1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 /// InnerLoopVectorizer vectorizes loops which contain only one basic 432 /// block to a specified vectorization factor (VF). 433 /// This class performs the widening of scalars into vectors, or multiple 434 /// scalars. This class also implements the following features: 435 /// * It inserts an epilogue loop for handling loops that don't have iteration 436 /// counts that are known to be a multiple of the vectorization factor. 437 /// * It handles the code generation for reduction variables. 438 /// * Scalarization (implementation using scalars) of un-vectorizable 439 /// instructions. 440 /// InnerLoopVectorizer does not perform any vectorization-legality 441 /// checks, and relies on the caller to check for the different legality 442 /// aspects. The InnerLoopVectorizer relies on the 443 /// LoopVectorizationLegality class to provide information about the induction 444 /// and reduction variables that were found to a given vectorization factor. 445 class InnerLoopVectorizer { 446 public: 447 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 448 LoopInfo *LI, DominatorTree *DT, 449 const TargetLibraryInfo *TLI, 450 const TargetTransformInfo *TTI, AssumptionCache *AC, 451 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 452 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 453 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 454 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 455 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 456 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 457 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 458 PSI(PSI), RTChecks(RTChecks) { 459 // Query this against the original loop and save it here because the profile 460 // of the original loop header may change as the transformation happens. 461 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 462 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 463 } 464 465 virtual ~InnerLoopVectorizer() = default; 466 467 /// Create a new empty loop that will contain vectorized instructions later 468 /// on, while the old loop will be used as the scalar remainder. Control flow 469 /// is generated around the vectorized (and scalar epilogue) loops consisting 470 /// of various checks and bypasses. Return the pre-header block of the new 471 /// loop. 472 /// In the case of epilogue vectorization, this function is overriden to 473 /// handle the more complex control flow around the loops. 474 virtual BasicBlock *createVectorizedLoopSkeleton(); 475 476 /// Widen a single call instruction within the innermost loop. 477 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 478 VPTransformState &State); 479 480 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 481 void fixVectorizedLoop(VPTransformState &State); 482 483 // Return true if any runtime check is added. 484 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 485 486 /// A type for vectorized values in the new loop. Each value from the 487 /// original loop, when vectorized, is represented by UF vector values in the 488 /// new unrolled loop, where UF is the unroll factor. 489 using VectorParts = SmallVector<Value *, 2>; 490 491 /// Vectorize a single first-order recurrence or pointer induction PHINode in 492 /// a block. This method handles the induction variable canonicalization. It 493 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 494 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 495 VPTransformState &State); 496 497 /// A helper function to scalarize a single Instruction in the innermost loop. 498 /// Generates a sequence of scalar instances for each lane between \p MinLane 499 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 500 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 501 /// Instr's operands. 502 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 503 const VPIteration &Instance, bool IfPredicateInstr, 504 VPTransformState &State); 505 506 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 507 /// is provided, the integer induction variable will first be truncated to 508 /// the corresponding type. 509 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 510 VPValue *Def, VPValue *CastDef, 511 VPTransformState &State); 512 513 /// Construct the vector value of a scalarized value \p V one lane at a time. 514 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 515 VPTransformState &State); 516 517 /// Try to vectorize interleaved access group \p Group with the base address 518 /// given in \p Addr, optionally masking the vector operations if \p 519 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 520 /// values in the vectorized loop. 521 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 522 ArrayRef<VPValue *> VPDefs, 523 VPTransformState &State, VPValue *Addr, 524 ArrayRef<VPValue *> StoredValues, 525 VPValue *BlockInMask = nullptr); 526 527 /// Set the debug location in the builder \p Ptr using the debug location in 528 /// \p V. If \p Ptr is None then it uses the class member's Builder. 529 void setDebugLocFromInst(const Value *V, 530 Optional<IRBuilder<> *> CustomBuilder = None); 531 532 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 533 void fixNonInductionPHIs(VPTransformState &State); 534 535 /// Returns true if the reordering of FP operations is not allowed, but we are 536 /// able to vectorize with strict in-order reductions for the given RdxDesc. 537 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 538 539 /// Create a broadcast instruction. This method generates a broadcast 540 /// instruction (shuffle) for loop invariant values and for the induction 541 /// value. If this is the induction variable then we extend it to N, N+1, ... 542 /// this is needed because each iteration in the loop corresponds to a SIMD 543 /// element. 544 virtual Value *getBroadcastInstrs(Value *V); 545 546 /// Add metadata from one instruction to another. 547 /// 548 /// This includes both the original MDs from \p From and additional ones (\see 549 /// addNewMetadata). Use this for *newly created* instructions in the vector 550 /// loop. 551 void addMetadata(Instruction *To, Instruction *From); 552 553 /// Similar to the previous function but it adds the metadata to a 554 /// vector of instructions. 555 void addMetadata(ArrayRef<Value *> To, Instruction *From); 556 557 protected: 558 friend class LoopVectorizationPlanner; 559 560 /// A small list of PHINodes. 561 using PhiVector = SmallVector<PHINode *, 4>; 562 563 /// A type for scalarized values in the new loop. Each value from the 564 /// original loop, when scalarized, is represented by UF x VF scalar values 565 /// in the new unrolled loop, where UF is the unroll factor and VF is the 566 /// vectorization factor. 567 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 568 569 /// Set up the values of the IVs correctly when exiting the vector loop. 570 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 571 Value *CountRoundDown, Value *EndValue, 572 BasicBlock *MiddleBlock); 573 574 /// Create a new induction variable inside L. 575 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 576 Value *Step, Instruction *DL); 577 578 /// Handle all cross-iteration phis in the header. 579 void fixCrossIterationPHIs(VPTransformState &State); 580 581 /// Create the exit value of first order recurrences in the middle block and 582 /// update their users. 583 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 584 585 /// Create code for the loop exit value of the reduction. 586 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 587 588 /// Clear NSW/NUW flags from reduction instructions if necessary. 589 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 590 VPTransformState &State); 591 592 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 593 /// means we need to add the appropriate incoming value from the middle 594 /// block as exiting edges from the scalar epilogue loop (if present) are 595 /// already in place, and we exit the vector loop exclusively to the middle 596 /// block. 597 void fixLCSSAPHIs(VPTransformState &State); 598 599 /// Iteratively sink the scalarized operands of a predicated instruction into 600 /// the block that was created for it. 601 void sinkScalarOperands(Instruction *PredInst); 602 603 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 604 /// represented as. 605 void truncateToMinimalBitwidths(VPTransformState &State); 606 607 /// This function adds 608 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 609 /// to each vector element of Val. The sequence starts at StartIndex. 610 /// \p Opcode is relevant for FP induction variable. 611 virtual Value * 612 getStepVector(Value *Val, Value *StartIdx, Value *Step, 613 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd); 614 615 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 616 /// variable on which to base the steps, \p Step is the size of the step, and 617 /// \p EntryVal is the value from the original loop that maps to the steps. 618 /// Note that \p EntryVal doesn't have to be an induction variable - it 619 /// can also be a truncate instruction. 620 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 621 const InductionDescriptor &ID, VPValue *Def, 622 VPValue *CastDef, VPTransformState &State); 623 624 /// Create a vector induction phi node based on an existing scalar one. \p 625 /// EntryVal is the value from the original loop that maps to the vector phi 626 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 627 /// truncate instruction, instead of widening the original IV, we widen a 628 /// version of the IV truncated to \p EntryVal's type. 629 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 630 Value *Step, Value *Start, 631 Instruction *EntryVal, VPValue *Def, 632 VPValue *CastDef, 633 VPTransformState &State); 634 635 /// Returns true if an instruction \p I should be scalarized instead of 636 /// vectorized for the chosen vectorization factor. 637 bool shouldScalarizeInstruction(Instruction *I) const; 638 639 /// Returns true if we should generate a scalar version of \p IV. 640 bool needsScalarInduction(Instruction *IV) const; 641 642 /// If there is a cast involved in the induction variable \p ID, which should 643 /// be ignored in the vectorized loop body, this function records the 644 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 645 /// cast. We had already proved that the casted Phi is equal to the uncasted 646 /// Phi in the vectorized loop (under a runtime guard), and therefore 647 /// there is no need to vectorize the cast - the same value can be used in the 648 /// vector loop for both the Phi and the cast. 649 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 650 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 651 /// 652 /// \p EntryVal is the value from the original loop that maps to the vector 653 /// phi node and is used to distinguish what is the IV currently being 654 /// processed - original one (if \p EntryVal is a phi corresponding to the 655 /// original IV) or the "newly-created" one based on the proof mentioned above 656 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 657 /// latter case \p EntryVal is a TruncInst and we must not record anything for 658 /// that IV, but it's error-prone to expect callers of this routine to care 659 /// about that, hence this explicit parameter. 660 void recordVectorLoopValueForInductionCast( 661 const InductionDescriptor &ID, const Instruction *EntryVal, 662 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 663 unsigned Part, unsigned Lane = UINT_MAX); 664 665 /// Generate a shuffle sequence that will reverse the vector Vec. 666 virtual Value *reverseVector(Value *Vec); 667 668 /// Returns (and creates if needed) the original loop trip count. 669 Value *getOrCreateTripCount(Loop *NewLoop); 670 671 /// Returns (and creates if needed) the trip count of the widened loop. 672 Value *getOrCreateVectorTripCount(Loop *NewLoop); 673 674 /// Returns a bitcasted value to the requested vector type. 675 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 676 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 677 const DataLayout &DL); 678 679 /// Emit a bypass check to see if the vector trip count is zero, including if 680 /// it overflows. 681 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 682 683 /// Emit a bypass check to see if all of the SCEV assumptions we've 684 /// had to make are correct. Returns the block containing the checks or 685 /// nullptr if no checks have been added. 686 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 687 688 /// Emit bypass checks to check any memory assumptions we may have made. 689 /// Returns the block containing the checks or nullptr if no checks have been 690 /// added. 691 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 692 693 /// Compute the transformed value of Index at offset StartValue using step 694 /// StepValue. 695 /// For integer induction, returns StartValue + Index * StepValue. 696 /// For pointer induction, returns StartValue[Index * StepValue]. 697 /// FIXME: The newly created binary instructions should contain nsw/nuw 698 /// flags, which can be found from the original scalar operations. 699 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 700 const DataLayout &DL, 701 const InductionDescriptor &ID) const; 702 703 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 704 /// vector loop preheader, middle block and scalar preheader. Also 705 /// allocate a loop object for the new vector loop and return it. 706 Loop *createVectorLoopSkeleton(StringRef Prefix); 707 708 /// Create new phi nodes for the induction variables to resume iteration count 709 /// in the scalar epilogue, from where the vectorized loop left off (given by 710 /// \p VectorTripCount). 711 /// In cases where the loop skeleton is more complicated (eg. epilogue 712 /// vectorization) and the resume values can come from an additional bypass 713 /// block, the \p AdditionalBypass pair provides information about the bypass 714 /// block and the end value on the edge from bypass to this loop. 715 void createInductionResumeValues( 716 Loop *L, Value *VectorTripCount, 717 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 718 719 /// Complete the loop skeleton by adding debug MDs, creating appropriate 720 /// conditional branches in the middle block, preparing the builder and 721 /// running the verifier. Take in the vector loop \p L as argument, and return 722 /// the preheader of the completed vector loop. 723 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 724 725 /// Add additional metadata to \p To that was not present on \p Orig. 726 /// 727 /// Currently this is used to add the noalias annotations based on the 728 /// inserted memchecks. Use this for instructions that are *cloned* into the 729 /// vector loop. 730 void addNewMetadata(Instruction *To, const Instruction *Orig); 731 732 /// Collect poison-generating recipes that may generate a poison value that is 733 /// used after vectorization, even when their operands are not poison. Those 734 /// recipes meet the following conditions: 735 /// * Contribute to the address computation of a recipe generating a widen 736 /// memory load/store (VPWidenMemoryInstructionRecipe or 737 /// VPInterleaveRecipe). 738 /// * Such a widen memory load/store has at least one underlying Instruction 739 /// that is in a basic block that needs predication and after vectorization 740 /// the generated instruction won't be predicated. 741 void collectPoisonGeneratingRecipes(VPTransformState &State); 742 743 /// Allow subclasses to override and print debug traces before/after vplan 744 /// execution, when trace information is requested. 745 virtual void printDebugTracesAtStart(){}; 746 virtual void printDebugTracesAtEnd(){}; 747 748 /// The original loop. 749 Loop *OrigLoop; 750 751 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 752 /// dynamic knowledge to simplify SCEV expressions and converts them to a 753 /// more usable form. 754 PredicatedScalarEvolution &PSE; 755 756 /// Loop Info. 757 LoopInfo *LI; 758 759 /// Dominator Tree. 760 DominatorTree *DT; 761 762 /// Alias Analysis. 763 AAResults *AA; 764 765 /// Target Library Info. 766 const TargetLibraryInfo *TLI; 767 768 /// Target Transform Info. 769 const TargetTransformInfo *TTI; 770 771 /// Assumption Cache. 772 AssumptionCache *AC; 773 774 /// Interface to emit optimization remarks. 775 OptimizationRemarkEmitter *ORE; 776 777 /// LoopVersioning. It's only set up (non-null) if memchecks were 778 /// used. 779 /// 780 /// This is currently only used to add no-alias metadata based on the 781 /// memchecks. The actually versioning is performed manually. 782 std::unique_ptr<LoopVersioning> LVer; 783 784 /// The vectorization SIMD factor to use. Each vector will have this many 785 /// vector elements. 786 ElementCount VF; 787 788 /// The vectorization unroll factor to use. Each scalar is vectorized to this 789 /// many different vector instructions. 790 unsigned UF; 791 792 /// The builder that we use 793 IRBuilder<> Builder; 794 795 // --- Vectorization state --- 796 797 /// The vector-loop preheader. 798 BasicBlock *LoopVectorPreHeader; 799 800 /// The scalar-loop preheader. 801 BasicBlock *LoopScalarPreHeader; 802 803 /// Middle Block between the vector and the scalar. 804 BasicBlock *LoopMiddleBlock; 805 806 /// The unique ExitBlock of the scalar loop if one exists. Note that 807 /// there can be multiple exiting edges reaching this block. 808 BasicBlock *LoopExitBlock; 809 810 /// The vector loop body. 811 BasicBlock *LoopVectorBody; 812 813 /// The scalar loop body. 814 BasicBlock *LoopScalarBody; 815 816 /// A list of all bypass blocks. The first block is the entry of the loop. 817 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 818 819 /// The new Induction variable which was added to the new block. 820 PHINode *Induction = nullptr; 821 822 /// The induction variable of the old basic block. 823 PHINode *OldInduction = nullptr; 824 825 /// Store instructions that were predicated. 826 SmallVector<Instruction *, 4> PredicatedInstructions; 827 828 /// Trip count of the original loop. 829 Value *TripCount = nullptr; 830 831 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 832 Value *VectorTripCount = nullptr; 833 834 /// The legality analysis. 835 LoopVectorizationLegality *Legal; 836 837 /// The profitablity analysis. 838 LoopVectorizationCostModel *Cost; 839 840 // Record whether runtime checks are added. 841 bool AddedSafetyChecks = false; 842 843 // Holds the end values for each induction variable. We save the end values 844 // so we can later fix-up the external users of the induction variables. 845 DenseMap<PHINode *, Value *> IVEndValues; 846 847 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 848 // fixed up at the end of vector code generation. 849 SmallVector<PHINode *, 8> OrigPHIsToFix; 850 851 /// BFI and PSI are used to check for profile guided size optimizations. 852 BlockFrequencyInfo *BFI; 853 ProfileSummaryInfo *PSI; 854 855 // Whether this loop should be optimized for size based on profile guided size 856 // optimizatios. 857 bool OptForSizeBasedOnProfile; 858 859 /// Structure to hold information about generated runtime checks, responsible 860 /// for cleaning the checks, if vectorization turns out unprofitable. 861 GeneratedRTChecks &RTChecks; 862 }; 863 864 class InnerLoopUnroller : public InnerLoopVectorizer { 865 public: 866 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 867 LoopInfo *LI, DominatorTree *DT, 868 const TargetLibraryInfo *TLI, 869 const TargetTransformInfo *TTI, AssumptionCache *AC, 870 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 871 LoopVectorizationLegality *LVL, 872 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 873 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 874 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 875 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 876 BFI, PSI, Check) {} 877 878 private: 879 Value *getBroadcastInstrs(Value *V) override; 880 Value *getStepVector( 881 Value *Val, Value *StartIdx, Value *Step, 882 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd) override; 883 Value *reverseVector(Value *Vec) override; 884 }; 885 886 /// Encapsulate information regarding vectorization of a loop and its epilogue. 887 /// This information is meant to be updated and used across two stages of 888 /// epilogue vectorization. 889 struct EpilogueLoopVectorizationInfo { 890 ElementCount MainLoopVF = ElementCount::getFixed(0); 891 unsigned MainLoopUF = 0; 892 ElementCount EpilogueVF = ElementCount::getFixed(0); 893 unsigned EpilogueUF = 0; 894 BasicBlock *MainLoopIterationCountCheck = nullptr; 895 BasicBlock *EpilogueIterationCountCheck = nullptr; 896 BasicBlock *SCEVSafetyCheck = nullptr; 897 BasicBlock *MemSafetyCheck = nullptr; 898 Value *TripCount = nullptr; 899 Value *VectorTripCount = nullptr; 900 901 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 902 ElementCount EVF, unsigned EUF) 903 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 904 assert(EUF == 1 && 905 "A high UF for the epilogue loop is likely not beneficial."); 906 } 907 }; 908 909 /// An extension of the inner loop vectorizer that creates a skeleton for a 910 /// vectorized loop that has its epilogue (residual) also vectorized. 911 /// The idea is to run the vplan on a given loop twice, firstly to setup the 912 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 913 /// from the first step and vectorize the epilogue. This is achieved by 914 /// deriving two concrete strategy classes from this base class and invoking 915 /// them in succession from the loop vectorizer planner. 916 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 917 public: 918 InnerLoopAndEpilogueVectorizer( 919 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 920 DominatorTree *DT, const TargetLibraryInfo *TLI, 921 const TargetTransformInfo *TTI, AssumptionCache *AC, 922 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 923 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 924 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 925 GeneratedRTChecks &Checks) 926 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 927 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 928 Checks), 929 EPI(EPI) {} 930 931 // Override this function to handle the more complex control flow around the 932 // three loops. 933 BasicBlock *createVectorizedLoopSkeleton() final override { 934 return createEpilogueVectorizedLoopSkeleton(); 935 } 936 937 /// The interface for creating a vectorized skeleton using one of two 938 /// different strategies, each corresponding to one execution of the vplan 939 /// as described above. 940 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 941 942 /// Holds and updates state information required to vectorize the main loop 943 /// and its epilogue in two separate passes. This setup helps us avoid 944 /// regenerating and recomputing runtime safety checks. It also helps us to 945 /// shorten the iteration-count-check path length for the cases where the 946 /// iteration count of the loop is so small that the main vector loop is 947 /// completely skipped. 948 EpilogueLoopVectorizationInfo &EPI; 949 }; 950 951 /// A specialized derived class of inner loop vectorizer that performs 952 /// vectorization of *main* loops in the process of vectorizing loops and their 953 /// epilogues. 954 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 955 public: 956 EpilogueVectorizerMainLoop( 957 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 958 DominatorTree *DT, const TargetLibraryInfo *TLI, 959 const TargetTransformInfo *TTI, AssumptionCache *AC, 960 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 961 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 962 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 963 GeneratedRTChecks &Check) 964 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 965 EPI, LVL, CM, BFI, PSI, Check) {} 966 /// Implements the interface for creating a vectorized skeleton using the 967 /// *main loop* strategy (ie the first pass of vplan execution). 968 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 969 970 protected: 971 /// Emits an iteration count bypass check once for the main loop (when \p 972 /// ForEpilogue is false) and once for the epilogue loop (when \p 973 /// ForEpilogue is true). 974 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 975 bool ForEpilogue); 976 void printDebugTracesAtStart() override; 977 void printDebugTracesAtEnd() override; 978 }; 979 980 // A specialized derived class of inner loop vectorizer that performs 981 // vectorization of *epilogue* loops in the process of vectorizing loops and 982 // their epilogues. 983 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 984 public: 985 EpilogueVectorizerEpilogueLoop( 986 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 987 DominatorTree *DT, const TargetLibraryInfo *TLI, 988 const TargetTransformInfo *TTI, AssumptionCache *AC, 989 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 990 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 991 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 992 GeneratedRTChecks &Checks) 993 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 994 EPI, LVL, CM, BFI, PSI, Checks) {} 995 /// Implements the interface for creating a vectorized skeleton using the 996 /// *epilogue loop* strategy (ie the second pass of vplan execution). 997 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 998 999 protected: 1000 /// Emits an iteration count bypass check after the main vector loop has 1001 /// finished to see if there are any iterations left to execute by either 1002 /// the vector epilogue or the scalar epilogue. 1003 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1004 BasicBlock *Bypass, 1005 BasicBlock *Insert); 1006 void printDebugTracesAtStart() override; 1007 void printDebugTracesAtEnd() override; 1008 }; 1009 } // end namespace llvm 1010 1011 /// Look for a meaningful debug location on the instruction or it's 1012 /// operands. 1013 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1014 if (!I) 1015 return I; 1016 1017 DebugLoc Empty; 1018 if (I->getDebugLoc() != Empty) 1019 return I; 1020 1021 for (Use &Op : I->operands()) { 1022 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1023 if (OpInst->getDebugLoc() != Empty) 1024 return OpInst; 1025 } 1026 1027 return I; 1028 } 1029 1030 void InnerLoopVectorizer::setDebugLocFromInst( 1031 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1032 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1033 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1034 const DILocation *DIL = Inst->getDebugLoc(); 1035 1036 // When a FSDiscriminator is enabled, we don't need to add the multiply 1037 // factors to the discriminators. 1038 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1039 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1040 // FIXME: For scalable vectors, assume vscale=1. 1041 auto NewDIL = 1042 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1043 if (NewDIL) 1044 B->SetCurrentDebugLocation(NewDIL.getValue()); 1045 else 1046 LLVM_DEBUG(dbgs() 1047 << "Failed to create new discriminator: " 1048 << DIL->getFilename() << " Line: " << DIL->getLine()); 1049 } else 1050 B->SetCurrentDebugLocation(DIL); 1051 } else 1052 B->SetCurrentDebugLocation(DebugLoc()); 1053 } 1054 1055 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1056 /// is passed, the message relates to that particular instruction. 1057 #ifndef NDEBUG 1058 static void debugVectorizationMessage(const StringRef Prefix, 1059 const StringRef DebugMsg, 1060 Instruction *I) { 1061 dbgs() << "LV: " << Prefix << DebugMsg; 1062 if (I != nullptr) 1063 dbgs() << " " << *I; 1064 else 1065 dbgs() << '.'; 1066 dbgs() << '\n'; 1067 } 1068 #endif 1069 1070 /// Create an analysis remark that explains why vectorization failed 1071 /// 1072 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1073 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1074 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1075 /// the location of the remark. \return the remark object that can be 1076 /// streamed to. 1077 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1078 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1079 Value *CodeRegion = TheLoop->getHeader(); 1080 DebugLoc DL = TheLoop->getStartLoc(); 1081 1082 if (I) { 1083 CodeRegion = I->getParent(); 1084 // If there is no debug location attached to the instruction, revert back to 1085 // using the loop's. 1086 if (I->getDebugLoc()) 1087 DL = I->getDebugLoc(); 1088 } 1089 1090 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1091 } 1092 1093 /// Return a value for Step multiplied by VF. 1094 static Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF, 1095 int64_t Step) { 1096 assert(Ty->isIntegerTy() && "Expected an integer step"); 1097 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1098 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1099 } 1100 1101 namespace llvm { 1102 1103 /// Return the runtime value for VF. 1104 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1105 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1106 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1107 } 1108 1109 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) { 1110 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1111 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1112 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1113 return B.CreateUIToFP(RuntimeVF, FTy); 1114 } 1115 1116 void reportVectorizationFailure(const StringRef DebugMsg, 1117 const StringRef OREMsg, const StringRef ORETag, 1118 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1119 Instruction *I) { 1120 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1121 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1122 ORE->emit( 1123 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1124 << "loop not vectorized: " << OREMsg); 1125 } 1126 1127 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1128 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1129 Instruction *I) { 1130 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1131 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1132 ORE->emit( 1133 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1134 << Msg); 1135 } 1136 1137 } // end namespace llvm 1138 1139 #ifndef NDEBUG 1140 /// \return string containing a file name and a line # for the given loop. 1141 static std::string getDebugLocString(const Loop *L) { 1142 std::string Result; 1143 if (L) { 1144 raw_string_ostream OS(Result); 1145 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1146 LoopDbgLoc.print(OS); 1147 else 1148 // Just print the module name. 1149 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1150 OS.flush(); 1151 } 1152 return Result; 1153 } 1154 #endif 1155 1156 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1157 const Instruction *Orig) { 1158 // If the loop was versioned with memchecks, add the corresponding no-alias 1159 // metadata. 1160 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1161 LVer->annotateInstWithNoAlias(To, Orig); 1162 } 1163 1164 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1165 VPTransformState &State) { 1166 1167 // Collect recipes in the backward slice of `Root` that may generate a poison 1168 // value that is used after vectorization. 1169 SmallPtrSet<VPRecipeBase *, 16> Visited; 1170 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1171 SmallVector<VPRecipeBase *, 16> Worklist; 1172 Worklist.push_back(Root); 1173 1174 // Traverse the backward slice of Root through its use-def chain. 1175 while (!Worklist.empty()) { 1176 VPRecipeBase *CurRec = Worklist.back(); 1177 Worklist.pop_back(); 1178 1179 if (!Visited.insert(CurRec).second) 1180 continue; 1181 1182 // Prune search if we find another recipe generating a widen memory 1183 // instruction. Widen memory instructions involved in address computation 1184 // will lead to gather/scatter instructions, which don't need to be 1185 // handled. 1186 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1187 isa<VPInterleaveRecipe>(CurRec)) 1188 continue; 1189 1190 // This recipe contributes to the address computation of a widen 1191 // load/store. Collect recipe if its underlying instruction has 1192 // poison-generating flags. 1193 Instruction *Instr = CurRec->getUnderlyingInstr(); 1194 if (Instr && Instr->hasPoisonGeneratingFlags()) 1195 State.MayGeneratePoisonRecipes.insert(CurRec); 1196 1197 // Add new definitions to the worklist. 1198 for (VPValue *operand : CurRec->operands()) 1199 if (VPDef *OpDef = operand->getDef()) 1200 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1201 } 1202 }); 1203 1204 // Traverse all the recipes in the VPlan and collect the poison-generating 1205 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1206 // VPInterleaveRecipe. 1207 auto Iter = depth_first( 1208 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1209 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1210 for (VPRecipeBase &Recipe : *VPBB) { 1211 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1212 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1213 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1214 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1215 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1216 collectPoisonGeneratingInstrsInBackwardSlice( 1217 cast<VPRecipeBase>(AddrDef)); 1218 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1219 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1220 if (AddrDef) { 1221 // Check if any member of the interleave group needs predication. 1222 const InterleaveGroup<Instruction> *InterGroup = 1223 InterleaveRec->getInterleaveGroup(); 1224 bool NeedPredication = false; 1225 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1226 I < NumMembers; ++I) { 1227 Instruction *Member = InterGroup->getMember(I); 1228 if (Member) 1229 NeedPredication |= 1230 Legal->blockNeedsPredication(Member->getParent()); 1231 } 1232 1233 if (NeedPredication) 1234 collectPoisonGeneratingInstrsInBackwardSlice( 1235 cast<VPRecipeBase>(AddrDef)); 1236 } 1237 } 1238 } 1239 } 1240 } 1241 1242 void InnerLoopVectorizer::addMetadata(Instruction *To, 1243 Instruction *From) { 1244 propagateMetadata(To, From); 1245 addNewMetadata(To, From); 1246 } 1247 1248 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1249 Instruction *From) { 1250 for (Value *V : To) { 1251 if (Instruction *I = dyn_cast<Instruction>(V)) 1252 addMetadata(I, From); 1253 } 1254 } 1255 1256 namespace llvm { 1257 1258 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1259 // lowered. 1260 enum ScalarEpilogueLowering { 1261 1262 // The default: allowing scalar epilogues. 1263 CM_ScalarEpilogueAllowed, 1264 1265 // Vectorization with OptForSize: don't allow epilogues. 1266 CM_ScalarEpilogueNotAllowedOptSize, 1267 1268 // A special case of vectorisation with OptForSize: loops with a very small 1269 // trip count are considered for vectorization under OptForSize, thereby 1270 // making sure the cost of their loop body is dominant, free of runtime 1271 // guards and scalar iteration overheads. 1272 CM_ScalarEpilogueNotAllowedLowTripLoop, 1273 1274 // Loop hint predicate indicating an epilogue is undesired. 1275 CM_ScalarEpilogueNotNeededUsePredicate, 1276 1277 // Directive indicating we must either tail fold or not vectorize 1278 CM_ScalarEpilogueNotAllowedUsePredicate 1279 }; 1280 1281 /// ElementCountComparator creates a total ordering for ElementCount 1282 /// for the purposes of using it in a set structure. 1283 struct ElementCountComparator { 1284 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1285 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1286 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1287 } 1288 }; 1289 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1290 1291 /// LoopVectorizationCostModel - estimates the expected speedups due to 1292 /// vectorization. 1293 /// In many cases vectorization is not profitable. This can happen because of 1294 /// a number of reasons. In this class we mainly attempt to predict the 1295 /// expected speedup/slowdowns due to the supported instruction set. We use the 1296 /// TargetTransformInfo to query the different backends for the cost of 1297 /// different operations. 1298 class LoopVectorizationCostModel { 1299 public: 1300 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1301 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1302 LoopVectorizationLegality *Legal, 1303 const TargetTransformInfo &TTI, 1304 const TargetLibraryInfo *TLI, DemandedBits *DB, 1305 AssumptionCache *AC, 1306 OptimizationRemarkEmitter *ORE, const Function *F, 1307 const LoopVectorizeHints *Hints, 1308 InterleavedAccessInfo &IAI) 1309 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1310 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1311 Hints(Hints), InterleaveInfo(IAI) {} 1312 1313 /// \return An upper bound for the vectorization factors (both fixed and 1314 /// scalable). If the factors are 0, vectorization and interleaving should be 1315 /// avoided up front. 1316 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1317 1318 /// \return True if runtime checks are required for vectorization, and false 1319 /// otherwise. 1320 bool runtimeChecksRequired(); 1321 1322 /// \return The most profitable vectorization factor and the cost of that VF. 1323 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1324 /// then this vectorization factor will be selected if vectorization is 1325 /// possible. 1326 VectorizationFactor 1327 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1328 1329 VectorizationFactor 1330 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1331 const LoopVectorizationPlanner &LVP); 1332 1333 /// Setup cost-based decisions for user vectorization factor. 1334 /// \return true if the UserVF is a feasible VF to be chosen. 1335 bool selectUserVectorizationFactor(ElementCount UserVF) { 1336 collectUniformsAndScalars(UserVF); 1337 collectInstsToScalarize(UserVF); 1338 return expectedCost(UserVF).first.isValid(); 1339 } 1340 1341 /// \return The size (in bits) of the smallest and widest types in the code 1342 /// that needs to be vectorized. We ignore values that remain scalar such as 1343 /// 64 bit loop indices. 1344 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1345 1346 /// \return The desired interleave count. 1347 /// If interleave count has been specified by metadata it will be returned. 1348 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1349 /// are the selected vectorization factor and the cost of the selected VF. 1350 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1351 1352 /// Memory access instruction may be vectorized in more than one way. 1353 /// Form of instruction after vectorization depends on cost. 1354 /// This function takes cost-based decisions for Load/Store instructions 1355 /// and collects them in a map. This decisions map is used for building 1356 /// the lists of loop-uniform and loop-scalar instructions. 1357 /// The calculated cost is saved with widening decision in order to 1358 /// avoid redundant calculations. 1359 void setCostBasedWideningDecision(ElementCount VF); 1360 1361 /// A struct that represents some properties of the register usage 1362 /// of a loop. 1363 struct RegisterUsage { 1364 /// Holds the number of loop invariant values that are used in the loop. 1365 /// The key is ClassID of target-provided register class. 1366 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1367 /// Holds the maximum number of concurrent live intervals in the loop. 1368 /// The key is ClassID of target-provided register class. 1369 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1370 }; 1371 1372 /// \return Returns information about the register usages of the loop for the 1373 /// given vectorization factors. 1374 SmallVector<RegisterUsage, 8> 1375 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1376 1377 /// Collect values we want to ignore in the cost model. 1378 void collectValuesToIgnore(); 1379 1380 /// Collect all element types in the loop for which widening is needed. 1381 void collectElementTypesForWidening(); 1382 1383 /// Split reductions into those that happen in the loop, and those that happen 1384 /// outside. In loop reductions are collected into InLoopReductionChains. 1385 void collectInLoopReductions(); 1386 1387 /// Returns true if we should use strict in-order reductions for the given 1388 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1389 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1390 /// of FP operations. 1391 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1392 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1393 } 1394 1395 /// \returns The smallest bitwidth each instruction can be represented with. 1396 /// The vector equivalents of these instructions should be truncated to this 1397 /// type. 1398 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1399 return MinBWs; 1400 } 1401 1402 /// \returns True if it is more profitable to scalarize instruction \p I for 1403 /// vectorization factor \p VF. 1404 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1405 assert(VF.isVector() && 1406 "Profitable to scalarize relevant only for VF > 1."); 1407 1408 // Cost model is not run in the VPlan-native path - return conservative 1409 // result until this changes. 1410 if (EnableVPlanNativePath) 1411 return false; 1412 1413 auto Scalars = InstsToScalarize.find(VF); 1414 assert(Scalars != InstsToScalarize.end() && 1415 "VF not yet analyzed for scalarization profitability"); 1416 return Scalars->second.find(I) != Scalars->second.end(); 1417 } 1418 1419 /// Returns true if \p I is known to be uniform after vectorization. 1420 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1421 if (VF.isScalar()) 1422 return true; 1423 1424 // Cost model is not run in the VPlan-native path - return conservative 1425 // result until this changes. 1426 if (EnableVPlanNativePath) 1427 return false; 1428 1429 auto UniformsPerVF = Uniforms.find(VF); 1430 assert(UniformsPerVF != Uniforms.end() && 1431 "VF not yet analyzed for uniformity"); 1432 return UniformsPerVF->second.count(I); 1433 } 1434 1435 /// Returns true if \p I is known to be scalar after vectorization. 1436 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1437 if (VF.isScalar()) 1438 return true; 1439 1440 // Cost model is not run in the VPlan-native path - return conservative 1441 // result until this changes. 1442 if (EnableVPlanNativePath) 1443 return false; 1444 1445 auto ScalarsPerVF = Scalars.find(VF); 1446 assert(ScalarsPerVF != Scalars.end() && 1447 "Scalar values are not calculated for VF"); 1448 return ScalarsPerVF->second.count(I); 1449 } 1450 1451 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1452 /// for vectorization factor \p VF. 1453 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1454 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1455 !isProfitableToScalarize(I, VF) && 1456 !isScalarAfterVectorization(I, VF); 1457 } 1458 1459 /// Decision that was taken during cost calculation for memory instruction. 1460 enum InstWidening { 1461 CM_Unknown, 1462 CM_Widen, // For consecutive accesses with stride +1. 1463 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1464 CM_Interleave, 1465 CM_GatherScatter, 1466 CM_Scalarize 1467 }; 1468 1469 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1470 /// instruction \p I and vector width \p VF. 1471 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1472 InstructionCost Cost) { 1473 assert(VF.isVector() && "Expected VF >=2"); 1474 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1475 } 1476 1477 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1478 /// interleaving group \p Grp and vector width \p VF. 1479 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1480 ElementCount VF, InstWidening W, 1481 InstructionCost Cost) { 1482 assert(VF.isVector() && "Expected VF >=2"); 1483 /// Broadcast this decicion to all instructions inside the group. 1484 /// But the cost will be assigned to one instruction only. 1485 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1486 if (auto *I = Grp->getMember(i)) { 1487 if (Grp->getInsertPos() == I) 1488 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1489 else 1490 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1491 } 1492 } 1493 } 1494 1495 /// Return the cost model decision for the given instruction \p I and vector 1496 /// width \p VF. Return CM_Unknown if this instruction did not pass 1497 /// through the cost modeling. 1498 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1499 assert(VF.isVector() && "Expected VF to be a vector VF"); 1500 // Cost model is not run in the VPlan-native path - return conservative 1501 // result until this changes. 1502 if (EnableVPlanNativePath) 1503 return CM_GatherScatter; 1504 1505 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1506 auto Itr = WideningDecisions.find(InstOnVF); 1507 if (Itr == WideningDecisions.end()) 1508 return CM_Unknown; 1509 return Itr->second.first; 1510 } 1511 1512 /// Return the vectorization cost for the given instruction \p I and vector 1513 /// width \p VF. 1514 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1515 assert(VF.isVector() && "Expected VF >=2"); 1516 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1517 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1518 "The cost is not calculated"); 1519 return WideningDecisions[InstOnVF].second; 1520 } 1521 1522 /// Return True if instruction \p I is an optimizable truncate whose operand 1523 /// is an induction variable. Such a truncate will be removed by adding a new 1524 /// induction variable with the destination type. 1525 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1526 // If the instruction is not a truncate, return false. 1527 auto *Trunc = dyn_cast<TruncInst>(I); 1528 if (!Trunc) 1529 return false; 1530 1531 // Get the source and destination types of the truncate. 1532 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1533 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1534 1535 // If the truncate is free for the given types, return false. Replacing a 1536 // free truncate with an induction variable would add an induction variable 1537 // update instruction to each iteration of the loop. We exclude from this 1538 // check the primary induction variable since it will need an update 1539 // instruction regardless. 1540 Value *Op = Trunc->getOperand(0); 1541 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1542 return false; 1543 1544 // If the truncated value is not an induction variable, return false. 1545 return Legal->isInductionPhi(Op); 1546 } 1547 1548 /// Collects the instructions to scalarize for each predicated instruction in 1549 /// the loop. 1550 void collectInstsToScalarize(ElementCount VF); 1551 1552 /// Collect Uniform and Scalar values for the given \p VF. 1553 /// The sets depend on CM decision for Load/Store instructions 1554 /// that may be vectorized as interleave, gather-scatter or scalarized. 1555 void collectUniformsAndScalars(ElementCount VF) { 1556 // Do the analysis once. 1557 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1558 return; 1559 setCostBasedWideningDecision(VF); 1560 collectLoopUniforms(VF); 1561 collectLoopScalars(VF); 1562 } 1563 1564 /// Returns true if the target machine supports masked store operation 1565 /// for the given \p DataType and kind of access to \p Ptr. 1566 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1567 return Legal->isConsecutivePtr(DataType, Ptr) && 1568 TTI.isLegalMaskedStore(DataType, Alignment); 1569 } 1570 1571 /// Returns true if the target machine supports masked load operation 1572 /// for the given \p DataType and kind of access to \p Ptr. 1573 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1574 return Legal->isConsecutivePtr(DataType, Ptr) && 1575 TTI.isLegalMaskedLoad(DataType, Alignment); 1576 } 1577 1578 /// Returns true if the target machine can represent \p V as a masked gather 1579 /// or scatter operation. 1580 bool isLegalGatherOrScatter(Value *V) { 1581 bool LI = isa<LoadInst>(V); 1582 bool SI = isa<StoreInst>(V); 1583 if (!LI && !SI) 1584 return false; 1585 auto *Ty = getLoadStoreType(V); 1586 Align Align = getLoadStoreAlignment(V); 1587 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1588 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1589 } 1590 1591 /// Returns true if the target machine supports all of the reduction 1592 /// variables found for the given VF. 1593 bool canVectorizeReductions(ElementCount VF) const { 1594 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1595 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1596 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1597 })); 1598 } 1599 1600 /// Returns true if \p I is an instruction that will be scalarized with 1601 /// predication. Such instructions include conditional stores and 1602 /// instructions that may divide by zero. 1603 /// If a non-zero VF has been calculated, we check if I will be scalarized 1604 /// predication for that VF. 1605 bool isScalarWithPredication(Instruction *I) const; 1606 1607 // Returns true if \p I is an instruction that will be predicated either 1608 // through scalar predication or masked load/store or masked gather/scatter. 1609 // Superset of instructions that return true for isScalarWithPredication. 1610 bool isPredicatedInst(Instruction *I, bool IsKnownUniform = false) { 1611 // When we know the load is uniform and the original scalar loop was not 1612 // predicated we don't need to mark it as a predicated instruction. Any 1613 // vectorised blocks created when tail-folding are something artificial we 1614 // have introduced and we know there is always at least one active lane. 1615 // That's why we call Legal->blockNeedsPredication here because it doesn't 1616 // query tail-folding. 1617 if (IsKnownUniform && isa<LoadInst>(I) && 1618 !Legal->blockNeedsPredication(I->getParent())) 1619 return false; 1620 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1621 return false; 1622 // Loads and stores that need some form of masked operation are predicated 1623 // instructions. 1624 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1625 return Legal->isMaskRequired(I); 1626 return isScalarWithPredication(I); 1627 } 1628 1629 /// Returns true if \p I is a memory instruction with consecutive memory 1630 /// access that can be widened. 1631 bool 1632 memoryInstructionCanBeWidened(Instruction *I, 1633 ElementCount VF = ElementCount::getFixed(1)); 1634 1635 /// Returns true if \p I is a memory instruction in an interleaved-group 1636 /// of memory accesses that can be vectorized with wide vector loads/stores 1637 /// and shuffles. 1638 bool 1639 interleavedAccessCanBeWidened(Instruction *I, 1640 ElementCount VF = ElementCount::getFixed(1)); 1641 1642 /// Check if \p Instr belongs to any interleaved access group. 1643 bool isAccessInterleaved(Instruction *Instr) { 1644 return InterleaveInfo.isInterleaved(Instr); 1645 } 1646 1647 /// Get the interleaved access group that \p Instr belongs to. 1648 const InterleaveGroup<Instruction> * 1649 getInterleavedAccessGroup(Instruction *Instr) { 1650 return InterleaveInfo.getInterleaveGroup(Instr); 1651 } 1652 1653 /// Returns true if we're required to use a scalar epilogue for at least 1654 /// the final iteration of the original loop. 1655 bool requiresScalarEpilogue(ElementCount VF) const { 1656 if (!isScalarEpilogueAllowed()) 1657 return false; 1658 // If we might exit from anywhere but the latch, must run the exiting 1659 // iteration in scalar form. 1660 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1661 return true; 1662 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1663 } 1664 1665 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1666 /// loop hint annotation. 1667 bool isScalarEpilogueAllowed() const { 1668 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1669 } 1670 1671 /// Returns true if all loop blocks should be masked to fold tail loop. 1672 bool foldTailByMasking() const { return FoldTailByMasking; } 1673 1674 /// Returns true if the instructions in this block requires predication 1675 /// for any reason, e.g. because tail folding now requires a predicate 1676 /// or because the block in the original loop was predicated. 