1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 182 // that predication is preferred, and this lists all options. I.e., the 183 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 184 // and predicate the instructions accordingly. If tail-folding fails, there are 185 // different fallback strategies depending on these values: 186 namespace PreferPredicateTy { 187 enum Option { 188 ScalarEpilogue = 0, 189 PredicateElseScalarEpilogue, 190 PredicateOrDontVectorize 191 }; 192 } // namespace PreferPredicateTy 193 194 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 195 "prefer-predicate-over-epilogue", 196 cl::init(PreferPredicateTy::ScalarEpilogue), 197 cl::Hidden, 198 cl::desc("Tail-folding and predication preferences over creating a scalar " 199 "epilogue loop."), 200 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 201 "scalar-epilogue", 202 "Don't tail-predicate loops, create scalar epilogue"), 203 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 204 "predicate-else-scalar-epilogue", 205 "prefer tail-folding, create scalar epilogue if tail " 206 "folding fails."), 207 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 208 "predicate-dont-vectorize", 209 "prefers tail-folding, don't attempt vectorization if " 210 "tail-folding fails."))); 211 212 static cl::opt<bool> MaximizeBandwidth( 213 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 214 cl::desc("Maximize bandwidth when selecting vectorization factor which " 215 "will be determined by the smallest type in loop.")); 216 217 static cl::opt<bool> EnableInterleavedMemAccesses( 218 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 219 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 220 221 /// An interleave-group may need masking if it resides in a block that needs 222 /// predication, or in order to mask away gaps. 223 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 224 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 225 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 226 227 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 228 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 229 cl::desc("We don't interleave loops with a estimated constant trip count " 230 "below this number")); 231 232 static cl::opt<unsigned> ForceTargetNumScalarRegs( 233 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 234 cl::desc("A flag that overrides the target's number of scalar registers.")); 235 236 static cl::opt<unsigned> ForceTargetNumVectorRegs( 237 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 238 cl::desc("A flag that overrides the target's number of vector registers.")); 239 240 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 241 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 242 cl::desc("A flag that overrides the target's max interleave factor for " 243 "scalar loops.")); 244 245 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 246 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 247 cl::desc("A flag that overrides the target's max interleave factor for " 248 "vectorized loops.")); 249 250 static cl::opt<unsigned> ForceTargetInstructionCost( 251 "force-target-instruction-cost", cl::init(0), cl::Hidden, 252 cl::desc("A flag that overrides the target's expected cost for " 253 "an instruction to a single constant value. Mostly " 254 "useful for getting consistent testing.")); 255 256 static cl::opt<unsigned> SmallLoopCost( 257 "small-loop-cost", cl::init(20), cl::Hidden, 258 cl::desc( 259 "The cost of a loop that is considered 'small' by the interleaver.")); 260 261 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 262 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 263 cl::desc("Enable the use of the block frequency analysis to access PGO " 264 "heuristics minimizing code growth in cold regions and being more " 265 "aggressive in hot regions.")); 266 267 // Runtime interleave loops for load/store throughput. 268 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 269 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 270 cl::desc( 271 "Enable runtime interleaving until load/store ports are saturated")); 272 273 /// Interleave small loops with scalar reductions. 274 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 275 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 276 cl::desc("Enable interleaving for loops with small iteration counts that " 277 "contain scalar reductions to expose ILP.")); 278 279 /// The number of stores in a loop that are allowed to need predication. 280 static cl::opt<unsigned> NumberOfStoresToPredicate( 281 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 282 cl::desc("Max number of stores to be predicated behind an if.")); 283 284 static cl::opt<bool> EnableIndVarRegisterHeur( 285 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 286 cl::desc("Count the induction variable only once when interleaving")); 287 288 static cl::opt<bool> EnableCondStoresVectorization( 289 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 290 cl::desc("Enable if predication of stores during vectorization.")); 291 292 static cl::opt<unsigned> MaxNestedScalarReductionIC( 293 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 294 cl::desc("The maximum interleave count to use when interleaving a scalar " 295 "reduction in a nested loop.")); 296 297 static cl::opt<bool> 298 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 299 cl::Hidden, 300 cl::desc("Prefer in-loop vector reductions, " 301 "overriding the targets preference.")); 302 303 static cl::opt<bool> PreferPredicatedReductionSelect( 304 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 305 cl::desc( 306 "Prefer predicating a reduction operation over an after loop select.")); 307 308 cl::opt<bool> EnableVPlanNativePath( 309 "enable-vplan-native-path", cl::init(false), cl::Hidden, 310 cl::desc("Enable VPlan-native vectorization path with " 311 "support for outer loop vectorization.")); 312 313 // FIXME: Remove this switch once we have divergence analysis. Currently we 314 // assume divergent non-backedge branches when this switch is true. 315 cl::opt<bool> EnableVPlanPredication( 316 "enable-vplan-predication", cl::init(false), cl::Hidden, 317 cl::desc("Enable VPlan-native vectorization path predicator with " 318 "support for outer loop vectorization.")); 319 320 // This flag enables the stress testing of the VPlan H-CFG construction in the 321 // VPlan-native vectorization path. It must be used in conjuction with 322 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 323 // verification of the H-CFGs built. 324 static cl::opt<bool> VPlanBuildStressTest( 325 "vplan-build-stress-test", cl::init(false), cl::Hidden, 326 cl::desc( 327 "Build VPlan for every supported loop nest in the function and bail " 328 "out right after the build (stress test the VPlan H-CFG construction " 329 "in the VPlan-native vectorization path).")); 330 331 cl::opt<bool> llvm::EnableLoopInterleaving( 332 "interleave-loops", cl::init(true), cl::Hidden, 333 cl::desc("Enable loop interleaving in Loop vectorization passes")); 334 cl::opt<bool> llvm::EnableLoopVectorization( 335 "vectorize-loops", cl::init(true), cl::Hidden, 336 cl::desc("Run the Loop vectorization passes")); 337 338 /// A helper function that returns the type of loaded or stored value. 339 static Type *getMemInstValueType(Value *I) { 340 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 341 "Expected Load or Store instruction"); 342 if (auto *LI = dyn_cast<LoadInst>(I)) 343 return LI->getType(); 344 return cast<StoreInst>(I)->getValueOperand()->getType(); 345 } 346 347 /// A helper function that returns true if the given type is irregular. The 348 /// type is irregular if its allocated size doesn't equal the store size of an 349 /// element of the corresponding vector type at the given vectorization factor. 350 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 351 assert(!VF.isScalable() && "scalable vectors not yet supported."); 352 // Determine if an array of VF elements of type Ty is "bitcast compatible" 353 // with a <VF x Ty> vector. 354 if (VF.isVector()) { 355 auto *VectorTy = VectorType::get(Ty, VF); 356 return TypeSize::get(VF.getKnownMinValue() * 357 DL.getTypeAllocSize(Ty).getFixedValue(), 358 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 359 } 360 361 // If the vectorization factor is one, we just check if an array of type Ty 362 // requires padding between elements. 363 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 364 } 365 366 /// A helper function that returns the reciprocal of the block probability of 367 /// predicated blocks. If we return X, we are assuming the predicated block 368 /// will execute once for every X iterations of the loop header. 369 /// 370 /// TODO: We should use actual block probability here, if available. Currently, 371 /// we always assume predicated blocks have a 50% chance of executing. 372 static unsigned getReciprocalPredBlockProb() { return 2; } 373 374 /// A helper function that adds a 'fast' flag to floating-point operations. 375 static Value *addFastMathFlag(Value *V) { 376 if (isa<FPMathOperator>(V)) 377 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 378 return V; 379 } 380 381 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 382 if (isa<FPMathOperator>(V)) 383 cast<Instruction>(V)->setFastMathFlags(FMF); 384 return V; 385 } 386 387 /// A helper function that returns an integer or floating-point constant with 388 /// value C. 389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 390 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 391 : ConstantFP::get(Ty, C); 392 } 393 394 /// Returns "best known" trip count for the specified loop \p L as defined by 395 /// the following procedure: 396 /// 1) Returns exact trip count if it is known. 397 /// 2) Returns expected trip count according to profile data if any. 398 /// 3) Returns upper bound estimate if it is known. 399 /// 4) Returns None if all of the above failed. 400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 401 // Check if exact trip count is known. 402 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 403 return ExpectedTC; 404 405 // Check if there is an expected trip count available from profile data. 406 if (LoopVectorizeWithBlockFrequency) 407 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 408 return EstimatedTC; 409 410 // Check if upper bound estimate is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 412 return ExpectedTC; 413 414 return None; 415 } 416 417 namespace llvm { 418 419 /// InnerLoopVectorizer vectorizes loops which contain only one basic 420 /// block to a specified vectorization factor (VF). 421 /// This class performs the widening of scalars into vectors, or multiple 422 /// scalars. This class also implements the following features: 423 /// * It inserts an epilogue loop for handling loops that don't have iteration 424 /// counts that are known to be a multiple of the vectorization factor. 425 /// * It handles the code generation for reduction variables. 426 /// * Scalarization (implementation using scalars) of un-vectorizable 427 /// instructions. 428 /// InnerLoopVectorizer does not perform any vectorization-legality 429 /// checks, and relies on the caller to check for the different legality 430 /// aspects. The InnerLoopVectorizer relies on the 431 /// LoopVectorizationLegality class to provide information about the induction 432 /// and reduction variables that were found to a given vectorization factor. 433 class InnerLoopVectorizer { 434 public: 435 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 436 LoopInfo *LI, DominatorTree *DT, 437 const TargetLibraryInfo *TLI, 438 const TargetTransformInfo *TTI, AssumptionCache *AC, 439 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 440 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 441 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 442 ProfileSummaryInfo *PSI) 443 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 444 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 445 Builder(PSE.getSE()->getContext()), 446 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 447 BFI(BFI), PSI(PSI) { 448 // Query this against the original loop and save it here because the profile 449 // of the original loop header may change as the transformation happens. 450 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 451 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 452 } 453 454 virtual ~InnerLoopVectorizer() = default; 455 456 /// Create a new empty loop that will contain vectorized instructions later 457 /// on, while the old loop will be used as the scalar remainder. Control flow 458 /// is generated around the vectorized (and scalar epilogue) loops consisting 459 /// of various checks and bypasses. Return the pre-header block of the new 460 /// loop. 461 BasicBlock *createVectorizedLoopSkeleton(); 462 463 /// Widen a single instruction within the innermost loop. 464 void widenInstruction(Instruction &I, VPUser &Operands, 465 VPTransformState &State); 466 467 /// Widen a single call instruction within the innermost loop. 468 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 469 VPTransformState &State); 470 471 /// Widen a single select instruction within the innermost loop. 472 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 473 bool InvariantCond, VPTransformState &State); 474 475 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 476 void fixVectorizedLoop(); 477 478 // Return true if any runtime check is added. 479 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 480 481 /// A type for vectorized values in the new loop. Each value from the 482 /// original loop, when vectorized, is represented by UF vector values in the 483 /// new unrolled loop, where UF is the unroll factor. 484 using VectorParts = SmallVector<Value *, 2>; 485 486 /// Vectorize a single GetElementPtrInst based on information gathered and 487 /// decisions taken during planning. 488 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 489 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 490 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 491 492 /// Vectorize a single PHINode in a block. This method handles the induction 493 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 494 /// arbitrary length vectors. 495 void widenPHIInstruction(Instruction *PN, unsigned UF, ElementCount VF); 496 497 /// A helper function to scalarize a single Instruction in the innermost loop. 498 /// Generates a sequence of scalar instances for each lane between \p MinLane 499 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 500 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 501 /// Instr's operands. 502 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 503 const VPIteration &Instance, bool IfPredicateInstr, 504 VPTransformState &State); 505 506 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 507 /// is provided, the integer induction variable will first be truncated to 508 /// the corresponding type. 509 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 510 511 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 512 /// vector or scalar value on-demand if one is not yet available. When 513 /// vectorizing a loop, we visit the definition of an instruction before its 514 /// uses. When visiting the definition, we either vectorize or scalarize the 515 /// instruction, creating an entry for it in the corresponding map. (In some 516 /// cases, such as induction variables, we will create both vector and scalar 517 /// entries.) Then, as we encounter uses of the definition, we derive values 518 /// for each scalar or vector use unless such a value is already available. 519 /// For example, if we scalarize a definition and one of its uses is vector, 520 /// we build the required vector on-demand with an insertelement sequence 521 /// when visiting the use. Otherwise, if the use is scalar, we can use the 522 /// existing scalar definition. 523 /// 524 /// Return a value in the new loop corresponding to \p V from the original 525 /// loop at unroll index \p Part. If the value has already been vectorized, 526 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 527 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 528 /// a new vector value on-demand by inserting the scalar values into a vector 529 /// with an insertelement sequence. If the value has been neither vectorized 530 /// nor scalarized, it must be loop invariant, so we simply broadcast the 531 /// value into a vector. 532 Value *getOrCreateVectorValue(Value *V, unsigned Part); 533 534 void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 535 VectorLoopValueMap.setVectorValue(Scalar, Part, Vector); 536 } 537 538 /// Return a value in the new loop corresponding to \p V from the original 539 /// loop at unroll and vector indices \p Instance. If the value has been 540 /// vectorized but not scalarized, the necessary extractelement instruction 541 /// will be generated. 542 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 543 544 /// Construct the vector value of a scalarized value \p V one lane at a time. 545 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 546 547 /// Try to vectorize interleaved access group \p Group with the base address 548 /// given in \p Addr, optionally masking the vector operations if \p 549 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 550 /// values in the vectorized loop. 551 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 552 VPTransformState &State, VPValue *Addr, 553 VPValue *BlockInMask = nullptr); 554 555 /// Vectorize Load and Store instructions with the base address given in \p 556 /// Addr, optionally masking the vector operations if \p BlockInMask is 557 /// non-null. Use \p State to translate given VPValues to IR values in the 558 /// vectorized loop. 559 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 560 VPValue *Def, VPValue *Addr, 561 VPValue *StoredValue, VPValue *BlockInMask); 562 563 /// Set the debug location in the builder using the debug location in 564 /// the instruction. 565 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 566 567 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 568 void fixNonInductionPHIs(void); 569 570 protected: 571 friend class LoopVectorizationPlanner; 572 573 /// A small list of PHINodes. 574 using PhiVector = SmallVector<PHINode *, 4>; 575 576 /// A type for scalarized values in the new loop. Each value from the 577 /// original loop, when scalarized, is represented by UF x VF scalar values 578 /// in the new unrolled loop, where UF is the unroll factor and VF is the 579 /// vectorization factor. 580 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 581 582 /// Set up the values of the IVs correctly when exiting the vector loop. 583 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 584 Value *CountRoundDown, Value *EndValue, 585 BasicBlock *MiddleBlock); 586 587 /// Create a new induction variable inside L. 588 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 589 Value *Step, Instruction *DL); 590 591 /// Handle all cross-iteration phis in the header. 592 void fixCrossIterationPHIs(); 593 594 /// Fix a first-order recurrence. This is the second phase of vectorizing 595 /// this phi node. 596 void fixFirstOrderRecurrence(PHINode *Phi); 597 598 /// Fix a reduction cross-iteration phi. This is the second phase of 599 /// vectorizing this phi node. 600 void fixReduction(PHINode *Phi); 601 602 /// Clear NSW/NUW flags from reduction instructions if necessary. 603 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 604 605 /// The Loop exit block may have single value PHI nodes with some 606 /// incoming value. While vectorizing we only handled real values 607 /// that were defined inside the loop and we should have one value for 608 /// each predecessor of its parent basic block. See PR14725. 609 void fixLCSSAPHIs(); 610 611 /// Iteratively sink the scalarized operands of a predicated instruction into 612 /// the block that was created for it. 613 void sinkScalarOperands(Instruction *PredInst); 614 615 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 616 /// represented as. 617 void truncateToMinimalBitwidths(); 618 619 /// Create a broadcast instruction. This method generates a broadcast 620 /// instruction (shuffle) for loop invariant values and for the induction 621 /// value. If this is the induction variable then we extend it to N, N+1, ... 622 /// this is needed because each iteration in the loop corresponds to a SIMD 623 /// element. 624 virtual Value *getBroadcastInstrs(Value *V); 625 626 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 627 /// to each vector element of Val. The sequence starts at StartIndex. 628 /// \p Opcode is relevant for FP induction variable. 629 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 630 Instruction::BinaryOps Opcode = 631 Instruction::BinaryOpsEnd); 632 633 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 634 /// variable on which to base the steps, \p Step is the size of the step, and 635 /// \p EntryVal is the value from the original loop that maps to the steps. 636 /// Note that \p EntryVal doesn't have to be an induction variable - it 637 /// can also be a truncate instruction. 638 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 639 const InductionDescriptor &ID); 640 641 /// Create a vector induction phi node based on an existing scalar one. \p 642 /// EntryVal is the value from the original loop that maps to the vector phi 643 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 644 /// truncate instruction, instead of widening the original IV, we widen a 645 /// version of the IV truncated to \p EntryVal's type. 646 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 647 Value *Step, Instruction *EntryVal); 648 649 /// Returns true if an instruction \p I should be scalarized instead of 650 /// vectorized for the chosen vectorization factor. 651 bool shouldScalarizeInstruction(Instruction *I) const; 652 653 /// Returns true if we should generate a scalar version of \p IV. 654 bool needsScalarInduction(Instruction *IV) const; 655 656 /// If there is a cast involved in the induction variable \p ID, which should 657 /// be ignored in the vectorized loop body, this function records the 658 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 659 /// cast. We had already proved that the casted Phi is equal to the uncasted 660 /// Phi in the vectorized loop (under a runtime guard), and therefore 661 /// there is no need to vectorize the cast - the same value can be used in the 662 /// vector loop for both the Phi and the cast. 663 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 664 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 665 /// 666 /// \p EntryVal is the value from the original loop that maps to the vector 667 /// phi node and is used to distinguish what is the IV currently being 668 /// processed - original one (if \p EntryVal is a phi corresponding to the 669 /// original IV) or the "newly-created" one based on the proof mentioned above 670 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 671 /// latter case \p EntryVal is a TruncInst and we must not record anything for 672 /// that IV, but it's error-prone to expect callers of this routine to care 673 /// about that, hence this explicit parameter. 674 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 675 const Instruction *EntryVal, 676 Value *VectorLoopValue, 677 unsigned Part, 678 unsigned Lane = UINT_MAX); 679 680 /// Generate a shuffle sequence that will reverse the vector Vec. 681 virtual Value *reverseVector(Value *Vec); 682 683 /// Returns (and creates if needed) the original loop trip count. 684 Value *getOrCreateTripCount(Loop *NewLoop); 685 686 /// Returns (and creates if needed) the trip count of the widened loop. 687 Value *getOrCreateVectorTripCount(Loop *NewLoop); 688 689 /// Returns a bitcasted value to the requested vector type. 690 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 691 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 692 const DataLayout &DL); 693 694 /// Emit a bypass check to see if the vector trip count is zero, including if 695 /// it overflows. 696 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 697 698 /// Emit a bypass check to see if all of the SCEV assumptions we've 699 /// had to make are correct. 700 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 701 702 /// Emit bypass checks to check any memory assumptions we may have made. 703 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 704 705 /// Compute the transformed value of Index at offset StartValue using step 706 /// StepValue. 707 /// For integer induction, returns StartValue + Index * StepValue. 708 /// For pointer induction, returns StartValue[Index * StepValue]. 709 /// FIXME: The newly created binary instructions should contain nsw/nuw 710 /// flags, which can be found from the original scalar operations. 711 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 712 const DataLayout &DL, 713 const InductionDescriptor &ID) const; 714 715 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 716 /// vector loop preheader, middle block and scalar preheader. Also 717 /// allocate a loop object for the new vector loop and return it. 718 Loop *createVectorLoopSkeleton(StringRef Prefix); 719 720 /// Create new phi nodes for the induction variables to resume iteration count 721 /// in the scalar epilogue, from where the vectorized loop left off (given by 722 /// \p VectorTripCount). 723 void createInductionResumeValues(Loop *L, Value *VectorTripCount); 724 725 /// Complete the loop skeleton by adding debug MDs, creating appropriate 726 /// conditional branches in the middle block, preparing the builder and 727 /// running the verifier. Take in the vector loop \p L as argument, and return 728 /// the preheader of the completed vector loop. 729 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 730 731 /// Add additional metadata to \p To that was not present on \p Orig. 732 /// 733 /// Currently this is used to add the noalias annotations based on the 734 /// inserted memchecks. Use this for instructions that are *cloned* into the 735 /// vector loop. 736 void addNewMetadata(Instruction *To, const Instruction *Orig); 737 738 /// Add metadata from one instruction to another. 739 /// 740 /// This includes both the original MDs from \p From and additional ones (\see 741 /// addNewMetadata). Use this for *newly created* instructions in the vector 742 /// loop. 743 void addMetadata(Instruction *To, Instruction *From); 744 745 /// Similar to the previous function but it adds the metadata to a 746 /// vector of instructions. 747 void addMetadata(ArrayRef<Value *> To, Instruction *From); 748 749 /// The original loop. 750 Loop *OrigLoop; 751 752 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 753 /// dynamic knowledge to simplify SCEV expressions and converts them to a 754 /// more usable form. 755 PredicatedScalarEvolution &PSE; 756 757 /// Loop Info. 758 LoopInfo *LI; 759 760 /// Dominator Tree. 761 DominatorTree *DT; 762 763 /// Alias Analysis. 764 AAResults *AA; 765 766 /// Target Library Info. 767 const TargetLibraryInfo *TLI; 768 769 /// Target Transform Info. 770 const TargetTransformInfo *TTI; 771 772 /// Assumption Cache. 773 AssumptionCache *AC; 774 775 /// Interface to emit optimization remarks. 776 OptimizationRemarkEmitter *ORE; 777 778 /// LoopVersioning. It's only set up (non-null) if memchecks were 779 /// used. 780 /// 781 /// This is currently only used to add no-alias metadata based on the 782 /// memchecks. The actually versioning is performed manually. 783 std::unique_ptr<LoopVersioning> LVer; 784 785 /// The vectorization SIMD factor to use. Each vector will have this many 786 /// vector elements. 787 ElementCount VF; 788 789 /// The vectorization unroll factor to use. Each scalar is vectorized to this 790 /// many different vector instructions. 791 unsigned UF; 792 793 /// The builder that we use 794 IRBuilder<> Builder; 795 796 // --- Vectorization state --- 797 798 /// The vector-loop preheader. 799 BasicBlock *LoopVectorPreHeader; 800 801 /// The scalar-loop preheader. 802 BasicBlock *LoopScalarPreHeader; 803 804 /// Middle Block between the vector and the scalar. 805 BasicBlock *LoopMiddleBlock; 806 807 /// The ExitBlock of the scalar loop. 808 BasicBlock *LoopExitBlock; 809 810 /// The vector loop body. 811 BasicBlock *LoopVectorBody; 812 813 /// The scalar loop body. 814 BasicBlock *LoopScalarBody; 815 816 /// A list of all bypass blocks. The first block is the entry of the loop. 817 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 818 819 /// The new Induction variable which was added to the new block. 820 PHINode *Induction = nullptr; 821 822 /// The induction variable of the old basic block. 823 PHINode *OldInduction = nullptr; 824 825 /// Maps values from the original loop to their corresponding values in the 826 /// vectorized loop. A key value can map to either vector values, scalar 827 /// values or both kinds of values, depending on whether the key was 828 /// vectorized and scalarized. 829 VectorizerValueMap VectorLoopValueMap; 830 831 /// Store instructions that were predicated. 832 SmallVector<Instruction *, 4> PredicatedInstructions; 833 834 /// Trip count of the original loop. 835 Value *TripCount = nullptr; 836 837 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 838 Value *VectorTripCount = nullptr; 839 840 /// The legality analysis. 841 LoopVectorizationLegality *Legal; 842 843 /// The profitablity analysis. 844 LoopVectorizationCostModel *Cost; 845 846 // Record whether runtime checks are added. 847 bool AddedSafetyChecks = false; 848 849 // Holds the end values for each induction variable. We save the end values 850 // so we can later fix-up the external users of the induction variables. 851 DenseMap<PHINode *, Value *> IVEndValues; 852 853 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 854 // fixed up at the end of vector code generation. 855 SmallVector<PHINode *, 8> OrigPHIsToFix; 856 857 /// BFI and PSI are used to check for profile guided size optimizations. 858 BlockFrequencyInfo *BFI; 859 ProfileSummaryInfo *PSI; 860 861 // Whether this loop should be optimized for size based on profile guided size 862 // optimizatios. 863 bool OptForSizeBasedOnProfile; 864 }; 865 866 class InnerLoopUnroller : public InnerLoopVectorizer { 867 public: 868 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 869 LoopInfo *LI, DominatorTree *DT, 870 const TargetLibraryInfo *TLI, 871 const TargetTransformInfo *TTI, AssumptionCache *AC, 872 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 873 LoopVectorizationLegality *LVL, 874 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 875 ProfileSummaryInfo *PSI) 876 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 877 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 878 BFI, PSI) {} 879 880 private: 881 Value *getBroadcastInstrs(Value *V) override; 882 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 883 Instruction::BinaryOps Opcode = 884 Instruction::BinaryOpsEnd) override; 885 Value *reverseVector(Value *Vec) override; 886 }; 887 888 } // end namespace llvm 889 890 /// Look for a meaningful debug location on the instruction or it's 891 /// operands. 892 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 893 if (!I) 894 return I; 895 896 DebugLoc Empty; 897 if (I->getDebugLoc() != Empty) 898 return I; 899 900 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 901 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 902 if (OpInst->getDebugLoc() != Empty) 903 return OpInst; 904 } 905 906 return I; 907 } 908 909 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 910 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 911 const DILocation *DIL = Inst->getDebugLoc(); 912 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 913 !isa<DbgInfoIntrinsic>(Inst)) { 914 assert(!VF.isScalable() && "scalable vectors not yet supported."); 915 auto NewDIL = 916 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 917 if (NewDIL) 918 B.SetCurrentDebugLocation(NewDIL.getValue()); 919 else 920 LLVM_DEBUG(dbgs() 921 << "Failed to create new discriminator: " 922 << DIL->getFilename() << " Line: " << DIL->getLine()); 923 } 924 else 925 B.SetCurrentDebugLocation(DIL); 926 } else 927 B.SetCurrentDebugLocation(DebugLoc()); 928 } 929 930 /// Write a record \p DebugMsg about vectorization failure to the debug 931 /// output stream. If \p I is passed, it is an instruction that prevents 932 /// vectorization. 933 #ifndef NDEBUG 934 static void debugVectorizationFailure(const StringRef DebugMsg, 935 Instruction *I) { 936 dbgs() << "LV: Not vectorizing: " << DebugMsg; 937 if (I != nullptr) 938 dbgs() << " " << *I; 939 else 940 dbgs() << '.'; 941 dbgs() << '\n'; 942 } 943 #endif 944 945 /// Create an analysis remark that explains why vectorization failed 946 /// 947 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 948 /// RemarkName is the identifier for the remark. If \p I is passed it is an 949 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 950 /// the location of the remark. \return the remark object that can be 951 /// streamed to. 952 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 953 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 954 Value *CodeRegion = TheLoop->getHeader(); 955 DebugLoc DL = TheLoop->getStartLoc(); 956 957 if (I) { 958 CodeRegion = I->getParent(); 959 // If there is no debug location attached to the instruction, revert back to 960 // using the loop's. 961 if (I->getDebugLoc()) 962 DL = I->getDebugLoc(); 963 } 964 965 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 966 R << "loop not vectorized: "; 967 return R; 968 } 969 970 namespace llvm { 971 972 void reportVectorizationFailure(const StringRef DebugMsg, 973 const StringRef OREMsg, const StringRef ORETag, 974 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 975 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 976 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 977 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 978 ORETag, TheLoop, I) << OREMsg); 979 } 980 981 } // end namespace llvm 982 983 #ifndef NDEBUG 984 /// \return string containing a file name and a line # for the given loop. 985 static std::string getDebugLocString(const Loop *L) { 986 std::string Result; 987 if (L) { 988 raw_string_ostream OS(Result); 989 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 990 LoopDbgLoc.print(OS); 991 else 992 // Just print the module name. 993 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 994 OS.flush(); 995 } 996 return Result; 997 } 998 #endif 999 1000 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1001 const Instruction *Orig) { 1002 // If the loop was versioned with memchecks, add the corresponding no-alias 1003 // metadata. 1004 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1005 LVer->annotateInstWithNoAlias(To, Orig); 1006 } 1007 1008 void InnerLoopVectorizer::addMetadata(Instruction *To, 1009 Instruction *From) { 1010 propagateMetadata(To, From); 1011 addNewMetadata(To, From); 1012 } 1013 1014 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1015 Instruction *From) { 1016 for (Value *V : To) { 1017 if (Instruction *I = dyn_cast<Instruction>(V)) 1018 addMetadata(I, From); 1019 } 1020 } 1021 1022 namespace llvm { 1023 1024 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1025 // lowered. 1026 enum ScalarEpilogueLowering { 1027 1028 // The default: allowing scalar epilogues. 1029 CM_ScalarEpilogueAllowed, 1030 1031 // Vectorization with OptForSize: don't allow epilogues. 1032 CM_ScalarEpilogueNotAllowedOptSize, 1033 1034 // A special case of vectorisation with OptForSize: loops with a very small 1035 // trip count are considered for vectorization under OptForSize, thereby 1036 // making sure the cost of their loop body is dominant, free of runtime 1037 // guards and scalar iteration overheads. 1038 CM_ScalarEpilogueNotAllowedLowTripLoop, 1039 1040 // Loop hint predicate indicating an epilogue is undesired. 1041 CM_ScalarEpilogueNotNeededUsePredicate 1042 }; 1043 1044 /// LoopVectorizationCostModel - estimates the expected speedups due to 1045 /// vectorization. 1046 /// In many cases vectorization is not profitable. This can happen because of 1047 /// a number of reasons. In this class we mainly attempt to predict the 1048 /// expected speedup/slowdowns due to the supported instruction set. We use the 1049 /// TargetTransformInfo to query the different backends for the cost of 1050 /// different operations. 1051 class LoopVectorizationCostModel { 1052 public: 1053 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1054 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1055 LoopVectorizationLegality *Legal, 1056 const TargetTransformInfo &TTI, 1057 const TargetLibraryInfo *TLI, DemandedBits *DB, 1058 AssumptionCache *AC, 1059 OptimizationRemarkEmitter *ORE, const Function *F, 1060 const LoopVectorizeHints *Hints, 1061 InterleavedAccessInfo &IAI) 1062 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1063 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1064 Hints(Hints), InterleaveInfo(IAI) {} 1065 1066 /// \return An upper bound for the vectorization factor, or None if 1067 /// vectorization and interleaving should be avoided up front. 1068 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1069 1070 /// \return True if runtime checks are required for vectorization, and false 1071 /// otherwise. 1072 bool runtimeChecksRequired(); 1073 1074 /// \return The most profitable vectorization factor and the cost of that VF. 1075 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1076 /// then this vectorization factor will be selected if vectorization is 1077 /// possible. 1078 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1079 1080 /// Setup cost-based decisions for user vectorization factor. 1081 void selectUserVectorizationFactor(ElementCount UserVF) { 1082 collectUniformsAndScalars(UserVF); 1083 collectInstsToScalarize(UserVF); 1084 } 1085 1086 /// \return The size (in bits) of the smallest and widest types in the code 1087 /// that needs to be vectorized. We ignore values that remain scalar such as 1088 /// 64 bit loop indices. 1089 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1090 1091 /// \return The desired interleave count. 1092 /// If interleave count has been specified by metadata it will be returned. 1093 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1094 /// are the selected vectorization factor and the cost of the selected VF. 1095 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1096 1097 /// Memory access instruction may be vectorized in more than one way. 1098 /// Form of instruction after vectorization depends on cost. 1099 /// This function takes cost-based decisions for Load/Store instructions 1100 /// and collects them in a map. This decisions map is used for building 1101 /// the lists of loop-uniform and loop-scalar instructions. 1102 /// The calculated cost is saved with widening decision in order to 1103 /// avoid redundant calculations. 1104 void setCostBasedWideningDecision(ElementCount VF); 1105 1106 /// A struct that represents some properties of the register usage 1107 /// of a loop. 1108 struct RegisterUsage { 1109 /// Holds the number of loop invariant values that are used in the loop. 1110 /// The key is ClassID of target-provided register class. 1111 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1112 /// Holds the maximum number of concurrent live intervals in the loop. 1113 /// The key is ClassID of target-provided register class. 1114 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1115 }; 1116 1117 /// \return Returns information about the register usages of the loop for the 1118 /// given vectorization factors. 1119 SmallVector<RegisterUsage, 8> 1120 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1121 1122 /// Collect values we want to ignore in the cost model. 1123 void collectValuesToIgnore(); 1124 1125 /// Split reductions into those that happen in the loop, and those that happen 1126 /// outside. In loop reductions are collected into InLoopReductionChains. 1127 void collectInLoopReductions(); 1128 1129 /// \returns The smallest bitwidth each instruction can be represented with. 1130 /// The vector equivalents of these instructions should be truncated to this 1131 /// type. 1132 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1133 return MinBWs; 1134 } 1135 1136 /// \returns True if it is more profitable to scalarize instruction \p I for 1137 /// vectorization factor \p VF. 1138 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1139 assert(VF.isVector() && 1140 "Profitable to scalarize relevant only for VF > 1."); 1141 1142 // Cost model is not run in the VPlan-native path - return conservative 1143 // result until this changes. 1144 if (EnableVPlanNativePath) 1145 return false; 1146 1147 auto Scalars = InstsToScalarize.find(VF); 1148 assert(Scalars != InstsToScalarize.end() && 1149 "VF not yet analyzed for scalarization profitability"); 1150 return Scalars->second.find(I) != Scalars->second.end(); 1151 } 1152 1153 /// Returns true if \p I is known to be uniform after vectorization. 1154 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1155 if (VF.isScalar()) 1156 return true; 1157 1158 // Cost model is not run in the VPlan-native path - return conservative 1159 // result until this changes. 1160 if (EnableVPlanNativePath) 1161 return false; 1162 1163 auto UniformsPerVF = Uniforms.find(VF); 1164 assert(UniformsPerVF != Uniforms.end() && 1165 "VF not yet analyzed for uniformity"); 1166 return UniformsPerVF->second.count(I); 1167 } 1168 1169 /// Returns true if \p I is known to be scalar after vectorization. 1170 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1171 if (VF.isScalar()) 1172 return true; 1173 1174 // Cost model is not run in the VPlan-native path - return conservative 1175 // result until this changes. 1176 if (EnableVPlanNativePath) 1177 return false; 1178 1179 auto ScalarsPerVF = Scalars.find(VF); 1180 assert(ScalarsPerVF != Scalars.end() && 1181 "Scalar values are not calculated for VF"); 1182 return ScalarsPerVF->second.count(I); 1183 } 1184 1185 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1186 /// for vectorization factor \p VF. 1187 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1188 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1189 !isProfitableToScalarize(I, VF) && 1190 !isScalarAfterVectorization(I, VF); 1191 } 1192 1193 /// Decision that was taken during cost calculation for memory instruction. 1194 enum InstWidening { 1195 CM_Unknown, 1196 CM_Widen, // For consecutive accesses with stride +1. 1197 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1198 CM_Interleave, 1199 CM_GatherScatter, 1200 CM_Scalarize 1201 }; 1202 1203 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1204 /// instruction \p I and vector width \p VF. 1205 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1206 unsigned Cost) { 1207 assert(VF.isVector() && "Expected VF >=2"); 1208 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1209 } 1210 1211 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1212 /// interleaving group \p Grp and vector width \p VF. 1213 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1214 ElementCount VF, InstWidening W, unsigned Cost) { 1215 assert(VF.isVector() && "Expected VF >=2"); 1216 /// Broadcast this decicion to all instructions inside the group. 