (VF.isScalar()) {
6321     Type *ValTy = getMemInstValueType(I);
6322     const Align Alignment = getLoadStoreAlignment(I);
6323     unsigned AS = getLoadStoreAddressSpace(I);
6324 
6325     return TTI.getAddressComputationCost(ValTy) +
6326            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6327                                TTI::TCK_RecipThroughput, I);
6328   }
6329   return getWideningCost(I, VF);
6330 }
6331 
6332 LoopVectorizationCostModel::VectorizationCostTy
6333 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6334                                                ElementCount VF) {
6335   assert(!VF.isScalable() &&
6336          "the cost model is not yet implemented for scalable vectorization");
6337   // If we know that this instruction will remain uniform, check the cost of
6338   // the scalar version.
6339   if (isUniformAfterVectorization(I, VF))
6340     VF = ElementCount::getFixed(1);
6341 
6342   if (VF.isVector() && isProfitableToScalarize(I, VF))
6343     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6344 
6345   // Forced scalars do not have any scalarization overhead.
6346   auto ForcedScalar = ForcedScalars.find(VF);
6347   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6348     auto InstSet = ForcedScalar->second;
6349     if (InstSet.count(I))
6350       return VectorizationCostTy(
6351           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6352            VF.getKnownMinValue()),
6353           false);
6354   }
6355 
6356   Type *VectorTy;
6357   unsigned C = getInstructionCost(I, VF, VectorTy);
6358 
6359   bool TypeNotScalarized =
6360       VF.isVector() && VectorTy->isVectorTy() &&
6361       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
6362   return VectorizationCostTy(C, TypeNotScalarized);
6363 }
6364 
6365 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6366                                                               ElementCount VF) {
6367 
6368   assert(!VF.isScalable() &&
6369          "cannot compute scalarization overhead for scalable vectorization");
6370   if (VF.isScalar())
6371     return 0;
6372 
6373   unsigned Cost = 0;
6374   Type *RetTy = ToVectorTy(I->getType(), VF);
6375   if (!RetTy->isVoidTy() &&
6376       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6377     Cost += TTI.getScalarizationOverhead(
6378         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
6379         true, false);
6380 
6381   // Some targets keep addresses scalar.
6382   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6383     return Cost;
6384 
6385   // Some targets support efficient element stores.
6386   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6387     return Cost;
6388 
6389   // Collect operands to consider.
6390   CallInst *CI = dyn_cast<CallInst>(I);
6391   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
6392 
6393   // Skip operands that do not require extraction/scalarization and do not incur
6394   // any overhead.
6395   return Cost + TTI.getOperandsScalarizationOverhead(
6396                     filterExtractingOperands(Ops, VF), VF.getKnownMinValue());
6397 }
6398 
6399 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6400   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6401   if (VF.isScalar())
6402     return;
6403   NumPredStores = 0;
6404   for (BasicBlock *BB : TheLoop->blocks()) {
6405     // For each instruction in the old loop.
6406     for (Instruction &I : *BB) {
6407       Value *Ptr =  getLoadStorePointerOperand(&I);
6408       if (!Ptr)
6409         continue;
6410 
6411       // TODO: We should generate better code and update the cost model for
6412       // predicated uniform stores. Today they are treated as any other
6413       // predicated store (see added test cases in
6414       // invariant-store-vectorization.ll).
6415       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6416         NumPredStores++;
6417 
6418       if (Legal->isUniformMemOp(I)) {
6419         // TODO: Avoid replicating loads and stores instead of
6420         // relying on instcombine to remove them.
6421         // Load: Scalar load + broadcast
6422         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6423         unsigned Cost = getUniformMemOpCost(&I, VF);
6424         setWideningDecision(&I, VF, CM_Scalarize, Cost);
6425         continue;
6426       }
6427 
6428       // We assume that widening is the best solution when possible.
6429       if (memoryInstructionCanBeWidened(&I, VF)) {
6430         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
6431         int ConsecutiveStride =
6432                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
6433         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6434                "Expected consecutive stride.");
6435         InstWidening Decision =
6436             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6437         setWideningDecision(&I, VF, Decision, Cost);
6438         continue;
6439       }
6440 
6441       // Choose between Interleaving, Gather/Scatter or Scalarization.
6442       unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
6443       unsigned NumAccesses = 1;
6444       if (isAccessInterleaved(&I)) {
6445         auto Group = getInterleavedAccessGroup(&I);
6446         assert(Group && "Fail to get an interleaved access group.");
6447 
6448         // Make one decision for the whole group.
6449         if (getWideningDecision(&I, VF) != CM_Unknown)
6450           continue;
6451 
6452         NumAccesses = Group->getNumMembers();
6453         if (interleavedAccessCanBeWidened(&I, VF))
6454           InterleaveCost = getInterleaveGroupCost(&I, VF);
6455       }
6456 
6457       unsigned GatherScatterCost =
6458           isLegalGatherOrScatter(&I)
6459               ? getGatherScatterCost(&I, VF) * NumAccesses
6460               : std::numeric_limits<unsigned>::max();
6461 
6462       unsigned ScalarizationCost =
6463           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6464 
6465       // Choose better solution for the current VF,
6466       // write down this decision and use it during vectorization.
6467       unsigned Cost;
6468       InstWidening Decision;
6469       if (InterleaveCost <= GatherScatterCost &&
6470           InterleaveCost < ScalarizationCost) {
6471         Decision = CM_Interleave;
6472         Cost = InterleaveCost;
6473       } else if (GatherScatterCost < ScalarizationCost) {
6474         Decision = CM_GatherScatter;
6475         Cost = GatherScatterCost;
6476       } else {
6477         Decision = CM_Scalarize;
6478         Cost = ScalarizationCost;
6479       }
6480       // If the instructions belongs to an interleave group, the whole group
6481       // receives the same decision. The whole group receives the cost, but
6482       // the cost will actually be assigned to one instruction.
6483       if (auto Group = getInterleavedAccessGroup(&I))
6484         setWideningDecision(Group, VF, Decision, Cost);
6485       else
6486         setWideningDecision(&I, VF, Decision, Cost);
6487     }
6488   }
6489 
6490   // Make sure that any load of address and any other address computation
6491   // remains scalar unless there is gather/scatter support. This avoids
6492   // inevitable extracts into address registers, and also has the benefit of
6493   // activating LSR more, since that pass can't optimize vectorized
6494   // addresses.
6495   if (TTI.prefersVectorizedAddressing())
6496     return;
6497 
6498   // Start with all scalar pointer uses.
6499   SmallPtrSet<Instruction *, 8> AddrDefs;
6500   for (BasicBlock *BB : TheLoop->blocks())
6501     for (Instruction &I : *BB) {
6502       Instruction *PtrDef =
6503         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6504       if (PtrDef && TheLoop->contains(PtrDef) &&
6505           getWideningDecision(&I, VF) != CM_GatherScatter)
6506         AddrDefs.insert(PtrDef);
6507     }
6508 
6509   // Add all instructions used to generate the addresses.
6510   SmallVector<Instruction *, 4> Worklist;
6511   for (auto *I : AddrDefs)
6512     Worklist.push_back(I);
6513   while (!Worklist.empty()) {
6514     Instruction *I = Worklist.pop_back_val();
6515     for (auto &Op : I->operands())
6516       if (auto *InstOp = dyn_cast<Instruction>(Op))
6517         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6518             AddrDefs.insert(InstOp).second)
6519           Worklist.push_back(InstOp);
6520   }
6521 
6522   for (auto *I : AddrDefs) {
6523     if (isa<LoadInst>(I)) {
6524       // Setting the desired widening decision should ideally be handled in
6525       // by cost functions, but since this involves the task of finding out
6526       // if the loaded register is involved in an address computation, it is
6527       // instead changed here when we know this is the case.
6528       InstWidening Decision = getWideningDecision(I, VF);
6529       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6530         // Scalarize a widened load of address.
6531         setWideningDecision(
6532             I, VF, CM_Scalarize,
6533             (VF.getKnownMinValue() *
6534              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6535       else if (auto Group = getInterleavedAccessGroup(I)) {
6536         // Scalarize an interleave group of address loads.
6537         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6538           if (Instruction *Member = Group->getMember(I))
6539             setWideningDecision(
6540                 Member, VF, CM_Scalarize,
6541                 (VF.getKnownMinValue() *
6542                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6543         }
6544       }
6545     } else
6546       // Make sure I gets scalarized and a cost estimate without
6547       // scalarization overhead.
6548       ForcedScalars[VF].insert(I);
6549   }
6550 }
6551 
6552 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6553                                                         ElementCount VF,
6554                                                         Type *&VectorTy) {
6555   Type *RetTy = I->getType();
6556   if (canTruncateToMinimalBitwidth(I, VF))
6557     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6558   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
6559   auto SE = PSE.getSE();
6560   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6561 
6562   // TODO: We need to estimate the cost of intrinsic calls.
6563   switch (I->getOpcode()) {
6564   case Instruction::GetElementPtr:
6565     // We mark this instruction as zero-cost because the cost of GEPs in
6566     // vectorized code depends on whether the corresponding memory instruction
6567     // is scalarized or not. Therefore, we handle GEPs with the memory
6568     // instruction cost.
6569     return 0;
6570   case Instruction::Br: {
6571     // In cases of scalarized and predicated instructions, there will be VF
6572     // predicated blocks in the vectorized loop. Each branch around these
6573     // blocks requires also an extract of its vector compare i1 element.
6574     bool ScalarPredicatedBB = false;
6575     BranchInst *BI = cast<BranchInst>(I);
6576     if (VF.isVector() && BI->isConditional() &&
6577         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
6578          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
6579       ScalarPredicatedBB = true;
6580 
6581     if (ScalarPredicatedBB) {
6582       // Return cost for branches around scalarized and predicated blocks.
6583       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6584       auto *Vec_i1Ty =
6585           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6586       return (TTI.getScalarizationOverhead(
6587                   Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
6588                   false, true) +
6589               (TTI.getCFInstrCost(Instruction::Br, CostKind) *
6590                VF.getKnownMinValue()));
6591     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6592       // The back-edge branch will remain, as will all scalar branches.
6593       return TTI.getCFInstrCost(Instruction::Br, CostKind);
6594     else
6595       // This branch will be eliminated by if-conversion.
6596       return 0;
6597     // Note: We currently assume zero cost for an unconditional branch inside
6598     // a predicated block since it will become a fall-through, although we
6599     // may decide in the future to call TTI for all branches.
6600   }
6601   case Instruction::PHI: {
6602     auto *Phi = cast<PHINode>(I);
6603 
6604     // First-order recurrences are replaced by vector shuffles inside the loop.