1677 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1678 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1679 } 1680 1681 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1682 /// nodes to the chain of instructions representing the reductions. Uses a 1683 /// MapVector to ensure deterministic iteration order. 1684 using ReductionChainMap = 1685 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1686 1687 /// Return the chain of instructions representing an inloop reduction. 1688 const ReductionChainMap &getInLoopReductionChains() const { 1689 return InLoopReductionChains; 1690 } 1691 1692 /// Returns true if the Phi is part of an inloop reduction. 1693 bool isInLoopReduction(PHINode *Phi) const { 1694 return InLoopReductionChains.count(Phi); 1695 } 1696 1697 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1698 /// with factor VF. Return the cost of the instruction, including 1699 /// scalarization overhead if it's needed. 1700 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1701 1702 /// Estimate cost of a call instruction CI if it were vectorized with factor 1703 /// VF. Return the cost of the instruction, including scalarization overhead 1704 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1705 /// scalarized - 1706 /// i.e. either vector version isn't available, or is too expensive. 1707 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1708 bool &NeedToScalarize) const; 1709 1710 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1711 /// that of B. 1712 bool isMoreProfitable(const VectorizationFactor &A, 1713 const VectorizationFactor &B) const; 1714 1715 /// Invalidates decisions already taken by the cost model. 1716 void invalidateCostModelingDecisions() { 1717 WideningDecisions.clear(); 1718 Uniforms.clear(); 1719 Scalars.clear(); 1720 } 1721 1722 private: 1723 unsigned NumPredStores = 0; 1724 1725 /// \return An upper bound for the vectorization factors for both 1726 /// fixed and scalable vectorization, where the minimum-known number of 1727 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1728 /// disabled or unsupported, then the scalable part will be equal to 1729 /// ElementCount::getScalable(0). 1730 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1731 ElementCount UserVF); 1732 1733 /// \return the maximized element count based on the targets vector 1734 /// registers and the loop trip-count, but limited to a maximum safe VF. 1735 /// This is a helper function of computeFeasibleMaxVF. 1736 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1737 /// issue that occurred on one of the buildbots which cannot be reproduced 1738 /// without having access to the properietary compiler (see comments on 1739 /// D98509). The issue is currently under investigation and this workaround 1740 /// will be removed as soon as possible. 1741 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1742 unsigned SmallestType, 1743 unsigned WidestType, 1744 const ElementCount &MaxSafeVF); 1745 1746 /// \return the maximum legal scalable VF, based on the safe max number 1747 /// of elements. 1748 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1749 1750 /// The vectorization cost is a combination of the cost itself and a boolean 1751 /// indicating whether any of the contributing operations will actually 1752 /// operate on vector values after type legalization in the backend. If this 1753 /// latter value is false, then all operations will be scalarized (i.e. no 1754 /// vectorization has actually taken place). 1755 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1756 1757 /// Returns the expected execution cost. The unit of the cost does 1758 /// not matter because we use the 'cost' units to compare different 1759 /// vector widths. The cost that is returned is *not* normalized by 1760 /// the factor width. If \p Invalid is not nullptr, this function 1761 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1762 /// each instruction that has an Invalid cost for the given VF. 1763 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1764 VectorizationCostTy 1765 expectedCost(ElementCount VF, 1766 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1767 1768 /// Returns the execution time cost of an instruction for a given vector 1769 /// width. Vector width of one means scalar. 1770 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1771 1772 /// The cost-computation logic from getInstructionCost which provides 1773 /// the vector type as an output parameter. 1774 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1775 Type *&VectorTy); 1776 1777 /// Return the cost of instructions in an inloop reduction pattern, if I is 1778 /// part of that pattern. 1779 Optional<InstructionCost> 1780 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1781 TTI::TargetCostKind CostKind); 1782 1783 /// Calculate vectorization cost of memory instruction \p I. 1784 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1785 1786 /// The cost computation for scalarized memory instruction. 1787 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1788 1789 /// The cost computation for interleaving group of memory instructions. 1790 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1791 1792 /// The cost computation for Gather/Scatter instruction. 1793 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1794 1795 /// The cost computation for widening instruction \p I with consecutive 1796 /// memory access. 1797 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1798 1799 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1800 /// Load: scalar load + broadcast. 1801 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1802 /// element) 1803 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1804 1805 /// Estimate the overhead of scalarizing an instruction. This is a 1806 /// convenience wrapper for the type-based getScalarizationOverhead API. 1807 InstructionCost getScalarizationOverhead(Instruction *I, 1808 ElementCount VF) const; 1809 1810 /// Returns whether the instruction is a load or store and will be a emitted 1811 /// as a vector operation. 1812 bool isConsecutiveLoadOrStore(Instruction *I); 1813 1814 /// Returns true if an artificially high cost for emulated masked memrefs 1815 /// should be used. 1816 bool useEmulatedMaskMemRefHack(Instruction *I); 1817 1818 /// Map of scalar integer values to the smallest bitwidth they can be legally 1819 /// represented as. The vector equivalents of these values should be truncated 1820 /// to this type. 1821 MapVector<Instruction *, uint64_t> MinBWs; 1822 1823 /// A type representing the costs for instructions if they were to be 1824 /// scalarized rather than vectorized. The entries are Instruction-Cost 1825 /// pairs. 1826 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1827 1828 /// A set containing all BasicBlocks that are known to present after 1829 /// vectorization as a predicated block. 1830 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1831 1832 /// Records whether it is allowed to have the original scalar loop execute at 1833 /// least once. This may be needed as a fallback loop in case runtime 1834 /// aliasing/dependence checks fail, or to handle the tail/remainder 1835 /// iterations when the trip count is unknown or doesn't divide by the VF, 1836 /// or as a peel-loop to handle gaps in interleave-groups. 1837 /// Under optsize and when the trip count is very small we don't allow any 1838 /// iterations to execute in the scalar loop. 1839 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1840 1841 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1842 bool FoldTailByMasking = false; 1843 1844 /// A map holding scalar costs for different vectorization factors. The 1845 /// presence of a cost for an instruction in the mapping indicates that the 1846 /// instruction will be scalarized when vectorizing with the associated 1847 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1848 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1849 1850 /// Holds the instructions known to be uniform after vectorization. 1851 /// The data is collected per VF. 1852 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1853 1854 /// Holds the instructions known to be scalar after vectorization. 1855 /// The data is collected per VF. 1856 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1857 1858 /// Holds the instructions (address computations) that are forced to be 1859 /// scalarized. 1860 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1861 1862 /// PHINodes of the reductions that should be expanded in-loop along with 1863 /// their associated chains of reduction operations, in program order from top 1864 /// (PHI) to bottom 1865 ReductionChainMap InLoopReductionChains; 1866 1867 /// A Map of inloop reduction operations and their immediate chain operand. 1868 /// FIXME: This can be removed once reductions can be costed correctly in 1869 /// vplan. This was added to allow quick lookup to the inloop operations, 1870 /// without having to loop through InLoopReductionChains. 1871 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1872 1873 /// Returns the expected difference in cost from scalarizing the expression 1874 /// feeding a predicated instruction \p PredInst. The instructions to 1875 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1876 /// non-negative return value implies the expression will be scalarized. 1877 /// Currently, only single-use chains are considered for scalarization. 1878 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1879 ElementCount VF); 1880 1881 /// Collect the instructions that are uniform after vectorization. An 1882 /// instruction is uniform if we represent it with a single scalar value in 1883 /// the vectorized loop corresponding to each vector iteration. Examples of 1884 /// uniform instructions include pointer operands of consecutive or 1885 /// interleaved memory accesses. Note that although uniformity implies an 1886 /// instruction will be scalar, the reverse is not true. In general, a 1887 /// scalarized instruction will be represented by VF scalar values in the 1888 /// vectorized loop, each corresponding to an iteration of the original 1889 /// scalar loop. 1890 void collectLoopUniforms(ElementCount VF); 1891 1892 /// Collect the instructions that are scalar after vectorization. An 1893 /// instruction is scalar if it is known to be uniform or will be scalarized 1894 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1895 /// to the list if they are used by a load/store instruction that is marked as 1896 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1897 /// VF values in the vectorized loop, each corresponding to an iteration of 1898 /// the original scalar loop. 1899 void collectLoopScalars(ElementCount VF); 1900 1901 /// Keeps cost model vectorization decision and cost for instructions. 1902 /// Right now it is used for memory instructions only. 1903 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1904 std::pair<InstWidening, InstructionCost>>; 1905 1906 DecisionList WideningDecisions; 1907 1908 /// Returns true if \p V is expected to be vectorized and it needs to be 1909 /// extracted. 1910 bool needsExtract(Value *V, ElementCount VF) const { 1911 Instruction *I = dyn_cast<Instruction>(V); 1912 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1913 TheLoop->isLoopInvariant(I)) 1914 return false; 1915 1916 // Assume we can vectorize V (and hence we need extraction) if the 1917 // scalars are not computed yet. This can happen, because it is called 1918 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1919 // the scalars are collected. That should be a safe assumption in most 1920 // cases, because we check if the operands have vectorizable types 1921 // beforehand in LoopVectorizationLegality. 1922 return Scalars.find(VF) == Scalars.end() || 1923 !isScalarAfterVectorization(I, VF); 1924 }; 1925 1926 /// Returns a range containing only operands needing to be extracted. 1927 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1928 ElementCount VF) const { 1929 return SmallVector<Value *, 4>(make_filter_range( 1930 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1931 } 1932 1933 /// Determines if we have the infrastructure to vectorize loop \p L and its 1934 /// epilogue, assuming the main loop is vectorized by \p VF. 1935 bool isCandidateForEpilogueVectorization(const Loop &L, 1936 const ElementCount VF) const; 1937 1938 /// Returns true if epilogue vectorization is considered profitable, and 1939 /// false otherwise. 1940 /// \p VF is the vectorization factor chosen for the original loop. 1941 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1942 1943 public: 1944 /// The loop that we evaluate. 1945 Loop *TheLoop; 1946 1947 /// Predicated scalar evolution analysis. 1948 PredicatedScalarEvolution &PSE; 1949 1950 /// Loop Info analysis. 1951 LoopInfo *LI; 1952 1953 /// Vectorization legality. 1954 LoopVectorizationLegality *Legal; 1955 1956 /// Vector target information. 1957 const TargetTransformInfo &TTI; 1958 1959 /// Target Library Info. 1960 const TargetLibraryInfo *TLI; 1961 1962 /// Demanded bits analysis. 1963 DemandedBits *DB; 1964 1965 /// Assumption cache. 1966 AssumptionCache *AC; 1967 1968 /// Interface to emit optimization remarks. 1969 OptimizationRemarkEmitter *ORE; 1970 1971 const Function *TheFunction; 1972 1973 /// Loop Vectorize Hint. 1974 const LoopVectorizeHints *Hints; 1975 1976 /// The interleave access information contains groups of interleaved accesses 1977 /// with the same stride and close to each other. 1978 InterleavedAccessInfo &InterleaveInfo; 1979 1980 /// Values to ignore in the cost model. 1981 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1982 1983 /// Values to ignore in the cost model when VF > 1. 1984 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1985 1986 /// All element types found in the loop. 1987 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1988 1989 /// Profitable vector factors. 1990 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1991 }; 1992 } // end namespace llvm 1993 1994 /// Helper struct to manage generating runtime checks for vectorization. 1995 /// 1996 /// The runtime checks are created up-front in temporary blocks to allow better 1997 /// estimating the cost and un-linked from the existing IR. After deciding to 1998 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1999 /// temporary blocks are completely removed. 2000 class GeneratedRTChecks { 2001 /// Basic block which contains the generated SCEV checks, if any. 2002 BasicBlock *SCEVCheckBlock = nullptr; 2003 2004 /// The value representing the result of the generated SCEV checks. If it is 2005 /// nullptr, either no SCEV checks have been generated or they have been used. 2006 Value *SCEVCheckCond = nullptr; 2007 2008 /// Basic block which contains the generated memory runtime checks, if any. 2009 BasicBlock *MemCheckBlock = nullptr; 2010 2011 /// The value representing the result of the generated memory runtime checks. 2012 /// If it is nullptr, either no memory runtime checks have been generated or 2013 /// they have been used. 2014 Value *MemRuntimeCheckCond = nullptr; 2015 2016 DominatorTree *DT; 2017 LoopInfo *LI; 2018 2019 SCEVExpander SCEVExp; 2020 SCEVExpander MemCheckExp; 2021 2022 public: 2023 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 2024 const DataLayout &DL) 2025 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 2026 MemCheckExp(SE, DL, "scev.check") {} 2027 2028 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 2029 /// accurately estimate the cost of the runtime checks. The blocks are 2030 /// un-linked from the IR and is added back during vector code generation. If 2031 /// there is no vector code generation, the check blocks are removed 2032 /// completely. 2033 void Create(Loop *L, const LoopAccessInfo &LAI, 2034 const SCEVUnionPredicate &UnionPred) { 2035 2036 BasicBlock *LoopHeader = L->getHeader(); 2037 BasicBlock *Preheader = L->getLoopPreheader(); 2038 2039 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 2040 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 2041 // may be used by SCEVExpander. The blocks will be un-linked from their 2042 // predecessors and removed from LI & DT at the end of the function. 2043 if (!UnionPred.isAlwaysTrue()) { 2044 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 2045 nullptr, "vector.scevcheck"); 2046 2047 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 2048 &UnionPred, SCEVCheckBlock->getTerminator()); 2049 } 2050 2051 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 2052 if (RtPtrChecking.Need) { 2053 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2054 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2055 "vector.memcheck"); 2056 2057 MemRuntimeCheckCond = 2058 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2059 RtPtrChecking.getChecks(), MemCheckExp); 2060 assert(MemRuntimeCheckCond && 2061 "no RT checks generated although RtPtrChecking " 2062 "claimed checks are required"); 2063 } 2064 2065 if (!MemCheckBlock && !SCEVCheckBlock) 2066 return; 2067 2068 // Unhook the temporary block with the checks, update various places 2069 // accordingly. 2070 if (SCEVCheckBlock) 2071 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2072 if (MemCheckBlock) 2073 MemCheckBlock->replaceAllUsesWith(Preheader); 2074 2075 if (SCEVCheckBlock) { 2076 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2077 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2078 Preheader->getTerminator()->eraseFromParent(); 2079 } 2080 if (MemCheckBlock) { 2081 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2082 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2083 Preheader->getTerminator()->eraseFromParent(); 2084 } 2085 2086 DT->changeImmediateDominator(LoopHeader, Preheader); 2087 if (MemCheckBlock) { 2088 DT->eraseNode(MemCheckBlock); 2089 LI->removeBlock(MemCheckBlock); 2090 } 2091 if (SCEVCheckBlock) { 2092 DT->eraseNode(SCEVCheckBlock); 2093 LI->removeBlock(SCEVCheckBlock); 2094 } 2095 } 2096 2097 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2098 /// unused. 2099 ~GeneratedRTChecks() { 2100 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2101 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2102 if (!SCEVCheckCond) 2103 SCEVCleaner.markResultUsed(); 2104 2105 if (!MemRuntimeCheckCond) 2106 MemCheckCleaner.markResultUsed(); 2107 2108 if (MemRuntimeCheckCond) { 2109 auto &SE = *MemCheckExp.getSE(); 2110 // Memory runtime check generation creates compares that use expanded 2111 // values. Remove them before running the SCEVExpanderCleaners. 2112 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2113 if (MemCheckExp.isInsertedInstruction(&I)) 2114 continue; 2115 SE.forgetValue(&I); 2116 I.eraseFromParent(); 2117 } 2118 } 2119 MemCheckCleaner.cleanup(); 2120 SCEVCleaner.cleanup(); 2121 2122 if (SCEVCheckCond) 2123 SCEVCheckBlock->eraseFromParent(); 2124 if (MemRuntimeCheckCond) 2125 MemCheckBlock->eraseFromParent(); 2126 } 2127 2128 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2129 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2130 /// depending on the generated condition. 2131 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2132 BasicBlock *LoopVectorPreHeader, 2133 BasicBlock *LoopExitBlock) { 2134 if (!SCEVCheckCond) 2135 return nullptr; 2136 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2137 if (C->isZero()) 2138 return nullptr; 2139 2140 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2141 2142 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2143 // Create new preheader for vector loop. 2144 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2145 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2146 2147 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2148 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2149 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2150 SCEVCheckBlock); 2151 2152 DT->addNewBlock(SCEVCheckBlock, Pred); 2153 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2154 2155 ReplaceInstWithInst( 2156 SCEVCheckBlock->getTerminator(), 2157 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2158 // Mark the check as used, to prevent it from being removed during cleanup. 2159 SCEVCheckCond = nullptr; 2160 return SCEVCheckBlock; 2161 } 2162 2163 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2164 /// the branches to branch to the vector preheader or \p Bypass, depending on 2165 /// the generated condition. 2166 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2167 BasicBlock *LoopVectorPreHeader) { 2168 // Check if we generated code that checks in runtime if arrays overlap. 2169 if (!MemRuntimeCheckCond) 2170 return nullptr; 2171 2172 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2173 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2174 MemCheckBlock); 2175 2176 DT->addNewBlock(MemCheckBlock, Pred); 2177 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2178 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2179 2180 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2181 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2182 2183 ReplaceInstWithInst( 2184 MemCheckBlock->getTerminator(), 2185 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2186 MemCheckBlock->getTerminator()->setDebugLoc( 2187 Pred->getTerminator()->getDebugLoc()); 2188 2189 // Mark the check as used, to prevent it from being removed during cleanup. 2190 MemRuntimeCheckCond = nullptr; 2191 return MemCheckBlock; 2192 } 2193 }; 2194 2195 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2196 // vectorization. The loop needs to be annotated with #pragma omp simd 2197 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2198 // vector length information is not provided, vectorization is not considered 2199 // explicit. Interleave hints are not allowed either. These limitations will be 2200 // relaxed in the future. 2201 // Please, note that we are currently forced to abuse the pragma 'clang 2202 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2203 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2204 // provides *explicit vectorization hints* (LV can bypass legal checks and 2205 // assume that vectorization is legal). However, both hints are implemented 2206 // using the same metadata (llvm.loop.vectorize, processed by 2207 // LoopVectorizeHints). This will be fixed in the future when the native IR 2208 // representation for pragma 'omp simd' is introduced. 2209 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2210 OptimizationRemarkEmitter *ORE) { 2211 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2212 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2213 2214 // Only outer loops with an explicit vectorization hint are supported. 2215 // Unannotated outer loops are ignored. 2216 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2217 return false; 2218 2219 Function *Fn = OuterLp->getHeader()->getParent(); 2220 if (!Hints.allowVectorization(Fn, OuterLp, 2221 true /*VectorizeOnlyWhenForced*/)) { 2222 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2223 return false; 2224 } 2225 2226 if (Hints.getInterleave() > 1) { 2227 // TODO: Interleave support is future work. 2228 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2229 "outer loops.\n"); 2230 Hints.emitRemarkWithHints(); 2231 return false; 2232 } 2233 2234 return true; 2235 } 2236 2237 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2238 OptimizationRemarkEmitter *ORE, 2239 SmallVectorImpl<Loop *> &V) { 2240 // Collect inner loops and outer loops without irreducible control flow. For 2241 // now, only collect outer loops that have explicit vectorization hints. If we 2242 // are stress testing the VPlan H-CFG construction, we collect the outermost 2243 // loop of every loop nest. 2244 if (L.isInnermost() || VPlanBuildStressTest || 2245 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2246 LoopBlocksRPO RPOT(&L); 2247 RPOT.perform(LI); 2248 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2249 V.push_back(&L); 2250 // TODO: Collect inner loops inside marked outer loops in case 2251 // vectorization fails for the outer loop. Do not invoke 2252 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2253 // already known to be reducible. We can use an inherited attribute for 2254 // that. 2255 return; 2256 } 2257 } 2258 for (Loop *InnerL : L) 2259 collectSupportedLoops(*InnerL, LI, ORE, V); 2260 } 2261 2262 namespace { 2263 2264 /// The LoopVectorize Pass. 2265 struct LoopVectorize : public FunctionPass { 2266 /// Pass identification, replacement for typeid 2267 static char ID; 2268 2269 LoopVectorizePass Impl; 2270 2271 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2272 bool VectorizeOnlyWhenForced = false) 2273 : FunctionPass(ID), 2274 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2275 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2276 } 2277 2278 bool runOnFunction(Function &F) override { 2279 if (skipFunction(F)) 2280 return false; 2281 2282 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2283 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2284 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2285 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2286 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2287 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2288 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2289 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2290 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2291 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2292 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2293 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2294 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2295 2296 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2297 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2298 2299 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2300 GetLAA, *ORE, PSI).MadeAnyChange; 2301 } 2302 2303 void getAnalysisUsage(AnalysisUsage &AU) const override { 2304 AU.addRequired<AssumptionCacheTracker>(); 2305 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2306 AU.addRequired<DominatorTreeWrapperPass>(); 2307 AU.addRequired<LoopInfoWrapperPass>(); 2308 AU.addRequired<ScalarEvolutionWrapperPass>(); 2309 AU.addRequired<TargetTransformInfoWrapperPass>(); 2310 AU.addRequired<AAResultsWrapperPass>(); 2311 AU.addRequired<LoopAccessLegacyAnalysis>(); 2312 AU.addRequired<DemandedBitsWrapperPass>(); 2313 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2314 AU.addRequired<InjectTLIMappingsLegacy>(); 2315 2316 // We currently do not preserve loopinfo/dominator analyses with outer loop 2317 // vectorization. Until this is addressed, mark these analyses as preserved 2318 // only for non-VPlan-native path. 2319 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2320 if (!EnableVPlanNativePath) { 2321 AU.addPreserved<LoopInfoWrapperPass>(); 2322 AU.addPreserved<DominatorTreeWrapperPass>(); 2323 } 2324 2325 AU.addPreserved<BasicAAWrapperPass>(); 2326 AU.addPreserved<GlobalsAAWrapperPass>(); 2327 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2328 } 2329 }; 2330 2331 } // end anonymous namespace 2332 2333 //===----------------------------------------------------------------------===// 2334 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2335 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2336 //===----------------------------------------------------------------------===// 2337 2338 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2339 // We need to place the broadcast of invariant variables outside the loop, 2340 // but only if it's proven safe to do so. Else, broadcast will be inside 2341 // vector loop body. 2342 Instruction *Instr = dyn_cast<Instruction>(V); 2343 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2344 (!Instr || 2345 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2346 // Place the code for broadcasting invariant variables in the new preheader. 2347 IRBuilder<>::InsertPointGuard Guard(Builder); 2348 if (SafeToHoist) 2349 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2350 2351 // Broadcast the scalar into all locations in the vector. 2352 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2353 2354 return Shuf; 2355 } 2356 2357 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2358 const InductionDescriptor &II, Value *Step, Value *Start, 2359 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2360 VPTransformState &State) { 2361 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2362 "Expected either an induction phi-node or a truncate of it!"); 2363 2364 // Construct the initial value of the vector IV in the vector loop preheader 2365 auto CurrIP = Builder.saveIP(); 2366 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2367 if (isa<TruncInst>(EntryVal)) { 2368 assert(Start->getType()->isIntegerTy() && 2369 "Truncation requires an integer type"); 2370 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2371 Step = Builder.CreateTrunc(Step, TruncType); 2372 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2373 } 2374 2375 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2376 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2377 Value *SteppedStart = 2378 getStepVector(SplatStart, Zero, Step, II.getInductionOpcode()); 2379 2380 // We create vector phi nodes for both integer and floating-point induction 2381 // variables. Here, we determine the kind of arithmetic we will perform. 2382 Instruction::BinaryOps AddOp; 2383 Instruction::BinaryOps MulOp; 2384 if (Step->getType()->isIntegerTy()) { 2385 AddOp = Instruction::Add; 2386 MulOp = Instruction::Mul; 2387 } else { 2388 AddOp = II.getInductionOpcode(); 2389 MulOp = Instruction::FMul; 2390 } 2391 2392 // Multiply the vectorization factor by the step using integer or 2393 // floating-point arithmetic as appropriate. 2394 Type *StepType = Step->getType(); 2395 Value *RuntimeVF; 2396 if (Step->getType()->isFloatingPointTy()) 2397 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, VF); 2398 else 2399 RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2400 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2401 2402 // Create a vector splat to use in the induction update. 2403 // 2404 // FIXME: If the step is non-constant, we create the vector splat with 2405 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2406 // handle a constant vector splat. 2407 Value *SplatVF = isa<Constant>(Mul) 2408 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2409 : Builder.CreateVectorSplat(VF, Mul); 2410 Builder.restoreIP(CurrIP); 2411 2412 // We may need to add the step a number of times, depending on the unroll 2413 // factor. The last of those goes into the PHI. 2414 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2415 &*LoopVectorBody->getFirstInsertionPt()); 2416 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2417 Instruction *LastInduction = VecInd; 2418 for (unsigned Part = 0; Part < UF; ++Part) { 2419 State.set(Def, LastInduction, Part); 2420 2421 if (isa<TruncInst>(EntryVal)) 2422 addMetadata(LastInduction, EntryVal); 2423 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2424 State, Part); 2425 2426 LastInduction = cast<Instruction>( 2427 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2428 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2429 } 2430 2431 // Move the last step to the end of the latch block. This ensures consistent 2432 // placement of all induction updates. 2433 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2434 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2435 auto *ICmp = cast<Instruction>(Br->getCondition()); 2436 LastInduction->moveBefore(ICmp); 2437 LastInduction->setName("vec.ind.next"); 2438 2439 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2440 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2441 } 2442 2443 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2444 return Cost->isScalarAfterVectorization(I, VF) || 2445 Cost->isProfitableToScalarize(I, VF); 2446 } 2447 2448 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2449 if (shouldScalarizeInstruction(IV)) 2450 return true; 2451 auto isScalarInst = [&](User *U) -> bool { 2452 auto *I = cast<Instruction>(U); 2453 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2454 }; 2455 return llvm::any_of(IV->users(), isScalarInst); 2456 } 2457 2458 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2459 const InductionDescriptor &ID, const Instruction *EntryVal, 2460 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2461 unsigned Part, unsigned Lane) { 2462 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2463 "Expected either an induction phi-node or a truncate of it!"); 2464 2465 // This induction variable is not the phi from the original loop but the 2466 // newly-created IV based on the proof that casted Phi is equal to the 2467 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2468 // re-uses the same InductionDescriptor that original IV uses but we don't 2469 // have to do any recording in this case - that is done when original IV is 2470 // processed. 2471 if (isa<TruncInst>(EntryVal)) 2472 return; 2473 2474 if (!CastDef) { 2475 assert(ID.getCastInsts().empty() && 2476 "there are casts for ID, but no CastDef"); 2477 return; 2478 } 2479 assert(!ID.getCastInsts().empty() && 2480 "there is a CastDef, but no casts for ID"); 2481 // Only the first Cast instruction in the Casts vector is of interest. 2482 // The rest of the Casts (if exist) have no uses outside the 2483 // induction update chain itself. 2484 if (Lane < UINT_MAX) 2485 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2486 else 2487 State.set(CastDef, VectorLoopVal, Part); 2488 } 2489 2490 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2491 TruncInst *Trunc, VPValue *Def, 2492 VPValue *CastDef, 2493 VPTransformState &State) { 2494 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2495 "Primary induction variable must have an integer type"); 2496 2497 auto II = Legal->getInductionVars().find(IV); 2498 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2499 2500 auto ID = II->second; 2501 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2502 2503 // The value from the original loop to which we are mapping the new induction 2504 // variable. 2505 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2506 2507 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2508 2509 // Generate code for the induction step. Note that induction steps are 2510 // required to be loop-invariant 2511 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2512 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2513 "Induction step should be loop invariant"); 2514 if (PSE.getSE()->isSCEVable(IV->getType())) { 2515 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2516 return Exp.expandCodeFor(Step, Step->getType(), 2517 LoopVectorPreHeader->getTerminator()); 2518 } 2519 return cast<SCEVUnknown>(Step)->getValue(); 2520 }; 2521 2522 // The scalar value to broadcast. This is derived from the canonical 2523 // induction variable. If a truncation type is given, truncate the canonical 2524 // induction variable and step. Otherwise, derive these values from the 2525 // induction descriptor. 2526 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2527 Value *ScalarIV = Induction; 2528 if (IV != OldInduction) { 2529 ScalarIV = IV->getType()->isIntegerTy() 2530 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2531 : Builder.CreateCast(Instruction::SIToFP, Induction, 2532 IV->getType()); 2533 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2534 ScalarIV->setName("offset.idx"); 2535 } 2536 if (Trunc) { 2537 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2538 assert(Step->getType()->isIntegerTy() && 2539 "Truncation requires an integer step"); 2540 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2541 Step = Builder.CreateTrunc(Step, TruncType); 2542 } 2543 return ScalarIV; 2544 }; 2545 2546 // Create the vector values from the scalar IV, in the absence of creating a 2547 // vector IV. 2548 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2549 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2550 for (unsigned Part = 0; Part < UF; ++Part) { 2551 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2552 Value *StartIdx; 2553 if (Step->getType()->isFloatingPointTy()) 2554 StartIdx = getRuntimeVFAsFloat(Builder, Step->getType(), VF * Part); 2555 else 2556 StartIdx = getRuntimeVF(Builder, Step->getType(), VF * Part); 2557 2558 Value *EntryPart = 2559 getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode()); 2560 State.set(Def, EntryPart, Part); 2561 if (Trunc) 2562 addMetadata(EntryPart, Trunc); 2563 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2564 State, Part); 2565 } 2566 }; 2567 2568 // Fast-math-flags propagate from the original induction instruction. 2569 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2570 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2571 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2572 2573 // Now do the actual transformations, and start with creating the step value. 2574 Value *Step = CreateStepValue(ID.getStep()); 2575 if (VF.isZero() || VF.isScalar()) { 2576 Value *ScalarIV = CreateScalarIV(Step); 2577 CreateSplatIV(ScalarIV, Step); 2578 return; 2579 } 2580 2581 // Determine if we want a scalar version of the induction variable. This is 2582 // true if the induction variable itself is not widened, or if it has at 2583 // least one user in the loop that is not widened. 2584 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2585 if (!NeedsScalarIV) { 2586 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2587 State); 2588 return; 2589 } 2590 2591 // Try to create a new independent vector induction variable. If we can't 2592 // create the phi node, we will splat the scalar induction variable in each 2593 // loop iteration. 2594 if (!shouldScalarizeInstruction(EntryVal)) { 2595 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2596 State); 2597 Value *ScalarIV = CreateScalarIV(Step); 2598 // Create scalar steps that can be used by instructions we will later 2599 // scalarize. Note that the addition of the scalar steps will not increase 2600 // the number of instructions in the loop in the common case prior to 2601 // InstCombine. We will be trading one vector extract for each scalar step. 2602 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2603 return; 2604 } 2605 2606 // All IV users are scalar instructions, so only emit a scalar IV, not a 2607 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2608 // predicate used by the masked loads/stores. 2609 Value *ScalarIV = CreateScalarIV(Step); 2610 if (!Cost->isScalarEpilogueAllowed()) 2611 CreateSplatIV(ScalarIV, Step); 2612 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2613 } 2614 2615 Value *InnerLoopVectorizer::getStepVector(Value *Val, Value *StartIdx, 2616 Value *Step, 2617 Instruction::BinaryOps BinOp) { 2618 // Create and check the types. 2619 auto *ValVTy = cast<VectorType>(Val->getType()); 2620 ElementCount VLen = ValVTy->getElementCount(); 2621 2622 Type *STy = Val->getType()->getScalarType(); 2623 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2624 "Induction Step must be an integer or FP"); 2625 assert(Step->getType() == STy && "Step has wrong type"); 2626 2627 SmallVector<Constant *, 8> Indices; 2628 2629 // Create a vector of consecutive numbers from zero to VF. 2630 VectorType *InitVecValVTy = ValVTy; 2631 Type *InitVecValSTy = STy; 2632 if (STy->isFloatingPointTy()) { 2633 InitVecValSTy = 2634 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2635 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2636 } 2637 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2638 2639 // Splat the StartIdx 2640 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2641 2642 if (STy->isIntegerTy()) { 2643 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2644 Step = Builder.CreateVectorSplat(VLen, Step); 2645 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2646 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2647 // which can be found from the original scalar operations. 2648 Step = Builder.CreateMul(InitVec, Step); 2649 return Builder.CreateAdd(Val, Step, "induction"); 2650 } 2651 2652 // Floating point induction. 2653 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2654 "Binary Opcode should be specified for FP induction"); 2655 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2656 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2657 2658 Step = Builder.CreateVectorSplat(VLen, Step); 2659 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2660 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2661 } 2662 2663 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2664 Instruction *EntryVal, 2665 const InductionDescriptor &ID, 2666 VPValue *Def, VPValue *CastDef, 2667 VPTransformState &State) { 2668 // We shouldn't have to build scalar steps if we aren't vectorizing. 2669 assert(VF.isVector() && "VF should be greater than one"); 2670 // Get the value type and ensure it and the step have the same integer type. 2671 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2672 assert(ScalarIVTy == Step->getType() && 2673 "Val and Step should have the same type"); 2674 2675 // We build scalar steps for both integer and floating-point induction 2676 // variables. Here, we determine the kind of arithmetic we will perform. 2677 Instruction::BinaryOps AddOp; 2678 Instruction::BinaryOps MulOp; 2679 if (ScalarIVTy->isIntegerTy()) { 2680 AddOp = Instruction::Add; 2681 MulOp = Instruction::Mul; 2682 } else { 2683 AddOp = ID.getInductionOpcode(); 2684 MulOp = Instruction::FMul; 2685 } 2686 2687 // Determine the number of scalars we need to generate for each unroll 2688 // iteration. If EntryVal is uniform, we only need to generate the first 2689 // lane. Otherwise, we generate all VF values. 2690 bool IsUniform = 2691 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2692 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2693 // Compute the scalar steps and save the results in State. 2694 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2695 ScalarIVTy->getScalarSizeInBits()); 2696 Type *VecIVTy = nullptr; 2697 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2698 if (!IsUniform && VF.isScalable()) { 2699 VecIVTy = VectorType::get(ScalarIVTy, VF); 2700 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2701 SplatStep = Builder.CreateVectorSplat(VF, Step); 2702 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2703 } 2704 2705 for (unsigned Part = 0; Part < UF; ++Part) { 2706 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, VF, Part); 2707 2708 if (!IsUniform && VF.isScalable()) { 2709 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2710 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2711 if (ScalarIVTy->isFloatingPointTy()) 2712 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2713 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2714 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2715 State.set(Def, Add, Part); 2716 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2717 Part); 2718 // It's useful to record the lane values too for the known minimum number 2719 // of elements so we do those below. This improves the code quality when 2720 // trying to extract the first element, for example. 2721 } 2722 2723 if (ScalarIVTy->isFloatingPointTy()) 2724 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2725 2726 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2727 Value *StartIdx = Builder.CreateBinOp( 2728 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2729 // The step returned by `createStepForVF` is a runtime-evaluated value 2730 // when VF is scalable. Otherwise, it should be folded into a Constant. 2731 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2732 "Expected StartIdx to be folded to a constant when VF is not " 2733 "scalable"); 2734 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2735 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2736 State.set(Def, Add, VPIteration(Part, Lane)); 2737 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2738 Part, Lane); 2739 } 2740 } 2741 } 2742 2743 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2744 const VPIteration &Instance, 2745 VPTransformState &State) { 2746 Value *ScalarInst = State.get(Def, Instance); 2747 Value *VectorValue = State.get(Def, Instance.Part); 2748 VectorValue = Builder.CreateInsertElement( 2749 VectorValue, ScalarInst, 2750 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2751 State.set(Def, VectorValue, Instance.Part); 2752 } 2753 2754 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2755 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2756 return Builder.CreateVectorReverse(Vec, "reverse"); 2757 } 2758 2759 // Return whether we allow using masked interleave-groups (for dealing with 2760 // strided loads/stores that reside in predicated blocks, or for dealing 2761 // with gaps). 2762 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2763 // If an override option has been passed in for interleaved accesses, use it. 2764 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2765 return EnableMaskedInterleavedMemAccesses; 2766 2767 return TTI.enableMaskedInterleavedAccessVectorization(); 2768 } 2769 2770 // Try to vectorize the interleave group that \p Instr belongs to. 2771 // 2772 // E.g. Translate following interleaved load group (factor = 3): 2773 // for (i = 0; i < N; i+=3) { 2774 // R = Pic[i]; // Member of index 0 2775 // G = Pic[i+1]; // Member of index 1 2776 // B = Pic[i+2]; // Member of index 2 2777 // ... // do something to R, G, B 2778 // } 2779 // To: 2780 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2781 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2782 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2783 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2784 // 2785 // Or translate following interleaved store group (factor = 3): 2786 // for (i = 0; i < N; i+=3) { 2787 // ... do something to R, G, B 2788 // Pic[i] = R; // Member of index 0 2789 // Pic[i+1] = G; // Member of index 1 2790 // Pic[i+2] = B; // Member of index 2 2791 // } 2792 // To: 2793 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2794 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2795 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2796 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2797 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2798 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2799 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2800 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2801 VPValue *BlockInMask) { 2802 Instruction *Instr = Group->getInsertPos(); 2803 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2804 2805 // Prepare for the vector type of the interleaved load/store. 2806 Type *ScalarTy = getLoadStoreType(Instr); 2807 unsigned InterleaveFactor = Group->getFactor(); 2808 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2809 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2810 2811 // Prepare for the new pointers. 2812 SmallVector<Value *, 2> AddrParts; 2813 unsigned Index = Group->getIndex(Instr); 2814 2815 // TODO: extend the masked interleaved-group support to reversed access. 2816 assert((!BlockInMask || !Group->isReverse()) && 2817 "Reversed masked interleave-group not supported."); 2818 2819 // If the group is reverse, adjust the index to refer to the last vector lane 2820 // instead of the first. We adjust the index from the first vector lane, 2821 // rather than directly getting the pointer for lane VF - 1, because the 2822 // pointer operand of the interleaved access is supposed to be uniform. For 2823 // uniform instructions, we're only required to generate a value for the 2824 // first vector lane in each unroll iteration. 2825 if (Group->isReverse()) 2826 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2827 2828 for (unsigned Part = 0; Part < UF; Part++) { 2829 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2830 setDebugLocFromInst(AddrPart); 2831 2832 // Notice current instruction could be any index. Need to adjust the address 2833 // to the member of index 0. 2834 // 2835 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2836 // b = A[i]; // Member of index 0 2837 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2838 // 2839 // E.g. A[i+1] = a; // Member of index 1 2840 // A[i] = b; // Member of index 0 2841 // A[i+2] = c; // Member of index 2 (Current instruction) 2842 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2843 2844 bool InBounds = false; 2845 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2846 InBounds = gep->isInBounds(); 2847 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2848 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2849 2850 // Cast to the vector pointer type. 2851 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2852 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2853 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2854 } 2855 2856 setDebugLocFromInst(Instr); 2857 Value *PoisonVec = PoisonValue::get(VecTy); 2858 2859 Value *MaskForGaps = nullptr; 2860 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2861 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2862 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2863 } 2864 2865 // Vectorize the interleaved load group. 2866 if (isa<LoadInst>(Instr)) { 2867 // For each unroll part, create a wide load for the group. 2868 SmallVector<Value *, 2> NewLoads; 2869 for (unsigned Part = 0; Part < UF; Part++) { 2870 Instruction *NewLoad; 2871 if (BlockInMask || MaskForGaps) { 2872 assert(useMaskedInterleavedAccesses(*TTI) && 2873 "masked interleaved groups are not allowed."); 2874 Value *GroupMask = MaskForGaps; 2875 if (BlockInMask) { 2876 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2877 Value *ShuffledMask = Builder.CreateShuffleVector( 2878 BlockInMaskPart, 2879 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2880 "interleaved.mask"); 2881 GroupMask = MaskForGaps 2882 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2883 MaskForGaps) 2884 : ShuffledMask; 2885 } 2886 NewLoad = 2887 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2888 GroupMask, PoisonVec, "wide.masked.vec"); 2889 } 2890 else 2891 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2892 Group->getAlign(), "wide.vec"); 2893 Group->addMetadata(NewLoad); 2894 NewLoads.push_back(NewLoad); 2895 } 2896 2897 // For each member in the group, shuffle out the appropriate data from the 2898 // wide loads. 2899 unsigned J = 0; 2900 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2901 Instruction *Member = Group->getMember(I); 2902 2903 // Skip the gaps in the group. 2904 if (!Member) 2905 continue; 2906 2907 auto StrideMask = 2908 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2909 for (unsigned Part = 0; Part < UF; Part++) { 2910 Value *StridedVec = Builder.CreateShuffleVector( 2911 NewLoads[Part], StrideMask, "strided.vec"); 2912 2913 // If this member has different type, cast the result type. 2914 if (Member->getType() != ScalarTy) { 2915 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2916 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2917 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2918 } 2919 2920 if (Group->isReverse()) 2921 StridedVec = reverseVector(StridedVec); 2922 2923 State.set(VPDefs[J], StridedVec, Part); 2924 } 2925 ++J; 2926 } 2927 return; 2928 } 2929 2930 // The sub vector type for current instruction. 2931 auto *SubVT = VectorType::get(ScalarTy, VF); 2932 2933 // Vectorize the interleaved store group. 2934 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2935 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2936 "masked interleaved groups are not allowed."); 2937 assert((!MaskForGaps || !VF.isScalable()) && 2938 "masking gaps for scalable vectors is not yet supported."); 2939 for (unsigned Part = 0; Part < UF; Part++) { 2940 // Collect the stored vector from each member. 