1217 /// But the cost will be assigned to one instruction only. 1218 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1219 if (auto *I = Grp->getMember(i)) { 1220 if (Grp->getInsertPos() == I) 1221 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1222 else 1223 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1224 } 1225 } 1226 } 1227 1228 /// Return the cost model decision for the given instruction \p I and vector 1229 /// width \p VF. Return CM_Unknown if this instruction did not pass 1230 /// through the cost modeling. 1231 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1232 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1233 assert(VF.isVector() && "Expected VF >=2"); 1234 1235 // Cost model is not run in the VPlan-native path - return conservative 1236 // result until this changes. 1237 if (EnableVPlanNativePath) 1238 return CM_GatherScatter; 1239 1240 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1241 auto Itr = WideningDecisions.find(InstOnVF); 1242 if (Itr == WideningDecisions.end()) 1243 return CM_Unknown; 1244 return Itr->second.first; 1245 } 1246 1247 /// Return the vectorization cost for the given instruction \p I and vector 1248 /// width \p VF. 1249 unsigned getWideningCost(Instruction *I, ElementCount VF) { 1250 assert(VF.isVector() && "Expected VF >=2"); 1251 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1252 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1253 "The cost is not calculated"); 1254 return WideningDecisions[InstOnVF].second; 1255 } 1256 1257 /// Return True if instruction \p I is an optimizable truncate whose operand 1258 /// is an induction variable. Such a truncate will be removed by adding a new 1259 /// induction variable with the destination type. 1260 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1261 // If the instruction is not a truncate, return false. 1262 auto *Trunc = dyn_cast<TruncInst>(I); 1263 if (!Trunc) 1264 return false; 1265 1266 // Get the source and destination types of the truncate. 1267 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1268 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1269 1270 // If the truncate is free for the given types, return false. Replacing a 1271 // free truncate with an induction variable would add an induction variable 1272 // update instruction to each iteration of the loop. We exclude from this 1273 // check the primary induction variable since it will need an update 1274 // instruction regardless. 1275 Value *Op = Trunc->getOperand(0); 1276 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1277 return false; 1278 1279 // If the truncated value is not an induction variable, return false. 1280 return Legal->isInductionPhi(Op); 1281 } 1282 1283 /// Collects the instructions to scalarize for each predicated instruction in 1284 /// the loop. 1285 void collectInstsToScalarize(ElementCount VF); 1286 1287 /// Collect Uniform and Scalar values for the given \p VF. 1288 /// The sets depend on CM decision for Load/Store instructions 1289 /// that may be vectorized as interleave, gather-scatter or scalarized. 1290 void collectUniformsAndScalars(ElementCount VF) { 1291 // Do the analysis once. 1292 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1293 return; 1294 setCostBasedWideningDecision(VF); 1295 collectLoopUniforms(VF); 1296 collectLoopScalars(VF); 1297 } 1298 1299 /// Returns true if the target machine supports masked store operation 1300 /// for the given \p DataType and kind of access to \p Ptr. 1301 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1302 return Legal->isConsecutivePtr(Ptr) && 1303 TTI.isLegalMaskedStore(DataType, Alignment); 1304 } 1305 1306 /// Returns true if the target machine supports masked load operation 1307 /// for the given \p DataType and kind of access to \p Ptr. 1308 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1309 return Legal->isConsecutivePtr(Ptr) && 1310 TTI.isLegalMaskedLoad(DataType, Alignment); 1311 } 1312 1313 /// Returns true if the target machine supports masked scatter operation 1314 /// for the given \p DataType. 1315 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1316 return TTI.isLegalMaskedScatter(DataType, Alignment); 1317 } 1318 1319 /// Returns true if the target machine supports masked gather operation 1320 /// for the given \p DataType. 1321 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1322 return TTI.isLegalMaskedGather(DataType, Alignment); 1323 } 1324 1325 /// Returns true if the target machine can represent \p V as a masked gather 1326 /// or scatter operation. 1327 bool isLegalGatherOrScatter(Value *V) { 1328 bool LI = isa<LoadInst>(V); 1329 bool SI = isa<StoreInst>(V); 1330 if (!LI && !SI) 1331 return false; 1332 auto *Ty = getMemInstValueType(V); 1333 Align Align = getLoadStoreAlignment(V); 1334 return (LI && isLegalMaskedGather(Ty, Align)) || 1335 (SI && isLegalMaskedScatter(Ty, Align)); 1336 } 1337 1338 /// Returns true if \p I is an instruction that will be scalarized with 1339 /// predication. Such instructions include conditional stores and 1340 /// instructions that may divide by zero. 1341 /// If a non-zero VF has been calculated, we check if I will be scalarized 1342 /// predication for that VF. 1343 bool isScalarWithPredication(Instruction *I, 1344 ElementCount VF = ElementCount::getFixed(1)); 1345 1346 // Returns true if \p I is an instruction that will be predicated either 1347 // through scalar predication or masked load/store or masked gather/scatter. 1348 // Superset of instructions that return true for isScalarWithPredication. 1349 bool isPredicatedInst(Instruction *I) { 1350 if (!blockNeedsPredication(I->getParent())) 1351 return false; 1352 // Loads and stores that need some form of masked operation are predicated 1353 // instructions. 1354 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1355 return Legal->isMaskRequired(I); 1356 return isScalarWithPredication(I); 1357 } 1358 1359 /// Returns true if \p I is a memory instruction with consecutive memory 1360 /// access that can be widened. 1361 bool 1362 memoryInstructionCanBeWidened(Instruction *I, 1363 ElementCount VF = ElementCount::getFixed(1)); 1364 1365 /// Returns true if \p I is a memory instruction in an interleaved-group 1366 /// of memory accesses that can be vectorized with wide vector loads/stores 1367 /// and shuffles. 1368 bool 1369 interleavedAccessCanBeWidened(Instruction *I, 1370 ElementCount VF = ElementCount::getFixed(1)); 1371 1372 /// Check if \p Instr belongs to any interleaved access group. 1373 bool isAccessInterleaved(Instruction *Instr) { 1374 return InterleaveInfo.isInterleaved(Instr); 1375 } 1376 1377 /// Get the interleaved access group that \p Instr belongs to. 1378 const InterleaveGroup<Instruction> * 1379 getInterleavedAccessGroup(Instruction *Instr) { 1380 return InterleaveInfo.getInterleaveGroup(Instr); 1381 } 1382 1383 /// Returns true if an interleaved group requires a scalar iteration 1384 /// to handle accesses with gaps, and there is nothing preventing us from 1385 /// creating a scalar epilogue. 1386 bool requiresScalarEpilogue() const { 1387 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1388 } 1389 1390 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1391 /// loop hint annotation. 1392 bool isScalarEpilogueAllowed() const { 1393 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1394 } 1395 1396 /// Returns true if all loop blocks should be masked to fold tail loop. 1397 bool foldTailByMasking() const { return FoldTailByMasking; } 1398 1399 bool blockNeedsPredication(BasicBlock *BB) { 1400 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1401 } 1402 1403 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1404 /// nodes to the chain of instructions representing the reductions. Uses a 1405 /// MapVector to ensure deterministic iteration order. 1406 using ReductionChainMap = 1407 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1408 1409 /// Return the chain of instructions representing an inloop reduction. 1410 const ReductionChainMap &getInLoopReductionChains() const { 1411 return InLoopReductionChains; 1412 } 1413 1414 /// Returns true if the Phi is part of an inloop reduction. 1415 bool isInLoopReduction(PHINode *Phi) const { 1416 return InLoopReductionChains.count(Phi); 1417 } 1418 1419 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1420 /// with factor VF. Return the cost of the instruction, including 1421 /// scalarization overhead if it's needed. 1422 unsigned getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1423 1424 /// Estimate cost of a call instruction CI if it were vectorized with factor 1425 /// VF. Return the cost of the instruction, including scalarization overhead 1426 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1427 /// scalarized - 1428 /// i.e. either vector version isn't available, or is too expensive. 1429 unsigned getVectorCallCost(CallInst *CI, ElementCount VF, 1430 bool &NeedToScalarize); 1431 1432 /// Invalidates decisions already taken by the cost model. 1433 void invalidateCostModelingDecisions() { 1434 WideningDecisions.clear(); 1435 Uniforms.clear(); 1436 Scalars.clear(); 1437 } 1438 1439 private: 1440 unsigned NumPredStores = 0; 1441 1442 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1443 /// than zero. One is returned if vectorization should best be avoided due 1444 /// to cost. 1445 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount); 1446 1447 /// The vectorization cost is a combination of the cost itself and a boolean 1448 /// indicating whether any of the contributing operations will actually 1449 /// operate on 1450 /// vector values after type legalization in the backend. If this latter value 1451 /// is 1452 /// false, then all operations will be scalarized (i.e. no vectorization has 1453 /// actually taken place). 1454 using VectorizationCostTy = std::pair<unsigned, bool>; 1455 1456 /// Returns the expected execution cost. The unit of the cost does 1457 /// not matter because we use the 'cost' units to compare different 1458 /// vector widths. The cost that is returned is *not* normalized by 1459 /// the factor width. 1460 VectorizationCostTy expectedCost(ElementCount VF); 1461 1462 /// Returns the execution time cost of an instruction for a given vector 1463 /// width. Vector width of one means scalar. 1464 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1465 1466 /// The cost-computation logic from getInstructionCost which provides 1467 /// the vector type as an output parameter. 1468 unsigned getInstructionCost(Instruction *I, ElementCount VF, Type *&VectorTy); 1469 1470 /// Calculate vectorization cost of memory instruction \p I. 1471 unsigned getMemoryInstructionCost(Instruction *I, ElementCount VF); 1472 1473 /// The cost computation for scalarized memory instruction. 1474 unsigned getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1475 1476 /// The cost computation for interleaving group of memory instructions. 1477 unsigned getInterleaveGroupCost(Instruction *I, ElementCount VF); 1478 1479 /// The cost computation for Gather/Scatter instruction. 1480 unsigned getGatherScatterCost(Instruction *I, ElementCount VF); 1481 1482 /// The cost computation for widening instruction \p I with consecutive 1483 /// memory access. 1484 unsigned getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1485 1486 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1487 /// Load: scalar load + broadcast. 1488 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1489 /// element) 1490 unsigned getUniformMemOpCost(Instruction *I, ElementCount VF); 1491 1492 /// Estimate the overhead of scalarizing an instruction. This is a 1493 /// convenience wrapper for the type-based getScalarizationOverhead API. 1494 unsigned getScalarizationOverhead(Instruction *I, ElementCount VF); 1495 1496 /// Returns whether the instruction is a load or store and will be a emitted 1497 /// as a vector operation. 1498 bool isConsecutiveLoadOrStore(Instruction *I); 1499 1500 /// Returns true if an artificially high cost for emulated masked memrefs 1501 /// should be used. 1502 bool useEmulatedMaskMemRefHack(Instruction *I); 1503 1504 /// Map of scalar integer values to the smallest bitwidth they can be legally 1505 /// represented as. The vector equivalents of these values should be truncated 1506 /// to this type. 1507 MapVector<Instruction *, uint64_t> MinBWs; 1508 1509 /// A type representing the costs for instructions if they were to be 1510 /// scalarized rather than vectorized. The entries are Instruction-Cost 1511 /// pairs. 1512 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1513 1514 /// A set containing all BasicBlocks that are known to present after 1515 /// vectorization as a predicated block. 1516 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1517 1518 /// Records whether it is allowed to have the original scalar loop execute at 1519 /// least once. This may be needed as a fallback loop in case runtime 1520 /// aliasing/dependence checks fail, or to handle the tail/remainder 1521 /// iterations when the trip count is unknown or doesn't divide by the VF, 1522 /// or as a peel-loop to handle gaps in interleave-groups. 1523 /// Under optsize and when the trip count is very small we don't allow any 1524 /// iterations to execute in the scalar loop. 1525 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1526 1527 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1528 bool FoldTailByMasking = false; 1529 1530 /// A map holding scalar costs for different vectorization factors. The 1531 /// presence of a cost for an instruction in the mapping indicates that the 1532 /// instruction will be scalarized when vectorizing with the associated 1533 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1534 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1535 1536 /// Holds the instructions known to be uniform after vectorization. 1537 /// The data is collected per VF. 1538 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1539 1540 /// Holds the instructions known to be scalar after vectorization. 1541 /// The data is collected per VF. 1542 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1543 1544 /// Holds the instructions (address computations) that are forced to be 1545 /// scalarized. 1546 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1547 1548 /// PHINodes of the reductions that should be expanded in-loop along with 1549 /// their associated chains of reduction operations, in program order from top 1550 /// (PHI) to bottom 1551 ReductionChainMap InLoopReductionChains; 1552 1553 /// Returns the expected difference in cost from scalarizing the expression 1554 /// feeding a predicated instruction \p PredInst. The instructions to 1555 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1556 /// non-negative return value implies the expression will be scalarized. 1557 /// Currently, only single-use chains are considered for scalarization. 1558 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1559 ElementCount VF); 1560 1561 /// Collect the instructions that are uniform after vectorization. An 1562 /// instruction is uniform if we represent it with a single scalar value in 1563 /// the vectorized loop corresponding to each vector iteration. Examples of 1564 /// uniform instructions include pointer operands of consecutive or 1565 /// interleaved memory accesses. Note that although uniformity implies an 1566 /// instruction will be scalar, the reverse is not true. In general, a 1567 /// scalarized instruction will be represented by VF scalar values in the 1568 /// vectorized loop, each corresponding to an iteration of the original 1569 /// scalar loop. 1570 void collectLoopUniforms(ElementCount VF); 1571 1572 /// Collect the instructions that are scalar after vectorization. An 1573 /// instruction is scalar if it is known to be uniform or will be scalarized 1574 /// during vectorization. Non-uniform scalarized instructions will be 1575 /// represented by VF values in the vectorized loop, each corresponding to an 1576 /// iteration of the original scalar loop. 1577 void collectLoopScalars(ElementCount VF); 1578 1579 /// Keeps cost model vectorization decision and cost for instructions. 1580 /// Right now it is used for memory instructions only. 1581 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1582 std::pair<InstWidening, unsigned>>; 1583 1584 DecisionList WideningDecisions; 1585 1586 /// Returns true if \p V is expected to be vectorized and it needs to be 1587 /// extracted. 1588 bool needsExtract(Value *V, ElementCount VF) const { 1589 Instruction *I = dyn_cast<Instruction>(V); 1590 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1591 TheLoop->isLoopInvariant(I)) 1592 return false; 1593 1594 // Assume we can vectorize V (and hence we need extraction) if the 1595 // scalars are not computed yet. This can happen, because it is called 1596 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1597 // the scalars are collected. That should be a safe assumption in most 1598 // cases, because we check if the operands have vectorizable types 1599 // beforehand in LoopVectorizationLegality. 1600 return Scalars.find(VF) == Scalars.end() || 1601 !isScalarAfterVectorization(I, VF); 1602 }; 1603 1604 /// Returns a range containing only operands needing to be extracted. 1605 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1606 ElementCount VF) { 1607 return SmallVector<Value *, 4>(make_filter_range( 1608 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1609 } 1610 1611 public: 1612 /// The loop that we evaluate. 1613 Loop *TheLoop; 1614 1615 /// Predicated scalar evolution analysis. 1616 PredicatedScalarEvolution &PSE; 1617 1618 /// Loop Info analysis. 1619 LoopInfo *LI; 1620 1621 /// Vectorization legality. 1622 LoopVectorizationLegality *Legal; 1623 1624 /// Vector target information. 1625 const TargetTransformInfo &TTI; 1626 1627 /// Target Library Info. 1628 const TargetLibraryInfo *TLI; 1629 1630 /// Demanded bits analysis. 1631 DemandedBits *DB; 1632 1633 /// Assumption cache. 1634 AssumptionCache *AC; 1635 1636 /// Interface to emit optimization remarks. 1637 OptimizationRemarkEmitter *ORE; 1638 1639 const Function *TheFunction; 1640 1641 /// Loop Vectorize Hint. 1642 const LoopVectorizeHints *Hints; 1643 1644 /// The interleave access information contains groups of interleaved accesses 1645 /// with the same stride and close to each other. 1646 InterleavedAccessInfo &InterleaveInfo; 1647 1648 /// Values to ignore in the cost model. 1649 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1650 1651 /// Values to ignore in the cost model when VF > 1. 1652 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1653 }; 1654 1655 } // end namespace llvm 1656 1657 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1658 // vectorization. The loop needs to be annotated with #pragma omp simd 1659 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1660 // vector length information is not provided, vectorization is not considered 1661 // explicit. Interleave hints are not allowed either. These limitations will be 1662 // relaxed in the future. 1663 // Please, note that we are currently forced to abuse the pragma 'clang 1664 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1665 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1666 // provides *explicit vectorization hints* (LV can bypass legal checks and 1667 // assume that vectorization is legal). However, both hints are implemented 1668 // using the same metadata (llvm.loop.vectorize, processed by 1669 // LoopVectorizeHints). This will be fixed in the future when the native IR 1670 // representation for pragma 'omp simd' is introduced. 1671 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1672 OptimizationRemarkEmitter *ORE) { 1673 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1674 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1675 1676 // Only outer loops with an explicit vectorization hint are supported. 1677 // Unannotated outer loops are ignored. 1678 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1679 return false; 1680 1681 Function *Fn = OuterLp->getHeader()->getParent(); 1682 if (!Hints.allowVectorization(Fn, OuterLp, 1683 true /*VectorizeOnlyWhenForced*/)) { 1684 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1685 return false; 1686 } 1687 1688 if (Hints.getInterleave() > 1) { 1689 // TODO: Interleave support is future work. 1690 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1691 "outer loops.\n"); 1692 Hints.emitRemarkWithHints(); 1693 return false; 1694 } 1695 1696 return true; 1697 } 1698 1699 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1700 OptimizationRemarkEmitter *ORE, 1701 SmallVectorImpl<Loop *> &V) { 1702 // Collect inner loops and outer loops without irreducible control flow. For 1703 // now, only collect outer loops that have explicit vectorization hints. If we 1704 // are stress testing the VPlan H-CFG construction, we collect the outermost 1705 // loop of every loop nest. 1706 if (L.isInnermost() || VPlanBuildStressTest || 1707 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1708 LoopBlocksRPO RPOT(&L); 1709 RPOT.perform(LI); 1710 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1711 V.push_back(&L); 1712 // TODO: Collect inner loops inside marked outer loops in case 1713 // vectorization fails for the outer loop. Do not invoke 1714 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1715 // already known to be reducible. We can use an inherited attribute for 1716 // that. 1717 return; 1718 } 1719 } 1720 for (Loop *InnerL : L) 1721 collectSupportedLoops(*InnerL, LI, ORE, V); 1722 } 1723 1724 namespace { 1725 1726 /// The LoopVectorize Pass. 1727 struct LoopVectorize : public FunctionPass { 1728 /// Pass identification, replacement for typeid 1729 static char ID; 1730 1731 LoopVectorizePass Impl; 1732 1733 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1734 bool VectorizeOnlyWhenForced = false) 1735 : FunctionPass(ID), 1736 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1737 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1738 } 1739 1740 bool runOnFunction(Function &F) override { 1741 if (skipFunction(F)) 1742 return false; 1743 1744 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1745 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1746 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1747 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1748 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1749 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1750 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1751 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1752 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1753 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1754 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1755 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1756 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1757 1758 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1759 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1760 1761 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1762 GetLAA, *ORE, PSI).MadeAnyChange; 1763 } 1764 1765 void getAnalysisUsage(AnalysisUsage &AU) const override { 1766 AU.addRequired<AssumptionCacheTracker>(); 1767 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1768 AU.addRequired<DominatorTreeWrapperPass>(); 1769 AU.addRequired<LoopInfoWrapperPass>(); 1770 AU.addRequired<ScalarEvolutionWrapperPass>(); 1771 AU.addRequired<TargetTransformInfoWrapperPass>(); 1772 AU.addRequired<AAResultsWrapperPass>(); 1773 AU.addRequired<LoopAccessLegacyAnalysis>(); 1774 AU.addRequired<DemandedBitsWrapperPass>(); 1775 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1776 AU.addRequired<InjectTLIMappingsLegacy>(); 1777 1778 // We currently do not preserve loopinfo/dominator analyses with outer loop 1779 // vectorization. Until this is addressed, mark these analyses as preserved 1780 // only for non-VPlan-native path. 1781 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1782 if (!EnableVPlanNativePath) { 1783 AU.addPreserved<LoopInfoWrapperPass>(); 1784 AU.addPreserved<DominatorTreeWrapperPass>(); 1785 } 1786 1787 AU.addPreserved<BasicAAWrapperPass>(); 1788 AU.addPreserved<GlobalsAAWrapperPass>(); 1789 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1790 } 1791 }; 1792 1793 } // end anonymous namespace 1794 1795 //===----------------------------------------------------------------------===// 1796 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1797 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1798 //===----------------------------------------------------------------------===// 1799 1800 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1801 // We need to place the broadcast of invariant variables outside the loop, 1802 // but only if it's proven safe to do so. Else, broadcast will be inside 1803 // vector loop body. 1804 Instruction *Instr = dyn_cast<Instruction>(V); 1805 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1806 (!Instr || 1807 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1808 // Place the code for broadcasting invariant variables in the new preheader. 1809 IRBuilder<>::InsertPointGuard Guard(Builder); 1810 if (SafeToHoist) 1811 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1812 1813 // Broadcast the scalar into all locations in the vector. 1814 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1815 1816 return Shuf; 1817 } 1818 1819 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1820 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1821 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1822 "Expected either an induction phi-node or a truncate of it!"); 1823 Value *Start = II.getStartValue(); 1824 1825 // Construct the initial value of the vector IV in the vector loop preheader 1826 auto CurrIP = Builder.saveIP(); 1827 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1828 if (isa<TruncInst>(EntryVal)) { 1829 assert(Start->getType()->isIntegerTy() && 1830 "Truncation requires an integer type"); 1831 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1832 Step = Builder.CreateTrunc(Step, TruncType); 1833 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1834 } 1835 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1836 Value *SteppedStart = 1837 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1838 1839 // We create vector phi nodes for both integer and floating-point induction 1840 // variables. Here, we determine the kind of arithmetic we will perform. 1841 Instruction::BinaryOps AddOp; 1842 Instruction::BinaryOps MulOp; 1843 if (Step->getType()->isIntegerTy()) { 1844 AddOp = Instruction::Add; 1845 MulOp = Instruction::Mul; 1846 } else { 1847 AddOp = II.getInductionOpcode(); 1848 MulOp = Instruction::FMul; 1849 } 1850 1851 // Multiply the vectorization factor by the step using integer or 1852 // floating-point arithmetic as appropriate. 1853 Value *ConstVF = 1854 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 1855 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1856 1857 // Create a vector splat to use in the induction update. 1858 // 1859 // FIXME: If the step is non-constant, we create the vector splat with 1860 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1861 // handle a constant vector splat. 1862 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1863 Value *SplatVF = isa<Constant>(Mul) 1864 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1865 : Builder.CreateVectorSplat(VF, Mul); 1866 Builder.restoreIP(CurrIP); 1867 1868 // We may need to add the step a number of times, depending on the unroll 1869 // factor. The last of those goes into the PHI. 1870 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1871 &*LoopVectorBody->getFirstInsertionPt()); 1872 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1873 Instruction *LastInduction = VecInd; 1874 for (unsigned Part = 0; Part < UF; ++Part) { 1875 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1876 1877 if (isa<TruncInst>(EntryVal)) 1878 addMetadata(LastInduction, EntryVal); 1879 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1880 1881 LastInduction = cast<Instruction>(addFastMathFlag( 1882 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1883 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1884 } 1885 1886 // Move the last step to the end of the latch block. This ensures consistent 1887 // placement of all induction updates. 1888 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1889 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1890 auto *ICmp = cast<Instruction>(Br->getCondition()); 1891 LastInduction->moveBefore(ICmp); 1892 LastInduction->setName("vec.ind.next"); 1893 1894 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1895 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1896 } 1897 1898 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1899 return Cost->isScalarAfterVectorization(I, VF) || 1900 Cost->isProfitableToScalarize(I, VF); 1901 } 1902 1903 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1904 if (shouldScalarizeInstruction(IV)) 1905 return true; 1906 auto isScalarInst = [&](User *U) -> bool { 1907 auto *I = cast<Instruction>(U); 1908 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1909 }; 1910 return llvm::any_of(IV->users(), isScalarInst); 1911 } 1912 1913 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1914 const InductionDescriptor &ID, const Instruction *EntryVal, 1915 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1916 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1917 "Expected either an induction phi-node or a truncate of it!"); 1918 1919 // This induction variable is not the phi from the original loop but the 1920 // newly-created IV based on the proof that casted Phi is equal to the 1921 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1922 // re-uses the same InductionDescriptor that original IV uses but we don't 1923 // have to do any recording in this case - that is done when original IV is 1924 // processed. 1925 if (isa<TruncInst>(EntryVal)) 1926 return; 1927 1928 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1929 if (Casts.empty()) 1930 return; 1931 // Only the first Cast instruction in the Casts vector is of interest. 1932 // The rest of the Casts (if exist) have no uses outside the 1933 // induction update chain itself. 1934 Instruction *CastInst = *Casts.begin(); 1935 if (Lane < UINT_MAX) 1936 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1937 else 1938 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1939 } 1940 1941 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1942 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1943 "Primary induction variable must have an integer type"); 1944 1945 auto II = Legal->getInductionVars().find(IV); 1946 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1947 1948 auto ID = II->second; 1949 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1950 1951 // The value from the original loop to which we are mapping the new induction 1952 // variable. 1953 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1954 1955 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1956 1957 // Generate code for the induction step. Note that induction steps are 1958 // required to be loop-invariant 1959 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1960 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1961 "Induction step should be loop invariant"); 1962 if (PSE.getSE()->isSCEVable(IV->getType())) { 1963 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1964 return Exp.expandCodeFor(Step, Step->getType(), 1965 LoopVectorPreHeader->getTerminator()); 1966 } 1967 return cast<SCEVUnknown>(Step)->getValue(); 1968 }; 1969 1970 // The scalar value to broadcast. This is derived from the canonical 1971 // induction variable. If a truncation type is given, truncate the canonical 1972 // induction variable and step. Otherwise, derive these values from the 1973 // induction descriptor. 1974 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1975 Value *ScalarIV = Induction; 1976 if (IV != OldInduction) { 1977 ScalarIV = IV->getType()->isIntegerTy() 1978 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1979 : Builder.CreateCast(Instruction::SIToFP, Induction, 1980 IV->getType()); 1981 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1982 ScalarIV->setName("offset.idx"); 1983 } 1984 if (Trunc) { 1985 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1986 assert(Step->getType()->isIntegerTy() && 1987 "Truncation requires an integer step"); 1988 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1989 Step = Builder.CreateTrunc(Step, TruncType); 1990 } 1991 return ScalarIV; 1992 }; 1993 1994 // Create the vector values from the scalar IV, in the absence of creating a 1995 // vector IV. 1996 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1997 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1998 for (unsigned Part = 0; Part < UF; ++Part) { 1999 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2000 Value *EntryPart = 2001 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2002 ID.getInductionOpcode()); 2003 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2004 if (Trunc) 2005 addMetadata(EntryPart, Trunc); 2006 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 2007 } 2008 }; 2009 2010 // Now do the actual transformations, and start with creating the step value. 2011 Value *Step = CreateStepValue(ID.getStep()); 2012 if (VF.isZero() || VF.isScalar()) { 2013 Value *ScalarIV = CreateScalarIV(Step); 2014 CreateSplatIV(ScalarIV, Step); 2015 return; 2016 } 2017 2018 // Determine if we want a scalar version of the induction variable. This is 2019 // true if the induction variable itself is not widened, or if it has at 2020 // least one user in the loop that is not widened. 2021 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2022 if (!NeedsScalarIV) { 2023 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2024 return; 2025 } 2026 2027 // Try to create a new independent vector induction variable. If we can't 2028 // create the phi node, we will splat the scalar induction variable in each 2029 // loop iteration. 2030 if (!shouldScalarizeInstruction(EntryVal)) { 2031 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2032 Value *ScalarIV = CreateScalarIV(Step); 2033 // Create scalar steps that can be used by instructions we will later 2034 // scalarize. Note that the addition of the scalar steps will not increase 2035 // the number of instructions in the loop in the common case prior to 2036 // InstCombine. We will be trading one vector extract for each scalar step. 2037 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2038 return; 2039 } 2040 2041 // All IV users are scalar instructions, so only emit a scalar IV, not a 2042 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2043 // predicate used by the masked loads/stores. 2044 Value *ScalarIV = CreateScalarIV(Step); 2045 if (!Cost->isScalarEpilogueAllowed()) 2046 CreateSplatIV(ScalarIV, Step); 2047 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2048 } 2049 2050 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2051 Instruction::BinaryOps BinOp) { 2052 // Create and check the types. 2053 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2054 int VLen = ValVTy->getNumElements(); 2055 2056 Type *STy = Val->getType()->getScalarType(); 2057 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2058 "Induction Step must be an integer or FP"); 2059 assert(Step->getType() == STy && "Step has wrong type"); 2060 2061 SmallVector<Constant *, 8> Indices; 2062 2063 if (STy->isIntegerTy()) { 2064 // Create a vector of consecutive numbers from zero to VF. 2065 for (int i = 0; i < VLen; ++i) 2066 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2067 2068 // Add the consecutive indices to the vector value. 2069 Constant *Cv = ConstantVector::get(Indices); 2070 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2071 Step = Builder.CreateVectorSplat(VLen, Step); 2072 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2073 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2074 // which can be found from the original scalar operations. 2075 Step = Builder.CreateMul(Cv, Step); 2076 return Builder.CreateAdd(Val, Step, "induction"); 2077 } 2078 2079 // Floating point induction. 2080 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2081 "Binary Opcode should be specified for FP induction"); 2082 // Create a vector of consecutive numbers from zero to VF. 2083 for (int i = 0; i < VLen; ++i) 2084 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2085 2086 // Add the consecutive indices to the vector value. 2087 Constant *Cv = ConstantVector::get(Indices); 2088 2089 Step = Builder.CreateVectorSplat(VLen, Step); 2090 2091 // Floating point operations had to be 'fast' to enable the induction. 2092 FastMathFlags Flags; 2093 Flags.setFast(); 2094 2095 Value *MulOp = Builder.CreateFMul(Cv, Step); 2096 if (isa<Instruction>(MulOp)) 2097 // Have to check, MulOp may be a constant 2098 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2099 2100 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2101 if (isa<Instruction>(BOp)) 2102 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2103 return BOp; 2104 } 2105 2106 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2107 Instruction *EntryVal, 2108 const InductionDescriptor &ID) { 2109 // We shouldn't have to build scalar steps if we aren't vectorizing. 2110 assert(VF.isVector() && "VF should be greater than one"); 2111 assert(!VF.isScalable() && 2112 "the code below assumes a fixed number of elements at compile time"); 2113 // Get the value type and ensure it and the step have the same integer type. 2114 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2115 assert(ScalarIVTy == Step->getType() && 2116 "Val and Step should have the same type"); 2117 2118 // We build scalar steps for both integer and floating-point induction 2119 // variables. Here, we determine the kind of arithmetic we will perform. 2120 Instruction::BinaryOps AddOp; 2121 Instruction::BinaryOps MulOp; 2122 if (ScalarIVTy->isIntegerTy()) { 2123 AddOp = Instruction::Add; 2124 MulOp = Instruction::Mul; 2125 } else { 2126 AddOp = ID.getInductionOpcode(); 2127 MulOp = Instruction::FMul; 2128 } 2129 2130 // Determine the number of scalars we need to generate for each unroll 2131 // iteration. If EntryVal is uniform, we only need to generate the first 2132 // lane. Otherwise, we generate all VF values. 2133 unsigned Lanes = 2134 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2135 ? 1 2136 : VF.getKnownMinValue(); 2137 // Compute the scalar steps and save the results in VectorLoopValueMap. 2138 for (unsigned Part = 0; Part < UF; ++Part) { 2139 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2140 auto *StartIdx = getSignedIntOrFpConstant( 2141 ScalarIVTy, VF.getKnownMinValue() * Part + Lane); 2142 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2143 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2144 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2145 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2146 } 2147 } 2148 } 2149 2150 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2151 assert(V != Induction && "The new induction variable should not be used."); 2152 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2153 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2154 2155 // If we have a stride that is replaced by one, do it here. Defer this for 2156 // the VPlan-native path until we start running Legal checks in that path. 2157 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2158 V = ConstantInt::get(V->getType(), 1); 2159 2160 // If we have a vector mapped to this value, return it. 2161 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2162 return VectorLoopValueMap.getVectorValue(V, Part); 2163 2164 // If the value has not been vectorized, check if it has been scalarized 2165 // instead. If it has been scalarized, and we actually need the value in 2166 // vector form, we will construct the vector values on demand. 2167 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2168 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2169 2170 // If we've scalarized a value, that value should be an instruction. 2171 auto *I = cast<Instruction>(V); 2172 2173 // If we aren't vectorizing, we can just copy the scalar map values over to 2174 // the vector map. 2175 if (VF.isScalar()) { 2176 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2177 return ScalarValue; 2178 } 2179 2180 // Get the last scalar instruction we generated for V and Part. If the value 2181 // is known to be uniform after vectorization, this corresponds to lane zero 2182 // of the Part unroll iteration. Otherwise, the last instruction is the one 2183 // we created for the last vector lane of the Part unroll iteration. 2184 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2185 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) 2186 ? 0 2187 : VF.getKnownMinValue() - 1; 2188 auto *LastInst = cast<Instruction>( 2189 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2190 2191 // Set the insert point after the last scalarized instruction. This ensures 2192 // the insertelement sequence will directly follow the scalar definitions. 2193 auto OldIP = Builder.saveIP(); 2194 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2195 Builder.SetInsertPoint(&*NewIP); 2196 2197 // However, if we are vectorizing, we need to construct the vector values. 2198 // If the value is known to be uniform after vectorization, we can just 2199 // broadcast the scalar value corresponding to lane zero for each unroll 2200 // iteration. Otherwise, we construct the vector values using insertelement 2201 // instructions. Since the resulting vectors are stored in 2202 // VectorLoopValueMap, we will only generate the insertelements once. 2203 Value *VectorValue = nullptr; 2204 if (Cost->isUniformAfterVectorization(I, VF)) { 2205 VectorValue = getBroadcastInstrs(ScalarValue); 2206 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2207 } else { 2208 // Initialize packing with insertelements to start from undef. 2209 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2210 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2211 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2212 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 2213 packScalarIntoVectorValue(V, {Part, Lane}); 2214 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2215 } 2216 Builder.restoreIP(OldIP); 2217 return VectorValue; 2218 } 2219 2220 // If this scalar is unknown, assume that it is a constant or that it is 2221 // loop invariant. Broadcast V and save the value for future uses. 2222 Value *B = getBroadcastInstrs(V); 2223 VectorLoopValueMap.setVectorValue(V, Part, B); 2224 return B; 2225 } 2226 2227 Value * 2228 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2229 const VPIteration &Instance) { 2230 // If the value is not an instruction contained in the loop, it should 2231 // already be scalar. 