6605     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
6606     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
6607       return TTI.getShuffleCost(
6608           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
6609           VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
6610 
6611     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6612     // converted into select instructions. We require N - 1 selects per phi
6613     // node, where N is the number of incoming values.
6614     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
6615       return (Phi->getNumIncomingValues() - 1) *
6616              TTI.getCmpSelInstrCost(
6617                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
6618                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6619                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
6620 
6621     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6622   }
6623   case Instruction::UDiv:
6624   case Instruction::SDiv:
6625   case Instruction::URem:
6626   case Instruction::SRem:
6627     // If we have a predicated instruction, it may not be executed for each
6628     // vector lane. Get the scalarization cost and scale this amount by the
6629     // probability of executing the predicated block. If the instruction is not
6630     // predicated, we fall through to the next case.
6631     if (VF.isVector() && isScalarWithPredication(I)) {
6632       unsigned Cost = 0;
6633 
6634       // These instructions have a non-void type, so account for the phi nodes
6635       // that we will create. This cost is likely to be zero. The phi node
6636       // cost, if any, should be scaled by the block probability because it
6637       // models a copy at the end of each predicated block.
6638       Cost += VF.getKnownMinValue() *
6639               TTI.getCFInstrCost(Instruction::PHI, CostKind);
6640 
6641       // The cost of the non-predicated instruction.
6642       Cost += VF.getKnownMinValue() *
6643               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
6644 
6645       // The cost of insertelement and extractelement instructions needed for
6646       // scalarization.
6647       Cost += getScalarizationOverhead(I, VF);
6648 
6649       // Scale the cost by the probability of executing the predicated blocks.
6650       // This assumes the predicated block for each vector lane is equally
6651       // likely.
6652       return Cost / getReciprocalPredBlockProb();
6653     }
6654     LLVM_FALLTHROUGH;
6655   case Instruction::Add:
6656   case Instruction::FAdd:
6657   case Instruction::Sub:
6658   case Instruction::FSub:
6659   case Instruction::Mul:
6660   case Instruction::FMul:
6661   case Instruction::FDiv:
6662   case Instruction::FRem:
6663   case Instruction::Shl:
6664   case Instruction::LShr:
6665   case Instruction::AShr:
6666   case Instruction::And:
6667   case Instruction::Or:
6668   case Instruction::Xor: {
6669     // Since we will replace the stride by 1 the multiplication should go away.
6670     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
6671       return 0;
6672     // Certain instructions can be cheaper to vectorize if they have a constant
6673     // second vector operand. One example of this are shifts on x86.
6674     Value *Op2 = I->getOperand(1);
6675     TargetTransformInfo::OperandValueProperties Op2VP;
6676     TargetTransformInfo::OperandValueKind Op2VK =
6677         TTI.getOperandInfo(Op2, Op2VP);
6678     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
6679       Op2VK = TargetTransformInfo::OK_UniformValue;
6680 
6681     SmallVector<const Value *, 4> Operands(I->operand_values());
6682     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
6683     return N * TTI.getArithmeticInstrCost(
6684                    I->getOpcode(), VectorTy, CostKind,
6685                    TargetTransformInfo::OK_AnyValue,
6686                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
6687   }
6688   case Instruction::FNeg: {
6689     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
6690     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
6691     return N * TTI.getArithmeticInstrCost(
6692                    I->getOpcode(), VectorTy, CostKind,
6693                    TargetTransformInfo::OK_AnyValue,
6694                    TargetTransformInfo::OK_AnyValue,
6695                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
6696                    I->getOperand(0), I);
6697   }
6698   case Instruction::Select: {
6699     SelectInst *SI = cast<SelectInst>(I);
6700     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6701     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6702     Type *CondTy = SI->getCondition()->getType();
6703     if (!ScalarCond) {
6704       assert(!VF.isScalable() && "VF is assumed to be non scalable.");
6705       CondTy = VectorType::get(CondTy, VF);
6706     }
6707     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
6708                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
6709   }
6710   case Instruction::ICmp:
6711   case Instruction::FCmp: {
6712     Type *ValTy = I->getOperand(0)->getType();
6713     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6714     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6715       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
6716     VectorTy = ToVectorTy(ValTy, VF);
6717     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
6718                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
6719   }
6720   case Instruction::Store:
6721   case Instruction::Load: {
6722     ElementCount Width = VF;
6723     if (Width.isVector()) {
6724       InstWidening Decision = getWideningDecision(I, Width);
6725       assert(Decision != CM_Unknown &&
6726              "CM decision should be taken at this point");
6727       if (Decision == CM_Scalarize)
6728         Width = ElementCount::getFixed(1);
6729     }
6730     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
6731     return getMemoryInstructionCost(I, VF);
6732   }
6733   case Instruction::ZExt:
6734   case Instruction::SExt:
6735   case Instruction::FPToUI:
6736   case Instruction::FPToSI:
6737   case Instruction::FPExt:
6738   case Instruction::PtrToInt:
6739   case Instruction::IntToPtr:
6740   case Instruction::SIToFP:
6741   case Instruction::UIToFP:
6742   case Instruction::Trunc:
6743   case Instruction::FPTrunc:
6744   case Instruction::BitCast: {
6745     // Computes the CastContextHint from a Load/Store instruction.
6746     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6747       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
6748              "Expected a load or a store!");
6749 
6750       if (VF.isScalar() || !TheLoop->contains(I))
6751         return TTI::CastContextHint::Normal;
6752 
6753       switch (getWideningDecision(I, VF)) {
6754       case LoopVectorizationCostModel::CM_GatherScatter:
6755         return TTI::CastContextHint::GatherScatter;
6756       case LoopVectorizationCostModel::CM_Interleave:
6757         return TTI::CastContextHint::Interleave;
6758       case LoopVectorizationCostModel::CM_Scalarize:
6759       case LoopVectorizationCostModel::CM_Widen:
6760         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
6761                                         : TTI::CastContextHint::Normal;
6762       case LoopVectorizationCostModel::CM_Widen_Reverse:
6763         return TTI::CastContextHint::Reversed;
6764       case LoopVectorizationCostModel::CM_Unknown:
6765         llvm_unreachable("Instr did not go through cost modelling?");
6766       }
6767 
6768       llvm_unreachable("Unhandled case!");
6769     };
6770 
6771     unsigned Opcode = I->getOpcode();
6772     TTI::CastContextHint CCH = TTI::CastContextHint::None;
6773     // For Trunc, the context is the only user, which must be a StoreInst.
6774     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6775       if (I->hasOneUse())
6776         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6777           CCH = ComputeCCH(Store);
6778     }
6779     // For Z/Sext, the context is the operand, which must be a LoadInst.
6780     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6781              Opcode == Instruction::FPExt) {
6782       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6783         CCH = ComputeCCH(Load);
6784     }
6785 
6786     // We optimize the truncation of induction variables having constant
6787     // integer steps. The cost of these truncations is the same as the scalar
6788     // operation.
6789     if (isOptimizableIVTruncate(I, VF)) {
6790       auto *Trunc = cast<TruncInst>(I);
6791       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6792                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
6793     }
6794 
6795     Type *SrcScalarTy = I->getOperand(0)->getType();
6796     Type *SrcVecTy =
6797         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6798     if (canTruncateToMinimalBitwidth(I, VF)) {
6799       // This cast is going to be shrunk. This may remove the cast or it might
6800       // turn it into slightly different cast. For example, if MinBW == 16,
6801       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6802       //
6803       // Calculate the modified src and dest types.
6804       Type *MinVecTy = VectorTy;
6805       if (Opcode == Instruction::Trunc) {
6806         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6807         VectorTy =
6808             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6809       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
6810         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6811         VectorTy =
6812             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6813       }
6814     }
6815 
6816     assert(!VF.isScalable() && "VF is assumed to be non scalable");
6817     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
6818     return N *
6819            TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6820   }
6821   case Instruction::Call: {
6822     bool NeedToScalarize;
6823     CallInst *CI = cast<CallInst>(I);
6824     unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
6825     if (getVectorIntrinsicIDForCall(CI, TLI))
6826       return std::min(CallCost, getVectorIntrinsicCost(CI, VF));
6827     return CallCost;
6828   }
6829   default:
6830     // The cost of executing VF copies of the scalar instruction. This opcode
6831     // is unknown. Assume that it is the same as 'mul'.
6832     return VF.getKnownMinValue() * TTI.getArithmeticInstrCost(
6833                                        Instruction::Mul, VectorTy, CostKind) +
6834            getScalarizationOverhead(I, VF);
6835   } // end of switch.
6836 }
6837 
6838 char LoopVectorize::ID = 0;
6839 
6840 static const char lv_name[] = "Loop Vectorization";
6841 
6842 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6843 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6844 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6845 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6846 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6847 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6848 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6849 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6850 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6851 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6852 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6853 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6854 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6855 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
6856 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
6857 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6858 
6859 namespace llvm {
6860 
6861 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
6862 
6863 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
6864                               bool VectorizeOnlyWhenForced) {
6865   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
6866 }
6867 
6868 } // end namespace llvm
6869 
6870 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6871   // Check if the pointer operand of a load or store instruction is
6872   // consecutive.
6873   if (auto *Ptr = getLoadStorePointerOperand(Inst))
6874     return Legal->isConsecutivePtr(Ptr);
6875   return false;
6876 }
6877 
6878 void LoopVectorizationCostModel::collectValuesToIgnore() {
6879   // Ignore ephemeral values.
6880   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6881 
6882   // Ignore type-promoting instructions we identified during reduction
6883   // detection.
6884   for (auto &Reduction : Legal->getReductionVars()) {
6885     RecurrenceDescriptor &RedDes = Reduction.second;
6886     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6887     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6888   }
6889   // Ignore type-casting instructions we identified during induction
6890   // detection.
6891   for (auto &Induction : Legal->getInductionVars()) {
6892     InductionDescriptor &IndDes = Induction.second;
6893     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6894     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6895   }
6896 }
6897 
6898 void LoopVectorizationCostModel::collectInLoopReductions() {
6899   for (auto &Reduction : Legal->getReductionVars()) {
6900     PHINode *Phi = Reduction.first;
6901     RecurrenceDescriptor &RdxDesc = Reduction.second;
6902 
6903     // We don't collect reductions that are type promoted (yet).
6904     if (RdxDesc.getRecurrenceType() != Phi->getType())
6905       continue;
6906 
6907     // If the target would prefer this reduction to happen "in-loop", then we
6908     // want to record it as such.
6909     unsigned Opcode = RdxDesc.getRecurrenceBinOp();
6910     if (!PreferInLoopReductions &&
6911         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
6912                                    TargetTransformInfo::ReductionFlags()))
6913       continue;
6914 
6915     // Check that we can correctly put the reductions into the loop, by
6916     // finding the chain of operations that leads from the phi to the loop
6917     // exit value.