2941 SmallVector<Value *, 4> StoredVecs; 2942 for (unsigned i = 0; i < InterleaveFactor; i++) { 2943 assert((Group->getMember(i) || MaskForGaps) && 2944 "Fail to get a member from an interleaved store group"); 2945 Instruction *Member = Group->getMember(i); 2946 2947 // Skip the gaps in the group. 2948 if (!Member) { 2949 Value *Undef = PoisonValue::get(SubVT); 2950 StoredVecs.push_back(Undef); 2951 continue; 2952 } 2953 2954 Value *StoredVec = State.get(StoredValues[i], Part); 2955 2956 if (Group->isReverse()) 2957 StoredVec = reverseVector(StoredVec); 2958 2959 // If this member has different type, cast it to a unified type. 2960 2961 if (StoredVec->getType() != SubVT) 2962 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2963 2964 StoredVecs.push_back(StoredVec); 2965 } 2966 2967 // Concatenate all vectors into a wide vector. 2968 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2969 2970 // Interleave the elements in the wide vector. 2971 Value *IVec = Builder.CreateShuffleVector( 2972 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2973 "interleaved.vec"); 2974 2975 Instruction *NewStoreInstr; 2976 if (BlockInMask || MaskForGaps) { 2977 Value *GroupMask = MaskForGaps; 2978 if (BlockInMask) { 2979 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2980 Value *ShuffledMask = Builder.CreateShuffleVector( 2981 BlockInMaskPart, 2982 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2983 "interleaved.mask"); 2984 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2985 ShuffledMask, MaskForGaps) 2986 : ShuffledMask; 2987 } 2988 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2989 Group->getAlign(), GroupMask); 2990 } else 2991 NewStoreInstr = 2992 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2993 2994 Group->addMetadata(NewStoreInstr); 2995 } 2996 } 2997 2998 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2999 VPReplicateRecipe *RepRecipe, 3000 const VPIteration &Instance, 3001 bool IfPredicateInstr, 3002 VPTransformState &State) { 3003 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3004 3005 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3006 // the first lane and part. 3007 if (isa<NoAliasScopeDeclInst>(Instr)) 3008 if (!Instance.isFirstIteration()) 3009 return; 3010 3011 setDebugLocFromInst(Instr); 3012 3013 // Does this instruction return a value ? 3014 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3015 3016 Instruction *Cloned = Instr->clone(); 3017 if (!IsVoidRetTy) 3018 Cloned->setName(Instr->getName() + ".cloned"); 3019 3020 // If the scalarized instruction contributes to the address computation of a 3021 // widen masked load/store which was in a basic block that needed predication 3022 // and is not predicated after vectorization, we can't propagate 3023 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 3024 // instruction could feed a poison value to the base address of the widen 3025 // load/store. 3026 if (State.MayGeneratePoisonRecipes.count(RepRecipe) > 0) 3027 Cloned->dropPoisonGeneratingFlags(); 3028 3029 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3030 Builder.GetInsertPoint()); 3031 // Replace the operands of the cloned instructions with their scalar 3032 // equivalents in the new loop. 3033 for (auto &I : enumerate(RepRecipe->operands())) { 3034 auto InputInstance = Instance; 3035 VPValue *Operand = I.value(); 3036 if (State.Plan->isUniformAfterVectorization(Operand)) 3037 InputInstance.Lane = VPLane::getFirstLane(); 3038 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 3039 } 3040 addNewMetadata(Cloned, Instr); 3041 3042 // Place the cloned scalar in the new loop. 3043 Builder.Insert(Cloned); 3044 3045 State.set(RepRecipe, Cloned, Instance); 3046 3047 // If we just cloned a new assumption, add it the assumption cache. 3048 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3049 AC->registerAssumption(II); 3050 3051 // End if-block. 3052 if (IfPredicateInstr) 3053 PredicatedInstructions.push_back(Cloned); 3054 } 3055 3056 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3057 Value *End, Value *Step, 3058 Instruction *DL) { 3059 BasicBlock *Header = L->getHeader(); 3060 BasicBlock *Latch = L->getLoopLatch(); 3061 // As we're just creating this loop, it's possible no latch exists 3062 // yet. If so, use the header as this will be a single block loop. 3063 if (!Latch) 3064 Latch = Header; 3065 3066 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3067 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3068 setDebugLocFromInst(OldInst, &B); 3069 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3070 3071 B.SetInsertPoint(Latch->getTerminator()); 3072 setDebugLocFromInst(OldInst, &B); 3073 3074 // Create i+1 and fill the PHINode. 3075 // 3076 // If the tail is not folded, we know that End - Start >= Step (either 3077 // statically or through the minimum iteration checks). We also know that both 3078 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3079 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3080 // overflows and we can mark the induction increment as NUW. 3081 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3082 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3083 Induction->addIncoming(Start, L->getLoopPreheader()); 3084 Induction->addIncoming(Next, Latch); 3085 // Create the compare. 3086 Value *ICmp = B.CreateICmpEQ(Next, End); 3087 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3088 3089 // Now we have two terminators. Remove the old one from the block. 3090 Latch->getTerminator()->eraseFromParent(); 3091 3092 return Induction; 3093 } 3094 3095 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3096 if (TripCount) 3097 return TripCount; 3098 3099 assert(L && "Create Trip Count for null loop."); 3100 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3101 // Find the loop boundaries. 3102 ScalarEvolution *SE = PSE.getSE(); 3103 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3104 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3105 "Invalid loop count"); 3106 3107 Type *IdxTy = Legal->getWidestInductionType(); 3108 assert(IdxTy && "No type for induction"); 3109 3110 // The exit count might have the type of i64 while the phi is i32. This can 3111 // happen if we have an induction variable that is sign extended before the 3112 // compare. The only way that we get a backedge taken count is that the 3113 // induction variable was signed and as such will not overflow. In such a case 3114 // truncation is legal. 3115 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3116 IdxTy->getPrimitiveSizeInBits()) 3117 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3118 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3119 3120 // Get the total trip count from the count by adding 1. 3121 const SCEV *ExitCount = SE->getAddExpr( 3122 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3123 3124 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3125 3126 // Expand the trip count and place the new instructions in the preheader. 3127 // Notice that the pre-header does not change, only the loop body. 3128 SCEVExpander Exp(*SE, DL, "induction"); 3129 3130 // Count holds the overall loop count (N). 3131 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3132 L->getLoopPreheader()->getTerminator()); 3133 3134 if (TripCount->getType()->isPointerTy()) 3135 TripCount = 3136 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3137 L->getLoopPreheader()->getTerminator()); 3138 3139 return TripCount; 3140 } 3141 3142 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3143 if (VectorTripCount) 3144 return VectorTripCount; 3145 3146 Value *TC = getOrCreateTripCount(L); 3147 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3148 3149 Type *Ty = TC->getType(); 3150 // This is where we can make the step a runtime constant. 3151 Value *Step = createStepForVF(Builder, Ty, VF, UF); 3152 3153 // If the tail is to be folded by masking, round the number of iterations N 3154 // up to a multiple of Step instead of rounding down. This is done by first 3155 // adding Step-1 and then rounding down. Note that it's ok if this addition 3156 // overflows: the vector induction variable will eventually wrap to zero given 3157 // that it starts at zero and its Step is a power of two; the loop will then 3158 // exit, with the last early-exit vector comparison also producing all-true. 3159 if (Cost->foldTailByMasking()) { 3160 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3161 "VF*UF must be a power of 2 when folding tail by masking"); 3162 assert(!VF.isScalable() && 3163 "Tail folding not yet supported for scalable vectors"); 3164 TC = Builder.CreateAdd( 3165 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3166 } 3167 3168 // Now we need to generate the expression for the part of the loop that the 3169 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3170 // iterations are not required for correctness, or N - Step, otherwise. Step 3171 // is equal to the vectorization factor (number of SIMD elements) times the 3172 // unroll factor (number of SIMD instructions). 3173 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3174 3175 // There are cases where we *must* run at least one iteration in the remainder 3176 // loop. See the cost model for when this can happen. If the step evenly 3177 // divides the trip count, we set the remainder to be equal to the step. If 3178 // the step does not evenly divide the trip count, no adjustment is necessary 3179 // since there will already be scalar iterations. Note that the minimum 3180 // iterations check ensures that N >= Step. 3181 if (Cost->requiresScalarEpilogue(VF)) { 3182 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3183 R = Builder.CreateSelect(IsZero, Step, R); 3184 } 3185 3186 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3187 3188 return VectorTripCount; 3189 } 3190 3191 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3192 const DataLayout &DL) { 3193 // Verify that V is a vector type with same number of elements as DstVTy. 3194 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3195 unsigned VF = DstFVTy->getNumElements(); 3196 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3197 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3198 Type *SrcElemTy = SrcVecTy->getElementType(); 3199 Type *DstElemTy = DstFVTy->getElementType(); 3200 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3201 "Vector elements must have same size"); 3202 3203 // Do a direct cast if element types are castable. 3204 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3205 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3206 } 3207 // V cannot be directly casted to desired vector type. 3208 // May happen when V is a floating point vector but DstVTy is a vector of 3209 // pointers or vice-versa. Handle this using a two-step bitcast using an 3210 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3211 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3212 "Only one type should be a pointer type"); 3213 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3214 "Only one type should be a floating point type"); 3215 Type *IntTy = 3216 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3217 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3218 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3219 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3220 } 3221 3222 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3223 BasicBlock *Bypass) { 3224 Value *Count = getOrCreateTripCount(L); 3225 // Reuse existing vector loop preheader for TC checks. 3226 // Note that new preheader block is generated for vector loop. 3227 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3228 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3229 3230 // Generate code to check if the loop's trip count is less than VF * UF, or 3231 // equal to it in case a scalar epilogue is required; this implies that the 3232 // vector trip count is zero. This check also covers the case where adding one 3233 // to the backedge-taken count overflowed leading to an incorrect trip count 3234 // of zero. In this case we will also jump to the scalar loop. 3235 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3236 : ICmpInst::ICMP_ULT; 3237 3238 // If tail is to be folded, vector loop takes care of all iterations. 3239 Value *CheckMinIters = Builder.getFalse(); 3240 if (!Cost->foldTailByMasking()) { 3241 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3242 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3243 } 3244 // Create new preheader for vector loop. 3245 LoopVectorPreHeader = 3246 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3247 "vector.ph"); 3248 3249 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3250 DT->getNode(Bypass)->getIDom()) && 3251 "TC check is expected to dominate Bypass"); 3252 3253 // Update dominator for Bypass & LoopExit (if needed). 3254 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3255 if (!Cost->requiresScalarEpilogue(VF)) 3256 // If there is an epilogue which must run, there's no edge from the 3257 // middle block to exit blocks and thus no need to update the immediate 3258 // dominator of the exit blocks. 3259 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3260 3261 ReplaceInstWithInst( 3262 TCCheckBlock->getTerminator(), 3263 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3264 LoopBypassBlocks.push_back(TCCheckBlock); 3265 } 3266 3267 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3268 3269 BasicBlock *const SCEVCheckBlock = 3270 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3271 if (!SCEVCheckBlock) 3272 return nullptr; 3273 3274 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3275 (OptForSizeBasedOnProfile && 3276 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3277 "Cannot SCEV check stride or overflow when optimizing for size"); 3278 3279 3280 // Update dominator only if this is first RT check. 3281 if (LoopBypassBlocks.empty()) { 3282 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3283 if (!Cost->requiresScalarEpilogue(VF)) 3284 // If there is an epilogue which must run, there's no edge from the 3285 // middle block to exit blocks and thus no need to update the immediate 3286 // dominator of the exit blocks. 3287 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3288 } 3289 3290 LoopBypassBlocks.push_back(SCEVCheckBlock); 3291 AddedSafetyChecks = true; 3292 return SCEVCheckBlock; 3293 } 3294 3295 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3296 BasicBlock *Bypass) { 3297 // VPlan-native path does not do any analysis for runtime checks currently. 3298 if (EnableVPlanNativePath) 3299 return nullptr; 3300 3301 BasicBlock *const MemCheckBlock = 3302 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3303 3304 // Check if we generated code that checks in runtime if arrays overlap. We put 3305 // the checks into a separate block to make the more common case of few 3306 // elements faster. 3307 if (!MemCheckBlock) 3308 return nullptr; 3309 3310 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3311 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3312 "Cannot emit memory checks when optimizing for size, unless forced " 3313 "to vectorize."); 3314 ORE->emit([&]() { 3315 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3316 L->getStartLoc(), L->getHeader()) 3317 << "Code-size may be reduced by not forcing " 3318 "vectorization, or by source-code modifications " 3319 "eliminating the need for runtime checks " 3320 "(e.g., adding 'restrict')."; 3321 }); 3322 } 3323 3324 LoopBypassBlocks.push_back(MemCheckBlock); 3325 3326 AddedSafetyChecks = true; 3327 3328 // We currently don't use LoopVersioning for the actual loop cloning but we 3329 // still use it to add the noalias metadata. 3330 LVer = std::make_unique<LoopVersioning>( 3331 *Legal->getLAI(), 3332 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3333 DT, PSE.getSE()); 3334 LVer->prepareNoAliasMetadata(); 3335 return MemCheckBlock; 3336 } 3337 3338 Value *InnerLoopVectorizer::emitTransformedIndex( 3339 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3340 const InductionDescriptor &ID) const { 3341 3342 SCEVExpander Exp(*SE, DL, "induction"); 3343 auto Step = ID.getStep(); 3344 auto StartValue = ID.getStartValue(); 3345 assert(Index->getType()->getScalarType() == Step->getType() && 3346 "Index scalar type does not match StepValue type"); 3347 3348 // Note: the IR at this point is broken. We cannot use SE to create any new 3349 // SCEV and then expand it, hoping that SCEV's simplification will give us 3350 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3351 // lead to various SCEV crashes. So all we can do is to use builder and rely 3352 // on InstCombine for future simplifications. Here we handle some trivial 3353 // cases only. 3354 auto CreateAdd = [&B](Value *X, Value *Y) { 3355 assert(X->getType() == Y->getType() && "Types don't match!"); 3356 if (auto *CX = dyn_cast<ConstantInt>(X)) 3357 if (CX->isZero()) 3358 return Y; 3359 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3360 if (CY->isZero()) 3361 return X; 3362 return B.CreateAdd(X, Y); 3363 }; 3364 3365 // We allow X to be a vector type, in which case Y will potentially be 3366 // splatted into a vector with the same element count. 3367 auto CreateMul = [&B](Value *X, Value *Y) { 3368 assert(X->getType()->getScalarType() == Y->getType() && 3369 "Types don't match!"); 3370 if (auto *CX = dyn_cast<ConstantInt>(X)) 3371 if (CX->isOne()) 3372 return Y; 3373 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3374 if (CY->isOne()) 3375 return X; 3376 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3377 if (XVTy && !isa<VectorType>(Y->getType())) 3378 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3379 return B.CreateMul(X, Y); 3380 }; 3381 3382 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3383 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3384 // the DomTree is not kept up-to-date for additional blocks generated in the 3385 // vector loop. By using the header as insertion point, we guarantee that the 3386 // expanded instructions dominate all their uses. 3387 auto GetInsertPoint = [this, &B]() { 3388 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3389 if (InsertBB != LoopVectorBody && 3390 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3391 return LoopVectorBody->getTerminator(); 3392 return &*B.GetInsertPoint(); 3393 }; 3394 3395 switch (ID.getKind()) { 3396 case InductionDescriptor::IK_IntInduction: { 3397 assert(!isa<VectorType>(Index->getType()) && 3398 "Vector indices not supported for integer inductions yet"); 3399 assert(Index->getType() == StartValue->getType() && 3400 "Index type does not match StartValue type"); 3401 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3402 return B.CreateSub(StartValue, Index); 3403 auto *Offset = CreateMul( 3404 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3405 return CreateAdd(StartValue, Offset); 3406 } 3407 case InductionDescriptor::IK_PtrInduction: { 3408 assert(isa<SCEVConstant>(Step) && 3409 "Expected constant step for pointer induction"); 3410 return B.CreateGEP( 3411 ID.getElementType(), StartValue, 3412 CreateMul(Index, 3413 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3414 GetInsertPoint()))); 3415 } 3416 case InductionDescriptor::IK_FpInduction: { 3417 assert(!isa<VectorType>(Index->getType()) && 3418 "Vector indices not supported for FP inductions yet"); 3419 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3420 auto InductionBinOp = ID.getInductionBinOp(); 3421 assert(InductionBinOp && 3422 (InductionBinOp->getOpcode() == Instruction::FAdd || 3423 InductionBinOp->getOpcode() == Instruction::FSub) && 3424 "Original bin op should be defined for FP induction"); 3425 3426 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3427 Value *MulExp = B.CreateFMul(StepValue, Index); 3428 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3429 "induction"); 3430 } 3431 case InductionDescriptor::IK_NoInduction: 3432 return nullptr; 3433 } 3434 llvm_unreachable("invalid enum"); 3435 } 3436 3437 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3438 LoopScalarBody = OrigLoop->getHeader(); 3439 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3440 assert(LoopVectorPreHeader && "Invalid loop structure"); 3441 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3442 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3443 "multiple exit loop without required epilogue?"); 3444 3445 LoopMiddleBlock = 3446 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3447 LI, nullptr, Twine(Prefix) + "middle.block"); 3448 LoopScalarPreHeader = 3449 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3450 nullptr, Twine(Prefix) + "scalar.ph"); 3451 3452 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3453 3454 // Set up the middle block terminator. Two cases: 3455 // 1) If we know that we must execute the scalar epilogue, emit an 3456 // unconditional branch. 3457 // 2) Otherwise, we must have a single unique exit block (due to how we 3458 // implement the multiple exit case). In this case, set up a conditonal 3459 // branch from the middle block to the loop scalar preheader, and the 3460 // exit block. completeLoopSkeleton will update the condition to use an 3461 // iteration check, if required to decide whether to execute the remainder. 3462 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3463 BranchInst::Create(LoopScalarPreHeader) : 3464 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3465 Builder.getTrue()); 3466 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3467 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3468 3469 // We intentionally don't let SplitBlock to update LoopInfo since 3470 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3471 // LoopVectorBody is explicitly added to the correct place few lines later. 3472 LoopVectorBody = 3473 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3474 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3475 3476 // Update dominator for loop exit. 3477 if (!Cost->requiresScalarEpilogue(VF)) 3478 // If there is an epilogue which must run, there's no edge from the 3479 // middle block to exit blocks and thus no need to update the immediate 3480 // dominator of the exit blocks. 3481 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3482 3483 // Create and register the new vector loop. 3484 Loop *Lp = LI->AllocateLoop(); 3485 Loop *ParentLoop = OrigLoop->getParentLoop(); 3486 3487 // Insert the new loop into the loop nest and register the new basic blocks 3488 // before calling any utilities such as SCEV that require valid LoopInfo. 3489 if (ParentLoop) { 3490 ParentLoop->addChildLoop(Lp); 3491 } else { 3492 LI->addTopLevelLoop(Lp); 3493 } 3494 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3495 return Lp; 3496 } 3497 3498 void InnerLoopVectorizer::createInductionResumeValues( 3499 Loop *L, Value *VectorTripCount, 3500 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3501 assert(VectorTripCount && L && "Expected valid arguments"); 3502 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3503 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3504 "Inconsistent information about additional bypass."); 3505 // We are going to resume the execution of the scalar loop. 3506 // Go over all of the induction variables that we found and fix the 3507 // PHIs that are left in the scalar version of the loop. 3508 // The starting values of PHI nodes depend on the counter of the last 3509 // iteration in the vectorized loop. 3510 // If we come from a bypass edge then we need to start from the original 3511 // start value. 3512 for (auto &InductionEntry : Legal->getInductionVars()) { 3513 PHINode *OrigPhi = InductionEntry.first; 3514 InductionDescriptor II = InductionEntry.second; 3515 3516 // Create phi nodes to merge from the backedge-taken check block. 3517 PHINode *BCResumeVal = 3518 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3519 LoopScalarPreHeader->getTerminator()); 3520 // Copy original phi DL over to the new one. 3521 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3522 Value *&EndValue = IVEndValues[OrigPhi]; 3523 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3524 if (OrigPhi == OldInduction) { 3525 // We know what the end value is. 3526 EndValue = VectorTripCount; 3527 } else { 3528 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3529 3530 // Fast-math-flags propagate from the original induction instruction. 3531 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3532 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3533 3534 Type *StepType = II.getStep()->getType(); 3535 Instruction::CastOps CastOp = 3536 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3537 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3538 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3539 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3540 EndValue->setName("ind.end"); 3541 3542 // Compute the end value for the additional bypass (if applicable). 3543 if (AdditionalBypass.first) { 3544 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3545 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3546 StepType, true); 3547 CRD = 3548 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3549 EndValueFromAdditionalBypass = 3550 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3551 EndValueFromAdditionalBypass->setName("ind.end"); 3552 } 3553 } 3554 // The new PHI merges the original incoming value, in case of a bypass, 3555 // or the value at the end of the vectorized loop. 3556 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3557 3558 // Fix the scalar body counter (PHI node). 3559 // The old induction's phi node in the scalar body needs the truncated 3560 // value. 3561 for (BasicBlock *BB : LoopBypassBlocks) 3562 BCResumeVal->addIncoming(II.getStartValue(), BB); 3563 3564 if (AdditionalBypass.first) 3565 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3566 EndValueFromAdditionalBypass); 3567 3568 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3569 } 3570 } 3571 3572 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3573 MDNode *OrigLoopID) { 3574 assert(L && "Expected valid loop."); 3575 3576 // The trip counts should be cached by now. 3577 Value *Count = getOrCreateTripCount(L); 3578 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3579 3580 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3581 3582 // Add a check in the middle block to see if we have completed 3583 // all of the iterations in the first vector loop. Three cases: 3584 // 1) If we require a scalar epilogue, there is no conditional branch as 3585 // we unconditionally branch to the scalar preheader. Do nothing. 3586 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3587 // Thus if tail is to be folded, we know we don't need to run the 3588 // remainder and we can use the previous value for the condition (true). 3589 // 3) Otherwise, construct a runtime check. 3590 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3591 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3592 Count, VectorTripCount, "cmp.n", 3593 LoopMiddleBlock->getTerminator()); 3594 3595 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3596 // of the corresponding compare because they may have ended up with 3597 // different line numbers and we want to avoid awkward line stepping while 3598 // debugging. Eg. if the compare has got a line number inside the loop. 3599 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3600 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3601 } 3602 3603 // Get ready to start creating new instructions into the vectorized body. 3604 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3605 "Inconsistent vector loop preheader"); 3606 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3607 3608 Optional<MDNode *> VectorizedLoopID = 3609 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3610 LLVMLoopVectorizeFollowupVectorized}); 3611 if (VectorizedLoopID.hasValue()) { 3612 L->setLoopID(VectorizedLoopID.getValue()); 3613 3614 // Do not setAlreadyVectorized if loop attributes have been defined 3615 // explicitly. 3616 return LoopVectorPreHeader; 3617 } 3618 3619 // Keep all loop hints from the original loop on the vector loop (we'll 3620 // replace the vectorizer-specific hints below). 3621 if (MDNode *LID = OrigLoop->getLoopID()) 3622 L->setLoopID(LID); 3623 3624 LoopVectorizeHints Hints(L, true, *ORE); 3625 Hints.setAlreadyVectorized(); 3626 3627 #ifdef EXPENSIVE_CHECKS 3628 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3629 LI->verify(*DT); 3630 #endif 3631 3632 return LoopVectorPreHeader; 3633 } 3634 3635 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3636 /* 3637 In this function we generate a new loop. The new loop will contain 3638 the vectorized instructions while the old loop will continue to run the 3639 scalar remainder. 3640 3641 [ ] <-- loop iteration number check. 3642 / | 3643 / v 3644 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3645 | / | 3646 | / v 3647 || [ ] <-- vector pre header. 3648 |/ | 3649 | v 3650 | [ ] \ 3651 | [ ]_| <-- vector loop. 3652 | | 3653 | v 3654 \ -[ ] <--- middle-block. 3655 \/ | 3656 /\ v 3657 | ->[ ] <--- new preheader. 3658 | | 3659 (opt) v <-- edge from middle to exit iff epilogue is not required. 3660 | [ ] \ 3661 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3662 \ | 3663 \ v 3664 >[ ] <-- exit block(s). 3665 ... 3666 */ 3667 3668 // Get the metadata of the original loop before it gets modified. 3669 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3670 3671 // Workaround! Compute the trip count of the original loop and cache it 3672 // before we start modifying the CFG. This code has a systemic problem 3673 // wherein it tries to run analysis over partially constructed IR; this is 3674 // wrong, and not simply for SCEV. The trip count of the original loop 3675 // simply happens to be prone to hitting this in practice. In theory, we 3676 // can hit the same issue for any SCEV, or ValueTracking query done during 3677 // mutation. See PR49900. 3678 getOrCreateTripCount(OrigLoop); 3679 3680 // Create an empty vector loop, and prepare basic blocks for the runtime 3681 // checks. 3682 Loop *Lp = createVectorLoopSkeleton(""); 3683 3684 // Now, compare the new count to zero. If it is zero skip the vector loop and 3685 // jump to the scalar loop. This check also covers the case where the 3686 // backedge-taken count is uint##_max: adding one to it will overflow leading 3687 // to an incorrect trip count of zero. In this (rare) case we will also jump 3688 // to the scalar loop. 3689 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3690 3691 // Generate the code to check any assumptions that we've made for SCEV 3692 // expressions. 3693 emitSCEVChecks(Lp, LoopScalarPreHeader); 3694 3695 // Generate the code that checks in runtime if arrays overlap. We put the 3696 // checks into a separate block to make the more common case of few elements 3697 // faster. 3698 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3699 3700 // Some loops have a single integer induction variable, while other loops 3701 // don't. One example is c++ iterators that often have multiple pointer 3702 // induction variables. In the code below we also support a case where we 3703 // don't have a single induction variable. 3704 // 3705 // We try to obtain an induction variable from the original loop as hard 3706 // as possible. However if we don't find one that: 3707 // - is an integer 3708 // - counts from zero, stepping by one 3709 // - is the size of the widest induction variable type 3710 // then we create a new one. 3711 OldInduction = Legal->getPrimaryInduction(); 3712 Type *IdxTy = Legal->getWidestInductionType(); 3713 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3714 // The loop step is equal to the vectorization factor (num of SIMD elements) 3715 // times the unroll factor (num of SIMD instructions). 3716 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3717 Value *Step = createStepForVF(Builder, IdxTy, VF, UF); 3718 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3719 Induction = 3720 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3721 getDebugLocFromInstOrOperands(OldInduction)); 3722 3723 // Emit phis for the new starting index of the scalar loop. 3724 createInductionResumeValues(Lp, CountRoundDown); 3725 3726 return completeLoopSkeleton(Lp, OrigLoopID); 3727 } 3728 3729 // Fix up external users of the induction variable. At this point, we are 3730 // in LCSSA form, with all external PHIs that use the IV having one input value, 3731 // coming from the remainder loop. We need those PHIs to also have a correct 3732 // value for the IV when arriving directly from the middle block. 3733 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3734 const InductionDescriptor &II, 3735 Value *CountRoundDown, Value *EndValue, 3736 BasicBlock *MiddleBlock) { 3737 // There are two kinds of external IV usages - those that use the value 3738 // computed in the last iteration (the PHI) and those that use the penultimate 3739 // value (the value that feeds into the phi from the loop latch). 3740 // We allow both, but they, obviously, have different values. 3741 3742 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3743 3744 DenseMap<Value *, Value *> MissingVals; 3745 3746 // An external user of the last iteration's value should see the value that 3747 // the remainder loop uses to initialize its own IV. 3748 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3749 for (User *U : PostInc->users()) { 3750 Instruction *UI = cast<Instruction>(U); 3751 if (!OrigLoop->contains(UI)) { 3752 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3753 MissingVals[UI] = EndValue; 3754 } 3755 } 3756 3757 // An external user of the penultimate value need to see EndValue - Step. 3758 // The simplest way to get this is to recompute it from the constituent SCEVs, 3759 // that is Start + (Step * (CRD - 1)). 3760 for (User *U : OrigPhi->users()) { 3761 auto *UI = cast<Instruction>(U); 3762 if (!OrigLoop->contains(UI)) { 3763 const DataLayout &DL = 3764 OrigLoop->getHeader()->getModule()->getDataLayout(); 3765 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3766 3767 IRBuilder<> B(MiddleBlock->getTerminator()); 3768 3769 // Fast-math-flags propagate from the original induction instruction. 3770 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3771 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3772 3773 Value *CountMinusOne = B.CreateSub( 3774 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3775 Value *CMO = 3776 !II.getStep()->getType()->isIntegerTy() 3777 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3778 II.getStep()->getType()) 3779 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3780 CMO->setName("cast.cmo"); 3781 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3782 Escape->setName("ind.escape"); 3783 MissingVals[UI] = Escape; 3784 } 3785 } 3786 3787 for (auto &I : MissingVals) { 3788 PHINode *PHI = cast<PHINode>(I.first); 3789 // One corner case we have to handle is two IVs "chasing" each-other, 3790 // that is %IV2 = phi [...], [ %IV1, %latch ] 3791 // In this case, if IV1 has an external use, we need to avoid adding both 3792 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3793 // don't already have an incoming value for the middle block. 3794 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3795 PHI->addIncoming(I.second, MiddleBlock); 3796 } 3797 } 3798 3799 namespace { 3800 3801 struct CSEDenseMapInfo { 3802 static bool canHandle(const Instruction *I) { 3803 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3804 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3805 } 3806 3807 static inline Instruction *getEmptyKey() { 3808 return DenseMapInfo<Instruction *>::getEmptyKey(); 3809 } 3810 3811 static inline Instruction *getTombstoneKey() { 3812 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3813 } 3814 3815 static unsigned getHashValue(const Instruction *I) { 3816 assert(canHandle(I) && "Unknown instruction!"); 3817 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3818 I->value_op_end())); 3819 } 3820 3821 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3822 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3823 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3824 return LHS == RHS; 3825 return LHS->isIdenticalTo(RHS); 3826 } 3827 }; 3828 3829 } // end anonymous namespace 3830 3831 ///Perform cse of induction variable instructions. 3832 static void cse(BasicBlock *BB) { 3833 // Perform simple cse. 3834 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3835 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3836 if (!CSEDenseMapInfo::canHandle(&In)) 3837 continue; 3838 3839 // Check if we can replace this instruction with any of the 3840 // visited instructions. 3841 if (Instruction *V = CSEMap.lookup(&In)) { 3842 In.replaceAllUsesWith(V); 3843 In.eraseFromParent(); 3844 continue; 3845 } 3846 3847 CSEMap[&In] = &In; 3848 } 3849 } 3850 3851 InstructionCost 3852 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3853 bool &NeedToScalarize) const { 3854 Function *F = CI->getCalledFunction(); 3855 Type *ScalarRetTy = CI->getType(); 3856 SmallVector<Type *, 4> Tys, ScalarTys; 3857 for (auto &ArgOp : CI->args()) 3858 ScalarTys.push_back(ArgOp->getType()); 3859 3860 // Estimate cost of scalarized vector call. The source operands are assumed 3861 // to be vectors, so we need to extract individual elements from there, 3862 // execute VF scalar calls, and then gather the result into the vector return 3863 // value. 3864 InstructionCost ScalarCallCost = 3865 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3866 if (VF.isScalar()) 3867 return ScalarCallCost; 3868 3869 // Compute corresponding vector type for return value and arguments. 3870 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3871 for (Type *ScalarTy : ScalarTys) 3872 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3873 3874 // Compute costs of unpacking argument values for the scalar calls and 3875 // packing the return values to a vector. 3876 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3877 3878 InstructionCost Cost = 3879 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3880 3881 // If we can't emit a vector call for this function, then the currently found 3882 // cost is the cost we need to return. 3883 NeedToScalarize = true; 3884 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3885 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3886 3887 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3888 return Cost; 3889 3890 // If the corresponding vector cost is cheaper, return its cost. 3891 InstructionCost VectorCallCost = 3892 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3893 if (VectorCallCost < Cost) { 3894 NeedToScalarize = false; 3895 Cost = VectorCallCost; 3896 } 3897 return Cost; 3898 } 3899 3900 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3901 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3902 return Elt; 3903 return VectorType::get(Elt, VF); 3904 } 3905 3906 InstructionCost 3907 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3908 ElementCount VF) const { 3909 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3910 assert(ID && "Expected intrinsic call!"); 3911 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3912 FastMathFlags FMF; 3913 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3914 FMF = FPMO->getFastMathFlags(); 3915 3916 SmallVector<const Value *> Arguments(CI->args()); 3917 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3918 SmallVector<Type *> ParamTys; 3919 std::transform(FTy->param_begin(), FTy->param_end(), 3920 std::back_inserter(ParamTys), 3921 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3922 3923 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3924 dyn_cast<IntrinsicInst>(CI)); 3925 return TTI.getIntrinsicInstrCost(CostAttrs, 3926 TargetTransformInfo::TCK_RecipThroughput); 3927 } 3928 3929 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3930 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3931 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3932 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3933 } 3934 3935 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3936 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3937 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3938 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3939 } 3940 3941 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3942 // For every instruction `I` in MinBWs, truncate the operands, create a 3943 // truncated version of `I` and reextend its result. InstCombine runs 3944 // later and will remove any ext/trunc pairs. 3945 SmallPtrSet<Value *, 4> Erased; 3946 for (const auto &KV : Cost->getMinimalBitwidths()) { 3947 // If the value wasn't vectorized, we must maintain the original scalar 3948 // type. The absence of the value from State indicates that it 3949 // wasn't vectorized. 3950 // FIXME: Should not rely on getVPValue at this point. 3951 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3952 if (!State.hasAnyVectorValue(Def)) 3953 continue; 3954 for (unsigned Part = 0; Part < UF; ++Part) { 3955 Value *I = State.get(Def, Part); 3956 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3957 continue; 3958 Type *OriginalTy = I->getType(); 3959 Type *ScalarTruncatedTy = 3960 IntegerType::get(OriginalTy->getContext(), KV.second); 3961 auto *TruncatedTy = VectorType::get( 3962 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3963 if (TruncatedTy == OriginalTy) 3964 continue; 3965 3966 IRBuilder<> B(cast<Instruction>(I)); 3967 auto ShrinkOperand = [&](Value *V) -> Value * { 3968 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3969 if (ZI->getSrcTy() == TruncatedTy) 3970 return ZI->getOperand(0); 3971 return B.CreateZExtOrTrunc(V, TruncatedTy); 3972 }; 3973 3974 // The actual instruction modification depends on the instruction type, 3975 // unfortunately. 3976 Value *NewI = nullptr; 3977 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3978 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3979 ShrinkOperand(BO->getOperand(1))); 3980 3981 // Any wrapping introduced by shrinking this operation shouldn't be 3982 // considered undefined behavior. So, we can't unconditionally copy 3983 // arithmetic wrapping flags to NewI. 3984 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3985 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3986 NewI = 3987 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3988 ShrinkOperand(CI->getOperand(1))); 3989 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3990 NewI = B.CreateSelect(SI->getCondition(), 3991 ShrinkOperand(SI->getTrueValue()), 3992 ShrinkOperand(SI->getFalseValue())); 3993 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3994 switch (CI->getOpcode()) { 3995 default: 3996 llvm_unreachable("Unhandled cast!"); 3997 case Instruction::Trunc: 3998 NewI = ShrinkOperand(CI->getOperand(0)); 3999 break; 4000 case Instruction::SExt: 4001 NewI = B.CreateSExtOrTrunc( 4002 CI->getOperand(0), 4003 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4004 break; 4005 case Instruction::ZExt: 4006 NewI = B.CreateZExtOrTrunc( 4007 CI->getOperand(0), 4008 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4009 break; 4010 } 4011 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4012 auto Elements0 = 4013 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 4014 auto *O0 = B.CreateZExtOrTrunc( 4015 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4016 auto Elements1 = 4017 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 4018 auto *O1 = B.CreateZExtOrTrunc( 4019 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4020 4021 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4022 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4023 // Don't do anything with the operands, just extend the result. 4024 continue; 4025 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4026 auto Elements = 4027 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 4028 auto *O0 = B.CreateZExtOrTrunc( 4029 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4030 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4031 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4032 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4033 auto Elements = 4034 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 4035 auto *O0 = B.CreateZExtOrTrunc( 4036 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4037 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4038 } else { 4039 // If we don't know what to do, be conservative and don't do anything. 4040 continue; 4041 } 4042 4043 // Lastly, extend the result. 4044 NewI->takeName(cast<Instruction>(I)); 4045 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4046 I->replaceAllUsesWith(Res); 4047 cast<Instruction>(I)->eraseFromParent(); 4048 Erased.insert(I); 4049 State.reset(Def, Res, Part); 4050 } 4051 } 4052 4053 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4054 for (const auto &KV : Cost->getMinimalBitwidths()) { 4055 // If the value wasn't vectorized, we must maintain the original scalar 4056 // type. The absence of the value from State indicates that it 4057 // wasn't vectorized. 4058 // FIXME: Should not rely on getVPValue at this point. 4059 VPValue *Def = State.Plan->getVPValue(KV.first, true); 4060 if (!State.hasAnyVectorValue(Def)) 4061 continue; 4062 for (unsigned Part = 0; Part < UF; ++Part) { 4063 Value *I = State.get(Def, Part); 4064 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4065 if (Inst && Inst->use_empty()) { 4066 Value *NewI = Inst->getOperand(0); 4067 Inst->eraseFromParent(); 4068 State.reset(Def, NewI, Part); 4069 } 4070 } 4071 } 4072 } 4073 4074 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4075 // Insert truncates and extends for any truncated instructions as hints to 4076 // InstCombine. 4077 if (VF.isVector()) 4078 truncateToMinimalBitwidths(State); 4079 4080 // Fix widened non-induction PHIs by setting up the PHI operands. 4081 if (OrigPHIsToFix.size()) { 4082 assert(EnableVPlanNativePath && 4083 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4084 fixNonInductionPHIs(State); 4085 } 4086 4087 // At this point every instruction in the original loop is widened to a 4088 // vector form. Now we need to fix the recurrences in the loop. These PHI 4089 // nodes are currently empty because we did not want to introduce cycles. 4090 // This is the second stage of vectorizing recurrences. 4091 fixCrossIterationPHIs(State); 4092 4093 // Forget the original basic block. 4094 PSE.getSE()->forgetLoop(OrigLoop); 4095 4096 // If we inserted an edge from the middle block to the unique exit block, 4097 // update uses outside the loop (phis) to account for the newly inserted 4098 // edge. 4099 if (!Cost->requiresScalarEpilogue(VF)) { 4100 // Fix-up external users of the induction variables. 4101 for (auto &Entry : Legal->getInductionVars()) 4102 fixupIVUsers(Entry.first, Entry.second, 4103 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4104 IVEndValues[Entry.first], LoopMiddleBlock); 4105 4106 fixLCSSAPHIs(State); 4107 } 4108 4109 for (Instruction *PI : PredicatedInstructions) 4110 sinkScalarOperands(&*PI); 4111 4112 // Remove redundant induction instructions. 4113 cse(LoopVectorBody); 4114 4115 // Set/update profile weights for the vector and remainder loops as original 4116 // loop iterations are now distributed among them. Note that original loop 4117 // represented by LoopScalarBody becomes remainder loop after vectorization. 4118 // 4119 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4120 // end up getting slightly roughened result but that should be OK since 4121 // profile is not inherently precise anyway. Note also possible bypass of 4122 // vector code caused by legality checks is ignored, assigning all the weight 4123 // to the vector loop, optimistically. 4124 // 4125 // For scalable vectorization we can't know at compile time how many iterations 4126 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4127 // vscale of '1'. 4128 setProfileInfoAfterUnrolling( 4129 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4130 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4131 } 4132 4133 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4134 // In order to support recurrences we need to be able to vectorize Phi nodes. 4135 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4136 // stage #2: We now need to fix the recurrences by adding incoming edges to 4137 // the currently empty PHI nodes. At this point every instruction in the 4138 // original loop is widened to a vector form so we can use them to construct 4139 // the incoming edges. 4140 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4141 for (VPRecipeBase &R : Header->phis()) { 4142 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4143 fixReduction(ReductionPhi, State); 4144 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4145 fixFirstOrderRecurrence(FOR, State); 4146 } 4147 } 4148 4149 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4150 VPTransformState &State) { 4151 // This is the second phase of vectorizing first-order recurrences. An 4152 // overview of the transformation is described below. Suppose we have the 4153 // following loop. 4154 // 4155 // for (int i = 0; i < n; ++i) 4156 // b[i] = a[i] - a[i - 1]; 4157 // 4158 // There is a first-order recurrence on "a". For this loop, the shorthand 4159 // scalar IR looks like: 4160 // 4161 // scalar.ph: 4162 // s_init = a[-1] 4163 // br scalar.body 4164 // 4165 // scalar.body: 4166 // i = phi [0, scalar.ph], [i+1, scalar.body] 4167 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4168 // s2 = a[i] 4169 // b[i] = s2 - s1 4170 // br cond, scalar.body, ... 4171 // 4172 // In this example, s1 is a recurrence because it's value depends on the 4173 // previous iteration. In the first phase of vectorization, we created a 4174 // vector phi v1 for s1. We now complete the vectorization and produce the 4175 // shorthand vector IR shown below (for VF = 4, UF = 1). 4176 // 4177 // vector.ph: 4178 // v_init = vector(..., ..., ..., a[-1]) 4179 // br vector.body 4180 // 4181 // vector.body 4182 // i = phi [0, vector.ph], [i+4, vector.body] 4183 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4184 // v2 = a[i, i+1, i+2, i+3]; 4185 // v3 = vector(v1(3), v2(0, 1, 2)) 4186 // b[i, i+1, i+2, i+3] = v2 - v3 4187 // br cond, vector.body, middle.block 4188 // 4189 // middle.block: 4190 // x = v2(3) 4191 // br scalar.ph 4192 // 4193 // scalar.ph: 4194 // s_init = phi [x, middle.block], [a[-1], otherwise] 4195 // br scalar.body 4196 // 4197 // After execution completes the vector loop, we extract the next value of 4198 // the recurrence (x) to use as the initial value in the scalar loop. 4199 4200 // Extract the last vector element in the middle block. This will be the 4201 // initial value for the recurrence when jumping to the scalar loop. 4202 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4203 Value *Incoming = State.get(PreviousDef, UF - 1); 4204 auto *ExtractForScalar = Incoming; 4205 auto *IdxTy = Builder.getInt32Ty(); 4206 if (VF.isVector()) { 4207 auto *One = ConstantInt::get(IdxTy, 1); 4208 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4209 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4210 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4211 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4212 "vector.recur.extract"); 4213 } 4214 // Extract the second last element in the middle block if the 4215 // Phi is used outside the loop. We need to extract the phi itself 4216 // and not the last element (the phi update in the current iteration). This 4217 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4218 // when the scalar loop is not run at all. 4219 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4220 if (VF.isVector()) { 4221 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4222 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4223 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4224 Incoming, Idx, "vector.recur.extract.for.phi"); 4225 } else if (UF > 1) 4226 // When loop is unrolled without vectorizing, initialize 4227 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4228 // of `Incoming`. This is analogous to the vectorized case above: extracting 4229 // the second last element when VF > 1. 