1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/AssumptionCache.h" 59 #include "llvm/Analysis/BlockFrequencyInfo.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/LoopAccessAnalysis.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolution.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/TargetTransformInfo.h" 69 #include "llvm/Analysis/ValueTracking.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/IR/Verifier.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/BranchProbability.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/VectorUtils.h" 96 #include "llvm/Transforms/Utils/LoopUtils.h" 97 #include <algorithm> 98 #include <map> 99 #include <tuple> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define LV_NAME "loop-vectorize" 105 #define DEBUG_TYPE LV_NAME 106 107 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 108 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 109 110 static cl::opt<bool> 111 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 112 cl::desc("Enable if-conversion during vectorization.")); 113 114 /// We don't vectorize loops with a known constant trip count below this number. 115 static cl::opt<unsigned> 116 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 117 cl::Hidden, 118 cl::desc("Don't vectorize loops with a constant " 119 "trip count that is smaller than this " 120 "value.")); 121 122 /// This enables versioning on the strides of symbolically striding memory 123 /// accesses in code like the following. 124 /// for (i = 0; i < N; ++i) 125 /// A[i * Stride1] += B[i * Stride2] ... 126 /// 127 /// Will be roughly translated to 128 /// if (Stride1 == 1 && Stride2 == 1) { 129 /// for (i = 0; i < N; i+=4) 130 /// A[i:i+3] += ... 131 /// } else 132 /// ... 133 static cl::opt<bool> EnableMemAccessVersioning( 134 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 135 cl::desc("Enable symblic stride memory access versioning")); 136 137 /// We don't unroll loops with a known constant trip count below this number. 138 static const unsigned TinyTripCountUnrollThreshold = 128; 139 140 static cl::opt<unsigned> ForceTargetNumScalarRegs( 141 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 142 cl::desc("A flag that overrides the target's number of scalar registers.")); 143 144 static cl::opt<unsigned> ForceTargetNumVectorRegs( 145 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 146 cl::desc("A flag that overrides the target's number of vector registers.")); 147 148 /// Maximum vectorization interleave count. 149 static const unsigned MaxInterleaveFactor = 16; 150 151 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 152 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's max interleave factor for " 154 "scalar loops.")); 155 156 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 157 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 158 cl::desc("A flag that overrides the target's max interleave factor for " 159 "vectorized loops.")); 160 161 static cl::opt<unsigned> ForceTargetInstructionCost( 162 "force-target-instruction-cost", cl::init(0), cl::Hidden, 163 cl::desc("A flag that overrides the target's expected cost for " 164 "an instruction to a single constant value. Mostly " 165 "useful for getting consistent testing.")); 166 167 static cl::opt<unsigned> SmallLoopCost( 168 "small-loop-cost", cl::init(20), cl::Hidden, 169 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 170 171 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 172 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 173 cl::desc("Enable the use of the block frequency analysis to access PGO " 174 "heuristics minimizing code growth in cold regions and being more " 175 "aggressive in hot regions.")); 176 177 // Runtime unroll loops for load/store throughput. 178 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 179 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 180 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 181 182 /// The number of stores in a loop that are allowed to need predication. 183 static cl::opt<unsigned> NumberOfStoresToPredicate( 184 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 185 cl::desc("Max number of stores to be predicated behind an if.")); 186 187 static cl::opt<bool> EnableIndVarRegisterHeur( 188 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 189 cl::desc("Count the induction variable only once when unrolling")); 190 191 static cl::opt<bool> EnableCondStoresVectorization( 192 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 193 cl::desc("Enable if predication of stores during vectorization.")); 194 195 static cl::opt<unsigned> MaxNestedScalarReductionUF( 196 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 197 cl::desc("The maximum unroll factor to use when unrolling a scalar " 198 "reduction in a nested loop.")); 199 200 namespace { 201 202 // Forward declarations. 203 class LoopVectorizationLegality; 204 class LoopVectorizationCostModel; 205 class LoopVectorizeHints; 206 207 /// \brief This modifies LoopAccessReport to initialize message with 208 /// loop-vectorizer-specific part. 209 class VectorizationReport : public LoopAccessReport { 210 public: 211 VectorizationReport(Instruction *I = nullptr) 212 : LoopAccessReport("loop not vectorized: ", I) {} 213 214 /// \brief This allows promotion of the loop-access analysis report into the 215 /// loop-vectorizer report. It modifies the message to add the 216 /// loop-vectorizer-specific part of the message. 217 explicit VectorizationReport(const LoopAccessReport &R) 218 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 219 R.getInstr()) {} 220 }; 221 222 /// A helper function for converting Scalar types to vector types. 223 /// If the incoming type is void, we return void. If the VF is 1, we return 224 /// the scalar type. 225 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 226 if (Scalar->isVoidTy() || VF == 1) 227 return Scalar; 228 return VectorType::get(Scalar, VF); 229 } 230 231 /// InnerLoopVectorizer vectorizes loops which contain only one basic 232 /// block to a specified vectorization factor (VF). 233 /// This class performs the widening of scalars into vectors, or multiple 234 /// scalars. This class also implements the following features: 235 /// * It inserts an epilogue loop for handling loops that don't have iteration 236 /// counts that are known to be a multiple of the vectorization factor. 237 /// * It handles the code generation for reduction variables. 238 /// * Scalarization (implementation using scalars) of un-vectorizable 239 /// instructions. 240 /// InnerLoopVectorizer does not perform any vectorization-legality 241 /// checks, and relies on the caller to check for the different legality 242 /// aspects. The InnerLoopVectorizer relies on the 243 /// LoopVectorizationLegality class to provide information about the induction 244 /// and reduction variables that were found to a given vectorization factor. 245 class InnerLoopVectorizer { 246 public: 247 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 248 DominatorTree *DT, const TargetLibraryInfo *TLI, 249 const TargetTransformInfo *TTI, unsigned VecWidth, 250 unsigned UnrollFactor) 251 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 252 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 253 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 254 Legal(nullptr), AddedSafetyChecks(false) {} 255 256 // Perform the actual loop widening (vectorization). 257 void vectorize(LoopVectorizationLegality *L) { 258 Legal = L; 259 // Create a new empty loop. Unlink the old loop and connect the new one. 260 createEmptyLoop(); 261 // Widen each instruction in the old loop to a new one in the new loop. 262 // Use the Legality module to find the induction and reduction variables. 263 vectorizeLoop(); 264 // Register the new loop and update the analysis passes. 265 updateAnalysis(); 266 } 267 268 // Return true if any runtime check is added. 269 bool IsSafetyChecksAdded() { 270 return AddedSafetyChecks; 271 } 272 273 virtual ~InnerLoopVectorizer() {} 274 275 protected: 276 /// A small list of PHINodes. 277 typedef SmallVector<PHINode*, 4> PhiVector; 278 /// When we unroll loops we have multiple vector values for each scalar. 