6918     SmallVector<Instruction *, 4> ReductionOperations =
6919         RdxDesc.getReductionOpChain(Phi, TheLoop);
6920     bool InLoop = !ReductionOperations.empty();
6921     if (InLoop)
6922       InLoopReductionChains[Phi] = ReductionOperations;
6923     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
6924                       << " reduction for phi: " << *Phi << "\n");
6925   }
6926 }
6927 
6928 // TODO: we could return a pair of values that specify the max VF and
6929 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6930 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6931 // doesn't have a cost model that can choose which plan to execute if
6932 // more than one is generated.
6933 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
6934                                  LoopVectorizationCostModel &CM) {
6935   unsigned WidestType;
6936   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6937   return WidestVectorRegBits / WidestType;
6938 }
6939 
6940 VectorizationFactor
6941 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
6942   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
6943   ElementCount VF = UserVF;
6944   // Outer loop handling: They may require CFG and instruction level
6945   // transformations before even evaluating whether vectorization is profitable.
6946   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6947   // the vectorization pipeline.
6948   if (!OrigLoop->isInnermost()) {
6949     // If the user doesn't provide a vectorization factor, determine a
6950     // reasonable one.
6951     if (UserVF.isZero()) {
6952       VF = ElementCount::getFixed(
6953           determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM));
6954       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6955 
6956       // Make sure we have a VF > 1 for stress testing.
6957       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
6958         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6959                           << "overriding computed VF.\n");
6960         VF = ElementCount::getFixed(4);
6961       }
6962     }
6963     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6964     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
6965            "VF needs to be a power of two");
6966     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
6967                       << "VF " << VF << " to build VPlans.\n");
6968     buildVPlans(VF, VF);
6969 
6970     // For VPlan build stress testing, we bail out after VPlan construction.
6971     if (VPlanBuildStressTest)
6972       return VectorizationFactor::Disabled();
6973 
6974     return {VF, 0 /*Cost*/};
6975   }
6976 
6977   LLVM_DEBUG(
6978       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6979                 "VPlan-native path.\n");
6980   return VectorizationFactor::Disabled();
6981 }
6982 
6983 Optional<VectorizationFactor>
6984 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
6985   assert(!UserVF.isScalable() && "scalable vectorization not yet handled");
6986   assert(OrigLoop->isInnermost() && "Inner loop expected.");
6987   Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
6988   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
6989     return None;
6990 
6991   // Invalidate interleave groups if all blocks of loop will be predicated.
6992   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
6993       !useMaskedInterleavedAccesses(*TTI)) {
6994     LLVM_DEBUG(
6995         dbgs()
6996         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6997            "which requires masked-interleaved support.\n");
6998     if (CM.InterleaveInfo.invalidateGroups())
6999       // Invalidating interleave groups also requires invalidating all decisions
7000       // based on them, which includes widening decisions and uniform and scalar
7001       // values.
7002       CM.invalidateCostModelingDecisions();
7003   }
7004 
7005   if (!UserVF.isZero()) {
7006     LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7007     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7008            "VF needs to be a power of two");
7009     // Collect the instructions (and their associated costs) that will be more
7010     // profitable to scalarize.
7011     CM.selectUserVectorizationFactor(UserVF);
7012     CM.collectInLoopReductions();
7013     buildVPlansWithVPRecipes(UserVF, UserVF);
7014     LLVM_DEBUG(printPlans(dbgs()));
7015     return {{UserVF, 0}};
7016   }
7017 
7018   ElementCount MaxVF = MaybeMaxVF.getValue();
7019   assert(MaxVF.isNonZero() && "MaxVF is zero.");
7020 
7021   for (ElementCount VF = ElementCount::getFixed(1);
7022        ElementCount::isKnownLE(VF, MaxVF); VF *= 2) {
7023     // Collect Uniform and Scalar instructions after vectorization with VF.
7024     CM.collectUniformsAndScalars(VF);
7025 
7026     // Collect the instructions (and their associated costs) that will be more
7027     // profitable to scalarize.
7028     if (VF.isVector())
7029       CM.collectInstsToScalarize(VF);
7030   }
7031 
7032   CM.collectInLoopReductions();
7033 
7034   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF);
7035   LLVM_DEBUG(printPlans(dbgs()));
7036   if (MaxVF.isScalar())
7037     return VectorizationFactor::Disabled();
7038 
7039   // Select the optimal vectorization factor.
7040   return CM.selectVectorizationFactor(MaxVF);
7041 }
7042 
7043 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
7044   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
7045                     << '\n');
7046   BestVF = VF;
7047   BestUF = UF;
7048 
7049   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
7050     return !Plan->hasVF(VF);
7051   });
7052   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
7053 }
7054 
7055 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
7056                                            DominatorTree *DT) {
7057   // Perform the actual loop transformation.
7058 
7059   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7060   VPCallbackILV CallbackILV(ILV);
7061 
7062   assert(BestVF.hasValue() && "Vectorization Factor is missing");
7063 
7064   VPTransformState State{*BestVF, BestUF,      LI,
7065                          DT,      ILV.Builder, ILV.VectorLoopValueMap,
7066                          &ILV,    CallbackILV};
7067   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7068   State.TripCount = ILV.getOrCreateTripCount(nullptr);
7069   State.CanonicalIV = ILV.Induction;
7070 
7071   //===------------------------------------------------===//
7072   //
7073   // Notice: any optimization or new instruction that go
7074   // into the code below should also be implemented in
7075   // the cost-model.
7076   //
7077   //===------------------------------------------------===//
7078 
7079   // 2. Copy and widen instructions from the old loop into the new loop.
7080   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
7081   VPlans.front()->execute(&State);
7082 
7083   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7084   //    predication, updating analyses.
7085   ILV.fixVectorizedLoop();
7086 }
7087 
7088 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7089     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7090   BasicBlock *Latch = OrigLoop->getLoopLatch();
7091 
7092   // We create new control-flow for the vectorized loop, so the original
7093   // condition will be dead after vectorization if it's only used by the
7094   // branch.
7095   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
7096   if (Cmp && Cmp->hasOneUse()) {
7097     DeadInstructions.insert(Cmp);
7098 
7099     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7100     for (Value *Op : Cmp->operands()) {
7101       if (isa<TruncInst>(Op) && Op->hasOneUse())
7102           DeadInstructions.insert(cast<Instruction>(Op));
7103     }
7104   }
7105 
7106   // We create new "steps" for induction variable updates to which the original
7107   // induction variables map. An original update instruction will be dead if
7108   // all its users except the induction variable are dead.
7109   for (auto &Induction : Legal->getInductionVars()) {
7110     PHINode *Ind = Induction.first;
7111     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7112     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7113           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7114         }))
7115       DeadInstructions.insert(IndUpdate);
7116 
7117     // We record as "Dead" also the type-casting instructions we had identified
7118     // during induction analysis. We don't need any handling for them in the
7119     // vectorized loop because we have proven that, under a proper runtime
7120     // test guarding the vectorized loop, the value of the phi, and the casted
7121     // value of the phi, are the same. The last instruction in this casting chain
7122     // will get its scalar/vector/widened def from the scalar/vector/widened def
7123     // of the respective phi node. Any other casts in the induction def-use chain
7124     // have no other uses outside the phi update chain, and will be ignored.
7125     InductionDescriptor &IndDes = Induction.second;
7126     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7127     DeadInstructions.insert(Casts.begin(), Casts.end());
7128   }
7129 }
7130 
7131 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
7132 
7133 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7134 
7135 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
7136                                         Instruction::BinaryOps BinOp) {
7137   // When unrolling and the VF is 1, we only need to add a simple scalar.
7138   Type *Ty = Val->getType();
7139   assert(!Ty->isVectorTy() && "Val must be a scalar");
7140 
7141   if (Ty->isFloatingPointTy()) {
7142     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
7143 
7144     // Floating point operations had to be 'fast' to enable the unrolling.
7145     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
7146     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
7147   }
7148   Constant *C = ConstantInt::get(Ty, StartIdx);
7149   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
7150 }
7151 
7152 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7153   SmallVector<Metadata *, 4> MDs;
7154   // Reserve first location for self reference to the LoopID metadata node.
7155   MDs.push_back(nullptr);
7156   bool IsUnrollMetadata = false;
7157   MDNode *LoopID = L->getLoopID();
7158   if (LoopID) {
7159     // First find existing loop unrolling disable metadata.
7160     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7161       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7162       if (MD) {
7163         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7164         IsUnrollMetadata =
7165             S && S->getString().startswith("llvm.loop.unroll.disable");
7166       }
7167       MDs.push_back(LoopID->getOperand(i));
7168     }
7169   }
7170 
7171   if (!IsUnrollMetadata) {
7172     // Add runtime unroll disable metadata.
7173     LLVMContext &Context = L->getHeader()->getContext();
7174     SmallVector<Metadata *, 1> DisableOperands;
7175     DisableOperands.push_back(
7176         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7177     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7178     MDs.push_back(DisableNode);
7179     MDNode *NewLoopID = MDNode::get(Context, MDs);
7180     // Set operand 0 to refer to the loop id itself.
7181     NewLoopID->replaceOperandWith(0, NewLoopID);
7182     L->setLoopID(NewLoopID);
7183   }
7184 }
7185 
7186 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7187     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7188   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7189   bool PredicateAtRangeStart = Predicate(Range.Start);
7190 
7191   for (ElementCount TmpVF = Range.Start * 2;
7192        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
7193     if (Predicate(TmpVF) != PredicateAtRangeStart) {
7194       Range.End = TmpVF;
7195       break;
7196     }
7197 
7198   return PredicateAtRangeStart;
7199 }
7200 
7201 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
7202 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
7203 /// of VF's starting at a given VF and extending it as much as possible. Each
7204 /// vectorization decision can potentially shorten this sub-range during
7205 /// buildVPlan().
7206 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
7207                                            ElementCount MaxVF) {
7208   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
7209   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
7210     VFRange SubRange = {VF, MaxVFPlusOne};
7211     VPlans.push_back(buildVPlan(SubRange));
7212     VF = SubRange.End;
7213   }
7214 }
7215 
7216 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
7217                                          VPlanPtr &Plan) {
7218   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
7219 
7220   // Look for cached value.
7221   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
7222   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
7223   if (ECEntryIt != EdgeMaskCache.end())
7224     return ECEntryIt->second;
7225 
7226   VPValue *SrcMask = createBlockInMask(Src, Plan);
7227 
7228   // The terminator has to be a branch inst!