4230 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4231 4232 // Fix the initial value of the original recurrence in the scalar loop. 4233 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4234 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4235 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4236 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4237 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4238 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4239 Start->addIncoming(Incoming, BB); 4240 } 4241 4242 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4243 Phi->setName("scalar.recur"); 4244 4245 // Finally, fix users of the recurrence outside the loop. The users will need 4246 // either the last value of the scalar recurrence or the last value of the 4247 // vector recurrence we extracted in the middle block. Since the loop is in 4248 // LCSSA form, we just need to find all the phi nodes for the original scalar 4249 // recurrence in the exit block, and then add an edge for the middle block. 4250 // Note that LCSSA does not imply single entry when the original scalar loop 4251 // had multiple exiting edges (as we always run the last iteration in the 4252 // scalar epilogue); in that case, there is no edge from middle to exit and 4253 // and thus no phis which needed updated. 4254 if (!Cost->requiresScalarEpilogue(VF)) 4255 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4256 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4257 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4258 } 4259 4260 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4261 VPTransformState &State) { 4262 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4263 // Get it's reduction variable descriptor. 4264 assert(Legal->isReductionVariable(OrigPhi) && 4265 "Unable to find the reduction variable"); 4266 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4267 4268 RecurKind RK = RdxDesc.getRecurrenceKind(); 4269 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4270 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4271 setDebugLocFromInst(ReductionStartValue); 4272 4273 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4274 // This is the vector-clone of the value that leaves the loop. 4275 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4276 4277 // Wrap flags are in general invalid after vectorization, clear them. 4278 clearReductionWrapFlags(RdxDesc, State); 4279 4280 // Before each round, move the insertion point right between 4281 // the PHIs and the values we are going to write. 4282 // This allows us to write both PHINodes and the extractelement 4283 // instructions. 4284 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4285 4286 setDebugLocFromInst(LoopExitInst); 4287 4288 Type *PhiTy = OrigPhi->getType(); 4289 // If tail is folded by masking, the vector value to leave the loop should be 4290 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4291 // instead of the former. For an inloop reduction the reduction will already 4292 // be predicated, and does not need to be handled here. 4293 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4294 for (unsigned Part = 0; Part < UF; ++Part) { 4295 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4296 Value *Sel = nullptr; 4297 for (User *U : VecLoopExitInst->users()) { 4298 if (isa<SelectInst>(U)) { 4299 assert(!Sel && "Reduction exit feeding two selects"); 4300 Sel = U; 4301 } else 4302 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4303 } 4304 assert(Sel && "Reduction exit feeds no select"); 4305 State.reset(LoopExitInstDef, Sel, Part); 4306 4307 // If the target can create a predicated operator for the reduction at no 4308 // extra cost in the loop (for example a predicated vadd), it can be 4309 // cheaper for the select to remain in the loop than be sunk out of it, 4310 // and so use the select value for the phi instead of the old 4311 // LoopExitValue. 4312 if (PreferPredicatedReductionSelect || 4313 TTI->preferPredicatedReductionSelect( 4314 RdxDesc.getOpcode(), PhiTy, 4315 TargetTransformInfo::ReductionFlags())) { 4316 auto *VecRdxPhi = 4317 cast<PHINode>(State.get(PhiR, Part)); 4318 VecRdxPhi->setIncomingValueForBlock( 4319 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4320 } 4321 } 4322 } 4323 4324 // If the vector reduction can be performed in a smaller type, we truncate 4325 // then extend the loop exit value to enable InstCombine to evaluate the 4326 // entire expression in the smaller type. 4327 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4328 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4329 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4330 Builder.SetInsertPoint( 4331 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4332 VectorParts RdxParts(UF); 4333 for (unsigned Part = 0; Part < UF; ++Part) { 4334 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4335 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4336 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4337 : Builder.CreateZExt(Trunc, VecTy); 4338 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 4339 if (U != Trunc) { 4340 U->replaceUsesOfWith(RdxParts[Part], Extnd); 4341 RdxParts[Part] = Extnd; 4342 } 4343 } 4344 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4345 for (unsigned Part = 0; Part < UF; ++Part) { 4346 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4347 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4348 } 4349 } 4350 4351 // Reduce all of the unrolled parts into a single vector. 4352 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4353 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4354 4355 // The middle block terminator has already been assigned a DebugLoc here (the 4356 // OrigLoop's single latch terminator). We want the whole middle block to 4357 // appear to execute on this line because: (a) it is all compiler generated, 4358 // (b) these instructions are always executed after evaluating the latch 4359 // conditional branch, and (c) other passes may add new predecessors which 4360 // terminate on this line. This is the easiest way to ensure we don't 4361 // accidentally cause an extra step back into the loop while debugging. 4362 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4363 if (PhiR->isOrdered()) 4364 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4365 else { 4366 // Floating-point operations should have some FMF to enable the reduction. 4367 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4368 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4369 for (unsigned Part = 1; Part < UF; ++Part) { 4370 Value *RdxPart = State.get(LoopExitInstDef, Part); 4371 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4372 ReducedPartRdx = Builder.CreateBinOp( 4373 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4374 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4375 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4376 ReducedPartRdx, RdxPart); 4377 else 4378 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4379 } 4380 } 4381 4382 // Create the reduction after the loop. Note that inloop reductions create the 4383 // target reduction in the loop using a Reduction recipe. 4384 if (VF.isVector() && !PhiR->isInLoop()) { 4385 ReducedPartRdx = 4386 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4387 // If the reduction can be performed in a smaller type, we need to extend 4388 // the reduction to the wider type before we branch to the original loop. 4389 if (PhiTy != RdxDesc.getRecurrenceType()) 4390 ReducedPartRdx = RdxDesc.isSigned() 4391 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4392 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4393 } 4394 4395 // Create a phi node that merges control-flow from the backedge-taken check 4396 // block and the middle block. 4397 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4398 LoopScalarPreHeader->getTerminator()); 4399 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4400 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4401 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4402 4403 // Now, we need to fix the users of the reduction variable 4404 // inside and outside of the scalar remainder loop. 4405 4406 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4407 // in the exit blocks. See comment on analogous loop in 4408 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4409 if (!Cost->requiresScalarEpilogue(VF)) 4410 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4411 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4412 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4413 4414 // Fix the scalar loop reduction variable with the incoming reduction sum 4415 // from the vector body and from the backedge value. 4416 int IncomingEdgeBlockIdx = 4417 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4418 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4419 // Pick the other block. 4420 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4421 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4422 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4423 } 4424 4425 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4426 VPTransformState &State) { 4427 RecurKind RK = RdxDesc.getRecurrenceKind(); 4428 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4429 return; 4430 4431 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4432 assert(LoopExitInstr && "null loop exit instruction"); 4433 SmallVector<Instruction *, 8> Worklist; 4434 SmallPtrSet<Instruction *, 8> Visited; 4435 Worklist.push_back(LoopExitInstr); 4436 Visited.insert(LoopExitInstr); 4437 4438 while (!Worklist.empty()) { 4439 Instruction *Cur = Worklist.pop_back_val(); 4440 if (isa<OverflowingBinaryOperator>(Cur)) 4441 for (unsigned Part = 0; Part < UF; ++Part) { 4442 // FIXME: Should not rely on getVPValue at this point. 4443 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4444 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4445 } 4446 4447 for (User *U : Cur->users()) { 4448 Instruction *UI = cast<Instruction>(U); 4449 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4450 Visited.insert(UI).second) 4451 Worklist.push_back(UI); 4452 } 4453 } 4454 } 4455 4456 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4457 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4458 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4459 // Some phis were already hand updated by the reduction and recurrence 4460 // code above, leave them alone. 4461 continue; 4462 4463 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4464 // Non-instruction incoming values will have only one value. 4465 4466 VPLane Lane = VPLane::getFirstLane(); 4467 if (isa<Instruction>(IncomingValue) && 4468 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4469 VF)) 4470 Lane = VPLane::getLastLaneForVF(VF); 4471 4472 // Can be a loop invariant incoming value or the last scalar value to be 4473 // extracted from the vectorized loop. 4474 // FIXME: Should not rely on getVPValue at this point. 4475 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4476 Value *lastIncomingValue = 4477 OrigLoop->isLoopInvariant(IncomingValue) 4478 ? IncomingValue 4479 : State.get(State.Plan->getVPValue(IncomingValue, true), 4480 VPIteration(UF - 1, Lane)); 4481 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4482 } 4483 } 4484 4485 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4486 // The basic block and loop containing the predicated instruction. 4487 auto *PredBB = PredInst->getParent(); 4488 auto *VectorLoop = LI->getLoopFor(PredBB); 4489 4490 // Initialize a worklist with the operands of the predicated instruction. 4491 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4492 4493 // Holds instructions that we need to analyze again. An instruction may be 4494 // reanalyzed if we don't yet know if we can sink it or not. 4495 SmallVector<Instruction *, 8> InstsToReanalyze; 4496 4497 // Returns true if a given use occurs in the predicated block. Phi nodes use 4498 // their operands in their corresponding predecessor blocks. 4499 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4500 auto *I = cast<Instruction>(U.getUser()); 4501 BasicBlock *BB = I->getParent(); 4502 if (auto *Phi = dyn_cast<PHINode>(I)) 4503 BB = Phi->getIncomingBlock( 4504 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4505 return BB == PredBB; 4506 }; 4507 4508 // Iteratively sink the scalarized operands of the predicated instruction 4509 // into the block we created for it. When an instruction is sunk, it's 4510 // operands are then added to the worklist. The algorithm ends after one pass 4511 // through the worklist doesn't sink a single instruction. 4512 bool Changed; 4513 do { 4514 // Add the instructions that need to be reanalyzed to the worklist, and 4515 // reset the changed indicator. 4516 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4517 InstsToReanalyze.clear(); 4518 Changed = false; 4519 4520 while (!Worklist.empty()) { 4521 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4522 4523 // We can't sink an instruction if it is a phi node, is not in the loop, 4524 // or may have side effects. 4525 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4526 I->mayHaveSideEffects()) 4527 continue; 4528 4529 // If the instruction is already in PredBB, check if we can sink its 4530 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4531 // sinking the scalar instruction I, hence it appears in PredBB; but it 4532 // may have failed to sink I's operands (recursively), which we try 4533 // (again) here. 4534 if (I->getParent() == PredBB) { 4535 Worklist.insert(I->op_begin(), I->op_end()); 4536 continue; 4537 } 4538 4539 // It's legal to sink the instruction if all its uses occur in the 4540 // predicated block. Otherwise, there's nothing to do yet, and we may 4541 // need to reanalyze the instruction. 4542 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4543 InstsToReanalyze.push_back(I); 4544 continue; 4545 } 4546 4547 // Move the instruction to the beginning of the predicated block, and add 4548 // it's operands to the worklist. 4549 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4550 Worklist.insert(I->op_begin(), I->op_end()); 4551 4552 // The sinking may have enabled other instructions to be sunk, so we will 4553 // need to iterate. 4554 Changed = true; 4555 } 4556 } while (Changed); 4557 } 4558 4559 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4560 for (PHINode *OrigPhi : OrigPHIsToFix) { 4561 VPWidenPHIRecipe *VPPhi = 4562 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4563 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4564 // Make sure the builder has a valid insert point. 4565 Builder.SetInsertPoint(NewPhi); 4566 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4567 VPValue *Inc = VPPhi->getIncomingValue(i); 4568 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4569 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4570 } 4571 } 4572 } 4573 4574 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4575 return Cost->useOrderedReductions(RdxDesc); 4576 } 4577 4578 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4579 VPWidenPHIRecipe *PhiR, 4580 VPTransformState &State) { 4581 PHINode *P = cast<PHINode>(PN); 4582 if (EnableVPlanNativePath) { 4583 // Currently we enter here in the VPlan-native path for non-induction 4584 // PHIs where all control flow is uniform. We simply widen these PHIs. 4585 // Create a vector phi with no operands - the vector phi operands will be 4586 // set at the end of vector code generation. 4587 Type *VecTy = (State.VF.isScalar()) 4588 ? PN->getType() 4589 : VectorType::get(PN->getType(), State.VF); 4590 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4591 State.set(PhiR, VecPhi, 0); 4592 OrigPHIsToFix.push_back(P); 4593 4594 return; 4595 } 4596 4597 assert(PN->getParent() == OrigLoop->getHeader() && 4598 "Non-header phis should have been handled elsewhere"); 4599 4600 // In order to support recurrences we need to be able to vectorize Phi nodes. 4601 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4602 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4603 // this value when we vectorize all of the instructions that use the PHI. 4604 4605 assert(!Legal->isReductionVariable(P) && 4606 "reductions should be handled elsewhere"); 4607 4608 setDebugLocFromInst(P); 4609 4610 // This PHINode must be an induction variable. 4611 // Make sure that we know about it. 4612 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4613 4614 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4615 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4616 4617 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4618 // which can be found from the original scalar operations. 4619 switch (II.getKind()) { 4620 case InductionDescriptor::IK_NoInduction: 4621 llvm_unreachable("Unknown induction"); 4622 case InductionDescriptor::IK_IntInduction: 4623 case InductionDescriptor::IK_FpInduction: 4624 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4625 case InductionDescriptor::IK_PtrInduction: { 4626 // Handle the pointer induction variable case. 4627 assert(P->getType()->isPointerTy() && "Unexpected type."); 4628 4629 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4630 // This is the normalized GEP that starts counting at zero. 4631 Value *PtrInd = 4632 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4633 // Determine the number of scalars we need to generate for each unroll 4634 // iteration. If the instruction is uniform, we only need to generate the 4635 // first lane. Otherwise, we generate all VF values. 4636 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4637 assert((IsUniform || !State.VF.isScalable()) && 4638 "Cannot scalarize a scalable VF"); 4639 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4640 4641 for (unsigned Part = 0; Part < UF; ++Part) { 4642 Value *PartStart = 4643 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4644 4645 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4646 Value *Idx = Builder.CreateAdd( 4647 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4648 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4649 Value *SclrGep = 4650 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4651 SclrGep->setName("next.gep"); 4652 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4653 } 4654 } 4655 return; 4656 } 4657 assert(isa<SCEVConstant>(II.getStep()) && 4658 "Induction step not a SCEV constant!"); 4659 Type *PhiType = II.getStep()->getType(); 4660 4661 // Build a pointer phi 4662 Value *ScalarStartValue = II.getStartValue(); 4663 Type *ScStValueType = ScalarStartValue->getType(); 4664 PHINode *NewPointerPhi = 4665 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4666 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4667 4668 // A pointer induction, performed by using a gep 4669 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4670 Instruction *InductionLoc = LoopLatch->getTerminator(); 4671 const SCEV *ScalarStep = II.getStep(); 4672 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4673 Value *ScalarStepValue = 4674 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4675 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4676 Value *NumUnrolledElems = 4677 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4678 Value *InductionGEP = GetElementPtrInst::Create( 4679 II.getElementType(), NewPointerPhi, 4680 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4681 InductionLoc); 4682 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4683 4684 // Create UF many actual address geps that use the pointer 4685 // phi as base and a vectorized version of the step value 4686 // (<step*0, ..., step*N>) as offset. 4687 for (unsigned Part = 0; Part < State.UF; ++Part) { 4688 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4689 Value *StartOffsetScalar = 4690 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4691 Value *StartOffset = 4692 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4693 // Create a vector of consecutive numbers from zero to VF. 4694 StartOffset = 4695 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4696 4697 Value *GEP = Builder.CreateGEP( 4698 II.getElementType(), NewPointerPhi, 4699 Builder.CreateMul( 4700 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4701 "vector.gep")); 4702 State.set(PhiR, GEP, Part); 4703 } 4704 } 4705 } 4706 } 4707 4708 /// A helper function for checking whether an integer division-related 4709 /// instruction may divide by zero (in which case it must be predicated if 4710 /// executed conditionally in the scalar code). 4711 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4712 /// Non-zero divisors that are non compile-time constants will not be 4713 /// converted into multiplication, so we will still end up scalarizing 4714 /// the division, but can do so w/o predication. 4715 static bool mayDivideByZero(Instruction &I) { 4716 assert((I.getOpcode() == Instruction::UDiv || 4717 I.getOpcode() == Instruction::SDiv || 4718 I.getOpcode() == Instruction::URem || 4719 I.getOpcode() == Instruction::SRem) && 4720 "Unexpected instruction"); 4721 Value *Divisor = I.getOperand(1); 4722 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4723 return !CInt || CInt->isZero(); 4724 } 4725 4726 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4727 VPUser &ArgOperands, 4728 VPTransformState &State) { 4729 assert(!isa<DbgInfoIntrinsic>(I) && 4730 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4731 setDebugLocFromInst(&I); 4732 4733 Module *M = I.getParent()->getParent()->getParent(); 4734 auto *CI = cast<CallInst>(&I); 4735 4736 SmallVector<Type *, 4> Tys; 4737 for (Value *ArgOperand : CI->args()) 4738 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4739 4740 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4741 4742 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4743 // version of the instruction. 4744 // Is it beneficial to perform intrinsic call compared to lib call? 4745 bool NeedToScalarize = false; 4746 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4747 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4748 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4749 assert((UseVectorIntrinsic || !NeedToScalarize) && 4750 "Instruction should be scalarized elsewhere."); 4751 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4752 "Either the intrinsic cost or vector call cost must be valid"); 4753 4754 for (unsigned Part = 0; Part < UF; ++Part) { 4755 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4756 SmallVector<Value *, 4> Args; 4757 for (auto &I : enumerate(ArgOperands.operands())) { 4758 // Some intrinsics have a scalar argument - don't replace it with a 4759 // vector. 4760 Value *Arg; 4761 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4762 Arg = State.get(I.value(), Part); 4763 else { 4764 Arg = State.get(I.value(), VPIteration(0, 0)); 4765 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4766 TysForDecl.push_back(Arg->getType()); 4767 } 4768 Args.push_back(Arg); 4769 } 4770 4771 Function *VectorF; 4772 if (UseVectorIntrinsic) { 4773 // Use vector version of the intrinsic. 4774 if (VF.isVector()) 4775 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4776 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4777 assert(VectorF && "Can't retrieve vector intrinsic."); 4778 } else { 4779 // Use vector version of the function call. 4780 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4781 #ifndef NDEBUG 4782 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4783 "Can't create vector function."); 4784 #endif 4785 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4786 } 4787 SmallVector<OperandBundleDef, 1> OpBundles; 4788 CI->getOperandBundlesAsDefs(OpBundles); 4789 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4790 4791 if (isa<FPMathOperator>(V)) 4792 V->copyFastMathFlags(CI); 4793 4794 State.set(Def, V, Part); 4795 addMetadata(V, &I); 4796 } 4797 } 4798 4799 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4800 // We should not collect Scalars more than once per VF. Right now, this 4801 // function is called from collectUniformsAndScalars(), which already does 4802 // this check. Collecting Scalars for VF=1 does not make any sense. 4803 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4804 "This function should not be visited twice for the same VF"); 4805 4806 SmallSetVector<Instruction *, 8> Worklist; 4807 4808 // These sets are used to seed the analysis with pointers used by memory 4809 // accesses that will remain scalar. 4810 SmallSetVector<Instruction *, 8> ScalarPtrs; 4811 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4812 auto *Latch = TheLoop->getLoopLatch(); 4813 4814 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4815 // The pointer operands of loads and stores will be scalar as long as the 4816 // memory access is not a gather or scatter operation. The value operand of a 4817 // store will remain scalar if the store is scalarized. 4818 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4819 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4820 assert(WideningDecision != CM_Unknown && 4821 "Widening decision should be ready at this moment"); 4822 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4823 if (Ptr == Store->getValueOperand()) 4824 return WideningDecision == CM_Scalarize; 4825 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4826 "Ptr is neither a value or pointer operand"); 4827 return WideningDecision != CM_GatherScatter; 4828 }; 4829 4830 // A helper that returns true if the given value is a bitcast or 4831 // getelementptr instruction contained in the loop. 4832 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4833 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4834 isa<GetElementPtrInst>(V)) && 4835 !TheLoop->isLoopInvariant(V); 4836 }; 4837 4838 // A helper that evaluates a memory access's use of a pointer. If the use will 4839 // be a scalar use and the pointer is only used by memory accesses, we place 4840 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4841 // PossibleNonScalarPtrs. 4842 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4843 // We only care about bitcast and getelementptr instructions contained in 4844 // the loop. 4845 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4846 return; 4847 4848 // If the pointer has already been identified as scalar (e.g., if it was 4849 // also identified as uniform), there's nothing to do. 4850 auto *I = cast<Instruction>(Ptr); 4851 if (Worklist.count(I)) 4852 return; 4853 4854 // If the use of the pointer will be a scalar use, and all users of the 4855 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4856 // place the pointer in PossibleNonScalarPtrs. 4857 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4858 return isa<LoadInst>(U) || isa<StoreInst>(U); 4859 })) 4860 ScalarPtrs.insert(I); 4861 else 4862 PossibleNonScalarPtrs.insert(I); 4863 }; 4864 4865 // We seed the scalars analysis with three classes of instructions: (1) 4866 // instructions marked uniform-after-vectorization and (2) bitcast, 4867 // getelementptr and (pointer) phi instructions used by memory accesses 4868 // requiring a scalar use. 4869 // 4870 // (1) Add to the worklist all instructions that have been identified as 4871 // uniform-after-vectorization. 4872 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4873 4874 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4875 // memory accesses requiring a scalar use. The pointer operands of loads and 4876 // stores will be scalar as long as the memory accesses is not a gather or 4877 // scatter operation. The value operand of a store will remain scalar if the 4878 // store is scalarized. 4879 for (auto *BB : TheLoop->blocks()) 4880 for (auto &I : *BB) { 4881 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4882 evaluatePtrUse(Load, Load->getPointerOperand()); 4883 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4884 evaluatePtrUse(Store, Store->getPointerOperand()); 4885 evaluatePtrUse(Store, Store->getValueOperand()); 4886 } 4887 } 4888 for (auto *I : ScalarPtrs) 4889 if (!PossibleNonScalarPtrs.count(I)) { 4890 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4891 Worklist.insert(I); 4892 } 4893 4894 // Insert the forced scalars. 4895 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4896 // induction variable when the PHI user is scalarized. 4897 auto ForcedScalar = ForcedScalars.find(VF); 4898 if (ForcedScalar != ForcedScalars.end()) 4899 for (auto *I : ForcedScalar->second) 4900 Worklist.insert(I); 4901 4902 // Expand the worklist by looking through any bitcasts and getelementptr 4903 // instructions we've already identified as scalar. This is similar to the 4904 // expansion step in collectLoopUniforms(); however, here we're only 4905 // expanding to include additional bitcasts and getelementptr instructions. 4906 unsigned Idx = 0; 4907 while (Idx != Worklist.size()) { 4908 Instruction *Dst = Worklist[Idx++]; 4909 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4910 continue; 4911 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4912 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4913 auto *J = cast<Instruction>(U); 4914 return !TheLoop->contains(J) || Worklist.count(J) || 4915 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4916 isScalarUse(J, Src)); 4917 })) { 4918 Worklist.insert(Src); 4919 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4920 } 4921 } 4922 4923 // An induction variable will remain scalar if all users of the induction 4924 // variable and induction variable update remain scalar. 4925 for (auto &Induction : Legal->getInductionVars()) { 4926 auto *Ind = Induction.first; 4927 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4928 4929 // If tail-folding is applied, the primary induction variable will be used 4930 // to feed a vector compare. 4931 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4932 continue; 4933 4934 // Returns true if \p Indvar is a pointer induction that is used directly by 4935 // load/store instruction \p I. 4936 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4937 Instruction *I) { 4938 return Induction.second.getKind() == 4939 InductionDescriptor::IK_PtrInduction && 4940 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4941 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4942 }; 4943 4944 // Determine if all users of the induction variable are scalar after 4945 // vectorization. 4946 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4947 auto *I = cast<Instruction>(U); 4948 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4949 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4950 }); 4951 if (!ScalarInd) 4952 continue; 4953 4954 // Determine if all users of the induction variable update instruction are 4955 // scalar after vectorization. 4956 auto ScalarIndUpdate = 4957 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4958 auto *I = cast<Instruction>(U); 4959 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4960 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4961 }); 4962 if (!ScalarIndUpdate) 4963 continue; 4964 4965 // The induction variable and its update instruction will remain scalar. 4966 Worklist.insert(Ind); 4967 Worklist.insert(IndUpdate); 4968 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4969 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4970 << "\n"); 4971 } 4972 4973 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4974 } 4975 4976 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 4977 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4978 return false; 4979 switch(I->getOpcode()) { 4980 default: 4981 break; 4982 case Instruction::Load: 4983 case Instruction::Store: { 4984 if (!Legal->isMaskRequired(I)) 4985 return false; 4986 auto *Ptr = getLoadStorePointerOperand(I); 4987 auto *Ty = getLoadStoreType(I); 4988 const Align Alignment = getLoadStoreAlignment(I); 4989 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4990 TTI.isLegalMaskedGather(Ty, Alignment)) 4991 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4992 TTI.isLegalMaskedScatter(Ty, Alignment)); 4993 } 4994 case Instruction::UDiv: 4995 case Instruction::SDiv: 4996 case Instruction::SRem: 4997 case Instruction::URem: 4998 return mayDivideByZero(*I); 4999 } 5000 return false; 5001 } 5002 5003 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5004 Instruction *I, ElementCount VF) { 5005 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5006 assert(getWideningDecision(I, VF) == CM_Unknown && 5007 "Decision should not be set yet."); 5008 auto *Group = getInterleavedAccessGroup(I); 5009 assert(Group && "Must have a group."); 5010 5011 // If the instruction's allocated size doesn't equal it's type size, it 5012 // requires padding and will be scalarized. 5013 auto &DL = I->getModule()->getDataLayout(); 5014 auto *ScalarTy = getLoadStoreType(I); 5015 if (hasIrregularType(ScalarTy, DL)) 5016 return false; 5017 5018 // Check if masking is required. 5019 // A Group may need masking for one of two reasons: it resides in a block that 5020 // needs predication, or it was decided to use masking to deal with gaps 5021 // (either a gap at the end of a load-access that may result in a speculative 5022 // load, or any gaps in a store-access). 5023 bool PredicatedAccessRequiresMasking = 5024 blockNeedsPredicationForAnyReason(I->getParent()) && 5025 Legal->isMaskRequired(I); 5026 bool LoadAccessWithGapsRequiresEpilogMasking = 5027 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 5028 !isScalarEpilogueAllowed(); 5029 bool StoreAccessWithGapsRequiresMasking = 5030 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 5031 if (!PredicatedAccessRequiresMasking && 5032 !LoadAccessWithGapsRequiresEpilogMasking && 5033 !StoreAccessWithGapsRequiresMasking) 5034 return true; 5035 5036 // If masked interleaving is required, we expect that the user/target had 5037 // enabled it, because otherwise it either wouldn't have been created or 5038 // it should have been invalidated by the CostModel. 5039 assert(useMaskedInterleavedAccesses(TTI) && 5040 "Masked interleave-groups for predicated accesses are not enabled."); 5041 5042 if (Group->isReverse()) 5043 return false; 5044 5045 auto *Ty = getLoadStoreType(I); 5046 const Align Alignment = getLoadStoreAlignment(I); 5047 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5048 : TTI.isLegalMaskedStore(Ty, Alignment); 5049 } 5050 5051 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5052 Instruction *I, ElementCount VF) { 5053 // Get and ensure we have a valid memory instruction. 5054 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 5055 5056 auto *Ptr = getLoadStorePointerOperand(I); 5057 auto *ScalarTy = getLoadStoreType(I); 5058 5059 // In order to be widened, the pointer should be consecutive, first of all. 5060 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 5061 return false; 5062 5063 // If the instruction is a store located in a predicated block, it will be 5064 // scalarized. 5065 if (isScalarWithPredication(I)) 5066 return false; 5067 5068 // If the instruction's allocated size doesn't equal it's type size, it 5069 // requires padding and will be scalarized. 5070 auto &DL = I->getModule()->getDataLayout(); 5071 if (hasIrregularType(ScalarTy, DL)) 5072 return false; 5073 5074 return true; 5075 } 5076 5077 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5078 // We should not collect Uniforms more than once per VF. Right now, 5079 // this function is called from collectUniformsAndScalars(), which 5080 // already does this check. Collecting Uniforms for VF=1 does not make any 5081 // sense. 5082 5083 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5084 "This function should not be visited twice for the same VF"); 5085 5086 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5087 // not analyze again. Uniforms.count(VF) will return 1. 5088 Uniforms[VF].clear(); 5089 5090 // We now know that the loop is vectorizable! 5091 // Collect instructions inside the loop that will remain uniform after 5092 // vectorization. 5093 5094 // Global values, params and instructions outside of current loop are out of 5095 // scope. 5096 auto isOutOfScope = [&](Value *V) -> bool { 5097 Instruction *I = dyn_cast<Instruction>(V); 5098 return (!I || !TheLoop->contains(I)); 5099 }; 5100 5101 // Worklist containing uniform instructions demanding lane 0. 5102 SetVector<Instruction *> Worklist; 5103 BasicBlock *Latch = TheLoop->getLoopLatch(); 5104 5105 // Add uniform instructions demanding lane 0 to the worklist. Instructions 5106 // that are scalar with predication must not be considered uniform after 5107 // vectorization, because that would create an erroneous replicating region 5108 // where only a single instance out of VF should be formed. 5109 // TODO: optimize such seldom cases if found important, see PR40816. 5110 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5111 if (isOutOfScope(I)) { 5112 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5113 << *I << "\n"); 5114 return; 5115 } 5116 if (isScalarWithPredication(I)) { 5117 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5118 << *I << "\n"); 5119 return; 5120 } 5121 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5122 Worklist.insert(I); 5123 }; 5124 5125 // Start with the conditional branch. If the branch condition is an 5126 // instruction contained in the loop that is only used by the branch, it is 5127 // uniform. 5128 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5129 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5130 addToWorklistIfAllowed(Cmp); 5131 5132 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5133 InstWidening WideningDecision = getWideningDecision(I, VF); 5134 assert(WideningDecision != CM_Unknown && 5135 "Widening decision should be ready at this moment"); 5136 5137 // A uniform memory op is itself uniform. We exclude uniform stores 5138 // here as they demand the last lane, not the first one. 5139 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5140 assert(WideningDecision == CM_Scalarize); 5141 return true; 5142 } 5143 5144 return (WideningDecision == CM_Widen || 5145 WideningDecision == CM_Widen_Reverse || 5146 WideningDecision == CM_Interleave); 5147 }; 5148 5149 5150 // Returns true if Ptr is the pointer operand of a memory access instruction 5151 // I, and I is known to not require scalarization. 5152 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5153 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5154 }; 5155 5156 // Holds a list of values which are known to have at least one uniform use. 5157 // Note that there may be other uses which aren't uniform. A "uniform use" 5158 // here is something which only demands lane 0 of the unrolled iterations; 5159 // it does not imply that all lanes produce the same value (e.g. this is not 5160 // the usual meaning of uniform) 5161 SetVector<Value *> HasUniformUse; 5162 5163 // Scan the loop for instructions which are either a) known to have only 5164 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5165 for (auto *BB : TheLoop->blocks()) 5166 for (auto &I : *BB) { 5167 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5168 switch (II->getIntrinsicID()) { 5169 case Intrinsic::sideeffect: 5170 case Intrinsic::experimental_noalias_scope_decl: 5171 case Intrinsic::assume: 5172 case Intrinsic::lifetime_start: 5173 case Intrinsic::lifetime_end: 5174 if (TheLoop->hasLoopInvariantOperands(&I)) 5175 addToWorklistIfAllowed(&I); 5176 break; 5177 default: 5178 break; 5179 } 5180 } 5181 5182 // ExtractValue instructions must be uniform, because the operands are 5183 // known to be loop-invariant. 5184 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5185 assert(isOutOfScope(EVI->getAggregateOperand()) && 5186 "Expected aggregate value to be loop invariant"); 5187 addToWorklistIfAllowed(EVI); 5188 continue; 5189 } 5190 5191 // If there's no pointer operand, there's nothing to do. 5192 auto *Ptr = getLoadStorePointerOperand(&I); 5193 if (!Ptr) 5194 continue; 5195 5196 // A uniform memory op is itself uniform. We exclude uniform stores 5197 // here as they demand the last lane, not the first one. 5198 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5199 addToWorklistIfAllowed(&I); 5200 5201 if (isUniformDecision(&I, VF)) { 5202 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5203 HasUniformUse.insert(Ptr); 5204 } 5205 } 5206 5207 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5208 // demanding) users. Since loops are assumed to be in LCSSA form, this 5209 // disallows uses outside the loop as well. 5210 for (auto *V : HasUniformUse) { 5211 if (isOutOfScope(V)) 5212 continue; 5213 auto *I = cast<Instruction>(V); 5214 auto UsersAreMemAccesses = 5215 llvm::all_of(I->users(), [&](User *U) -> bool { 5216 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5217 }); 5218 if (UsersAreMemAccesses) 5219 addToWorklistIfAllowed(I); 5220 } 5221 5222 // Expand Worklist in topological order: whenever a new instruction 5223 // is added , its users should be already inside Worklist. It ensures 5224 // a uniform instruction will only be used by uniform instructions. 5225 unsigned idx = 0; 5226 while (idx != Worklist.size()) { 5227 Instruction *I = Worklist[idx++]; 5228 5229 for (auto OV : I->operand_values()) { 5230 // isOutOfScope operands cannot be uniform instructions. 5231 if (isOutOfScope(OV)) 5232 continue; 5233 // First order recurrence Phi's should typically be considered 5234 // non-uniform. 5235 auto *OP = dyn_cast<PHINode>(OV); 5236 if (OP && Legal->isFirstOrderRecurrence(OP)) 5237 continue; 5238 // If all the users of the operand are uniform, then add the 5239 // operand into the uniform worklist. 5240 auto *OI = cast<Instruction>(OV); 5241 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5242 auto *J = cast<Instruction>(U); 5243 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5244 })) 5245 addToWorklistIfAllowed(OI); 5246 } 5247 } 5248 5249 // For an instruction to be added into Worklist above, all its users inside 5250 // the loop should also be in Worklist. However, this condition cannot be 5251 // true for phi nodes that form a cyclic dependence. We must process phi 5252 // nodes separately. An induction variable will remain uniform if all users 5253 // of the induction variable and induction variable update remain uniform. 5254 // The code below handles both pointer and non-pointer induction variables. 5255 for (auto &Induction : Legal->getInductionVars()) { 5256 auto *Ind = Induction.first; 5257 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5258 5259 // Determine if all users of the induction variable are uniform after 5260 // vectorization. 5261 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5262 auto *I = cast<Instruction>(U); 5263 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5264 isVectorizedMemAccessUse(I, Ind); 5265 }); 5266 if (!UniformInd) 5267 continue; 5268 5269 // Determine if all users of the induction variable update instruction are 5270 // uniform after vectorization. 5271 auto UniformIndUpdate = 5272 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5273 auto *I = cast<Instruction>(U); 5274 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5275 isVectorizedMemAccessUse(I, IndUpdate); 5276 }); 5277 if (!UniformIndUpdate) 5278 continue; 5279 5280 // The induction variable and its update instruction will remain uniform. 5281 addToWorklistIfAllowed(Ind); 5282 addToWorklistIfAllowed(IndUpdate); 5283 } 5284 5285 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5286 } 5287 5288 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5289 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5290 5291 if (Legal->getRuntimePointerChecking()->Need) { 5292 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5293 "runtime pointer checks needed. Enable vectorization of this " 5294 "loop with '#pragma clang loop vectorize(enable)' when " 5295 "compiling with -Os/-Oz", 5296 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5297 return true; 5298 } 5299 5300 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5301 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5302 "runtime SCEV checks needed. Enable vectorization of this " 5303 "loop with '#pragma clang loop vectorize(enable)' when " 5304 "compiling with -Os/-Oz", 5305 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5306 return true; 5307 } 5308 5309 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5310 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5311 reportVectorizationFailure("Runtime stride check for small trip count", 5312 "runtime stride == 1 checks needed. Enable vectorization of " 5313 "this loop without such check by compiling with -Os/-Oz", 5314 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5315 return true; 5316 } 5317 5318 return false; 5319 } 5320 5321 ElementCount 5322 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5323 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5324 return ElementCount::getScalable(0); 5325 5326 if (Hints->isScalableVectorizationDisabled()) { 5327 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5328 "ScalableVectorizationDisabled", ORE, TheLoop); 5329 return ElementCount::getScalable(0); 5330 } 5331 5332 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5333 5334 auto MaxScalableVF = ElementCount::getScalable( 5335 std::numeric_limits<ElementCount::ScalarTy>::max()); 5336 5337 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5338 // FIXME: While for scalable vectors this is currently sufficient, this should 5339 // be replaced by a more detailed mechanism that filters out specific VFs, 5340 // instead of invalidating vectorization for a whole set of VFs based on the 5341 // MaxVF. 5342 5343 // Disable scalable vectorization if the loop contains unsupported reductions. 5344 if (!canVectorizeReductions(MaxScalableVF)) { 5345 reportVectorizationInfo( 5346 "Scalable vectorization not supported for the reduction " 5347 "operations found in this loop.", 5348 "ScalableVFUnfeasible", ORE, TheLoop); 5349 return ElementCount::getScalable(0); 5350 } 5351 5352 // Disable scalable vectorization if the loop contains any instructions 5353 // with element types not supported for scalable vectors. 5354 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5355 return !Ty->isVoidTy() && 5356 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5357 })) { 5358 reportVectorizationInfo("Scalable vectorization is not supported " 5359 "for all element types found in this loop.", 5360 "ScalableVFUnfeasible", ORE, TheLoop); 5361 return ElementCount::getScalable(0); 5362 } 5363 5364 if (Legal->isSafeForAnyVectorWidth()) 5365 return MaxScalableVF; 5366 5367 // Limit MaxScalableVF by the maximum safe dependence distance. 5368 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5369 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5370 unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange) 5371 .getVScaleRangeArgs() 5372 .second; 5373 if (VScaleMax > 0) 5374 MaxVScale = VScaleMax; 5375 } 5376 MaxScalableVF = ElementCount::getScalable( 5377 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5378 if (!MaxScalableVF) 5379 reportVectorizationInfo( 5380 "Max legal vector width too small, scalable vectorization " 5381 "unfeasible.", 5382 "ScalableVFUnfeasible", ORE, TheLoop); 5383 5384 return MaxScalableVF; 5385 } 5386 5387 FixedScalableVFPair 5388 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5389 ElementCount UserVF) { 5390 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5391 unsigned SmallestType, WidestType; 5392 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5393 5394 // Get the maximum safe dependence distance in bits computed by LAA. 5395 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5396 // the memory accesses that is most restrictive (involved in the smallest 5397 // dependence distance). 5398 unsigned MaxSafeElements = 5399 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5400 5401 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5402 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5403 5404 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5405 << ".\n"); 5406 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5407 << ".\n"); 5408 5409 // First analyze the UserVF, fall back if the UserVF should be ignored. 5410 if (UserVF) { 5411 auto MaxSafeUserVF = 5412 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5413 5414 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5415 // If `VF=vscale x N` is safe, then so is `VF=N` 5416 if (UserVF.isScalable()) 5417 return FixedScalableVFPair( 5418 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5419 else 5420 return UserVF; 5421 } 5422 5423 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5424 5425 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5426 // is better to ignore the hint and let the compiler choose a suitable VF. 5427 if (!UserVF.isScalable()) { 5428 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5429 << " is unsafe, clamping to max safe VF=" 5430 << MaxSafeFixedVF << ".\n"); 5431 ORE->emit([&]() { 5432 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5433 TheLoop->getStartLoc(), 5434 TheLoop->getHeader()) 5435 << "User-specified vectorization factor " 5436 << ore::NV("UserVectorizationFactor", UserVF) 5437 << " is unsafe, clamping to maximum safe vectorization factor " 5438 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5439 }); 5440 return MaxSafeFixedVF; 5441 } 5442 5443 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5444 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5445 << " is ignored because scalable vectors are not " 5446 "available.\n"); 5447 ORE->emit([&]() { 5448 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5449 TheLoop->getStartLoc(), 5450 TheLoop->getHeader()) 5451 << "User-specified vectorization factor " 5452 << ore::NV("UserVectorizationFactor", UserVF) 5453 << " is ignored because the target does not support scalable " 5454 "vectors. The compiler will pick a more suitable value."; 5455 }); 5456 } else { 5457 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5458 << " is unsafe. Ignoring scalable UserVF.\n"); 5459 ORE->emit([&]() { 5460 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5461 TheLoop->getStartLoc(), 5462 TheLoop->getHeader()) 5463 << "User-specified vectorization factor " 5464 << ore::NV("UserVectorizationFactor", UserVF) 5465 << " is unsafe. Ignoring the hint to let the compiler pick a " 5466 "more suitable value."; 5467 }); 5468 } 5469 } 5470 5471 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5472 << " / " << WidestType << " bits.\n"); 5473 5474 FixedScalableVFPair Result(ElementCount::getFixed(1), 5475 ElementCount::getScalable(0)); 5476 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5477 WidestType, MaxSafeFixedVF)) 5478 Result.FixedVF = MaxVF; 5479 5480 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5481 WidestType, MaxSafeScalableVF)) 5482 if (MaxVF.isScalable()) { 5483 Result.ScalableVF = MaxVF; 5484 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5485 << "\n"); 5486 } 5487 5488 return Result; 5489 } 5490 5491 FixedScalableVFPair 5492 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5493 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5494 // TODO: It may by useful to do since it's still likely to be dynamically 5495 // uniform if the target can skip. 5496 reportVectorizationFailure( 5497 "Not inserting runtime ptr check for divergent target", 5498 "runtime pointer checks needed. Not enabled for divergent target", 5499 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5500 return FixedScalableVFPair::getNone(); 5501 } 5502 5503 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5504 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5505 if (TC == 1) { 5506 reportVectorizationFailure("Single iteration (non) loop", 5507 "loop trip count is one, irrelevant for vectorization", 5508 "SingleIterationLoop", ORE, TheLoop); 5509 return FixedScalableVFPair::getNone(); 5510 } 5511 5512 switch (ScalarEpilogueStatus) { 5513 case CM_ScalarEpilogueAllowed: 5514 return computeFeasibleMaxVF(TC, UserVF); 5515 case CM_ScalarEpilogueNotAllowedUsePredicate: 5516 LLVM_FALLTHROUGH; 5517 case CM_ScalarEpilogueNotNeededUsePredicate: 5518 LLVM_DEBUG( 5519 dbgs() << "LV: vector predicate hint/switch found.