279 /// This data structure holds the unrolled and vectorized values that 280 /// originated from one scalar instruction. 281 typedef SmallVector<Value*, 2> VectorParts; 282 283 // When we if-convert we need to create edge masks. We have to cache values 284 // so that we don't end up with exponential recursion/IR. 285 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 286 VectorParts> EdgeMaskCache; 287 288 /// \brief Add checks for strides that were assumed to be 1. 289 /// 290 /// Returns the last check instruction and the first check instruction in the 291 /// pair as (first, last). 292 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 293 294 /// Create an empty loop, based on the loop ranges of the old loop. 295 void createEmptyLoop(); 296 /// Copy and widen the instructions from the old loop. 297 virtual void vectorizeLoop(); 298 299 /// \brief The Loop exit block may have single value PHI nodes where the 300 /// incoming value is 'Undef'. While vectorizing we only handled real values 301 /// that were defined inside the loop. Here we fix the 'undef case'. 302 /// See PR14725. 303 void fixLCSSAPHIs(); 304 305 /// A helper function that computes the predicate of the block BB, assuming 306 /// that the header block of the loop is set to True. It returns the *entry* 307 /// mask for the block BB. 308 VectorParts createBlockInMask(BasicBlock *BB); 309 /// A helper function that computes the predicate of the edge between SRC 310 /// and DST. 311 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 312 313 /// A helper function to vectorize a single BB within the innermost loop. 314 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 315 316 /// Vectorize a single PHINode in a block. This method handles the induction 317 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 318 /// arbitrary length vectors. 319 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 320 unsigned UF, unsigned VF, PhiVector *PV); 321 322 /// Insert the new loop to the loop hierarchy and pass manager 323 /// and update the analysis passes. 324 void updateAnalysis(); 325 326 /// This instruction is un-vectorizable. Implement it as a sequence 327 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 328 /// scalarized instruction behind an if block predicated on the control 329 /// dependence of the instruction. 330 virtual void scalarizeInstruction(Instruction *Instr, 331 bool IfPredicateStore=false); 332 333 /// Vectorize Load and Store instructions, 334 virtual void vectorizeMemoryInstruction(Instruction *Instr); 335 336 /// Create a broadcast instruction. This method generates a broadcast 337 /// instruction (shuffle) for loop invariant values and for the induction 338 /// value. If this is the induction variable then we extend it to N, N+1, ... 339 /// this is needed because each iteration in the loop corresponds to a SIMD 340 /// element. 341 virtual Value *getBroadcastInstrs(Value *V); 342 343 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 344 /// to each vector element of Val. The sequence starts at StartIndex. 345 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 346 347 /// When we go over instructions in the basic block we rely on previous 348 /// values within the current basic block or on loop invariant values. 349 /// When we widen (vectorize) values we place them in the map. If the values 350 /// are not within the map, they have to be loop invariant, so we simply 351 /// broadcast them into a vector. 352 VectorParts &getVectorValue(Value *V); 353 354 /// Generate a shuffle sequence that will reverse the vector Vec. 355 virtual Value *reverseVector(Value *Vec); 356 357 /// This is a helper class that holds the vectorizer state. It maps scalar 358 /// instructions to vector instructions. When the code is 'unrolled' then 359 /// then a single scalar value is mapped to multiple vector parts. The parts 360 /// are stored in the VectorPart type. 361 struct ValueMap { 362 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 363 /// are mapped. 364 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 365 366 /// \return True if 'Key' is saved in the Value Map. 367 bool has(Value *Key) const { return MapStorage.count(Key); } 368 369 /// Initializes a new entry in the map. Sets all of the vector parts to the 370 /// save value in 'Val'. 371 /// \return A reference to a vector with splat values. 372 VectorParts &splat(Value *Key, Value *Val) { 373 VectorParts &Entry = MapStorage[Key]; 374 Entry.assign(UF, Val); 375 return Entry; 376 } 377 378 ///\return A reference to the value that is stored at 'Key'. 379 VectorParts &get(Value *Key) { 380 VectorParts &Entry = MapStorage[Key]; 381 if (Entry.empty()) 382 Entry.resize(UF); 383 assert(Entry.size() == UF); 384 return Entry; 385 } 386 387 private: 388 /// The unroll factor. Each entry in the map stores this number of vector 389 /// elements. 390 unsigned UF; 391 392 /// Map storage. We use std::map and not DenseMap because insertions to a 393 /// dense map invalidates its iterators. 394 std::map<Value *, VectorParts> MapStorage; 395 }; 396 397 /// The original loop. 398 Loop *OrigLoop; 399 /// Scev analysis to use. 400 ScalarEvolution *SE; 401 /// Loop Info. 402 LoopInfo *LI; 403 /// Dominator Tree. 404 DominatorTree *DT; 405 /// Alias Analysis. 406 AliasAnalysis *AA; 407 /// Target Library Info. 408 const TargetLibraryInfo *TLI; 409 /// Target Transform Info. 410 const TargetTransformInfo *TTI; 411 412 /// The vectorization SIMD factor to use. Each vector will have this many 413 /// vector elements. 414 unsigned VF; 415 416 protected: 417 /// The vectorization unroll factor to use. Each scalar is vectorized to this 418 /// many different vector instructions. 419 unsigned UF; 420 421 /// The builder that we use 422 IRBuilder<> Builder; 423 424 // --- Vectorization state --- 425 426 /// The vector-loop preheader. 427 BasicBlock *LoopVectorPreHeader; 428 /// The scalar-loop preheader. 429 BasicBlock *LoopScalarPreHeader; 430 /// Middle Block between the vector and the scalar. 431 BasicBlock *LoopMiddleBlock; 432 ///The ExitBlock of the scalar loop. 433 BasicBlock *LoopExitBlock; 434 ///The vector loop body. 435 SmallVector<BasicBlock *, 4> LoopVectorBody; 436 ///The scalar loop body. 437 BasicBlock *LoopScalarBody; 438 /// A list of all bypass blocks. The first block is the entry of the loop. 439 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 440 441 /// The new Induction variable which was added to the new block. 442 PHINode *Induction; 443 /// The induction variable of the old basic block. 444 PHINode *OldInduction; 445 /// Holds the extended (to the widest induction type) start index. 446 Value *ExtendedIdx; 447 /// Maps scalars to widened vectors. 448 ValueMap WidenMap; 449 EdgeMaskCache MaskCache; 450 451 LoopVectorizationLegality *Legal; 452 453 // Record whether runtime check is added. 454 bool AddedSafetyChecks; 455 }; 456 457 class InnerLoopUnroller : public InnerLoopVectorizer { 458 public: 459 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 460 DominatorTree *DT, const TargetLibraryInfo *TLI, 461 const TargetTransformInfo *TTI, unsigned UnrollFactor) 462 : InnerLoopVectorizer(OrigLoop, SE, LI, DT, TLI, TTI, 1, UnrollFactor) {} 463 464 private: 465 void scalarizeInstruction(Instruction *Instr, 466 bool IfPredicateStore = false) override; 467 void vectorizeMemoryInstruction(Instruction *Instr) override; 468 Value *getBroadcastInstrs(Value *V) override; 469 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 470 Value *reverseVector(Value *Vec) override; 471 }; 472 473 /// \brief Look for a meaningful debug location on the instruction or it's 474 /// operands. 475 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 476 if (!I) 477 return I; 478 479 DebugLoc Empty; 480 if (I->getDebugLoc() != Empty) 481 return I; 482 483 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 484 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 485 if (OpInst->getDebugLoc() != Empty) 486 return OpInst; 487 } 488 489 return I; 490 } 491 492 /// \brief Set the debug location in the builder using the debug location in the 493 /// instruction. 