7229   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
7230   assert(BI && "Unexpected terminator found");
7231 
7232   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
7233     return EdgeMaskCache[Edge] = SrcMask;
7234 
7235   VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
7236   assert(EdgeMask && "No Edge Mask found for condition");
7237 
7238   if (BI->getSuccessor(0) != Dst)
7239     EdgeMask = Builder.createNot(EdgeMask);
7240 
7241   if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
7242     EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
7243 
7244   return EdgeMaskCache[Edge] = EdgeMask;
7245 }
7246 
7247 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
7248   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
7249 
7250   // Look for cached value.
7251   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
7252   if (BCEntryIt != BlockMaskCache.end())
7253     return BCEntryIt->second;
7254 
7255   // All-one mask is modelled as no-mask following the convention for masked
7256   // load/store/gather/scatter. Initialize BlockMask to no-mask.
7257   VPValue *BlockMask = nullptr;
7258 
7259   if (OrigLoop->getHeader() == BB) {
7260     if (!CM.blockNeedsPredication(BB))
7261       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
7262 
7263     // Create the block in mask as the first non-phi instruction in the block.
7264     VPBuilder::InsertPointGuard Guard(Builder);
7265     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
7266     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
7267 
7268     // Introduce the early-exit compare IV <= BTC to form header block mask.
7269     // This is used instead of IV < TC because TC may wrap, unlike BTC.
7270     // Start by constructing the desired canonical IV.
7271     VPValue *IV = nullptr;
7272     if (Legal->getPrimaryInduction())
7273       IV = Plan->getVPValue(Legal->getPrimaryInduction());
7274     else {
7275       auto IVRecipe = new VPWidenCanonicalIVRecipe();
7276       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
7277       IV = IVRecipe->getVPValue();
7278     }
7279     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
7280     bool TailFolded = !CM.isScalarEpilogueAllowed();
7281 
7282     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
7283       // While ActiveLaneMask is a binary op that consumes the loop tripcount
7284       // as a second argument, we only pass the IV here and extract the
7285       // tripcount from the transform state where codegen of the VP instructions
7286       // happen.
7287       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
7288     } else {
7289       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
7290     }
7291     return BlockMaskCache[BB] = BlockMask;
7292   }
7293 
7294   // This is the block mask. We OR all incoming edges.
7295   for (auto *Predecessor : predecessors(BB)) {
7296     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
7297     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
7298       return BlockMaskCache[BB] = EdgeMask;
7299 
7300     if (!BlockMask) { // BlockMask has its initialized nullptr value.
7301       BlockMask = EdgeMask;
7302       continue;
7303     }
7304 
7305     BlockMask = Builder.createOr(BlockMask, EdgeMask);
7306   }
7307 
7308   return BlockMaskCache[BB] = BlockMask;
7309 }
7310 
7311 VPWidenMemoryInstructionRecipe *
7312 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
7313                                   VPlanPtr &Plan) {
7314   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7315          "Must be called with either a load or store");
7316 
7317   auto willWiden = [&](ElementCount VF) -> bool {
7318     assert(!VF.isScalable() && "unexpected scalable ElementCount");
7319     if (VF.isScalar())
7320       return false;
7321     LoopVectorizationCostModel::InstWidening Decision =
7322         CM.getWideningDecision(I, VF);
7323     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
7324            "CM decision should be taken at this point.");
7325     if (Decision == LoopVectorizationCostModel::CM_Interleave)
7326       return true;
7327     if (CM.isScalarAfterVectorization(I, VF) ||
7328         CM.isProfitableToScalarize(I, VF))
7329       return false;
7330     return Decision != LoopVectorizationCostModel::CM_Scalarize;
7331   };
7332 
7333   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
7334     return nullptr;
7335 
7336   VPValue *Mask = nullptr;
7337   if (Legal->isMaskRequired(I))
7338     Mask = createBlockInMask(I->getParent(), Plan);
7339 
7340   VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I));
7341   if (LoadInst *Load = dyn_cast<LoadInst>(I))
7342     return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask);
7343 
7344   StoreInst *Store = cast<StoreInst>(I);
7345   VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand());
7346   return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask);
7347 }
7348 
7349 VPWidenIntOrFpInductionRecipe *
7350 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const {
7351   // Check if this is an integer or fp induction. If so, build the recipe that
7352   // produces its scalar and vector values.
7353   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
7354   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
7355       II.getKind() == InductionDescriptor::IK_FpInduction)
7356     return new VPWidenIntOrFpInductionRecipe(Phi);
7357 
7358   return nullptr;
7359 }
7360 
7361 VPWidenIntOrFpInductionRecipe *
7362 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I,
7363                                                 VFRange &Range) const {
7364   // Optimize the special case where the source is a constant integer
7365   // induction variable. Notice that we can only optimize the 'trunc' case
7366   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7367   // (c) other casts depend on pointer size.
7368 
7369   // Determine whether \p K is a truncation based on an induction variable that
7370   // can be optimized.
7371   auto isOptimizableIVTruncate =
7372       [&](Instruction *K) -> std::function<bool(ElementCount)> {
7373     return [=](ElementCount VF) -> bool {
7374       return CM.isOptimizableIVTruncate(K, VF);
7375     };
7376   };
7377 
7378   if (LoopVectorizationPlanner::getDecisionAndClampRange(
7379           isOptimizableIVTruncate(I), Range))
7380     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
7381                                              I);
7382   return nullptr;
7383 }
7384 
7385 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) {
7386   // We know that all PHIs in non-header blocks are converted into selects, so
7387   // we don't have to worry about the insertion order and we can just use the
7388   // builder. At this point we generate the predication tree. There may be
7389   // duplications since this is a simple recursive scan, but future
7390   // optimizations will clean it up.
7391 
7392   SmallVector<VPValue *, 2> Operands;
7393   unsigned NumIncoming = Phi->getNumIncomingValues();
7394   for (unsigned In = 0; In < NumIncoming; In++) {
7395     VPValue *EdgeMask =
7396       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
7397     assert((EdgeMask || NumIncoming == 1) &&
7398            "Multiple predecessors with one having a full mask");
7399     Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In)));
7400     if (EdgeMask)
7401       Operands.push_back(EdgeMask);
7402   }
7403   return new VPBlendRecipe(Phi, Operands);
7404 }
7405 
7406 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range,
7407                                                    VPlan &Plan) const {
7408 
7409   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
7410       [this, CI](ElementCount VF) {
7411         return CM.isScalarWithPredication(CI, VF);
7412       },
7413       Range);
7414 
7415   if (IsPredicated)
7416     return nullptr;
7417 
7418   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7419   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7420              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
7421     return nullptr;
7422 
7423   auto willWiden = [&](ElementCount VF) -> bool {
7424     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7425     // The following case may be scalarized depending on the VF.
7426     // The flag shows whether we use Intrinsic or a usual Call for vectorized
7427     // version of the instruction.
7428     // Is it beneficial to perform intrinsic call compared to lib call?
7429     bool NeedToScalarize = false;
7430     unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
7431     bool UseVectorIntrinsic =
7432         ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost;
7433     return UseVectorIntrinsic || !NeedToScalarize;
7434   };
7435 
7436   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
7437     return nullptr;
7438 
7439   return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands()));
7440 }
7441 
7442 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
7443   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
7444          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
7445   // Instruction should be widened, unless it is scalar after vectorization,
7446   // scalarization is profitable or it is predicated.
7447   auto WillScalarize = [this, I](ElementCount VF) -> bool {
7448     return CM.isScalarAfterVectorization(I, VF) ||
7449            CM.isProfitableToScalarize(I, VF) ||
7450            CM.isScalarWithPredication(I, VF);
7451   };
7452   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
7453                                                              Range);
7454 }
7455 
7456 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const {
7457   auto IsVectorizableOpcode = [](unsigned Opcode) {
7458     switch (Opcode) {
7459     case Instruction::Add:
7460     case Instruction::And:
7461     case Instruction::AShr:
7462     case Instruction::BitCast:
7463     case Instruction::FAdd:
7464     case Instruction::FCmp:
7465     case Instruction::FDiv:
7466     case Instruction::FMul:
7467     case Instruction::FNeg:
7468     case Instruction::FPExt:
7469     case Instruction::FPToSI:
7470     case Instruction::FPToUI:
7471     case Instruction::FPTrunc:
7472     case Instruction::FRem:
7473     case Instruction::FSub:
7474     case Instruction::ICmp:
7475     case Instruction::IntToPtr:
7476     case Instruction::LShr:
7477     case Instruction::Mul:
7478     case Instruction::Or:
7479     case Instruction::PtrToInt:
7480     case Instruction::SDiv:
7481     case Instruction::Select:
7482     case Instruction::SExt:
7483     case Instruction::Shl:
7484     case Instruction::SIToFP:
7485     case Instruction::SRem:
7486     case Instruction::Sub:
7487     case Instruction::Trunc:
7488     case Instruction::UDiv:
7489     case Instruction::UIToFP:
7490     case Instruction::URem:
7491     case Instruction::Xor:
7492     case Instruction::ZExt:
7493       return true;
7494     }
7495     return false;
7496   };
7497 
7498   if (!IsVectorizableOpcode(I->getOpcode()))
7499     return nullptr;
7500 
7501   // Success: widen this instruction.
7502   return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands()));
7503 }
7504 
7505 VPBasicBlock *VPRecipeBuilder::handleReplication(
7506     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
7507     DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
7508     VPlanPtr &Plan) {
7509   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
7510       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
7511       Range);
7512 
7513   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
7514       [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); },
7515       Range);
7516 
7517   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
7518                                        IsUniform, IsPredicated);
7519   setRecipe(I, Recipe);
7520 
7521   // Find if I uses a predicated instruction. If so, it will use its scalar
7522   // value. Avoid hoisting the insert-element which packs the scalar value into
7523   // a vector value, as that happens iff all users use the vector value.
7524   for (auto &Op : I->operands())
7525     if (auto *PredInst = dyn_cast<Instruction>(Op))
7526       if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
7527         PredInst2Recipe[PredInst]->setAlsoPack(false);
7528 
7529   // Finalize the recipe for Instr, first if it is not predicated.
7530   if (!IsPredicated) {
7531     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7532     VPBB->appendRecipe(Recipe);
7533     return VPBB;
7534   }
7535   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7536   assert(VPBB->getSuccessors().empty() &&
7537          "VPBB has successors when handling predicated replication.");
7538   // Record predicated instructions for above packing optimizations.
7539   PredInst2Recipe[I] = Recipe;
7540   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
7541   VPBlockUtils::insertBlockAfter(Region, VPBB);
7542   auto *RegSucc = new VPBasicBlock();
7543   VPBlockUtils::insertBlockAfter(RegSucc, Region);
7544   return RegSucc;
7545 }
7546 
7547 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
7548                                                       VPRecipeBase *PredRecipe,
7549                                                       VPlanPtr &Plan) {
7550   // Instructions marked for predication are replicated and placed under an
7551   // if-then construct to prevent side-effects.