\n" 5520 << "LV: Not allowing scalar epilogue, creating predicated " 5521 << "vector loop.\n"); 5522 break; 5523 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5524 // fallthrough as a special case of OptForSize 5525 case CM_ScalarEpilogueNotAllowedOptSize: 5526 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5527 LLVM_DEBUG( 5528 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5529 else 5530 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5531 << "count.\n"); 5532 5533 // Bail if runtime checks are required, which are not good when optimising 5534 // for size. 5535 if (runtimeChecksRequired()) 5536 return FixedScalableVFPair::getNone(); 5537 5538 break; 5539 } 5540 5541 // The only loops we can vectorize without a scalar epilogue, are loops with 5542 // a bottom-test and a single exiting block. We'd have to handle the fact 5543 // that not every instruction executes on the last iteration. This will 5544 // require a lane mask which varies through the vector loop body. (TODO) 5545 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5546 // If there was a tail-folding hint/switch, but we can't fold the tail by 5547 // masking, fallback to a vectorization with a scalar epilogue. 5548 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5549 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5550 "scalar epilogue instead.\n"); 5551 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5552 return computeFeasibleMaxVF(TC, UserVF); 5553 } 5554 return FixedScalableVFPair::getNone(); 5555 } 5556 5557 // Now try the tail folding 5558 5559 // Invalidate interleave groups that require an epilogue if we can't mask 5560 // the interleave-group. 5561 if (!useMaskedInterleavedAccesses(TTI)) { 5562 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5563 "No decisions should have been taken at this point"); 5564 // Note: There is no need to invalidate any cost modeling decisions here, as 5565 // non where taken so far. 5566 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5567 } 5568 5569 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5570 // Avoid tail folding if the trip count is known to be a multiple of any VF 5571 // we chose. 5572 // FIXME: The condition below pessimises the case for fixed-width vectors, 5573 // when scalable VFs are also candidates for vectorization. 5574 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5575 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5576 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5577 "MaxFixedVF must be a power of 2"); 5578 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5579 : MaxFixedVF.getFixedValue(); 5580 ScalarEvolution *SE = PSE.getSE(); 5581 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5582 const SCEV *ExitCount = SE->getAddExpr( 5583 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5584 const SCEV *Rem = SE->getURemExpr( 5585 SE->applyLoopGuards(ExitCount, TheLoop), 5586 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5587 if (Rem->isZero()) { 5588 // Accept MaxFixedVF if we do not have a tail. 5589 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5590 return MaxFactors; 5591 } 5592 } 5593 5594 // For scalable vectors, don't use tail folding as this is currently not yet 5595 // supported. The code is likely to have ended up here if the tripcount is 5596 // low, in which case it makes sense not to use scalable vectors. 5597 if (MaxFactors.ScalableVF.isVector()) 5598 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5599 5600 // If we don't know the precise trip count, or if the trip count that we 5601 // found modulo the vectorization factor is not zero, try to fold the tail 5602 // by masking. 5603 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5604 if (Legal->prepareToFoldTailByMasking()) { 5605 FoldTailByMasking = true; 5606 return MaxFactors; 5607 } 5608 5609 // If there was a tail-folding hint/switch, but we can't fold the tail by 5610 // masking, fallback to a vectorization with a scalar epilogue. 5611 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5612 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5613 "scalar epilogue instead.\n"); 5614 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5615 return MaxFactors; 5616 } 5617 5618 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5619 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5620 return FixedScalableVFPair::getNone(); 5621 } 5622 5623 if (TC == 0) { 5624 reportVectorizationFailure( 5625 "Unable to calculate the loop count due to complex control flow", 5626 "unable to calculate the loop count due to complex control flow", 5627 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5628 return FixedScalableVFPair::getNone(); 5629 } 5630 5631 reportVectorizationFailure( 5632 "Cannot optimize for size and vectorize at the same time.", 5633 "cannot optimize for size and vectorize at the same time. " 5634 "Enable vectorization of this loop with '#pragma clang loop " 5635 "vectorize(enable)' when compiling with -Os/-Oz", 5636 "NoTailLoopWithOptForSize", ORE, TheLoop); 5637 return FixedScalableVFPair::getNone(); 5638 } 5639 5640 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5641 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5642 const ElementCount &MaxSafeVF) { 5643 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5644 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5645 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5646 : TargetTransformInfo::RGK_FixedWidthVector); 5647 5648 // Convenience function to return the minimum of two ElementCounts. 5649 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5650 assert((LHS.isScalable() == RHS.isScalable()) && 5651 "Scalable flags must match"); 5652 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5653 }; 5654 5655 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5656 // Note that both WidestRegister and WidestType may not be a powers of 2. 5657 auto MaxVectorElementCount = ElementCount::get( 5658 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5659 ComputeScalableMaxVF); 5660 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5661 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5662 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5663 5664 if (!MaxVectorElementCount) { 5665 LLVM_DEBUG(dbgs() << "LV: The target has no " 5666 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5667 << " vector registers.\n"); 5668 return ElementCount::getFixed(1); 5669 } 5670 5671 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5672 if (ConstTripCount && 5673 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5674 isPowerOf2_32(ConstTripCount)) { 5675 // We need to clamp the VF to be the ConstTripCount. There is no point in 5676 // choosing a higher viable VF as done in the loop below. If 5677 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5678 // the TC is less than or equal to the known number of lanes. 5679 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5680 << ConstTripCount << "\n"); 5681 return TripCountEC; 5682 } 5683 5684 ElementCount MaxVF = MaxVectorElementCount; 5685 if (TTI.shouldMaximizeVectorBandwidth() || 5686 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5687 auto MaxVectorElementCountMaxBW = ElementCount::get( 5688 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5689 ComputeScalableMaxVF); 5690 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5691 5692 // Collect all viable vectorization factors larger than the default MaxVF 5693 // (i.e. MaxVectorElementCount). 5694 SmallVector<ElementCount, 8> VFs; 5695 for (ElementCount VS = MaxVectorElementCount * 2; 5696 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5697 VFs.push_back(VS); 5698 5699 // For each VF calculate its register usage. 5700 auto RUs = calculateRegisterUsage(VFs); 5701 5702 // Select the largest VF which doesn't require more registers than existing 5703 // ones. 5704 for (int i = RUs.size() - 1; i >= 0; --i) { 5705 bool Selected = true; 5706 for (auto &pair : RUs[i].MaxLocalUsers) { 5707 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5708 if (pair.second > TargetNumRegisters) 5709 Selected = false; 5710 } 5711 if (Selected) { 5712 MaxVF = VFs[i]; 5713 break; 5714 } 5715 } 5716 if (ElementCount MinVF = 5717 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5718 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5719 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5720 << ") with target's minimum: " << MinVF << '\n'); 5721 MaxVF = MinVF; 5722 } 5723 } 5724 } 5725 return MaxVF; 5726 } 5727 5728 bool LoopVectorizationCostModel::isMoreProfitable( 5729 const VectorizationFactor &A, const VectorizationFactor &B) const { 5730 InstructionCost CostA = A.Cost; 5731 InstructionCost CostB = B.Cost; 5732 5733 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5734 5735 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5736 MaxTripCount) { 5737 // If we are folding the tail and the trip count is a known (possibly small) 5738 // constant, the trip count will be rounded up to an integer number of 5739 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5740 // which we compare directly. When not folding the tail, the total cost will 5741 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5742 // approximated with the per-lane cost below instead of using the tripcount 5743 // as here. 5744 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5745 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5746 return RTCostA < RTCostB; 5747 } 5748 5749 // Improve estimate for the vector width if it is scalable. 5750 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5751 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5752 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) { 5753 if (A.Width.isScalable()) 5754 EstimatedWidthA *= VScale.getValue(); 5755 if (B.Width.isScalable()) 5756 EstimatedWidthB *= VScale.getValue(); 5757 } 5758 5759 // When set to preferred, for now assume vscale may be larger than 1 (or the 5760 // one being tuned for), so that scalable vectorization is slightly favorable 5761 // over fixed-width vectorization. 5762 if (Hints->isScalableVectorizationPreferred()) 5763 if (A.Width.isScalable() && !B.Width.isScalable()) 5764 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5765 5766 // To avoid the need for FP division: 5767 // (CostA / A.Width) < (CostB / B.Width) 5768 // <=> (CostA * B.Width) < (CostB * A.Width) 5769 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5770 } 5771 5772 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5773 const ElementCountSet &VFCandidates) { 5774 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5775 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5776 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5777 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5778 "Expected Scalar VF to be a candidate"); 5779 5780 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5781 VectorizationFactor ChosenFactor = ScalarCost; 5782 5783 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5784 if (ForceVectorization && VFCandidates.size() > 1) { 5785 // Ignore scalar width, because the user explicitly wants vectorization. 5786 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5787 // evaluation. 5788 ChosenFactor.Cost = InstructionCost::getMax(); 5789 } 5790 5791 SmallVector<InstructionVFPair> InvalidCosts; 5792 for (const auto &i : VFCandidates) { 5793 // The cost for scalar VF=1 is already calculated, so ignore it. 5794 if (i.isScalar()) 5795 continue; 5796 5797 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5798 VectorizationFactor Candidate(i, C.first); 5799 5800 #ifndef NDEBUG 5801 unsigned AssumedMinimumVscale = 1; 5802 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) 5803 AssumedMinimumVscale = VScale.getValue(); 5804 unsigned Width = 5805 Candidate.Width.isScalable() 5806 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5807 : Candidate.Width.getFixedValue(); 5808 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5809 << " costs: " << (Candidate.Cost / Width)); 5810 if (i.isScalable()) 5811 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5812 << AssumedMinimumVscale << ")"); 5813 LLVM_DEBUG(dbgs() << ".\n"); 5814 #endif 5815 5816 if (!C.second && !ForceVectorization) { 5817 LLVM_DEBUG( 5818 dbgs() << "LV: Not considering vector loop of width " << i 5819 << " because it will not generate any vector instructions.\n"); 5820 continue; 5821 } 5822 5823 // If profitable add it to ProfitableVF list. 5824 if (isMoreProfitable(Candidate, ScalarCost)) 5825 ProfitableVFs.push_back(Candidate); 5826 5827 if (isMoreProfitable(Candidate, ChosenFactor)) 5828 ChosenFactor = Candidate; 5829 } 5830 5831 // Emit a report of VFs with invalid costs in the loop. 5832 if (!InvalidCosts.empty()) { 5833 // Group the remarks per instruction, keeping the instruction order from 5834 // InvalidCosts. 5835 std::map<Instruction *, unsigned> Numbering; 5836 unsigned I = 0; 5837 for (auto &Pair : InvalidCosts) 5838 if (!Numbering.count(Pair.first)) 5839 Numbering[Pair.first] = I++; 5840 5841 // Sort the list, first on instruction(number) then on VF. 5842 llvm::sort(InvalidCosts, 5843 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5844 if (Numbering[A.first] != Numbering[B.first]) 5845 return Numbering[A.first] < Numbering[B.first]; 5846 ElementCountComparator ECC; 5847 return ECC(A.second, B.second); 5848 }); 5849 5850 // For a list of ordered instruction-vf pairs: 5851 // [(load, vf1), (load, vf2), (store, vf1)] 5852 // Group the instructions together to emit separate remarks for: 5853 // load (vf1, vf2) 5854 // store (vf1) 5855 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5856 auto Subset = ArrayRef<InstructionVFPair>(); 5857 do { 5858 if (Subset.empty()) 5859 Subset = Tail.take_front(1); 5860 5861 Instruction *I = Subset.front().first; 5862 5863 // If the next instruction is different, or if there are no other pairs, 5864 // emit a remark for the collated subset. e.g. 5865 // [(load, vf1), (load, vf2))] 5866 // to emit: 5867 // remark: invalid costs for 'load' at VF=(vf, vf2) 5868 if (Subset == Tail || Tail[Subset.size()].first != I) { 5869 std::string OutString; 5870 raw_string_ostream OS(OutString); 5871 assert(!Subset.empty() && "Unexpected empty range"); 5872 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5873 for (auto &Pair : Subset) 5874 OS << (Pair.second == Subset.front().second ? "" : ", ") 5875 << Pair.second; 5876 OS << "):"; 5877 if (auto *CI = dyn_cast<CallInst>(I)) 5878 OS << " call to " << CI->getCalledFunction()->getName(); 5879 else 5880 OS << " " << I->getOpcodeName(); 5881 OS.flush(); 5882 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5883 Tail = Tail.drop_front(Subset.size()); 5884 Subset = {}; 5885 } else 5886 // Grow the subset by one element 5887 Subset = Tail.take_front(Subset.size() + 1); 5888 } while (!Tail.empty()); 5889 } 5890 5891 if (!EnableCondStoresVectorization && NumPredStores) { 5892 reportVectorizationFailure("There are conditional stores.", 5893 "store that is conditionally executed prevents vectorization", 5894 "ConditionalStore", ORE, TheLoop); 5895 ChosenFactor = ScalarCost; 5896 } 5897 5898 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5899 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5900 << "LV: Vectorization seems to be not beneficial, " 5901 << "but was forced by a user.\n"); 5902 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5903 return ChosenFactor; 5904 } 5905 5906 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5907 const Loop &L, ElementCount VF) const { 5908 // Cross iteration phis such as reductions need special handling and are 5909 // currently unsupported. 5910 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5911 return Legal->isFirstOrderRecurrence(&Phi) || 5912 Legal->isReductionVariable(&Phi); 5913 })) 5914 return false; 5915 5916 // Phis with uses outside of the loop require special handling and are 5917 // currently unsupported. 5918 for (auto &Entry : Legal->getInductionVars()) { 5919 // Look for uses of the value of the induction at the last iteration. 5920 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5921 for (User *U : PostInc->users()) 5922 if (!L.contains(cast<Instruction>(U))) 5923 return false; 5924 // Look for uses of penultimate value of the induction. 5925 for (User *U : Entry.first->users()) 5926 if (!L.contains(cast<Instruction>(U))) 5927 return false; 5928 } 5929 5930 // Induction variables that are widened require special handling that is 5931 // currently not supported. 5932 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5933 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5934 this->isProfitableToScalarize(Entry.first, VF)); 5935 })) 5936 return false; 5937 5938 // Epilogue vectorization code has not been auditted to ensure it handles 5939 // non-latch exits properly. It may be fine, but it needs auditted and 5940 // tested. 5941 if (L.getExitingBlock() != L.getLoopLatch()) 5942 return false; 5943 5944 return true; 5945 } 5946 5947 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5948 const ElementCount VF) const { 5949 // FIXME: We need a much better cost-model to take different parameters such 5950 // as register pressure, code size increase and cost of extra branches into 5951 // account. For now we apply a very crude heuristic and only consider loops 5952 // with vectorization factors larger than a certain value. 5953 // We also consider epilogue vectorization unprofitable for targets that don't 5954 // consider interleaving beneficial (eg. MVE). 5955 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5956 return false; 5957 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5958 return true; 5959 return false; 5960 } 5961 5962 VectorizationFactor 5963 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5964 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5965 VectorizationFactor Result = VectorizationFactor::Disabled(); 5966 if (!EnableEpilogueVectorization) { 5967 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5968 return Result; 5969 } 5970 5971 if (!isScalarEpilogueAllowed()) { 5972 LLVM_DEBUG( 5973 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5974 "allowed.\n";); 5975 return Result; 5976 } 5977 5978 // Not really a cost consideration, but check for unsupported cases here to 5979 // simplify the logic. 5980 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5981 LLVM_DEBUG( 5982 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5983 "not a supported candidate.\n";); 5984 return Result; 5985 } 5986 5987 if (EpilogueVectorizationForceVF > 1) { 5988 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5989 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5990 if (LVP.hasPlanWithVF(ForcedEC)) 5991 return {ForcedEC, 0}; 5992 else { 5993 LLVM_DEBUG( 5994 dbgs() 5995 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5996 return Result; 5997 } 5998 } 5999 6000 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6001 TheLoop->getHeader()->getParent()->hasMinSize()) { 6002 LLVM_DEBUG( 6003 dbgs() 6004 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6005 return Result; 6006 } 6007 6008 auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 6009 if (MainLoopVF.isScalable()) 6010 LLVM_DEBUG( 6011 dbgs() << "LEV: Epilogue vectorization using scalable vectors not " 6012 "yet supported. Converting to fixed-width (VF=" 6013 << FixedMainLoopVF << ") instead\n"); 6014 6015 if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) { 6016 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 6017 "this loop\n"); 6018 return Result; 6019 } 6020 6021 for (auto &NextVF : ProfitableVFs) 6022 if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) && 6023 (Result.Width.getFixedValue() == 1 || 6024 isMoreProfitable(NextVF, Result)) && 6025 LVP.hasPlanWithVF(NextVF.Width)) 6026 Result = NextVF; 6027 6028 if (Result != VectorizationFactor::Disabled()) 6029 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6030 << Result.Width.getFixedValue() << "\n";); 6031 return Result; 6032 } 6033 6034 std::pair<unsigned, unsigned> 6035 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6036 unsigned MinWidth = -1U; 6037 unsigned MaxWidth = 8; 6038 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6039 for (Type *T : ElementTypesInLoop) { 6040 MinWidth = std::min<unsigned>( 6041 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6042 MaxWidth = std::max<unsigned>( 6043 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6044 } 6045 return {MinWidth, MaxWidth}; 6046 } 6047 6048 void LoopVectorizationCostModel::collectElementTypesForWidening() { 6049 ElementTypesInLoop.clear(); 6050 // For each block. 6051 for (BasicBlock *BB : TheLoop->blocks()) { 6052 // For each instruction in the loop. 6053 for (Instruction &I : BB->instructionsWithoutDebug()) { 6054 Type *T = I.getType(); 6055 6056 // Skip ignored values. 6057 if (ValuesToIgnore.count(&I)) 6058 continue; 6059 6060 // Only examine Loads, Stores and PHINodes. 6061 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6062 continue; 6063 6064 // Examine PHI nodes that are reduction variables. Update the type to 6065 // account for the recurrence type. 6066 if (auto *PN = dyn_cast<PHINode>(&I)) { 6067 if (!Legal->isReductionVariable(PN)) 6068 continue; 6069 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6070 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6071 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6072 RdxDesc.getRecurrenceType(), 6073 TargetTransformInfo::ReductionFlags())) 6074 continue; 6075 T = RdxDesc.getRecurrenceType(); 6076 } 6077 6078 // Examine the stored values. 6079 if (auto *ST = dyn_cast<StoreInst>(&I)) 6080 T = ST->getValueOperand()->getType(); 6081 6082 // Ignore loaded pointer types and stored pointer types that are not 6083 // vectorizable. 6084 // 6085 // FIXME: The check here attempts to predict whether a load or store will 6086 // be vectorized. We only know this for certain after a VF has 6087 // been selected. Here, we assume that if an access can be 6088 // vectorized, it will be. We should also look at extending this 6089 // optimization to non-pointer types. 6090 // 6091 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6092 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6093 continue; 6094 6095 ElementTypesInLoop.insert(T); 6096 } 6097 } 6098 } 6099 6100 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6101 unsigned LoopCost) { 6102 // -- The interleave heuristics -- 6103 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6104 // There are many micro-architectural considerations that we can't predict 6105 // at this level. For example, frontend pressure (on decode or fetch) due to 6106 // code size, or the number and capabilities of the execution ports. 6107 // 6108 // We use the following heuristics to select the interleave count: 6109 // 1. If the code has reductions, then we interleave to break the cross 6110 // iteration dependency. 6111 // 2. If the loop is really small, then we interleave to reduce the loop 6112 // overhead. 6113 // 3. We don't interleave if we think that we will spill registers to memory 6114 // due to the increased register pressure. 6115 6116 if (!isScalarEpilogueAllowed()) 6117 return 1; 6118 6119 // We used the distance for the interleave count. 6120 if (Legal->getMaxSafeDepDistBytes() != -1U) 6121 return 1; 6122 6123 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6124 const bool HasReductions = !Legal->getReductionVars().empty(); 6125 // Do not interleave loops with a relatively small known or estimated trip 6126 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6127 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6128 // because with the above conditions interleaving can expose ILP and break 6129 // cross iteration dependences for reductions. 6130 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6131 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6132 return 1; 6133 6134 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6135 // We divide by these constants so assume that we have at least one 6136 // instruction that uses at least one register. 6137 for (auto& pair : R.MaxLocalUsers) { 6138 pair.second = std::max(pair.second, 1U); 6139 } 6140 6141 // We calculate the interleave count using the following formula. 6142 // Subtract the number of loop invariants from the number of available 6143 // registers. These registers are used by all of the interleaved instances. 6144 // Next, divide the remaining registers by the number of registers that is 6145 // required by the loop, in order to estimate how many parallel instances 6146 // fit without causing spills. All of this is rounded down if necessary to be 6147 // a power of two. We want power of two interleave count to simplify any 6148 // addressing operations or alignment considerations. 6149 // We also want power of two interleave counts to ensure that the induction 6150 // variable of the vector loop wraps to zero, when tail is folded by masking; 6151 // this currently happens when OptForSize, in which case IC is set to 1 above. 6152 unsigned IC = UINT_MAX; 6153 6154 for (auto& pair : R.MaxLocalUsers) { 6155 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6156 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6157 << " registers of " 6158 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6159 if (VF.isScalar()) { 6160 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6161 TargetNumRegisters = ForceTargetNumScalarRegs; 6162 } else { 6163 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6164 TargetNumRegisters = ForceTargetNumVectorRegs; 6165 } 6166 unsigned MaxLocalUsers = pair.second; 6167 unsigned LoopInvariantRegs = 0; 6168 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6169 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6170 6171 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6172 // Don't count the induction variable as interleaved. 6173 if (EnableIndVarRegisterHeur) { 6174 TmpIC = 6175 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6176 std::max(1U, (MaxLocalUsers - 1))); 6177 } 6178 6179 IC = std::min(IC, TmpIC); 6180 } 6181 6182 // Clamp the interleave ranges to reasonable counts. 6183 unsigned MaxInterleaveCount = 6184 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6185 6186 // Check if the user has overridden the max. 6187 if (VF.isScalar()) { 6188 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6189 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6190 } else { 6191 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6192 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6193 } 6194 6195 // If trip count is known or estimated compile time constant, limit the 6196 // interleave count to be less than the trip count divided by VF, provided it 6197 // is at least 1. 6198 // 6199 // For scalable vectors we can't know if interleaving is beneficial. It may 6200 // not be beneficial for small loops if none of the lanes in the second vector 6201 // iterations is enabled. However, for larger loops, there is likely to be a 6202 // similar benefit as for fixed-width vectors. For now, we choose to leave 6203 // the InterleaveCount as if vscale is '1', although if some information about 6204 // the vector is known (e.g. min vector size), we can make a better decision. 6205 if (BestKnownTC) { 6206 MaxInterleaveCount = 6207 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6208 // Make sure MaxInterleaveCount is greater than 0. 6209 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6210 } 6211 6212 assert(MaxInterleaveCount > 0 && 6213 "Maximum interleave count must be greater than 0"); 6214 6215 // Clamp the calculated IC to be between the 1 and the max interleave count 6216 // that the target and trip count allows. 6217 if (IC > MaxInterleaveCount) 6218 IC = MaxInterleaveCount; 6219 else 6220 // Make sure IC is greater than 0. 6221 IC = std::max(1u, IC); 6222 6223 assert(IC > 0 && "Interleave count must be greater than 0."); 6224 6225 // If we did not calculate the cost for VF (because the user selected the VF) 6226 // then we calculate the cost of VF here. 6227 if (LoopCost == 0) { 6228 InstructionCost C = expectedCost(VF).first; 6229 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6230 LoopCost = *C.getValue(); 6231 } 6232 6233 assert(LoopCost && "Non-zero loop cost expected"); 6234 6235 // Interleave if we vectorized this loop and there is a reduction that could 6236 // benefit from interleaving. 6237 if (VF.isVector() && HasReductions) { 6238 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6239 return IC; 6240 } 6241 6242 // Note that if we've already vectorized the loop we will have done the 6243 // runtime check and so interleaving won't require further checks. 6244 bool InterleavingRequiresRuntimePointerCheck = 6245 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6246 6247 // We want to interleave small loops in order to reduce the loop overhead and 6248 // potentially expose ILP opportunities. 6249 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6250 << "LV: IC is " << IC << '\n' 6251 << "LV: VF is " << VF << '\n'); 6252 const bool AggressivelyInterleaveReductions = 6253 TTI.enableAggressiveInterleaving(HasReductions); 6254 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6255 // We assume that the cost overhead is 1 and we use the cost model 6256 // to estimate the cost of the loop and interleave until the cost of the 6257 // loop overhead is about 5% of the cost of the loop. 6258 unsigned SmallIC = 6259 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6260 6261 // Interleave until store/load ports (estimated by max interleave count) are 6262 // saturated. 6263 unsigned NumStores = Legal->getNumStores(); 6264 unsigned NumLoads = Legal->getNumLoads(); 6265 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6266 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6267 6268 // There is little point in interleaving for reductions containing selects 6269 // and compares when VF=1 since it may just create more overhead than it's 6270 // worth for loops with small trip counts. This is because we still have to 6271 // do the final reduction after the loop. 6272 bool HasSelectCmpReductions = 6273 HasReductions && 6274 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6275 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6276 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6277 RdxDesc.getRecurrenceKind()); 6278 }); 6279 if (HasSelectCmpReductions) { 6280 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6281 return 1; 6282 } 6283 6284 // If we have a scalar reduction (vector reductions are already dealt with 6285 // by this point), we can increase the critical path length if the loop 6286 // we're interleaving is inside another loop. For tree-wise reductions 6287 // set the limit to 2, and for ordered reductions it's best to disable 6288 // interleaving entirely. 6289 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6290 bool HasOrderedReductions = 6291 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6292 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6293 return RdxDesc.isOrdered(); 6294 }); 6295 if (HasOrderedReductions) { 6296 LLVM_DEBUG( 6297 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6298 return 1; 6299 } 6300 6301 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6302 SmallIC = std::min(SmallIC, F); 6303 StoresIC = std::min(StoresIC, F); 6304 LoadsIC = std::min(LoadsIC, F); 6305 } 6306 6307 if (EnableLoadStoreRuntimeInterleave && 6308 std::max(StoresIC, LoadsIC) > SmallIC) { 6309 LLVM_DEBUG( 6310 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6311 return std::max(StoresIC, LoadsIC); 6312 } 6313 6314 // If there are scalar reductions and TTI has enabled aggressive 6315 // interleaving for reductions, we will interleave to expose ILP. 6316 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6317 AggressivelyInterleaveReductions) { 6318 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6319 // Interleave no less than SmallIC but not as aggressive as the normal IC 6320 // to satisfy the rare situation when resources are too limited. 6321 return std::max(IC / 2, SmallIC); 6322 } else { 6323 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6324 return SmallIC; 6325 } 6326 } 6327 6328 // Interleave if this is a large loop (small loops are already dealt with by 6329 // this point) that could benefit from interleaving. 6330 if (AggressivelyInterleaveReductions) { 6331 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6332 return IC; 6333 } 6334 6335 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6336 return 1; 6337 } 6338 6339 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6340 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6341 // This function calculates the register usage by measuring the highest number 6342 // of values that are alive at a single location. Obviously, this is a very 6343 // rough estimation. We scan the loop in a topological order in order and 6344 // assign a number to each instruction. We use RPO to ensure that defs are 6345 // met before their users. We assume that each instruction that has in-loop 6346 // users starts an interval. We record every time that an in-loop value is 6347 // used, so we have a list of the first and last occurrences of each 6348 // instruction. Next, we transpose this data structure into a multi map that 6349 // holds the list of intervals that *end* at a specific location. This multi 6350 // map allows us to perform a linear search. We scan the instructions linearly 6351 // and record each time that a new interval starts, by placing it in a set. 6352 // If we find this value in the multi-map then we remove it from the set. 6353 // The max register usage is the maximum size of the set. 6354 // We also search for instructions that are defined outside the loop, but are 6355 // used inside the loop. We need this number separately from the max-interval 6356 // usage number because when we unroll, loop-invariant values do not take 6357 // more register. 6358 LoopBlocksDFS DFS(TheLoop); 6359 DFS.perform(LI); 6360 6361 RegisterUsage RU; 6362 6363 // Each 'key' in the map opens a new interval. The values 6364 // of the map are the index of the 'last seen' usage of the 6365 // instruction that is the key. 6366 using IntervalMap = DenseMap<Instruction *, unsigned>; 6367 6368 // Maps instruction to its index. 6369 SmallVector<Instruction *, 64> IdxToInstr; 6370 // Marks the end of each interval. 6371 IntervalMap EndPoint; 6372 // Saves the list of instruction indices that are used in the loop. 6373 SmallPtrSet<Instruction *, 8> Ends; 6374 // Saves the list of values that are used in the loop but are 6375 // defined outside the loop, such as arguments and constants. 6376 SmallPtrSet<Value *, 8> LoopInvariants; 6377 6378 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6379 for (Instruction &I : BB->instructionsWithoutDebug()) { 6380 IdxToInstr.push_back(&I); 6381 6382 // Save the end location of each USE. 6383 for (Value *U : I.operands()) { 6384 auto *Instr = dyn_cast<Instruction>(U); 6385 6386 // Ignore non-instruction values such as arguments, constants, etc. 6387 if (!Instr) 6388 continue; 6389 6390 // If this instruction is outside the loop then record it and continue. 6391 if (!TheLoop->contains(Instr)) { 6392 LoopInvariants.insert(Instr); 6393 continue; 6394 } 6395 6396 // Overwrite previous end points. 6397 EndPoint[Instr] = IdxToInstr.size(); 6398 Ends.insert(Instr); 6399 } 6400 } 6401 } 6402 6403 // Saves the list of intervals that end with the index in 'key'. 6404 using InstrList = SmallVector<Instruction *, 2>; 6405 DenseMap<unsigned, InstrList> TransposeEnds; 6406 6407 // Transpose the EndPoints to a list of values that end at each index. 6408 for (auto &Interval : EndPoint) 6409 TransposeEnds[Interval.second].push_back(Interval.first); 6410 6411 SmallPtrSet<Instruction *, 8> OpenIntervals; 6412 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6413 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6414 6415 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6416 6417 // A lambda that gets the register usage for the given type and VF. 6418 const auto &TTICapture = TTI; 6419 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6420 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6421 return 0; 6422 InstructionCost::CostType RegUsage = 6423 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6424 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6425 "Nonsensical values for register usage."); 6426 return RegUsage; 6427 }; 6428 6429 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6430 Instruction *I = IdxToInstr[i]; 6431 6432 // Remove all of the instructions that end at this location. 6433 InstrList &List = TransposeEnds[i]; 6434 for (Instruction *ToRemove : List) 6435 OpenIntervals.erase(ToRemove); 6436 6437 // Ignore instructions that are never used within the loop. 6438 if (!Ends.count(I)) 6439 continue; 6440 6441 // Skip ignored values. 6442 if (ValuesToIgnore.count(I)) 6443 continue; 6444 6445 // For each VF find the maximum usage of registers. 6446 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6447 // Count the number of live intervals. 6448 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6449 6450 if (VFs[j].isScalar()) { 6451 for (auto Inst : OpenIntervals) { 6452 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6453 if (RegUsage.find(ClassID) == RegUsage.end()) 6454 RegUsage[ClassID] = 1; 6455 else 6456 RegUsage[ClassID] += 1; 6457 } 6458 } else { 6459 collectUniformsAndScalars(VFs[j]); 6460 for (auto Inst : OpenIntervals) { 6461 // Skip ignored values for VF > 1. 6462 if (VecValuesToIgnore.count(Inst)) 6463 continue; 6464 if (isScalarAfterVectorization(Inst, VFs[j])) { 6465 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6466 if (RegUsage.find(ClassID) == RegUsage.end()) 6467 RegUsage[ClassID] = 1; 6468 else 6469 RegUsage[ClassID] += 1; 6470 } else { 6471 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6472 if (RegUsage.find(ClassID) == RegUsage.end()) 6473 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6474 else 6475 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6476 } 6477 } 6478 } 6479 6480 for (auto& pair : RegUsage) { 6481 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6482 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6483 else 6484 MaxUsages[j][pair.first] = pair.second; 6485 } 6486 } 6487 6488 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6489 << OpenIntervals.size() << '\n'); 6490 6491 // Add the current instruction to the list of open intervals. 6492 OpenIntervals.insert(I); 6493 } 6494 6495 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6496 SmallMapVector<unsigned, unsigned, 4> Invariant; 6497 6498 for (auto Inst : LoopInvariants) { 6499 unsigned Usage = 6500 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6501 unsigned ClassID = 6502 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6503 if (Invariant.find(ClassID) == Invariant.end()) 6504 Invariant[ClassID] = Usage; 6505 else 6506 Invariant[ClassID] += Usage; 6507 } 6508 6509 LLVM_DEBUG({ 6510 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6511 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6512 << " item\n"; 6513 for (const auto &pair : MaxUsages[i]) { 6514 dbgs() << "LV(REG): RegisterClass: " 6515 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6516 << " registers\n"; 6517 } 6518 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6519 << " item\n"; 6520 for (const auto &pair : Invariant) { 6521 dbgs() << "LV(REG): RegisterClass: " 6522 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6523 << " registers\n"; 6524 } 6525 }); 6526 6527 RU.LoopInvariantRegs = Invariant; 6528 RU.MaxLocalUsers = MaxUsages[i]; 6529 RUs[i] = RU; 6530 } 6531 6532 return RUs; 6533 } 6534 6535 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6536 // TODO: Cost model for emulated masked load/store is completely 6537 // broken. This hack guides the cost model to use an artificially 6538 // high enough value to practically disable vectorization with such 6539 // operations, except where previously deployed legality hack allowed 6540 // using very low cost values. This is to avoid regressions coming simply 6541 // from moving "masked load/store" check from legality to cost model. 6542 // Masked Load/Gather emulation was previously never allowed. 6543 // Limited number of Masked Store/Scatter emulation was allowed. 6544 assert(isPredicatedInst(I) && 6545 "Expecting a scalar emulated instruction"); 6546 return isa<LoadInst>(I) || 6547 (isa<StoreInst>(I) && 6548 NumPredStores > NumberOfStoresToPredicate); 6549 } 6550 6551 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6552 // If we aren't vectorizing the loop, or if we've already collected the 6553 // instructions to scalarize, there's nothing to do. Collection may already 6554 // have occurred if we have a user-selected VF and are now computing the 6555 // expected cost for interleaving. 6556 if (VF.isScalar() || VF.isZero() || 6557 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6558 return; 6559 6560 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6561 // not profitable to scalarize any instructions, the presence of VF in the 6562 // map will indicate that we've analyzed it already. 6563 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6564 6565 // Find all the instructions that are scalar with predication in the loop and 6566 // determine if it would be better to not if-convert the blocks they are in. 6567 // If so, we also record the instructions to scalarize. 6568 for (BasicBlock *BB : TheLoop->blocks()) { 6569 if (!blockNeedsPredicationForAnyReason(BB)) 6570 continue; 6571 for (Instruction &I : *BB) 6572 if (isScalarWithPredication(&I)) { 6573 ScalarCostsTy ScalarCosts; 6574 // Do not apply discount if scalable, because that would lead to 6575 // invalid scalarization costs. 6576 // Do not apply discount logic if hacked cost is needed 6577 // for emulated masked memrefs. 6578 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) && 6579 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6580 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6581 // Remember that BB will remain after vectorization. 6582 PredicatedBBsAfterVectorization.insert(BB); 6583 } 6584 } 6585 } 6586 6587 int LoopVectorizationCostModel::computePredInstDiscount( 6588 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6589 assert(!isUniformAfterVectorization(PredInst, VF) && 6590 "Instruction marked uniform-after-vectorization will be predicated"); 6591 6592 // Initialize the discount to zero, meaning that the scalar version and the 6593 // vector version cost the same. 6594 InstructionCost Discount = 0; 6595 6596 // Holds instructions to analyze. The instructions we visit are mapped in 6597 // ScalarCosts. Those instructions are the ones that would be scalarized if 6598 // we find that the scalar version costs less. 6599 SmallVector<Instruction *, 8> Worklist; 6600 6601 // Returns true if the given instruction can be scalarized. 6602 auto canBeScalarized = [&](Instruction *I) -> bool { 6603 // We only attempt to scalarize instructions forming a single-use chain 6604 // from the original predicated block that would otherwise be vectorized. 6605 // Although not strictly necessary, we give up on instructions we know will 6606 // already be scalar to avoid traversing chains that are unlikely to be 6607 // beneficial. 6608 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6609 isScalarAfterVectorization(I, VF)) 6610 return false; 6611 6612 // If the instruction is scalar with predication, it will be analyzed 6613 // separately. We ignore it within the context of PredInst. 6614 if (isScalarWithPredication(I)) 6615 return false; 6616 6617 // If any of the instruction's operands are uniform after vectorization, 6618 // the instruction cannot be scalarized. This prevents, for example, a 6619 // masked load from being scalarized. 6620 // 6621 // We assume we will only emit a value for lane zero of an instruction 6622 // marked uniform after vectorization, rather than VF identical values. 6623 // Thus, if we scalarize an instruction that uses a uniform, we would 6624 // create uses of values corresponding to the lanes we aren't emitting code 6625 // for. This behavior can be changed by allowing getScalarValue to clone 6626 // the lane zero values for uniforms rather than asserting. 6627 for (Use &U : I->operands()) 6628 if (auto *J = dyn_cast<Instruction>(U.get())) 6629 if (isUniformAfterVectorization(J, VF)) 6630 return false; 6631 6632 // Otherwise, we can scalarize the instruction. 6633 return true; 6634 }; 6635 6636 // Compute the expected cost discount from scalarizing the entire expression 6637 // feeding the predicated instruction. We currently only consider expressions 6638 // that are single-use instruction chains. 6639 Worklist.push_back(PredInst); 6640 while (!Worklist.empty()) { 6641 Instruction *I = Worklist.pop_back_val(); 6642 6643 // If we've already analyzed the instruction, there's nothing to do. 6644 if (ScalarCosts.find(I) != ScalarCosts.end()) 6645 continue; 6646 6647 // Compute the cost of the vector instruction. Note that this cost already 6648 // includes the scalarization overhead of the predicated instruction. 6649 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6650 6651 // Compute the cost of the scalarized instruction. This cost is the cost of 6652 // the instruction as if it wasn't if-converted and instead remained in the 6653 // predicated block. We will scale this cost by block probability after 6654 // computing the scalarization overhead. 6655 InstructionCost ScalarCost = 6656 VF.getFixedValue() * 6657 getInstructionCost(I, ElementCount::getFixed(1)).first; 6658 6659 // Compute the scalarization overhead of needed insertelement instructions 6660 // and phi nodes. 6661 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6662 ScalarCost += TTI.getScalarizationOverhead( 6663 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6664 APInt::getAllOnes(VF.getFixedValue()), true, false); 6665 ScalarCost += 6666 VF.getFixedValue() * 6667 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6668 } 6669 6670 // Compute the scalarization overhead of needed extractelement 6671 // instructions. For each of the instruction's operands, if the operand can 6672 // be scalarized, add it to the worklist; otherwise, account for the 6673 // overhead. 6674 for (Use &U : I->operands()) 6675 if (auto *J = dyn_cast<Instruction>(U.get())) { 6676 assert(VectorType::isValidElementType(J->getType()) && 6677 "Instruction has non-scalar type"); 6678 if (canBeScalarized(J)) 6679 Worklist.push_back(J); 6680 else if (needsExtract(J, VF)) { 6681 ScalarCost += TTI.getScalarizationOverhead( 6682 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6683 APInt::getAllOnes(VF.getFixedValue()), false, true); 6684 } 6685 } 6686 6687 // Scale the total scalar cost by block probability. 6688 ScalarCost /= getReciprocalPredBlockProb(); 6689 6690 // Compute the discount. A non-negative discount means the vector version 6691 // of the instruction costs more, and scalarizing would be beneficial. 6692 Discount += VectorCost - ScalarCost; 6693 ScalarCosts[I] = ScalarCost; 6694 } 6695 6696 return *Discount.getValue(); 6697 } 6698 6699 LoopVectorizationCostModel::VectorizationCostTy 6700 LoopVectorizationCostModel::expectedCost( 6701 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6702 VectorizationCostTy Cost; 6703 6704 // For each block. 6705 for (BasicBlock *BB : TheLoop->blocks()) { 6706 VectorizationCostTy BlockCost; 6707 6708 // For each instruction in the old loop. 6709 for (Instruction &I : BB->instructionsWithoutDebug()) { 6710 // Skip ignored values. 6711 if (ValuesToIgnore.count(&I) || 6712 (VF.isVector() && VecValuesToIgnore.count(&I))) 6713 continue; 6714 6715 VectorizationCostTy C = getInstructionCost(&I, VF); 6716 6717 // Check if we should override the cost. 6718 if (C.first.isValid() && 6719 ForceTargetInstructionCost.getNumOccurrences() > 0) 6720 C.first = InstructionCost(ForceTargetInstructionCost); 6721 6722 // Keep a list of instructions with invalid costs. 6723 if (Invalid && !C.first.isValid()) 6724 Invalid->emplace_back(&I, VF); 6725 6726 BlockCost.first += C.first; 6727 BlockCost.second |= C.second; 6728 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6729 << " for VF " << VF << " For instruction: " << I 6730 << '\n'); 6731 } 6732 6733 // If we are vectorizing a predicated block, it will have been 6734 // if-converted. This means that the block's instructions (aside from 6735 // stores and instructions that may divide by zero) will now be 6736 // unconditionally executed. For the scalar case, we may not always execute 6737 // the predicated block, if it is an if-else block. Thus, scale the block's 6738 // cost by the probability of executing it. blockNeedsPredication from 6739 // Legal is used so as to not include all blocks in tail folded loops. 6740 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6741 BlockCost.first /= getReciprocalPredBlockProb(); 6742 6743 Cost.first += BlockCost.first; 6744 Cost.second |= BlockCost.second; 6745 } 6746 6747 return Cost; 6748 } 6749 6750 /// Gets Address Access SCEV after verifying that the access pattern 6751 /// is loop invariant except the induction variable dependence. 6752 /// 6753 /// This SCEV can be sent to the Target in order to estimate the address 6754 /// calculation cost. 6755 static const SCEV *getAddressAccessSCEV( 6756 Value *Ptr, 6757 LoopVectorizationLegality *Legal, 6758 PredicatedScalarEvolution &PSE, 6759 const Loop *TheLoop) { 6760 6761 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6762 if (!Gep) 6763 return nullptr; 6764 6765 // We are looking for a gep with all loop invariant indices except for one 6766 // which should be an induction variable. 6767 auto SE = PSE.getSE(); 6768 unsigned NumOperands = Gep->getNumOperands(); 6769 for (unsigned i = 1; i < NumOperands; ++i) { 6770 Value *Opd = Gep->getOperand(i); 6771 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6772 !Legal->isInductionVariable(Opd)) 6773 return nullptr; 6774 } 6775 6776 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6777 return PSE.getSCEV(Ptr); 6778 } 6779 6780 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6781 return Legal->hasStride(I->getOperand(0)) || 6782 Legal->hasStride(I->getOperand(1)); 6783 } 6784 6785 InstructionCost 6786 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6787 ElementCount VF) { 6788 assert(VF.isVector() && 6789 "Scalarization cost of instruction implies vectorization."); 6790 if (VF.isScalable()) 6791 return InstructionCost::getInvalid(); 6792 6793 Type *ValTy = getLoadStoreType(I); 6794 auto SE = PSE.getSE(); 6795 6796 unsigned AS = getLoadStoreAddressSpace(I); 6797 Value *Ptr = getLoadStorePointerOperand(I); 6798 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6799 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6800 // that it is being called from this specific place. 6801 6802 // Figure out whether the access is strided and get the stride value 6803 // if it's known in compile time 6804 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6805 6806 // Get the cost of the scalar memory instruction and address computation. 6807 InstructionCost Cost = 6808 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6809 6810 // Don't pass *I here, since it is scalar but will actually be part of a 6811 // vectorized loop where the user of it is a vectorized instruction. 6812 const Align Alignment = getLoadStoreAlignment(I); 6813 Cost += VF.getKnownMinValue() * 6814 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6815 AS, TTI::TCK_RecipThroughput); 6816 6817 // Get the overhead of the extractelement and insertelement instructions 6818 // we might create due to scalarization. 