494 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 495 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 496 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 497 else 498 B.SetCurrentDebugLocation(DebugLoc()); 499 } 500 501 #ifndef NDEBUG 502 /// \return string containing a file name and a line # for the given loop. 503 static std::string getDebugLocString(const Loop *L) { 504 std::string Result; 505 if (L) { 506 raw_string_ostream OS(Result); 507 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 508 LoopDbgLoc.print(OS); 509 else 510 // Just print the module name. 511 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 512 OS.flush(); 513 } 514 return Result; 515 } 516 #endif 517 518 /// \brief Propagate known metadata from one instruction to another. 519 static void propagateMetadata(Instruction *To, const Instruction *From) { 520 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 521 From->getAllMetadataOtherThanDebugLoc(Metadata); 522 523 for (auto M : Metadata) { 524 unsigned Kind = M.first; 525 526 // These are safe to transfer (this is safe for TBAA, even when we 527 // if-convert, because should that metadata have had a control dependency 528 // on the condition, and thus actually aliased with some other 529 // non-speculated memory access when the condition was false, this would be 530 // caught by the runtime overlap checks). 531 if (Kind != LLVMContext::MD_tbaa && 532 Kind != LLVMContext::MD_alias_scope && 533 Kind != LLVMContext::MD_noalias && 534 Kind != LLVMContext::MD_fpmath) 535 continue; 536 537 To->setMetadata(Kind, M.second); 538 } 539 } 540 541 /// \brief Propagate known metadata from one instruction to a vector of others. 542 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 543 for (Value *V : To) 544 if (Instruction *I = dyn_cast<Instruction>(V)) 545 propagateMetadata(I, From); 546 } 547 548 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 549 /// to what vectorization factor. 550 /// This class does not look at the profitability of vectorization, only the 551 /// legality. This class has two main kinds of checks: 552 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 553 /// will change the order of memory accesses in a way that will change the 554 /// correctness of the program. 555 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 556 /// checks for a number of different conditions, such as the availability of a 557 /// single induction variable, that all types are supported and vectorize-able, 558 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 559 /// This class is also used by InnerLoopVectorizer for identifying 560 /// induction variable and the different reduction variables. 561 class LoopVectorizationLegality { 562 public: 563 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 564 TargetLibraryInfo *TLI, AliasAnalysis *AA, 565 Function *F, const TargetTransformInfo *TTI, 566 LoopAccessAnalysis *LAA) 567 : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F), 568 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), Induction(nullptr), 569 WidestIndTy(nullptr), HasFunNoNaNAttr(false) {} 570 571 /// This enum represents the kinds of inductions that we support. 572 enum InductionKind { 573 IK_NoInduction, ///< Not an induction variable. 574 IK_IntInduction, ///< Integer induction variable. Step = C. 575 IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem). 576 }; 577 578 /// A struct for saving information about induction variables. 579 struct InductionInfo { 580 InductionInfo(Value *Start, InductionKind K, ConstantInt *Step) 581 : StartValue(Start), IK(K), StepValue(Step) { 582 assert(IK != IK_NoInduction && "Not an induction"); 583 assert(StartValue && "StartValue is null"); 584 assert(StepValue && !StepValue->isZero() && "StepValue is zero"); 585 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 586 "StartValue is not a pointer for pointer induction"); 587 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 588 "StartValue is not an integer for integer induction"); 589 assert(StepValue->getType()->isIntegerTy() && 590 "StepValue is not an integer"); 591 } 592 InductionInfo() 593 : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {} 594 595 /// Get the consecutive direction. Returns: 596 /// 0 - unknown or non-consecutive. 597 /// 1 - consecutive and increasing. 598 /// -1 - consecutive and decreasing. 599 int getConsecutiveDirection() const { 600 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) 601 return StepValue->getSExtValue(); 602 return 0; 603 } 604 605 /// Compute the transformed value of Index at offset StartValue using step 606 /// StepValue. 607 /// For integer induction, returns StartValue + Index * StepValue. 608 /// For pointer induction, returns StartValue[Index * StepValue]. 609 /// FIXME: The newly created binary instructions should contain nsw/nuw 610 /// flags, which can be found from the original scalar operations. 611 Value *transform(IRBuilder<> &B, Value *Index) const { 612 switch (IK) { 613 case IK_IntInduction: 614 assert(Index->getType() == StartValue->getType() && 615 "Index type does not match StartValue type"); 616 if (StepValue->isMinusOne()) 617 return B.CreateSub(StartValue, Index); 618 if (!StepValue->isOne()) 619 Index = B.CreateMul(Index, StepValue); 620 return B.CreateAdd(StartValue, Index); 621 622 case IK_PtrInduction: 623 if (StepValue->isMinusOne()) 624 Index = B.CreateNeg(Index); 625 else if (!StepValue->isOne()) 626 Index = B.CreateMul(Index, StepValue); 627 return B.CreateGEP(nullptr, StartValue, Index); 628 629 case IK_NoInduction: 630 return nullptr; 631 } 632 llvm_unreachable("invalid enum"); 633 } 634 635 /// Start value. 636 TrackingVH<Value> StartValue; 637 /// Induction kind. 638 InductionKind IK; 639 /// Step value. 640 ConstantInt *StepValue; 641 }; 642 643 /// ReductionList contains the reduction descriptors for all 644 /// of the reductions that were found in the loop. 645 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 646 647 /// InductionList saves induction variables and maps them to the 648 /// induction descriptor. 649 typedef MapVector<PHINode*, InductionInfo> InductionList; 650 651 /// Returns true if it is legal to vectorize this loop. 652 /// This does not mean that it is profitable to vectorize this 653 /// loop, only that it is legal to do so. 654 bool canVectorize(); 655 656 /// Returns the Induction variable. 657 PHINode *getInduction() { return Induction; } 658 659 /// Returns the reduction variables found in the loop. 660 ReductionList *getReductionVars() { return &Reductions; } 661 662 /// Returns the induction variables found in the loop. 663 InductionList *getInductionVars() { return &Inductions; } 664 665 /// Returns the widest induction type. 666 Type *getWidestInductionType() { return WidestIndTy; } 667 668 /// Returns True if V is an induction variable in this loop. 669 bool isInductionVariable(const Value *V); 670 671 /// Return true if the block BB needs to be predicated in order for the loop 672 /// to be vectorized. 673 bool blockNeedsPredication(BasicBlock *BB); 674 675 /// Check if this pointer is consecutive when vectorizing. This happens 676 /// when the last index of the GEP is the induction variable, or that the 677 /// pointer itself is an induction variable. 678 /// This check allows us to vectorize A[idx] into a wide load/store. 679 /// Returns: 680 /// 0 - Stride is unknown or non-consecutive. 681 /// 1 - Address is consecutive. 682 /// -1 - Address is consecutive, and decreasing. 683 int isConsecutivePtr(Value *Ptr); 684 685 /// Returns true if the value V is uniform within the loop. 686 bool isUniform(Value *V); 687 688 /// Returns true if this instruction will remain scalar after vectorization. 689 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 690 691 /// Returns the information that we collected about runtime memory check. 