2232 if (OrigLoop->isLoopInvariant(V)) 2233 return V; 2234 2235 assert(Instance.Lane > 0 2236 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2237 : true && "Uniform values only have lane zero"); 2238 2239 // If the value from the original loop has not been vectorized, it is 2240 // represented by UF x VF scalar values in the new loop. Return the requested 2241 // scalar value. 2242 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2243 return VectorLoopValueMap.getScalarValue(V, Instance); 2244 2245 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2246 // for the given unroll part. If this entry is not a vector type (i.e., the 2247 // vectorization factor is one), there is no need to generate an 2248 // extractelement instruction. 2249 auto *U = getOrCreateVectorValue(V, Instance.Part); 2250 if (!U->getType()->isVectorTy()) { 2251 assert(VF.isScalar() && "Value not scalarized has non-vector type"); 2252 return U; 2253 } 2254 2255 // Otherwise, the value from the original loop has been vectorized and is 2256 // represented by UF vector values. Extract and return the requested scalar 2257 // value from the appropriate vector lane. 2258 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2259 } 2260 2261 void InnerLoopVectorizer::packScalarIntoVectorValue( 2262 Value *V, const VPIteration &Instance) { 2263 assert(V != Induction && "The new induction variable should not be used."); 2264 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2265 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2266 2267 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2268 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2269 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2270 Builder.getInt32(Instance.Lane)); 2271 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2272 } 2273 2274 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2275 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2276 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2277 SmallVector<int, 8> ShuffleMask; 2278 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2279 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2280 2281 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2282 } 2283 2284 // Return whether we allow using masked interleave-groups (for dealing with 2285 // strided loads/stores that reside in predicated blocks, or for dealing 2286 // with gaps). 2287 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2288 // If an override option has been passed in for interleaved accesses, use it. 2289 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2290 return EnableMaskedInterleavedMemAccesses; 2291 2292 return TTI.enableMaskedInterleavedAccessVectorization(); 2293 } 2294 2295 // Try to vectorize the interleave group that \p Instr belongs to. 2296 // 2297 // E.g. Translate following interleaved load group (factor = 3): 2298 // for (i = 0; i < N; i+=3) { 2299 // R = Pic[i]; // Member of index 0 2300 // G = Pic[i+1]; // Member of index 1 2301 // B = Pic[i+2]; // Member of index 2 2302 // ... // do something to R, G, B 2303 // } 2304 // To: 2305 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2306 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2307 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2308 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2309 // 2310 // Or translate following interleaved store group (factor = 3): 2311 // for (i = 0; i < N; i+=3) { 2312 // ... do something to R, G, B 2313 // Pic[i] = R; // Member of index 0 2314 // Pic[i+1] = G; // Member of index 1 2315 // Pic[i+2] = B; // Member of index 2 2316 // } 2317 // To: 2318 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2319 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2320 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2321 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2322 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2323 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2324 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2325 VPValue *Addr, VPValue *BlockInMask) { 2326 Instruction *Instr = Group->getInsertPos(); 2327 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2328 2329 // Prepare for the vector type of the interleaved load/store. 2330 Type *ScalarTy = getMemInstValueType(Instr); 2331 unsigned InterleaveFactor = Group->getFactor(); 2332 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2333 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2334 2335 // Prepare for the new pointers. 2336 SmallVector<Value *, 2> AddrParts; 2337 unsigned Index = Group->getIndex(Instr); 2338 2339 // TODO: extend the masked interleaved-group support to reversed access. 2340 assert((!BlockInMask || !Group->isReverse()) && 2341 "Reversed masked interleave-group not supported."); 2342 2343 // If the group is reverse, adjust the index to refer to the last vector lane 2344 // instead of the first. We adjust the index from the first vector lane, 2345 // rather than directly getting the pointer for lane VF - 1, because the 2346 // pointer operand of the interleaved access is supposed to be uniform. For 2347 // uniform instructions, we're only required to generate a value for the 2348 // first vector lane in each unroll iteration. 2349 assert(!VF.isScalable() && 2350 "scalable vector reverse operation is not implemented"); 2351 if (Group->isReverse()) 2352 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2353 2354 for (unsigned Part = 0; Part < UF; Part++) { 2355 Value *AddrPart = State.get(Addr, {Part, 0}); 2356 setDebugLocFromInst(Builder, AddrPart); 2357 2358 // Notice current instruction could be any index. Need to adjust the address 2359 // to the member of index 0. 2360 // 2361 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2362 // b = A[i]; // Member of index 0 2363 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2364 // 2365 // E.g. A[i+1] = a; // Member of index 1 2366 // A[i] = b; // Member of index 0 2367 // A[i+2] = c; // Member of index 2 (Current instruction) 2368 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2369 2370 bool InBounds = false; 2371 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2372 InBounds = gep->isInBounds(); 2373 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2374 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2375 2376 // Cast to the vector pointer type. 2377 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2378 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2379 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2380 } 2381 2382 setDebugLocFromInst(Builder, Instr); 2383 Value *UndefVec = UndefValue::get(VecTy); 2384 2385 Value *MaskForGaps = nullptr; 2386 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2387 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2388 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2389 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2390 } 2391 2392 // Vectorize the interleaved load group. 2393 if (isa<LoadInst>(Instr)) { 2394 // For each unroll part, create a wide load for the group. 2395 SmallVector<Value *, 2> NewLoads; 2396 for (unsigned Part = 0; Part < UF; Part++) { 2397 Instruction *NewLoad; 2398 if (BlockInMask || MaskForGaps) { 2399 assert(useMaskedInterleavedAccesses(*TTI) && 2400 "masked interleaved groups are not allowed."); 2401 Value *GroupMask = MaskForGaps; 2402 if (BlockInMask) { 2403 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2404 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2405 Value *ShuffledMask = Builder.CreateShuffleVector( 2406 BlockInMaskPart, 2407 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2408 "interleaved.mask"); 2409 GroupMask = MaskForGaps 2410 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2411 MaskForGaps) 2412 : ShuffledMask; 2413 } 2414 NewLoad = 2415 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2416 GroupMask, UndefVec, "wide.masked.vec"); 2417 } 2418 else 2419 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2420 Group->getAlign(), "wide.vec"); 2421 Group->addMetadata(NewLoad); 2422 NewLoads.push_back(NewLoad); 2423 } 2424 2425 // For each member in the group, shuffle out the appropriate data from the 2426 // wide loads. 2427 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2428 Instruction *Member = Group->getMember(I); 2429 2430 // Skip the gaps in the group. 2431 if (!Member) 2432 continue; 2433 2434 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2435 auto StrideMask = 2436 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2437 for (unsigned Part = 0; Part < UF; Part++) { 2438 Value *StridedVec = Builder.CreateShuffleVector( 2439 NewLoads[Part], StrideMask, "strided.vec"); 2440 2441 // If this member has different type, cast the result type. 2442 if (Member->getType() != ScalarTy) { 2443 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2444 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2445 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2446 } 2447 2448 if (Group->isReverse()) 2449 StridedVec = reverseVector(StridedVec); 2450 2451 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2452 } 2453 } 2454 return; 2455 } 2456 2457 // The sub vector type for current instruction. 2458 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2459 auto *SubVT = VectorType::get(ScalarTy, VF); 2460 2461 // Vectorize the interleaved store group. 2462 for (unsigned Part = 0; Part < UF; Part++) { 2463 // Collect the stored vector from each member. 2464 SmallVector<Value *, 4> StoredVecs; 2465 for (unsigned i = 0; i < InterleaveFactor; i++) { 2466 // Interleaved store group doesn't allow a gap, so each index has a member 2467 Instruction *Member = Group->getMember(i); 2468 assert(Member && "Fail to get a member from an interleaved store group"); 2469 2470 Value *StoredVec = getOrCreateVectorValue( 2471 cast<StoreInst>(Member)->getValueOperand(), Part); 2472 if (Group->isReverse()) 2473 StoredVec = reverseVector(StoredVec); 2474 2475 // If this member has different type, cast it to a unified type. 2476 2477 if (StoredVec->getType() != SubVT) 2478 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2479 2480 StoredVecs.push_back(StoredVec); 2481 } 2482 2483 // Concatenate all vectors into a wide vector. 2484 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2485 2486 // Interleave the elements in the wide vector. 2487 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2488 Value *IVec = Builder.CreateShuffleVector( 2489 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2490 "interleaved.vec"); 2491 2492 Instruction *NewStoreInstr; 2493 if (BlockInMask) { 2494 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2495 Value *ShuffledMask = Builder.CreateShuffleVector( 2496 BlockInMaskPart, 2497 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2498 "interleaved.mask"); 2499 NewStoreInstr = Builder.CreateMaskedStore( 2500 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2501 } 2502 else 2503 NewStoreInstr = 2504 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2505 2506 Group->addMetadata(NewStoreInstr); 2507 } 2508 } 2509 2510 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2511 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2512 VPValue *StoredValue, VPValue *BlockInMask) { 2513 // Attempt to issue a wide load. 2514 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2515 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2516 2517 assert((LI || SI) && "Invalid Load/Store instruction"); 2518 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2519 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2520 2521 LoopVectorizationCostModel::InstWidening Decision = 2522 Cost->getWideningDecision(Instr, VF); 2523 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2524 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2525 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2526 "CM decision is not to widen the memory instruction"); 2527 2528 Type *ScalarDataTy = getMemInstValueType(Instr); 2529 2530 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2531 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2532 const Align Alignment = getLoadStoreAlignment(Instr); 2533 2534 // Determine if the pointer operand of the access is either consecutive or 2535 // reverse consecutive. 2536 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2537 bool ConsecutiveStride = 2538 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2539 bool CreateGatherScatter = 2540 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2541 2542 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2543 // gather/scatter. Otherwise Decision should have been to Scalarize. 2544 assert((ConsecutiveStride || CreateGatherScatter) && 2545 "The instruction should be scalarized"); 2546 (void)ConsecutiveStride; 2547 2548 VectorParts BlockInMaskParts(UF); 2549 bool isMaskRequired = BlockInMask; 2550 if (isMaskRequired) 2551 for (unsigned Part = 0; Part < UF; ++Part) 2552 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2553 2554 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2555 // Calculate the pointer for the specific unroll-part. 2556 GetElementPtrInst *PartPtr = nullptr; 2557 2558 bool InBounds = false; 2559 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2560 InBounds = gep->isInBounds(); 2561 2562 if (Reverse) { 2563 // If the address is consecutive but reversed, then the 2564 // wide store needs to start at the last vector element. 2565 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2566 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2567 PartPtr->setIsInBounds(InBounds); 2568 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2569 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2570 PartPtr->setIsInBounds(InBounds); 2571 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2572 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2573 } else { 2574 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2575 ScalarDataTy, Ptr, Builder.getInt32(Part * VF.getKnownMinValue()))); 2576 PartPtr->setIsInBounds(InBounds); 2577 } 2578 2579 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2580 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2581 }; 2582 2583 // Handle Stores: 2584 if (SI) { 2585 setDebugLocFromInst(Builder, SI); 2586 2587 for (unsigned Part = 0; Part < UF; ++Part) { 2588 Instruction *NewSI = nullptr; 2589 Value *StoredVal = State.get(StoredValue, Part); 2590 if (CreateGatherScatter) { 2591 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2592 Value *VectorGep = State.get(Addr, Part); 2593 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2594 MaskPart); 2595 } else { 2596 if (Reverse) { 2597 // If we store to reverse consecutive memory locations, then we need 2598 // to reverse the order of elements in the stored value. 2599 StoredVal = reverseVector(StoredVal); 2600 // We don't want to update the value in the map as it might be used in 2601 // another expression. So don't call resetVectorValue(StoredVal). 2602 } 2603 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2604 if (isMaskRequired) 2605 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2606 BlockInMaskParts[Part]); 2607 else 2608 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2609 } 2610 addMetadata(NewSI, SI); 2611 } 2612 return; 2613 } 2614 2615 // Handle loads. 2616 assert(LI && "Must have a load instruction"); 2617 setDebugLocFromInst(Builder, LI); 2618 for (unsigned Part = 0; Part < UF; ++Part) { 2619 Value *NewLI; 2620 if (CreateGatherScatter) { 2621 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2622 Value *VectorGep = State.get(Addr, Part); 2623 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2624 nullptr, "wide.masked.gather"); 2625 addMetadata(NewLI, LI); 2626 } else { 2627 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2628 if (isMaskRequired) 2629 NewLI = Builder.CreateMaskedLoad( 2630 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2631 "wide.masked.load"); 2632 else 2633 NewLI = 2634 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2635 2636 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2637 addMetadata(NewLI, LI); 2638 if (Reverse) 2639 NewLI = reverseVector(NewLI); 2640 } 2641 2642 State.set(Def, Instr, NewLI, Part); 2643 } 2644 } 2645 2646 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2647 const VPIteration &Instance, 2648 bool IfPredicateInstr, 2649 VPTransformState &State) { 2650 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2651 2652 setDebugLocFromInst(Builder, Instr); 2653 2654 // Does this instruction return a value ? 2655 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2656 2657 Instruction *Cloned = Instr->clone(); 2658 if (!IsVoidRetTy) 2659 Cloned->setName(Instr->getName() + ".cloned"); 2660 2661 // Replace the operands of the cloned instructions with their scalar 2662 // equivalents in the new loop. 2663 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2664 auto *NewOp = State.get(User.getOperand(op), Instance); 2665 Cloned->setOperand(op, NewOp); 2666 } 2667 addNewMetadata(Cloned, Instr); 2668 2669 // Place the cloned scalar in the new loop. 2670 Builder.Insert(Cloned); 2671 2672 // Add the cloned scalar to the scalar map entry. 2673 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2674 2675 // If we just cloned a new assumption, add it the assumption cache. 2676 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2677 if (II->getIntrinsicID() == Intrinsic::assume) 2678 AC->registerAssumption(II); 2679 2680 // End if-block. 2681 if (IfPredicateInstr) 2682 PredicatedInstructions.push_back(Cloned); 2683 } 2684 2685 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2686 Value *End, Value *Step, 2687 Instruction *DL) { 2688 BasicBlock *Header = L->getHeader(); 2689 BasicBlock *Latch = L->getLoopLatch(); 2690 // As we're just creating this loop, it's possible no latch exists 2691 // yet. If so, use the header as this will be a single block loop. 2692 if (!Latch) 2693 Latch = Header; 2694 2695 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2696 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2697 setDebugLocFromInst(Builder, OldInst); 2698 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2699 2700 Builder.SetInsertPoint(Latch->getTerminator()); 2701 setDebugLocFromInst(Builder, OldInst); 2702 2703 // Create i+1 and fill the PHINode. 2704 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2705 Induction->addIncoming(Start, L->getLoopPreheader()); 2706 Induction->addIncoming(Next, Latch); 2707 // Create the compare. 2708 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2709 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2710 2711 // Now we have two terminators. Remove the old one from the block. 2712 Latch->getTerminator()->eraseFromParent(); 2713 2714 return Induction; 2715 } 2716 2717 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2718 if (TripCount) 2719 return TripCount; 2720 2721 assert(L && "Create Trip Count for null loop."); 2722 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2723 // Find the loop boundaries. 2724 ScalarEvolution *SE = PSE.getSE(); 2725 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2726 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2727 "Invalid loop count"); 2728 2729 Type *IdxTy = Legal->getWidestInductionType(); 2730 assert(IdxTy && "No type for induction"); 2731 2732 // The exit count might have the type of i64 while the phi is i32. This can 2733 // happen if we have an induction variable that is sign extended before the 2734 // compare. The only way that we get a backedge taken count is that the 2735 // induction variable was signed and as such will not overflow. In such a case 2736 // truncation is legal. 2737 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2738 IdxTy->getPrimitiveSizeInBits()) 2739 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2740 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2741 2742 // Get the total trip count from the count by adding 1. 2743 const SCEV *ExitCount = SE->getAddExpr( 2744 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2745 2746 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2747 2748 // Expand the trip count and place the new instructions in the preheader. 2749 // Notice that the pre-header does not change, only the loop body. 2750 SCEVExpander Exp(*SE, DL, "induction"); 2751 2752 // Count holds the overall loop count (N). 2753 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2754 L->getLoopPreheader()->getTerminator()); 2755 2756 if (TripCount->getType()->isPointerTy()) 2757 TripCount = 2758 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2759 L->getLoopPreheader()->getTerminator()); 2760 2761 return TripCount; 2762 } 2763 2764 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2765 if (VectorTripCount) 2766 return VectorTripCount; 2767 2768 Value *TC = getOrCreateTripCount(L); 2769 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2770 2771 Type *Ty = TC->getType(); 2772 // This is where we can make the step a runtime constant. 2773 assert(!VF.isScalable() && "scalable vectorization is not supported yet"); 2774 Constant *Step = ConstantInt::get(Ty, VF.getKnownMinValue() * UF); 2775 2776 // If the tail is to be folded by masking, round the number of iterations N 2777 // up to a multiple of Step instead of rounding down. This is done by first 2778 // adding Step-1 and then rounding down. Note that it's ok if this addition 2779 // overflows: the vector induction variable will eventually wrap to zero given 2780 // that it starts at zero and its Step is a power of two; the loop will then 2781 // exit, with the last early-exit vector comparison also producing all-true. 2782 if (Cost->foldTailByMasking()) { 2783 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2784 "VF*UF must be a power of 2 when folding tail by masking"); 2785 TC = Builder.CreateAdd( 2786 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 2787 } 2788 2789 // Now we need to generate the expression for the part of the loop that the 2790 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2791 // iterations are not required for correctness, or N - Step, otherwise. Step 2792 // is equal to the vectorization factor (number of SIMD elements) times the 2793 // unroll factor (number of SIMD instructions). 2794 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2795 2796 // If there is a non-reversed interleaved group that may speculatively access 2797 // memory out-of-bounds, we need to ensure that there will be at least one 2798 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2799 // the trip count, we set the remainder to be equal to the step. If the step 2800 // does not evenly divide the trip count, no adjustment is necessary since 2801 // there will already be scalar iterations. Note that the minimum iterations 2802 // check ensures that N >= Step. 2803 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 2804 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2805 R = Builder.CreateSelect(IsZero, Step, R); 2806 } 2807 2808 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2809 2810 return VectorTripCount; 2811 } 2812 2813 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2814 const DataLayout &DL) { 2815 // Verify that V is a vector type with same number of elements as DstVTy. 2816 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2817 unsigned VF = DstFVTy->getNumElements(); 2818 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2819 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2820 Type *SrcElemTy = SrcVecTy->getElementType(); 2821 Type *DstElemTy = DstFVTy->getElementType(); 2822 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2823 "Vector elements must have same size"); 2824 2825 // Do a direct cast if element types are castable. 2826 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2827 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2828 } 2829 // V cannot be directly casted to desired vector type. 2830 // May happen when V is a floating point vector but DstVTy is a vector of 2831 // pointers or vice-versa. Handle this using a two-step bitcast using an 2832 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2833 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2834 "Only one type should be a pointer type"); 2835 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2836 "Only one type should be a floating point type"); 2837 Type *IntTy = 2838 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2839 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2840 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2841 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2842 } 2843 2844 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2845 BasicBlock *Bypass) { 2846 Value *Count = getOrCreateTripCount(L); 2847 // Reuse existing vector loop preheader for TC checks. 2848 // Note that new preheader block is generated for vector loop. 2849 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2850 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2851 2852 // Generate code to check if the loop's trip count is less than VF * UF, or 2853 // equal to it in case a scalar epilogue is required; this implies that the 2854 // vector trip count is zero. This check also covers the case where adding one 2855 // to the backedge-taken count overflowed leading to an incorrect trip count 2856 // of zero. In this case we will also jump to the scalar loop. 2857 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2858 : ICmpInst::ICMP_ULT; 2859 2860 // If tail is to be folded, vector loop takes care of all iterations. 2861 Value *CheckMinIters = Builder.getFalse(); 2862 if (!Cost->foldTailByMasking()) { 2863 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2864 CheckMinIters = Builder.CreateICmp( 2865 P, Count, 2866 ConstantInt::get(Count->getType(), VF.getKnownMinValue() * UF), 2867 "min.iters.check"); 2868 } 2869 // Create new preheader for vector loop. 2870 LoopVectorPreHeader = 2871 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2872 "vector.ph"); 2873 2874 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2875 DT->getNode(Bypass)->getIDom()) && 2876 "TC check is expected to dominate Bypass"); 2877 2878 // Update dominator for Bypass & LoopExit. 2879 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2880 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2881 2882 ReplaceInstWithInst( 2883 TCCheckBlock->getTerminator(), 2884 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2885 LoopBypassBlocks.push_back(TCCheckBlock); 2886 } 2887 2888 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2889 // Reuse existing vector loop preheader for SCEV checks. 2890 // Note that new preheader block is generated for vector loop. 2891 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2892 2893 // Generate the code to check that the SCEV assumptions that we made. 2894 // We want the new basic block to start at the first instruction in a 2895 // sequence of instructions that form a check. 2896 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2897 "scev.check"); 2898 Value *SCEVCheck = Exp.expandCodeForPredicate( 2899 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2900 2901 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2902 if (C->isZero()) 2903 return; 2904 2905 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 2906 (OptForSizeBasedOnProfile && 2907 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 2908 "Cannot SCEV check stride or overflow when optimizing for size"); 2909 2910 SCEVCheckBlock->setName("vector.scevcheck"); 2911 // Create new preheader for vector loop. 2912 LoopVectorPreHeader = 2913 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2914 nullptr, "vector.ph"); 2915 2916 // Update dominator only if this is first RT check. 2917 if (LoopBypassBlocks.empty()) { 2918 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2919 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2920 } 2921 2922 ReplaceInstWithInst( 2923 SCEVCheckBlock->getTerminator(), 2924 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2925 LoopBypassBlocks.push_back(SCEVCheckBlock); 2926 AddedSafetyChecks = true; 2927 } 2928 2929 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2930 // VPlan-native path does not do any analysis for runtime checks currently. 2931 if (EnableVPlanNativePath) 2932 return; 2933 2934 // Reuse existing vector loop preheader for runtime memory checks. 2935 // Note that new preheader block is generated for vector loop. 2936 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2937 2938 // Generate the code that checks in runtime if arrays overlap. We put the 2939 // checks into a separate block to make the more common case of few elements 2940 // faster. 2941 auto *LAI = Legal->getLAI(); 2942 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2943 if (!RtPtrChecking.Need) 2944 return; 2945 2946 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 2947 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2948 "Cannot emit memory checks when optimizing for size, unless forced " 2949 "to vectorize."); 2950 ORE->emit([&]() { 2951 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2952 L->getStartLoc(), L->getHeader()) 2953 << "Code-size may be reduced by not forcing " 2954 "vectorization, or by source-code modifications " 2955 "eliminating the need for runtime checks " 2956 "(e.g., adding 'restrict')."; 2957 }); 2958 } 2959 2960 MemCheckBlock->setName("vector.memcheck"); 2961 // Create new preheader for vector loop. 2962 LoopVectorPreHeader = 2963 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2964 "vector.ph"); 2965 2966 auto *CondBranch = cast<BranchInst>( 2967 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 2968 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 2969 LoopBypassBlocks.push_back(MemCheckBlock); 2970 AddedSafetyChecks = true; 2971 2972 // Update dominator only if this is first RT check. 2973 if (LoopBypassBlocks.empty()) { 2974 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2975 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2976 } 2977 2978 Instruction *FirstCheckInst; 2979 Instruction *MemRuntimeCheck; 2980 std::tie(FirstCheckInst, MemRuntimeCheck) = 2981 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2982 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2983 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2984 "claimed checks are required"); 2985 CondBranch->setCondition(MemRuntimeCheck); 2986 2987 // We currently don't use LoopVersioning for the actual loop cloning but we 2988 // still use it to add the noalias metadata. 2989 LVer = std::make_unique<LoopVersioning>( 2990 *Legal->getLAI(), 2991 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 2992 DT, PSE.getSE()); 2993 LVer->prepareNoAliasMetadata(); 2994 } 2995 2996 Value *InnerLoopVectorizer::emitTransformedIndex( 2997 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2998 const InductionDescriptor &ID) const { 2999 3000 SCEVExpander Exp(*SE, DL, "induction"); 3001 auto Step = ID.getStep(); 3002 auto StartValue = ID.getStartValue(); 3003 assert(Index->getType() == Step->getType() && 3004 "Index type does not match StepValue type"); 3005 3006 // Note: the IR at this point is broken. We cannot use SE to create any new 3007 // SCEV and then expand it, hoping that SCEV's simplification will give us 3008 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3009 // lead to various SCEV crashes. So all we can do is to use builder and rely 3010 // on InstCombine for future simplifications. Here we handle some trivial 3011 // cases only. 3012 auto CreateAdd = [&B](Value *X, Value *Y) { 3013 assert(X->getType() == Y->getType() && "Types don't match!"); 3014 if (auto *CX = dyn_cast<ConstantInt>(X)) 3015 if (CX->isZero()) 3016 return Y; 3017 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3018 if (CY->isZero()) 3019 return X; 3020 return B.CreateAdd(X, Y); 3021 }; 3022 3023 auto CreateMul = [&B](Value *X, Value *Y) { 3024 assert(X->getType() == Y->getType() && "Types don't match!"); 3025 if (auto *CX = dyn_cast<ConstantInt>(X)) 3026 if (CX->isOne()) 3027 return Y; 3028 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3029 if (CY->isOne()) 3030 return X; 3031 return B.CreateMul(X, Y); 3032 }; 3033 3034 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3035 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3036 // the DomTree is not kept up-to-date for additional blocks generated in the 3037 // vector loop. By using the header as insertion point, we guarantee that the 3038 // expanded instructions dominate all their uses. 3039 auto GetInsertPoint = [this, &B]() { 3040 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3041 if (InsertBB != LoopVectorBody && 3042 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3043 return LoopVectorBody->getTerminator(); 3044 return &*B.GetInsertPoint(); 3045 }; 3046 switch (ID.getKind()) { 3047 case InductionDescriptor::IK_IntInduction: { 3048 assert(Index->getType() == StartValue->getType() && 3049 "Index type does not match StartValue type"); 3050 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3051 return B.CreateSub(StartValue, Index); 3052 auto *Offset = CreateMul( 3053 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3054 return CreateAdd(StartValue, Offset); 3055 } 3056 case InductionDescriptor::IK_PtrInduction: { 3057 assert(isa<SCEVConstant>(Step) && 3058 "Expected constant step for pointer induction"); 3059 return B.CreateGEP( 3060 StartValue->getType()->getPointerElementType(), StartValue, 3061 CreateMul(Index, 3062 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3063 } 3064 case InductionDescriptor::IK_FpInduction: { 3065 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3066 auto InductionBinOp = ID.getInductionBinOp(); 3067 assert(InductionBinOp && 3068 (InductionBinOp->getOpcode() == Instruction::FAdd || 3069 InductionBinOp->getOpcode() == Instruction::FSub) && 3070 "Original bin op should be defined for FP induction"); 3071 3072 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3073 3074 // Floating point operations had to be 'fast' to enable the induction. 3075 FastMathFlags Flags; 3076 Flags.setFast(); 3077 3078 Value *MulExp = B.CreateFMul(StepValue, Index); 3079 if (isa<Instruction>(MulExp)) 3080 // We have to check, the MulExp may be a constant. 3081 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3082 3083 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3084 "induction"); 3085 if (isa<Instruction>(BOp)) 3086 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3087 3088 return BOp; 3089 } 3090 case InductionDescriptor::IK_NoInduction: 3091 return nullptr; 3092 } 3093 llvm_unreachable("invalid enum"); 3094 } 3095 3096 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3097 LoopScalarBody = OrigLoop->getHeader(); 3098 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3099 LoopExitBlock = OrigLoop->getExitBlock(); 3100 assert(LoopExitBlock && "Must have an exit block"); 3101 assert(LoopVectorPreHeader && "Invalid loop structure"); 3102 3103 LoopMiddleBlock = 3104 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3105 LI, nullptr, Twine(Prefix) + "middle.block"); 3106 LoopScalarPreHeader = 3107 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3108 nullptr, Twine(Prefix) + "scalar.ph"); 3109 // We intentionally don't let SplitBlock to update LoopInfo since 3110 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3111 // LoopVectorBody is explicitly added to the correct place few lines later. 3112 LoopVectorBody = 3113 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3114 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3115 3116 // Update dominator for loop exit. 3117 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3118 3119 // Create and register the new vector loop. 3120 Loop *Lp = LI->AllocateLoop(); 3121 Loop *ParentLoop = OrigLoop->getParentLoop(); 3122 3123 // Insert the new loop into the loop nest and register the new basic blocks 3124 // before calling any utilities such as SCEV that require valid LoopInfo. 3125 if (ParentLoop) { 3126 ParentLoop->addChildLoop(Lp); 3127 } else { 3128 LI->addTopLevelLoop(Lp); 3129 } 3130 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3131 return Lp; 3132 } 3133 3134 void InnerLoopVectorizer::createInductionResumeValues(Loop *L, 3135 Value *VectorTripCount) { 3136 assert(VectorTripCount && L && "Expected valid arguments"); 3137 // We are going to resume the execution of the scalar loop. 3138 // Go over all of the induction variables that we found and fix the 3139 // PHIs that are left in the scalar version of the loop. 3140 // The starting values of PHI nodes depend on the counter of the last 3141 // iteration in the vectorized loop. 3142 // If we come from a bypass edge then we need to start from the original 3143 // start value. 3144 for (auto &InductionEntry : Legal->getInductionVars()) { 3145 PHINode *OrigPhi = InductionEntry.first; 3146 InductionDescriptor II = InductionEntry.second; 3147 3148 // Create phi nodes to merge from the backedge-taken check block. 3149 PHINode *BCResumeVal = 3150 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3151 LoopScalarPreHeader->getTerminator()); 3152 // Copy original phi DL over to the new one. 3153 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3154 Value *&EndValue = IVEndValues[OrigPhi]; 3155 if (OrigPhi == OldInduction) { 3156 // We know what the end value is. 3157 EndValue = VectorTripCount; 3158 } else { 3159 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3160 Type *StepType = II.getStep()->getType(); 3161 Instruction::CastOps CastOp = 3162 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3163 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3164 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3165 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3166 EndValue->setName("ind.end"); 3167 } 3168 3169 // The new PHI merges the original incoming value, in case of a bypass, 3170 // or the value at the end of the vectorized loop. 3171 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3172 3173 // Fix the scalar body counter (PHI node). 3174 // The old induction's phi node in the scalar body needs the truncated 3175 // value. 3176 for (BasicBlock *BB : LoopBypassBlocks) 3177 BCResumeVal->addIncoming(II.getStartValue(), BB); 3178 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3179 } 3180 } 3181 3182 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3183 MDNode *OrigLoopID) { 3184 assert(L && "Expected valid loop."); 3185 3186 // The trip counts should be cached by now. 3187 Value *Count = getOrCreateTripCount(L); 3188 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3189 3190 // We need the OrigLoop (scalar loop part) latch terminator to help 3191 // produce correct debug info for the middle block BB instructions. 3192 // The legality check stage guarantees that the loop will have a single 3193 // latch. 3194 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3195 "Scalar loop latch terminator isn't a branch"); 3196 BranchInst *ScalarLatchBr = 3197 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3198 3199 // Add a check in the middle block to see if we have completed 3200 // all of the iterations in the first vector loop. 3201 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3202 // If tail is to be folded, we know we don't need to run the remainder. 3203 Value *CmpN = Builder.getTrue(); 3204 if (!Cost->foldTailByMasking()) { 3205 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3206 VectorTripCount, "cmp.n", 3207 LoopMiddleBlock->getTerminator()); 3208 3209 // Here we use the same DebugLoc as the scalar loop latch branch instead 3210 // of the corresponding compare because they may have ended up with 3211 // different line numbers and we want to avoid awkward line stepping while 3212 // debugging. Eg. if the compare has got a line number inside the loop. 3213 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3214 } 3215 3216 BranchInst *BrInst = 3217 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3218 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3219 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3220 3221 // Get ready to start creating new instructions into the vectorized body. 3222 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3223 "Inconsistent vector loop preheader"); 3224 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3225 3226 Optional<MDNode *> VectorizedLoopID = 3227 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3228 LLVMLoopVectorizeFollowupVectorized}); 3229 if (VectorizedLoopID.hasValue()) { 3230 L->setLoopID(VectorizedLoopID.getValue()); 3231 3232 // Do not setAlreadyVectorized if loop attributes have been defined 3233 // explicitly. 3234 return LoopVectorPreHeader; 3235 } 3236 3237 // Keep all loop hints from the original loop on the vector loop (we'll 3238 // replace the vectorizer-specific hints below). 3239 if (MDNode *LID = OrigLoop->getLoopID()) 3240 L->setLoopID(LID); 3241 3242 LoopVectorizeHints Hints(L, true, *ORE); 3243 Hints.setAlreadyVectorized(); 3244 3245 #ifdef EXPENSIVE_CHECKS 3246 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3247 LI->verify(*DT); 3248 #endif 3249 3250 return LoopVectorPreHeader; 3251 } 3252 3253 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3254 /* 3255 In this function we generate a new loop. The new loop will contain 3256 the vectorized instructions while the old loop will continue to run the 3257 scalar remainder. 3258 3259 [ ] <-- loop iteration number check. 3260 / | 3261 / v 3262 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3263 | / | 3264 | / v 3265 || [ ] <-- vector pre header. 3266 |/ | 3267 | v 3268 | [ ] \ 3269 | [ ]_| <-- vector loop. 3270 | | 3271 | v 3272 | -[ ] <--- middle-block. 3273 | / | 3274 | / v 3275 -|- >[ ] <--- new preheader. 3276 | | 3277 | v 3278 | [ ] \ 3279 | [ ]_| <-- old scalar loop to handle remainder. 3280 \ | 3281 \ v 3282 >[ ] <-- exit block. 3283 ... 3284 */ 3285 3286 // Get the metadata of the original loop before it gets modified. 3287 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3288 3289 // Create an empty vector loop, and prepare basic blocks for the runtime 3290 // checks. 3291 Loop *Lp = createVectorLoopSkeleton(""); 3292 3293 // Now, compare the new count to zero. If it is zero skip the vector loop and 3294 // jump to the scalar loop. This check also covers the case where the 3295 // backedge-taken count is uint##_max: adding one to it will overflow leading 3296 // to an incorrect trip count of zero. In this (rare) case we will also jump 3297 // to the scalar loop. 3298 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3299 3300 // Generate the code to check any assumptions that we've made for SCEV 3301 // expressions. 3302 emitSCEVChecks(Lp, LoopScalarPreHeader); 3303 3304 // Generate the code that checks in runtime if arrays overlap. We put the 3305 // checks into a separate block to make the more common case of few elements 3306 // faster. 