7552 
7553   // Generate recipes to compute the block mask for this region.
7554   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7555 
7556   // Build the triangular if-then region.
7557   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7558   assert(Instr->getParent() && "Predicated instruction not in any basic block");
7559   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7560   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7561   auto *PHIRecipe =
7562       Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7563   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7564   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7565   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7566 
7567   // Note: first set Entry as region entry and then connect successors starting
7568   // from it in order, to propagate the "parent" of each VPBasicBlock.
7569   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
7570   VPBlockUtils::connectBlocks(Pred, Exit);
7571 
7572   return Region;
7573 }
7574 
7575 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
7576                                                       VFRange &Range,
7577                                                       VPlanPtr &Plan) {
7578   // First, check for specific widening recipes that deal with calls, memory
7579   // operations, inductions and Phi nodes.
7580   if (auto *CI = dyn_cast<CallInst>(Instr))
7581     return tryToWidenCall(CI, Range, *Plan);
7582 
7583   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
7584     return tryToWidenMemory(Instr, Range, Plan);
7585 
7586   VPRecipeBase *Recipe;
7587   if (auto Phi = dyn_cast<PHINode>(Instr)) {
7588     if (Phi->getParent() != OrigLoop->getHeader())
7589       return tryToBlend(Phi, Plan);
7590     if ((Recipe = tryToOptimizeInductionPHI(Phi)))
7591       return Recipe;
7592     return new VPWidenPHIRecipe(Phi);
7593   }
7594 
7595   if (isa<TruncInst>(Instr) &&
7596       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range)))
7597     return Recipe;
7598 
7599   if (!shouldWiden(Instr, Range))
7600     return nullptr;
7601 
7602   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
7603     return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()),
7604                                 OrigLoop);
7605 
7606   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
7607     bool InvariantCond =
7608         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
7609     return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()),
7610                                    InvariantCond);
7611   }
7612 
7613   return tryToWiden(Instr, *Plan);
7614 }
7615 
7616 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
7617                                                         ElementCount MaxVF) {
7618   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7619 
7620   // Collect conditions feeding internal conditional branches; they need to be
7621   // represented in VPlan for it to model masking.
7622   SmallPtrSet<Value *, 1> NeedDef;
7623 
7624   auto *Latch = OrigLoop->getLoopLatch();
7625   for (BasicBlock *BB : OrigLoop->blocks()) {
7626     if (BB == Latch)
7627       continue;
7628     BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
7629     if (Branch && Branch->isConditional())
7630       NeedDef.insert(Branch->getCondition());
7631   }
7632 
7633   // If the tail is to be folded by masking, the primary induction variable, if
7634   // exists needs to be represented in VPlan for it to model early-exit masking.
7635   if (CM.foldTailByMasking() && Legal->getPrimaryInduction())
7636     NeedDef.insert(Legal->getPrimaryInduction());
7637 
7638   // Collect instructions from the original loop that will become trivially dead
7639   // in the vectorized loop. We don't need to vectorize these instructions. For
7640   // example, original induction update instructions can become dead because we
7641   // separately emit induction "steps" when generating code for the new loop.
7642   // Similarly, we create a new latch condition when setting up the structure
7643   // of the new loop, so the old one can become dead.
7644   SmallPtrSet<Instruction *, 4> DeadInstructions;
7645   collectTriviallyDeadInstructions(DeadInstructions);
7646 
7647   // Add assume instructions we need to drop to DeadInstructions, to prevent
7648   // them from being added to the VPlan.
7649   // TODO: We only need to drop assumes in blocks that get flattend. If the
7650   // control flow is preserved, we should keep them.
7651   auto &ConditionalAssumes = Legal->getConditionalAssumes();
7652   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
7653 
7654   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7655   // Dead instructions do not need sinking. Remove them from SinkAfter.
7656   for (Instruction *I : DeadInstructions)
7657     SinkAfter.erase(I);
7658 
7659   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
7660   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
7661     VFRange SubRange = {VF, MaxVFPlusOne};
7662     VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef,
7663                                              DeadInstructions, SinkAfter));
7664     VF = SubRange.End;
7665   }
7666 }
7667 
7668 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
7669     VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
7670     SmallPtrSetImpl<Instruction *> &DeadInstructions,
7671     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
7672 
7673   // Hold a mapping from predicated instructions to their recipes, in order to
7674   // fix their AlsoPack behavior if a user is determined to replicate and use a
7675   // scalar instead of vector value.
7676   DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
7677 
7678   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
7679 
7680   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
7681 
7682   // ---------------------------------------------------------------------------
7683   // Pre-construction: record ingredients whose recipes we'll need to further
7684   // process after constructing the initial VPlan.
7685   // ---------------------------------------------------------------------------
7686 
7687   // Mark instructions we'll need to sink later and their targets as
7688   // ingredients whose recipe we'll need to record.
7689   for (auto &Entry : SinkAfter) {
7690     RecipeBuilder.recordRecipeOf(Entry.first);
7691     RecipeBuilder.recordRecipeOf(Entry.second);
7692   }
7693   for (auto &Reduction : CM.getInLoopReductionChains()) {
7694     PHINode *Phi = Reduction.first;
7695     RecurrenceDescriptor::RecurrenceKind Kind =
7696         Legal->getReductionVars()[Phi].getRecurrenceKind();
7697     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
7698 
7699     RecipeBuilder.recordRecipeOf(Phi);
7700     for (auto &R : ReductionOperations) {
7701       RecipeBuilder.recordRecipeOf(R);
7702       // For min/max reducitons, where we have a pair of icmp/select, we also
7703       // need to record the ICmp recipe, so it can be removed later.
7704       if (Kind == RecurrenceDescriptor::RK_IntegerMinMax ||
7705           Kind == RecurrenceDescriptor::RK_FloatMinMax) {
7706         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
7707       }
7708     }
7709   }
7710 
7711   // For each interleave group which is relevant for this (possibly trimmed)
7712   // Range, add it to the set of groups to be later applied to the VPlan and add
7713   // placeholders for its members' Recipes which we'll be replacing with a
7714   // single VPInterleaveRecipe.
7715   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
7716     auto applyIG = [IG, this](ElementCount VF) -> bool {
7717       return (VF.isVector() && // Query is illegal for VF == 1
7718               CM.getWideningDecision(IG->getInsertPos(), VF) ==
7719                   LoopVectorizationCostModel::CM_Interleave);
7720     };
7721     if (!getDecisionAndClampRange(applyIG, Range))
7722       continue;
7723     InterleaveGroups.insert(IG);
7724     for (unsigned i = 0; i < IG->getFactor(); i++)
7725       if (Instruction *Member = IG->getMember(i))
7726         RecipeBuilder.recordRecipeOf(Member);
7727   };
7728 
7729   // ---------------------------------------------------------------------------
7730   // Build initial VPlan: Scan the body of the loop in a topological order to
7731   // visit each basic block after having visited its predecessor basic blocks.
7732   // ---------------------------------------------------------------------------
7733 
7734   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
7735   auto Plan = std::make_unique<VPlan>();
7736   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
7737   Plan->setEntry(VPBB);
7738 
7739   // Represent values that will have defs inside VPlan.
7740   for (Value *V : NeedDef)
7741     Plan->addVPValue(V);
7742 
7743   // Scan the body of the loop in a topological order to visit each basic block
7744   // after having visited its predecessor basic blocks.
7745   LoopBlocksDFS DFS(OrigLoop);
7746   DFS.perform(LI);
7747 
7748   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
7749     // Relevant instructions from basic block BB will be grouped into VPRecipe
7750     // ingredients and fill a new VPBasicBlock.
7751     unsigned VPBBsForBB = 0;
7752     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
7753     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
7754     VPBB = FirstVPBBForBB;
7755     Builder.setInsertPoint(VPBB);
7756 
7757     // Introduce each ingredient into VPlan.
7758     // TODO: Model and preserve debug instrinsics in VPlan.
7759     for (Instruction &I : BB->instructionsWithoutDebug()) {
7760       Instruction *Instr = &I;
7761 
7762       // First filter out irrelevant instructions, to ensure no recipes are
7763       // built for them.
7764       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
7765         continue;
7766 
7767       if (auto Recipe =
7768               RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) {
7769         // Check if the recipe can be converted to a VPValue. We need the extra
7770         // down-casting step until VPRecipeBase inherits from VPValue.
7771         VPValue *MaybeVPValue = Recipe->toVPValue();
7772         if (!Instr->getType()->isVoidTy() && MaybeVPValue) {
7773           if (NeedDef.contains(Instr))
7774             Plan->addOrReplaceVPValue(Instr, MaybeVPValue);
7775           else
7776             Plan->addVPValue(Instr, MaybeVPValue);
7777         }
7778 
7779         RecipeBuilder.setRecipe(Instr, Recipe);
7780         VPBB->appendRecipe(Recipe);
7781         continue;
7782       }
7783 
7784       // Otherwise, if all widening options failed, Instruction is to be
7785       // replicated. This may create a successor for VPBB.
7786       VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
7787           Instr, Range, VPBB, PredInst2Recipe, Plan);
7788       if (NextVPBB != VPBB) {
7789         VPBB = NextVPBB;
7790         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
7791                                     : "");
7792       }
7793     }
7794   }
7795 
7796   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
7797   // may also be empty, such as the last one VPBB, reflecting original
7798   // basic-blocks with no recipes.
7799   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
7800   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
7801   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
7802   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
7803   delete PreEntry;
7804 
7805   // ---------------------------------------------------------------------------
7806   // Transform initial VPlan: Apply previously taken decisions, in order, to
7807   // bring the VPlan to its final state.
7808   // ---------------------------------------------------------------------------
7809 
7810   // Apply Sink-After legal constraints.
7811   for (auto &Entry : SinkAfter) {
7812     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
7813     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
7814     Sink->moveAfter(Target);
7815   }
7816 
7817   // Interleave memory: for each Interleave Group we marked earlier as relevant
7818   // for this VPlan, replace the Recipes widening its memory instructions with a
7819   // single VPInterleaveRecipe at its insertion point.
7820   for (auto IG : InterleaveGroups) {
7821     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
7822         RecipeBuilder.getRecipe(IG->getInsertPos()));
7823     (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask()))
7824         ->insertBefore(Recipe);
7825 
7826     for (unsigned i = 0; i < IG->getFactor(); ++i)
7827       if (Instruction *Member = IG->getMember(i)) {
7828         if (!Member->getType()->isVoidTy()) {
7829           VPValue *OriginalV = Plan->getVPValue(Member);
7830           Plan->removeVPValueFor(Member);
7831           OriginalV->replaceAllUsesWith(Plan->getOrAddVPValue(Member));
7832         }
7833         RecipeBuilder.getRecipe(Member)->eraseFromParent();
7834       }
7835   }
7836 
7837   // Adjust the recipes for any inloop reductions.