692 const LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() const { 693 return LAI->getRuntimePointerCheck(); 694 } 695 696 const LoopAccessInfo *getLAI() const { 697 return LAI; 698 } 699 700 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 701 702 bool hasStride(Value *V) { return StrideSet.count(V); } 703 bool mustCheckStrides() { return !StrideSet.empty(); } 704 SmallPtrSet<Value *, 8>::iterator strides_begin() { 705 return StrideSet.begin(); 706 } 707 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 708 709 /// Returns true if the target machine supports masked store operation 710 /// for the given \p DataType and kind of access to \p Ptr. 711 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 712 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 713 } 714 /// Returns true if the target machine supports masked load operation 715 /// for the given \p DataType and kind of access to \p Ptr. 716 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 717 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 718 } 719 /// Returns true if vector representation of the instruction \p I 720 /// requires mask. 721 bool isMaskRequired(const Instruction* I) { 722 return (MaskedOp.count(I) != 0); 723 } 724 unsigned getNumStores() const { 725 return LAI->getNumStores(); 726 } 727 unsigned getNumLoads() const { 728 return LAI->getNumLoads(); 729 } 730 unsigned getNumPredStores() const { 731 return NumPredStores; 732 } 733 private: 734 /// Check if a single basic block loop is vectorizable. 735 /// At this point we know that this is a loop with a constant trip count 736 /// and we only need to check individual instructions. 737 bool canVectorizeInstrs(); 738 739 /// When we vectorize loops we may change the order in which 740 /// we read and write from memory. This method checks if it is 741 /// legal to vectorize the code, considering only memory constrains. 742 /// Returns true if the loop is vectorizable 743 bool canVectorizeMemory(); 744 745 /// Return true if we can vectorize this loop using the IF-conversion 746 /// transformation. 747 bool canVectorizeWithIfConvert(); 748 749 /// Collect the variables that need to stay uniform after vectorization. 750 void collectLoopUniforms(); 751 752 /// Return true if all of the instructions in the block can be speculatively 753 /// executed. \p SafePtrs is a list of addresses that are known to be legal 754 /// and we know that we can read from them without segfault. 755 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 756 757 /// Returns the induction kind of Phi and record the step. This function may 758 /// return NoInduction if the PHI is not an induction variable. 759 InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue); 760 761 /// \brief Collect memory access with loop invariant strides. 762 /// 763 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 764 /// invariant. 765 void collectStridedAccess(Value *LoadOrStoreInst); 766 767 /// Report an analysis message to assist the user in diagnosing loops that are 768 /// not vectorized. These are handled as LoopAccessReport rather than 769 /// VectorizationReport because the << operator of VectorizationReport returns 770 /// LoopAccessReport. 771 void emitAnalysis(const LoopAccessReport &Message) { 772 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 773 } 774 775 unsigned NumPredStores; 776 777 /// The loop that we evaluate. 778 Loop *TheLoop; 779 /// Scev analysis. 780 ScalarEvolution *SE; 781 /// Target Library Info. 782 TargetLibraryInfo *TLI; 783 /// Parent function 784 Function *TheFunction; 785 /// Target Transform Info 786 const TargetTransformInfo *TTI; 787 /// Dominator Tree. 788 DominatorTree *DT; 789 // LoopAccess analysis. 790 LoopAccessAnalysis *LAA; 791 // And the loop-accesses info corresponding to this loop. This pointer is 792 // null until canVectorizeMemory sets it up. 793 const LoopAccessInfo *LAI; 794 795 // --- vectorization state --- // 796 797 /// Holds the integer induction variable. This is the counter of the 798 /// loop. 799 PHINode *Induction; 800 /// Holds the reduction variables. 801 ReductionList Reductions; 802 /// Holds all of the induction variables that we found in the loop. 803 /// Notice that inductions don't need to start at zero and that induction 804 /// variables can be pointers. 805 InductionList Inductions; 806 /// Holds the widest induction type encountered. 807 Type *WidestIndTy; 808 809 /// Allowed outside users. This holds the reduction 810 /// vars which can be accessed from outside the loop. 811 SmallPtrSet<Value*, 4> AllowedExit; 812 /// This set holds the variables which are known to be uniform after 813 /// vectorization. 814 SmallPtrSet<Instruction*, 4> Uniforms; 815 816 /// Can we assume the absence of NaNs. 817 bool HasFunNoNaNAttr; 818 819 ValueToValueMap Strides; 820 SmallPtrSet<Value *, 8> StrideSet; 821 822 /// While vectorizing these instructions we have to generate a 823 /// call to the appropriate masked intrinsic 824 SmallPtrSet<const Instruction*, 8> MaskedOp; 825 }; 826 827 /// LoopVectorizationCostModel - estimates the expected speedups due to 828 /// vectorization. 829 /// In many cases vectorization is not profitable. This can happen because of 830 /// a number of reasons. In this class we mainly attempt to predict the 831 /// expected speedup/slowdowns due to the supported instruction set. We use the 832 /// TargetTransformInfo to query the different backends for the cost of 833 /// different operations. 834 class LoopVectorizationCostModel { 835 public: 836 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 837 LoopVectorizationLegality *Legal, 838 const TargetTransformInfo &TTI, 839 const TargetLibraryInfo *TLI, AssumptionCache *AC, 840 const Function *F, const LoopVectorizeHints *Hints) 841 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), 842 TheFunction(F), Hints(Hints) { 843 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 844 } 845 846 /// Information about vectorization costs 847 struct VectorizationFactor { 848 unsigned Width; // Vector width with best cost 849 unsigned Cost; // Cost of the loop with that width 850 }; 851 /// \return The most profitable vectorization factor and the cost of that VF. 852 /// This method checks every power of two up to VF. If UserVF is not ZERO 853 /// then this vectorization factor will be selected if vectorization is 854 /// possible. 855 VectorizationFactor selectVectorizationFactor(bool OptForSize); 856 857 /// \return The size (in bits) of the widest type in the code that 858 /// needs to be vectorized. We ignore values that remain scalar such as 859 /// 64 bit loop indices. 860 unsigned getWidestType(); 861 862 /// \return The most profitable unroll factor. 863 /// If UserUF is non-zero then this method finds the best unroll-factor 864 /// based on register pressure and other parameters. 865 /// VF and LoopCost are the selected vectorization factor and the cost of the 866 /// selected VF. 867 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 868 869 /// \brief A struct that represents some properties of the register usage 870 /// of a loop. 871 struct RegisterUsage { 872 /// Holds the number of loop invariant values that are used in the loop. 873 unsigned LoopInvariantRegs; 874 /// Holds the maximum number of concurrent live intervals in the loop. 875 unsigned MaxLocalUsers; 876 /// Holds the number of instructions in the loop. 877 unsigned NumInstructions; 878 }; 879 880 /// \return information about the register usage of the loop. 881 RegisterUsage calculateRegisterUsage(); 882 883 private: 884 /// Returns the expected execution cost. The unit of the cost does 885 /// not matter because we use the 'cost' units to compare different 886 /// vector widths. The cost that is returned is *not* normalized by 887 /// the factor width. 888 unsigned expectedCost(unsigned VF); 889 890 /// Returns the execution time cost of an instruction for a given vector 891 /// width. Vector width of one means scalar. 892 unsigned getInstructionCost(Instruction *I, unsigned VF); 893 894 /// Returns whether the instruction is a load or store and will be a emitted 895 /// as a vector operation. 896 bool isConsecutiveLoadOrStore(Instruction *I); 897 898 /// Report an analysis message to assist the user in diagnosing loops that are 899 /// not vectorized. These are handled as LoopAccessReport rather than 900 /// VectorizationReport because the << operator of VectorizationReport returns 901 /// LoopAccessReport. 902 void emitAnalysis(const LoopAccessReport &Message) { 903 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 904 } 905 906 /// Values used only by @llvm.assume calls. 