3307 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3308 3309 // Some loops have a single integer induction variable, while other loops 3310 // don't. One example is c++ iterators that often have multiple pointer 3311 // induction variables. In the code below we also support a case where we 3312 // don't have a single induction variable. 3313 // 3314 // We try to obtain an induction variable from the original loop as hard 3315 // as possible. However if we don't find one that: 3316 // - is an integer 3317 // - counts from zero, stepping by one 3318 // - is the size of the widest induction variable type 3319 // then we create a new one. 3320 OldInduction = Legal->getPrimaryInduction(); 3321 Type *IdxTy = Legal->getWidestInductionType(); 3322 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3323 // The loop step is equal to the vectorization factor (num of SIMD elements) 3324 // times the unroll factor (num of SIMD instructions). 3325 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3326 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 3327 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3328 Induction = 3329 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3330 getDebugLocFromInstOrOperands(OldInduction)); 3331 3332 // Emit phis for the new starting index of the scalar loop. 3333 createInductionResumeValues(Lp, CountRoundDown); 3334 3335 return completeLoopSkeleton(Lp, OrigLoopID); 3336 } 3337 3338 // Fix up external users of the induction variable. At this point, we are 3339 // in LCSSA form, with all external PHIs that use the IV having one input value, 3340 // coming from the remainder loop. We need those PHIs to also have a correct 3341 // value for the IV when arriving directly from the middle block. 3342 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3343 const InductionDescriptor &II, 3344 Value *CountRoundDown, Value *EndValue, 3345 BasicBlock *MiddleBlock) { 3346 // There are two kinds of external IV usages - those that use the value 3347 // computed in the last iteration (the PHI) and those that use the penultimate 3348 // value (the value that feeds into the phi from the loop latch). 3349 // We allow both, but they, obviously, have different values. 3350 3351 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3352 3353 DenseMap<Value *, Value *> MissingVals; 3354 3355 // An external user of the last iteration's value should see the value that 3356 // the remainder loop uses to initialize its own IV. 3357 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3358 for (User *U : PostInc->users()) { 3359 Instruction *UI = cast<Instruction>(U); 3360 if (!OrigLoop->contains(UI)) { 3361 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3362 MissingVals[UI] = EndValue; 3363 } 3364 } 3365 3366 // An external user of the penultimate value need to see EndValue - Step. 3367 // The simplest way to get this is to recompute it from the constituent SCEVs, 3368 // that is Start + (Step * (CRD - 1)). 3369 for (User *U : OrigPhi->users()) { 3370 auto *UI = cast<Instruction>(U); 3371 if (!OrigLoop->contains(UI)) { 3372 const DataLayout &DL = 3373 OrigLoop->getHeader()->getModule()->getDataLayout(); 3374 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3375 3376 IRBuilder<> B(MiddleBlock->getTerminator()); 3377 Value *CountMinusOne = B.CreateSub( 3378 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3379 Value *CMO = 3380 !II.getStep()->getType()->isIntegerTy() 3381 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3382 II.getStep()->getType()) 3383 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3384 CMO->setName("cast.cmo"); 3385 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3386 Escape->setName("ind.escape"); 3387 MissingVals[UI] = Escape; 3388 } 3389 } 3390 3391 for (auto &I : MissingVals) { 3392 PHINode *PHI = cast<PHINode>(I.first); 3393 // One corner case we have to handle is two IVs "chasing" each-other, 3394 // that is %IV2 = phi [...], [ %IV1, %latch ] 3395 // In this case, if IV1 has an external use, we need to avoid adding both 3396 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3397 // don't already have an incoming value for the middle block. 3398 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3399 PHI->addIncoming(I.second, MiddleBlock); 3400 } 3401 } 3402 3403 namespace { 3404 3405 struct CSEDenseMapInfo { 3406 static bool canHandle(const Instruction *I) { 3407 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3408 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3409 } 3410 3411 static inline Instruction *getEmptyKey() { 3412 return DenseMapInfo<Instruction *>::getEmptyKey(); 3413 } 3414 3415 static inline Instruction *getTombstoneKey() { 3416 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3417 } 3418 3419 static unsigned getHashValue(const Instruction *I) { 3420 assert(canHandle(I) && "Unknown instruction!"); 3421 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3422 I->value_op_end())); 3423 } 3424 3425 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3426 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3427 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3428 return LHS == RHS; 3429 return LHS->isIdenticalTo(RHS); 3430 } 3431 }; 3432 3433 } // end anonymous namespace 3434 3435 ///Perform cse of induction variable instructions. 3436 static void cse(BasicBlock *BB) { 3437 // Perform simple cse. 3438 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3439 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3440 Instruction *In = &*I++; 3441 3442 if (!CSEDenseMapInfo::canHandle(In)) 3443 continue; 3444 3445 // Check if we can replace this instruction with any of the 3446 // visited instructions. 3447 if (Instruction *V = CSEMap.lookup(In)) { 3448 In->replaceAllUsesWith(V); 3449 In->eraseFromParent(); 3450 continue; 3451 } 3452 3453 CSEMap[In] = In; 3454 } 3455 } 3456 3457 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3458 ElementCount VF, 3459 bool &NeedToScalarize) { 3460 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3461 Function *F = CI->getCalledFunction(); 3462 Type *ScalarRetTy = CI->getType(); 3463 SmallVector<Type *, 4> Tys, ScalarTys; 3464 for (auto &ArgOp : CI->arg_operands()) 3465 ScalarTys.push_back(ArgOp->getType()); 3466 3467 // Estimate cost of scalarized vector call. The source operands are assumed 3468 // to be vectors, so we need to extract individual elements from there, 3469 // execute VF scalar calls, and then gather the result into the vector return 3470 // value. 3471 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3472 TTI::TCK_RecipThroughput); 3473 if (VF.isScalar()) 3474 return ScalarCallCost; 3475 3476 // Compute corresponding vector type for return value and arguments. 3477 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3478 for (Type *ScalarTy : ScalarTys) 3479 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3480 3481 // Compute costs of unpacking argument values for the scalar calls and 3482 // packing the return values to a vector. 3483 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3484 3485 unsigned Cost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3486 3487 // If we can't emit a vector call for this function, then the currently found 3488 // cost is the cost we need to return. 3489 NeedToScalarize = true; 3490 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3491 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3492 3493 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3494 return Cost; 3495 3496 // If the corresponding vector cost is cheaper, return its cost. 3497 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3498 TTI::TCK_RecipThroughput); 3499 if (VectorCallCost < Cost) { 3500 NeedToScalarize = false; 3501 return VectorCallCost; 3502 } 3503 return Cost; 3504 } 3505 3506 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3507 ElementCount VF) { 3508 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3509 assert(ID && "Expected intrinsic call!"); 3510 3511 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3512 return TTI.getIntrinsicInstrCost(CostAttrs, 3513 TargetTransformInfo::TCK_RecipThroughput); 3514 } 3515 3516 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3517 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3518 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3519 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3520 } 3521 3522 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3523 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3524 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3525 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3526 } 3527 3528 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3529 // For every instruction `I` in MinBWs, truncate the operands, create a 3530 // truncated version of `I` and reextend its result. InstCombine runs 3531 // later and will remove any ext/trunc pairs. 3532 SmallPtrSet<Value *, 4> Erased; 3533 for (const auto &KV : Cost->getMinimalBitwidths()) { 3534 // If the value wasn't vectorized, we must maintain the original scalar 3535 // type. The absence of the value from VectorLoopValueMap indicates that it 3536 // wasn't vectorized. 3537 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3538 continue; 3539 for (unsigned Part = 0; Part < UF; ++Part) { 3540 Value *I = getOrCreateVectorValue(KV.first, Part); 3541 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3542 continue; 3543 Type *OriginalTy = I->getType(); 3544 Type *ScalarTruncatedTy = 3545 IntegerType::get(OriginalTy->getContext(), KV.second); 3546 auto *TruncatedTy = FixedVectorType::get( 3547 ScalarTruncatedTy, 3548 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3549 if (TruncatedTy == OriginalTy) 3550 continue; 3551 3552 IRBuilder<> B(cast<Instruction>(I)); 3553 auto ShrinkOperand = [&](Value *V) -> Value * { 3554 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3555 if (ZI->getSrcTy() == TruncatedTy) 3556 return ZI->getOperand(0); 3557 return B.CreateZExtOrTrunc(V, TruncatedTy); 3558 }; 3559 3560 // The actual instruction modification depends on the instruction type, 3561 // unfortunately. 3562 Value *NewI = nullptr; 3563 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3564 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3565 ShrinkOperand(BO->getOperand(1))); 3566 3567 // Any wrapping introduced by shrinking this operation shouldn't be 3568 // considered undefined behavior. So, we can't unconditionally copy 3569 // arithmetic wrapping flags to NewI. 3570 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3571 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3572 NewI = 3573 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3574 ShrinkOperand(CI->getOperand(1))); 3575 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3576 NewI = B.CreateSelect(SI->getCondition(), 3577 ShrinkOperand(SI->getTrueValue()), 3578 ShrinkOperand(SI->getFalseValue())); 3579 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3580 switch (CI->getOpcode()) { 3581 default: 3582 llvm_unreachable("Unhandled cast!"); 3583 case Instruction::Trunc: 3584 NewI = ShrinkOperand(CI->getOperand(0)); 3585 break; 3586 case Instruction::SExt: 3587 NewI = B.CreateSExtOrTrunc( 3588 CI->getOperand(0), 3589 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3590 break; 3591 case Instruction::ZExt: 3592 NewI = B.CreateZExtOrTrunc( 3593 CI->getOperand(0), 3594 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3595 break; 3596 } 3597 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3598 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3599 ->getNumElements(); 3600 auto *O0 = B.CreateZExtOrTrunc( 3601 SI->getOperand(0), 3602 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3603 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3604 ->getNumElements(); 3605 auto *O1 = B.CreateZExtOrTrunc( 3606 SI->getOperand(1), 3607 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3608 3609 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3610 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3611 // Don't do anything with the operands, just extend the result. 3612 continue; 3613 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3614 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3615 ->getNumElements(); 3616 auto *O0 = B.CreateZExtOrTrunc( 3617 IE->getOperand(0), 3618 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3619 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3620 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3621 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3622 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3623 ->getNumElements(); 3624 auto *O0 = B.CreateZExtOrTrunc( 3625 EE->getOperand(0), 3626 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3627 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3628 } else { 3629 // If we don't know what to do, be conservative and don't do anything. 3630 continue; 3631 } 3632 3633 // Lastly, extend the result. 3634 NewI->takeName(cast<Instruction>(I)); 3635 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3636 I->replaceAllUsesWith(Res); 3637 cast<Instruction>(I)->eraseFromParent(); 3638 Erased.insert(I); 3639 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3640 } 3641 } 3642 3643 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3644 for (const auto &KV : Cost->getMinimalBitwidths()) { 3645 // If the value wasn't vectorized, we must maintain the original scalar 3646 // type. The absence of the value from VectorLoopValueMap indicates that it 3647 // wasn't vectorized. 3648 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3649 continue; 3650 for (unsigned Part = 0; Part < UF; ++Part) { 3651 Value *I = getOrCreateVectorValue(KV.first, Part); 3652 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3653 if (Inst && Inst->use_empty()) { 3654 Value *NewI = Inst->getOperand(0); 3655 Inst->eraseFromParent(); 3656 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3657 } 3658 } 3659 } 3660 } 3661 3662 void InnerLoopVectorizer::fixVectorizedLoop() { 3663 // Insert truncates and extends for any truncated instructions as hints to 3664 // InstCombine. 3665 if (VF.isVector()) 3666 truncateToMinimalBitwidths(); 3667 3668 // Fix widened non-induction PHIs by setting up the PHI operands. 3669 if (OrigPHIsToFix.size()) { 3670 assert(EnableVPlanNativePath && 3671 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3672 fixNonInductionPHIs(); 3673 } 3674 3675 // At this point every instruction in the original loop is widened to a 3676 // vector form. Now we need to fix the recurrences in the loop. These PHI 3677 // nodes are currently empty because we did not want to introduce cycles. 3678 // This is the second stage of vectorizing recurrences. 3679 fixCrossIterationPHIs(); 3680 3681 // Forget the original basic block. 3682 PSE.getSE()->forgetLoop(OrigLoop); 3683 3684 // Fix-up external users of the induction variables. 3685 for (auto &Entry : Legal->getInductionVars()) 3686 fixupIVUsers(Entry.first, Entry.second, 3687 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3688 IVEndValues[Entry.first], LoopMiddleBlock); 3689 3690 fixLCSSAPHIs(); 3691 for (Instruction *PI : PredicatedInstructions) 3692 sinkScalarOperands(&*PI); 3693 3694 // Remove redundant induction instructions. 3695 cse(LoopVectorBody); 3696 3697 // Set/update profile weights for the vector and remainder loops as original 3698 // loop iterations are now distributed among them. Note that original loop 3699 // represented by LoopScalarBody becomes remainder loop after vectorization. 3700 // 3701 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3702 // end up getting slightly roughened result but that should be OK since 3703 // profile is not inherently precise anyway. Note also possible bypass of 3704 // vector code caused by legality checks is ignored, assigning all the weight 3705 // to the vector loop, optimistically. 3706 assert(!VF.isScalable() && 3707 "cannot use scalable ElementCount to determine unroll factor"); 3708 setProfileInfoAfterUnrolling( 3709 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3710 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3711 } 3712 3713 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3714 // In order to support recurrences we need to be able to vectorize Phi nodes. 3715 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3716 // stage #2: We now need to fix the recurrences by adding incoming edges to 3717 // the currently empty PHI nodes. At this point every instruction in the 3718 // original loop is widened to a vector form so we can use them to construct 3719 // the incoming edges. 3720 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3721 // Handle first-order recurrences and reductions that need to be fixed. 3722 if (Legal->isFirstOrderRecurrence(&Phi)) 3723 fixFirstOrderRecurrence(&Phi); 3724 else if (Legal->isReductionVariable(&Phi)) 3725 fixReduction(&Phi); 3726 } 3727 } 3728 3729 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3730 // This is the second phase of vectorizing first-order recurrences. An 3731 // overview of the transformation is described below. Suppose we have the 3732 // following loop. 3733 // 3734 // for (int i = 0; i < n; ++i) 3735 // b[i] = a[i] - a[i - 1]; 3736 // 3737 // There is a first-order recurrence on "a". For this loop, the shorthand 3738 // scalar IR looks like: 3739 // 3740 // scalar.ph: 3741 // s_init = a[-1] 3742 // br scalar.body 3743 // 3744 // scalar.body: 3745 // i = phi [0, scalar.ph], [i+1, scalar.body] 3746 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3747 // s2 = a[i] 3748 // b[i] = s2 - s1 3749 // br cond, scalar.body, ... 3750 // 3751 // In this example, s1 is a recurrence because it's value depends on the 3752 // previous iteration. In the first phase of vectorization, we created a 3753 // temporary value for s1. We now complete the vectorization and produce the 3754 // shorthand vector IR shown below (for VF = 4, UF = 1). 3755 // 3756 // vector.ph: 3757 // v_init = vector(..., ..., ..., a[-1]) 3758 // br vector.body 3759 // 3760 // vector.body 3761 // i = phi [0, vector.ph], [i+4, vector.body] 3762 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3763 // v2 = a[i, i+1, i+2, i+3]; 3764 // v3 = vector(v1(3), v2(0, 1, 2)) 3765 // b[i, i+1, i+2, i+3] = v2 - v3 3766 // br cond, vector.body, middle.block 3767 // 3768 // middle.block: 3769 // x = v2(3) 3770 // br scalar.ph 3771 // 3772 // scalar.ph: 3773 // s_init = phi [x, middle.block], [a[-1], otherwise] 3774 // br scalar.body 3775 // 3776 // After execution completes the vector loop, we extract the next value of 3777 // the recurrence (x) to use as the initial value in the scalar loop. 3778 3779 // Get the original loop preheader and single loop latch. 3780 auto *Preheader = OrigLoop->getLoopPreheader(); 3781 auto *Latch = OrigLoop->getLoopLatch(); 3782 3783 // Get the initial and previous values of the scalar recurrence. 3784 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3785 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3786 3787 // Create a vector from the initial value. 3788 auto *VectorInit = ScalarInit; 3789 if (VF.isVector()) { 3790 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3791 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 3792 VectorInit = Builder.CreateInsertElement( 3793 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3794 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 3795 } 3796 3797 // We constructed a temporary phi node in the first phase of vectorization. 3798 // This phi node will eventually be deleted. 3799 Builder.SetInsertPoint( 3800 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3801 3802 // Create a phi node for the new recurrence. The current value will either be 3803 // the initial value inserted into a vector or loop-varying vector value. 3804 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3805 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3806 3807 // Get the vectorized previous value of the last part UF - 1. It appears last 3808 // among all unrolled iterations, due to the order of their construction. 3809 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3810 3811 // Find and set the insertion point after the previous value if it is an 3812 // instruction. 3813 BasicBlock::iterator InsertPt; 3814 // Note that the previous value may have been constant-folded so it is not 3815 // guaranteed to be an instruction in the vector loop. 3816 // FIXME: Loop invariant values do not form recurrences. We should deal with 3817 // them earlier. 3818 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3819 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3820 else { 3821 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3822 if (isa<PHINode>(PreviousLastPart)) 3823 // If the previous value is a phi node, we should insert after all the phi 3824 // nodes in the block containing the PHI to avoid breaking basic block 3825 // verification. Note that the basic block may be different to 3826 // LoopVectorBody, in case we predicate the loop. 3827 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3828 else 3829 InsertPt = ++PreviousInst->getIterator(); 3830 } 3831 Builder.SetInsertPoint(&*InsertPt); 3832 3833 // We will construct a vector for the recurrence by combining the values for 3834 // the current and previous iterations. This is the required shuffle mask. 3835 assert(!VF.isScalable()); 3836 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 3837 ShuffleMask[0] = VF.getKnownMinValue() - 1; 3838 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 3839 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 3840 3841 // The vector from which to take the initial value for the current iteration 3842 // (actual or unrolled). Initially, this is the vector phi node. 3843 Value *Incoming = VecPhi; 3844 3845 // Shuffle the current and previous vector and update the vector parts. 3846 for (unsigned Part = 0; Part < UF; ++Part) { 3847 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3848 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3849 auto *Shuffle = 3850 VF.isVector() 3851 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 3852 : Incoming; 3853 PhiPart->replaceAllUsesWith(Shuffle); 3854 cast<Instruction>(PhiPart)->eraseFromParent(); 3855 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3856 Incoming = PreviousPart; 3857 } 3858 3859 // Fix the latch value of the new recurrence in the vector loop. 3860 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3861 3862 // Extract the last vector element in the middle block. This will be the 3863 // initial value for the recurrence when jumping to the scalar loop. 3864 auto *ExtractForScalar = Incoming; 3865 if (VF.isVector()) { 3866 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3867 ExtractForScalar = Builder.CreateExtractElement( 3868 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 3869 "vector.recur.extract"); 3870 } 3871 // Extract the second last element in the middle block if the 3872 // Phi is used outside the loop. We need to extract the phi itself 3873 // and not the last element (the phi update in the current iteration). This 3874 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3875 // when the scalar loop is not run at all. 3876 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3877 if (VF.isVector()) 3878 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3879 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 3880 "vector.recur.extract.for.phi"); 3881 // When loop is unrolled without vectorizing, initialize 3882 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3883 // `Incoming`. This is analogous to the vectorized case above: extracting the 3884 // second last element when VF > 1. 3885 else if (UF > 1) 3886 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3887 3888 // Fix the initial value of the original recurrence in the scalar loop. 3889 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3890 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3891 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3892 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3893 Start->addIncoming(Incoming, BB); 3894 } 3895 3896 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3897 Phi->setName("scalar.recur"); 3898 3899 // Finally, fix users of the recurrence outside the loop. The users will need 3900 // either the last value of the scalar recurrence or the last value of the 3901 // vector recurrence we extracted in the middle block. Since the loop is in 3902 // LCSSA form, we just need to find all the phi nodes for the original scalar 3903 // recurrence in the exit block, and then add an edge for the middle block. 3904 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3905 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3906 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3907 } 3908 } 3909 } 3910 3911 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3912 Constant *Zero = Builder.getInt32(0); 3913 3914 // Get it's reduction variable descriptor. 3915 assert(Legal->isReductionVariable(Phi) && 3916 "Unable to find the reduction variable"); 3917 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3918 3919 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3920 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3921 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3922 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3923 RdxDesc.getMinMaxRecurrenceKind(); 3924 setDebugLocFromInst(Builder, ReductionStartValue); 3925 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 3926 3927 // We need to generate a reduction vector from the incoming scalar. 3928 // To do so, we need to generate the 'identity' vector and override 3929 // one of the elements with the incoming scalar reduction. We need 3930 // to do it in the vector-loop preheader. 3931 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3932 3933 // This is the vector-clone of the value that leaves the loop. 3934 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3935 3936 // Find the reduction identity variable. Zero for addition, or, xor, 3937 // one for multiplication, -1 for And. 3938 Value *Identity; 3939 Value *VectorStart; 3940 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3941 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3942 // MinMax reduction have the start value as their identify. 3943 if (VF.isScalar() || IsInLoopReductionPhi) { 3944 VectorStart = Identity = ReductionStartValue; 3945 } else { 3946 VectorStart = Identity = 3947 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3948 } 3949 } else { 3950 // Handle other reduction kinds: 3951 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3952 RK, MinMaxKind, VecTy->getScalarType()); 3953 if (VF.isScalar() || IsInLoopReductionPhi) { 3954 Identity = Iden; 3955 // This vector is the Identity vector where the first element is the 3956 // incoming scalar reduction. 3957 VectorStart = ReductionStartValue; 3958 } else { 3959 Identity = ConstantVector::getSplat(VF, Iden); 3960 3961 // This vector is the Identity vector where the first element is the 3962 // incoming scalar reduction. 3963 VectorStart = 3964 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3965 } 3966 } 3967 3968 // Wrap flags are in general invalid after vectorization, clear them. 3969 clearReductionWrapFlags(RdxDesc); 3970 3971 // Fix the vector-loop phi. 3972 3973 // Reductions do not have to start at zero. They can start with 3974 // any loop invariant values. 3975 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3976 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3977 3978 for (unsigned Part = 0; Part < UF; ++Part) { 3979 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3980 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3981 // Make sure to add the reduction start value only to the 3982 // first unroll part. 3983 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3984 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3985 cast<PHINode>(VecRdxPhi) 3986 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3987 } 3988 3989 // Before each round, move the insertion point right between 3990 // the PHIs and the values we are going to write. 3991 // This allows us to write both PHINodes and the extractelement 3992 // instructions. 3993 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3994 3995 setDebugLocFromInst(Builder, LoopExitInst); 3996 3997 // If tail is folded by masking, the vector value to leave the loop should be 3998 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3999 // instead of the former. For an inloop reduction the reduction will already 4000 // be predicated, and does not need to be handled here. 4001 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4002 for (unsigned Part = 0; Part < UF; ++Part) { 4003 Value *VecLoopExitInst = 4004 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4005 Value *Sel = nullptr; 4006 for (User *U : VecLoopExitInst->users()) { 4007 if (isa<SelectInst>(U)) { 4008 assert(!Sel && "Reduction exit feeding two selects"); 4009 Sel = U; 4010 } else 4011 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4012 } 4013 assert(Sel && "Reduction exit feeds no select"); 4014 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 4015 4016 // If the target can create a predicated operator for the reduction at no 4017 // extra cost in the loop (for example a predicated vadd), it can be 4018 // cheaper for the select to remain in the loop than be sunk out of it, 4019 // and so use the select value for the phi instead of the old 4020 // LoopExitValue. 4021 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4022 if (PreferPredicatedReductionSelect || 4023 TTI->preferPredicatedReductionSelect( 4024 RdxDesc.getRecurrenceBinOp(), Phi->getType(), 4025 TargetTransformInfo::ReductionFlags())) { 4026 auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part)); 4027 VecRdxPhi->setIncomingValueForBlock( 4028 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4029 } 4030 } 4031 } 4032 4033 // If the vector reduction can be performed in a smaller type, we truncate 4034 // then extend the loop exit value to enable InstCombine to evaluate the 4035 // entire expression in the smaller type. 4036 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4037 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4038 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4039 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4040 Builder.SetInsertPoint( 4041 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4042 VectorParts RdxParts(UF); 4043 for (unsigned Part = 0; Part < UF; ++Part) { 4044 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4045 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4046 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4047 : Builder.CreateZExt(Trunc, VecTy); 4048 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4049 UI != RdxParts[Part]->user_end();) 4050 if (*UI != Trunc) { 4051 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4052 RdxParts[Part] = Extnd; 4053 } else { 4054 ++UI; 4055 } 4056 } 4057 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4058 for (unsigned Part = 0; Part < UF; ++Part) { 4059 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4060 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4061 } 4062 } 4063 4064 // Reduce all of the unrolled parts into a single vector. 4065 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4066 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4067 4068 // The middle block terminator has already been assigned a DebugLoc here (the 4069 // OrigLoop's single latch terminator). We want the whole middle block to 4070 // appear to execute on this line because: (a) it is all compiler generated, 4071 // (b) these instructions are always executed after evaluating the latch 4072 // conditional branch, and (c) other passes may add new predecessors which 4073 // terminate on this line. This is the easiest way to ensure we don't 4074 // accidentally cause an extra step back into the loop while debugging. 4075 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4076 for (unsigned Part = 1; Part < UF; ++Part) { 4077 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4078 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4079 // Floating point operations had to be 'fast' to enable the reduction. 4080 ReducedPartRdx = addFastMathFlag( 4081 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4082 ReducedPartRdx, "bin.rdx"), 4083 RdxDesc.getFastMathFlags()); 4084 else 4085 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 4086 RdxPart); 4087 } 4088 4089 // Create the reduction after the loop. Note that inloop reductions create the 4090 // target reduction in the loop using a Reduction recipe. 4091 if (VF.isVector() && !IsInLoopReductionPhi) { 4092 bool NoNaN = Legal->hasFunNoNaNAttr(); 4093 ReducedPartRdx = 4094 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4095 // If the reduction can be performed in a smaller type, we need to extend 4096 // the reduction to the wider type before we branch to the original loop. 4097 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4098 ReducedPartRdx = 4099 RdxDesc.isSigned() 4100 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4101 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4102 } 4103 4104 // Create a phi node that merges control-flow from the backedge-taken check 4105 // block and the middle block. 4106 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4107 LoopScalarPreHeader->getTerminator()); 4108 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4109 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4110 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4111 4112 // Now, we need to fix the users of the reduction variable 4113 // inside and outside of the scalar remainder loop. 4114 // We know that the loop is in LCSSA form. We need to update the 4115 // PHI nodes in the exit blocks. 4116 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4117 // All PHINodes need to have a single entry edge, or two if 4118 // we already fixed them. 4119 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4120 4121 // We found a reduction value exit-PHI. Update it with the 4122 // incoming bypass edge. 4123 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4124 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4125 } // end of the LCSSA phi scan. 4126 4127 // Fix the scalar loop reduction variable with the incoming reduction sum 4128 // from the vector body and from the backedge value. 4129 int IncomingEdgeBlockIdx = 4130 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4131 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4132 // Pick the other block. 4133 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4134 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4135 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4136 } 4137 4138 void InnerLoopVectorizer::clearReductionWrapFlags( 4139 RecurrenceDescriptor &RdxDesc) { 4140 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4141 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 4142 RK != RecurrenceDescriptor::RK_IntegerMult) 4143 return; 4144 4145 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4146 assert(LoopExitInstr && "null loop exit instruction"); 4147 SmallVector<Instruction *, 8> Worklist; 4148 SmallPtrSet<Instruction *, 8> Visited; 4149 Worklist.push_back(LoopExitInstr); 4150 Visited.insert(LoopExitInstr); 4151 4152 while (!Worklist.empty()) { 4153 Instruction *Cur = Worklist.pop_back_val(); 4154 if (isa<OverflowingBinaryOperator>(Cur)) 4155 for (unsigned Part = 0; Part < UF; ++Part) { 4156 Value *V = getOrCreateVectorValue(Cur, Part); 4157 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4158 } 4159 4160 for (User *U : Cur->users()) { 4161 Instruction *UI = cast<Instruction>(U); 4162 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4163 Visited.insert(UI).second) 4164 Worklist.push_back(UI); 4165 } 4166 } 4167 } 4168 4169 void InnerLoopVectorizer::fixLCSSAPHIs() { 4170 assert(!VF.isScalable() && "the code below assumes fixed width vectors"); 4171 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4172 if (LCSSAPhi.getNumIncomingValues() == 1) { 4173 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4174 // Non-instruction incoming values will have only one value. 4175 unsigned LastLane = 0; 4176 if (isa<Instruction>(IncomingValue)) 4177 LastLane = Cost->isUniformAfterVectorization( 4178 cast<Instruction>(IncomingValue), VF) 4179 ? 0 4180 : VF.getKnownMinValue() - 1; 4181 // Can be a loop invariant incoming value or the last scalar value to be 4182 // extracted from the vectorized loop. 4183 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4184 Value *lastIncomingValue = 4185 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 4186 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4187 } 4188 } 4189 } 4190 4191 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4192 // The basic block and loop containing the predicated instruction. 4193 auto *PredBB = PredInst->getParent(); 4194 auto *VectorLoop = LI->getLoopFor(PredBB); 4195 4196 // Initialize a worklist with the operands of the predicated instruction. 4197 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4198 4199 // Holds instructions that we need to analyze again. An instruction may be 4200 // reanalyzed if we don't yet know if we can sink it or not. 4201 SmallVector<Instruction *, 8> InstsToReanalyze; 4202 4203 // Returns true if a given use occurs in the predicated block. Phi nodes use 4204 // their operands in their corresponding predecessor blocks. 4205 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4206 auto *I = cast<Instruction>(U.getUser()); 4207 BasicBlock *BB = I->getParent(); 4208 if (auto *Phi = dyn_cast<PHINode>(I)) 4209 BB = Phi->getIncomingBlock( 4210 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4211 return BB == PredBB; 4212 }; 4213 4214 // Iteratively sink the scalarized operands of the predicated instruction 4215 // into the block we created for it. When an instruction is sunk, it's 4216 // operands are then added to the worklist. The algorithm ends after one pass 4217 // through the worklist doesn't sink a single instruction. 4218 bool Changed; 4219 do { 4220 // Add the instructions that need to be reanalyzed to the worklist, and 4221 // reset the changed indicator. 4222 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4223 InstsToReanalyze.clear(); 4224 Changed = false; 4225 4226 while (!Worklist.empty()) { 4227 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4228 4229 // We can't sink an instruction if it is a phi node, is already in the 4230 // predicated block, is not in the loop, or may have side effects. 4231 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4232 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4233 continue; 4234 4235 // It's legal to sink the instruction if all its uses occur in the 4236 // predicated block. Otherwise, there's nothing to do yet, and we may 4237 // need to reanalyze the instruction. 4238 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4239 InstsToReanalyze.push_back(I); 4240 continue; 4241 } 4242 4243 // Move the instruction to the beginning of the predicated block, and add 4244 // it's operands to the worklist. 4245 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4246 Worklist.insert(I->op_begin(), I->op_end()); 4247 4248 // The sinking may have enabled other instructions to be sunk, so we will 4249 // need to iterate. 4250 Changed = true; 4251 } 4252 } while (Changed); 4253 } 4254 4255 void InnerLoopVectorizer::fixNonInductionPHIs() { 4256 for (PHINode *OrigPhi : OrigPHIsToFix) { 4257 PHINode *NewPhi = 4258 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4259 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4260 4261 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4262 predecessors(OrigPhi->getParent())); 4263 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4264 predecessors(NewPhi->getParent())); 4265 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4266 "Scalar and Vector BB should have the same number of predecessors"); 4267 4268 // The insertion point in Builder may be invalidated by the time we get 4269 // here. Force the Builder insertion point to something valid so that we do 4270 // not run into issues during insertion point restore in 4271 // getOrCreateVectorValue calls below. 4272 Builder.SetInsertPoint(NewPhi); 4273 4274 // The predecessor order is preserved and we can rely on mapping between 4275 // scalar and vector block predecessors. 4276 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4277 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4278 4279 // When looking up the new scalar/vector values to fix up, use incoming 4280 // values from original phi. 4281 Value *ScIncV = 4282 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4283 4284 // Scalar incoming value may need a broadcast 4285 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4286 NewPhi->addIncoming(NewIncV, NewPredBB); 4287 } 4288 } 4289 } 4290 4291 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4292 VPUser &Operands, unsigned UF, 4293 ElementCount VF, bool IsPtrLoopInvariant, 4294 SmallBitVector &IsIndexLoopInvariant, 4295 VPTransformState &State) { 4296 // Construct a vector GEP by widening the operands of the scalar GEP as 4297 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4298 // results in a vector of pointers when at least one operand of the GEP 4299 // is vector-typed. Thus, to keep the representation compact, we only use 4300 // vector-typed operands for loop-varying values. 4301 4302 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4303 // If we are vectorizing, but the GEP has only loop-invariant operands, 4304 // the GEP we build (by only using vector-typed operands for 4305 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4306 // produce a vector of pointers, we need to either arbitrarily pick an 4307 // operand to broadcast, or broadcast a clone of the original GEP. 4308 // Here, we broadcast a clone of the original. 4309 // 4310 // TODO: If at some point we decide to scalarize instructions having 4311 // loop-invariant operands, this special case will no longer be 4312 // required. We would add the scalarization decision to 4313 // collectLoopScalars() and teach getVectorValue() to broadcast 4314 // the lane-zero scalar value. 4315 auto *Clone = Builder.Insert(GEP->clone()); 4316 for (unsigned Part = 0; Part < UF; ++Part) { 4317 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4318 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4319 addMetadata(EntryPart, GEP); 4320 } 4321 } else { 4322 // If the GEP has at least one loop-varying operand, we are sure to 4323 // produce a vector of pointers. But if we are only unrolling, we want 4324 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4325 // produce with the code below will be scalar (if VF == 1) or vector 4326 // (otherwise). Note that for the unroll-only case, we still maintain 4327 // values in the vector mapping with initVector, as we do for other 4328 // instructions. 