7838   if (Range.Start.isVector())
7839     adjustRecipesForInLoopReductions(Plan, RecipeBuilder);
7840 
7841   // Finally, if tail is folded by masking, introduce selects between the phi
7842   // and the live-out instruction of each reduction, at the end of the latch.
7843   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
7844     Builder.setInsertPoint(VPBB);
7845     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
7846     for (auto &Reduction : Legal->getReductionVars()) {
7847       if (CM.isInLoopReduction(Reduction.first))
7848         continue;
7849       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
7850       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
7851       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
7852     }
7853   }
7854 
7855   std::string PlanName;
7856   raw_string_ostream RSO(PlanName);
7857   ElementCount VF = Range.Start;
7858   Plan->addVF(VF);
7859   RSO << "Initial VPlan for VF={" << VF;
7860   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
7861     Plan->addVF(VF);
7862     RSO << "," << VF;
7863   }
7864   RSO << "},UF>=1";
7865   RSO.flush();
7866   Plan->setName(PlanName);
7867 
7868   return Plan;
7869 }
7870 
7871 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
7872   // Outer loop handling: They may require CFG and instruction level
7873   // transformations before even evaluating whether vectorization is profitable.
7874   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7875   // the vectorization pipeline.
7876   assert(!OrigLoop->isInnermost());
7877   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7878 
7879   // Create new empty VPlan
7880   auto Plan = std::make_unique<VPlan>();
7881 
7882   // Build hierarchical CFG
7883   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
7884   HCFGBuilder.buildHierarchicalCFG();
7885 
7886   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
7887        VF *= 2)
7888     Plan->addVF(VF);
7889 
7890   if (EnableVPlanPredication) {
7891     VPlanPredicator VPP(*Plan);
7892     VPP.predicate();
7893 
7894     // Avoid running transformation to recipes until masked code generation in
7895     // VPlan-native path is in place.
7896     return Plan;
7897   }
7898 
7899   SmallPtrSet<Instruction *, 1> DeadInstructions;
7900   VPlanTransforms::VPInstructionsToVPRecipes(
7901       OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions);
7902   return Plan;
7903 }
7904 
7905 // Adjust the recipes for any inloop reductions. The chain of instructions
7906 // leading from the loop exit instr to the phi need to be converted to
7907 // reductions, with one operand being vector and the other being the scalar
7908 // reduction chain.
7909 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
7910     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) {
7911   for (auto &Reduction : CM.getInLoopReductionChains()) {
7912     PHINode *Phi = Reduction.first;
7913     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
7914     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
7915 
7916     // ReductionOperations are orders top-down from the phi's use to the
7917     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
7918     // which of the two operands will remain scalar and which will be reduced.
7919     // For minmax the chain will be the select instructions.
7920     Instruction *Chain = Phi;
7921     for (Instruction *R : ReductionOperations) {
7922       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
7923       RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc.getRecurrenceKind();
7924 
7925       VPValue *ChainOp = Plan->getVPValue(Chain);
7926       unsigned FirstOpId;
7927       if (Kind == RecurrenceDescriptor::RK_IntegerMinMax ||
7928           Kind == RecurrenceDescriptor::RK_FloatMinMax) {
7929         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
7930                "Expected to replace a VPWidenSelectSC");
7931         FirstOpId = 1;
7932       } else {
7933         assert(isa<VPWidenRecipe>(WidenRecipe) &&
7934                "Expected to replace a VPWidenSC");
7935         FirstOpId = 0;
7936       }
7937       unsigned VecOpId =
7938           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
7939       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
7940 
7941       auto *CondOp = CM.foldTailByMasking()
7942                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
7943                          : nullptr;
7944       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
7945           &RdxDesc, R, ChainOp, VecOp, CondOp, Legal->hasFunNoNaNAttr(), TTI);
7946       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
7947       WidenRecipe->eraseFromParent();
7948 
7949       if (Kind == RecurrenceDescriptor::RK_IntegerMinMax ||
7950           Kind == RecurrenceDescriptor::RK_FloatMinMax) {
7951         VPRecipeBase *CompareRecipe =
7952             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
7953         assert(isa<VPWidenRecipe>(CompareRecipe) &&
7954                "Expected to replace a VPWidenSC");
7955         CompareRecipe->eraseFromParent();
7956       }
7957       Chain = R;
7958     }
7959   }
7960 }
7961 
7962 Value* LoopVectorizationPlanner::VPCallbackILV::
7963 getOrCreateVectorValues(Value *V, unsigned Part) {
7964       return ILV.getOrCreateVectorValue(V, Part);
7965 }
7966 
7967 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue(
7968     Value *V, const VPIteration &Instance) {
7969   return ILV.getOrCreateScalarValue(V, Instance);
7970 }
7971 
7972 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
7973                                VPSlotTracker &SlotTracker) const {
7974   O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
7975   IG->getInsertPos()->printAsOperand(O, false);
7976   O << ", ";
7977   getAddr()->printAsOperand(O, SlotTracker);
7978   VPValue *Mask = getMask();
7979   if (Mask) {
7980     O << ", ";
7981     Mask->printAsOperand(O, SlotTracker);
7982   }
7983   for (unsigned i = 0; i < IG->getFactor(); ++i)
7984     if (Instruction *I = IG->getMember(i))
7985       O << "\\l\" +\n" << Indent << "\"  " << VPlanIngredient(I) << " " << i;
7986 }
7987 
7988 void VPWidenCallRecipe::execute(VPTransformState &State) {
7989   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
7990                                   *this, State);
7991 }
7992 
7993 void VPWidenSelectRecipe::execute(VPTransformState &State) {
7994   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
7995                                     this, *this, InvariantCond, State);
7996 }
7997 
7998 void VPWidenRecipe::execute(VPTransformState &State) {
7999   State.ILV->widenInstruction(Ingredient, *this, State);
8000 }
8001 
8002 void VPWidenGEPRecipe::execute(VPTransformState &State) {
8003   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
8004                       *this, State.UF, State.VF, IsPtrLoopInvariant,
8005                       IsIndexLoopInvariant, State);
8006 }
8007 
8008 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
8009   assert(!State.Instance && "Int or FP induction being replicated.");
8010   State.ILV->widenIntOrFpInduction(IV, Trunc);
8011 }
8012 
8013 void VPWidenPHIRecipe::execute(VPTransformState &State) {
8014   State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
8015 }
8016 
8017 void VPBlendRecipe::execute(VPTransformState &State) {
8018   State.ILV->setDebugLocFromInst(State.Builder, Phi);
8019   // We know that all PHIs in non-header blocks are converted into
8020   // selects, so we don't have to worry about the insertion order and we
8021   // can just use the builder.
8022   // At this point we generate the predication tree. There may be
8023   // duplications since this is a simple recursive scan, but future
8024   // optimizations will clean it up.
8025 
8026   unsigned NumIncoming = getNumIncomingValues();
8027 
8028   // Generate a sequence of selects of the form:
8029   // SELECT(Mask3, In3,
8030   //        SELECT(Mask2, In2,
8031   //               SELECT(Mask1, In1,
8032   //                      In0)))
8033   // Note that Mask0 is never used: lanes for which no path reaches this phi and
8034   // are essentially undef are taken from In0.
8035   InnerLoopVectorizer::VectorParts Entry(State.UF);
8036   for (unsigned In = 0; In < NumIncoming; ++In) {
8037     for (unsigned Part = 0; Part < State.UF; ++Part) {
8038       // We might have single edge PHIs (blocks) - use an identity
8039       // 'select' for the first PHI operand.
8040       Value *In0 = State.get(getIncomingValue(In), Part);
8041       if (In == 0)
8042         Entry[Part] = In0; // Initialize with the first incoming value.
8043       else {
8044         // Select between the current value and the previous incoming edge
8045         // based on the incoming mask.
8046         Value *Cond = State.get(getMask(In), Part);
8047         Entry[Part] =
8048             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
8049       }
8050     }
8051   }
8052   for (unsigned Part = 0; Part < State.UF; ++Part)
8053     State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
8054 }
8055 
8056 void VPInterleaveRecipe::execute(VPTransformState &State) {
8057   assert(!State.Instance && "Interleave group being replicated.");
8058   State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask());
8059 }
8060 
8061 void VPReductionRecipe::execute(VPTransformState &State) {
8062   assert(!State.Instance && "Reduction being replicated.");
8063   for (unsigned Part = 0; Part < State.UF; ++Part) {
8064     RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc->getRecurrenceKind();
8065     Value *NewVecOp = State.get(VecOp, Part);
8066     if (CondOp) {
8067       Value *NewCond = State.get(CondOp, Part);
8068       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
8069       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
8070           Kind, RdxDesc->getMinMaxRecurrenceKind(), VecTy->getElementType());
8071       Constant *IdenVec =
8072           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
8073       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
8074       NewVecOp = Select;
8075     }
8076     Value *NewRed =
8077         createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp, NoNaN);
8078     Value *PrevInChain = State.get(ChainOp, Part);
8079     Value *NextInChain;
8080     if (Kind == RecurrenceDescriptor::RK_IntegerMinMax ||
8081         Kind == RecurrenceDescriptor::RK_FloatMinMax) {
8082       NextInChain =
8083           createMinMaxOp(State.Builder, RdxDesc->getMinMaxRecurrenceKind(),
8084                          NewRed, PrevInChain);
8085     } else {
8086       NextInChain = State.Builder.CreateBinOp(
8087           (Instruction::BinaryOps)I->getOpcode(), NewRed, PrevInChain);
8088     }
8089     State.ValueMap.setVectorValue(I, Part, NextInChain);
8090   }
8091 }
8092 
8093 void VPReplicateRecipe::execute(VPTransformState &State) {
8094   if (State.Instance) { // Generate a single instance.
8095     State.ILV->scalarizeInstruction(Ingredient, *this, *State.Instance,
8096                                     IsPredicated, State);
8097     // Insert scalar instance packing it into a vector.
8098     if (AlsoPack && State.VF.isVector()) {
8099       // If we're constructing lane 0, initialize to start from undef.
8100       if (State.Instance->Lane == 0) {
8101         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
8102         Value *Undef =
8103             UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
8104         State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
8105       }
8106       State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
8107     }
8108     return;
8109   }
8110 
8111   // Generate scalar instances for all VF lanes of all UF parts, unless the
8112   // instruction is uniform inwhich case generate only the first lane for each
8113   // of the UF parts.