907 SmallPtrSet<const Value *, 32> EphValues; 908 909 /// The loop that we evaluate. 910 Loop *TheLoop; 911 /// Scev analysis. 912 ScalarEvolution *SE; 913 /// Loop Info analysis. 914 LoopInfo *LI; 915 /// Vectorization legality. 916 LoopVectorizationLegality *Legal; 917 /// Vector target information. 918 const TargetTransformInfo &TTI; 919 /// Target Library Info. 920 const TargetLibraryInfo *TLI; 921 const Function *TheFunction; 922 // Loop Vectorize Hint. 923 const LoopVectorizeHints *Hints; 924 }; 925 926 /// Utility class for getting and setting loop vectorizer hints in the form 927 /// of loop metadata. 928 /// This class keeps a number of loop annotations locally (as member variables) 929 /// and can, upon request, write them back as metadata on the loop. It will 930 /// initially scan the loop for existing metadata, and will update the local 931 /// values based on information in the loop. 932 /// We cannot write all values to metadata, as the mere presence of some info, 933 /// for example 'force', means a decision has been made. So, we need to be 934 /// careful NOT to add them if the user hasn't specifically asked so. 935 class LoopVectorizeHints { 936 enum HintKind { 937 HK_WIDTH, 938 HK_UNROLL, 939 HK_FORCE 940 }; 941 942 /// Hint - associates name and validation with the hint value. 943 struct Hint { 944 const char * Name; 945 unsigned Value; // This may have to change for non-numeric values. 946 HintKind Kind; 947 948 Hint(const char * Name, unsigned Value, HintKind Kind) 949 : Name(Name), Value(Value), Kind(Kind) { } 950 951 bool validate(unsigned Val) { 952 switch (Kind) { 953 case HK_WIDTH: 954 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 955 case HK_UNROLL: 956 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 957 case HK_FORCE: 958 return (Val <= 1); 959 } 960 return false; 961 } 962 }; 963 964 /// Vectorization width. 965 Hint Width; 966 /// Vectorization interleave factor. 967 Hint Interleave; 968 /// Vectorization forced 969 Hint Force; 970 971 /// Return the loop metadata prefix. 972 static StringRef Prefix() { return "llvm.loop."; } 973 974 public: 975 enum ForceKind { 976 FK_Undefined = -1, ///< Not selected. 977 FK_Disabled = 0, ///< Forcing disabled. 978 FK_Enabled = 1, ///< Forcing enabled. 979 }; 980 981 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 982 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 983 HK_WIDTH), 984 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 985 Force("vectorize.enable", FK_Undefined, HK_FORCE), 986 TheLoop(L) { 987 // Populate values with existing loop metadata. 988 getHintsFromMetadata(); 989 990 // force-vector-interleave overrides DisableInterleaving. 991 if (VectorizerParams::isInterleaveForced()) 992 Interleave.Value = VectorizerParams::VectorizationInterleave; 993 994 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 995 << "LV: Interleaving disabled by the pass manager\n"); 996 } 997 998 /// Mark the loop L as already vectorized by setting the width to 1. 999 void setAlreadyVectorized() { 1000 Width.Value = Interleave.Value = 1; 1001 Hint Hints[] = {Width, Interleave}; 1002 writeHintsToMetadata(Hints); 1003 } 1004 1005 /// Dumps all the hint information. 1006 std::string emitRemark() const { 1007 VectorizationReport R; 1008 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1009 R << "vectorization is explicitly disabled"; 1010 else { 1011 R << "use -Rpass-analysis=loop-vectorize for more info"; 1012 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1013 R << " (Force=true"; 1014 if (Width.Value != 0) 1015 R << ", Vector Width=" << Width.Value; 1016 if (Interleave.Value != 0) 1017 R << ", Interleave Count=" << Interleave.Value; 1018 R << ")"; 1019 } 1020 } 1021 1022 return R.str(); 1023 } 1024 1025 unsigned getWidth() const { return Width.Value; } 1026 unsigned getInterleave() const { return Interleave.Value; } 1027 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1028 1029 private: 1030 /// Find hints specified in the loop metadata and update local values. 1031 void getHintsFromMetadata() { 1032 MDNode *LoopID = TheLoop->getLoopID(); 1033 if (!LoopID) 1034 return; 1035 1036 // First operand should refer to the loop id itself. 1037 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1038 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1039 1040 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1041 const MDString *S = nullptr; 1042 SmallVector<Metadata *, 4> Args; 1043 1044 // The expected hint is either a MDString or a MDNode with the first 1045 // operand a MDString. 1046 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1047 if (!MD || MD->getNumOperands() == 0) 1048 continue; 1049 S = dyn_cast<MDString>(MD->getOperand(0)); 1050 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1051 Args.push_back(MD->getOperand(i)); 1052 } else { 1053 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1054 assert(Args.size() == 0 && "too many arguments for MDString"); 1055 } 1056 1057 if (!S) 1058 continue; 1059 1060 // Check if the hint starts with the loop metadata prefix. 1061 StringRef Name = S->getString(); 1062 if (Args.size() == 1) 1063 setHint(Name, Args[0]); 1064 } 1065 } 1066 1067 /// Checks string hint with one operand and set value if valid. 1068 void setHint(StringRef Name, Metadata *Arg) { 1069 if (!Name.startswith(Prefix())) 1070 return; 1071 Name = Name.substr(Prefix().size(), StringRef::npos); 1072 1073 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1074 if (!C) return; 1075 unsigned Val = C->getZExtValue(); 1076 1077 Hint *Hints[] = {&Width, &Interleave, &Force}; 1078 for (auto H : Hints) { 1079 if (Name == H->Name) { 1080 if (H->validate(Val)) 1081 H->Value = Val; 1082 else 1083 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1084 break; 1085 } 1086 } 1087 } 1088 1089 /// Create a new hint from name / value pair. 1090 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1091 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1092 Metadata *MDs[] = {MDString::get(Context, Name), 1093 ConstantAsMetadata::get( 1094 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1095 return MDNode::get(Context, MDs); 1096 } 1097 1098 /// Matches metadata with hint name. 1099 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1100 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1101 if (!Name) 1102 return false; 1103 1104 for (auto H : HintTypes) 1105 if (Name->getString().endswith(H.Name)) 1106 return true; 1107 return false; 1108 } 1109 1110 /// Sets current hints into loop metadata, keeping other values intact. 1111 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1112 if (HintTypes.size() == 0) 1113 return; 1114 1115 // Reserve the first element to LoopID (see below). 1116 SmallVector<Metadata *, 4> MDs(1); 1117 // If the loop already has metadata, then ignore the existing operands. 1118 MDNode *LoopID = TheLoop->getLoopID(); 1119 if (LoopID) { 1120 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1121 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1122 // If node in update list, ignore old value. 1123 if (!matchesHintMetadataName(Node, HintTypes)) 1124 MDs.push_back(Node); 1125 } 1126 } 1127 1128 // Now, add the missing hints. 1129 for (auto H : HintTypes) 1130 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1131 1132 // Replace current metadata node with new one. 1133 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1134 MDNode *NewLoopID = MDNode::get(Context, MDs); 1135 // Set operand 0 to refer to the loop id itself. 