4329 for (unsigned Part = 0; Part < UF; ++Part) { 4330 // The pointer operand of the new GEP. If it's loop-invariant, we 4331 // won't broadcast it. 4332 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4333 : State.get(Operands.getOperand(0), Part); 4334 4335 // Collect all the indices for the new GEP. If any index is 4336 // loop-invariant, we won't broadcast it. 4337 SmallVector<Value *, 4> Indices; 4338 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4339 VPValue *Operand = Operands.getOperand(I); 4340 if (IsIndexLoopInvariant[I - 1]) 4341 Indices.push_back(State.get(Operand, {0, 0})); 4342 else 4343 Indices.push_back(State.get(Operand, Part)); 4344 } 4345 4346 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4347 // but it should be a vector, otherwise. 4348 auto *NewGEP = 4349 GEP->isInBounds() 4350 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4351 Indices) 4352 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4353 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4354 "NewGEP is not a pointer vector"); 4355 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4356 addMetadata(NewGEP, GEP); 4357 } 4358 } 4359 } 4360 4361 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4362 ElementCount VF) { 4363 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4364 PHINode *P = cast<PHINode>(PN); 4365 if (EnableVPlanNativePath) { 4366 // Currently we enter here in the VPlan-native path for non-induction 4367 // PHIs where all control flow is uniform. We simply widen these PHIs. 4368 // Create a vector phi with no operands - the vector phi operands will be 4369 // set at the end of vector code generation. 4370 Type *VecTy = 4371 (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF); 4372 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4373 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4374 OrigPHIsToFix.push_back(P); 4375 4376 return; 4377 } 4378 4379 assert(PN->getParent() == OrigLoop->getHeader() && 4380 "Non-header phis should have been handled elsewhere"); 4381 4382 // In order to support recurrences we need to be able to vectorize Phi nodes. 4383 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4384 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4385 // this value when we vectorize all of the instructions that use the PHI. 4386 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4387 for (unsigned Part = 0; Part < UF; ++Part) { 4388 // This is phase one of vectorizing PHIs. 4389 bool ScalarPHI = 4390 (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4391 Type *VecTy = 4392 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF); 4393 Value *EntryPart = PHINode::Create( 4394 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4395 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4396 } 4397 return; 4398 } 4399 4400 setDebugLocFromInst(Builder, P); 4401 4402 // This PHINode must be an induction variable. 4403 // Make sure that we know about it. 4404 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4405 4406 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4407 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4408 4409 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4410 // which can be found from the original scalar operations. 4411 switch (II.getKind()) { 4412 case InductionDescriptor::IK_NoInduction: 4413 llvm_unreachable("Unknown induction"); 4414 case InductionDescriptor::IK_IntInduction: 4415 case InductionDescriptor::IK_FpInduction: 4416 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4417 case InductionDescriptor::IK_PtrInduction: { 4418 // Handle the pointer induction variable case. 4419 assert(P->getType()->isPointerTy() && "Unexpected type."); 4420 4421 if (Cost->isScalarAfterVectorization(P, VF)) { 4422 // This is the normalized GEP that starts counting at zero. 4423 Value *PtrInd = 4424 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4425 // Determine the number of scalars we need to generate for each unroll 4426 // iteration. If the instruction is uniform, we only need to generate the 4427 // first lane. Otherwise, we generate all VF values. 4428 unsigned Lanes = 4429 Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue(); 4430 for (unsigned Part = 0; Part < UF; ++Part) { 4431 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4432 Constant *Idx = ConstantInt::get(PtrInd->getType(), 4433 Lane + Part * VF.getKnownMinValue()); 4434 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4435 Value *SclrGep = 4436 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4437 SclrGep->setName("next.gep"); 4438 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4439 } 4440 } 4441 return; 4442 } 4443 assert(isa<SCEVConstant>(II.getStep()) && 4444 "Induction step not a SCEV constant!"); 4445 Type *PhiType = II.getStep()->getType(); 4446 4447 // Build a pointer phi 4448 Value *ScalarStartValue = II.getStartValue(); 4449 Type *ScStValueType = ScalarStartValue->getType(); 4450 PHINode *NewPointerPhi = 4451 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4452 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4453 4454 // A pointer induction, performed by using a gep 4455 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4456 Instruction *InductionLoc = LoopLatch->getTerminator(); 4457 const SCEV *ScalarStep = II.getStep(); 4458 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4459 Value *ScalarStepValue = 4460 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4461 Value *InductionGEP = GetElementPtrInst::Create( 4462 ScStValueType->getPointerElementType(), NewPointerPhi, 4463 Builder.CreateMul( 4464 ScalarStepValue, 4465 ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)), 4466 "ptr.ind", InductionLoc); 4467 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4468 4469 // Create UF many actual address geps that use the pointer 4470 // phi as base and a vectorized version of the step value 4471 // (<step*0, ..., step*N>) as offset. 4472 for (unsigned Part = 0; Part < UF; ++Part) { 4473 SmallVector<Constant *, 8> Indices; 4474 // Create a vector of consecutive numbers from zero to VF. 4475 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 4476 Indices.push_back( 4477 ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue())); 4478 Constant *StartOffset = ConstantVector::get(Indices); 4479 4480 Value *GEP = Builder.CreateGEP( 4481 ScStValueType->getPointerElementType(), NewPointerPhi, 4482 Builder.CreateMul( 4483 StartOffset, 4484 Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue), 4485 "vector.gep")); 4486 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4487 } 4488 } 4489 } 4490 } 4491 4492 /// A helper function for checking whether an integer division-related 4493 /// instruction may divide by zero (in which case it must be predicated if 4494 /// executed conditionally in the scalar code). 4495 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4496 /// Non-zero divisors that are non compile-time constants will not be 4497 /// converted into multiplication, so we will still end up scalarizing 4498 /// the division, but can do so w/o predication. 4499 static bool mayDivideByZero(Instruction &I) { 4500 assert((I.getOpcode() == Instruction::UDiv || 4501 I.getOpcode() == Instruction::SDiv || 4502 I.getOpcode() == Instruction::URem || 4503 I.getOpcode() == Instruction::SRem) && 4504 "Unexpected instruction"); 4505 Value *Divisor = I.getOperand(1); 4506 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4507 return !CInt || CInt->isZero(); 4508 } 4509 4510 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4511 VPTransformState &State) { 4512 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4513 switch (I.getOpcode()) { 4514 case Instruction::Call: 4515 case Instruction::Br: 4516 case Instruction::PHI: 4517 case Instruction::GetElementPtr: 4518 case Instruction::Select: 4519 llvm_unreachable("This instruction is handled by a different recipe."); 4520 case Instruction::UDiv: 4521 case Instruction::SDiv: 4522 case Instruction::SRem: 4523 case Instruction::URem: 4524 case Instruction::Add: 4525 case Instruction::FAdd: 4526 case Instruction::Sub: 4527 case Instruction::FSub: 4528 case Instruction::FNeg: 4529 case Instruction::Mul: 4530 case Instruction::FMul: 4531 case Instruction::FDiv: 4532 case Instruction::FRem: 4533 case Instruction::Shl: 4534 case Instruction::LShr: 4535 case Instruction::AShr: 4536 case Instruction::And: 4537 case Instruction::Or: 4538 case Instruction::Xor: { 4539 // Just widen unops and binops. 4540 setDebugLocFromInst(Builder, &I); 4541 4542 for (unsigned Part = 0; Part < UF; ++Part) { 4543 SmallVector<Value *, 2> Ops; 4544 for (VPValue *VPOp : User.operands()) 4545 Ops.push_back(State.get(VPOp, Part)); 4546 4547 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4548 4549 if (auto *VecOp = dyn_cast<Instruction>(V)) 4550 VecOp->copyIRFlags(&I); 4551 4552 // Use this vector value for all users of the original instruction. 4553 VectorLoopValueMap.setVectorValue(&I, Part, V); 4554 addMetadata(V, &I); 4555 } 4556 4557 break; 4558 } 4559 case Instruction::ICmp: 4560 case Instruction::FCmp: { 4561 // Widen compares. Generate vector compares. 4562 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4563 auto *Cmp = cast<CmpInst>(&I); 4564 setDebugLocFromInst(Builder, Cmp); 4565 for (unsigned Part = 0; Part < UF; ++Part) { 4566 Value *A = State.get(User.getOperand(0), Part); 4567 Value *B = State.get(User.getOperand(1), Part); 4568 Value *C = nullptr; 4569 if (FCmp) { 4570 // Propagate fast math flags. 4571 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4572 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4573 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4574 } else { 4575 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4576 } 4577 VectorLoopValueMap.setVectorValue(&I, Part, C); 4578 addMetadata(C, &I); 4579 } 4580 4581 break; 4582 } 4583 4584 case Instruction::ZExt: 4585 case Instruction::SExt: 4586 case Instruction::FPToUI: 4587 case Instruction::FPToSI: 4588 case Instruction::FPExt: 4589 case Instruction::PtrToInt: 4590 case Instruction::IntToPtr: 4591 case Instruction::SIToFP: 4592 case Instruction::UIToFP: 4593 case Instruction::Trunc: 4594 case Instruction::FPTrunc: 4595 case Instruction::BitCast: { 4596 auto *CI = cast<CastInst>(&I); 4597 setDebugLocFromInst(Builder, CI); 4598 4599 /// Vectorize casts. 4600 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4601 Type *DestTy = 4602 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4603 4604 for (unsigned Part = 0; Part < UF; ++Part) { 4605 Value *A = State.get(User.getOperand(0), Part); 4606 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4607 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4608 addMetadata(Cast, &I); 4609 } 4610 break; 4611 } 4612 default: 4613 // This instruction is not vectorized by simple widening. 4614 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4615 llvm_unreachable("Unhandled instruction!"); 4616 } // end of switch. 4617 } 4618 4619 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4620 VPUser &ArgOperands, 4621 VPTransformState &State) { 4622 assert(!isa<DbgInfoIntrinsic>(I) && 4623 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4624 setDebugLocFromInst(Builder, &I); 4625 4626 Module *M = I.getParent()->getParent()->getParent(); 4627 auto *CI = cast<CallInst>(&I); 4628 4629 SmallVector<Type *, 4> Tys; 4630 for (Value *ArgOperand : CI->arg_operands()) 4631 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4632 4633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4634 4635 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4636 // version of the instruction. 4637 // Is it beneficial to perform intrinsic call compared to lib call? 4638 bool NeedToScalarize = false; 4639 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4640 bool UseVectorIntrinsic = 4641 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4642 assert((UseVectorIntrinsic || !NeedToScalarize) && 4643 "Instruction should be scalarized elsewhere."); 4644 4645 for (unsigned Part = 0; Part < UF; ++Part) { 4646 SmallVector<Value *, 4> Args; 4647 for (auto &I : enumerate(ArgOperands.operands())) { 4648 // Some intrinsics have a scalar argument - don't replace it with a 4649 // vector. 4650 Value *Arg; 4651 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4652 Arg = State.get(I.value(), Part); 4653 else 4654 Arg = State.get(I.value(), {0, 0}); 4655 Args.push_back(Arg); 4656 } 4657 4658 Function *VectorF; 4659 if (UseVectorIntrinsic) { 4660 // Use vector version of the intrinsic. 4661 Type *TysForDecl[] = {CI->getType()}; 4662 if (VF.isVector()) { 4663 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4664 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4665 } 4666 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4667 assert(VectorF && "Can't retrieve vector intrinsic."); 4668 } else { 4669 // Use vector version of the function call. 4670 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4671 #ifndef NDEBUG 4672 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4673 "Can't create vector function."); 4674 #endif 4675 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4676 } 4677 SmallVector<OperandBundleDef, 1> OpBundles; 4678 CI->getOperandBundlesAsDefs(OpBundles); 4679 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4680 4681 if (isa<FPMathOperator>(V)) 4682 V->copyFastMathFlags(CI); 4683 4684 State.set(Def, &I, V, Part); 4685 addMetadata(V, &I); 4686 } 4687 } 4688 4689 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 4690 VPUser &Operands, 4691 bool InvariantCond, 4692 VPTransformState &State) { 4693 setDebugLocFromInst(Builder, &I); 4694 4695 // The condition can be loop invariant but still defined inside the 4696 // loop. This means that we can't just use the original 'cond' value. 4697 // We have to take the 'vectorized' value and pick the first lane. 4698 // Instcombine will make this a no-op. 4699 auto *InvarCond = 4700 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4701 4702 for (unsigned Part = 0; Part < UF; ++Part) { 4703 Value *Cond = 4704 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4705 Value *Op0 = State.get(Operands.getOperand(1), Part); 4706 Value *Op1 = State.get(Operands.getOperand(2), Part); 4707 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4708 State.set(VPDef, &I, Sel, Part); 4709 addMetadata(Sel, &I); 4710 } 4711 } 4712 4713 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4714 // We should not collect Scalars more than once per VF. Right now, this 4715 // function is called from collectUniformsAndScalars(), which already does 4716 // this check. Collecting Scalars for VF=1 does not make any sense. 4717 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4718 "This function should not be visited twice for the same VF"); 4719 4720 SmallSetVector<Instruction *, 8> Worklist; 4721 4722 // These sets are used to seed the analysis with pointers used by memory 4723 // accesses that will remain scalar. 4724 SmallSetVector<Instruction *, 8> ScalarPtrs; 4725 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4726 auto *Latch = TheLoop->getLoopLatch(); 4727 4728 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4729 // The pointer operands of loads and stores will be scalar as long as the 4730 // memory access is not a gather or scatter operation. The value operand of a 4731 // store will remain scalar if the store is scalarized. 4732 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4733 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4734 assert(WideningDecision != CM_Unknown && 4735 "Widening decision should be ready at this moment"); 4736 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4737 if (Ptr == Store->getValueOperand()) 4738 return WideningDecision == CM_Scalarize; 4739 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4740 "Ptr is neither a value or pointer operand"); 4741 return WideningDecision != CM_GatherScatter; 4742 }; 4743 4744 // A helper that returns true if the given value is a bitcast or 4745 // getelementptr instruction contained in the loop. 4746 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4747 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4748 isa<GetElementPtrInst>(V)) && 4749 !TheLoop->isLoopInvariant(V); 4750 }; 4751 4752 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4753 if (!isa<PHINode>(Ptr) || 4754 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4755 return false; 4756 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4757 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4758 return false; 4759 return isScalarUse(MemAccess, Ptr); 4760 }; 4761 4762 // A helper that evaluates a memory access's use of a pointer. If the 4763 // pointer is actually the pointer induction of a loop, it is being 4764 // inserted into Worklist. If the use will be a scalar use, and the 4765 // pointer is only used by memory accesses, we place the pointer in 4766 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4767 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4768 if (isScalarPtrInduction(MemAccess, Ptr)) { 4769 Worklist.insert(cast<Instruction>(Ptr)); 4770 Instruction *Update = cast<Instruction>( 4771 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4772 Worklist.insert(Update); 4773 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4774 << "\n"); 4775 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4776 << "\n"); 4777 return; 4778 } 4779 // We only care about bitcast and getelementptr instructions contained in 4780 // the loop. 4781 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4782 return; 4783 4784 // If the pointer has already been identified as scalar (e.g., if it was 4785 // also identified as uniform), there's nothing to do. 4786 auto *I = cast<Instruction>(Ptr); 4787 if (Worklist.count(I)) 4788 return; 4789 4790 // If the use of the pointer will be a scalar use, and all users of the 4791 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4792 // place the pointer in PossibleNonScalarPtrs. 4793 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4794 return isa<LoadInst>(U) || isa<StoreInst>(U); 4795 })) 4796 ScalarPtrs.insert(I); 4797 else 4798 PossibleNonScalarPtrs.insert(I); 4799 }; 4800 4801 // We seed the scalars analysis with three classes of instructions: (1) 4802 // instructions marked uniform-after-vectorization and (2) bitcast, 4803 // getelementptr and (pointer) phi instructions used by memory accesses 4804 // requiring a scalar use. 4805 // 4806 // (1) Add to the worklist all instructions that have been identified as 4807 // uniform-after-vectorization. 4808 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4809 4810 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4811 // memory accesses requiring a scalar use. The pointer operands of loads and 4812 // stores will be scalar as long as the memory accesses is not a gather or 4813 // scatter operation. The value operand of a store will remain scalar if the 4814 // store is scalarized. 4815 for (auto *BB : TheLoop->blocks()) 4816 for (auto &I : *BB) { 4817 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4818 evaluatePtrUse(Load, Load->getPointerOperand()); 4819 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4820 evaluatePtrUse(Store, Store->getPointerOperand()); 4821 evaluatePtrUse(Store, Store->getValueOperand()); 4822 } 4823 } 4824 for (auto *I : ScalarPtrs) 4825 if (!PossibleNonScalarPtrs.count(I)) { 4826 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4827 Worklist.insert(I); 4828 } 4829 4830 // Insert the forced scalars. 4831 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4832 // induction variable when the PHI user is scalarized. 4833 auto ForcedScalar = ForcedScalars.find(VF); 4834 if (ForcedScalar != ForcedScalars.end()) 4835 for (auto *I : ForcedScalar->second) 4836 Worklist.insert(I); 4837 4838 // Expand the worklist by looking through any bitcasts and getelementptr 4839 // instructions we've already identified as scalar. This is similar to the 4840 // expansion step in collectLoopUniforms(); however, here we're only 4841 // expanding to include additional bitcasts and getelementptr instructions. 4842 unsigned Idx = 0; 4843 while (Idx != Worklist.size()) { 4844 Instruction *Dst = Worklist[Idx++]; 4845 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4846 continue; 4847 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4848 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4849 auto *J = cast<Instruction>(U); 4850 return !TheLoop->contains(J) || Worklist.count(J) || 4851 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4852 isScalarUse(J, Src)); 4853 })) { 4854 Worklist.insert(Src); 4855 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4856 } 4857 } 4858 4859 // An induction variable will remain scalar if all users of the induction 4860 // variable and induction variable update remain scalar. 4861 for (auto &Induction : Legal->getInductionVars()) { 4862 auto *Ind = Induction.first; 4863 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4864 4865 // If tail-folding is applied, the primary induction variable will be used 4866 // to feed a vector compare. 4867 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4868 continue; 4869 4870 // Determine if all users of the induction variable are scalar after 4871 // vectorization. 4872 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4873 auto *I = cast<Instruction>(U); 4874 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4875 }); 4876 if (!ScalarInd) 4877 continue; 4878 4879 // Determine if all users of the induction variable update instruction are 4880 // scalar after vectorization. 4881 auto ScalarIndUpdate = 4882 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4883 auto *I = cast<Instruction>(U); 4884 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4885 }); 4886 if (!ScalarIndUpdate) 4887 continue; 4888 4889 // The induction variable and its update instruction will remain scalar. 4890 Worklist.insert(Ind); 4891 Worklist.insert(IndUpdate); 4892 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4893 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4894 << "\n"); 4895 } 4896 4897 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4898 } 4899 4900 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 4901 ElementCount VF) { 4902 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4903 if (!blockNeedsPredication(I->getParent())) 4904 return false; 4905 switch(I->getOpcode()) { 4906 default: 4907 break; 4908 case Instruction::Load: 4909 case Instruction::Store: { 4910 if (!Legal->isMaskRequired(I)) 4911 return false; 4912 auto *Ptr = getLoadStorePointerOperand(I); 4913 auto *Ty = getMemInstValueType(I); 4914 // We have already decided how to vectorize this instruction, get that 4915 // result. 4916 if (VF.isVector()) { 4917 InstWidening WideningDecision = getWideningDecision(I, VF); 4918 assert(WideningDecision != CM_Unknown && 4919 "Widening decision should be ready at this moment"); 4920 return WideningDecision == CM_Scalarize; 4921 } 4922 const Align Alignment = getLoadStoreAlignment(I); 4923 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4924 isLegalMaskedGather(Ty, Alignment)) 4925 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4926 isLegalMaskedScatter(Ty, Alignment)); 4927 } 4928 case Instruction::UDiv: 4929 case Instruction::SDiv: 4930 case Instruction::SRem: 4931 case Instruction::URem: 4932 return mayDivideByZero(*I); 4933 } 4934 return false; 4935 } 4936 4937 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4938 Instruction *I, ElementCount VF) { 4939 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4940 assert(getWideningDecision(I, VF) == CM_Unknown && 4941 "Decision should not be set yet."); 4942 auto *Group = getInterleavedAccessGroup(I); 4943 assert(Group && "Must have a group."); 4944 4945 // If the instruction's allocated size doesn't equal it's type size, it 4946 // requires padding and will be scalarized. 4947 auto &DL = I->getModule()->getDataLayout(); 4948 auto *ScalarTy = getMemInstValueType(I); 4949 if (hasIrregularType(ScalarTy, DL, VF)) 4950 return false; 4951 4952 // Check if masking is required. 4953 // A Group may need masking for one of two reasons: it resides in a block that 4954 // needs predication, or it was decided to use masking to deal with gaps. 4955 bool PredicatedAccessRequiresMasking = 4956 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4957 bool AccessWithGapsRequiresMasking = 4958 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4959 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4960 return true; 4961 4962 // If masked interleaving is required, we expect that the user/target had 4963 // enabled it, because otherwise it either wouldn't have been created or 4964 // it should have been invalidated by the CostModel. 4965 assert(useMaskedInterleavedAccesses(TTI) && 4966 "Masked interleave-groups for predicated accesses are not enabled."); 4967 4968 auto *Ty = getMemInstValueType(I); 4969 const Align Alignment = getLoadStoreAlignment(I); 4970 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4971 : TTI.isLegalMaskedStore(Ty, Alignment); 4972 } 4973 4974 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4975 Instruction *I, ElementCount VF) { 4976 // Get and ensure we have a valid memory instruction. 4977 LoadInst *LI = dyn_cast<LoadInst>(I); 4978 StoreInst *SI = dyn_cast<StoreInst>(I); 4979 assert((LI || SI) && "Invalid memory instruction"); 4980 4981 auto *Ptr = getLoadStorePointerOperand(I); 4982 4983 // In order to be widened, the pointer should be consecutive, first of all. 4984 if (!Legal->isConsecutivePtr(Ptr)) 4985 return false; 4986 4987 // If the instruction is a store located in a predicated block, it will be 4988 // scalarized. 4989 if (isScalarWithPredication(I)) 4990 return false; 4991 4992 // If the instruction's allocated size doesn't equal it's type size, it 4993 // requires padding and will be scalarized. 4994 auto &DL = I->getModule()->getDataLayout(); 4995 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4996 if (hasIrregularType(ScalarTy, DL, VF)) 4997 return false; 4998 4999 return true; 5000 } 5001 5002 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5003 // We should not collect Uniforms more than once per VF. Right now, 5004 // this function is called from collectUniformsAndScalars(), which 5005 // already does this check. Collecting Uniforms for VF=1 does not make any 5006 // sense. 5007 5008 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5009 "This function should not be visited twice for the same VF"); 5010 5011 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5012 // not analyze again. Uniforms.count(VF) will return 1. 5013 Uniforms[VF].clear(); 5014 5015 // We now know that the loop is vectorizable! 5016 // Collect instructions inside the loop that will remain uniform after 5017 // vectorization. 5018 5019 // Global values, params and instructions outside of current loop are out of 5020 // scope. 5021 auto isOutOfScope = [&](Value *V) -> bool { 5022 Instruction *I = dyn_cast<Instruction>(V); 5023 return (!I || !TheLoop->contains(I)); 5024 }; 5025 5026 SetVector<Instruction *> Worklist; 5027 BasicBlock *Latch = TheLoop->getLoopLatch(); 5028 5029 // Instructions that are scalar with predication must not be considered 5030 // uniform after vectorization, because that would create an erroneous 5031 // replicating region where only a single instance out of VF should be formed. 5032 // TODO: optimize such seldom cases if found important, see PR40816. 5033 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5034 if (isScalarWithPredication(I, VF)) { 5035 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5036 << *I << "\n"); 5037 return; 5038 } 5039 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5040 Worklist.insert(I); 5041 }; 5042 5043 // Start with the conditional branch. If the branch condition is an 5044 // instruction contained in the loop that is only used by the branch, it is 5045 // uniform. 5046 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5047 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5048 addToWorklistIfAllowed(Cmp); 5049 5050 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5051 // are pointers that are treated like consecutive pointers during 5052 // vectorization. The pointer operands of interleaved accesses are an 5053 // example. 5054 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5055 5056 // Holds pointer operands of instructions that are possibly non-uniform. 5057 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5058 5059 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5060 InstWidening WideningDecision = getWideningDecision(I, VF); 5061 assert(WideningDecision != CM_Unknown && 5062 "Widening decision should be ready at this moment"); 5063 5064 return (WideningDecision == CM_Widen || 5065 WideningDecision == CM_Widen_Reverse || 5066 WideningDecision == CM_Interleave); 5067 }; 5068 // Iterate over the instructions in the loop, and collect all 5069 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5070 // that a consecutive-like pointer operand will be scalarized, we collect it 5071 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5072 // getelementptr instruction can be used by both vectorized and scalarized 5073 // memory instructions. For example, if a loop loads and stores from the same 5074 // location, but the store is conditional, the store will be scalarized, and 5075 // the getelementptr won't remain uniform. 5076 for (auto *BB : TheLoop->blocks()) 5077 for (auto &I : *BB) { 5078 // If there's no pointer operand, there's nothing to do. 5079 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5080 if (!Ptr) 5081 continue; 5082 5083 // True if all users of Ptr are memory accesses that have Ptr as their 5084 // pointer operand. 5085 auto UsersAreMemAccesses = 5086 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5087 return getLoadStorePointerOperand(U) == Ptr; 5088 }); 5089 5090 // Ensure the memory instruction will not be scalarized or used by 5091 // gather/scatter, making its pointer operand non-uniform. If the pointer 5092 // operand is used by any instruction other than a memory access, we 5093 // conservatively assume the pointer operand may be non-uniform. 5094 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5095 PossibleNonUniformPtrs.insert(Ptr); 5096 5097 // If the memory instruction will be vectorized and its pointer operand 5098 // is consecutive-like, or interleaving - the pointer operand should 5099 // remain uniform. 5100 else 5101 ConsecutiveLikePtrs.insert(Ptr); 5102 } 5103 5104 // Add to the Worklist all consecutive and consecutive-like pointers that 5105 // aren't also identified as possibly non-uniform. 5106 for (auto *V : ConsecutiveLikePtrs) 5107 if (!PossibleNonUniformPtrs.count(V)) 5108 addToWorklistIfAllowed(V); 5109 5110 // Expand Worklist in topological order: whenever a new instruction 5111 // is added , its users should be already inside Worklist. It ensures 5112 // a uniform instruction will only be used by uniform instructions. 5113 unsigned idx = 0; 5114 while (idx != Worklist.size()) { 5115 Instruction *I = Worklist[idx++]; 5116 5117 for (auto OV : I->operand_values()) { 5118 // isOutOfScope operands cannot be uniform instructions. 5119 if (isOutOfScope(OV)) 5120 continue; 5121 // First order recurrence Phi's should typically be considered 5122 // non-uniform. 5123 auto *OP = dyn_cast<PHINode>(OV); 5124 if (OP && Legal->isFirstOrderRecurrence(OP)) 5125 continue; 5126 // If all the users of the operand are uniform, then add the 5127 // operand into the uniform worklist. 5128 auto *OI = cast<Instruction>(OV); 5129 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5130 auto *J = cast<Instruction>(U); 5131 return Worklist.count(J) || 5132 (OI == getLoadStorePointerOperand(J) && 5133 isUniformDecision(J, VF)); 5134 })) 5135 addToWorklistIfAllowed(OI); 5136 } 5137 } 5138 5139 // Returns true if Ptr is the pointer operand of a memory access instruction 5140 // I, and I is known to not require scalarization. 5141 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5142 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5143 }; 5144 5145 // For an instruction to be added into Worklist above, all its users inside 5146 // the loop should also be in Worklist. However, this condition cannot be 5147 // true for phi nodes that form a cyclic dependence. We must process phi 5148 // nodes separately. An induction variable will remain uniform if all users 5149 // of the induction variable and induction variable update remain uniform. 5150 // The code below handles both pointer and non-pointer induction variables. 5151 for (auto &Induction : Legal->getInductionVars()) { 5152 auto *Ind = Induction.first; 5153 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5154 5155 // Determine if all users of the induction variable are uniform after 5156 // vectorization. 5157 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5158 auto *I = cast<Instruction>(U); 5159 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5160 isVectorizedMemAccessUse(I, Ind); 5161 }); 5162 if (!UniformInd) 5163 continue; 5164 5165 // Determine if all users of the induction variable update instruction are 5166 // uniform after vectorization. 5167 auto UniformIndUpdate = 5168 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5169 auto *I = cast<Instruction>(U); 5170 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5171 isVectorizedMemAccessUse(I, IndUpdate); 5172 }); 5173 if (!UniformIndUpdate) 5174 continue; 5175 5176 // The induction variable and its update instruction will remain uniform. 5177 addToWorklistIfAllowed(Ind); 5178 addToWorklistIfAllowed(IndUpdate); 5179 } 5180 5181 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5182 } 5183 5184 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5185 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5186 5187 if (Legal->getRuntimePointerChecking()->Need) { 5188 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5189 "runtime pointer checks needed. Enable vectorization of this " 5190 "loop with '#pragma clang loop vectorize(enable)' when " 5191 "compiling with -Os/-Oz", 5192 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5193 return true; 5194 } 5195 5196 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5197 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5198 "runtime SCEV checks needed. Enable vectorization of this " 5199 "loop with '#pragma clang loop vectorize(enable)' when " 5200 "compiling with -Os/-Oz", 5201 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5202 return true; 5203 } 5204 5205 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5206 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5207 reportVectorizationFailure("Runtime stride check for small trip count", 5208 "runtime stride == 1 checks needed. Enable vectorization of " 5209 "this loop without such check by compiling with -Os/-Oz", 5210 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5211 return true; 5212 } 5213 5214 return false; 5215 } 5216 5217 Optional<ElementCount> 5218 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5219 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5220 // TODO: It may by useful to do since it's still likely to be dynamically 5221 // uniform if the target can skip. 5222 reportVectorizationFailure( 5223 "Not inserting runtime ptr check for divergent target", 5224 "runtime pointer checks needed. Not enabled for divergent target", 5225 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5226 return None; 5227 } 5228 5229 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5230 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5231 if (TC == 1) { 5232 reportVectorizationFailure("Single iteration (non) loop", 5233 "loop trip count is one, irrelevant for vectorization", 5234 "SingleIterationLoop", ORE, TheLoop); 5235 return None; 5236 } 5237 5238 switch (ScalarEpilogueStatus) { 5239 case CM_ScalarEpilogueAllowed: 5240 return UserVF ? UserVF : computeFeasibleMaxVF(TC); 5241 case CM_ScalarEpilogueNotNeededUsePredicate: 5242 LLVM_DEBUG( 5243 dbgs() << "LV: vector predicate hint/switch found.\n" 5244 << "LV: Not allowing scalar epilogue, creating predicated " 5245 << "vector loop.\n"); 5246 break; 5247 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5248 // fallthrough as a special case of OptForSize 5249 case CM_ScalarEpilogueNotAllowedOptSize: 5250 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5251 LLVM_DEBUG( 5252 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5253 else 5254 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5255 << "count.\n"); 5256 5257 // Bail if runtime checks are required, which are not good when optimising 5258 // for size. 5259 if (runtimeChecksRequired()) 5260 return None; 5261 break; 5262 } 5263 5264 // Now try the tail folding 5265 5266 // Invalidate interleave groups that require an epilogue if we can't mask 5267 // the interleave-group. 5268 if (!useMaskedInterleavedAccesses(TTI)) { 5269 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5270 "No decisions should have been taken at this point"); 5271 // Note: There is no need to invalidate any cost modeling decisions here, as 5272 // non where taken so far. 5273 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5274 } 5275 5276 ElementCount MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC); 5277 assert(!MaxVF.isScalable() && 5278 "Scalable vectors do not yet support tail folding"); 5279 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5280 "MaxVF must be a power of 2"); 5281 unsigned MaxVFtimesIC = 5282 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5283 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5284 // Accept MaxVF if we do not have a tail. 5285 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5286 return MaxVF; 5287 } 5288 5289 // If we don't know the precise trip count, or if the trip count that we 5290 // found modulo the vectorization factor is not zero, try to fold the tail 5291 // by masking. 5292 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5293 if (Legal->prepareToFoldTailByMasking()) { 5294 FoldTailByMasking = true; 5295 return MaxVF; 5296 } 5297 5298 // If there was a tail-folding hint/switch, but we can't fold the tail by 5299 // masking, fallback to a vectorization with a scalar epilogue. 5300 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5301 if (PreferPredicateOverEpilogue == PreferPredicateTy::PredicateOrDontVectorize) { 5302 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5303 return None; 5304 } 5305 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5306 "scalar epilogue instead.\n"); 5307 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5308 return MaxVF; 5309 } 5310 5311 if (TC == 0) { 5312 reportVectorizationFailure( 5313 "Unable to calculate the loop count due to complex control flow", 5314 "unable to calculate the loop count due to complex control flow", 5315 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5316 return None; 5317 } 5318 5319 reportVectorizationFailure( 5320 "Cannot optimize for size and vectorize at the same time.", 5321 "cannot optimize for size and vectorize at the same time. " 5322 "Enable vectorization of this loop with '#pragma clang loop " 5323 "vectorize(enable)' when compiling with -Os/-Oz", 5324 "NoTailLoopWithOptForSize", ORE, TheLoop); 5325 return None; 5326 } 5327 5328 ElementCount 5329 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5330 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5331 unsigned SmallestType, WidestType; 5332 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5333 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5334 5335 // Get the maximum safe dependence distance in bits computed by LAA. 5336 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5337 // the memory accesses that is most restrictive (involved in the smallest 5338 // dependence distance). 5339 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5340 5341 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5342 5343 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5344 // Note that both WidestRegister and WidestType may not be a powers of 2. 5345 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5346 5347 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5348 << " / " << WidestType << " bits.\n"); 5349 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5350 << WidestRegister << " bits.\n"); 5351 5352 assert(MaxVectorSize <= WidestRegister && 5353 "Did not expect to pack so many elements" 5354 " into one vector!"); 5355 if (MaxVectorSize == 0) { 5356 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5357 MaxVectorSize = 1; 5358 return ElementCount::getFixed(MaxVectorSize); 5359 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5360 isPowerOf2_32(ConstTripCount)) { 5361 // We need to clamp the VF to be the ConstTripCount. There is no point in 5362 // choosing a higher viable VF as done in the loop below. 5363 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5364 << ConstTripCount << "\n"); 5365 MaxVectorSize = ConstTripCount; 5366 return ElementCount::getFixed(MaxVectorSize); 5367 } 5368 5369 unsigned MaxVF = MaxVectorSize; 5370 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5371 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5372 // Collect all viable vectorization factors larger than the default MaxVF 5373 // (i.e. MaxVectorSize). 5374 SmallVector<ElementCount, 8> VFs; 5375 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5376 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5377 VFs.push_back(ElementCount::getFixed(VS)); 5378 5379 // For each VF calculate its register usage. 5380 auto RUs = calculateRegisterUsage(VFs); 5381 5382 // Select the largest VF which doesn't require more registers than existing 5383 // ones. 5384 for (int i = RUs.size() - 1; i >= 0; --i) { 5385 bool Selected = true; 5386 for (auto& pair : RUs[i].MaxLocalUsers) { 5387 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5388 if (pair.second > TargetNumRegisters) 5389 Selected = false; 5390 } 5391 if (Selected) { 5392 MaxVF = VFs[i].getKnownMinValue(); 5393 break; 5394 } 5395 } 5396 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5397 if (MaxVF < MinVF) { 5398 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5399 << ") with target's minimum: " << MinVF << '\n'); 5400 MaxVF = MinVF; 5401 } 5402 } 5403 } 5404 return ElementCount::getFixed(MaxVF); 5405 } 5406 5407 VectorizationFactor 5408 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5409 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5410 5411 float Cost = expectedCost(ElementCount::getFixed(1)).first; 5412 const float ScalarCost = Cost; 5413 unsigned Width = 1; 5414 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5415 5416 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5417 if (ForceVectorization && MaxVF.isVector()) { 5418 // Ignore scalar width, because the user explicitly wants vectorization. 5419 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5420 // evaluation. 5421 Cost = std::numeric_limits<float>::max(); 5422 } 5423 5424 for (unsigned i = 2; i <= MaxVF.getFixedValue(); i *= 2) { 5425 // Notice that the vector loop needs to be executed less times, so 5426 // we need to divide the cost of the vector loops by the width of 5427 // the vector elements. 