8114   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
8115   for (unsigned Part = 0; Part < State.UF; ++Part)
8116     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
8117       State.ILV->scalarizeInstruction(Ingredient, *this, {Part, Lane},
8118                                       IsPredicated, State);
8119 }
8120 
8121 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
8122   assert(State.Instance && "Branch on Mask works only on single instance.");
8123 
8124   unsigned Part = State.Instance->Part;
8125   unsigned Lane = State.Instance->Lane;
8126 
8127   Value *ConditionBit = nullptr;
8128   VPValue *BlockInMask = getMask();
8129   if (BlockInMask) {
8130     ConditionBit = State.get(BlockInMask, Part);
8131     if (ConditionBit->getType()->isVectorTy())
8132       ConditionBit = State.Builder.CreateExtractElement(
8133           ConditionBit, State.Builder.getInt32(Lane));
8134   } else // Block in mask is all-one.
8135     ConditionBit = State.Builder.getTrue();
8136 
8137   // Replace the temporary unreachable terminator with a new conditional branch,
8138   // whose two destinations will be set later when they are created.
8139   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
8140   assert(isa<UnreachableInst>(CurrentTerminator) &&
8141          "Expected to replace unreachable terminator with conditional branch.");
8142   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
8143   CondBr->setSuccessor(0, nullptr);
8144   ReplaceInstWithInst(CurrentTerminator, CondBr);
8145 }
8146 
8147 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
8148   assert(State.Instance && "Predicated instruction PHI works per instance.");
8149   Instruction *ScalarPredInst = cast<Instruction>(
8150       State.ValueMap.getScalarValue(PredInst, *State.Instance));
8151   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
8152   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
8153   assert(PredicatingBB && "Predicated block has no single predecessor.");
8154 
8155   // By current pack/unpack logic we need to generate only a single phi node: if
8156   // a vector value for the predicated instruction exists at this point it means
8157   // the instruction has vector users only, and a phi for the vector value is
8158   // needed. In this case the recipe of the predicated instruction is marked to
8159   // also do that packing, thereby "hoisting" the insert-element sequence.
8160   // Otherwise, a phi node for the scalar value is needed.
8161   unsigned Part = State.Instance->Part;
8162   if (State.ValueMap.hasVectorValue(PredInst, Part)) {
8163     Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
8164     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
8165     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
8166     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
8167     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
8168     State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
8169   } else {
8170     Type *PredInstType = PredInst->getType();
8171     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
8172     Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
8173     Phi->addIncoming(ScalarPredInst, PredicatedBB);
8174     State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
8175   }
8176 }
8177 
8178 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
8179   Instruction *Instr = getUnderlyingInstr();
8180   VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr;
8181   State.ILV->vectorizeMemoryInstruction(Instr, State,
8182                                         StoredValue ? nullptr : this, getAddr(),
8183                                         StoredValue, getMask());
8184 }
8185 
8186 // Determine how to lower the scalar epilogue, which depends on 1) optimising
8187 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
8188 // predication, and 4) a TTI hook that analyses whether the loop is suitable
8189 // for predication.
8190 static ScalarEpilogueLowering getScalarEpilogueLowering(
8191     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
8192     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
8193     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
8194     LoopVectorizationLegality &LVL) {
8195   // 1) OptSize takes precedence over all other options, i.e. if this is set,
8196   // don't look at hints or options, and don't request a scalar epilogue.
8197   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
8198   // LoopAccessInfo (due to code dependency and not being able to reliably get
8199   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
8200   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
8201   // versioning when the vectorization is forced, unlike hasOptSize. So revert
8202   // back to the old way and vectorize with versioning when forced. See D81345.)
8203   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
8204                                                       PGSOQueryType::IRPass) &&
8205                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
8206     return CM_ScalarEpilogueNotAllowedOptSize;
8207 
8208   bool PredicateOptDisabled = PreferPredicateOverEpilogue.getNumOccurrences() &&
8209                               !PreferPredicateOverEpilogue;
8210 
8211   // 2) Next, if disabling predication is requested on the command line, honour
8212   // this and request a scalar epilogue.
8213   if (PredicateOptDisabled)
8214     return CM_ScalarEpilogueAllowed;
8215 
8216   // 3) and 4) look if enabling predication is requested on the command line,
8217   // with a loop hint, or if the TTI hook indicates this is profitable, request
8218   // predication.
8219   if (PreferPredicateOverEpilogue ||
8220       Hints.getPredicate() == LoopVectorizeHints::FK_Enabled ||
8221       (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
8222                                         LVL.getLAI()) &&
8223        Hints.getPredicate() != LoopVectorizeHints::FK_Disabled))
8224     return CM_ScalarEpilogueNotNeededUsePredicate;
8225 
8226   return CM_ScalarEpilogueAllowed;
8227 }
8228 
8229 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V,
8230                            unsigned Part) {
8231   set(Def, V, Part);
8232   ILV->setVectorValue(IRDef, Part, V);
8233 }
8234 
8235 // Process the loop in the VPlan-native vectorization path. This path builds
8236 // VPlan upfront in the vectorization pipeline, which allows to apply
8237 // VPlan-to-VPlan transformations from the very beginning without modifying the
8238 // input LLVM IR.
8239 static bool processLoopInVPlanNativePath(
8240     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
8241     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
8242     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
8243     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
8244     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
8245 
8246   if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) {
8247     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
8248     return false;
8249   }
8250   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
8251   Function *F = L->getHeader()->getParent();
8252   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
8253 
8254   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
8255       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
8256 
8257   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
8258                                 &Hints, IAI);
8259   // Use the planner for outer loop vectorization.
8260   // TODO: CM is not used at this point inside the planner. Turn CM into an
8261   // optional argument if we don't need it in the future.
8262   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE);
8263 
8264   // Get user vectorization factor.
8265   const unsigned UserVF = Hints.getWidth();
8266 
8267   // Plan how to best vectorize, return the best VF and its cost.
8268   const VectorizationFactor VF =
8269       LVP.planInVPlanNativePath(ElementCount::getFixed(UserVF));
8270 
8271   // If we are stress testing VPlan builds, do not attempt to generate vector
8272   // code. Masked vector code generation support will follow soon.
8273   // Also, do not attempt to vectorize if no vector code will be produced.
8274   if (VPlanBuildStressTest || EnableVPlanPredication ||
8275       VectorizationFactor::Disabled() == VF)
8276     return false;
8277 
8278   LVP.setBestPlan(VF.Width, 1);
8279 
8280   InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
8281                          &CM, BFI, PSI);
8282   LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
8283                     << L->getHeader()->getParent()->getName() << "\"\n");
8284   LVP.executePlan(LB, DT);
8285 
8286   // Mark the loop as already vectorized to avoid vectorizing again.
8287   Hints.setAlreadyVectorized();
8288 
8289   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
8290   return true;
8291 }
8292 
8293 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
8294     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
8295                                !EnableLoopInterleaving),
8296       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
8297                               !EnableLoopVectorization) {}
8298 
8299 bool LoopVectorizePass::processLoop(Loop *L) {
8300   assert((EnableVPlanNativePath || L->isInnermost()) &&
8301          "VPlan-native path is not enabled. Only process inner loops.");
8302 
8303 #ifndef NDEBUG
8304   const std::string DebugLocStr = getDebugLocString(L);
8305 #endif /* NDEBUG */
8306 
8307   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
8308                     << L->getHeader()->getParent()->getName() << "\" from "
8309                     << DebugLocStr << "\n");
8310 
8311   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
8312 
8313   LLVM_DEBUG(
8314       dbgs() << "LV: Loop hints:"
8315              << " force="
8316              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
8317                      ? "disabled"
8318                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
8319                             ? "enabled"
8320                             : "?"))
8321              << " width=" << Hints.getWidth()
8322              << " unroll=" << Hints.getInterleave() << "\n");
8323 
8324   // Function containing loop
8325   Function *F = L->getHeader()->getParent();
8326 
8327   // Looking at the diagnostic output is the only way to determine if a loop
8328   // was vectorized (other than looking at the IR or machine code), so it
8329   // is important to generate an optimization remark for each loop. Most of
8330   // these messages are generated as OptimizationRemarkAnalysis. Remarks
8331   // generated as OptimizationRemark and OptimizationRemarkMissed are
8332   // less verbose reporting vectorized loops and unvectorized loops that may
8333   // benefit from vectorization, respectively.
8334 
8335   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
8336     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
8337     return false;
8338   }
8339 
8340   PredicatedScalarEvolution PSE(*SE, *L);
8341 
8342   // Check if it is legal to vectorize the loop.
8343   LoopVectorizationRequirements Requirements(*ORE);
8344   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
8345                                 &Requirements, &Hints, DB, AC, BFI, PSI);
8346   if (!LVL.canVectorize(EnableVPlanNativePath)) {
8347     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
8348     Hints.emitRemarkWithHints();
8349     return false;
8350   }
8351 
8352   // Check the function attributes and profiles to find out if this function
8353   // should be optimized for size.
8354   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
8355       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
8356 
8357   // Entrance to the VPlan-native vectorization path. Outer loops are processed
8358   // here. They may require CFG and instruction level transformations before
8359   // even evaluating whether vectorization is profitable. Since we cannot modify
8360   // the incoming IR, we need to build VPlan upfront in the vectorization
8361   // pipeline.
8362   if (!L->isInnermost())
8363     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
8364                                         ORE, BFI, PSI, Hints);
8365 
8366   assert(L->isInnermost() && "Inner loop expected.");
8367 
8368   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
8369   // count by optimizing for size, to minimize overheads.
8370   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
8371   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
8372     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
8373                       << "This loop is worth vectorizing only if no scalar "
8374                       << "iteration overheads are incurred.");
8375     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
8376       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
8377     else {
8378       LLVM_DEBUG(dbgs() << "\n");
8379       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
8380     }
8381   }
8382 
8383   // Check the function attributes to see if implicit floats are allowed.
8384   // FIXME: This check doesn't seem possibly correct -- what if the loop is
8385   // an integer loop and the vector instructions selected are purely integer
8386   // vector instructions?
8387   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
8388     reportVectorizationFailure(
8389         "Can't vectorize when the NoImplicitFloat attribute is used",
8390         "loop not vectorized due to NoImplicitFloat attribute",
8391         "NoImplicitFloat", ORE, L);
8392     Hints.emitRemarkWithHints();
8393     return false;
8394   }
8395 
8396   // Check if the target supports potentially unsafe FP vectorization.
8397   // FIXME: Add a check for the type of safety issue (denormal, signaling)
8398   // for the target we're vectorizing for, to make sure none of the
8399   // additional fp-math flags can help.
8400   if (Hints.isPotentiallyUnsafe() &&
8401       TTI->isFPVectorizationPotentiallyUnsafe()) {
8402     reportVectorizationFailure(
8403         "Potentially unsafe FP op prevents vectorization",
8404         "loop not vectorized due to unsafe FP support.",
8405         "UnsafeFP", ORE, L);
8406     Hints.emitRemarkWithHints();
8407     return false;
8408   }
8409 
8410   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
8411   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
8412 
8413   // If an override option has been passed in for interleaved accesses, use it.