1136 NewLoopID->replaceOperandWith(0, NewLoopID); 1137 1138 TheLoop->setLoopID(NewLoopID); 1139 } 1140 1141 /// The loop these hints belong to. 1142 const Loop *TheLoop; 1143 }; 1144 1145 static void emitMissedWarning(Function *F, Loop *L, 1146 const LoopVectorizeHints &LH) { 1147 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1148 L->getStartLoc(), LH.emitRemark()); 1149 1150 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1151 if (LH.getWidth() != 1) 1152 emitLoopVectorizeWarning( 1153 F->getContext(), *F, L->getStartLoc(), 1154 "failed explicitly specified loop vectorization"); 1155 else if (LH.getInterleave() != 1) 1156 emitLoopInterleaveWarning( 1157 F->getContext(), *F, L->getStartLoc(), 1158 "failed explicitly specified loop interleaving"); 1159 } 1160 } 1161 1162 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1163 if (L.empty()) 1164 return V.push_back(&L); 1165 1166 for (Loop *InnerL : L) 1167 addInnerLoop(*InnerL, V); 1168 } 1169 1170 /// The LoopVectorize Pass. 1171 struct LoopVectorize : public FunctionPass { 1172 /// Pass identification, replacement for typeid 1173 static char ID; 1174 1175 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1176 : FunctionPass(ID), 1177 DisableUnrolling(NoUnrolling), 1178 AlwaysVectorize(AlwaysVectorize) { 1179 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1180 } 1181 1182 ScalarEvolution *SE; 1183 LoopInfo *LI; 1184 TargetTransformInfo *TTI; 1185 DominatorTree *DT; 1186 BlockFrequencyInfo *BFI; 1187 TargetLibraryInfo *TLI; 1188 AliasAnalysis *AA; 1189 AssumptionCache *AC; 1190 LoopAccessAnalysis *LAA; 1191 bool DisableUnrolling; 1192 bool AlwaysVectorize; 1193 1194 BlockFrequency ColdEntryFreq; 1195 1196 bool runOnFunction(Function &F) override { 1197 SE = &getAnalysis<ScalarEvolution>(); 1198 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1199 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1200 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1201 BFI = &getAnalysis<BlockFrequencyInfo>(); 1202 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1203 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1204 AA = &getAnalysis<AliasAnalysis>(); 1205 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1206 LAA = &getAnalysis<LoopAccessAnalysis>(); 1207 1208 // Compute some weights outside of the loop over the loops. Compute this 1209 // using a BranchProbability to re-use its scaling math. 1210 const BranchProbability ColdProb(1, 5); // 20% 1211 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1212 1213 // If the target claims to have no vector registers don't attempt 1214 // vectorization. 1215 if (!TTI->getNumberOfRegisters(true)) 1216 return false; 1217 1218 // Build up a worklist of inner-loops to vectorize. This is necessary as 1219 // the act of vectorizing or partially unrolling a loop creates new loops 1220 // and can invalidate iterators across the loops. 1221 SmallVector<Loop *, 8> Worklist; 1222 1223 for (Loop *L : *LI) 1224 addInnerLoop(*L, Worklist); 1225 1226 LoopsAnalyzed += Worklist.size(); 1227 1228 // Now walk the identified inner loops. 1229 bool Changed = false; 1230 while (!Worklist.empty()) 1231 Changed |= processLoop(Worklist.pop_back_val()); 1232 1233 // Process each loop nest in the function. 1234 return Changed; 1235 } 1236 1237 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1238 SmallVector<Metadata *, 4> MDs; 1239 // Reserve first location for self reference to the LoopID metadata node. 1240 MDs.push_back(nullptr); 1241 bool IsUnrollMetadata = false; 1242 MDNode *LoopID = L->getLoopID(); 1243 if (LoopID) { 1244 // First find existing loop unrolling disable metadata. 1245 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1246 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1247 if (MD) { 1248 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1249 IsUnrollMetadata = 1250 S && S->getString().startswith("llvm.loop.unroll.disable"); 1251 } 1252 MDs.push_back(LoopID->getOperand(i)); 1253 } 1254 } 1255 1256 if (!IsUnrollMetadata) { 1257 // Add runtime unroll disable metadata. 1258 LLVMContext &Context = L->getHeader()->getContext(); 1259 SmallVector<Metadata *, 1> DisableOperands; 1260 DisableOperands.push_back( 1261 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1262 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1263 MDs.push_back(DisableNode); 1264 MDNode *NewLoopID = MDNode::get(Context, MDs); 1265 // Set operand 0 to refer to the loop id itself. 1266 NewLoopID->replaceOperandWith(0, NewLoopID); 1267 L->setLoopID(NewLoopID); 1268 } 1269 } 1270 1271 bool processLoop(Loop *L) { 1272 assert(L->empty() && "Only process inner loops."); 1273 1274 #ifndef NDEBUG 1275 const std::string DebugLocStr = getDebugLocString(L); 1276 #endif /* NDEBUG */ 1277 1278 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1279 << L->getHeader()->getParent()->getName() << "\" from " 1280 << DebugLocStr << "\n"); 1281 1282 LoopVectorizeHints Hints(L, DisableUnrolling); 1283 1284 DEBUG(dbgs() << "LV: Loop hints:" 1285 << " force=" 1286 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1287 ? "disabled" 1288 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1289 ? "enabled" 1290 : "?")) << " width=" << Hints.getWidth() 1291 << " unroll=" << Hints.getInterleave() << "\n"); 1292 1293 // Function containing loop 1294 Function *F = L->getHeader()->getParent(); 1295 1296 // Looking at the diagnostic output is the only way to determine if a loop 1297 // was vectorized (other than looking at the IR or machine code), so it 1298 // is important to generate an optimization remark for each loop. Most of 1299 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1300 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1301 // less verbose reporting vectorized loops and unvectorized loops that may 1302 // benefit from vectorization, respectively. 1303 1304 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1305 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1306 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1307 L->getStartLoc(), Hints.emitRemark()); 1308 return false; 1309 } 1310 1311 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1312 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1313 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1314 L->getStartLoc(), Hints.emitRemark()); 1315 return false; 1316 } 1317 1318 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1319 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1320 emitOptimizationRemarkAnalysis( 1321 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1322 "loop not vectorized: vector width and interleave count are " 1323 "explicitly set to 1"); 1324 return false; 1325 } 1326 1327 // Check the loop for a trip count threshold: 1328 // do not vectorize loops with a tiny trip count. 1329 const unsigned TC = SE->getSmallConstantTripCount(L); 1330 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1331 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1332 << "This loop is not worth vectorizing."); 1333 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1334 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1335 else { 1336 DEBUG(dbgs() << "\n"); 1337 emitOptimizationRemarkAnalysis( 1338 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1339 "vectorization is not beneficial and is not explicitly forced"); 1340 return false; 1341 } 1342 } 1343 1344 // Check if it is legal to vectorize the loop. 1345 LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA); 1346 if (!LVL.canVectorize()) { 1347 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1348 emitMissedWarning(F, L, Hints); 1349 return false; 1350 } 1351 1352 // Use the cost model. 1353 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, TLI, AC, F, &Hints); 1354 1355 // Check the function attributes to find out if this function should be 1356 // optimized for size. 1357 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1358 F->hasFnAttribute(Attribute::OptimizeForSize); 1359 1360 // Compute the weighted frequency of this loop being executed and see if it 1361 // is less than 20% of the function entry baseline frequency. Note that we 1362 // always have a canonical loop here because we think we *can* vectoriez. 1363 // FIXME: This is hidden behind a flag due to pervasive problems with 1364 // exactly what block frequency models. 1365 if (LoopVectorizeWithBlockFrequency) { 1366 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1367 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1368 LoopEntryFreq < ColdEntryFreq) 1369 OptForSize = true; 1370 } 1371 1372 // Check the function attributes to see if implicit floats are allowed.a 1373 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1374 // an integer loop and the vector instructions selected are purely integer 1375 // vector instructions? 