6819 Cost += getScalarizationOverhead(I, VF); 6820 6821 // If we have a predicated load/store, it will need extra i1 extracts and 6822 // conditional branches, but may not be executed for each vector lane. Scale 6823 // the cost by the probability of executing the predicated block. 6824 if (isPredicatedInst(I)) { 6825 Cost /= getReciprocalPredBlockProb(); 6826 6827 // Add the cost of an i1 extract and a branch 6828 auto *Vec_i1Ty = 6829 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6830 Cost += TTI.getScalarizationOverhead( 6831 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6832 /*Insert=*/false, /*Extract=*/true); 6833 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6834 6835 if (useEmulatedMaskMemRefHack(I)) 6836 // Artificially setting to a high enough value to practically disable 6837 // vectorization with such operations. 6838 Cost = 3000000; 6839 } 6840 6841 return Cost; 6842 } 6843 6844 InstructionCost 6845 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6846 ElementCount VF) { 6847 Type *ValTy = getLoadStoreType(I); 6848 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6849 Value *Ptr = getLoadStorePointerOperand(I); 6850 unsigned AS = getLoadStoreAddressSpace(I); 6851 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6852 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6853 6854 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6855 "Stride should be 1 or -1 for consecutive memory access"); 6856 const Align Alignment = getLoadStoreAlignment(I); 6857 InstructionCost Cost = 0; 6858 if (Legal->isMaskRequired(I)) 6859 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6860 CostKind); 6861 else 6862 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6863 CostKind, I); 6864 6865 bool Reverse = ConsecutiveStride < 0; 6866 if (Reverse) 6867 Cost += 6868 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6869 return Cost; 6870 } 6871 6872 InstructionCost 6873 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6874 ElementCount VF) { 6875 assert(Legal->isUniformMemOp(*I)); 6876 6877 Type *ValTy = getLoadStoreType(I); 6878 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6879 const Align Alignment = getLoadStoreAlignment(I); 6880 unsigned AS = getLoadStoreAddressSpace(I); 6881 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6882 if (isa<LoadInst>(I)) { 6883 return TTI.getAddressComputationCost(ValTy) + 6884 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6885 CostKind) + 6886 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6887 } 6888 StoreInst *SI = cast<StoreInst>(I); 6889 6890 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6891 return TTI.getAddressComputationCost(ValTy) + 6892 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6893 CostKind) + 6894 (isLoopInvariantStoreValue 6895 ? 0 6896 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6897 VF.getKnownMinValue() - 1)); 6898 } 6899 6900 InstructionCost 6901 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6902 ElementCount VF) { 6903 Type *ValTy = getLoadStoreType(I); 6904 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6905 const Align Alignment = getLoadStoreAlignment(I); 6906 const Value *Ptr = getLoadStorePointerOperand(I); 6907 6908 return TTI.getAddressComputationCost(VectorTy) + 6909 TTI.getGatherScatterOpCost( 6910 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6911 TargetTransformInfo::TCK_RecipThroughput, I); 6912 } 6913 6914 InstructionCost 6915 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6916 ElementCount VF) { 6917 // TODO: Once we have support for interleaving with scalable vectors 6918 // we can calculate the cost properly here. 6919 if (VF.isScalable()) 6920 return InstructionCost::getInvalid(); 6921 6922 Type *ValTy = getLoadStoreType(I); 6923 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6924 unsigned AS = getLoadStoreAddressSpace(I); 6925 6926 auto Group = getInterleavedAccessGroup(I); 6927 assert(Group && "Fail to get an interleaved access group."); 6928 6929 unsigned InterleaveFactor = Group->getFactor(); 6930 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6931 6932 // Holds the indices of existing members in the interleaved group. 6933 SmallVector<unsigned, 4> Indices; 6934 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6935 if (Group->getMember(IF)) 6936 Indices.push_back(IF); 6937 6938 // Calculate the cost of the whole interleaved group. 6939 bool UseMaskForGaps = 6940 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6941 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6942 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6943 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6944 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6945 6946 if (Group->isReverse()) { 6947 // TODO: Add support for reversed masked interleaved access. 6948 assert(!Legal->isMaskRequired(I) && 6949 "Reverse masked interleaved access not supported."); 6950 Cost += 6951 Group->getNumMembers() * 6952 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6953 } 6954 return Cost; 6955 } 6956 6957 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6958 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6959 using namespace llvm::PatternMatch; 6960 // Early exit for no inloop reductions 6961 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6962 return None; 6963 auto *VectorTy = cast<VectorType>(Ty); 6964 6965 // We are looking for a pattern of, and finding the minimal acceptable cost: 6966 // reduce(mul(ext(A), ext(B))) or 6967 // reduce(mul(A, B)) or 6968 // reduce(ext(A)) or 6969 // reduce(A). 6970 // The basic idea is that we walk down the tree to do that, finding the root 6971 // reduction instruction in InLoopReductionImmediateChains. From there we find 6972 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6973 // of the components. If the reduction cost is lower then we return it for the 6974 // reduction instruction and 0 for the other instructions in the pattern. If 6975 // it is not we return an invalid cost specifying the orignal cost method 6976 // should be used. 6977 Instruction *RetI = I; 6978 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6979 if (!RetI->hasOneUser()) 6980 return None; 6981 RetI = RetI->user_back(); 6982 } 6983 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6984 RetI->user_back()->getOpcode() == Instruction::Add) { 6985 if (!RetI->hasOneUser()) 6986 return None; 6987 RetI = RetI->user_back(); 6988 } 6989 6990 // Test if the found instruction is a reduction, and if not return an invalid 6991 // cost specifying the parent to use the original cost modelling. 6992 if (!InLoopReductionImmediateChains.count(RetI)) 6993 return None; 6994 6995 // Find the reduction this chain is a part of and calculate the basic cost of 6996 // the reduction on its own. 6997 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6998 Instruction *ReductionPhi = LastChain; 6999 while (!isa<PHINode>(ReductionPhi)) 7000 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7001 7002 const RecurrenceDescriptor &RdxDesc = 7003 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7004 7005 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7006 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 7007 7008 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 7009 // normal fmul instruction to the cost of the fadd reduction. 7010 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 7011 BaseCost += 7012 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 7013 7014 // If we're using ordered reductions then we can just return the base cost 7015 // here, since getArithmeticReductionCost calculates the full ordered 7016 // reduction cost when FP reassociation is not allowed. 7017 if (useOrderedReductions(RdxDesc)) 7018 return BaseCost; 7019 7020 // Get the operand that was not the reduction chain and match it to one of the 7021 // patterns, returning the better cost if it is found. 7022 Instruction *RedOp = RetI->getOperand(1) == LastChain 7023 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7024 : dyn_cast<Instruction>(RetI->getOperand(1)); 7025 7026 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7027 7028 Instruction *Op0, *Op1; 7029 if (RedOp && 7030 match(RedOp, 7031 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 7032 match(Op0, m_ZExtOrSExt(m_Value())) && 7033 Op0->getOpcode() == Op1->getOpcode() && 7034 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7035 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 7036 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 7037 7038 // Matched reduce(ext(mul(ext(A), ext(B))) 7039 // Note that the extend opcodes need to all match, or if A==B they will have 7040 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 7041 // which is equally fine. 7042 bool IsUnsigned = isa<ZExtInst>(Op0); 7043 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7044 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 7045 7046 InstructionCost ExtCost = 7047 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 7048 TTI::CastContextHint::None, CostKind, Op0); 7049 InstructionCost MulCost = 7050 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 7051 InstructionCost Ext2Cost = 7052 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 7053 TTI::CastContextHint::None, CostKind, RedOp); 7054 7055 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7056 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7057 CostKind); 7058 7059 if (RedCost.isValid() && 7060 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 7061 return I == RetI ? RedCost : 0; 7062 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 7063 !TheLoop->isLoopInvariant(RedOp)) { 7064 // Matched reduce(ext(A)) 7065 bool IsUnsigned = isa<ZExtInst>(RedOp); 7066 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7067 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7068 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7069 CostKind); 7070 7071 InstructionCost ExtCost = 7072 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7073 TTI::CastContextHint::None, CostKind, RedOp); 7074 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7075 return I == RetI ? RedCost : 0; 7076 } else if (RedOp && 7077 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 7078 if (match(Op0, m_ZExtOrSExt(m_Value())) && 7079 Op0->getOpcode() == Op1->getOpcode() && 7080 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7081 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7082 bool IsUnsigned = isa<ZExtInst>(Op0); 7083 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7084 // Matched reduce(mul(ext, ext)) 7085 InstructionCost ExtCost = 7086 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7087 TTI::CastContextHint::None, CostKind, Op0); 7088 InstructionCost MulCost = 7089 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7090 7091 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7092 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7093 CostKind); 7094 7095 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7096 return I == RetI ? RedCost : 0; 7097 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7098 // Matched reduce(mul()) 7099 InstructionCost MulCost = 7100 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7101 7102 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7103 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7104 CostKind); 7105 7106 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7107 return I == RetI ? RedCost : 0; 7108 } 7109 } 7110 7111 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7112 } 7113 7114 InstructionCost 7115 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7116 ElementCount VF) { 7117 // Calculate scalar cost only. Vectorization cost should be ready at this 7118 // moment. 7119 if (VF.isScalar()) { 7120 Type *ValTy = getLoadStoreType(I); 7121 const Align Alignment = getLoadStoreAlignment(I); 7122 unsigned AS = getLoadStoreAddressSpace(I); 7123 7124 return TTI.getAddressComputationCost(ValTy) + 7125 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7126 TTI::TCK_RecipThroughput, I); 7127 } 7128 return getWideningCost(I, VF); 7129 } 7130 7131 LoopVectorizationCostModel::VectorizationCostTy 7132 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7133 ElementCount VF) { 7134 // If we know that this instruction will remain uniform, check the cost of 7135 // the scalar version. 7136 if (isUniformAfterVectorization(I, VF)) 7137 VF = ElementCount::getFixed(1); 7138 7139 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7140 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7141 7142 // Forced scalars do not have any scalarization overhead. 7143 auto ForcedScalar = ForcedScalars.find(VF); 7144 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7145 auto InstSet = ForcedScalar->second; 7146 if (InstSet.count(I)) 7147 return VectorizationCostTy( 7148 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7149 VF.getKnownMinValue()), 7150 false); 7151 } 7152 7153 Type *VectorTy; 7154 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7155 7156 bool TypeNotScalarized = false; 7157 if (VF.isVector() && VectorTy->isVectorTy()) { 7158 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 7159 if (NumParts) 7160 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 7161 else 7162 C = InstructionCost::getInvalid(); 7163 } 7164 return VectorizationCostTy(C, TypeNotScalarized); 7165 } 7166 7167 InstructionCost 7168 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7169 ElementCount VF) const { 7170 7171 // There is no mechanism yet to create a scalable scalarization loop, 7172 // so this is currently Invalid. 7173 if (VF.isScalable()) 7174 return InstructionCost::getInvalid(); 7175 7176 if (VF.isScalar()) 7177 return 0; 7178 7179 InstructionCost Cost = 0; 7180 Type *RetTy = ToVectorTy(I->getType(), VF); 7181 if (!RetTy->isVoidTy() && 7182 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7183 Cost += TTI.getScalarizationOverhead( 7184 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7185 false); 7186 7187 // Some targets keep addresses scalar. 7188 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7189 return Cost; 7190 7191 // Some targets support efficient element stores. 7192 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7193 return Cost; 7194 7195 // Collect operands to consider. 7196 CallInst *CI = dyn_cast<CallInst>(I); 7197 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7198 7199 // Skip operands that do not require extraction/scalarization and do not incur 7200 // any overhead. 7201 SmallVector<Type *> Tys; 7202 for (auto *V : filterExtractingOperands(Ops, VF)) 7203 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7204 return Cost + TTI.getOperandsScalarizationOverhead( 7205 filterExtractingOperands(Ops, VF), Tys); 7206 } 7207 7208 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7209 if (VF.isScalar()) 7210 return; 7211 NumPredStores = 0; 7212 for (BasicBlock *BB : TheLoop->blocks()) { 7213 // For each instruction in the old loop. 7214 for (Instruction &I : *BB) { 7215 Value *Ptr = getLoadStorePointerOperand(&I); 7216 if (!Ptr) 7217 continue; 7218 7219 // TODO: We should generate better code and update the cost model for 7220 // predicated uniform stores. Today they are treated as any other 7221 // predicated store (see added test cases in 7222 // invariant-store-vectorization.ll). 7223 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7224 NumPredStores++; 7225 7226 if (Legal->isUniformMemOp(I)) { 7227 // TODO: Avoid replicating loads and stores instead of 7228 // relying on instcombine to remove them. 7229 // Load: Scalar load + broadcast 7230 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7231 InstructionCost Cost; 7232 if (isa<StoreInst>(&I) && VF.isScalable() && 7233 isLegalGatherOrScatter(&I)) { 7234 Cost = getGatherScatterCost(&I, VF); 7235 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7236 } else { 7237 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7238 "Cannot yet scalarize uniform stores"); 7239 Cost = getUniformMemOpCost(&I, VF); 7240 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7241 } 7242 continue; 7243 } 7244 7245 // We assume that widening is the best solution when possible. 7246 if (memoryInstructionCanBeWidened(&I, VF)) { 7247 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7248 int ConsecutiveStride = Legal->isConsecutivePtr( 7249 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7250 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7251 "Expected consecutive stride."); 7252 InstWidening Decision = 7253 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7254 setWideningDecision(&I, VF, Decision, Cost); 7255 continue; 7256 } 7257 7258 // Choose between Interleaving, Gather/Scatter or Scalarization. 7259 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7260 unsigned NumAccesses = 1; 7261 if (isAccessInterleaved(&I)) { 7262 auto Group = getInterleavedAccessGroup(&I); 7263 assert(Group && "Fail to get an interleaved access group."); 7264 7265 // Make one decision for the whole group. 7266 if (getWideningDecision(&I, VF) != CM_Unknown) 7267 continue; 7268 7269 NumAccesses = Group->getNumMembers(); 7270 if (interleavedAccessCanBeWidened(&I, VF)) 7271 InterleaveCost = getInterleaveGroupCost(&I, VF); 7272 } 7273 7274 InstructionCost GatherScatterCost = 7275 isLegalGatherOrScatter(&I) 7276 ? getGatherScatterCost(&I, VF) * NumAccesses 7277 : InstructionCost::getInvalid(); 7278 7279 InstructionCost ScalarizationCost = 7280 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7281 7282 // Choose better solution for the current VF, 7283 // write down this decision and use it during vectorization. 7284 InstructionCost Cost; 7285 InstWidening Decision; 7286 if (InterleaveCost <= GatherScatterCost && 7287 InterleaveCost < ScalarizationCost) { 7288 Decision = CM_Interleave; 7289 Cost = InterleaveCost; 7290 } else if (GatherScatterCost < ScalarizationCost) { 7291 Decision = CM_GatherScatter; 7292 Cost = GatherScatterCost; 7293 } else { 7294 Decision = CM_Scalarize; 7295 Cost = ScalarizationCost; 7296 } 7297 // If the instructions belongs to an interleave group, the whole group 7298 // receives the same decision. The whole group receives the cost, but 7299 // the cost will actually be assigned to one instruction. 7300 if (auto Group = getInterleavedAccessGroup(&I)) 7301 setWideningDecision(Group, VF, Decision, Cost); 7302 else 7303 setWideningDecision(&I, VF, Decision, Cost); 7304 } 7305 } 7306 7307 // Make sure that any load of address and any other address computation 7308 // remains scalar unless there is gather/scatter support. This avoids 7309 // inevitable extracts into address registers, and also has the benefit of 7310 // activating LSR more, since that pass can't optimize vectorized 7311 // addresses. 7312 if (TTI.prefersVectorizedAddressing()) 7313 return; 7314 7315 // Start with all scalar pointer uses. 7316 SmallPtrSet<Instruction *, 8> AddrDefs; 7317 for (BasicBlock *BB : TheLoop->blocks()) 7318 for (Instruction &I : *BB) { 7319 Instruction *PtrDef = 7320 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7321 if (PtrDef && TheLoop->contains(PtrDef) && 7322 getWideningDecision(&I, VF) != CM_GatherScatter) 7323 AddrDefs.insert(PtrDef); 7324 } 7325 7326 // Add all instructions used to generate the addresses. 7327 SmallVector<Instruction *, 4> Worklist; 7328 append_range(Worklist, AddrDefs); 7329 while (!Worklist.empty()) { 7330 Instruction *I = Worklist.pop_back_val(); 7331 for (auto &Op : I->operands()) 7332 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7333 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7334 AddrDefs.insert(InstOp).second) 7335 Worklist.push_back(InstOp); 7336 } 7337 7338 for (auto *I : AddrDefs) { 7339 if (isa<LoadInst>(I)) { 7340 // Setting the desired widening decision should ideally be handled in 7341 // by cost functions, but since this involves the task of finding out 7342 // if the loaded register is involved in an address computation, it is 7343 // instead changed here when we know this is the case. 7344 InstWidening Decision = getWideningDecision(I, VF); 7345 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7346 // Scalarize a widened load of address. 7347 setWideningDecision( 7348 I, VF, CM_Scalarize, 7349 (VF.getKnownMinValue() * 7350 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7351 else if (auto Group = getInterleavedAccessGroup(I)) { 7352 // Scalarize an interleave group of address loads. 7353 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7354 if (Instruction *Member = Group->getMember(I)) 7355 setWideningDecision( 7356 Member, VF, CM_Scalarize, 7357 (VF.getKnownMinValue() * 7358 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7359 } 7360 } 7361 } else 7362 // Make sure I gets scalarized and a cost estimate without 7363 // scalarization overhead. 7364 ForcedScalars[VF].insert(I); 7365 } 7366 } 7367 7368 InstructionCost 7369 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7370 Type *&VectorTy) { 7371 Type *RetTy = I->getType(); 7372 if (canTruncateToMinimalBitwidth(I, VF)) 7373 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7374 auto SE = PSE.getSE(); 7375 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7376 7377 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7378 ElementCount VF) -> bool { 7379 if (VF.isScalar()) 7380 return true; 7381 7382 auto Scalarized = InstsToScalarize.find(VF); 7383 assert(Scalarized != InstsToScalarize.end() && 7384 "VF not yet analyzed for scalarization profitability"); 7385 return !Scalarized->second.count(I) && 7386 llvm::all_of(I->users(), [&](User *U) { 7387 auto *UI = cast<Instruction>(U); 7388 return !Scalarized->second.count(UI); 7389 }); 7390 }; 7391 (void) hasSingleCopyAfterVectorization; 7392 7393 if (isScalarAfterVectorization(I, VF)) { 7394 // With the exception of GEPs and PHIs, after scalarization there should 7395 // only be one copy of the instruction generated in the loop. This is 7396 // because the VF is either 1, or any instructions that need scalarizing 7397 // have already been dealt with by the the time we get here. As a result, 7398 // it means we don't have to multiply the instruction cost by VF. 7399 assert(I->getOpcode() == Instruction::GetElementPtr || 7400 I->getOpcode() == Instruction::PHI || 7401 (I->getOpcode() == Instruction::BitCast && 7402 I->getType()->isPointerTy()) || 7403 hasSingleCopyAfterVectorization(I, VF)); 7404 VectorTy = RetTy; 7405 } else 7406 VectorTy = ToVectorTy(RetTy, VF); 7407 7408 // TODO: We need to estimate the cost of intrinsic calls. 7409 switch (I->getOpcode()) { 7410 case Instruction::GetElementPtr: 7411 // We mark this instruction as zero-cost because the cost of GEPs in 7412 // vectorized code depends on whether the corresponding memory instruction 7413 // is scalarized or not. Therefore, we handle GEPs with the memory 7414 // instruction cost. 7415 return 0; 7416 case Instruction::Br: { 7417 // In cases of scalarized and predicated instructions, there will be VF 7418 // predicated blocks in the vectorized loop. Each branch around these 7419 // blocks requires also an extract of its vector compare i1 element. 7420 bool ScalarPredicatedBB = false; 7421 BranchInst *BI = cast<BranchInst>(I); 7422 if (VF.isVector() && BI->isConditional() && 7423 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7424 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7425 ScalarPredicatedBB = true; 7426 7427 if (ScalarPredicatedBB) { 7428 // Not possible to scalarize scalable vector with predicated instructions. 7429 if (VF.isScalable()) 7430 return InstructionCost::getInvalid(); 7431 // Return cost for branches around scalarized and predicated blocks. 7432 auto *Vec_i1Ty = 7433 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7434 return ( 7435 TTI.getScalarizationOverhead( 7436 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7437 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7438 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7439 // The back-edge branch will remain, as will all scalar branches. 7440 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7441 else 7442 // This branch will be eliminated by if-conversion. 7443 return 0; 7444 // Note: We currently assume zero cost for an unconditional branch inside 7445 // a predicated block since it will become a fall-through, although we 7446 // may decide in the future to call TTI for all branches. 7447 } 7448 case Instruction::PHI: { 7449 auto *Phi = cast<PHINode>(I); 7450 7451 // First-order recurrences are replaced by vector shuffles inside the loop. 7452 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7453 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7454 return TTI.getShuffleCost( 7455 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7456 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7457 7458 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7459 // converted into select instructions. We require N - 1 selects per phi 7460 // node, where N is the number of incoming values. 7461 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7462 return (Phi->getNumIncomingValues() - 1) * 7463 TTI.getCmpSelInstrCost( 7464 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7465 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7466 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7467 7468 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7469 } 7470 case Instruction::UDiv: 7471 case Instruction::SDiv: 7472 case Instruction::URem: 7473 case Instruction::SRem: 7474 // If we have a predicated instruction, it may not be executed for each 7475 // vector lane. Get the scalarization cost and scale this amount by the 7476 // probability of executing the predicated block. If the instruction is not 7477 // predicated, we fall through to the next case. 7478 if (VF.isVector() && isScalarWithPredication(I)) { 7479 InstructionCost Cost = 0; 7480 7481 // These instructions have a non-void type, so account for the phi nodes 7482 // that we will create. This cost is likely to be zero. The phi node 7483 // cost, if any, should be scaled by the block probability because it 7484 // models a copy at the end of each predicated block. 7485 Cost += VF.getKnownMinValue() * 7486 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7487 7488 // The cost of the non-predicated instruction. 7489 Cost += VF.getKnownMinValue() * 7490 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7491 7492 // The cost of insertelement and extractelement instructions needed for 7493 // scalarization. 7494 Cost += getScalarizationOverhead(I, VF); 7495 7496 // Scale the cost by the probability of executing the predicated blocks. 7497 // This assumes the predicated block for each vector lane is equally 7498 // likely. 7499 return Cost / getReciprocalPredBlockProb(); 7500 } 7501 LLVM_FALLTHROUGH; 7502 case Instruction::Add: 7503 case Instruction::FAdd: 7504 case Instruction::Sub: 7505 case Instruction::FSub: 7506 case Instruction::Mul: 7507 case Instruction::FMul: 7508 case Instruction::FDiv: 7509 case Instruction::FRem: 7510 case Instruction::Shl: 7511 case Instruction::LShr: 7512 case Instruction::AShr: 7513 case Instruction::And: 7514 case Instruction::Or: 7515 case Instruction::Xor: { 7516 // Since we will replace the stride by 1 the multiplication should go away. 7517 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7518 return 0; 7519 7520 // Detect reduction patterns 7521 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7522 return *RedCost; 7523 7524 // Certain instructions can be cheaper to vectorize if they have a constant 7525 // second vector operand. One example of this are shifts on x86. 7526 Value *Op2 = I->getOperand(1); 7527 TargetTransformInfo::OperandValueProperties Op2VP; 7528 TargetTransformInfo::OperandValueKind Op2VK = 7529 TTI.getOperandInfo(Op2, Op2VP); 7530 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7531 Op2VK = TargetTransformInfo::OK_UniformValue; 7532 7533 SmallVector<const Value *, 4> Operands(I->operand_values()); 7534 return TTI.getArithmeticInstrCost( 7535 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7536 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7537 } 7538 case Instruction::FNeg: { 7539 return TTI.getArithmeticInstrCost( 7540 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7541 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7542 TargetTransformInfo::OP_None, I->getOperand(0), I); 7543 } 7544 case Instruction::Select: { 7545 SelectInst *SI = cast<SelectInst>(I); 7546 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7547 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7548 7549 const Value *Op0, *Op1; 7550 using namespace llvm::PatternMatch; 7551 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7552 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7553 // select x, y, false --> x & y 7554 // select x, true, y --> x | y 7555 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7556 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7557 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7558 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7559 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7560 Op1->getType()->getScalarSizeInBits() == 1); 7561 7562 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7563 return TTI.getArithmeticInstrCost( 7564 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7565 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7566 } 7567 7568 Type *CondTy = SI->getCondition()->getType(); 7569 if (!ScalarCond) 7570 CondTy = VectorType::get(CondTy, VF); 7571 7572 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7573 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7574 Pred = Cmp->getPredicate(); 7575 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7576 CostKind, I); 7577 } 7578 case Instruction::ICmp: 7579 case Instruction::FCmp: { 7580 Type *ValTy = I->getOperand(0)->getType(); 7581 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7582 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7583 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7584 VectorTy = ToVectorTy(ValTy, VF); 7585 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7586 cast<CmpInst>(I)->getPredicate(), CostKind, 7587 I); 7588 } 7589 case Instruction::Store: 7590 case Instruction::Load: { 7591 ElementCount Width = VF; 7592 if (Width.isVector()) { 7593 InstWidening Decision = getWideningDecision(I, Width); 7594 assert(Decision != CM_Unknown && 7595 "CM decision should be taken at this point"); 7596 if (Decision == CM_Scalarize) 7597 Width = ElementCount::getFixed(1); 7598 } 7599 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7600 return getMemoryInstructionCost(I, VF); 7601 } 7602 case Instruction::BitCast: 7603 if (I->getType()->isPointerTy()) 7604 return 0; 7605 LLVM_FALLTHROUGH; 7606 case Instruction::ZExt: 7607 case Instruction::SExt: 7608 case Instruction::FPToUI: 7609 case Instruction::FPToSI: 7610 case Instruction::FPExt: 7611 case Instruction::PtrToInt: 7612 case Instruction::IntToPtr: 7613 case Instruction::SIToFP: 7614 case Instruction::UIToFP: 7615 case Instruction::Trunc: 7616 case Instruction::FPTrunc: { 7617 // Computes the CastContextHint from a Load/Store instruction. 7618 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7619 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7620 "Expected a load or a store!"); 7621 7622 if (VF.isScalar() || !TheLoop->contains(I)) 7623 return TTI::CastContextHint::Normal; 7624 7625 switch (getWideningDecision(I, VF)) { 7626 case LoopVectorizationCostModel::CM_GatherScatter: 7627 return TTI::CastContextHint::GatherScatter; 7628 case LoopVectorizationCostModel::CM_Interleave: 7629 return TTI::CastContextHint::Interleave; 7630 case LoopVectorizationCostModel::CM_Scalarize: 7631 case LoopVectorizationCostModel::CM_Widen: 7632 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7633 : TTI::CastContextHint::Normal; 7634 case LoopVectorizationCostModel::CM_Widen_Reverse: 7635 return TTI::CastContextHint::Reversed; 7636 case LoopVectorizationCostModel::CM_Unknown: 7637 llvm_unreachable("Instr did not go through cost modelling?"); 7638 } 7639 7640 llvm_unreachable("Unhandled case!"); 7641 }; 7642 7643 unsigned Opcode = I->getOpcode(); 7644 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7645 // For Trunc, the context is the only user, which must be a StoreInst. 7646 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7647 if (I->hasOneUse()) 7648 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7649 CCH = ComputeCCH(Store); 7650 } 7651 // For Z/Sext, the context is the operand, which must be a LoadInst. 7652 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7653 Opcode == Instruction::FPExt) { 7654 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7655 CCH = ComputeCCH(Load); 7656 } 7657 7658 // We optimize the truncation of induction variables having constant 7659 // integer steps. The cost of these truncations is the same as the scalar 7660 // operation. 7661 if (isOptimizableIVTruncate(I, VF)) { 7662 auto *Trunc = cast<TruncInst>(I); 7663 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7664 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7665 } 7666 7667 // Detect reduction patterns 7668 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7669 return *RedCost; 7670 7671 Type *SrcScalarTy = I->getOperand(0)->getType(); 7672 Type *SrcVecTy = 7673 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7674 if (canTruncateToMinimalBitwidth(I, VF)) { 7675 // This cast is going to be shrunk. This may remove the cast or it might 7676 // turn it into slightly different cast. For example, if MinBW == 16, 7677 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7678 // 7679 // Calculate the modified src and dest types. 7680 Type *MinVecTy = VectorTy; 7681 if (Opcode == Instruction::Trunc) { 7682 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7683 VectorTy = 7684 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7685 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7686 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7687 VectorTy = 7688 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7689 } 7690 } 7691 7692 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7693 } 7694 case Instruction::Call: { 7695 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7696 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7697 return *RedCost; 7698 bool NeedToScalarize; 7699 CallInst *CI = cast<CallInst>(I); 7700 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7701 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7702 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7703 return std::min(CallCost, IntrinsicCost); 7704 } 7705 return CallCost; 7706 } 7707 case Instruction::ExtractValue: 7708 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7709 case Instruction::Alloca: 7710 // We cannot easily widen alloca to a scalable alloca, as 7711 // the result would need to be a vector of pointers. 7712 if (VF.isScalable()) 7713 return InstructionCost::getInvalid(); 7714 LLVM_FALLTHROUGH; 7715 default: 7716 // This opcode is unknown. Assume that it is the same as 'mul'. 7717 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7718 } // end of switch. 7719 } 7720 7721 char LoopVectorize::ID = 0; 7722 7723 static const char lv_name[] = "Loop Vectorization"; 7724 7725 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7726 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7727 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7728 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7729 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7730 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7731 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7732 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7733 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7734 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7735 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7736 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7737 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7738 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7739 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7740 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7741 7742 namespace llvm { 7743 7744 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7745 7746 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7747 bool VectorizeOnlyWhenForced) { 7748 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7749 } 7750 7751 } // end namespace llvm 7752 7753 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7754 // Check if the pointer operand of a load or store instruction is 7755 // consecutive. 7756 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7757 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7758 return false; 7759 } 7760 7761 void LoopVectorizationCostModel::collectValuesToIgnore() { 7762 // Ignore ephemeral values. 7763 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7764 7765 // Ignore type-promoting instructions we identified during reduction 7766 // detection. 7767 for (auto &Reduction : Legal->getReductionVars()) { 7768 RecurrenceDescriptor &RedDes = Reduction.second; 7769 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7770 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7771 } 7772 // Ignore type-casting instructions we identified during induction 7773 // detection. 7774 for (auto &Induction : Legal->getInductionVars()) { 7775 InductionDescriptor &IndDes = Induction.second; 7776 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7777 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7778 } 7779 } 7780 7781 void LoopVectorizationCostModel::collectInLoopReductions() { 7782 for (auto &Reduction : Legal->getReductionVars()) { 7783 PHINode *Phi = Reduction.first; 7784 RecurrenceDescriptor &RdxDesc = Reduction.second; 7785 7786 // We don't collect reductions that are type promoted (yet). 7787 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7788 continue; 7789 7790 // If the target would prefer this reduction to happen "in-loop", then we 7791 // want to record it as such. 7792 unsigned Opcode = RdxDesc.getOpcode(); 7793 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7794 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7795 TargetTransformInfo::ReductionFlags())) 7796 continue; 7797 7798 // Check that we can correctly put the reductions into the loop, by 7799 // finding the chain of operations that leads from the phi to the loop 7800 // exit value. 7801 SmallVector<Instruction *, 4> ReductionOperations = 7802 RdxDesc.getReductionOpChain(Phi, TheLoop); 7803 bool InLoop = !ReductionOperations.empty(); 7804 if (InLoop) { 7805 InLoopReductionChains[Phi] = ReductionOperations; 7806 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7807 Instruction *LastChain = Phi; 7808 for (auto *I : ReductionOperations) { 7809 InLoopReductionImmediateChains[I] = LastChain; 7810 LastChain = I; 7811 } 7812 } 7813 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7814 << " reduction for phi: " << *Phi << "\n"); 7815 } 7816 } 7817 7818 // TODO: we could return a pair of values that specify the max VF and 7819 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7820 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7821 // doesn't have a cost model that can choose which plan to execute if 7822 // more than one is generated. 7823 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7824 LoopVectorizationCostModel &CM) { 7825 unsigned WidestType; 7826 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7827 return WidestVectorRegBits / WidestType; 7828 } 7829 7830 VectorizationFactor 7831 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7832 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7833 ElementCount VF = UserVF; 7834 // Outer loop handling: They may require CFG and instruction level 7835 // transformations before even evaluating whether vectorization is profitable. 7836 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7837 // the vectorization pipeline. 7838 if (!OrigLoop->isInnermost()) { 7839 // If the user doesn't provide a vectorization factor, determine a 7840 // reasonable one. 7841 if (UserVF.isZero()) { 7842 VF = ElementCount::getFixed(determineVPlanVF( 7843 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7844 .getFixedSize(), 7845 CM)); 7846 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7847 7848 // Make sure we have a VF > 1 for stress testing. 7849 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7850 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7851 << "overriding computed VF.\n"); 7852 VF = ElementCount::getFixed(4); 7853 } 7854 } 7855 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7856 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7857 "VF needs to be a power of two"); 7858 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7859 << "VF " << VF << " to build VPlans.\n"); 7860 buildVPlans(VF, VF); 7861 7862 // For VPlan build stress testing, we bail out after VPlan construction. 7863 if (VPlanBuildStressTest) 7864 return VectorizationFactor::Disabled(); 7865 7866 return {VF, 0 /*Cost*/}; 7867 } 7868 7869 LLVM_DEBUG( 7870 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7871 "VPlan-native path.\n"); 7872 return VectorizationFactor::Disabled(); 7873 } 7874 7875 Optional<VectorizationFactor> 7876 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7877 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7878 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7879 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7880 return None; 7881 7882 // Invalidate interleave groups if all blocks of loop will be predicated. 7883 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7884 !useMaskedInterleavedAccesses(*TTI)) { 7885 LLVM_DEBUG( 7886 dbgs() 7887 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7888 "which requires masked-interleaved support.\n"); 7889 if (CM.InterleaveInfo.invalidateGroups()) 7890 // Invalidating interleave groups also requires invalidating all decisions 7891 // based on them, which includes widening decisions and uniform and scalar 7892 // values. 7893 CM.invalidateCostModelingDecisions(); 7894 } 7895 7896 ElementCount MaxUserVF = 7897 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7898 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7899 if (!UserVF.isZero() && UserVFIsLegal) { 7900 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7901 "VF needs to be a power of two"); 7902 // Collect the instructions (and their associated costs) that will be more 7903 // profitable to scalarize. 7904 if (CM.selectUserVectorizationFactor(UserVF)) { 7905 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7906 CM.collectInLoopReductions(); 7907 buildVPlansWithVPRecipes(UserVF, UserVF); 7908 LLVM_DEBUG(printPlans(dbgs())); 7909 return {{UserVF, 0}}; 7910 } else 7911 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7912 "InvalidCost", ORE, OrigLoop); 7913 } 7914 7915 // Populate the set of Vectorization Factor Candidates. 7916 ElementCountSet VFCandidates; 7917 for (auto VF = ElementCount::getFixed(1); 7918 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7919 VFCandidates.insert(VF); 7920 for (auto VF = ElementCount::getScalable(1); 7921 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7922 VFCandidates.insert(VF); 7923 7924 for (const auto &VF : VFCandidates) { 7925 // Collect Uniform and Scalar instructions after vectorization with VF. 7926 CM.collectUniformsAndScalars(VF); 7927 7928 // Collect the instructions (and their associated costs) that will be more 7929 // profitable to scalarize. 7930 if (VF.isVector()) 7931 CM.collectInstsToScalarize(VF); 7932 } 7933 7934 CM.collectInLoopReductions(); 7935 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7936 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7937 7938 LLVM_DEBUG(printPlans(dbgs())); 7939 if (!MaxFactors.hasVector()) 7940 return VectorizationFactor::Disabled(); 7941 7942 // Select the optimal vectorization factor. 7943 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7944 7945 // Check if it is profitable to vectorize with runtime checks. 7946 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7947 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7948 bool PragmaThresholdReached = 7949 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7950 bool ThresholdReached = 7951 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7952 if ((ThresholdReached && !Hints.allowReordering()) || 7953 PragmaThresholdReached) { 7954 ORE->emit([&]() { 7955 return OptimizationRemarkAnalysisAliasing( 7956 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7957 OrigLoop->getHeader()) 7958 << "loop not vectorized: cannot prove it is safe to reorder " 7959 "memory operations"; 7960 }); 7961 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7962 Hints.emitRemarkWithHints(); 7963 return VectorizationFactor::Disabled(); 7964 } 7965 } 7966 return SelectedVF; 7967 } 7968 7969 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7970 assert(count_if(VPlans, 7971 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7972 1 && 7973 "Best VF has not a single VPlan."); 7974 7975 for (const VPlanPtr &Plan : VPlans) { 7976 if (Plan->hasVF(VF)) 7977 return *Plan.get(); 7978 } 7979 llvm_unreachable("No plan found!"); 7980 } 7981 7982 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7983 VPlan &BestVPlan, 7984 InnerLoopVectorizer &ILV, 7985 DominatorTree *DT) { 7986 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7987 << '\n'); 7988 7989 // Perform the actual loop transformation. 7990 7991 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7992 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7993 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7994 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7995 State.CanonicalIV = ILV.Induction; 7996 ILV.collectPoisonGeneratingRecipes(State); 7997 7998 ILV.printDebugTracesAtStart(); 7999 8000 //===------------------------------------------------===// 8001 // 8002 // Notice: any optimization or new instruction that go 8003 // into the code below should also be implemented in 8004 // the cost-model. 8005 // 8006 //===------------------------------------------------===// 8007 8008 // 2. Copy and widen instructions from the old loop into the new loop. 8009 BestVPlan.execute(&State); 8010 8011 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8012 // predication, updating analyses. 8013 ILV.fixVectorizedLoop(State); 8014 8015 ILV.printDebugTracesAtEnd(); 8016 } 8017 8018 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8019 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8020 for (const auto &Plan : VPlans) 8021 if (PrintVPlansInDotFormat) 8022 Plan->printDOT(O); 8023 else 8024 Plan->print(O); 8025 } 8026 #endif 8027 8028 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8029 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8030 8031 // We create new control-flow for the vectorized loop, so the original exit 8032 // conditions will be dead after vectorization if it's only used by the 8033 // terminator 8034 SmallVector<BasicBlock*> ExitingBlocks; 8035 OrigLoop->getExitingBlocks(ExitingBlocks); 8036 for (auto *BB : ExitingBlocks) { 8037 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8038 if (!Cmp || !Cmp->hasOneUse()) 8039 continue; 8040 8041 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8042 if (!DeadInstructions.insert(Cmp).second) 8043 continue; 8044 8045 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8046 // TODO: can recurse through operands in general 8047 for (Value *Op : Cmp->operands()) { 8048 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8049 DeadInstructions.insert(cast<Instruction>(Op)); 8050 } 8051 } 8052 8053 // We create new "steps" for induction variable updates to which the original 8054 // induction variables map. An original update instruction will be dead if 8055 // all its users except the induction variable are dead. 8056 auto *Latch = OrigLoop->getLoopLatch(); 8057 for (auto &Induction : Legal->getInductionVars()) { 8058 PHINode *Ind = Induction.first; 8059 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8060 8061 // If the tail is to be folded by masking, the primary induction variable, 8062 // if exists, isn't dead: it will be used for masking. Don't kill it. 8063 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8064 continue; 8065 8066 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8067 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8068 })) 8069 DeadInstructions.insert(IndUpdate); 8070 8071 // We record as "Dead" also the type-casting instructions we had identified 8072 // during induction analysis. We don't need any handling for them in the 8073 // vectorized loop because we have proven that, under a proper runtime 8074 // test guarding the vectorized loop, the value of the phi, and the casted 8075 // value of the phi, are the same. The last instruction in this casting chain 8076 // will get its scalar/vector/widened def from the scalar/vector/widened def 8077 // of the respective phi node. Any other casts in the induction def-use chain 8078 // have no other uses outside the phi update chain, and will be ignored. 8079 InductionDescriptor &IndDes = Induction.second; 8080 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8081 DeadInstructions.insert(Casts.begin(), Casts.end()); 8082 } 8083 } 8084 8085 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8086 8087 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8088 8089 Value *InnerLoopUnroller::getStepVector(Value *Val, Value *StartIdx, 8090 Value *Step, 8091 Instruction::BinaryOps BinOp) { 8092 // When unrolling and the VF is 1, we only need to add a simple scalar. 8093 Type *Ty = Val->getType(); 8094 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8095 8096 if (Ty->isFloatingPointTy()) { 8097 // Floating-point operations inherit FMF via the builder's flags. 8098 Value *MulOp = Builder.CreateFMul(StartIdx, Step); 8099 return Builder.CreateBinOp(BinOp, Val, MulOp); 8100 } 8101 return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), "induction"); 8102 } 8103 8104 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8105 SmallVector<Metadata *, 4> MDs; 8106 // Reserve first location for self reference to the LoopID metadata node. 8107 MDs.push_back(nullptr); 8108 bool IsUnrollMetadata = false; 8109 MDNode *LoopID = L->getLoopID(); 8110 if (LoopID) { 8111 // First find existing loop unrolling disable metadata. 8112 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8113 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8114 if (MD) { 8115 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8116 IsUnrollMetadata = 8117 S && S->getString().startswith("llvm.loop.unroll.disable"); 8118 } 8119 MDs.push_back(LoopID->getOperand(i)); 8120 } 8121 } 8122 8123 if (!IsUnrollMetadata) { 8124 // Add runtime unroll disable metadata. 8125 LLVMContext &Context = L->getHeader()->getContext(); 8126 SmallVector<Metadata *, 1> DisableOperands; 8127 DisableOperands.push_back( 8128 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8129 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8130 MDs.push_back(DisableNode); 8131 MDNode *NewLoopID = MDNode::get(Context, MDs); 8132 // Set operand 0 to refer to the loop id itself. 8133 NewLoopID->replaceOperandWith(0, NewLoopID); 8134 L->setLoopID(NewLoopID); 8135 } 8136 } 8137 8138 //===--------------------------------------------------------------------===// 8139 // EpilogueVectorizerMainLoop 8140 //===--------------------------------------------------------------------===// 8141 8142 /// This function is partially responsible for generating the control flow 8143 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8144 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8145 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8146 Loop *Lp = createVectorLoopSkeleton(""); 8147 8148 // Generate the code to check the minimum iteration count of the vector 8149 // epilogue (see below). 