5428 VectorizationCostTy C = expectedCost(ElementCount::getFixed(i)); 5429 float VectorCost = C.first / (float)i; 5430 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5431 << " costs: " << (int)VectorCost << ".\n"); 5432 if (!C.second && !ForceVectorization) { 5433 LLVM_DEBUG( 5434 dbgs() << "LV: Not considering vector loop of width " << i 5435 << " because it will not generate any vector instructions.\n"); 5436 continue; 5437 } 5438 if (VectorCost < Cost) { 5439 Cost = VectorCost; 5440 Width = i; 5441 } 5442 } 5443 5444 if (!EnableCondStoresVectorization && NumPredStores) { 5445 reportVectorizationFailure("There are conditional stores.", 5446 "store that is conditionally executed prevents vectorization", 5447 "ConditionalStore", ORE, TheLoop); 5448 Width = 1; 5449 Cost = ScalarCost; 5450 } 5451 5452 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5453 << "LV: Vectorization seems to be not beneficial, " 5454 << "but was forced by a user.\n"); 5455 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5456 VectorizationFactor Factor = {ElementCount::getFixed(Width), 5457 (unsigned)(Width * Cost)}; 5458 return Factor; 5459 } 5460 5461 std::pair<unsigned, unsigned> 5462 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5463 unsigned MinWidth = -1U; 5464 unsigned MaxWidth = 8; 5465 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5466 5467 // For each block. 5468 for (BasicBlock *BB : TheLoop->blocks()) { 5469 // For each instruction in the loop. 5470 for (Instruction &I : BB->instructionsWithoutDebug()) { 5471 Type *T = I.getType(); 5472 5473 // Skip ignored values. 5474 if (ValuesToIgnore.count(&I)) 5475 continue; 5476 5477 // Only examine Loads, Stores and PHINodes. 5478 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5479 continue; 5480 5481 // Examine PHI nodes that are reduction variables. Update the type to 5482 // account for the recurrence type. 5483 if (auto *PN = dyn_cast<PHINode>(&I)) { 5484 if (!Legal->isReductionVariable(PN)) 5485 continue; 5486 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5487 T = RdxDesc.getRecurrenceType(); 5488 } 5489 5490 // Examine the stored values. 5491 if (auto *ST = dyn_cast<StoreInst>(&I)) 5492 T = ST->getValueOperand()->getType(); 5493 5494 // Ignore loaded pointer types and stored pointer types that are not 5495 // vectorizable. 5496 // 5497 // FIXME: The check here attempts to predict whether a load or store will 5498 // be vectorized. We only know this for certain after a VF has 5499 // been selected. Here, we assume that if an access can be 5500 // vectorized, it will be. We should also look at extending this 5501 // optimization to non-pointer types. 5502 // 5503 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5504 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5505 continue; 5506 5507 MinWidth = std::min(MinWidth, 5508 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5509 MaxWidth = std::max(MaxWidth, 5510 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5511 } 5512 } 5513 5514 return {MinWidth, MaxWidth}; 5515 } 5516 5517 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5518 unsigned LoopCost) { 5519 // -- The interleave heuristics -- 5520 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5521 // There are many micro-architectural considerations that we can't predict 5522 // at this level. For example, frontend pressure (on decode or fetch) due to 5523 // code size, or the number and capabilities of the execution ports. 5524 // 5525 // We use the following heuristics to select the interleave count: 5526 // 1. If the code has reductions, then we interleave to break the cross 5527 // iteration dependency. 5528 // 2. If the loop is really small, then we interleave to reduce the loop 5529 // overhead. 5530 // 3. We don't interleave if we think that we will spill registers to memory 5531 // due to the increased register pressure. 5532 5533 if (!isScalarEpilogueAllowed()) 5534 return 1; 5535 5536 // We used the distance for the interleave count. 5537 if (Legal->getMaxSafeDepDistBytes() != -1U) 5538 return 1; 5539 5540 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5541 const bool HasReductions = !Legal->getReductionVars().empty(); 5542 // Do not interleave loops with a relatively small known or estimated trip 5543 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5544 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5545 // because with the above conditions interleaving can expose ILP and break 5546 // cross iteration dependences for reductions. 5547 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5548 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5549 return 1; 5550 5551 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5552 // We divide by these constants so assume that we have at least one 5553 // instruction that uses at least one register. 5554 for (auto& pair : R.MaxLocalUsers) { 5555 pair.second = std::max(pair.second, 1U); 5556 } 5557 5558 // We calculate the interleave count using the following formula. 5559 // Subtract the number of loop invariants from the number of available 5560 // registers. These registers are used by all of the interleaved instances. 5561 // Next, divide the remaining registers by the number of registers that is 5562 // required by the loop, in order to estimate how many parallel instances 5563 // fit without causing spills. All of this is rounded down if necessary to be 5564 // a power of two. We want power of two interleave count to simplify any 5565 // addressing operations or alignment considerations. 5566 // We also want power of two interleave counts to ensure that the induction 5567 // variable of the vector loop wraps to zero, when tail is folded by masking; 5568 // this currently happens when OptForSize, in which case IC is set to 1 above. 5569 unsigned IC = UINT_MAX; 5570 5571 for (auto& pair : R.MaxLocalUsers) { 5572 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5573 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5574 << " registers of " 5575 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5576 if (VF.isScalar()) { 5577 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5578 TargetNumRegisters = ForceTargetNumScalarRegs; 5579 } else { 5580 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5581 TargetNumRegisters = ForceTargetNumVectorRegs; 5582 } 5583 unsigned MaxLocalUsers = pair.second; 5584 unsigned LoopInvariantRegs = 0; 5585 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5586 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5587 5588 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5589 // Don't count the induction variable as interleaved. 5590 if (EnableIndVarRegisterHeur) { 5591 TmpIC = 5592 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5593 std::max(1U, (MaxLocalUsers - 1))); 5594 } 5595 5596 IC = std::min(IC, TmpIC); 5597 } 5598 5599 // Clamp the interleave ranges to reasonable counts. 5600 assert(!VF.isScalable() && "scalable vectors not yet supported."); 5601 unsigned MaxInterleaveCount = 5602 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5603 5604 // Check if the user has overridden the max. 5605 if (VF.isScalar()) { 5606 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5607 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5608 } else { 5609 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5610 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5611 } 5612 5613 // If trip count is known or estimated compile time constant, limit the 5614 // interleave count to be less than the trip count divided by VF, provided it 5615 // is at least 1. 5616 if (BestKnownTC) { 5617 MaxInterleaveCount = 5618 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5619 // Make sure MaxInterleaveCount is greater than 0. 5620 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5621 } 5622 5623 assert(MaxInterleaveCount > 0 && 5624 "Maximum interleave count must be greater than 0"); 5625 5626 // Clamp the calculated IC to be between the 1 and the max interleave count 5627 // that the target and trip count allows. 5628 if (IC > MaxInterleaveCount) 5629 IC = MaxInterleaveCount; 5630 else 5631 // Make sure IC is greater than 0. 5632 IC = std::max(1u, IC); 5633 5634 assert(IC > 0 && "Interleave count must be greater than 0."); 5635 5636 // If we did not calculate the cost for VF (because the user selected the VF) 5637 // then we calculate the cost of VF here. 5638 if (LoopCost == 0) 5639 LoopCost = expectedCost(VF).first; 5640 5641 assert(LoopCost && "Non-zero loop cost expected"); 5642 5643 // Interleave if we vectorized this loop and there is a reduction that could 5644 // benefit from interleaving. 5645 if (VF.isVector() && HasReductions) { 5646 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5647 return IC; 5648 } 5649 5650 // Note that if we've already vectorized the loop we will have done the 5651 // runtime check and so interleaving won't require further checks. 5652 bool InterleavingRequiresRuntimePointerCheck = 5653 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5654 5655 // We want to interleave small loops in order to reduce the loop overhead and 5656 // potentially expose ILP opportunities. 5657 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5658 << "LV: IC is " << IC << '\n' 5659 << "LV: VF is " << VF.getKnownMinValue() << '\n'); 5660 const bool AggressivelyInterleaveReductions = 5661 TTI.enableAggressiveInterleaving(HasReductions); 5662 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5663 // We assume that the cost overhead is 1 and we use the cost model 5664 // to estimate the cost of the loop and interleave until the cost of the 5665 // loop overhead is about 5% of the cost of the loop. 5666 unsigned SmallIC = 5667 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5668 5669 // Interleave until store/load ports (estimated by max interleave count) are 5670 // saturated. 5671 unsigned NumStores = Legal->getNumStores(); 5672 unsigned NumLoads = Legal->getNumLoads(); 5673 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5674 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5675 5676 // If we have a scalar reduction (vector reductions are already dealt with 5677 // by this point), we can increase the critical path length if the loop 5678 // we're interleaving is inside another loop. Limit, by default to 2, so the 5679 // critical path only gets increased by one reduction operation. 5680 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5681 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5682 SmallIC = std::min(SmallIC, F); 5683 StoresIC = std::min(StoresIC, F); 5684 LoadsIC = std::min(LoadsIC, F); 5685 } 5686 5687 if (EnableLoadStoreRuntimeInterleave && 5688 std::max(StoresIC, LoadsIC) > SmallIC) { 5689 LLVM_DEBUG( 5690 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5691 return std::max(StoresIC, LoadsIC); 5692 } 5693 5694 // If there are scalar reductions and TTI has enabled aggressive 5695 // interleaving for reductions, we will interleave to expose ILP. 5696 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5697 AggressivelyInterleaveReductions) { 5698 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5699 // Interleave no less than SmallIC but not as aggressive as the normal IC 5700 // to satisfy the rare situation when resources are too limited. 5701 return std::max(IC / 2, SmallIC); 5702 } else { 5703 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5704 return SmallIC; 5705 } 5706 } 5707 5708 // Interleave if this is a large loop (small loops are already dealt with by 5709 // this point) that could benefit from interleaving. 5710 if (AggressivelyInterleaveReductions) { 5711 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5712 return IC; 5713 } 5714 5715 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5716 return 1; 5717 } 5718 5719 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5720 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5721 // This function calculates the register usage by measuring the highest number 5722 // of values that are alive at a single location. Obviously, this is a very 5723 // rough estimation. We scan the loop in a topological order in order and 5724 // assign a number to each instruction. We use RPO to ensure that defs are 5725 // met before their users. We assume that each instruction that has in-loop 5726 // users starts an interval. We record every time that an in-loop value is 5727 // used, so we have a list of the first and last occurrences of each 5728 // instruction. Next, we transpose this data structure into a multi map that 5729 // holds the list of intervals that *end* at a specific location. This multi 5730 // map allows us to perform a linear search. We scan the instructions linearly 5731 // and record each time that a new interval starts, by placing it in a set. 5732 // If we find this value in the multi-map then we remove it from the set. 5733 // The max register usage is the maximum size of the set. 5734 // We also search for instructions that are defined outside the loop, but are 5735 // used inside the loop. We need this number separately from the max-interval 5736 // usage number because when we unroll, loop-invariant values do not take 5737 // more register. 5738 LoopBlocksDFS DFS(TheLoop); 5739 DFS.perform(LI); 5740 5741 RegisterUsage RU; 5742 5743 // Each 'key' in the map opens a new interval. The values 5744 // of the map are the index of the 'last seen' usage of the 5745 // instruction that is the key. 5746 using IntervalMap = DenseMap<Instruction *, unsigned>; 5747 5748 // Maps instruction to its index. 5749 SmallVector<Instruction *, 64> IdxToInstr; 5750 // Marks the end of each interval. 5751 IntervalMap EndPoint; 5752 // Saves the list of instruction indices that are used in the loop. 5753 SmallPtrSet<Instruction *, 8> Ends; 5754 // Saves the list of values that are used in the loop but are 5755 // defined outside the loop, such as arguments and constants. 5756 SmallPtrSet<Value *, 8> LoopInvariants; 5757 5758 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5759 for (Instruction &I : BB->instructionsWithoutDebug()) { 5760 IdxToInstr.push_back(&I); 5761 5762 // Save the end location of each USE. 5763 for (Value *U : I.operands()) { 5764 auto *Instr = dyn_cast<Instruction>(U); 5765 5766 // Ignore non-instruction values such as arguments, constants, etc. 5767 if (!Instr) 5768 continue; 5769 5770 // If this instruction is outside the loop then record it and continue. 5771 if (!TheLoop->contains(Instr)) { 5772 LoopInvariants.insert(Instr); 5773 continue; 5774 } 5775 5776 // Overwrite previous end points. 5777 EndPoint[Instr] = IdxToInstr.size(); 5778 Ends.insert(Instr); 5779 } 5780 } 5781 } 5782 5783 // Saves the list of intervals that end with the index in 'key'. 5784 using InstrList = SmallVector<Instruction *, 2>; 5785 DenseMap<unsigned, InstrList> TransposeEnds; 5786 5787 // Transpose the EndPoints to a list of values that end at each index. 5788 for (auto &Interval : EndPoint) 5789 TransposeEnds[Interval.second].push_back(Interval.first); 5790 5791 SmallPtrSet<Instruction *, 8> OpenIntervals; 5792 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5793 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5794 5795 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5796 5797 // A lambda that gets the register usage for the given type and VF. 5798 const auto &TTICapture = TTI; 5799 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 5800 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5801 return 0U; 5802 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 5803 }; 5804 5805 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5806 Instruction *I = IdxToInstr[i]; 5807 5808 // Remove all of the instructions that end at this location. 5809 InstrList &List = TransposeEnds[i]; 5810 for (Instruction *ToRemove : List) 5811 OpenIntervals.erase(ToRemove); 5812 5813 // Ignore instructions that are never used within the loop. 5814 if (!Ends.count(I)) 5815 continue; 5816 5817 // Skip ignored values. 5818 if (ValuesToIgnore.count(I)) 5819 continue; 5820 5821 // For each VF find the maximum usage of registers. 5822 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5823 // Count the number of live intervals. 5824 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5825 5826 if (VFs[j].isScalar()) { 5827 for (auto Inst : OpenIntervals) { 5828 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5829 if (RegUsage.find(ClassID) == RegUsage.end()) 5830 RegUsage[ClassID] = 1; 5831 else 5832 RegUsage[ClassID] += 1; 5833 } 5834 } else { 5835 collectUniformsAndScalars(VFs[j]); 5836 for (auto Inst : OpenIntervals) { 5837 // Skip ignored values for VF > 1. 5838 if (VecValuesToIgnore.count(Inst)) 5839 continue; 5840 if (isScalarAfterVectorization(Inst, VFs[j])) { 5841 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5842 if (RegUsage.find(ClassID) == RegUsage.end()) 5843 RegUsage[ClassID] = 1; 5844 else 5845 RegUsage[ClassID] += 1; 5846 } else { 5847 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5848 if (RegUsage.find(ClassID) == RegUsage.end()) 5849 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5850 else 5851 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5852 } 5853 } 5854 } 5855 5856 for (auto& pair : RegUsage) { 5857 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5858 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5859 else 5860 MaxUsages[j][pair.first] = pair.second; 5861 } 5862 } 5863 5864 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5865 << OpenIntervals.size() << '\n'); 5866 5867 // Add the current instruction to the list of open intervals. 5868 OpenIntervals.insert(I); 5869 } 5870 5871 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5872 SmallMapVector<unsigned, unsigned, 4> Invariant; 5873 5874 for (auto Inst : LoopInvariants) { 5875 unsigned Usage = 5876 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5877 unsigned ClassID = 5878 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 5879 if (Invariant.find(ClassID) == Invariant.end()) 5880 Invariant[ClassID] = Usage; 5881 else 5882 Invariant[ClassID] += Usage; 5883 } 5884 5885 LLVM_DEBUG({ 5886 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5887 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5888 << " item\n"; 5889 for (const auto &pair : MaxUsages[i]) { 5890 dbgs() << "LV(REG): RegisterClass: " 5891 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5892 << " registers\n"; 5893 } 5894 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5895 << " item\n"; 5896 for (const auto &pair : Invariant) { 5897 dbgs() << "LV(REG): RegisterClass: " 5898 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5899 << " registers\n"; 5900 } 5901 }); 5902 5903 RU.LoopInvariantRegs = Invariant; 5904 RU.MaxLocalUsers = MaxUsages[i]; 5905 RUs[i] = RU; 5906 } 5907 5908 return RUs; 5909 } 5910 5911 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5912 // TODO: Cost model for emulated masked load/store is completely 5913 // broken. This hack guides the cost model to use an artificially 5914 // high enough value to practically disable vectorization with such 5915 // operations, except where previously deployed legality hack allowed 5916 // using very low cost values. This is to avoid regressions coming simply 5917 // from moving "masked load/store" check from legality to cost model. 5918 // Masked Load/Gather emulation was previously never allowed. 5919 // Limited number of Masked Store/Scatter emulation was allowed. 5920 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5921 return isa<LoadInst>(I) || 5922 (isa<StoreInst>(I) && 5923 NumPredStores > NumberOfStoresToPredicate); 5924 } 5925 5926 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 5927 // If we aren't vectorizing the loop, or if we've already collected the 5928 // instructions to scalarize, there's nothing to do. Collection may already 5929 // have occurred if we have a user-selected VF and are now computing the 5930 // expected cost for interleaving. 5931 if (VF.isScalar() || VF.isZero() || 5932 InstsToScalarize.find(VF) != InstsToScalarize.end()) 5933 return; 5934 5935 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5936 // not profitable to scalarize any instructions, the presence of VF in the 5937 // map will indicate that we've analyzed it already. 5938 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5939 5940 // Find all the instructions that are scalar with predication in the loop and 5941 // determine if it would be better to not if-convert the blocks they are in. 5942 // If so, we also record the instructions to scalarize. 5943 for (BasicBlock *BB : TheLoop->blocks()) { 5944 if (!blockNeedsPredication(BB)) 5945 continue; 5946 for (Instruction &I : *BB) 5947 if (isScalarWithPredication(&I)) { 5948 ScalarCostsTy ScalarCosts; 5949 // Do not apply discount logic if hacked cost is needed 5950 // for emulated masked memrefs. 5951 if (!useEmulatedMaskMemRefHack(&I) && 5952 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5953 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5954 // Remember that BB will remain after vectorization. 5955 PredicatedBBsAfterVectorization.insert(BB); 5956 } 5957 } 5958 } 5959 5960 int LoopVectorizationCostModel::computePredInstDiscount( 5961 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5962 ElementCount VF) { 5963 assert(!isUniformAfterVectorization(PredInst, VF) && 5964 "Instruction marked uniform-after-vectorization will be predicated"); 5965 5966 // Initialize the discount to zero, meaning that the scalar version and the 5967 // vector version cost the same. 5968 int Discount = 0; 5969 5970 // Holds instructions to analyze. The instructions we visit are mapped in 5971 // ScalarCosts. Those instructions are the ones that would be scalarized if 5972 // we find that the scalar version costs less. 5973 SmallVector<Instruction *, 8> Worklist; 5974 5975 // Returns true if the given instruction can be scalarized. 5976 auto canBeScalarized = [&](Instruction *I) -> bool { 5977 // We only attempt to scalarize instructions forming a single-use chain 5978 // from the original predicated block that would otherwise be vectorized. 5979 // Although not strictly necessary, we give up on instructions we know will 5980 // already be scalar to avoid traversing chains that are unlikely to be 5981 // beneficial. 5982 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5983 isScalarAfterVectorization(I, VF)) 5984 return false; 5985 5986 // If the instruction is scalar with predication, it will be analyzed 5987 // separately. We ignore it within the context of PredInst. 5988 if (isScalarWithPredication(I)) 5989 return false; 5990 5991 // If any of the instruction's operands are uniform after vectorization, 5992 // the instruction cannot be scalarized. This prevents, for example, a 5993 // masked load from being scalarized. 5994 // 5995 // We assume we will only emit a value for lane zero of an instruction 5996 // marked uniform after vectorization, rather than VF identical values. 5997 // Thus, if we scalarize an instruction that uses a uniform, we would 5998 // create uses of values corresponding to the lanes we aren't emitting code 5999 // for. This behavior can be changed by allowing getScalarValue to clone 6000 // the lane zero values for uniforms rather than asserting. 6001 for (Use &U : I->operands()) 6002 if (auto *J = dyn_cast<Instruction>(U.get())) 6003 if (isUniformAfterVectorization(J, VF)) 6004 return false; 6005 6006 // Otherwise, we can scalarize the instruction. 6007 return true; 6008 }; 6009 6010 // Compute the expected cost discount from scalarizing the entire expression 6011 // feeding the predicated instruction. We currently only consider expressions 6012 // that are single-use instruction chains. 6013 Worklist.push_back(PredInst); 6014 while (!Worklist.empty()) { 6015 Instruction *I = Worklist.pop_back_val(); 6016 6017 // If we've already analyzed the instruction, there's nothing to do. 6018 if (ScalarCosts.find(I) != ScalarCosts.end()) 6019 continue; 6020 6021 // Compute the cost of the vector instruction. Note that this cost already 6022 // includes the scalarization overhead of the predicated instruction. 6023 unsigned VectorCost = getInstructionCost(I, VF).first; 6024 6025 // Compute the cost of the scalarized instruction. This cost is the cost of 6026 // the instruction as if it wasn't if-converted and instead remained in the 6027 // predicated block. We will scale this cost by block probability after 6028 // computing the scalarization overhead. 6029 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6030 unsigned ScalarCost = 6031 VF.getKnownMinValue() * 6032 getInstructionCost(I, ElementCount::getFixed(1)).first; 6033 6034 // Compute the scalarization overhead of needed insertelement instructions 6035 // and phi nodes. 6036 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6037 ScalarCost += TTI.getScalarizationOverhead( 6038 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6039 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6040 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6041 ScalarCost += 6042 VF.getKnownMinValue() * 6043 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6044 } 6045 6046 // Compute the scalarization overhead of needed extractelement 6047 // instructions. For each of the instruction's operands, if the operand can 6048 // be scalarized, add it to the worklist; otherwise, account for the 6049 // overhead. 6050 for (Use &U : I->operands()) 6051 if (auto *J = dyn_cast<Instruction>(U.get())) { 6052 assert(VectorType::isValidElementType(J->getType()) && 6053 "Instruction has non-scalar type"); 6054 if (canBeScalarized(J)) 6055 Worklist.push_back(J); 6056 else if (needsExtract(J, VF)) { 6057 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6058 ScalarCost += TTI.getScalarizationOverhead( 6059 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6060 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6061 } 6062 } 6063 6064 // Scale the total scalar cost by block probability. 6065 ScalarCost /= getReciprocalPredBlockProb(); 6066 6067 // Compute the discount. A non-negative discount means the vector version 6068 // of the instruction costs more, and scalarizing would be beneficial. 6069 Discount += VectorCost - ScalarCost; 6070 ScalarCosts[I] = ScalarCost; 6071 } 6072 6073 return Discount; 6074 } 6075 6076 LoopVectorizationCostModel::VectorizationCostTy 6077 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6078 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6079 VectorizationCostTy Cost; 6080 6081 // For each block. 6082 for (BasicBlock *BB : TheLoop->blocks()) { 6083 VectorizationCostTy BlockCost; 6084 6085 // For each instruction in the old loop. 6086 for (Instruction &I : BB->instructionsWithoutDebug()) { 6087 // Skip ignored values. 6088 if (ValuesToIgnore.count(&I) || 6089 (VF.isVector() && VecValuesToIgnore.count(&I))) 6090 continue; 6091 6092 VectorizationCostTy C = getInstructionCost(&I, VF); 6093 6094 // Check if we should override the cost. 6095 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6096 C.first = ForceTargetInstructionCost; 6097 6098 BlockCost.first += C.first; 6099 BlockCost.second |= C.second; 6100 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6101 << " for VF " << VF << " For instruction: " << I 6102 << '\n'); 6103 } 6104 6105 // If we are vectorizing a predicated block, it will have been 6106 // if-converted. This means that the block's instructions (aside from 6107 // stores and instructions that may divide by zero) will now be 6108 // unconditionally executed. For the scalar case, we may not always execute 6109 // the predicated block. Thus, scale the block's cost by the probability of 6110 // executing it. 6111 if (VF.isScalar() && blockNeedsPredication(BB)) 6112 BlockCost.first /= getReciprocalPredBlockProb(); 6113 6114 Cost.first += BlockCost.first; 6115 Cost.second |= BlockCost.second; 6116 } 6117 6118 return Cost; 6119 } 6120 6121 /// Gets Address Access SCEV after verifying that the access pattern 6122 /// is loop invariant except the induction variable dependence. 6123 /// 6124 /// This SCEV can be sent to the Target in order to estimate the address 6125 /// calculation cost. 6126 static const SCEV *getAddressAccessSCEV( 6127 Value *Ptr, 6128 LoopVectorizationLegality *Legal, 6129 PredicatedScalarEvolution &PSE, 6130 const Loop *TheLoop) { 6131 6132 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6133 if (!Gep) 6134 return nullptr; 6135 6136 // We are looking for a gep with all loop invariant indices except for one 6137 // which should be an induction variable. 6138 auto SE = PSE.getSE(); 6139 unsigned NumOperands = Gep->getNumOperands(); 6140 for (unsigned i = 1; i < NumOperands; ++i) { 6141 Value *Opd = Gep->getOperand(i); 6142 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6143 !Legal->isInductionVariable(Opd)) 6144 return nullptr; 6145 } 6146 6147 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6148 return PSE.getSCEV(Ptr); 6149 } 6150 6151 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6152 return Legal->hasStride(I->getOperand(0)) || 6153 Legal->hasStride(I->getOperand(1)); 6154 } 6155 6156 unsigned 6157 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6158 ElementCount VF) { 6159 assert(VF.isVector() && 6160 "Scalarization cost of instruction implies vectorization."); 6161 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6162 Type *ValTy = getMemInstValueType(I); 6163 auto SE = PSE.getSE(); 6164 6165 unsigned AS = getLoadStoreAddressSpace(I); 6166 Value *Ptr = getLoadStorePointerOperand(I); 6167 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6168 6169 // Figure out whether the access is strided and get the stride value 6170 // if it's known in compile time 6171 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6172 6173 // Get the cost of the scalar memory instruction and address computation. 6174 unsigned Cost = 6175 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6176 6177 // Don't pass *I here, since it is scalar but will actually be part of a 6178 // vectorized loop where the user of it is a vectorized instruction. 6179 const Align Alignment = getLoadStoreAlignment(I); 6180 Cost += VF.getKnownMinValue() * 6181 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6182 AS, TTI::TCK_RecipThroughput); 6183 6184 // Get the overhead of the extractelement and insertelement instructions 6185 // we might create due to scalarization. 6186 Cost += getScalarizationOverhead(I, VF); 6187 6188 // If we have a predicated store, it may not be executed for each vector 6189 // lane. Scale the cost by the probability of executing the predicated 6190 // block. 6191 if (isPredicatedInst(I)) { 6192 Cost /= getReciprocalPredBlockProb(); 6193 6194 if (useEmulatedMaskMemRefHack(I)) 6195 // Artificially setting to a high enough value to practically disable 6196 // vectorization with such operations. 6197 Cost = 3000000; 6198 } 6199 6200 return Cost; 6201 } 6202 6203 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6204 ElementCount VF) { 6205 Type *ValTy = getMemInstValueType(I); 6206 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6207 Value *Ptr = getLoadStorePointerOperand(I); 6208 unsigned AS = getLoadStoreAddressSpace(I); 6209 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6210 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6211 6212 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6213 "Stride should be 1 or -1 for consecutive memory access"); 6214 const Align Alignment = getLoadStoreAlignment(I); 6215 unsigned Cost = 0; 6216 if (Legal->isMaskRequired(I)) 6217 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6218 CostKind); 6219 else 6220 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6221 CostKind, I); 6222 6223 bool Reverse = ConsecutiveStride < 0; 6224 if (Reverse) 6225 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6226 return Cost; 6227 } 6228 6229 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6230 ElementCount VF) { 6231 Type *ValTy = getMemInstValueType(I); 6232 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6233 const Align Alignment = getLoadStoreAlignment(I); 6234 unsigned AS = getLoadStoreAddressSpace(I); 6235 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6236 if (isa<LoadInst>(I)) { 6237 return TTI.getAddressComputationCost(ValTy) + 6238 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6239 CostKind) + 6240 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6241 } 6242 StoreInst *SI = cast<StoreInst>(I); 6243 6244 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6245 return TTI.getAddressComputationCost(ValTy) + 6246 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6247 CostKind) + 6248 (isLoopInvariantStoreValue 6249 ? 0 6250 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6251 VF.getKnownMinValue() - 1)); 6252 } 6253 6254 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6255 ElementCount VF) { 6256 Type *ValTy = getMemInstValueType(I); 6257 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6258 const Align Alignment = getLoadStoreAlignment(I); 6259 const Value *Ptr = getLoadStorePointerOperand(I); 6260 6261 return TTI.getAddressComputationCost(VectorTy) + 6262 TTI.getGatherScatterOpCost( 6263 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6264 TargetTransformInfo::TCK_RecipThroughput, I); 6265 } 6266 6267 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6268 ElementCount VF) { 6269 Type *ValTy = getMemInstValueType(I); 6270 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6271 unsigned AS = getLoadStoreAddressSpace(I); 6272 6273 auto Group = getInterleavedAccessGroup(I); 6274 assert(Group && "Fail to get an interleaved access group."); 6275 6276 unsigned InterleaveFactor = Group->getFactor(); 6277 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6278 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6279 6280 // Holds the indices of existing members in an interleaved load group. 6281 // An interleaved store group doesn't need this as it doesn't allow gaps. 6282 SmallVector<unsigned, 4> Indices; 6283 if (isa<LoadInst>(I)) { 6284 for (unsigned i = 0; i < InterleaveFactor; i++) 6285 if (Group->getMember(i)) 6286 Indices.push_back(i); 6287 } 6288 6289 // Calculate the cost of the whole interleaved group. 6290 bool UseMaskForGaps = 6291 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6292 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6293 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6294 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6295 6296 if (Group->isReverse()) { 6297 // TODO: Add support for reversed masked interleaved access. 6298 assert(!Legal->isMaskRequired(I) && 6299 "Reverse masked interleaved access not supported."); 6300 Cost += Group->getNumMembers() * 6301 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6302 } 6303 return Cost; 6304 } 6305 6306 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6307 ElementCount VF) { 6308 // Calculate scalar cost only. Vectorization cost should be ready at this 6309 // moment. 6310 if (VF.isScalar()) { 6311 Type *ValTy = getMemInstValueType(I); 6312 const Align Alignment = getLoadStoreAlignment(I); 6313 unsigned AS = getLoadStoreAddressSpace(I); 6314 6315 return TTI.getAddressComputationCost(ValTy) + 6316 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6317 TTI::TCK_RecipThroughput, I); 6318 } 6319 return getWideningCost(I, VF); 6320 } 6321 6322 LoopVectorizationCostModel::VectorizationCostTy 6323 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6324 ElementCount VF) { 6325 assert(!VF.isScalable() && 6326 "the cost model is not yet implemented for scalable vectorization"); 6327 // If we know that this instruction will remain uniform, check the cost of 6328 // the scalar version. 6329 if (isUniformAfterVectorization(I, VF)) 6330 VF = ElementCount::getFixed(1); 6331 6332 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6333 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6334 6335 // Forced scalars do not have any scalarization overhead. 6336 auto ForcedScalar = ForcedScalars.find(VF); 6337 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6338 auto InstSet = ForcedScalar->second; 6339 if (InstSet.count(I)) 6340 return VectorizationCostTy( 6341 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6342 VF.getKnownMinValue()), 6343 false); 6344 } 6345 6346 Type *VectorTy; 6347 unsigned C = getInstructionCost(I, VF, VectorTy); 6348 6349 bool TypeNotScalarized = 6350 VF.isVector() && VectorTy->isVectorTy() && 6351 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 6352 return VectorizationCostTy(C, TypeNotScalarized); 6353 } 6354 6355 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6356 ElementCount VF) { 6357 6358 assert(!VF.isScalable() && 6359 "cannot compute scalarization overhead for scalable vectorization"); 6360 if (VF.isScalar()) 6361 return 0; 6362 6363 unsigned Cost = 0; 6364 Type *RetTy = ToVectorTy(I->getType(), VF); 6365 if (!RetTy->isVoidTy() && 6366 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6367 Cost += TTI.getScalarizationOverhead( 6368 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 6369 true, false); 6370 6371 // Some targets keep addresses scalar. 6372 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6373 return Cost; 6374 6375 // Some targets support efficient element stores. 6376 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6377 return Cost; 6378 6379 // Collect operands to consider. 6380 CallInst *CI = dyn_cast<CallInst>(I); 6381 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6382 6383 // Skip operands that do not require extraction/scalarization and do not incur 6384 // any overhead. 6385 return Cost + TTI.getOperandsScalarizationOverhead( 6386 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 6387 } 6388 6389 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6390 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6391 if (VF.isScalar()) 6392 return; 6393 NumPredStores = 0; 6394 for (BasicBlock *BB : TheLoop->blocks()) { 6395 // For each instruction in the old loop. 6396 for (Instruction &I : *BB) { 6397 Value *Ptr = getLoadStorePointerOperand(&I); 6398 if (!Ptr) 6399 continue; 6400 6401 // TODO: We should generate better code and update the cost model for 6402 // predicated uniform stores. Today they are treated as any other 6403 // predicated store (see added test cases in 6404 // invariant-store-vectorization.ll). 6405 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6406 NumPredStores++; 6407 6408 if (Legal->isUniformMemOp(I)) { 6409 // TODO: Avoid replicating loads and stores instead of 6410 // relying on instcombine to remove them. 6411 // Load: Scalar load + broadcast 6412 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6413 unsigned Cost = getUniformMemOpCost(&I, VF); 6414 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6415 continue; 6416 } 6417 6418 // We assume that widening is the best solution when possible. 6419 if (memoryInstructionCanBeWidened(&I, VF)) { 6420 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6421 int ConsecutiveStride = 6422 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6423 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6424 "Expected consecutive stride."); 6425 InstWidening Decision = 6426 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6427 setWideningDecision(&I, VF, Decision, Cost); 6428 continue; 6429 } 6430 6431 // Choose between Interleaving, Gather/Scatter or Scalarization. 6432 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6433 unsigned NumAccesses = 1; 6434 if (isAccessInterleaved(&I)) { 6435 auto Group = getInterleavedAccessGroup(&I); 6436 assert(Group && "Fail to get an interleaved access group."); 6437 6438 // Make one decision for the whole group. 6439 if (getWideningDecision(&I, VF) != CM_Unknown) 6440 continue; 6441 6442 NumAccesses = Group->getNumMembers(); 6443 if (interleavedAccessCanBeWidened(&I, VF)) 6444 InterleaveCost = getInterleaveGroupCost(&I, VF); 6445 } 6446 6447 unsigned GatherScatterCost = 6448 isLegalGatherOrScatter(&I) 6449 ? getGatherScatterCost(&I, VF) * NumAccesses 6450 : std::numeric_limits<unsigned>::max(); 6451 6452 unsigned ScalarizationCost = 6453 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6454 6455 // Choose better solution for the current VF, 6456 // write down this decision and use it during vectorization. 6457 unsigned Cost; 6458 InstWidening Decision; 6459 if (InterleaveCost <= GatherScatterCost && 6460 InterleaveCost < ScalarizationCost) { 6461 Decision = CM_Interleave; 6462 Cost = InterleaveCost; 6463 } else if (GatherScatterCost < ScalarizationCost) { 6464 Decision = CM_GatherScatter; 6465 Cost = GatherScatterCost; 6466 } else { 6467 Decision = CM_Scalarize; 6468 Cost = ScalarizationCost; 6469 } 6470 // If the instructions belongs to an interleave group, the whole group 6471 // receives the same decision. The whole group receives the cost, but 6472 // the cost will actually be assigned to one instruction. 6473 if (auto Group = getInterleavedAccessGroup(&I)) 6474 setWideningDecision(Group, VF, Decision, Cost); 6475 else 6476 setWideningDecision(&I, VF, Decision, Cost); 6477 } 6478 } 6479 6480 // Make sure that any load of address and any other address computation 6481 // remains scalar unless there is gather/scatter support. This avoids 6482 // inevitable extracts into address registers, and also has the benefit of 6483 // activating LSR more, since that pass can't optimize vectorized 6484 // addresses. 6485 if (TTI.prefersVectorizedAddressing()) 6486 return; 6487 6488 // Start with all scalar pointer uses. 6489 SmallPtrSet<Instruction *, 8> AddrDefs; 6490 for (BasicBlock *BB : TheLoop->blocks()) 6491 for (Instruction &I : *BB) { 6492 Instruction *PtrDef = 6493 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6494 if (PtrDef && TheLoop->contains(PtrDef) && 6495 getWideningDecision(&I, VF) != CM_GatherScatter) 6496 AddrDefs.insert(PtrDef); 6497 } 6498 6499 // Add all instructions used to generate the addresses. 6500 SmallVector<Instruction *, 4> Worklist; 6501 for (auto *I : AddrDefs) 6502 Worklist.push_back(I); 6503 while (!Worklist.empty()) { 6504 Instruction *I = Worklist.pop_back_val(); 6505 for (auto &Op : I->operands()) 6506 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6507 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6508 AddrDefs.insert(InstOp).second) 6509 Worklist.push_back(InstOp); 6510 } 6511 6512 for (auto *I : AddrDefs) { 6513 if (isa<LoadInst>(I)) { 6514 // Setting the desired widening decision should ideally be handled in 6515 // by cost functions, but since this involves the task of finding out 6516 // if the loaded register is involved in an address computation, it is 6517 // instead changed here when we know this is the case. 6518 InstWidening Decision = getWideningDecision(I, VF); 6519 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6520 // Scalarize a widened load of address. 