1376 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1377 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1378 "attribute is used.\n"); 1379 emitOptimizationRemarkAnalysis( 1380 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1381 "loop not vectorized due to NoImplicitFloat attribute"); 1382 emitMissedWarning(F, L, Hints); 1383 return false; 1384 } 1385 1386 // Select the optimal vectorization factor. 1387 const LoopVectorizationCostModel::VectorizationFactor VF = 1388 CM.selectVectorizationFactor(OptForSize); 1389 1390 // Select the unroll factor. 1391 const unsigned UF = 1392 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1393 1394 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1395 << DebugLocStr << '\n'); 1396 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1397 1398 if (VF.Width == 1) { 1399 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1400 1401 if (UF == 1) { 1402 emitOptimizationRemarkAnalysis( 1403 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1404 "not beneficial to vectorize and user disabled interleaving"); 1405 return false; 1406 } 1407 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1408 1409 // Report the unrolling decision. 1410 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1411 Twine("unrolled with interleaving factor " + 1412 Twine(UF) + 1413 " (vectorization not beneficial)")); 1414 1415 // We decided not to vectorize, but we may want to unroll. 1416 1417 InnerLoopUnroller Unroller(L, SE, LI, DT, TLI, TTI, UF); 1418 Unroller.vectorize(&LVL); 1419 } else { 1420 // If we decided that it is *legal* to vectorize the loop then do it. 1421 InnerLoopVectorizer LB(L, SE, LI, DT, TLI, TTI, VF.Width, UF); 1422 LB.vectorize(&LVL); 1423 ++LoopsVectorized; 1424 1425 // Add metadata to disable runtime unrolling scalar loop when there's no 1426 // runtime check about strides and memory. Because at this situation, 1427 // scalar loop is rarely used not worthy to be unrolled. 1428 if (!LB.IsSafetyChecksAdded()) 1429 AddRuntimeUnrollDisableMetaData(L); 1430 1431 // Report the vectorization decision. 1432 emitOptimizationRemark( 1433 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1434 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1435 ", unrolling interleave factor: " + Twine(UF) + ")"); 1436 } 1437 1438 // Mark the loop as already vectorized to avoid vectorizing again. 1439 Hints.setAlreadyVectorized(); 1440 1441 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1442 return true; 1443 } 1444 1445 void getAnalysisUsage(AnalysisUsage &AU) const override { 1446 AU.addRequired<AssumptionCacheTracker>(); 1447 AU.addRequiredID(LoopSimplifyID); 1448 AU.addRequiredID(LCSSAID); 1449 AU.addRequired<BlockFrequencyInfo>(); 1450 AU.addRequired<DominatorTreeWrapperPass>(); 1451 AU.addRequired<LoopInfoWrapperPass>(); 1452 AU.addRequired<ScalarEvolution>(); 1453 AU.addRequired<TargetTransformInfoWrapperPass>(); 1454 AU.addRequired<AliasAnalysis>(); 1455 AU.addRequired<LoopAccessAnalysis>(); 1456 AU.addPreserved<LoopInfoWrapperPass>(); 1457 AU.addPreserved<DominatorTreeWrapperPass>(); 1458 AU.addPreserved<AliasAnalysis>(); 1459 } 1460 1461 }; 1462 1463 } // end anonymous namespace 1464 1465 //===----------------------------------------------------------------------===// 1466 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1467 // LoopVectorizationCostModel. 1468 //===----------------------------------------------------------------------===// 1469 1470 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1471 // We need to place the broadcast of invariant variables outside the loop. 1472 Instruction *Instr = dyn_cast<Instruction>(V); 1473 bool NewInstr = 1474 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1475 Instr->getParent()) != LoopVectorBody.end()); 1476 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1477 1478 // Place the code for broadcasting invariant variables in the new preheader. 1479 IRBuilder<>::InsertPointGuard Guard(Builder); 1480 if (Invariant) 1481 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1482 1483 // Broadcast the scalar into all locations in the vector. 1484 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1485 1486 return Shuf; 1487 } 1488 1489 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1490 Value *Step) { 1491 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1492 assert(Val->getType()->getScalarType()->isIntegerTy() && 1493 "Elem must be an integer"); 1494 assert(Step->getType() == Val->getType()->getScalarType() && 1495 "Step has wrong type"); 1496 // Create the types. 1497 Type *ITy = Val->getType()->getScalarType(); 1498 VectorType *Ty = cast<VectorType>(Val->getType()); 1499 int VLen = Ty->getNumElements(); 1500 SmallVector<Constant*, 8> Indices; 1501 1502 // Create a vector of consecutive numbers from zero to VF. 1503 for (int i = 0; i < VLen; ++i) 1504 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1505 1506 // Add the consecutive indices to the vector value. 1507 Constant *Cv = ConstantVector::get(Indices); 1508 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1509 Step = Builder.CreateVectorSplat(VLen, Step); 1510 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1511 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1512 // which can be found from the original scalar operations. 1513 Step = Builder.CreateMul(Cv, Step); 1514 return Builder.CreateAdd(Val, Step, "induction"); 1515 } 1516 1517 /// \brief Find the operand of the GEP that should be checked for consecutive 1518 /// stores. This ignores trailing indices that have no effect on the final 1519 /// pointer. 1520 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) { 1521 const DataLayout &DL = Gep->getModule()->getDataLayout(); 1522 unsigned LastOperand = Gep->getNumOperands() - 1; 1523 unsigned GEPAllocSize = DL.getTypeAllocSize( 1524 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1525 1526 // Walk backwards and try to peel off zeros. 1527 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1528 // Find the type we're currently indexing into. 1529 gep_type_iterator GEPTI = gep_type_begin(Gep); 1530 std::advance(GEPTI, LastOperand - 1); 1531 1532 // If it's a type with the same allocation size as the result of the GEP we 1533 // can peel off the zero index. 1534 if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize) 1535 break; 1536 --LastOperand; 1537 } 1538 1539 return LastOperand; 1540 } 1541 1542 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1543 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1544 // Make sure that the pointer does not point to structs. 1545 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1546 return 0; 1547 1548 // If this value is a pointer induction variable we know it is consecutive. 1549 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1550 if (Phi && Inductions.count(Phi)) { 1551 InductionInfo II = Inductions[Phi]; 1552 return II.getConsecutiveDirection(); 1553 } 1554 1555 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1556 if (!Gep) 1557 return 0; 1558 1559 unsigned NumOperands = Gep->getNumOperands(); 1560 Value *GpPtr = Gep->getPointerOperand(); 1561 // If this GEP value is a consecutive pointer induction variable and all of 1562 // the indices are constant then we know it is consecutive. We can 1563 Phi = dyn_cast<PHINode>(GpPtr); 1564 if (Phi && Inductions.count(Phi)) { 1565 1566 // Make sure that the pointer does not point to structs. 1567 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1568 if (GepPtrType->getElementType()->isAggregateType()) 1569 return 0; 1570 1571 // Make sure that all of the index operands are loop invariant. 1572 for (unsigned i = 1; i < NumOperands; ++i) 1573 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1574 return 0; 1575 1576 InductionInfo II = Inductions[Phi]; 1577 return II.getConsecutiveDirection(); 1578 } 1579 1580 unsigned InductionOperand = getGEPInductionOperand(Gep); 1581 1582 // Check that all of the gep indices are uniform except for our induction 1583 // operand. 1584 for (unsigned i = 0; i != NumOperands; ++i) 1585 if (i != InductionOperand && 1586 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1587 return 0; 1588 1589 // We can emit wide load/stores only if the last non-zero index is the 1590 // induction variable. 