8150 EPI.EpilogueIterationCountCheck = 8151 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8152 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8153 8154 // Generate the code to check any assumptions that we've made for SCEV 8155 // expressions. 8156 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8157 8158 // Generate the code that checks at runtime if arrays overlap. We put the 8159 // checks into a separate block to make the more common case of few elements 8160 // faster. 8161 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8162 8163 // Generate the iteration count check for the main loop, *after* the check 8164 // for the epilogue loop, so that the path-length is shorter for the case 8165 // that goes directly through the vector epilogue. The longer-path length for 8166 // the main loop is compensated for, by the gain from vectorizing the larger 8167 // trip count. Note: the branch will get updated later on when we vectorize 8168 // the epilogue. 8169 EPI.MainLoopIterationCountCheck = 8170 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8171 8172 // Generate the induction variable. 8173 OldInduction = Legal->getPrimaryInduction(); 8174 Type *IdxTy = Legal->getWidestInductionType(); 8175 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8176 8177 IRBuilder<> B(&*Lp->getLoopPreheader()->getFirstInsertionPt()); 8178 Value *Step = getRuntimeVF(B, IdxTy, VF * UF); 8179 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8180 EPI.VectorTripCount = CountRoundDown; 8181 Induction = 8182 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8183 getDebugLocFromInstOrOperands(OldInduction)); 8184 8185 // Skip induction resume value creation here because they will be created in 8186 // the second pass. If we created them here, they wouldn't be used anyway, 8187 // because the vplan in the second pass still contains the inductions from the 8188 // original loop. 8189 8190 return completeLoopSkeleton(Lp, OrigLoopID); 8191 } 8192 8193 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8194 LLVM_DEBUG({ 8195 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8196 << "Main Loop VF:" << EPI.MainLoopVF 8197 << ", Main Loop UF:" << EPI.MainLoopUF 8198 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8199 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8200 }); 8201 } 8202 8203 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8204 DEBUG_WITH_TYPE(VerboseDebug, { 8205 dbgs() << "intermediate fn:\n" 8206 << *OrigLoop->getHeader()->getParent() << "\n"; 8207 }); 8208 } 8209 8210 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8211 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8212 assert(L && "Expected valid Loop."); 8213 assert(Bypass && "Expected valid bypass basic block."); 8214 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8215 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8216 Value *Count = getOrCreateTripCount(L); 8217 // Reuse existing vector loop preheader for TC checks. 8218 // Note that new preheader block is generated for vector loop. 8219 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8220 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8221 8222 // Generate code to check if the loop's trip count is less than VF * UF of the 8223 // main vector loop. 8224 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8225 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8226 8227 Value *CheckMinIters = Builder.CreateICmp( 8228 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 8229 "min.iters.check"); 8230 8231 if (!ForEpilogue) 8232 TCCheckBlock->setName("vector.main.loop.iter.check"); 8233 8234 // Create new preheader for vector loop. 8235 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8236 DT, LI, nullptr, "vector.ph"); 8237 8238 if (ForEpilogue) { 8239 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8240 DT->getNode(Bypass)->getIDom()) && 8241 "TC check is expected to dominate Bypass"); 8242 8243 // Update dominator for Bypass & LoopExit. 8244 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8245 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8246 // For loops with multiple exits, there's no edge from the middle block 8247 // to exit blocks (as the epilogue must run) and thus no need to update 8248 // the immediate dominator of the exit blocks. 8249 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8250 8251 LoopBypassBlocks.push_back(TCCheckBlock); 8252 8253 // Save the trip count so we don't have to regenerate it in the 8254 // vec.epilog.iter.check. This is safe to do because the trip count 8255 // generated here dominates the vector epilog iter check. 8256 EPI.TripCount = Count; 8257 } 8258 8259 ReplaceInstWithInst( 8260 TCCheckBlock->getTerminator(), 8261 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8262 8263 return TCCheckBlock; 8264 } 8265 8266 //===--------------------------------------------------------------------===// 8267 // EpilogueVectorizerEpilogueLoop 8268 //===--------------------------------------------------------------------===// 8269 8270 /// This function is partially responsible for generating the control flow 8271 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8272 BasicBlock * 8273 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8274 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8275 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8276 8277 // Now, compare the remaining count and if there aren't enough iterations to 8278 // execute the vectorized epilogue skip to the scalar part. 8279 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8280 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8281 LoopVectorPreHeader = 8282 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8283 LI, nullptr, "vec.epilog.ph"); 8284 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8285 VecEpilogueIterationCountCheck); 8286 8287 // Adjust the control flow taking the state info from the main loop 8288 // vectorization into account. 8289 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8290 "expected this to be saved from the previous pass."); 8291 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8292 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8293 8294 DT->changeImmediateDominator(LoopVectorPreHeader, 8295 EPI.MainLoopIterationCountCheck); 8296 8297 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8298 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8299 8300 if (EPI.SCEVSafetyCheck) 8301 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8302 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8303 if (EPI.MemSafetyCheck) 8304 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8305 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8306 8307 DT->changeImmediateDominator( 8308 VecEpilogueIterationCountCheck, 8309 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8310 8311 DT->changeImmediateDominator(LoopScalarPreHeader, 8312 EPI.EpilogueIterationCountCheck); 8313 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8314 // If there is an epilogue which must run, there's no edge from the 8315 // middle block to exit blocks and thus no need to update the immediate 8316 // dominator of the exit blocks. 8317 DT->changeImmediateDominator(LoopExitBlock, 8318 EPI.EpilogueIterationCountCheck); 8319 8320 // Keep track of bypass blocks, as they feed start values to the induction 8321 // phis in the scalar loop preheader. 8322 if (EPI.SCEVSafetyCheck) 8323 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8324 if (EPI.MemSafetyCheck) 8325 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8326 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8327 8328 // Generate a resume induction for the vector epilogue and put it in the 8329 // vector epilogue preheader 8330 Type *IdxTy = Legal->getWidestInductionType(); 8331 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8332 LoopVectorPreHeader->getFirstNonPHI()); 8333 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8334 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8335 EPI.MainLoopIterationCountCheck); 8336 8337 // Generate the induction variable. 8338 OldInduction = Legal->getPrimaryInduction(); 8339 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8340 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8341 Value *StartIdx = EPResumeVal; 8342 Induction = 8343 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8344 getDebugLocFromInstOrOperands(OldInduction)); 8345 8346 // Generate induction resume values. These variables save the new starting 8347 // indexes for the scalar loop. They are used to test if there are any tail 8348 // iterations left once the vector loop has completed. 8349 // Note that when the vectorized epilogue is skipped due to iteration count 8350 // check, then the resume value for the induction variable comes from 8351 // the trip count of the main vector loop, hence passing the AdditionalBypass 8352 // argument. 8353 createInductionResumeValues(Lp, CountRoundDown, 8354 {VecEpilogueIterationCountCheck, 8355 EPI.VectorTripCount} /* AdditionalBypass */); 8356 8357 AddRuntimeUnrollDisableMetaData(Lp); 8358 return completeLoopSkeleton(Lp, OrigLoopID); 8359 } 8360 8361 BasicBlock * 8362 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8363 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8364 8365 assert(EPI.TripCount && 8366 "Expected trip count to have been safed in the first pass."); 8367 assert( 8368 (!isa<Instruction>(EPI.TripCount) || 8369 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8370 "saved trip count does not dominate insertion point."); 8371 Value *TC = EPI.TripCount; 8372 IRBuilder<> Builder(Insert->getTerminator()); 8373 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8374 8375 // Generate code to check if the loop's trip count is less than VF * UF of the 8376 // vector epilogue loop. 8377 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8378 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8379 8380 Value *CheckMinIters = 8381 Builder.CreateICmp(P, Count, 8382 createStepForVF(Builder, Count->getType(), 8383 EPI.EpilogueVF, EPI.EpilogueUF), 8384 "min.epilog.iters.check"); 8385 8386 ReplaceInstWithInst( 8387 Insert->getTerminator(), 8388 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8389 8390 LoopBypassBlocks.push_back(Insert); 8391 return Insert; 8392 } 8393 8394 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8395 LLVM_DEBUG({ 8396 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8397 << "Epilogue Loop VF:" << EPI.EpilogueVF 8398 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8399 }); 8400 } 8401 8402 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8403 DEBUG_WITH_TYPE(VerboseDebug, { 8404 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8405 }); 8406 } 8407 8408 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8409 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8410 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8411 bool PredicateAtRangeStart = Predicate(Range.Start); 8412 8413 for (ElementCount TmpVF = Range.Start * 2; 8414 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8415 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8416 Range.End = TmpVF; 8417 break; 8418 } 8419 8420 return PredicateAtRangeStart; 8421 } 8422 8423 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8424 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8425 /// of VF's starting at a given VF and extending it as much as possible. Each 8426 /// vectorization decision can potentially shorten this sub-range during 8427 /// buildVPlan(). 8428 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8429 ElementCount MaxVF) { 8430 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8431 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8432 VFRange SubRange = {VF, MaxVFPlusOne}; 8433 VPlans.push_back(buildVPlan(SubRange)); 8434 VF = SubRange.End; 8435 } 8436 } 8437 8438 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8439 VPlanPtr &Plan) { 8440 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8441 8442 // Look for cached value. 8443 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8444 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8445 if (ECEntryIt != EdgeMaskCache.end()) 8446 return ECEntryIt->second; 8447 8448 VPValue *SrcMask = createBlockInMask(Src, Plan); 8449 8450 // The terminator has to be a branch inst! 8451 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8452 assert(BI && "Unexpected terminator found"); 8453 8454 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8455 return EdgeMaskCache[Edge] = SrcMask; 8456 8457 // If source is an exiting block, we know the exit edge is dynamically dead 8458 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8459 // adding uses of an otherwise potentially dead instruction. 8460 if (OrigLoop->isLoopExiting(Src)) 8461 return EdgeMaskCache[Edge] = SrcMask; 8462 8463 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8464 assert(EdgeMask && "No Edge Mask found for condition"); 8465 8466 if (BI->getSuccessor(0) != Dst) 8467 EdgeMask = Builder.createNot(EdgeMask); 8468 8469 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8470 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8471 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8472 // The select version does not introduce new UB if SrcMask is false and 8473 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8474 VPValue *False = Plan->getOrAddVPValue( 8475 ConstantInt::getFalse(BI->getCondition()->getType())); 8476 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8477 } 8478 8479 return EdgeMaskCache[Edge] = EdgeMask; 8480 } 8481 8482 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8483 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8484 8485 // Look for cached value. 8486 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8487 if (BCEntryIt != BlockMaskCache.end()) 8488 return BCEntryIt->second; 8489 8490 // All-one mask is modelled as no-mask following the convention for masked 8491 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8492 VPValue *BlockMask = nullptr; 8493 8494 if (OrigLoop->getHeader() == BB) { 8495 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8496 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8497 8498 // Create the block in mask as the first non-phi instruction in the block. 8499 VPBuilder::InsertPointGuard Guard(Builder); 8500 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8501 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8502 8503 // Introduce the early-exit compare IV <= BTC to form header block mask. 8504 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8505 // Start by constructing the desired canonical IV. 8506 VPValue *IV = nullptr; 8507 if (Legal->getPrimaryInduction()) 8508 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8509 else { 8510 auto *IVRecipe = new VPWidenCanonicalIVRecipe(); 8511 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8512 IV = IVRecipe; 8513 } 8514 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8515 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8516 8517 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8518 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8519 // as a second argument, we only pass the IV here and extract the 8520 // tripcount from the transform state where codegen of the VP instructions 8521 // happen. 8522 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8523 } else { 8524 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8525 } 8526 return BlockMaskCache[BB] = BlockMask; 8527 } 8528 8529 // This is the block mask. We OR all incoming edges. 8530 for (auto *Predecessor : predecessors(BB)) { 8531 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8532 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8533 return BlockMaskCache[BB] = EdgeMask; 8534 8535 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8536 BlockMask = EdgeMask; 8537 continue; 8538 } 8539 8540 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8541 } 8542 8543 return BlockMaskCache[BB] = BlockMask; 8544 } 8545 8546 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8547 ArrayRef<VPValue *> Operands, 8548 VFRange &Range, 8549 VPlanPtr &Plan) { 8550 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8551 "Must be called with either a load or store"); 8552 8553 auto willWiden = [&](ElementCount VF) -> bool { 8554 if (VF.isScalar()) 8555 return false; 8556 LoopVectorizationCostModel::InstWidening Decision = 8557 CM.getWideningDecision(I, VF); 8558 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8559 "CM decision should be taken at this point."); 8560 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8561 return true; 8562 if (CM.isScalarAfterVectorization(I, VF) || 8563 CM.isProfitableToScalarize(I, VF)) 8564 return false; 8565 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8566 }; 8567 8568 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8569 return nullptr; 8570 8571 VPValue *Mask = nullptr; 8572 if (Legal->isMaskRequired(I)) 8573 Mask = createBlockInMask(I->getParent(), Plan); 8574 8575 // Determine if the pointer operand of the access is either consecutive or 8576 // reverse consecutive. 8577 LoopVectorizationCostModel::InstWidening Decision = 8578 CM.getWideningDecision(I, Range.Start); 8579 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8580 bool Consecutive = 8581 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8582 8583 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8584 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8585 Consecutive, Reverse); 8586 8587 StoreInst *Store = cast<StoreInst>(I); 8588 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8589 Mask, Consecutive, Reverse); 8590 } 8591 8592 VPWidenIntOrFpInductionRecipe * 8593 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8594 ArrayRef<VPValue *> Operands) const { 8595 // Check if this is an integer or fp induction. If so, build the recipe that 8596 // produces its scalar and vector values. 8597 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8598 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8599 II.getKind() == InductionDescriptor::IK_FpInduction) { 8600 assert(II.getStartValue() == 8601 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8602 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8603 return new VPWidenIntOrFpInductionRecipe( 8604 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8605 } 8606 8607 return nullptr; 8608 } 8609 8610 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8611 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8612 VPlan &Plan) const { 8613 // Optimize the special case where the source is a constant integer 8614 // induction variable. Notice that we can only optimize the 'trunc' case 8615 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8616 // (c) other casts depend on pointer size. 8617 8618 // Determine whether \p K is a truncation based on an induction variable that 8619 // can be optimized. 8620 auto isOptimizableIVTruncate = 8621 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8622 return [=](ElementCount VF) -> bool { 8623 return CM.isOptimizableIVTruncate(K, VF); 8624 }; 8625 }; 8626 8627 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8628 isOptimizableIVTruncate(I), Range)) { 8629 8630 InductionDescriptor II = 8631 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8632 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8633 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8634 Start, I); 8635 } 8636 return nullptr; 8637 } 8638 8639 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8640 ArrayRef<VPValue *> Operands, 8641 VPlanPtr &Plan) { 8642 // If all incoming values are equal, the incoming VPValue can be used directly 8643 // instead of creating a new VPBlendRecipe. 8644 VPValue *FirstIncoming = Operands[0]; 8645 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8646 return FirstIncoming == Inc; 8647 })) { 8648 return Operands[0]; 8649 } 8650 8651 // We know that all PHIs in non-header blocks are converted into selects, so 8652 // we don't have to worry about the insertion order and we can just use the 8653 // builder. At this point we generate the predication tree. There may be 8654 // duplications since this is a simple recursive scan, but future 8655 // optimizations will clean it up. 8656 SmallVector<VPValue *, 2> OperandsWithMask; 8657 unsigned NumIncoming = Phi->getNumIncomingValues(); 8658 8659 for (unsigned In = 0; In < NumIncoming; In++) { 8660 VPValue *EdgeMask = 8661 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8662 assert((EdgeMask || NumIncoming == 1) && 8663 "Multiple predecessors with one having a full mask"); 8664 OperandsWithMask.push_back(Operands[In]); 8665 if (EdgeMask) 8666 OperandsWithMask.push_back(EdgeMask); 8667 } 8668 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8669 } 8670 8671 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8672 ArrayRef<VPValue *> Operands, 8673 VFRange &Range) const { 8674 8675 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8676 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8677 Range); 8678 8679 if (IsPredicated) 8680 return nullptr; 8681 8682 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8683 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8684 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8685 ID == Intrinsic::pseudoprobe || 8686 ID == Intrinsic::experimental_noalias_scope_decl)) 8687 return nullptr; 8688 8689 auto willWiden = [&](ElementCount VF) -> bool { 8690 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8691 // The following case may be scalarized depending on the VF. 8692 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8693 // version of the instruction. 8694 // Is it beneficial to perform intrinsic call compared to lib call? 8695 bool NeedToScalarize = false; 8696 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8697 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8698 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8699 return UseVectorIntrinsic || !NeedToScalarize; 8700 }; 8701 8702 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8703 return nullptr; 8704 8705 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8706 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8707 } 8708 8709 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8710 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8711 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8712 // Instruction should be widened, unless it is scalar after vectorization, 8713 // scalarization is profitable or it is predicated. 8714 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8715 return CM.isScalarAfterVectorization(I, VF) || 8716 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8717 }; 8718 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8719 Range); 8720 } 8721 8722 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8723 ArrayRef<VPValue *> Operands) const { 8724 auto IsVectorizableOpcode = [](unsigned Opcode) { 8725 switch (Opcode) { 8726 case Instruction::Add: 8727 case Instruction::And: 8728 case Instruction::AShr: 8729 case Instruction::BitCast: 8730 case Instruction::FAdd: 8731 case Instruction::FCmp: 8732 case Instruction::FDiv: 8733 case Instruction::FMul: 8734 case Instruction::FNeg: 8735 case Instruction::FPExt: 8736 case Instruction::FPToSI: 8737 case Instruction::FPToUI: 8738 case Instruction::FPTrunc: 8739 case Instruction::FRem: 8740 case Instruction::FSub: 8741 case Instruction::ICmp: 8742 case Instruction::IntToPtr: 8743 case Instruction::LShr: 8744 case Instruction::Mul: 8745 case Instruction::Or: 8746 case Instruction::PtrToInt: 8747 case Instruction::SDiv: 8748 case Instruction::Select: 8749 case Instruction::SExt: 8750 case Instruction::Shl: 8751 case Instruction::SIToFP: 8752 case Instruction::SRem: 8753 case Instruction::Sub: 8754 case Instruction::Trunc: 8755 case Instruction::UDiv: 8756 case Instruction::UIToFP: 8757 case Instruction::URem: 8758 case Instruction::Xor: 8759 case Instruction::ZExt: 8760 return true; 8761 } 8762 return false; 8763 }; 8764 8765 if (!IsVectorizableOpcode(I->getOpcode())) 8766 return nullptr; 8767 8768 // Success: widen this instruction. 8769 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8770 } 8771 8772 void VPRecipeBuilder::fixHeaderPhis() { 8773 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8774 for (VPWidenPHIRecipe *R : PhisToFix) { 8775 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8776 VPRecipeBase *IncR = 8777 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8778 R->addOperand(IncR->getVPSingleValue()); 8779 } 8780 } 8781 8782 VPBasicBlock *VPRecipeBuilder::handleReplication( 8783 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8784 VPlanPtr &Plan) { 8785 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8786 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8787 Range); 8788 8789 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8790 [&](ElementCount VF) { return CM.isPredicatedInst(I, IsUniform); }, 8791 Range); 8792 8793 // Even if the instruction is not marked as uniform, there are certain 8794 // intrinsic calls that can be effectively treated as such, so we check for 8795 // them here. Conservatively, we only do this for scalable vectors, since 8796 // for fixed-width VFs we can always fall back on full scalarization. 8797 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8798 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8799 case Intrinsic::assume: 8800 case Intrinsic::lifetime_start: 8801 case Intrinsic::lifetime_end: 8802 // For scalable vectors if one of the operands is variant then we still 8803 // want to mark as uniform, which will generate one instruction for just 8804 // the first lane of the vector. We can't scalarize the call in the same 8805 // way as for fixed-width vectors because we don't know how many lanes 8806 // there are. 8807 // 8808 // The reasons for doing it this way for scalable vectors are: 8809 // 1. For the assume intrinsic generating the instruction for the first 8810 // lane is still be better than not generating any at all. For 8811 // example, the input may be a splat across all lanes. 8812 // 2. For the lifetime start/end intrinsics the pointer operand only 8813 // does anything useful when the input comes from a stack object, 8814 // which suggests it should always be uniform. For non-stack objects 8815 // the effect is to poison the object, which still allows us to 8816 // remove the call. 8817 IsUniform = true; 8818 break; 8819 default: 8820 break; 8821 } 8822 } 8823 8824 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8825 IsUniform, IsPredicated); 8826 setRecipe(I, Recipe); 8827 Plan->addVPValue(I, Recipe); 8828 8829 // Find if I uses a predicated instruction. If so, it will use its scalar 8830 // value. Avoid hoisting the insert-element which packs the scalar value into 8831 // a vector value, as that happens iff all users use the vector value. 8832 for (VPValue *Op : Recipe->operands()) { 8833 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8834 if (!PredR) 8835 continue; 8836 auto *RepR = 8837 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8838 assert(RepR->isPredicated() && 8839 "expected Replicate recipe to be predicated"); 8840 RepR->setAlsoPack(false); 8841 } 8842 8843 // Finalize the recipe for Instr, first if it is not predicated. 8844 if (!IsPredicated) { 8845 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8846 VPBB->appendRecipe(Recipe); 8847 return VPBB; 8848 } 8849 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8850 assert(VPBB->getSuccessors().empty() && 8851 "VPBB has successors when handling predicated replication."); 8852 // Record predicated instructions for above packing optimizations. 8853 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8854 VPBlockUtils::insertBlockAfter(Region, VPBB); 8855 auto *RegSucc = new VPBasicBlock(); 8856 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8857 return RegSucc; 8858 } 8859 8860 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8861 VPRecipeBase *PredRecipe, 8862 VPlanPtr &Plan) { 8863 // Instructions marked for predication are replicated and placed under an 8864 // if-then construct to prevent side-effects. 8865 8866 // Generate recipes to compute the block mask for this region. 8867 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8868 8869 // Build the triangular if-then region. 8870 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8871 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8872 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8873 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8874 auto *PHIRecipe = Instr->getType()->isVoidTy() 8875 ? nullptr 8876 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8877 if (PHIRecipe) { 8878 Plan->removeVPValueFor(Instr); 8879 Plan->addVPValue(Instr, PHIRecipe); 8880 } 8881 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8882 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8883 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8884 8885 // Note: first set Entry as region entry and then connect successors starting 8886 // from it in order, to propagate the "parent" of each VPBasicBlock. 8887 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8888 VPBlockUtils::connectBlocks(Pred, Exit); 8889 8890 return Region; 8891 } 8892 8893 VPRecipeOrVPValueTy 8894 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8895 ArrayRef<VPValue *> Operands, 8896 VFRange &Range, VPlanPtr &Plan) { 8897 // First, check for specific widening recipes that deal with calls, memory 8898 // operations, inductions and Phi nodes. 8899 if (auto *CI = dyn_cast<CallInst>(Instr)) 8900 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8901 8902 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8903 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8904 8905 VPRecipeBase *Recipe; 8906 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8907 if (Phi->getParent() != OrigLoop->getHeader()) 8908 return tryToBlend(Phi, Operands, Plan); 8909 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8910 return toVPRecipeResult(Recipe); 8911 8912 VPWidenPHIRecipe *PhiRecipe = nullptr; 8913 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8914 VPValue *StartV = Operands[0]; 8915 if (Legal->isReductionVariable(Phi)) { 8916 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8917 assert(RdxDesc.getRecurrenceStartValue() == 8918 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8919 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8920 CM.isInLoopReduction(Phi), 8921 CM.useOrderedReductions(RdxDesc)); 8922 } else { 8923 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8924 } 8925 8926 // Record the incoming value from the backedge, so we can add the incoming 8927 // value from the backedge after all recipes have been created. 8928 recordRecipeOf(cast<Instruction>( 8929 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8930 PhisToFix.push_back(PhiRecipe); 8931 } else { 8932 // TODO: record start and backedge value for remaining pointer induction 8933 // phis. 8934 assert(Phi->getType()->isPointerTy() && 8935 "only pointer phis should be handled here"); 8936 PhiRecipe = new VPWidenPHIRecipe(Phi); 8937 } 8938 8939 return toVPRecipeResult(PhiRecipe); 8940 } 8941 8942 if (isa<TruncInst>(Instr) && 8943 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8944 Range, *Plan))) 8945 return toVPRecipeResult(Recipe); 8946 8947 if (!shouldWiden(Instr, Range)) 8948 return nullptr; 8949 8950 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8951 return toVPRecipeResult(new VPWidenGEPRecipe( 8952 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8953 8954 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8955 bool InvariantCond = 8956 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8957 return toVPRecipeResult(new VPWidenSelectRecipe( 8958 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8959 } 8960 8961 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8962 } 8963 8964 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8965 ElementCount MaxVF) { 8966 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8967 8968 // Collect instructions from the original loop that will become trivially dead 8969 // in the vectorized loop. We don't need to vectorize these instructions. For 8970 // example, original induction update instructions can become dead because we 8971 // separately emit induction "steps" when generating code for the new loop. 8972 // Similarly, we create a new latch condition when setting up the structure 8973 // of the new loop, so the old one can become dead. 8974 SmallPtrSet<Instruction *, 4> DeadInstructions; 8975 collectTriviallyDeadInstructions(DeadInstructions); 8976 8977 // Add assume instructions we need to drop to DeadInstructions, to prevent 8978 // them from being added to the VPlan. 8979 // TODO: We only need to drop assumes in blocks that get flattend. If the 8980 // control flow is preserved, we should keep them. 8981 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8982 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8983 8984 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8985 // Dead instructions do not need sinking. Remove them from SinkAfter. 8986 for (Instruction *I : DeadInstructions) 8987 SinkAfter.erase(I); 8988 8989 // Cannot sink instructions after dead instructions (there won't be any 8990 // recipes for them). Instead, find the first non-dead previous instruction. 8991 for (auto &P : Legal->getSinkAfter()) { 8992 Instruction *SinkTarget = P.second; 8993 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8994 (void)FirstInst; 8995 while (DeadInstructions.contains(SinkTarget)) { 8996 assert( 8997 SinkTarget != FirstInst && 8998 "Must find a live instruction (at least the one feeding the " 8999 "first-order recurrence PHI) before reaching beginning of the block"); 9000 SinkTarget = SinkTarget->getPrevNode(); 9001 assert(SinkTarget != P.first && 9002 "sink source equals target, no sinking required"); 9003 } 9004 P.second = SinkTarget; 9005 } 9006 9007 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9008 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9009 VFRange SubRange = {VF, MaxVFPlusOne}; 9010 VPlans.push_back( 9011 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9012 VF = SubRange.End; 9013 } 9014 } 9015 9016 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9017 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9018 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9019 9020 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9021 9022 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9023 9024 // --------------------------------------------------------------------------- 9025 // Pre-construction: record ingredients whose recipes we'll need to further 9026 // process after constructing the initial VPlan. 9027 // --------------------------------------------------------------------------- 9028 9029 // Mark instructions we'll need to sink later and their targets as 9030 // ingredients whose recipe we'll need to record. 9031 for (auto &Entry : SinkAfter) { 9032 RecipeBuilder.recordRecipeOf(Entry.first); 9033 RecipeBuilder.recordRecipeOf(Entry.second); 9034 } 9035 for (auto &Reduction : CM.getInLoopReductionChains()) { 9036 PHINode *Phi = Reduction.first; 9037 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9038 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9039 9040 RecipeBuilder.recordRecipeOf(Phi); 9041 for (auto &R : ReductionOperations) { 9042 RecipeBuilder.recordRecipeOf(R); 9043 // For min/max reducitons, where we have a pair of icmp/select, we also 9044 // need to record the ICmp recipe, so it can be removed later. 9045 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9046 "Only min/max recurrences allowed for inloop reductions"); 9047 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9048 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9049 } 9050 } 9051 9052 // For each interleave group which is relevant for this (possibly trimmed) 9053 // Range, add it to the set of groups to be later applied to the VPlan and add 9054 // placeholders for its members' Recipes which we'll be replacing with a 9055 // single VPInterleaveRecipe. 9056 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9057 auto applyIG = [IG, this](ElementCount VF) -> bool { 9058 return (VF.isVector() && // Query is illegal for VF == 1 9059 CM.getWideningDecision(IG->getInsertPos(), VF) == 9060 LoopVectorizationCostModel::CM_Interleave); 9061 }; 9062 if (!getDecisionAndClampRange(applyIG, Range)) 9063 continue; 9064 InterleaveGroups.insert(IG); 9065 for (unsigned i = 0; i < IG->getFactor(); i++) 9066 if (Instruction *Member = IG->getMember(i)) 9067 RecipeBuilder.recordRecipeOf(Member); 9068 }; 9069 9070 // --------------------------------------------------------------------------- 9071 // Build initial VPlan: Scan the body of the loop in a topological order to 9072 // visit each basic block after having visited its predecessor basic blocks. 9073 // --------------------------------------------------------------------------- 9074 9075 auto Plan = std::make_unique<VPlan>(); 9076 9077 // Scan the body of the loop in a topological order to visit each basic block 9078 // after having visited its predecessor basic blocks. 9079 LoopBlocksDFS DFS(OrigLoop); 9080 DFS.perform(LI); 9081 9082 VPBasicBlock *VPBB = nullptr; 9083 VPBasicBlock *HeaderVPBB = nullptr; 9084 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 9085 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9086 // Relevant instructions from basic block BB will be grouped into VPRecipe 9087 // ingredients and fill a new VPBasicBlock. 9088 unsigned VPBBsForBB = 0; 9089 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9090 if (VPBB) 9091 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9092 else { 9093 auto *TopRegion = new VPRegionBlock("vector loop"); 9094 TopRegion->setEntry(FirstVPBBForBB); 9095 Plan->setEntry(TopRegion); 9096 HeaderVPBB = FirstVPBBForBB; 9097 } 9098 VPBB = FirstVPBBForBB; 9099 Builder.setInsertPoint(VPBB); 9100 9101 // Introduce each ingredient into VPlan. 9102 // TODO: Model and preserve debug instrinsics in VPlan. 9103 for (Instruction &I : BB->instructionsWithoutDebug()) { 9104 Instruction *Instr = &I; 9105 9106 // First filter out irrelevant instructions, to ensure no recipes are 9107 // built for them. 9108 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9109 continue; 9110 9111 SmallVector<VPValue *, 4> Operands; 9112 auto *Phi = dyn_cast<PHINode>(Instr); 9113 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9114 Operands.push_back(Plan->getOrAddVPValue( 9115 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9116 } else { 9117 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9118 Operands = {OpRange.begin(), OpRange.end()}; 9119 } 9120 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9121 Instr, Operands, Range, Plan)) { 9122 // If Instr can be simplified to an existing VPValue, use it. 9123 if (RecipeOrValue.is<VPValue *>()) { 9124 auto *VPV = RecipeOrValue.get<VPValue *>(); 9125 Plan->addVPValue(Instr, VPV); 9126 // If the re-used value is a recipe, register the recipe for the 9127 // instruction, in case the recipe for Instr needs to be recorded. 9128 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9129 RecipeBuilder.setRecipe(Instr, R); 9130 continue; 9131 } 9132 // Otherwise, add the new recipe. 9133 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9134 for (auto *Def : Recipe->definedValues()) { 9135 auto *UV = Def->getUnderlyingValue(); 9136 Plan->addVPValue(UV, Def); 9137 } 9138 9139 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 9140 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 9141 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 9142 // of the header block. That can happen for truncates of induction 9143 // variables. Those recipes are moved to the phi section of the header 9144 // block after applying SinkAfter, which relies on the original 9145 // position of the trunc. 9146 assert(isa<TruncInst>(Instr)); 9147 InductionsToMove.push_back( 9148 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 9149 } 9150 RecipeBuilder.setRecipe(Instr, Recipe); 9151 VPBB->appendRecipe(Recipe); 9152 continue; 9153 } 9154 9155 // Otherwise, if all widening options failed, Instruction is to be 9156 // replicated. This may create a successor for VPBB. 9157 VPBasicBlock *NextVPBB = 9158 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9159 if (NextVPBB != VPBB) { 9160 VPBB = NextVPBB; 9161 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9162 : ""); 9163 } 9164 } 9165 } 9166 9167 assert(isa<VPRegionBlock>(Plan->getEntry()) && 9168 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9169 "entry block must be set to a VPRegionBlock having a non-empty entry " 9170 "VPBasicBlock"); 9171 cast<VPRegionBlock>(Plan->getEntry())->setExit(VPBB); 9172 RecipeBuilder.fixHeaderPhis(); 9173 9174 // --------------------------------------------------------------------------- 9175 // Transform initial VPlan: Apply previously taken decisions, in order, to 9176 // bring the VPlan to its final state. 9177 // --------------------------------------------------------------------------- 9178 9179 // Apply Sink-After legal constraints. 9180 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9181 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9182 if (Region && Region->isReplicator()) { 9183 assert(Region->getNumSuccessors() == 1 && 9184 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9185 assert(R->getParent()->size() == 1 && 9186 "A recipe in an original replicator region must be the only " 9187 "recipe in its block"); 9188 return Region; 9189 } 9190 return nullptr; 9191 }; 9192 for (auto &Entry : SinkAfter) { 9193 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9194 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9195 9196 auto *TargetRegion = GetReplicateRegion(Target); 9197 auto *SinkRegion = GetReplicateRegion(Sink); 9198 if (!SinkRegion) { 9199 // If the sink source is not a replicate region, sink the recipe directly. 9200 if (TargetRegion) { 9201 // The target is in a replication region, make sure to move Sink to 9202 // the block after it, not into the replication region itself. 9203 VPBasicBlock *NextBlock = 9204 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9205 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9206 } else 9207 Sink->moveAfter(Target); 9208 continue; 9209 } 9210 9211 // The sink source is in a replicate region. Unhook the region from the CFG. 9212 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9213 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9214 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9215 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9216 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9217 9218 if (TargetRegion) { 9219 // The target recipe is also in a replicate region, move the sink region 9220 // after the target region. 9221 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9222 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9223 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9224 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9225 } else { 9226 // The sink source is in a replicate region, we need to move the whole 9227 // replicate region, which should only contain a single recipe in the 9228 // main block. 9229 auto *SplitBlock = 9230 Target->getParent()->splitAt(std::next(Target->getIterator())); 9231 9232 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9233 9234 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9235 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9236 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9237 if (VPBB == SplitPred) 9238 VPBB = SplitBlock; 9239 } 9240 } 9241 9242 // Now that sink-after is done, move induction recipes for optimized truncates 9243 // to the phi section of the header block. 9244 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9245 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9246 9247 // Adjust the recipes for any inloop reductions. 9248 adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start); 9249 9250 // Introduce a recipe to combine the incoming and previous values of a 9251 // first-order recurrence. 9252 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9253 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9254 if (!RecurPhi) 9255 continue; 9256 9257 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9258 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9259 auto *Region = GetReplicateRegion(PrevRecipe); 9260 if (Region) 9261 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9262 if (Region || PrevRecipe->isPhi()) 9263 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9264 else 9265 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9266 9267 auto *RecurSplice = cast<VPInstruction>( 9268 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9269 {RecurPhi, RecurPhi->getBackedgeValue()})); 9270 9271 RecurPhi->replaceAllUsesWith(RecurSplice); 9272 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9273 // all users. 9274 RecurSplice->setOperand(0, RecurPhi); 9275 } 9276 9277 // Interleave memory: for each Interleave Group we marked earlier as relevant 9278 // for this VPlan, replace the Recipes widening its memory instructions with a 9279 // single VPInterleaveRecipe at its insertion point. 9280 for (auto IG : InterleaveGroups) { 9281 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9282 RecipeBuilder.getRecipe(IG->getInsertPos())); 9283 SmallVector<VPValue *, 4> StoredValues; 9284 for (unsigned i = 0; i < IG->getFactor(); ++i) 9285 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9286 auto *StoreR = 9287 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9288 StoredValues.push_back(StoreR->getStoredValue()); 9289 } 9290 9291 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9292 Recipe->getMask()); 9293 VPIG->insertBefore(Recipe); 9294 unsigned J = 0; 9295 for (unsigned i = 0; i < IG->getFactor(); ++i) 9296 if (Instruction *Member = IG->getMember(i)) { 9297 if (!Member->getType()->isVoidTy()) { 9298 VPValue *OriginalV = Plan->getVPValue(Member); 9299 Plan->removeVPValueFor(Member); 9300 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9301 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9302 J++; 9303 } 9304 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9305 } 9306 } 9307 9308 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9309 // in ways that accessing values using original IR values is incorrect. 9310 Plan->disableValue2VPValue(); 9311 9312 VPlanTransforms::sinkScalarOperands(*Plan); 9313 VPlanTransforms::mergeReplicateRegions(*Plan); 9314 9315 std::string PlanName; 9316 raw_string_ostream RSO(PlanName); 9317 ElementCount VF = Range.Start; 9318 Plan->addVF(VF); 9319 RSO << "Initial VPlan for VF={" << VF; 9320 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9321 Plan->addVF(VF); 9322 RSO << "," << VF; 9323 } 9324 RSO << "},UF>=1"; 9325 RSO.flush(); 9326 Plan->setName(PlanName); 9327 9328 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9329 return Plan; 9330 } 9331 9332 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9333 // Outer loop handling: They may require CFG and instruction level 9334 // transformations before even evaluating whether vectorization is profitable. 9335 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9336 // the vectorization pipeline. 9337 assert(!OrigLoop->isInnermost()); 9338 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9339 9340 // Create new empty VPlan 9341 auto Plan = std::make_unique<VPlan>(); 9342 9343 // Build hierarchical CFG 9344 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9345 HCFGBuilder.buildHierarchicalCFG(); 9346 9347 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9348 VF *= 2) 9349 Plan->addVF(VF); 9350 9351 if (EnableVPlanPredication) { 9352 VPlanPredicator VPP(*Plan); 9353 VPP.predicate(); 9354 9355 // Avoid running transformation to recipes until masked code generation in 9356 // VPlan-native path is in place. 9357 return Plan; 9358 } 9359 9360 SmallPtrSet<Instruction *, 1> DeadInstructions; 9361 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9362 Legal->getInductionVars(), 9363 DeadInstructions, *PSE.getSE()); 9364 return Plan; 9365 } 9366 9367 // Adjust the recipes for reductions. For in-loop reductions the chain of 9368 // instructions leading from the loop exit instr to the phi need to be converted 9369 // to reductions, with one operand being vector and the other being the scalar 9370 // reduction chain. For other reductions, a select is introduced between the phi 9371 // and live-out recipes when folding the tail. 9372 void LoopVectorizationPlanner::adjustRecipesForReductions( 9373 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9374 ElementCount MinVF) { 9375 for (auto &Reduction : CM.getInLoopReductionChains()) { 9376 PHINode *Phi = Reduction.first; 9377 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9378 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9379 9380 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9381 continue; 9382 9383 // ReductionOperations are orders top-down from the phi's use to the 9384 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9385 // which of the two operands will remain scalar and which will be reduced. 9386 // For minmax the chain will be the select instructions. 9387 Instruction *Chain = Phi; 9388 for (Instruction *R : ReductionOperations) { 9389 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9390 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9391 9392 VPValue *ChainOp = Plan->getVPValue(Chain); 9393 unsigned FirstOpId; 9394 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9395 "Only min/max recurrences allowed for inloop reductions"); 9396 // Recognize a call to the llvm.fmuladd intrinsic. 9397 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9398 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9399 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9400 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9401 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9402 "Expected to replace a VPWidenSelectSC"); 9403 FirstOpId = 1; 9404 } else { 9405 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9406 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9407 "Expected to replace a VPWidenSC"); 9408 FirstOpId = 0; 9409 } 9410 unsigned VecOpId = 9411 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9412 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9413 9414 auto *CondOp = CM.foldTailByMasking() 9415 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9416 : nullptr; 9417 9418 if (IsFMulAdd) { 9419 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9420 // need to create an fmul recipe to use as the vector operand for the 9421 // fadd reduction. 9422 VPInstruction *FMulRecipe = new VPInstruction( 9423 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9424 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9425 WidenRecipe->getParent()->insert(FMulRecipe, 9426 WidenRecipe->getIterator()); 9427 VecOp = FMulRecipe; 9428 } 9429 VPReductionRecipe *RedRecipe = 9430 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9431 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9432 Plan->removeVPValueFor(R); 9433 Plan->addVPValue(R, RedRecipe); 9434 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9435 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9436 WidenRecipe->eraseFromParent(); 9437 9438 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9439 VPRecipeBase *CompareRecipe = 9440 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9441 assert(isa<VPWidenRecipe>(CompareRecipe) && 9442 "Expected to replace a VPWidenSC"); 9443 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9444 "Expected no remaining users"); 9445 CompareRecipe->eraseFromParent(); 9446 } 9447 Chain = R; 9448 } 9449 } 9450 9451 // If tail is folded by masking, introduce selects between the phi 9452 // and the live-out instruction of each reduction, at the end of the latch. 