6521 setWideningDecision( 6522 I, VF, CM_Scalarize, 6523 (VF.getKnownMinValue() * 6524 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6525 else if (auto Group = getInterleavedAccessGroup(I)) { 6526 // Scalarize an interleave group of address loads. 6527 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6528 if (Instruction *Member = Group->getMember(I)) 6529 setWideningDecision( 6530 Member, VF, CM_Scalarize, 6531 (VF.getKnownMinValue() * 6532 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6533 } 6534 } 6535 } else 6536 // Make sure I gets scalarized and a cost estimate without 6537 // scalarization overhead. 6538 ForcedScalars[VF].insert(I); 6539 } 6540 } 6541 6542 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6543 ElementCount VF, 6544 Type *&VectorTy) { 6545 Type *RetTy = I->getType(); 6546 if (canTruncateToMinimalBitwidth(I, VF)) 6547 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6548 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6549 auto SE = PSE.getSE(); 6550 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6551 6552 // TODO: We need to estimate the cost of intrinsic calls. 6553 switch (I->getOpcode()) { 6554 case Instruction::GetElementPtr: 6555 // We mark this instruction as zero-cost because the cost of GEPs in 6556 // vectorized code depends on whether the corresponding memory instruction 6557 // is scalarized or not. Therefore, we handle GEPs with the memory 6558 // instruction cost. 6559 return 0; 6560 case Instruction::Br: { 6561 // In cases of scalarized and predicated instructions, there will be VF 6562 // predicated blocks in the vectorized loop. Each branch around these 6563 // blocks requires also an extract of its vector compare i1 element. 6564 bool ScalarPredicatedBB = false; 6565 BranchInst *BI = cast<BranchInst>(I); 6566 if (VF.isVector() && BI->isConditional() && 6567 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6568 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6569 ScalarPredicatedBB = true; 6570 6571 if (ScalarPredicatedBB) { 6572 // Return cost for branches around scalarized and predicated blocks. 6573 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6574 auto *Vec_i1Ty = 6575 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6576 return (TTI.getScalarizationOverhead( 6577 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6578 false, true) + 6579 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 6580 VF.getKnownMinValue())); 6581 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6582 // The back-edge branch will remain, as will all scalar branches. 6583 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6584 else 6585 // This branch will be eliminated by if-conversion. 6586 return 0; 6587 // Note: We currently assume zero cost for an unconditional branch inside 6588 // a predicated block since it will become a fall-through, although we 6589 // may decide in the future to call TTI for all branches. 6590 } 6591 case Instruction::PHI: { 6592 auto *Phi = cast<PHINode>(I); 6593 6594 // First-order recurrences are replaced by vector shuffles inside the loop. 6595 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6596 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 6597 return TTI.getShuffleCost( 6598 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 6599 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 6600 6601 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6602 // converted into select instructions. We require N - 1 selects per phi 6603 // node, where N is the number of incoming values. 6604 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 6605 return (Phi->getNumIncomingValues() - 1) * 6606 TTI.getCmpSelInstrCost( 6607 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6608 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6609 CmpInst::BAD_ICMP_PREDICATE, CostKind); 6610 6611 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6612 } 6613 case Instruction::UDiv: 6614 case Instruction::SDiv: 6615 case Instruction::URem: 6616 case Instruction::SRem: 6617 // If we have a predicated instruction, it may not be executed for each 6618 // vector lane. Get the scalarization cost and scale this amount by the 6619 // probability of executing the predicated block. If the instruction is not 6620 // predicated, we fall through to the next case. 6621 if (VF.isVector() && isScalarWithPredication(I)) { 6622 unsigned Cost = 0; 6623 6624 // These instructions have a non-void type, so account for the phi nodes 6625 // that we will create. This cost is likely to be zero. The phi node 6626 // cost, if any, should be scaled by the block probability because it 6627 // models a copy at the end of each predicated block. 6628 Cost += VF.getKnownMinValue() * 6629 TTI.getCFInstrCost(Instruction::PHI, CostKind); 6630 6631 // The cost of the non-predicated instruction. 6632 Cost += VF.getKnownMinValue() * 6633 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6634 6635 // The cost of insertelement and extractelement instructions needed for 6636 // scalarization. 6637 Cost += getScalarizationOverhead(I, VF); 6638 6639 // Scale the cost by the probability of executing the predicated blocks. 6640 // This assumes the predicated block for each vector lane is equally 6641 // likely. 6642 return Cost / getReciprocalPredBlockProb(); 6643 } 6644 LLVM_FALLTHROUGH; 6645 case Instruction::Add: 6646 case Instruction::FAdd: 6647 case Instruction::Sub: 6648 case Instruction::FSub: 6649 case Instruction::Mul: 6650 case Instruction::FMul: 6651 case Instruction::FDiv: 6652 case Instruction::FRem: 6653 case Instruction::Shl: 6654 case Instruction::LShr: 6655 case Instruction::AShr: 6656 case Instruction::And: 6657 case Instruction::Or: 6658 case Instruction::Xor: { 6659 // Since we will replace the stride by 1 the multiplication should go away. 6660 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6661 return 0; 6662 // Certain instructions can be cheaper to vectorize if they have a constant 6663 // second vector operand. One example of this are shifts on x86. 6664 Value *Op2 = I->getOperand(1); 6665 TargetTransformInfo::OperandValueProperties Op2VP; 6666 TargetTransformInfo::OperandValueKind Op2VK = 6667 TTI.getOperandInfo(Op2, Op2VP); 6668 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6669 Op2VK = TargetTransformInfo::OK_UniformValue; 6670 6671 SmallVector<const Value *, 4> Operands(I->operand_values()); 6672 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6673 return N * TTI.getArithmeticInstrCost( 6674 I->getOpcode(), VectorTy, CostKind, 6675 TargetTransformInfo::OK_AnyValue, 6676 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6677 } 6678 case Instruction::FNeg: { 6679 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6680 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6681 return N * TTI.getArithmeticInstrCost( 6682 I->getOpcode(), VectorTy, CostKind, 6683 TargetTransformInfo::OK_AnyValue, 6684 TargetTransformInfo::OK_AnyValue, 6685 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6686 I->getOperand(0), I); 6687 } 6688 case Instruction::Select: { 6689 SelectInst *SI = cast<SelectInst>(I); 6690 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6691 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6692 Type *CondTy = SI->getCondition()->getType(); 6693 if (!ScalarCond) { 6694 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6695 CondTy = VectorType::get(CondTy, VF); 6696 } 6697 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6698 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 6699 } 6700 case Instruction::ICmp: 6701 case Instruction::FCmp: { 6702 Type *ValTy = I->getOperand(0)->getType(); 6703 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6704 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6705 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6706 VectorTy = ToVectorTy(ValTy, VF); 6707 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 6708 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 6709 } 6710 case Instruction::Store: 6711 case Instruction::Load: { 6712 ElementCount Width = VF; 6713 if (Width.isVector()) { 6714 InstWidening Decision = getWideningDecision(I, Width); 6715 assert(Decision != CM_Unknown && 6716 "CM decision should be taken at this point"); 6717 if (Decision == CM_Scalarize) 6718 Width = ElementCount::getFixed(1); 6719 } 6720 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6721 return getMemoryInstructionCost(I, VF); 6722 } 6723 case Instruction::ZExt: 6724 case Instruction::SExt: 6725 case Instruction::FPToUI: 6726 case Instruction::FPToSI: 6727 case Instruction::FPExt: 6728 case Instruction::PtrToInt: 6729 case Instruction::IntToPtr: 6730 case Instruction::SIToFP: 6731 case Instruction::UIToFP: 6732 case Instruction::Trunc: 6733 case Instruction::FPTrunc: 6734 case Instruction::BitCast: { 6735 // Computes the CastContextHint from a Load/Store instruction. 6736 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 6737 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6738 "Expected a load or a store!"); 6739 6740 if (VF.isScalar() || !TheLoop->contains(I)) 6741 return TTI::CastContextHint::Normal; 6742 6743 switch (getWideningDecision(I, VF)) { 6744 case LoopVectorizationCostModel::CM_GatherScatter: 6745 return TTI::CastContextHint::GatherScatter; 6746 case LoopVectorizationCostModel::CM_Interleave: 6747 return TTI::CastContextHint::Interleave; 6748 case LoopVectorizationCostModel::CM_Scalarize: 6749 case LoopVectorizationCostModel::CM_Widen: 6750 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 6751 : TTI::CastContextHint::Normal; 6752 case LoopVectorizationCostModel::CM_Widen_Reverse: 6753 return TTI::CastContextHint::Reversed; 6754 case LoopVectorizationCostModel::CM_Unknown: 6755 llvm_unreachable("Instr did not go through cost modelling?"); 6756 } 6757 6758 llvm_unreachable("Unhandled case!"); 6759 }; 6760 6761 unsigned Opcode = I->getOpcode(); 6762 TTI::CastContextHint CCH = TTI::CastContextHint::None; 6763 // For Trunc, the context is the only user, which must be a StoreInst. 6764 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 6765 if (I->hasOneUse()) 6766 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 6767 CCH = ComputeCCH(Store); 6768 } 6769 // For Z/Sext, the context is the operand, which must be a LoadInst. 6770 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 6771 Opcode == Instruction::FPExt) { 6772 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 6773 CCH = ComputeCCH(Load); 6774 } 6775 6776 // We optimize the truncation of induction variables having constant 6777 // integer steps. The cost of these truncations is the same as the scalar 6778 // operation. 6779 if (isOptimizableIVTruncate(I, VF)) { 6780 auto *Trunc = cast<TruncInst>(I); 6781 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6782 Trunc->getSrcTy(), CCH, CostKind, Trunc); 6783 } 6784 6785 Type *SrcScalarTy = I->getOperand(0)->getType(); 6786 Type *SrcVecTy = 6787 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6788 if (canTruncateToMinimalBitwidth(I, VF)) { 6789 // This cast is going to be shrunk. This may remove the cast or it might 6790 // turn it into slightly different cast. For example, if MinBW == 16, 6791 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6792 // 6793 // Calculate the modified src and dest types. 6794 Type *MinVecTy = VectorTy; 6795 if (Opcode == Instruction::Trunc) { 6796 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6797 VectorTy = 6798 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6799 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 6800 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6801 VectorTy = 6802 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6803 } 6804 } 6805 6806 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 6807 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6808 return N * 6809 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 6810 } 6811 case Instruction::Call: { 6812 bool NeedToScalarize; 6813 CallInst *CI = cast<CallInst>(I); 6814 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6815 if (getVectorIntrinsicIDForCall(CI, TLI)) 6816 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6817 return CallCost; 6818 } 6819 default: 6820 // The cost of executing VF copies of the scalar instruction. This opcode 6821 // is unknown. Assume that it is the same as 'mul'. 6822 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 6823 Instruction::Mul, VectorTy, CostKind) + 6824 getScalarizationOverhead(I, VF); 6825 } // end of switch. 6826 } 6827 6828 char LoopVectorize::ID = 0; 6829 6830 static const char lv_name[] = "Loop Vectorization"; 6831 6832 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6833 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6834 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6835 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6836 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6837 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6838 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6839 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6840 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6841 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6842 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6843 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6844 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6845 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6846 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6847 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6848 6849 namespace llvm { 6850 6851 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6852 6853 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6854 bool VectorizeOnlyWhenForced) { 6855 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6856 } 6857 6858 } // end namespace llvm 6859 6860 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6861 // Check if the pointer operand of a load or store instruction is 6862 // consecutive. 6863 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6864 return Legal->isConsecutivePtr(Ptr); 6865 return false; 6866 } 6867 6868 void LoopVectorizationCostModel::collectValuesToIgnore() { 6869 // Ignore ephemeral values. 6870 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6871 6872 // Ignore type-promoting instructions we identified during reduction 6873 // detection. 6874 for (auto &Reduction : Legal->getReductionVars()) { 6875 RecurrenceDescriptor &RedDes = Reduction.second; 6876 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6877 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6878 } 6879 // Ignore type-casting instructions we identified during induction 6880 // detection. 6881 for (auto &Induction : Legal->getInductionVars()) { 6882 InductionDescriptor &IndDes = Induction.second; 6883 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6884 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6885 } 6886 } 6887 6888 void LoopVectorizationCostModel::collectInLoopReductions() { 6889 for (auto &Reduction : Legal->getReductionVars()) { 6890 PHINode *Phi = Reduction.first; 6891 RecurrenceDescriptor &RdxDesc = Reduction.second; 6892 6893 // We don't collect reductions that are type promoted (yet). 6894 if (RdxDesc.getRecurrenceType() != Phi->getType()) 6895 continue; 6896 6897 // If the target would prefer this reduction to happen "in-loop", then we 6898 // want to record it as such. 6899 unsigned Opcode = RdxDesc.getRecurrenceBinOp(); 6900 if (!PreferInLoopReductions && 6901 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 6902 TargetTransformInfo::ReductionFlags())) 6903 continue; 6904 6905 // Check that we can correctly put the reductions into the loop, by 6906 // finding the chain of operations that leads from the phi to the loop 6907 // exit value. 6908 SmallVector<Instruction *, 4> ReductionOperations = 6909 RdxDesc.getReductionOpChain(Phi, TheLoop); 6910 bool InLoop = !ReductionOperations.empty(); 6911 if (InLoop) 6912 InLoopReductionChains[Phi] = ReductionOperations; 6913 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 6914 << " reduction for phi: " << *Phi << "\n"); 6915 } 6916 } 6917 6918 // TODO: we could return a pair of values that specify the max VF and 6919 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6920 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6921 // doesn't have a cost model that can choose which plan to execute if 6922 // more than one is generated. 6923 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6924 LoopVectorizationCostModel &CM) { 6925 unsigned WidestType; 6926 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6927 return WidestVectorRegBits / WidestType; 6928 } 6929 6930 VectorizationFactor 6931 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 6932 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 6933 ElementCount VF = UserVF; 6934 // Outer loop handling: They may require CFG and instruction level 6935 // transformations before even evaluating whether vectorization is profitable. 6936 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6937 // the vectorization pipeline. 6938 if (!OrigLoop->isInnermost()) { 6939 // If the user doesn't provide a vectorization factor, determine a 6940 // reasonable one. 6941 if (UserVF.isZero()) { 6942 VF = ElementCount::getFixed( 6943 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 6944 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6945 6946 // Make sure we have a VF > 1 for stress testing. 6947 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 6948 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6949 << "overriding computed VF.\n"); 6950 VF = ElementCount::getFixed(4); 6951 } 6952 } 6953 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6954 assert(isPowerOf2_32(VF.getKnownMinValue()) && 6955 "VF needs to be a power of two"); 6956 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 6957 << "VF " << VF << " to build VPlans.\n"); 6958 buildVPlans(VF, VF); 6959 6960 // For VPlan build stress testing, we bail out after VPlan construction. 6961 if (VPlanBuildStressTest) 6962 return VectorizationFactor::Disabled(); 6963 6964 return {VF, 0 /*Cost*/}; 6965 } 6966 6967 LLVM_DEBUG( 6968 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6969 "VPlan-native path.\n"); 6970 return VectorizationFactor::Disabled(); 6971 } 6972 6973 Optional<VectorizationFactor> 6974 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 6975 assert(!UserVF.isScalable() && "scalable vectorization not yet handled"); 6976 assert(OrigLoop->isInnermost() && "Inner loop expected."); 6977 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 6978 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6979 return None; 6980 6981 // Invalidate interleave groups if all blocks of loop will be predicated. 6982 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6983 !useMaskedInterleavedAccesses(*TTI)) { 6984 LLVM_DEBUG( 6985 dbgs() 6986 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6987 "which requires masked-interleaved support.\n"); 6988 if (CM.InterleaveInfo.invalidateGroups()) 6989 // Invalidating interleave groups also requires invalidating all decisions 6990 // based on them, which includes widening decisions and uniform and scalar 6991 // values. 6992 CM.invalidateCostModelingDecisions(); 6993 } 6994 6995 if (!UserVF.isZero()) { 6996 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6997 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 6998 "VF needs to be a power of two"); 6999 // Collect the instructions (and their associated costs) that will be more 7000 // profitable to scalarize. 7001 CM.selectUserVectorizationFactor(UserVF); 7002 CM.collectInLoopReductions(); 7003 buildVPlansWithVPRecipes(UserVF, UserVF); 7004 LLVM_DEBUG(printPlans(dbgs())); 7005 return {{UserVF, 0}}; 7006 } 7007 7008 ElementCount MaxVF = MaybeMaxVF.getValue(); 7009 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7010 7011 for (ElementCount VF = ElementCount::getFixed(1); 7012 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7013 // Collect Uniform and Scalar instructions after vectorization with VF. 7014 CM.collectUniformsAndScalars(VF); 7015 7016 // Collect the instructions (and their associated costs) that will be more 7017 // profitable to scalarize. 7018 if (VF.isVector()) 7019 CM.collectInstsToScalarize(VF); 7020 } 7021 7022 CM.collectInLoopReductions(); 7023 7024 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7025 LLVM_DEBUG(printPlans(dbgs())); 7026 if (MaxVF.isScalar()) 7027 return VectorizationFactor::Disabled(); 7028 7029 // Select the optimal vectorization factor. 7030 return CM.selectVectorizationFactor(MaxVF); 7031 } 7032 7033 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7034 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7035 << '\n'); 7036 BestVF = VF; 7037 BestUF = UF; 7038 7039 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7040 return !Plan->hasVF(VF); 7041 }); 7042 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7043 } 7044 7045 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7046 DominatorTree *DT) { 7047 // Perform the actual loop transformation. 7048 7049 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7050 VPCallbackILV CallbackILV(ILV); 7051 7052 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7053 7054 VPTransformState State{*BestVF, BestUF, LI, 7055 DT, ILV.Builder, ILV.VectorLoopValueMap, 7056 &ILV, CallbackILV}; 7057 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7058 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7059 State.CanonicalIV = ILV.Induction; 7060 7061 //===------------------------------------------------===// 7062 // 7063 // Notice: any optimization or new instruction that go 7064 // into the code below should also be implemented in 7065 // the cost-model. 7066 // 7067 //===------------------------------------------------===// 7068 7069 // 2. Copy and widen instructions from the old loop into the new loop. 7070 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7071 VPlans.front()->execute(&State); 7072 7073 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7074 // predication, updating analyses. 7075 ILV.fixVectorizedLoop(); 7076 } 7077 7078 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7079 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7080 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7081 7082 // We create new control-flow for the vectorized loop, so the original 7083 // condition will be dead after vectorization if it's only used by the 7084 // branch. 7085 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7086 if (Cmp && Cmp->hasOneUse()) { 7087 DeadInstructions.insert(Cmp); 7088 7089 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7090 for (Value *Op : Cmp->operands()) { 7091 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7092 DeadInstructions.insert(cast<Instruction>(Op)); 7093 } 7094 } 7095 7096 // We create new "steps" for induction variable updates to which the original 7097 // induction variables map. An original update instruction will be dead if 7098 // all its users except the induction variable are dead. 7099 for (auto &Induction : Legal->getInductionVars()) { 7100 PHINode *Ind = Induction.first; 7101 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7102 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7103 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7104 })) 7105 DeadInstructions.insert(IndUpdate); 7106 7107 // We record as "Dead" also the type-casting instructions we had identified 7108 // during induction analysis. We don't need any handling for them in the 7109 // vectorized loop because we have proven that, under a proper runtime 7110 // test guarding the vectorized loop, the value of the phi, and the casted 7111 // value of the phi, are the same. The last instruction in this casting chain 7112 // will get its scalar/vector/widened def from the scalar/vector/widened def 7113 // of the respective phi node. Any other casts in the induction def-use chain 7114 // have no other uses outside the phi update chain, and will be ignored. 7115 InductionDescriptor &IndDes = Induction.second; 7116 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7117 DeadInstructions.insert(Casts.begin(), Casts.end()); 7118 } 7119 } 7120 7121 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7122 7123 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7124 7125 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7126 Instruction::BinaryOps BinOp) { 7127 // When unrolling and the VF is 1, we only need to add a simple scalar. 7128 Type *Ty = Val->getType(); 7129 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7130 7131 if (Ty->isFloatingPointTy()) { 7132 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7133 7134 // Floating point operations had to be 'fast' to enable the unrolling. 7135 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7136 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7137 } 7138 Constant *C = ConstantInt::get(Ty, StartIdx); 7139 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7140 } 7141 7142 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7143 SmallVector<Metadata *, 4> MDs; 7144 // Reserve first location for self reference to the LoopID metadata node. 7145 MDs.push_back(nullptr); 7146 bool IsUnrollMetadata = false; 7147 MDNode *LoopID = L->getLoopID(); 7148 if (LoopID) { 7149 // First find existing loop unrolling disable metadata. 7150 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7151 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7152 if (MD) { 7153 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7154 IsUnrollMetadata = 7155 S && S->getString().startswith("llvm.loop.unroll.disable"); 7156 } 7157 MDs.push_back(LoopID->getOperand(i)); 7158 } 7159 } 7160 7161 if (!IsUnrollMetadata) { 7162 // Add runtime unroll disable metadata. 7163 LLVMContext &Context = L->getHeader()->getContext(); 7164 SmallVector<Metadata *, 1> DisableOperands; 7165 DisableOperands.push_back( 7166 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7167 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7168 MDs.push_back(DisableNode); 7169 MDNode *NewLoopID = MDNode::get(Context, MDs); 7170 // Set operand 0 to refer to the loop id itself. 7171 NewLoopID->replaceOperandWith(0, NewLoopID); 7172 L->setLoopID(NewLoopID); 7173 } 7174 } 7175 7176 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7177 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7178 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7179 bool PredicateAtRangeStart = Predicate(Range.Start); 7180 7181 for (ElementCount TmpVF = Range.Start * 2; 7182 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7183 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7184 Range.End = TmpVF; 7185 break; 7186 } 7187 7188 return PredicateAtRangeStart; 7189 } 7190 7191 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7192 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7193 /// of VF's starting at a given VF and extending it as much as possible. Each 7194 /// vectorization decision can potentially shorten this sub-range during 7195 /// buildVPlan(). 7196 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7197 ElementCount MaxVF) { 7198 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7199 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7200 VFRange SubRange = {VF, MaxVFPlusOne}; 7201 VPlans.push_back(buildVPlan(SubRange)); 7202 VF = SubRange.End; 7203 } 7204 } 7205 7206 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7207 VPlanPtr &Plan) { 7208 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7209 7210 // Look for cached value. 7211 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7212 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7213 if (ECEntryIt != EdgeMaskCache.end()) 7214 return ECEntryIt->second; 7215 7216 VPValue *SrcMask = createBlockInMask(Src, Plan); 7217 7218 // The terminator has to be a branch inst! 7219 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7220 assert(BI && "Unexpected terminator found"); 7221 7222 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7223 return EdgeMaskCache[Edge] = SrcMask; 7224 7225 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7226 assert(EdgeMask && "No Edge Mask found for condition"); 7227 7228 if (BI->getSuccessor(0) != Dst) 7229 EdgeMask = Builder.createNot(EdgeMask); 7230 7231 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7232 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7233 7234 return EdgeMaskCache[Edge] = EdgeMask; 7235 } 7236 7237 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 7238 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7239 7240 // Look for cached value. 7241 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7242 if (BCEntryIt != BlockMaskCache.end()) 7243 return BCEntryIt->second; 7244 7245 // All-one mask is modelled as no-mask following the convention for masked 7246 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7247 VPValue *BlockMask = nullptr; 7248 7249 if (OrigLoop->getHeader() == BB) { 7250 if (!CM.blockNeedsPredication(BB)) 7251 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 7252 7253 // Create the block in mask as the first non-phi instruction in the block. 7254 VPBuilder::InsertPointGuard Guard(Builder); 7255 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 7256 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 7257 7258 // Introduce the early-exit compare IV <= BTC to form header block mask. 7259 // This is used instead of IV < TC because TC may wrap, unlike BTC. 7260 // Start by constructing the desired canonical IV. 7261 VPValue *IV = nullptr; 7262 if (Legal->getPrimaryInduction()) 7263 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 7264 else { 7265 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 7266 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 7267 IV = IVRecipe->getVPValue(); 7268 } 7269 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 7270 bool TailFolded = !CM.isScalarEpilogueAllowed(); 7271 7272 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 7273 // While ActiveLaneMask is a binary op that consumes the loop tripcount 7274 // as a second argument, we only pass the IV here and extract the 7275 // tripcount from the transform state where codegen of the VP instructions 7276 // happen. 7277 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 7278 } else { 7279 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 7280 } 7281 return BlockMaskCache[BB] = BlockMask; 7282 } 7283 7284 // This is the block mask. We OR all incoming edges. 7285 for (auto *Predecessor : predecessors(BB)) { 7286 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7287 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7288 return BlockMaskCache[BB] = EdgeMask; 7289 7290 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7291 BlockMask = EdgeMask; 7292 continue; 7293 } 7294 7295 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7296 } 7297 7298 return BlockMaskCache[BB] = BlockMask; 7299 } 7300 7301 VPWidenMemoryInstructionRecipe * 7302 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 7303 VPlanPtr &Plan) { 7304 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7305 "Must be called with either a load or store"); 7306 7307 auto willWiden = [&](ElementCount VF) -> bool { 7308 assert(!VF.isScalable() && "unexpected scalable ElementCount"); 7309 if (VF.isScalar()) 7310 return false; 7311 LoopVectorizationCostModel::InstWidening Decision = 7312 CM.getWideningDecision(I, VF); 7313 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7314 "CM decision should be taken at this point."); 7315 if (Decision == LoopVectorizationCostModel::CM_Interleave) 7316 return true; 7317 if (CM.isScalarAfterVectorization(I, VF) || 7318 CM.isProfitableToScalarize(I, VF)) 7319 return false; 7320 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7321 }; 7322 7323 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7324 return nullptr; 7325 7326 VPValue *Mask = nullptr; 7327 if (Legal->isMaskRequired(I)) 7328 Mask = createBlockInMask(I->getParent(), Plan); 7329 7330 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 7331 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 7332 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 7333 7334 StoreInst *Store = cast<StoreInst>(I); 7335 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 7336 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 7337 } 7338 7339 VPWidenIntOrFpInductionRecipe * 7340 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 7341 // Check if this is an integer or fp induction. If so, build the recipe that 7342 // produces its scalar and vector values. 7343 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 7344 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7345 II.getKind() == InductionDescriptor::IK_FpInduction) 7346 return new VPWidenIntOrFpInductionRecipe(Phi); 7347 7348 return nullptr; 7349 } 7350 7351 VPWidenIntOrFpInductionRecipe * 7352 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 7353 VFRange &Range) const { 7354 // Optimize the special case where the source is a constant integer 7355 // induction variable. Notice that we can only optimize the 'trunc' case 7356 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7357 // (c) other casts depend on pointer size. 7358 7359 // Determine whether \p K is a truncation based on an induction variable that 7360 // can be optimized. 7361 auto isOptimizableIVTruncate = 7362 [&](Instruction *K) -> std::function<bool(ElementCount)> { 7363 return [=](ElementCount VF) -> bool { 7364 return CM.isOptimizableIVTruncate(K, VF); 7365 }; 7366 }; 7367 7368 if (LoopVectorizationPlanner::getDecisionAndClampRange( 7369 isOptimizableIVTruncate(I), Range)) 7370 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7371 I); 7372 return nullptr; 7373 } 7374 7375 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 7376 // We know that all PHIs in non-header blocks are converted into selects, so 7377 // we don't have to worry about the insertion order and we can just use the 7378 // builder. At this point we generate the predication tree. There may be 7379 // duplications since this is a simple recursive scan, but future 7380 // optimizations will clean it up. 7381 7382 SmallVector<VPValue *, 2> Operands; 7383 unsigned NumIncoming = Phi->getNumIncomingValues(); 7384 for (unsigned In = 0; In < NumIncoming; In++) { 7385 VPValue *EdgeMask = 7386 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7387 assert((EdgeMask || NumIncoming == 1) && 7388 "Multiple predecessors with one having a full mask"); 7389 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 7390 if (EdgeMask) 7391 Operands.push_back(EdgeMask); 7392 } 7393 return new VPBlendRecipe(Phi, Operands); 7394 } 7395 7396 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 7397 VPlan &Plan) const { 7398 7399 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7400 [this, CI](ElementCount VF) { 7401 return CM.isScalarWithPredication(CI, VF); 7402 }, 7403 Range); 7404 7405 if (IsPredicated) 7406 return nullptr; 7407 7408 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7409 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7410 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 7411 return nullptr; 7412 7413 auto willWiden = [&](ElementCount VF) -> bool { 7414 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7415 // The following case may be scalarized depending on the VF. 7416 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7417 // version of the instruction. 7418 // Is it beneficial to perform intrinsic call compared to lib call? 7419 bool NeedToScalarize = false; 7420 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 7421 bool UseVectorIntrinsic = 7422 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 7423 return UseVectorIntrinsic || !NeedToScalarize; 7424 }; 7425 7426 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7427 return nullptr; 7428 7429 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 7430 } 7431 7432 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 7433 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 7434 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 7435 // Instruction should be widened, unless it is scalar after vectorization, 7436 // scalarization is profitable or it is predicated. 7437 auto WillScalarize = [this, I](ElementCount VF) -> bool { 7438 return CM.isScalarAfterVectorization(I, VF) || 7439 CM.isProfitableToScalarize(I, VF) || 7440 CM.isScalarWithPredication(I, VF); 7441 }; 7442 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7443 Range); 7444 } 7445 7446 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7447 auto IsVectorizableOpcode = [](unsigned Opcode) { 7448 switch (Opcode) { 7449 case Instruction::Add: 7450 case Instruction::And: 7451 case Instruction::AShr: 7452 case Instruction::BitCast: 7453 case Instruction::FAdd: 7454 case Instruction::FCmp: 7455 case Instruction::FDiv: 7456 case Instruction::FMul: 7457 case Instruction::FNeg: 7458 case Instruction::FPExt: 7459 case Instruction::FPToSI: 7460 case Instruction::FPToUI: 7461 case Instruction::FPTrunc: 7462 case Instruction::FRem: 7463 case Instruction::FSub: 7464 case Instruction::ICmp: 7465 case Instruction::IntToPtr: 7466 case Instruction::LShr: 7467 case Instruction::Mul: 7468 case Instruction::Or: 7469 case Instruction::PtrToInt: 7470 case Instruction::SDiv: 7471 case Instruction::Select: 7472 case Instruction::SExt: 7473 case Instruction::Shl: 7474 case Instruction::SIToFP: 7475 case Instruction::SRem: 7476 case Instruction::Sub: 7477 case Instruction::Trunc: 7478 case Instruction::UDiv: 7479 case Instruction::UIToFP: 7480 case Instruction::URem: 7481 case Instruction::Xor: 7482 case Instruction::ZExt: 7483 return true; 7484 } 7485 return false; 7486 }; 7487 7488 if (!IsVectorizableOpcode(I->getOpcode())) 7489 return nullptr; 7490 7491 // Success: widen this instruction. 7492 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7493 } 7494 7495 VPBasicBlock *VPRecipeBuilder::handleReplication( 7496 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7497 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7498 VPlanPtr &Plan) { 7499 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7500 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 7501 Range); 7502 7503 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7504 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 7505 Range); 7506 7507 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7508 IsUniform, IsPredicated); 7509 setRecipe(I, Recipe); 7510 7511 // Find if I uses a predicated instruction. If so, it will use its scalar 7512 // value. Avoid hoisting the insert-element which packs the scalar value into 7513 // a vector value, as that happens iff all users use the vector value. 7514 for (auto &Op : I->operands()) 7515 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7516 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7517 PredInst2Recipe[PredInst]->setAlsoPack(false); 7518 7519 // Finalize the recipe for Instr, first if it is not predicated. 7520 if (!IsPredicated) { 7521 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7522 VPBB->appendRecipe(Recipe); 7523 return VPBB; 7524 } 7525 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7526 assert(VPBB->getSuccessors().empty() && 7527 "VPBB has successors when handling predicated replication."); 7528 // Record predicated instructions for above packing optimizations. 7529 PredInst2Recipe[I] = Recipe; 7530 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7531 VPBlockUtils::insertBlockAfter(Region, VPBB); 7532 auto *RegSucc = new VPBasicBlock(); 7533 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7534 return RegSucc; 7535 } 7536 7537 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7538 VPRecipeBase *PredRecipe, 7539 VPlanPtr &Plan) { 7540 // Instructions marked for predication are replicated and placed under an 7541 // if-then construct to prevent side-effects. 7542 7543 // Generate recipes to compute the block mask for this region. 7544 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7545 7546 // Build the triangular if-then region. 7547 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7548 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7549 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7550 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7551 auto *PHIRecipe = 7552 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7553 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7554 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7555 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7556 7557 // Note: first set Entry as region entry and then connect successors starting 7558 // from it in order, to propagate the "parent" of each VPBasicBlock. 7559 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7560 VPBlockUtils::connectBlocks(Pred, Exit); 7561 7562 return Region; 7563 } 7564 7565 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7566 VFRange &Range, 7567 VPlanPtr &Plan) { 7568 // First, check for specific widening recipes that deal with calls, memory 7569 // operations, inductions and Phi nodes. 7570 if (auto *CI = dyn_cast<CallInst>(Instr)) 7571 return tryToWidenCall(CI, Range, *Plan); 7572 7573 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7574 return tryToWidenMemory(Instr, Range, Plan); 7575 7576 VPRecipeBase *Recipe; 7577 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7578 if (Phi->getParent() != OrigLoop->getHeader()) 7579 return tryToBlend(Phi, Plan); 7580 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7581 return Recipe; 7582 return new VPWidenPHIRecipe(Phi); 7583 } 7584 7585 if (isa<TruncInst>(Instr) && 7586 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7587 return Recipe; 7588 7589 if (!shouldWiden(Instr, Range)) 7590 return nullptr; 7591 7592 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7593 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7594 OrigLoop); 7595 7596 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7597 bool InvariantCond = 7598 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7599 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7600 InvariantCond); 7601 } 7602 7603 return tryToWiden(Instr, *Plan); 7604 } 7605 7606 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 7607 ElementCount MaxVF) { 7608 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7609 7610 // Collect conditions feeding internal conditional branches; they need to be 7611 // represented in VPlan for it to model masking. 7612 SmallPtrSet<Value *, 1> NeedDef; 7613 7614 auto *Latch = OrigLoop->getLoopLatch(); 7615 for (BasicBlock *BB : OrigLoop->blocks()) { 7616 if (BB == Latch) 7617 continue; 7618 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7619 if (Branch && Branch->isConditional()) 7620 NeedDef.insert(Branch->getCondition()); 7621 } 7622 7623 // If the tail is to be folded by masking, the primary induction variable, if 7624 // exists needs to be represented in VPlan for it to model early-exit masking. 