8414   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
8415     UseInterleaved = EnableInterleavedMemAccesses;
8416 
8417   // Analyze interleaved memory accesses.
8418   if (UseInterleaved) {
8419     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
8420   }
8421 
8422   // Use the cost model.
8423   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
8424                                 F, &Hints, IAI);
8425   CM.collectValuesToIgnore();
8426 
8427   // Use the planner for vectorization.
8428   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE);
8429 
8430   // Get user vectorization factor and interleave count.
8431   unsigned UserVF = Hints.getWidth();
8432   unsigned UserIC = Hints.getInterleave();
8433 
8434   // Plan how to best vectorize, return the best VF and its cost.
8435   Optional<VectorizationFactor> MaybeVF =
8436       LVP.plan(ElementCount::getFixed(UserVF), UserIC);
8437 
8438   VectorizationFactor VF = VectorizationFactor::Disabled();
8439   unsigned IC = 1;
8440 
8441   if (MaybeVF) {
8442     VF = *MaybeVF;
8443     // Select the interleave count.
8444     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
8445   }
8446 
8447   // Identify the diagnostic messages that should be produced.
8448   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
8449   bool VectorizeLoop = true, InterleaveLoop = true;
8450   if (Requirements.doesNotMeet(F, L, Hints)) {
8451     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
8452                          "requirements.\n");
8453     Hints.emitRemarkWithHints();
8454     return false;
8455   }
8456 
8457   if (VF.Width.isScalar()) {
8458     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
8459     VecDiagMsg = std::make_pair(
8460         "VectorizationNotBeneficial",
8461         "the cost-model indicates that vectorization is not beneficial");
8462     VectorizeLoop = false;
8463   }
8464 
8465   if (!MaybeVF && UserIC > 1) {
8466     // Tell the user interleaving was avoided up-front, despite being explicitly
8467     // requested.
8468     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
8469                          "interleaving should be avoided up front\n");
8470     IntDiagMsg = std::make_pair(
8471         "InterleavingAvoided",
8472         "Ignoring UserIC, because interleaving was avoided up front");
8473     InterleaveLoop = false;
8474   } else if (IC == 1 && UserIC <= 1) {
8475     // Tell the user interleaving is not beneficial.
8476     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
8477     IntDiagMsg = std::make_pair(
8478         "InterleavingNotBeneficial",
8479         "the cost-model indicates that interleaving is not beneficial");
8480     InterleaveLoop = false;
8481     if (UserIC == 1) {
8482       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
8483       IntDiagMsg.second +=
8484           " and is explicitly disabled or interleave count is set to 1";
8485     }
8486   } else if (IC > 1 && UserIC == 1) {
8487     // Tell the user interleaving is beneficial, but it explicitly disabled.
8488     LLVM_DEBUG(
8489         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
8490     IntDiagMsg = std::make_pair(
8491         "InterleavingBeneficialButDisabled",
8492         "the cost-model indicates that interleaving is beneficial "
8493         "but is explicitly disabled or interleave count is set to 1");
8494     InterleaveLoop = false;
8495   }
8496 
8497   // Override IC if user provided an interleave count.
8498   IC = UserIC > 0 ? UserIC : IC;
8499 
8500   // Emit diagnostic messages, if any.
8501   const char *VAPassName = Hints.vectorizeAnalysisPassName();
8502   if (!VectorizeLoop && !InterleaveLoop) {
8503     // Do not vectorize or interleaving the loop.
8504     ORE->emit([&]() {
8505       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
8506                                       L->getStartLoc(), L->getHeader())
8507              << VecDiagMsg.second;
8508     });
8509     ORE->emit([&]() {
8510       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
8511                                       L->getStartLoc(), L->getHeader())
8512              << IntDiagMsg.second;
8513     });
8514     return false;
8515   } else if (!VectorizeLoop && InterleaveLoop) {
8516     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
8517     ORE->emit([&]() {
8518       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
8519                                         L->getStartLoc(), L->getHeader())
8520              << VecDiagMsg.second;
8521     });
8522   } else if (VectorizeLoop && !InterleaveLoop) {
8523     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
8524                       << ") in " << DebugLocStr << '\n');
8525     ORE->emit([&]() {
8526       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
8527                                         L->getStartLoc(), L->getHeader())
8528              << IntDiagMsg.second;
8529     });
8530   } else if (VectorizeLoop && InterleaveLoop) {
8531     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
8532                       << ") in " << DebugLocStr << '\n');
8533     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
8534   }
8535 
8536   LVP.setBestPlan(VF.Width, IC);
8537 
8538   using namespace ore;
8539   bool DisableRuntimeUnroll = false;
8540   MDNode *OrigLoopID = L->getLoopID();
8541 
8542   if (!VectorizeLoop) {
8543     assert(IC > 1 && "interleave count should not be 1 or 0");
8544     // If we decided that it is not legal to vectorize the loop, then
8545     // interleave it.
8546     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM,
8547                                BFI, PSI);
8548     LVP.executePlan(Unroller, DT);
8549 
8550     ORE->emit([&]() {
8551       return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
8552                                 L->getHeader())
8553              << "interleaved loop (interleaved count: "
8554              << NV("InterleaveCount", IC) << ")";
8555     });
8556   } else {
8557     // If we decided that it is *legal* to vectorize the loop, then do it.
8558     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
8559                            &LVL, &CM, BFI, PSI);
8560     LVP.executePlan(LB, DT);
8561     ++LoopsVectorized;
8562 
8563     // Add metadata to disable runtime unrolling a scalar loop when there are
8564     // no runtime checks about strides and memory. A scalar loop that is
8565     // rarely used is not worth unrolling.
8566     if (!LB.areSafetyChecksAdded())
8567       DisableRuntimeUnroll = true;
8568 
8569     // Report the vectorization decision.
8570     ORE->emit([&]() {
8571       return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
8572                                 L->getHeader())
8573              << "vectorized loop (vectorization width: "
8574              << NV("VectorizationFactor", VF.Width)
8575              << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
8576     });
8577   }
8578 
8579   Optional<MDNode *> RemainderLoopID =
8580       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
8581                                       LLVMLoopVectorizeFollowupEpilogue});
8582   if (RemainderLoopID.hasValue()) {
8583     L->setLoopID(RemainderLoopID.getValue());
8584   } else {
8585     if (DisableRuntimeUnroll)
8586       AddRuntimeUnrollDisableMetaData(L);
8587 
8588     // Mark the loop as already vectorized to avoid vectorizing again.
8589     Hints.setAlreadyVectorized();
8590   }
8591 
8592   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
8593   return true;
8594 }
8595 
8596 LoopVectorizeResult LoopVectorizePass::runImpl(
8597     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
8598     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
8599     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
8600     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
8601     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
8602   SE = &SE_;
8603   LI = &LI_;
8604   TTI = &TTI_;
8605   DT = &DT_;
8606   BFI = &BFI_;
8607   TLI = TLI_;
8608   AA = &AA_;
8609   AC = &AC_;
8610   GetLAA = &GetLAA_;
8611   DB = &DB_;
8612   ORE = &ORE_;
8613   PSI = PSI_;
8614 
8615   // Don't attempt if
8616   // 1. the target claims to have no vector registers, and
8617   // 2. interleaving won't help ILP.
8618   //
8619   // The second condition is necessary because, even if the target has no
8620   // vector registers, loop vectorization may still enable scalar
8621   // interleaving.
8622   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
8623       TTI->getMaxInterleaveFactor(1) < 2)
8624     return LoopVectorizeResult(false, false);
8625 
8626   bool Changed = false, CFGChanged = false;
8627 
8628   // The vectorizer requires loops to be in simplified form.
8629   // Since simplification may add new inner loops, it has to run before the
8630   // legality and profitability checks. This means running the loop vectorizer
8631   // will simplify all loops, regardless of whether anything end up being
8632   // vectorized.
8633   for (auto &L : *LI)
8634     Changed |= CFGChanged |=
8635         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
8636 
8637   // Build up a worklist of inner-loops to vectorize. This is necessary as
8638   // the act of vectorizing or partially unrolling a loop creates new loops
8639   // and can invalidate iterators across the loops.
8640   SmallVector<Loop *, 8> Worklist;
8641 
8642   for (Loop *L : *LI)
8643     collectSupportedLoops(*L, LI, ORE, Worklist);
8644 
8645   LoopsAnalyzed += Worklist.size();
8646 
8647   // Now walk the identified inner loops.
8648   while (!Worklist.empty()) {
8649     Loop *L = Worklist.pop_back_val();
8650 
8651     // For the inner loops we actually process, form LCSSA to simplify the
8652     // transform.
8653     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
8654 
8655     Changed |= CFGChanged |= processLoop(L);
8656   }
8657 
8658   // Process each loop nest in the function.
8659   return LoopVectorizeResult(Changed, CFGChanged);
8660 }
8661 
8662 PreservedAnalyses LoopVectorizePass::run(Function &F,
8663                                          FunctionAnalysisManager &AM) {
8664     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
8665     auto &LI = AM.getResult<LoopAnalysis>(F);
8666     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
8667     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
8668     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
8669     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
8670     auto &AA = AM.getResult<AAManager>(F);
8671     auto &AC = AM.getResult<AssumptionAnalysis>(F);
8672     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
8673     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8674     MemorySSA *MSSA = EnableMSSALoopDependency
8675                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
8676                           : nullptr;
8677 
8678     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
8679     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
8680         [&](Loop &L) -> const LoopAccessInfo & {
8681       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
8682                                         TLI, TTI, nullptr, MSSA};
8683       return LAM.getResult<LoopAccessAnalysis>(L, AR);
8684     };
8685     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
8686     ProfileSummaryInfo *PSI =
8687         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
8688     LoopVectorizeResult Result =
8689         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
8690     if (!Result.MadeAnyChange)
8691       return PreservedAnalyses::all();
8692     PreservedAnalyses PA;
8693 
8694     // We currently do not preserve loopinfo/dominator analyses with outer loop
8695     // vectorization. Until this is addressed, mark these analyses as preserved
8696     // only for non-VPlan-native path.
8697     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
8698     if (!EnableVPlanNativePath) {
8699       PA.preserve<LoopAnalysis>();
8700       PA.preserve<DominatorTreeAnalysis>();
8701     }
8702     PA.preserve<BasicAA>();
8703     PA.preserve<GlobalsAA>();
8704     if (!Result.MadeCFGChange)
8705       PA.preserveSet<CFGAnalyses>();
8706     return PA;
8707 }
8708