9453 if (CM.foldTailByMasking()) { 9454 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9455 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9456 if (!PhiR || PhiR->isInLoop()) 9457 continue; 9458 Builder.setInsertPoint(LatchVPBB); 9459 VPValue *Cond = 9460 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9461 VPValue *Red = PhiR->getBackedgeValue(); 9462 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9463 } 9464 } 9465 } 9466 9467 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9468 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9469 VPSlotTracker &SlotTracker) const { 9470 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9471 IG->getInsertPos()->printAsOperand(O, false); 9472 O << ", "; 9473 getAddr()->printAsOperand(O, SlotTracker); 9474 VPValue *Mask = getMask(); 9475 if (Mask) { 9476 O << ", "; 9477 Mask->printAsOperand(O, SlotTracker); 9478 } 9479 9480 unsigned OpIdx = 0; 9481 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9482 if (!IG->getMember(i)) 9483 continue; 9484 if (getNumStoreOperands() > 0) { 9485 O << "\n" << Indent << " store "; 9486 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9487 O << " to index " << i; 9488 } else { 9489 O << "\n" << Indent << " "; 9490 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9491 O << " = load from index " << i; 9492 } 9493 ++OpIdx; 9494 } 9495 } 9496 #endif 9497 9498 void VPWidenCallRecipe::execute(VPTransformState &State) { 9499 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9500 *this, State); 9501 } 9502 9503 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9504 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9505 State.ILV->setDebugLocFromInst(&I); 9506 9507 // The condition can be loop invariant but still defined inside the 9508 // loop. This means that we can't just use the original 'cond' value. 9509 // We have to take the 'vectorized' value and pick the first lane. 9510 // Instcombine will make this a no-op. 9511 auto *InvarCond = 9512 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9513 9514 for (unsigned Part = 0; Part < State.UF; ++Part) { 9515 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9516 Value *Op0 = State.get(getOperand(1), Part); 9517 Value *Op1 = State.get(getOperand(2), Part); 9518 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9519 State.set(this, Sel, Part); 9520 State.ILV->addMetadata(Sel, &I); 9521 } 9522 } 9523 9524 void VPWidenRecipe::execute(VPTransformState &State) { 9525 auto &I = *cast<Instruction>(getUnderlyingValue()); 9526 auto &Builder = State.Builder; 9527 switch (I.getOpcode()) { 9528 case Instruction::Call: 9529 case Instruction::Br: 9530 case Instruction::PHI: 9531 case Instruction::GetElementPtr: 9532 case Instruction::Select: 9533 llvm_unreachable("This instruction is handled by a different recipe."); 9534 case Instruction::UDiv: 9535 case Instruction::SDiv: 9536 case Instruction::SRem: 9537 case Instruction::URem: 9538 case Instruction::Add: 9539 case Instruction::FAdd: 9540 case Instruction::Sub: 9541 case Instruction::FSub: 9542 case Instruction::FNeg: 9543 case Instruction::Mul: 9544 case Instruction::FMul: 9545 case Instruction::FDiv: 9546 case Instruction::FRem: 9547 case Instruction::Shl: 9548 case Instruction::LShr: 9549 case Instruction::AShr: 9550 case Instruction::And: 9551 case Instruction::Or: 9552 case Instruction::Xor: { 9553 // Just widen unops and binops. 9554 State.ILV->setDebugLocFromInst(&I); 9555 9556 for (unsigned Part = 0; Part < State.UF; ++Part) { 9557 SmallVector<Value *, 2> Ops; 9558 for (VPValue *VPOp : operands()) 9559 Ops.push_back(State.get(VPOp, Part)); 9560 9561 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9562 9563 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9564 VecOp->copyIRFlags(&I); 9565 9566 // If the instruction is vectorized and was in a basic block that needed 9567 // predication, we can't propagate poison-generating flags (nuw/nsw, 9568 // exact, etc.). The control flow has been linearized and the 9569 // instruction is no longer guarded by the predicate, which could make 9570 // the flag properties to no longer hold. 9571 if (State.MayGeneratePoisonRecipes.count(this) > 0) 9572 VecOp->dropPoisonGeneratingFlags(); 9573 } 9574 9575 // Use this vector value for all users of the original instruction. 9576 State.set(this, V, Part); 9577 State.ILV->addMetadata(V, &I); 9578 } 9579 9580 break; 9581 } 9582 case Instruction::ICmp: 9583 case Instruction::FCmp: { 9584 // Widen compares. Generate vector compares. 9585 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9586 auto *Cmp = cast<CmpInst>(&I); 9587 State.ILV->setDebugLocFromInst(Cmp); 9588 for (unsigned Part = 0; Part < State.UF; ++Part) { 9589 Value *A = State.get(getOperand(0), Part); 9590 Value *B = State.get(getOperand(1), Part); 9591 Value *C = nullptr; 9592 if (FCmp) { 9593 // Propagate fast math flags. 9594 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9595 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9596 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9597 } else { 9598 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9599 } 9600 State.set(this, C, Part); 9601 State.ILV->addMetadata(C, &I); 9602 } 9603 9604 break; 9605 } 9606 9607 case Instruction::ZExt: 9608 case Instruction::SExt: 9609 case Instruction::FPToUI: 9610 case Instruction::FPToSI: 9611 case Instruction::FPExt: 9612 case Instruction::PtrToInt: 9613 case Instruction::IntToPtr: 9614 case Instruction::SIToFP: 9615 case Instruction::UIToFP: 9616 case Instruction::Trunc: 9617 case Instruction::FPTrunc: 9618 case Instruction::BitCast: { 9619 auto *CI = cast<CastInst>(&I); 9620 State.ILV->setDebugLocFromInst(CI); 9621 9622 /// Vectorize casts. 9623 Type *DestTy = (State.VF.isScalar()) 9624 ? CI->getType() 9625 : VectorType::get(CI->getType(), State.VF); 9626 9627 for (unsigned Part = 0; Part < State.UF; ++Part) { 9628 Value *A = State.get(getOperand(0), Part); 9629 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9630 State.set(this, Cast, Part); 9631 State.ILV->addMetadata(Cast, &I); 9632 } 9633 break; 9634 } 9635 default: 9636 // This instruction is not vectorized by simple widening. 9637 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9638 llvm_unreachable("Unhandled instruction!"); 9639 } // end of switch. 9640 } 9641 9642 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9643 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9644 // Construct a vector GEP by widening the operands of the scalar GEP as 9645 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9646 // results in a vector of pointers when at least one operand of the GEP 9647 // is vector-typed. Thus, to keep the representation compact, we only use 9648 // vector-typed operands for loop-varying values. 9649 9650 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9651 // If we are vectorizing, but the GEP has only loop-invariant operands, 9652 // the GEP we build (by only using vector-typed operands for 9653 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9654 // produce a vector of pointers, we need to either arbitrarily pick an 9655 // operand to broadcast, or broadcast a clone of the original GEP. 9656 // Here, we broadcast a clone of the original. 9657 // 9658 // TODO: If at some point we decide to scalarize instructions having 9659 // loop-invariant operands, this special case will no longer be 9660 // required. We would add the scalarization decision to 9661 // collectLoopScalars() and teach getVectorValue() to broadcast 9662 // the lane-zero scalar value. 9663 auto *Clone = State.Builder.Insert(GEP->clone()); 9664 for (unsigned Part = 0; Part < State.UF; ++Part) { 9665 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9666 State.set(this, EntryPart, Part); 9667 State.ILV->addMetadata(EntryPart, GEP); 9668 } 9669 } else { 9670 // If the GEP has at least one loop-varying operand, we are sure to 9671 // produce a vector of pointers. But if we are only unrolling, we want 9672 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9673 // produce with the code below will be scalar (if VF == 1) or vector 9674 // (otherwise). Note that for the unroll-only case, we still maintain 9675 // values in the vector mapping with initVector, as we do for other 9676 // instructions. 9677 for (unsigned Part = 0; Part < State.UF; ++Part) { 9678 // The pointer operand of the new GEP. If it's loop-invariant, we 9679 // won't broadcast it. 9680 auto *Ptr = IsPtrLoopInvariant 9681 ? State.get(getOperand(0), VPIteration(0, 0)) 9682 : State.get(getOperand(0), Part); 9683 9684 // Collect all the indices for the new GEP. If any index is 9685 // loop-invariant, we won't broadcast it. 9686 SmallVector<Value *, 4> Indices; 9687 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9688 VPValue *Operand = getOperand(I); 9689 if (IsIndexLoopInvariant[I - 1]) 9690 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9691 else 9692 Indices.push_back(State.get(Operand, Part)); 9693 } 9694 9695 // If the GEP instruction is vectorized and was in a basic block that 9696 // needed predication, we can't propagate the poison-generating 'inbounds' 9697 // flag. The control flow has been linearized and the GEP is no longer 9698 // guarded by the predicate, which could make the 'inbounds' properties to 9699 // no longer hold. 9700 bool IsInBounds = 9701 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9702 9703 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9704 // but it should be a vector, otherwise. 9705 auto *NewGEP = IsInBounds 9706 ? State.Builder.CreateInBoundsGEP( 9707 GEP->getSourceElementType(), Ptr, Indices) 9708 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9709 Ptr, Indices); 9710 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9711 "NewGEP is not a pointer vector"); 9712 State.set(this, NewGEP, Part); 9713 State.ILV->addMetadata(NewGEP, GEP); 9714 } 9715 } 9716 } 9717 9718 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9719 assert(!State.Instance && "Int or FP induction being replicated."); 9720 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9721 getTruncInst(), getVPValue(0), 9722 getCastValue(), State); 9723 } 9724 9725 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9726 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9727 State); 9728 } 9729 9730 void VPBlendRecipe::execute(VPTransformState &State) { 9731 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9732 // We know that all PHIs in non-header blocks are converted into 9733 // selects, so we don't have to worry about the insertion order and we 9734 // can just use the builder. 9735 // At this point we generate the predication tree. There may be 9736 // duplications since this is a simple recursive scan, but future 9737 // optimizations will clean it up. 9738 9739 unsigned NumIncoming = getNumIncomingValues(); 9740 9741 // Generate a sequence of selects of the form: 9742 // SELECT(Mask3, In3, 9743 // SELECT(Mask2, In2, 9744 // SELECT(Mask1, In1, 9745 // In0))) 9746 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9747 // are essentially undef are taken from In0. 9748 InnerLoopVectorizer::VectorParts Entry(State.UF); 9749 for (unsigned In = 0; In < NumIncoming; ++In) { 9750 for (unsigned Part = 0; Part < State.UF; ++Part) { 9751 // We might have single edge PHIs (blocks) - use an identity 9752 // 'select' for the first PHI operand. 9753 Value *In0 = State.get(getIncomingValue(In), Part); 9754 if (In == 0) 9755 Entry[Part] = In0; // Initialize with the first incoming value. 9756 else { 9757 // Select between the current value and the previous incoming edge 9758 // based on the incoming mask. 9759 Value *Cond = State.get(getMask(In), Part); 9760 Entry[Part] = 9761 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9762 } 9763 } 9764 } 9765 for (unsigned Part = 0; Part < State.UF; ++Part) 9766 State.set(this, Entry[Part], Part); 9767 } 9768 9769 void VPInterleaveRecipe::execute(VPTransformState &State) { 9770 assert(!State.Instance && "Interleave group being replicated."); 9771 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9772 getStoredValues(), getMask()); 9773 } 9774 9775 void VPReductionRecipe::execute(VPTransformState &State) { 9776 assert(!State.Instance && "Reduction being replicated."); 9777 Value *PrevInChain = State.get(getChainOp(), 0); 9778 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9779 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9780 // Propagate the fast-math flags carried by the underlying instruction. 9781 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9782 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9783 for (unsigned Part = 0; Part < State.UF; ++Part) { 9784 Value *NewVecOp = State.get(getVecOp(), Part); 9785 if (VPValue *Cond = getCondOp()) { 9786 Value *NewCond = State.get(Cond, Part); 9787 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9788 Value *Iden = RdxDesc->getRecurrenceIdentity( 9789 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9790 Value *IdenVec = 9791 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9792 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9793 NewVecOp = Select; 9794 } 9795 Value *NewRed; 9796 Value *NextInChain; 9797 if (IsOrdered) { 9798 if (State.VF.isVector()) 9799 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9800 PrevInChain); 9801 else 9802 NewRed = State.Builder.CreateBinOp( 9803 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9804 NewVecOp); 9805 PrevInChain = NewRed; 9806 } else { 9807 PrevInChain = State.get(getChainOp(), Part); 9808 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9809 } 9810 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9811 NextInChain = 9812 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9813 NewRed, PrevInChain); 9814 } else if (IsOrdered) 9815 NextInChain = NewRed; 9816 else 9817 NextInChain = State.Builder.CreateBinOp( 9818 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9819 PrevInChain); 9820 State.set(this, NextInChain, Part); 9821 } 9822 } 9823 9824 void VPReplicateRecipe::execute(VPTransformState &State) { 9825 if (State.Instance) { // Generate a single instance. 9826 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9827 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9828 IsPredicated, State); 9829 // Insert scalar instance packing it into a vector. 9830 if (AlsoPack && State.VF.isVector()) { 9831 // If we're constructing lane 0, initialize to start from poison. 9832 if (State.Instance->Lane.isFirstLane()) { 9833 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9834 Value *Poison = PoisonValue::get( 9835 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9836 State.set(this, Poison, State.Instance->Part); 9837 } 9838 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9839 } 9840 return; 9841 } 9842 9843 // Generate scalar instances for all VF lanes of all UF parts, unless the 9844 // instruction is uniform inwhich case generate only the first lane for each 9845 // of the UF parts. 9846 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9847 assert((!State.VF.isScalable() || IsUniform) && 9848 "Can't scalarize a scalable vector"); 9849 for (unsigned Part = 0; Part < State.UF; ++Part) 9850 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9851 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9852 VPIteration(Part, Lane), IsPredicated, 9853 State); 9854 } 9855 9856 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9857 assert(State.Instance && "Branch on Mask works only on single instance."); 9858 9859 unsigned Part = State.Instance->Part; 9860 unsigned Lane = State.Instance->Lane.getKnownLane(); 9861 9862 Value *ConditionBit = nullptr; 9863 VPValue *BlockInMask = getMask(); 9864 if (BlockInMask) { 9865 ConditionBit = State.get(BlockInMask, Part); 9866 if (ConditionBit->getType()->isVectorTy()) 9867 ConditionBit = State.Builder.CreateExtractElement( 9868 ConditionBit, State.Builder.getInt32(Lane)); 9869 } else // Block in mask is all-one. 9870 ConditionBit = State.Builder.getTrue(); 9871 9872 // Replace the temporary unreachable terminator with a new conditional branch, 9873 // whose two destinations will be set later when they are created. 9874 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9875 assert(isa<UnreachableInst>(CurrentTerminator) && 9876 "Expected to replace unreachable terminator with conditional branch."); 9877 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9878 CondBr->setSuccessor(0, nullptr); 9879 ReplaceInstWithInst(CurrentTerminator, CondBr); 9880 } 9881 9882 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9883 assert(State.Instance && "Predicated instruction PHI works per instance."); 9884 Instruction *ScalarPredInst = 9885 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9886 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9887 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9888 assert(PredicatingBB && "Predicated block has no single predecessor."); 9889 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9890 "operand must be VPReplicateRecipe"); 9891 9892 // By current pack/unpack logic we need to generate only a single phi node: if 9893 // a vector value for the predicated instruction exists at this point it means 9894 // the instruction has vector users only, and a phi for the vector value is 9895 // needed. In this case the recipe of the predicated instruction is marked to 9896 // also do that packing, thereby "hoisting" the insert-element sequence. 9897 // Otherwise, a phi node for the scalar value is needed. 9898 unsigned Part = State.Instance->Part; 9899 if (State.hasVectorValue(getOperand(0), Part)) { 9900 Value *VectorValue = State.get(getOperand(0), Part); 9901 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9902 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9903 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9904 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9905 if (State.hasVectorValue(this, Part)) 9906 State.reset(this, VPhi, Part); 9907 else 9908 State.set(this, VPhi, Part); 9909 // NOTE: Currently we need to update the value of the operand, so the next 9910 // predicated iteration inserts its generated value in the correct vector. 9911 State.reset(getOperand(0), VPhi, Part); 9912 } else { 9913 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9914 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9915 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9916 PredicatingBB); 9917 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9918 if (State.hasScalarValue(this, *State.Instance)) 9919 State.reset(this, Phi, *State.Instance); 9920 else 9921 State.set(this, Phi, *State.Instance); 9922 // NOTE: Currently we need to update the value of the operand, so the next 9923 // predicated iteration inserts its generated value in the correct vector. 9924 State.reset(getOperand(0), Phi, *State.Instance); 9925 } 9926 } 9927 9928 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9929 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9930 9931 // Attempt to issue a wide load. 9932 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9933 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9934 9935 assert((LI || SI) && "Invalid Load/Store instruction"); 9936 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9937 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9938 9939 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9940 9941 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9942 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9943 bool CreateGatherScatter = !Consecutive; 9944 9945 auto &Builder = State.Builder; 9946 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9947 bool isMaskRequired = getMask(); 9948 if (isMaskRequired) 9949 for (unsigned Part = 0; Part < State.UF; ++Part) 9950 BlockInMaskParts[Part] = State.get(getMask(), Part); 9951 9952 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9953 // Calculate the pointer for the specific unroll-part. 9954 GetElementPtrInst *PartPtr = nullptr; 9955 9956 bool InBounds = false; 9957 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9958 InBounds = gep->isInBounds(); 9959 if (Reverse) { 9960 // If the address is consecutive but reversed, then the 9961 // wide store needs to start at the last vector element. 9962 // RunTimeVF = VScale * VF.getKnownMinValue() 9963 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9964 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9965 // NumElt = -Part * RunTimeVF 9966 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9967 // LastLane = 1 - RunTimeVF 9968 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9969 PartPtr = 9970 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9971 PartPtr->setIsInBounds(InBounds); 9972 PartPtr = cast<GetElementPtrInst>( 9973 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9974 PartPtr->setIsInBounds(InBounds); 9975 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9976 BlockInMaskParts[Part] = 9977 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9978 } else { 9979 Value *Increment = 9980 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9981 PartPtr = cast<GetElementPtrInst>( 9982 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9983 PartPtr->setIsInBounds(InBounds); 9984 } 9985 9986 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9987 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9988 }; 9989 9990 // Handle Stores: 9991 if (SI) { 9992 State.ILV->setDebugLocFromInst(SI); 9993 9994 for (unsigned Part = 0; Part < State.UF; ++Part) { 9995 Instruction *NewSI = nullptr; 9996 Value *StoredVal = State.get(StoredValue, Part); 9997 if (CreateGatherScatter) { 9998 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9999 Value *VectorGep = State.get(getAddr(), Part); 10000 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 10001 MaskPart); 10002 } else { 10003 if (Reverse) { 10004 // If we store to reverse consecutive memory locations, then we need 10005 // to reverse the order of elements in the stored value. 10006 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10007 // We don't want to update the value in the map as it might be used in 10008 // another expression. So don't call resetVectorValue(StoredVal). 10009 } 10010 auto *VecPtr = 10011 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10012 if (isMaskRequired) 10013 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10014 BlockInMaskParts[Part]); 10015 else 10016 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10017 } 10018 State.ILV->addMetadata(NewSI, SI); 10019 } 10020 return; 10021 } 10022 10023 // Handle loads. 10024 assert(LI && "Must have a load instruction"); 10025 State.ILV->setDebugLocFromInst(LI); 10026 for (unsigned Part = 0; Part < State.UF; ++Part) { 10027 Value *NewLI; 10028 if (CreateGatherScatter) { 10029 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10030 Value *VectorGep = State.get(getAddr(), Part); 10031 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10032 nullptr, "wide.masked.gather"); 10033 State.ILV->addMetadata(NewLI, LI); 10034 } else { 10035 auto *VecPtr = 10036 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10037 if (isMaskRequired) 10038 NewLI = Builder.CreateMaskedLoad( 10039 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10040 PoisonValue::get(DataTy), "wide.masked.load"); 10041 else 10042 NewLI = 10043 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10044 10045 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10046 State.ILV->addMetadata(NewLI, LI); 10047 if (Reverse) 10048 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10049 } 10050 10051 State.set(getVPSingleValue(), NewLI, Part); 10052 } 10053 } 10054 10055 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10056 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10057 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10058 // for predication. 10059 static ScalarEpilogueLowering getScalarEpilogueLowering( 10060 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10061 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10062 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10063 LoopVectorizationLegality &LVL) { 10064 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10065 // don't look at hints or options, and don't request a scalar epilogue. 10066 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10067 // LoopAccessInfo (due to code dependency and not being able to reliably get 10068 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10069 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10070 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10071 // back to the old way and vectorize with versioning when forced. See D81345.) 10072 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10073 PGSOQueryType::IRPass) && 10074 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10075 return CM_ScalarEpilogueNotAllowedOptSize; 10076 10077 // 2) If set, obey the directives 10078 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10079 switch (PreferPredicateOverEpilogue) { 10080 case PreferPredicateTy::ScalarEpilogue: 10081 return CM_ScalarEpilogueAllowed; 10082 case PreferPredicateTy::PredicateElseScalarEpilogue: 10083 return CM_ScalarEpilogueNotNeededUsePredicate; 10084 case PreferPredicateTy::PredicateOrDontVectorize: 10085 return CM_ScalarEpilogueNotAllowedUsePredicate; 10086 }; 10087 } 10088 10089 // 3) If set, obey the hints 10090 switch (Hints.getPredicate()) { 10091 case LoopVectorizeHints::FK_Enabled: 10092 return CM_ScalarEpilogueNotNeededUsePredicate; 10093 case LoopVectorizeHints::FK_Disabled: 10094 return CM_ScalarEpilogueAllowed; 10095 }; 10096 10097 // 4) if the TTI hook indicates this is profitable, request predication. 10098 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10099 LVL.getLAI())) 10100 return CM_ScalarEpilogueNotNeededUsePredicate; 10101 10102 return CM_ScalarEpilogueAllowed; 10103 } 10104 10105 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10106 // If Values have been set for this Def return the one relevant for \p Part. 10107 if (hasVectorValue(Def, Part)) 10108 return Data.PerPartOutput[Def][Part]; 10109 10110 if (!hasScalarValue(Def, {Part, 0})) { 10111 Value *IRV = Def->getLiveInIRValue(); 10112 Value *B = ILV->getBroadcastInstrs(IRV); 10113 set(Def, B, Part); 10114 return B; 10115 } 10116 10117 Value *ScalarValue = get(Def, {Part, 0}); 10118 // If we aren't vectorizing, we can just copy the scalar map values over 10119 // to the vector map. 10120 if (VF.isScalar()) { 10121 set(Def, ScalarValue, Part); 10122 return ScalarValue; 10123 } 10124 10125 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10126 bool IsUniform = RepR && RepR->isUniform(); 10127 10128 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10129 // Check if there is a scalar value for the selected lane. 10130 if (!hasScalarValue(Def, {Part, LastLane})) { 10131 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10132 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10133 "unexpected recipe found to be invariant"); 10134 IsUniform = true; 10135 LastLane = 0; 10136 } 10137 10138 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10139 // Set the insert point after the last scalarized instruction or after the 10140 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10141 // will directly follow the scalar definitions. 10142 auto OldIP = Builder.saveIP(); 10143 auto NewIP = 10144 isa<PHINode>(LastInst) 10145 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10146 : std::next(BasicBlock::iterator(LastInst)); 10147 Builder.SetInsertPoint(&*NewIP); 10148 10149 // However, if we are vectorizing, we need to construct the vector values. 10150 // If the value is known to be uniform after vectorization, we can just 10151 // broadcast the scalar value corresponding to lane zero for each unroll 10152 // iteration. Otherwise, we construct the vector values using 10153 // insertelement instructions. Since the resulting vectors are stored in 10154 // State, we will only generate the insertelements once. 10155 Value *VectorValue = nullptr; 10156 if (IsUniform) { 10157 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10158 set(Def, VectorValue, Part); 10159 } else { 10160 // Initialize packing with insertelements to start from undef. 10161 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10162 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10163 set(Def, Undef, Part); 10164 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10165 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10166 VectorValue = get(Def, Part); 10167 } 10168 Builder.restoreIP(OldIP); 10169 return VectorValue; 10170 } 10171 10172 // Process the loop in the VPlan-native vectorization path. This path builds 10173 // VPlan upfront in the vectorization pipeline, which allows to apply 10174 // VPlan-to-VPlan transformations from the very beginning without modifying the 10175 // input LLVM IR. 10176 static bool processLoopInVPlanNativePath( 10177 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10178 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10179 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10180 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10181 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10182 LoopVectorizationRequirements &Requirements) { 10183 10184 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10185 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10186 return false; 10187 } 10188 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10189 Function *F = L->getHeader()->getParent(); 10190 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10191 10192 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10193 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10194 10195 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10196 &Hints, IAI); 10197 // Use the planner for outer loop vectorization. 10198 // TODO: CM is not used at this point inside the planner. Turn CM into an 10199 // optional argument if we don't need it in the future. 10200 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10201 Requirements, ORE); 10202 10203 // Get user vectorization factor. 10204 ElementCount UserVF = Hints.getWidth(); 10205 10206 CM.collectElementTypesForWidening(); 10207 10208 // Plan how to best vectorize, return the best VF and its cost. 10209 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10210 10211 // If we are stress testing VPlan builds, do not attempt to generate vector 10212 // code. Masked vector code generation support will follow soon. 10213 // Also, do not attempt to vectorize if no vector code will be produced. 10214 if (VPlanBuildStressTest || EnableVPlanPredication || 10215 VectorizationFactor::Disabled() == VF) 10216 return false; 10217 10218 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10219 10220 { 10221 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10222 F->getParent()->getDataLayout()); 10223 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10224 &CM, BFI, PSI, Checks); 10225 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10226 << L->getHeader()->getParent()->getName() << "\"\n"); 10227 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10228 } 10229 10230 // Mark the loop as already vectorized to avoid vectorizing again. 10231 Hints.setAlreadyVectorized(); 10232 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10233 return true; 10234 } 10235 10236 // Emit a remark if there are stores to floats that required a floating point 10237 // extension. If the vectorized loop was generated with floating point there 10238 // will be a performance penalty from the conversion overhead and the change in 10239 // the vector width. 10240 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10241 SmallVector<Instruction *, 4> Worklist; 10242 for (BasicBlock *BB : L->getBlocks()) { 10243 for (Instruction &Inst : *BB) { 10244 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10245 if (S->getValueOperand()->getType()->isFloatTy()) 10246 Worklist.push_back(S); 10247 } 10248 } 10249 } 10250 10251 // Traverse the floating point stores upwards searching, for floating point 10252 // conversions. 10253 SmallPtrSet<const Instruction *, 4> Visited; 10254 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10255 while (!Worklist.empty()) { 10256 auto *I = Worklist.pop_back_val(); 10257 if (!L->contains(I)) 10258 continue; 10259 if (!Visited.insert(I).second) 10260 continue; 10261 10262 // Emit a remark if the floating point store required a floating 10263 // point conversion. 10264 // TODO: More work could be done to identify the root cause such as a 10265 // constant or a function return type and point the user to it. 10266 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10267 ORE->emit([&]() { 10268 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10269 I->getDebugLoc(), L->getHeader()) 10270 << "floating point conversion changes vector width. " 10271 << "Mixed floating point precision requires an up/down " 10272 << "cast that will negatively impact performance."; 10273 }); 10274 10275 for (Use &Op : I->operands()) 10276 if (auto *OpI = dyn_cast<Instruction>(Op)) 10277 Worklist.push_back(OpI); 10278 } 10279 } 10280 10281 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10282 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10283 !EnableLoopInterleaving), 10284 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10285 !EnableLoopVectorization) {} 10286 10287 bool LoopVectorizePass::processLoop(Loop *L) { 10288 assert((EnableVPlanNativePath || L->isInnermost()) && 10289 "VPlan-native path is not enabled. Only process inner loops."); 10290 10291 #ifndef NDEBUG 10292 const std::string DebugLocStr = getDebugLocString(L); 10293 #endif /* NDEBUG */ 10294 10295 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10296 << L->getHeader()->getParent()->getName() << "\" from " 10297 << DebugLocStr << "\n"); 10298 10299 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 10300 10301 LLVM_DEBUG( 10302 dbgs() << "LV: Loop hints:" 10303 << " force=" 10304 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10305 ? "disabled" 10306 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10307 ? "enabled" 10308 : "?")) 10309 << " width=" << Hints.getWidth() 10310 << " interleave=" << Hints.getInterleave() << "\n"); 10311 10312 // Function containing loop 10313 Function *F = L->getHeader()->getParent(); 10314 10315 // Looking at the diagnostic output is the only way to determine if a loop 10316 // was vectorized (other than looking at the IR or machine code), so it 10317 // is important to generate an optimization remark for each loop. Most of 10318 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10319 // generated as OptimizationRemark and OptimizationRemarkMissed are 10320 // less verbose reporting vectorized loops and unvectorized loops that may 10321 // benefit from vectorization, respectively. 10322 10323 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10324 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10325 return false; 10326 } 10327 10328 PredicatedScalarEvolution PSE(*SE, *L); 10329 10330 // Check if it is legal to vectorize the loop. 10331 LoopVectorizationRequirements Requirements; 10332 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10333 &Requirements, &Hints, DB, AC, BFI, PSI); 10334 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10335 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10336 Hints.emitRemarkWithHints(); 10337 return false; 10338 } 10339 10340 // Check the function attributes and profiles to find out if this function 10341 // should be optimized for size. 10342 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10343 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10344 10345 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10346 // here. They may require CFG and instruction level transformations before 10347 // even evaluating whether vectorization is profitable. Since we cannot modify 10348 // the incoming IR, we need to build VPlan upfront in the vectorization 10349 // pipeline. 10350 if (!L->isInnermost()) 10351 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10352 ORE, BFI, PSI, Hints, Requirements); 10353 10354 assert(L->isInnermost() && "Inner loop expected."); 10355 10356 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10357 // count by optimizing for size, to minimize overheads. 10358 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10359 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10360 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10361 << "This loop is worth vectorizing only if no scalar " 10362 << "iteration overheads are incurred."); 10363 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10364 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10365 else { 10366 LLVM_DEBUG(dbgs() << "\n"); 10367 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10368 } 10369 } 10370 10371 // Check the function attributes to see if implicit floats are allowed. 10372 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10373 // an integer loop and the vector instructions selected are purely integer 10374 // vector instructions? 10375 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10376 reportVectorizationFailure( 10377 "Can't vectorize when the NoImplicitFloat attribute is used", 10378 "loop not vectorized due to NoImplicitFloat attribute", 10379 "NoImplicitFloat", ORE, L); 10380 Hints.emitRemarkWithHints(); 10381 return false; 10382 } 10383 10384 // Check if the target supports potentially unsafe FP vectorization. 10385 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10386 // for the target we're vectorizing for, to make sure none of the 10387 // additional fp-math flags can help. 10388 if (Hints.isPotentiallyUnsafe() && 10389 TTI->isFPVectorizationPotentiallyUnsafe()) { 10390 reportVectorizationFailure( 10391 "Potentially unsafe FP op prevents vectorization", 10392 "loop not vectorized due to unsafe FP support.", 10393 "UnsafeFP", ORE, L); 10394 Hints.emitRemarkWithHints(); 10395 return false; 10396 } 10397 10398 bool AllowOrderedReductions; 10399 // If the flag is set, use that instead and override the TTI behaviour. 10400 if (ForceOrderedReductions.getNumOccurrences() > 0) 10401 AllowOrderedReductions = ForceOrderedReductions; 10402 else 10403 AllowOrderedReductions = TTI->enableOrderedReductions(); 10404 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10405 ORE->emit([&]() { 10406 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10407 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10408 ExactFPMathInst->getDebugLoc(), 10409 ExactFPMathInst->getParent()) 10410 << "loop not vectorized: cannot prove it is safe to reorder " 10411 "floating-point operations"; 10412 }); 10413 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10414 "reorder floating-point operations\n"); 10415 Hints.emitRemarkWithHints(); 10416 return false; 10417 } 10418 10419 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10420 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10421 10422 // If an override option has been passed in for interleaved accesses, use it. 10423 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10424 UseInterleaved = EnableInterleavedMemAccesses; 10425 10426 // Analyze interleaved memory accesses. 10427 if (UseInterleaved) { 10428 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10429 } 10430 10431 // Use the cost model. 10432 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10433 F, &Hints, IAI); 10434 CM.collectValuesToIgnore(); 10435 CM.collectElementTypesForWidening(); 10436 10437 // Use the planner for vectorization. 10438 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10439 Requirements, ORE); 10440 10441 // Get user vectorization factor and interleave count. 10442 ElementCount UserVF = Hints.getWidth(); 10443 unsigned UserIC = Hints.getInterleave(); 10444 10445 // Plan how to best vectorize, return the best VF and its cost. 10446 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10447 10448 VectorizationFactor VF = VectorizationFactor::Disabled(); 10449 unsigned IC = 1; 10450 10451 if (MaybeVF) { 10452 VF = *MaybeVF; 10453 // Select the interleave count. 10454 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10455 } 10456 10457 // Identify the diagnostic messages that should be produced. 10458 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10459 bool VectorizeLoop = true, InterleaveLoop = true; 10460 if (VF.Width.isScalar()) { 10461 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10462 VecDiagMsg = std::make_pair( 10463 "VectorizationNotBeneficial", 10464 "the cost-model indicates that vectorization is not beneficial"); 10465 VectorizeLoop = false; 10466 } 10467 10468 if (!MaybeVF && UserIC > 1) { 10469 // Tell the user interleaving was avoided up-front, despite being explicitly 10470 // requested. 10471 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10472 "interleaving should be avoided up front\n"); 10473 IntDiagMsg = std::make_pair( 10474 "InterleavingAvoided", 10475 "Ignoring UserIC, because interleaving was avoided up front"); 10476 InterleaveLoop = false; 10477 } else if (IC == 1 && UserIC <= 1) { 10478 // Tell the user interleaving is not beneficial. 10479 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10480 IntDiagMsg = std::make_pair( 10481 "InterleavingNotBeneficial", 10482 "the cost-model indicates that interleaving is not beneficial"); 10483 InterleaveLoop = false; 10484 if (UserIC == 1) { 10485 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10486 IntDiagMsg.second += 10487 " and is explicitly disabled or interleave count is set to 1"; 10488 } 10489 } else if (IC > 1 && UserIC == 1) { 10490 // Tell the user interleaving is beneficial, but it explicitly disabled. 10491 LLVM_DEBUG( 10492 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10493 IntDiagMsg = std::make_pair( 10494 "InterleavingBeneficialButDisabled", 10495 "the cost-model indicates that interleaving is beneficial " 10496 "but is explicitly disabled or interleave count is set to 1"); 10497 InterleaveLoop = false; 10498 } 10499 10500 // Override IC if user provided an interleave count. 10501 IC = UserIC > 0 ? UserIC : IC; 10502 10503 // Emit diagnostic messages, if any. 10504 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10505 if (!VectorizeLoop && !InterleaveLoop) { 10506 // Do not vectorize or interleaving the loop. 10507 ORE->emit([&]() { 10508 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10509 L->getStartLoc(), L->getHeader()) 10510 << VecDiagMsg.second; 10511 }); 10512 ORE->emit([&]() { 10513 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10514 L->getStartLoc(), L->getHeader()) 10515 << IntDiagMsg.second; 10516 }); 10517 return false; 10518 } else if (!VectorizeLoop && InterleaveLoop) { 10519 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10520 ORE->emit([&]() { 10521 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10522 L->getStartLoc(), L->getHeader()) 10523 << VecDiagMsg.second; 10524 }); 10525 } else if (VectorizeLoop && !InterleaveLoop) { 10526 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10527 << ") in " << DebugLocStr << '\n'); 10528 ORE->emit([&]() { 10529 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10530 L->getStartLoc(), L->getHeader()) 10531 << IntDiagMsg.second; 10532 }); 10533 } else if (VectorizeLoop && InterleaveLoop) { 10534 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10535 << ") in " << DebugLocStr << '\n'); 10536 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10537 } 10538 10539 bool DisableRuntimeUnroll = false; 10540 MDNode *OrigLoopID = L->getLoopID(); 10541 { 10542 // Optimistically generate runtime checks. Drop them if they turn out to not 10543 // be profitable. Limit the scope of Checks, so the cleanup happens 10544 // immediately after vector codegeneration is done. 10545 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10546 F->getParent()->getDataLayout()); 10547 if (!VF.Width.isScalar() || IC > 1) 10548 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10549 10550 using namespace ore; 10551 if (!VectorizeLoop) { 10552 assert(IC > 1 && "interleave count should not be 1 or 0"); 10553 // If we decided that it is not legal to vectorize the loop, then 10554 // interleave it. 10555 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10556 &CM, BFI, PSI, Checks); 10557 10558 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10559 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10560 10561 ORE->emit([&]() { 10562 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10563 L->getHeader()) 10564 << "interleaved loop (interleaved count: " 10565 << NV("InterleaveCount", IC) << ")"; 10566 }); 10567 } else { 10568 // If we decided that it is *legal* to vectorize the loop, then do it. 10569 10570 // Consider vectorizing the epilogue too if it's profitable. 10571 VectorizationFactor EpilogueVF = 10572 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10573 if (EpilogueVF.Width.isVector()) { 10574 10575 // The first pass vectorizes the main loop and creates a scalar epilogue 10576 // to be vectorized by executing the plan (potentially with a different 10577 // factor) again shortly afterwards. 10578 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10579 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10580 EPI, &LVL, &CM, BFI, PSI, Checks); 10581 10582 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10583 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10584 DT); 10585 ++LoopsVectorized; 10586 10587 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10588 formLCSSARecursively(*L, *DT, LI, SE); 10589 10590 // Second pass vectorizes the epilogue and adjusts the control flow 10591 // edges from the first pass. 10592 EPI.MainLoopVF = EPI.EpilogueVF; 10593 EPI.MainLoopUF = EPI.EpilogueUF; 10594 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10595 ORE, EPI, &LVL, &CM, BFI, PSI, 10596 Checks); 10597 10598 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10599 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10600 DT); 10601 ++LoopsEpilogueVectorized; 10602 10603 if (!MainILV.areSafetyChecksAdded()) 10604 DisableRuntimeUnroll = true; 10605 } else { 10606 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10607 &LVL, &CM, BFI, PSI, Checks); 10608 10609 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10610 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10611 ++LoopsVectorized; 10612 10613 // Add metadata to disable runtime unrolling a scalar loop when there 10614 // are no runtime checks about strides and memory. A scalar loop that is 10615 // rarely used is not worth unrolling. 10616 if (!LB.areSafetyChecksAdded()) 10617 DisableRuntimeUnroll = true; 10618 } 10619 // Report the vectorization decision. 10620 ORE->emit([&]() { 10621 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10622 L->getHeader()) 10623 << "vectorized loop (vectorization width: " 10624 << NV("VectorizationFactor", VF.Width) 10625 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10626 }); 10627 } 10628 10629 if (ORE->allowExtraAnalysis(LV_NAME)) 10630 checkMixedPrecision(L, ORE); 10631 } 10632 10633 Optional<MDNode *> RemainderLoopID = 10634 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10635 LLVMLoopVectorizeFollowupEpilogue}); 10636 if (RemainderLoopID.hasValue()) { 10637 L->setLoopID(RemainderLoopID.getValue()); 10638 } else { 10639 if (DisableRuntimeUnroll) 10640 AddRuntimeUnrollDisableMetaData(L); 10641 10642 // Mark the loop as already vectorized to avoid vectorizing again. 10643 Hints.setAlreadyVectorized(); 10644 } 10645 10646 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10647 return true; 10648 } 10649 10650 LoopVectorizeResult LoopVectorizePass::runImpl( 10651 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10652 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10653 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10654 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10655 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10656 SE = &SE_; 10657 LI = &LI_; 10658 TTI = &TTI_; 10659 DT = &DT_; 10660 BFI = &BFI_; 10661 TLI = TLI_; 10662 AA = &AA_; 10663 AC = &AC_; 10664 GetLAA = &GetLAA_; 10665 DB = &DB_; 10666 ORE = &ORE_; 10667 PSI = PSI_; 10668 10669 // Don't attempt if 10670 // 1. the target claims to have no vector registers, and 10671 // 2. interleaving won't help ILP. 10672 // 10673 // The second condition is necessary because, even if the target has no 10674 // vector registers, loop vectorization may still enable scalar 10675 // interleaving. 10676 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10677 TTI->getMaxInterleaveFactor(1) < 2) 10678 return LoopVectorizeResult(false, false); 10679 10680 bool Changed = false, CFGChanged = false; 10681 10682 // The vectorizer requires loops to be in simplified form. 10683 // Since simplification may add new inner loops, it has to run before the 10684 // legality and profitability checks. This means running the loop vectorizer 10685 // will simplify all loops, regardless of whether anything end up being 10686 // vectorized. 10687 for (auto &L : *LI) 10688 Changed |= CFGChanged |= 10689 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10690 10691 // Build up a worklist of inner-loops to vectorize. This is necessary as 10692 // the act of vectorizing or partially unrolling a loop creates new loops 10693 // and can invalidate iterators across the loops. 10694 SmallVector<Loop *, 8> Worklist; 10695 10696 for (Loop *L : *LI) 10697 collectSupportedLoops(*L, LI, ORE, Worklist); 10698 10699 LoopsAnalyzed += Worklist.size(); 10700 10701 // Now walk the identified inner loops. 10702 while (!Worklist.empty()) { 10703 Loop *L = Worklist.pop_back_val(); 10704 10705 // For the inner loops we actually process, form LCSSA to simplify the 10706 // transform. 10707 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10708 10709 Changed |= CFGChanged |= processLoop(L); 10710 } 10711 10712 // Process each loop nest in the function. 10713 return LoopVectorizeResult(Changed, CFGChanged); 10714 } 10715 10716 PreservedAnalyses LoopVectorizePass::run(Function &F, 10717 FunctionAnalysisManager &AM) { 10718 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10719 auto &LI = AM.getResult<LoopAnalysis>(F); 10720 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10721 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10722 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10723 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10724 auto &AA = AM.getResult<AAManager>(F); 10725 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10726 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10727 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10728 10729 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10730 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10731 [&](Loop &L) -> const LoopAccessInfo & { 10732 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10733 TLI, TTI, nullptr, nullptr, nullptr}; 10734 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10735 }; 10736 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10737 ProfileSummaryInfo *PSI = 10738 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10739 LoopVectorizeResult Result = 10740 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10741 if (!Result.MadeAnyChange) 10742 return PreservedAnalyses::all(); 10743 PreservedAnalyses PA; 10744 10745 // We currently do not preserve loopinfo/dominator analyses with outer loop 10746 // vectorization. Until this is addressed, mark these analyses as preserved 10747 // only for non-VPlan-native path. 10748 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10749 if (!EnableVPlanNativePath) { 10750 PA.preserve<LoopAnalysis>(); 10751 PA.preserve<DominatorTreeAnalysis>(); 10752 } 10753 if (!Result.MadeCFGChange) 10754 PA.preserveSet<CFGAnalyses>(); 10755 return PA; 10756 } 10757 10758 void LoopVectorizePass::printPipeline( 10759 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10760 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10761 OS, MapClassName2PassName); 10762 10763 OS << "<"; 10764 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10765 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10766 OS << ">"; 10767 } 10768