7625 if (CM.foldTailByMasking() && Legal->getPrimaryInduction()) 7626 NeedDef.insert(Legal->getPrimaryInduction()); 7627 7628 // Collect instructions from the original loop that will become trivially dead 7629 // in the vectorized loop. We don't need to vectorize these instructions. For 7630 // example, original induction update instructions can become dead because we 7631 // separately emit induction "steps" when generating code for the new loop. 7632 // Similarly, we create a new latch condition when setting up the structure 7633 // of the new loop, so the old one can become dead. 7634 SmallPtrSet<Instruction *, 4> DeadInstructions; 7635 collectTriviallyDeadInstructions(DeadInstructions); 7636 7637 // Add assume instructions we need to drop to DeadInstructions, to prevent 7638 // them from being added to the VPlan. 7639 // TODO: We only need to drop assumes in blocks that get flattend. If the 7640 // control flow is preserved, we should keep them. 7641 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7642 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7643 7644 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7645 // Dead instructions do not need sinking. Remove them from SinkAfter. 7646 for (Instruction *I : DeadInstructions) 7647 SinkAfter.erase(I); 7648 7649 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7650 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7651 VFRange SubRange = {VF, MaxVFPlusOne}; 7652 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7653 DeadInstructions, SinkAfter)); 7654 VF = SubRange.End; 7655 } 7656 } 7657 7658 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7659 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7660 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7661 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7662 7663 // Hold a mapping from predicated instructions to their recipes, in order to 7664 // fix their AlsoPack behavior if a user is determined to replicate and use a 7665 // scalar instead of vector value. 7666 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7667 7668 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7669 7670 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7671 7672 // --------------------------------------------------------------------------- 7673 // Pre-construction: record ingredients whose recipes we'll need to further 7674 // process after constructing the initial VPlan. 7675 // --------------------------------------------------------------------------- 7676 7677 // Mark instructions we'll need to sink later and their targets as 7678 // ingredients whose recipe we'll need to record. 7679 for (auto &Entry : SinkAfter) { 7680 RecipeBuilder.recordRecipeOf(Entry.first); 7681 RecipeBuilder.recordRecipeOf(Entry.second); 7682 } 7683 for (auto &Reduction : CM.getInLoopReductionChains()) { 7684 PHINode *Phi = Reduction.first; 7685 RecurrenceDescriptor::RecurrenceKind Kind = 7686 Legal->getReductionVars()[Phi].getRecurrenceKind(); 7687 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7688 7689 RecipeBuilder.recordRecipeOf(Phi); 7690 for (auto &R : ReductionOperations) { 7691 RecipeBuilder.recordRecipeOf(R); 7692 // For min/max reducitons, where we have a pair of icmp/select, we also 7693 // need to record the ICmp recipe, so it can be removed later. 7694 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7695 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7696 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 7697 } 7698 } 7699 } 7700 7701 // For each interleave group which is relevant for this (possibly trimmed) 7702 // Range, add it to the set of groups to be later applied to the VPlan and add 7703 // placeholders for its members' Recipes which we'll be replacing with a 7704 // single VPInterleaveRecipe. 7705 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7706 auto applyIG = [IG, this](ElementCount VF) -> bool { 7707 return (VF.isVector() && // Query is illegal for VF == 1 7708 CM.getWideningDecision(IG->getInsertPos(), VF) == 7709 LoopVectorizationCostModel::CM_Interleave); 7710 }; 7711 if (!getDecisionAndClampRange(applyIG, Range)) 7712 continue; 7713 InterleaveGroups.insert(IG); 7714 for (unsigned i = 0; i < IG->getFactor(); i++) 7715 if (Instruction *Member = IG->getMember(i)) 7716 RecipeBuilder.recordRecipeOf(Member); 7717 }; 7718 7719 // --------------------------------------------------------------------------- 7720 // Build initial VPlan: Scan the body of the loop in a topological order to 7721 // visit each basic block after having visited its predecessor basic blocks. 7722 // --------------------------------------------------------------------------- 7723 7724 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7725 auto Plan = std::make_unique<VPlan>(); 7726 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7727 Plan->setEntry(VPBB); 7728 7729 // Represent values that will have defs inside VPlan. 7730 for (Value *V : NeedDef) 7731 Plan->addVPValue(V); 7732 7733 // Scan the body of the loop in a topological order to visit each basic block 7734 // after having visited its predecessor basic blocks. 7735 LoopBlocksDFS DFS(OrigLoop); 7736 DFS.perform(LI); 7737 7738 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7739 // Relevant instructions from basic block BB will be grouped into VPRecipe 7740 // ingredients and fill a new VPBasicBlock. 7741 unsigned VPBBsForBB = 0; 7742 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7743 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7744 VPBB = FirstVPBBForBB; 7745 Builder.setInsertPoint(VPBB); 7746 7747 // Introduce each ingredient into VPlan. 7748 // TODO: Model and preserve debug instrinsics in VPlan. 7749 for (Instruction &I : BB->instructionsWithoutDebug()) { 7750 Instruction *Instr = &I; 7751 7752 // First filter out irrelevant instructions, to ensure no recipes are 7753 // built for them. 7754 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7755 continue; 7756 7757 if (auto Recipe = 7758 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7759 // Check if the recipe can be converted to a VPValue. We need the extra 7760 // down-casting step until VPRecipeBase inherits from VPValue. 7761 VPValue *MaybeVPValue = Recipe->toVPValue(); 7762 if (!Instr->getType()->isVoidTy() && MaybeVPValue) { 7763 if (NeedDef.contains(Instr)) 7764 Plan->addOrReplaceVPValue(Instr, MaybeVPValue); 7765 else 7766 Plan->addVPValue(Instr, MaybeVPValue); 7767 } 7768 7769 RecipeBuilder.setRecipe(Instr, Recipe); 7770 VPBB->appendRecipe(Recipe); 7771 continue; 7772 } 7773 7774 // Otherwise, if all widening options failed, Instruction is to be 7775 // replicated. This may create a successor for VPBB. 7776 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7777 Instr, Range, VPBB, PredInst2Recipe, Plan); 7778 if (NextVPBB != VPBB) { 7779 VPBB = NextVPBB; 7780 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7781 : ""); 7782 } 7783 } 7784 } 7785 7786 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7787 // may also be empty, such as the last one VPBB, reflecting original 7788 // basic-blocks with no recipes. 7789 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7790 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7791 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7792 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7793 delete PreEntry; 7794 7795 // --------------------------------------------------------------------------- 7796 // Transform initial VPlan: Apply previously taken decisions, in order, to 7797 // bring the VPlan to its final state. 7798 // --------------------------------------------------------------------------- 7799 7800 // Apply Sink-After legal constraints. 7801 for (auto &Entry : SinkAfter) { 7802 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7803 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7804 Sink->moveAfter(Target); 7805 } 7806 7807 // Interleave memory: for each Interleave Group we marked earlier as relevant 7808 // for this VPlan, replace the Recipes widening its memory instructions with a 7809 // single VPInterleaveRecipe at its insertion point. 7810 for (auto IG : InterleaveGroups) { 7811 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7812 RecipeBuilder.getRecipe(IG->getInsertPos())); 7813 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7814 ->insertBefore(Recipe); 7815 7816 for (unsigned i = 0; i < IG->getFactor(); ++i) 7817 if (Instruction *Member = IG->getMember(i)) { 7818 if (!Member->getType()->isVoidTy()) { 7819 VPValue *OriginalV = Plan->getVPValue(Member); 7820 Plan->removeVPValueFor(Member); 7821 OriginalV->replaceAllUsesWith(Plan->getOrAddVPValue(Member)); 7822 } 7823 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7824 } 7825 } 7826 7827 // Adjust the recipes for any inloop reductions. 7828 if (Range.Start.isVector()) 7829 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 7830 7831 // Finally, if tail is folded by masking, introduce selects between the phi 7832 // and the live-out instruction of each reduction, at the end of the latch. 7833 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 7834 Builder.setInsertPoint(VPBB); 7835 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7836 for (auto &Reduction : Legal->getReductionVars()) { 7837 if (CM.isInLoopReduction(Reduction.first)) 7838 continue; 7839 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 7840 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 7841 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7842 } 7843 } 7844 7845 std::string PlanName; 7846 raw_string_ostream RSO(PlanName); 7847 ElementCount VF = Range.Start; 7848 Plan->addVF(VF); 7849 RSO << "Initial VPlan for VF={" << VF; 7850 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 7851 Plan->addVF(VF); 7852 RSO << "," << VF; 7853 } 7854 RSO << "},UF>=1"; 7855 RSO.flush(); 7856 Plan->setName(PlanName); 7857 7858 return Plan; 7859 } 7860 7861 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7862 // Outer loop handling: They may require CFG and instruction level 7863 // transformations before even evaluating whether vectorization is profitable. 7864 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7865 // the vectorization pipeline. 7866 assert(!OrigLoop->isInnermost()); 7867 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7868 7869 // Create new empty VPlan 7870 auto Plan = std::make_unique<VPlan>(); 7871 7872 // Build hierarchical CFG 7873 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7874 HCFGBuilder.buildHierarchicalCFG(); 7875 7876 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 7877 VF *= 2) 7878 Plan->addVF(VF); 7879 7880 if (EnableVPlanPredication) { 7881 VPlanPredicator VPP(*Plan); 7882 VPP.predicate(); 7883 7884 // Avoid running transformation to recipes until masked code generation in 7885 // VPlan-native path is in place. 7886 return Plan; 7887 } 7888 7889 SmallPtrSet<Instruction *, 1> DeadInstructions; 7890 VPlanTransforms::VPInstructionsToVPRecipes( 7891 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7892 return Plan; 7893 } 7894 7895 // Adjust the recipes for any inloop reductions. The chain of instructions 7896 // leading from the loop exit instr to the phi need to be converted to 7897 // reductions, with one operand being vector and the other being the scalar 7898 // reduction chain. 7899 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 7900 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 7901 for (auto &Reduction : CM.getInLoopReductionChains()) { 7902 PHINode *Phi = Reduction.first; 7903 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 7904 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7905 7906 // ReductionOperations are orders top-down from the phi's use to the 7907 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 7908 // which of the two operands will remain scalar and which will be reduced. 7909 // For minmax the chain will be the select instructions. 7910 Instruction *Chain = Phi; 7911 for (Instruction *R : ReductionOperations) { 7912 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 7913 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc.getRecurrenceKind(); 7914 7915 VPValue *ChainOp = Plan->getVPValue(Chain); 7916 unsigned FirstOpId; 7917 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7918 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7919 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 7920 "Expected to replace a VPWidenSelectSC"); 7921 FirstOpId = 1; 7922 } else { 7923 assert(isa<VPWidenRecipe>(WidenRecipe) && 7924 "Expected to replace a VPWidenSC"); 7925 FirstOpId = 0; 7926 } 7927 unsigned VecOpId = 7928 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 7929 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 7930 7931 auto *CondOp = CM.foldTailByMasking() 7932 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 7933 : nullptr; 7934 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 7935 &RdxDesc, R, ChainOp, VecOp, CondOp, Legal->hasFunNoNaNAttr(), TTI); 7936 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 7937 WidenRecipe->eraseFromParent(); 7938 7939 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7940 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7941 VPRecipeBase *CompareRecipe = 7942 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 7943 assert(isa<VPWidenRecipe>(CompareRecipe) && 7944 "Expected to replace a VPWidenSC"); 7945 CompareRecipe->eraseFromParent(); 7946 } 7947 Chain = R; 7948 } 7949 } 7950 } 7951 7952 Value* LoopVectorizationPlanner::VPCallbackILV:: 7953 getOrCreateVectorValues(Value *V, unsigned Part) { 7954 return ILV.getOrCreateVectorValue(V, Part); 7955 } 7956 7957 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7958 Value *V, const VPIteration &Instance) { 7959 return ILV.getOrCreateScalarValue(V, Instance); 7960 } 7961 7962 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7963 VPSlotTracker &SlotTracker) const { 7964 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7965 IG->getInsertPos()->printAsOperand(O, false); 7966 O << ", "; 7967 getAddr()->printAsOperand(O, SlotTracker); 7968 VPValue *Mask = getMask(); 7969 if (Mask) { 7970 O << ", "; 7971 Mask->printAsOperand(O, SlotTracker); 7972 } 7973 for (unsigned i = 0; i < IG->getFactor(); ++i) 7974 if (Instruction *I = IG->getMember(i)) 7975 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 7976 } 7977 7978 void VPWidenCallRecipe::execute(VPTransformState &State) { 7979 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 7980 *this, State); 7981 } 7982 7983 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7984 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 7985 this, *this, InvariantCond, State); 7986 } 7987 7988 void VPWidenRecipe::execute(VPTransformState &State) { 7989 State.ILV->widenInstruction(Ingredient, *this, State); 7990 } 7991 7992 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7993 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 7994 *this, State.UF, State.VF, IsPtrLoopInvariant, 7995 IsIndexLoopInvariant, State); 7996 } 7997 7998 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7999 assert(!State.Instance && "Int or FP induction being replicated."); 8000 State.ILV->widenIntOrFpInduction(IV, Trunc); 8001 } 8002 8003 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8004 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8005 } 8006 8007 void VPBlendRecipe::execute(VPTransformState &State) { 8008 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8009 // We know that all PHIs in non-header blocks are converted into 8010 // selects, so we don't have to worry about the insertion order and we 8011 // can just use the builder. 8012 // At this point we generate the predication tree. There may be 8013 // duplications since this is a simple recursive scan, but future 8014 // optimizations will clean it up. 8015 8016 unsigned NumIncoming = getNumIncomingValues(); 8017 8018 // Generate a sequence of selects of the form: 8019 // SELECT(Mask3, In3, 8020 // SELECT(Mask2, In2, 8021 // SELECT(Mask1, In1, 8022 // In0))) 8023 // Note that Mask0 is never used: lanes for which no path reaches this phi and 8024 // are essentially undef are taken from In0. 8025 InnerLoopVectorizer::VectorParts Entry(State.UF); 8026 for (unsigned In = 0; In < NumIncoming; ++In) { 8027 for (unsigned Part = 0; Part < State.UF; ++Part) { 8028 // We might have single edge PHIs (blocks) - use an identity 8029 // 'select' for the first PHI operand. 8030 Value *In0 = State.get(getIncomingValue(In), Part); 8031 if (In == 0) 8032 Entry[Part] = In0; // Initialize with the first incoming value. 8033 else { 8034 // Select between the current value and the previous incoming edge 8035 // based on the incoming mask. 8036 Value *Cond = State.get(getMask(In), Part); 8037 Entry[Part] = 8038 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8039 } 8040 } 8041 } 8042 for (unsigned Part = 0; Part < State.UF; ++Part) 8043 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8044 } 8045 8046 void VPInterleaveRecipe::execute(VPTransformState &State) { 8047 assert(!State.Instance && "Interleave group being replicated."); 8048 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 8049 } 8050 8051 void VPReductionRecipe::execute(VPTransformState &State) { 8052 assert(!State.Instance && "Reduction being replicated."); 8053 for (unsigned Part = 0; Part < State.UF; ++Part) { 8054 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc->getRecurrenceKind(); 8055 Value *NewVecOp = State.get(VecOp, Part); 8056 if (CondOp) { 8057 Value *NewCond = State.get(CondOp, Part); 8058 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 8059 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 8060 Kind, RdxDesc->getMinMaxRecurrenceKind(), VecTy->getElementType()); 8061 Constant *IdenVec = 8062 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 8063 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 8064 NewVecOp = Select; 8065 } 8066 Value *NewRed = 8067 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp, NoNaN); 8068 Value *PrevInChain = State.get(ChainOp, Part); 8069 Value *NextInChain; 8070 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8071 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8072 NextInChain = 8073 createMinMaxOp(State.Builder, RdxDesc->getMinMaxRecurrenceKind(), 8074 NewRed, PrevInChain); 8075 } else { 8076 NextInChain = State.Builder.CreateBinOp( 8077 (Instruction::BinaryOps)I->getOpcode(), NewRed, PrevInChain); 8078 } 8079 State.ValueMap.setVectorValue(I, Part, NextInChain); 8080 } 8081 } 8082 8083 void VPReplicateRecipe::execute(VPTransformState &State) { 8084 if (State.Instance) { // Generate a single instance. 8085 State.ILV->scalarizeInstruction(Ingredient, *this, *State.Instance, 8086 IsPredicated, State); 8087 // Insert scalar instance packing it into a vector. 8088 if (AlsoPack && State.VF.isVector()) { 8089 // If we're constructing lane 0, initialize to start from undef. 8090 if (State.Instance->Lane == 0) { 8091 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 8092 Value *Undef = 8093 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8094 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8095 } 8096 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8097 } 8098 return; 8099 } 8100 8101 // Generate scalar instances for all VF lanes of all UF parts, unless the 8102 // instruction is uniform inwhich case generate only the first lane for each 8103 // of the UF parts. 8104 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 8105 for (unsigned Part = 0; Part < State.UF; ++Part) 8106 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8107 State.ILV->scalarizeInstruction(Ingredient, *this, {Part, Lane}, 8108 IsPredicated, State); 8109 } 8110 8111 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8112 assert(State.Instance && "Branch on Mask works only on single instance."); 8113 8114 unsigned Part = State.Instance->Part; 8115 unsigned Lane = State.Instance->Lane; 8116 8117 Value *ConditionBit = nullptr; 8118 VPValue *BlockInMask = getMask(); 8119 if (BlockInMask) { 8120 ConditionBit = State.get(BlockInMask, Part); 8121 if (ConditionBit->getType()->isVectorTy()) 8122 ConditionBit = State.Builder.CreateExtractElement( 8123 ConditionBit, State.Builder.getInt32(Lane)); 8124 } else // Block in mask is all-one. 8125 ConditionBit = State.Builder.getTrue(); 8126 8127 // Replace the temporary unreachable terminator with a new conditional branch, 8128 // whose two destinations will be set later when they are created. 8129 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8130 assert(isa<UnreachableInst>(CurrentTerminator) && 8131 "Expected to replace unreachable terminator with conditional branch."); 8132 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8133 CondBr->setSuccessor(0, nullptr); 8134 ReplaceInstWithInst(CurrentTerminator, CondBr); 8135 } 8136 8137 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8138 assert(State.Instance && "Predicated instruction PHI works per instance."); 8139 Instruction *ScalarPredInst = cast<Instruction>( 8140 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8141 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8142 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8143 assert(PredicatingBB && "Predicated block has no single predecessor."); 8144 8145 // By current pack/unpack logic we need to generate only a single phi node: if 8146 // a vector value for the predicated instruction exists at this point it means 8147 // the instruction has vector users only, and a phi for the vector value is 8148 // needed. In this case the recipe of the predicated instruction is marked to 8149 // also do that packing, thereby "hoisting" the insert-element sequence. 8150 // Otherwise, a phi node for the scalar value is needed. 8151 unsigned Part = State.Instance->Part; 8152 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8153 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8154 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8155 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8156 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8157 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8158 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8159 } else { 8160 Type *PredInstType = PredInst->getType(); 8161 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8162 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8163 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8164 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8165 } 8166 } 8167 8168 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8169 Instruction *Instr = getUnderlyingInstr(); 8170 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 8171 State.ILV->vectorizeMemoryInstruction(Instr, State, 8172 StoredValue ? nullptr : this, getAddr(), 8173 StoredValue, getMask()); 8174 } 8175 8176 // Determine how to lower the scalar epilogue, which depends on 1) optimising 8177 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 8178 // predication, and 4) a TTI hook that analyses whether the loop is suitable 8179 // for predication. 8180 static ScalarEpilogueLowering getScalarEpilogueLowering( 8181 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 8182 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 8183 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 8184 LoopVectorizationLegality &LVL) { 8185 // 1) OptSize takes precedence over all other options, i.e. if this is set, 8186 // don't look at hints or options, and don't request a scalar epilogue. 8187 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 8188 // LoopAccessInfo (due to code dependency and not being able to reliably get 8189 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 8190 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 8191 // versioning when the vectorization is forced, unlike hasOptSize. So revert 8192 // back to the old way and vectorize with versioning when forced. See D81345.) 8193 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 8194 PGSOQueryType::IRPass) && 8195 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 8196 return CM_ScalarEpilogueNotAllowedOptSize; 8197 8198 bool PredicateOptDisabled = PreferPredicateOverEpilogue.getNumOccurrences() && 8199 !PreferPredicateOverEpilogue; 8200 8201 // 2) Next, if disabling predication is requested on the command line, honour 8202 // this and request a scalar epilogue. 8203 if (PredicateOptDisabled) 8204 return CM_ScalarEpilogueAllowed; 8205 8206 // 3) and 4) look if enabling predication is requested on the command line, 8207 // with a loop hint, or if the TTI hook indicates this is profitable, request 8208 // predication. 8209 if (PreferPredicateOverEpilogue || 8210 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 8211 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 8212 LVL.getLAI()) && 8213 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 8214 return CM_ScalarEpilogueNotNeededUsePredicate; 8215 8216 return CM_ScalarEpilogueAllowed; 8217 } 8218 8219 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 8220 unsigned Part) { 8221 set(Def, V, Part); 8222 ILV->setVectorValue(IRDef, Part, V); 8223 } 8224 8225 // Process the loop in the VPlan-native vectorization path. This path builds 8226 // VPlan upfront in the vectorization pipeline, which allows to apply 8227 // VPlan-to-VPlan transformations from the very beginning without modifying the 8228 // input LLVM IR. 8229 static bool processLoopInVPlanNativePath( 8230 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 8231 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 8232 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 8233 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 8234 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 8235 8236 if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) { 8237 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 8238 return false; 8239 } 8240 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 8241 Function *F = L->getHeader()->getParent(); 8242 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 8243 8244 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8245 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 8246 8247 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 8248 &Hints, IAI); 8249 // Use the planner for outer loop vectorization. 8250 // TODO: CM is not used at this point inside the planner. Turn CM into an 8251 // optional argument if we don't need it in the future. 8252 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 8253 8254 // Get user vectorization factor. 8255 const unsigned UserVF = Hints.getWidth(); 8256 8257 // Plan how to best vectorize, return the best VF and its cost. 8258 const VectorizationFactor VF = 8259 LVP.planInVPlanNativePath(ElementCount::getFixed(UserVF)); 8260 8261 // If we are stress testing VPlan builds, do not attempt to generate vector 8262 // code. Masked vector code generation support will follow soon. 8263 // Also, do not attempt to vectorize if no vector code will be produced. 8264 if (VPlanBuildStressTest || EnableVPlanPredication || 8265 VectorizationFactor::Disabled() == VF) 8266 return false; 8267 8268 LVP.setBestPlan(VF.Width, 1); 8269 8270 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 8271 &CM, BFI, PSI); 8272 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 8273 << L->getHeader()->getParent()->getName() << "\"\n"); 8274 LVP.executePlan(LB, DT); 8275 8276 // Mark the loop as already vectorized to avoid vectorizing again. 8277 Hints.setAlreadyVectorized(); 8278 8279 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8280 return true; 8281 } 8282 8283 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 8284 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 8285 !EnableLoopInterleaving), 8286 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 8287 !EnableLoopVectorization) {} 8288 8289 bool LoopVectorizePass::processLoop(Loop *L) { 8290 assert((EnableVPlanNativePath || L->isInnermost()) && 8291 "VPlan-native path is not enabled. Only process inner loops."); 8292 8293 #ifndef NDEBUG 8294 const std::string DebugLocStr = getDebugLocString(L); 8295 #endif /* NDEBUG */ 8296 8297 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8298 << L->getHeader()->getParent()->getName() << "\" from " 8299 << DebugLocStr << "\n"); 8300 8301 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 8302 8303 LLVM_DEBUG( 8304 dbgs() << "LV: Loop hints:" 8305 << " force=" 8306 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8307 ? "disabled" 8308 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8309 ? "enabled" 8310 : "?")) 8311 << " width=" << Hints.getWidth() 8312 << " unroll=" << Hints.getInterleave() << "\n"); 8313 8314 // Function containing loop 8315 Function *F = L->getHeader()->getParent(); 8316 8317 // Looking at the diagnostic output is the only way to determine if a loop 8318 // was vectorized (other than looking at the IR or machine code), so it 8319 // is important to generate an optimization remark for each loop. Most of 8320 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8321 // generated as OptimizationRemark and OptimizationRemarkMissed are 8322 // less verbose reporting vectorized loops and unvectorized loops that may 8323 // benefit from vectorization, respectively. 8324 8325 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 8326 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8327 return false; 8328 } 8329 8330 PredicatedScalarEvolution PSE(*SE, *L); 8331 8332 // Check if it is legal to vectorize the loop. 8333 LoopVectorizationRequirements Requirements(*ORE); 8334 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 8335 &Requirements, &Hints, DB, AC, BFI, PSI); 8336 if (!LVL.canVectorize(EnableVPlanNativePath)) { 8337 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8338 Hints.emitRemarkWithHints(); 8339 return false; 8340 } 8341 8342 // Check the function attributes and profiles to find out if this function 8343 // should be optimized for size. 8344 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8345 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 8346 8347 // Entrance to the VPlan-native vectorization path. Outer loops are processed 8348 // here. They may require CFG and instruction level transformations before 8349 // even evaluating whether vectorization is profitable. Since we cannot modify 8350 // the incoming IR, we need to build VPlan upfront in the vectorization 8351 // pipeline. 8352 if (!L->isInnermost()) 8353 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 8354 ORE, BFI, PSI, Hints); 8355 8356 assert(L->isInnermost() && "Inner loop expected."); 8357 8358 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8359 // count by optimizing for size, to minimize overheads. 8360 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 8361 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 8362 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8363 << "This loop is worth vectorizing only if no scalar " 8364 << "iteration overheads are incurred."); 8365 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8366 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8367 else { 8368 LLVM_DEBUG(dbgs() << "\n"); 8369 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 8370 } 8371 } 8372 8373 // Check the function attributes to see if implicit floats are allowed. 8374 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8375 // an integer loop and the vector instructions selected are purely integer 8376 // vector instructions? 8377 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8378 reportVectorizationFailure( 8379 "Can't vectorize when the NoImplicitFloat attribute is used", 8380 "loop not vectorized due to NoImplicitFloat attribute", 8381 "NoImplicitFloat", ORE, L); 8382 Hints.emitRemarkWithHints(); 8383 return false; 8384 } 8385 8386 // Check if the target supports potentially unsafe FP vectorization. 8387 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8388 // for the target we're vectorizing for, to make sure none of the 8389 // additional fp-math flags can help. 8390 if (Hints.isPotentiallyUnsafe() && 8391 TTI->isFPVectorizationPotentiallyUnsafe()) { 8392 reportVectorizationFailure( 8393 "Potentially unsafe FP op prevents vectorization", 8394 "loop not vectorized due to unsafe FP support.", 8395 "UnsafeFP", ORE, L); 8396 Hints.emitRemarkWithHints(); 8397 return false; 8398 } 8399 8400 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 8401 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 8402 8403 // If an override option has been passed in for interleaved accesses, use it. 8404 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 8405 UseInterleaved = EnableInterleavedMemAccesses; 8406 8407 // Analyze interleaved memory accesses. 8408 if (UseInterleaved) { 8409 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 8410 } 8411 8412 // Use the cost model. 8413 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 8414 F, &Hints, IAI); 8415 CM.collectValuesToIgnore(); 8416 8417 // Use the planner for vectorization. 8418 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 8419 8420 // Get user vectorization factor and interleave count. 8421 unsigned UserVF = Hints.getWidth(); 8422 unsigned UserIC = Hints.getInterleave(); 8423 8424 // Plan how to best vectorize, return the best VF and its cost. 8425 Optional<VectorizationFactor> MaybeVF = 8426 LVP.plan(ElementCount::getFixed(UserVF), UserIC); 8427 8428 VectorizationFactor VF = VectorizationFactor::Disabled(); 8429 unsigned IC = 1; 8430 8431 if (MaybeVF) { 8432 VF = *MaybeVF; 8433 // Select the interleave count. 8434 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 8435 } 8436 8437 // Identify the diagnostic messages that should be produced. 8438 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8439 bool VectorizeLoop = true, InterleaveLoop = true; 8440 if (Requirements.doesNotMeet(F, L, Hints)) { 8441 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8442 "requirements.\n"); 8443 Hints.emitRemarkWithHints(); 8444 return false; 8445 } 8446 8447 if (VF.Width.isScalar()) { 8448 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8449 VecDiagMsg = std::make_pair( 8450 "VectorizationNotBeneficial", 8451 "the cost-model indicates that vectorization is not beneficial"); 8452 VectorizeLoop = false; 8453 } 8454 8455 if (!MaybeVF && UserIC > 1) { 8456 // Tell the user interleaving was avoided up-front, despite being explicitly 8457 // requested. 8458 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 8459 "interleaving should be avoided up front\n"); 8460 IntDiagMsg = std::make_pair( 8461 "InterleavingAvoided", 8462 "Ignoring UserIC, because interleaving was avoided up front"); 8463 InterleaveLoop = false; 8464 } else if (IC == 1 && UserIC <= 1) { 8465 // Tell the user interleaving is not beneficial. 8466 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8467 IntDiagMsg = std::make_pair( 8468 "InterleavingNotBeneficial", 8469 "the cost-model indicates that interleaving is not beneficial"); 8470 InterleaveLoop = false; 8471 if (UserIC == 1) { 8472 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8473 IntDiagMsg.second += 8474 " and is explicitly disabled or interleave count is set to 1"; 8475 } 8476 } else if (IC > 1 && UserIC == 1) { 8477 // Tell the user interleaving is beneficial, but it explicitly disabled. 8478 LLVM_DEBUG( 8479 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 8480 IntDiagMsg = std::make_pair( 8481 "InterleavingBeneficialButDisabled", 8482 "the cost-model indicates that interleaving is beneficial " 8483 "but is explicitly disabled or interleave count is set to 1"); 8484 InterleaveLoop = false; 8485 } 8486 8487 // Override IC if user provided an interleave count. 8488 IC = UserIC > 0 ? UserIC : IC; 8489 8490 // Emit diagnostic messages, if any. 8491 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8492 if (!VectorizeLoop && !InterleaveLoop) { 8493 // Do not vectorize or interleaving the loop. 8494 ORE->emit([&]() { 8495 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8496 L->getStartLoc(), L->getHeader()) 8497 << VecDiagMsg.second; 8498 }); 8499 ORE->emit([&]() { 8500 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8501 L->getStartLoc(), L->getHeader()) 8502 << IntDiagMsg.second; 8503 }); 8504 return false; 8505 } else if (!VectorizeLoop && InterleaveLoop) { 8506 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8507 ORE->emit([&]() { 8508 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8509 L->getStartLoc(), L->getHeader()) 8510 << VecDiagMsg.second; 8511 }); 8512 } else if (VectorizeLoop && !InterleaveLoop) { 8513 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8514 << ") in " << DebugLocStr << '\n'); 8515 ORE->emit([&]() { 8516 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8517 L->getStartLoc(), L->getHeader()) 8518 << IntDiagMsg.second; 8519 }); 8520 } else if (VectorizeLoop && InterleaveLoop) { 8521 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8522 << ") in " << DebugLocStr << '\n'); 8523 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8524 } 8525 8526 LVP.setBestPlan(VF.Width, IC); 8527 8528 using namespace ore; 8529 bool DisableRuntimeUnroll = false; 8530 MDNode *OrigLoopID = L->getLoopID(); 8531 8532 if (!VectorizeLoop) { 8533 assert(IC > 1 && "interleave count should not be 1 or 0"); 8534 // If we decided that it is not legal to vectorize the loop, then 8535 // interleave it. 8536 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 8537 BFI, PSI); 8538 LVP.executePlan(Unroller, DT); 8539 8540 ORE->emit([&]() { 8541 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8542 L->getHeader()) 8543 << "interleaved loop (interleaved count: " 8544 << NV("InterleaveCount", IC) << ")"; 8545 }); 8546 } else { 8547 // If we decided that it is *legal* to vectorize the loop, then do it. 8548 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8549 &LVL, &CM, BFI, PSI); 8550 LVP.executePlan(LB, DT); 8551 ++LoopsVectorized; 8552 8553 // Add metadata to disable runtime unrolling a scalar loop when there are 8554 // no runtime checks about strides and memory. A scalar loop that is 8555 // rarely used is not worth unrolling. 8556 if (!LB.areSafetyChecksAdded()) 8557 DisableRuntimeUnroll = true; 8558 8559 // Report the vectorization decision. 8560 ORE->emit([&]() { 8561 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8562 L->getHeader()) 8563 << "vectorized loop (vectorization width: " 8564 << NV("VectorizationFactor", VF.Width) 8565 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8566 }); 8567 } 8568 8569 Optional<MDNode *> RemainderLoopID = 8570 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 8571 LLVMLoopVectorizeFollowupEpilogue}); 8572 if (RemainderLoopID.hasValue()) { 8573 L->setLoopID(RemainderLoopID.getValue()); 8574 } else { 8575 if (DisableRuntimeUnroll) 8576 AddRuntimeUnrollDisableMetaData(L); 8577 8578 // Mark the loop as already vectorized to avoid vectorizing again. 8579 Hints.setAlreadyVectorized(); 8580 } 8581 8582 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8583 return true; 8584 } 8585 8586 LoopVectorizeResult LoopVectorizePass::runImpl( 8587 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8588 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8589 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8590 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8591 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8592 SE = &SE_; 8593 LI = &LI_; 8594 TTI = &TTI_; 8595 DT = &DT_; 8596 BFI = &BFI_; 8597 TLI = TLI_; 8598 AA = &AA_; 8599 AC = &AC_; 8600 GetLAA = &GetLAA_; 8601 DB = &DB_; 8602 ORE = &ORE_; 8603 PSI = PSI_; 8604 8605 // Don't attempt if 8606 // 1. the target claims to have no vector registers, and 8607 // 2. interleaving won't help ILP. 8608 // 8609 // The second condition is necessary because, even if the target has no 8610 // vector registers, loop vectorization may still enable scalar 8611 // interleaving. 8612 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8613 TTI->getMaxInterleaveFactor(1) < 2) 8614 return LoopVectorizeResult(false, false); 8615 8616 bool Changed = false, CFGChanged = false; 8617 8618 // The vectorizer requires loops to be in simplified form. 8619 // Since simplification may add new inner loops, it has to run before the 8620 // legality and profitability checks. This means running the loop vectorizer 8621 // will simplify all loops, regardless of whether anything end up being 8622 // vectorized. 8623 for (auto &L : *LI) 8624 Changed |= CFGChanged |= 8625 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8626 8627 // Build up a worklist of inner-loops to vectorize. This is necessary as 8628 // the act of vectorizing or partially unrolling a loop creates new loops 8629 // and can invalidate iterators across the loops. 8630 SmallVector<Loop *, 8> Worklist; 8631 8632 for (Loop *L : *LI) 8633 collectSupportedLoops(*L, LI, ORE, Worklist); 8634 8635 LoopsAnalyzed += Worklist.size(); 8636 8637 // Now walk the identified inner loops. 8638 while (!Worklist.empty()) { 8639 Loop *L = Worklist.pop_back_val(); 8640 8641 // For the inner loops we actually process, form LCSSA to simplify the 8642 // transform. 8643 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8644 8645 Changed |= CFGChanged |= processLoop(L); 8646 } 8647 8648 // Process each loop nest in the function. 8649 return LoopVectorizeResult(Changed, CFGChanged); 8650 } 8651 8652 PreservedAnalyses LoopVectorizePass::run(Function &F, 8653 FunctionAnalysisManager &AM) { 8654 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8655 auto &LI = AM.getResult<LoopAnalysis>(F); 8656 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8657 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8658 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8659 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8660 auto &AA = AM.getResult<AAManager>(F); 8661 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8662 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8663 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8664 MemorySSA *MSSA = EnableMSSALoopDependency 8665 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8666 : nullptr; 8667 8668 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8669 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8670 [&](Loop &L) -> const LoopAccessInfo & { 8671 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 8672 TLI, TTI, nullptr, MSSA}; 8673 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8674 }; 8675 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8676 ProfileSummaryInfo *PSI = 8677 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8678 LoopVectorizeResult Result = 8679 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8680 if (!Result.MadeAnyChange) 8681 return PreservedAnalyses::all(); 8682 PreservedAnalyses PA; 8683 8684 // We currently do not preserve loopinfo/dominator analyses with outer loop 8685 // vectorization. Until this is addressed, mark these analyses as preserved 8686 // only for non-VPlan-native path. 8687 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8688 if (!EnableVPlanNativePath) { 8689 PA.preserve<LoopAnalysis>(); 8690 PA.preserve<DominatorTreeAnalysis>(); 8691 } 8692 PA.preserve<BasicAA>(); 8693 PA.preserve<GlobalsAA>(); 8694 if (!Result.MadeCFGChange) 8695 PA.preserveSet<CFGAnalyses>(); 8696 return PA; 8697 } 8698