1591 const SCEV *Last = nullptr; 1592 if (!Strides.count(Gep)) 1593 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1594 else { 1595 // Because of the multiplication by a stride we can have a s/zext cast. 1596 // We are going to replace this stride by 1 so the cast is safe to ignore. 1597 // 1598 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1599 // %0 = trunc i64 %indvars.iv to i32 1600 // %mul = mul i32 %0, %Stride1 1601 // %idxprom = zext i32 %mul to i64 << Safe cast. 1602 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1603 // 1604 Last = replaceSymbolicStrideSCEV(SE, Strides, 1605 Gep->getOperand(InductionOperand), Gep); 1606 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1607 Last = 1608 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1609 ? C->getOperand() 1610 : Last; 1611 } 1612 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1613 const SCEV *Step = AR->getStepRecurrence(*SE); 1614 1615 // The memory is consecutive because the last index is consecutive 1616 // and all other indices are loop invariant. 1617 if (Step->isOne()) 1618 return 1; 1619 if (Step->isAllOnesValue()) 1620 return -1; 1621 } 1622 1623 return 0; 1624 } 1625 1626 bool LoopVectorizationLegality::isUniform(Value *V) { 1627 return LAI->isUniform(V); 1628 } 1629 1630 InnerLoopVectorizer::VectorParts& 1631 InnerLoopVectorizer::getVectorValue(Value *V) { 1632 assert(V != Induction && "The new induction variable should not be used."); 1633 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1634 1635 // If we have a stride that is replaced by one, do it here. 1636 if (Legal->hasStride(V)) 1637 V = ConstantInt::get(V->getType(), 1); 1638 1639 // If we have this scalar in the map, return it. 1640 if (WidenMap.has(V)) 1641 return WidenMap.get(V); 1642 1643 // If this scalar is unknown, assume that it is a constant or that it is 1644 // loop invariant. Broadcast V and save the value for future uses. 1645 Value *B = getBroadcastInstrs(V); 1646 return WidenMap.splat(V, B); 1647 } 1648 1649 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1650 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1651 SmallVector<Constant*, 8> ShuffleMask; 1652 for (unsigned i = 0; i < VF; ++i) 1653 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1654 1655 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1656 ConstantVector::get(ShuffleMask), 1657 "reverse"); 1658 } 1659 1660 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1661 // Attempt to issue a wide load. 1662 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1663 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1664 1665 assert((LI || SI) && "Invalid Load/Store instruction"); 1666 1667 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1668 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1669 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1670 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1671 // An alignment of 0 means target abi alignment. We need to use the scalar's 1672 // target abi alignment in such a case. 1673 const DataLayout &DL = Instr->getModule()->getDataLayout(); 1674 if (!Alignment) 1675 Alignment = DL.getABITypeAlignment(ScalarDataTy); 1676 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1677 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 1678 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 1679 1680 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 1681 !Legal->isMaskRequired(SI)) 1682 return scalarizeInstruction(Instr, true); 1683 1684 if (ScalarAllocatedSize != VectorElementSize) 1685 return scalarizeInstruction(Instr); 1686 1687 // If the pointer is loop invariant or if it is non-consecutive, 1688 // scalarize the load. 1689 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1690 bool Reverse = ConsecutiveStride < 0; 1691 bool UniformLoad = LI && Legal->isUniform(Ptr); 1692 if (!ConsecutiveStride || UniformLoad) 1693 return scalarizeInstruction(Instr); 1694 1695 Constant *Zero = Builder.getInt32(0); 1696 VectorParts &Entry = WidenMap.get(Instr); 1697 1698 // Handle consecutive loads/stores. 1699 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1700 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1701 setDebugLocFromInst(Builder, Gep); 1702 Value *PtrOperand = Gep->getPointerOperand(); 1703 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1704 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1705 1706 // Create the new GEP with the new induction variable. 1707 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1708 Gep2->setOperand(0, FirstBasePtr); 1709 Gep2->setName("gep.indvar.base"); 1710 Ptr = Builder.Insert(Gep2); 1711 } else if (Gep) { 1712 setDebugLocFromInst(Builder, Gep); 1713 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1714 OrigLoop) && "Base ptr must be invariant"); 1715 1716 // The last index does not have to be the induction. It can be 1717 // consecutive and be a function of the index. For example A[I+1]; 1718 unsigned NumOperands = Gep->getNumOperands(); 1719 unsigned InductionOperand = getGEPInductionOperand(Gep); 1720 // Create the new GEP with the new induction variable. 1721 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1722 1723 for (unsigned i = 0; i < NumOperands; ++i) { 1724 Value *GepOperand = Gep->getOperand(i); 1725 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1726 1727 // Update last index or loop invariant instruction anchored in loop. 1728 if (i == InductionOperand || 1729 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1730 assert((i == InductionOperand || 1731 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1732 "Must be last index or loop invariant"); 1733 1734 VectorParts &GEPParts = getVectorValue(GepOperand); 1735 Value *Index = GEPParts[0]; 1736 Index = Builder.CreateExtractElement(Index, Zero); 1737 Gep2->setOperand(i, Index); 1738 Gep2->setName("gep.indvar.idx"); 1739 } 1740 } 1741 Ptr = Builder.Insert(Gep2); 1742 } else { 1743 // Use the induction element ptr. 1744 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1745 setDebugLocFromInst(Builder, Ptr); 1746 VectorParts &PtrVal = getVectorValue(Ptr); 1747 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1748 } 1749 1750 VectorParts Mask = createBlockInMask(Instr->getParent()); 1751 // Handle Stores: 1752 if (SI) { 1753 assert(!Legal->isUniform(SI->getPointerOperand()) && 1754 "We do not allow storing to uniform addresses"); 1755 setDebugLocFromInst(Builder, SI); 1756 // We don't want to update the value in the map as it might be used in 1757 // another expression. So don't use a reference type for "StoredVal". 1758 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1759 1760 for (unsigned Part = 0; Part < UF; ++Part) { 1761 // Calculate the pointer for the specific unroll-part. 1762 Value *PartPtr = 1763 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 1764 1765 if (Reverse) { 1766 // If we store to reverse consecutive memory locations then we need 1767 // to reverse the order of elements in the stored value. 1768 StoredVal[Part] = reverseVector(StoredVal[Part]); 1769 // If the address is consecutive but reversed, then the 1770 // wide store needs to start at the last vector element. 1771 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 1772 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 1773 Mask[Part] = reverseVector(Mask[Part]); 1774 } 1775 1776 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1777 DataTy->getPointerTo(AddressSpace)); 1778 1779 Instruction *NewSI; 1780 if (Legal->isMaskRequired(SI)) 1781 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 1782 Mask[Part]); 1783 else 1784 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1785 propagateMetadata(NewSI, SI); 1786 } 1787 return; 1788 } 1789 1790 // Handle loads. 1791 assert(LI && "Must have a load instruction"); 1792 setDebugLocFromInst(Builder, LI); 1793 for (unsigned Part = 0; Part < UF; ++Part) { 1794 // Calculate the pointer for the specific unroll-part. 1795 Value *PartPtr = 1796 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 1797 1798 if (Reverse) { 1799 // If the address is consecutive but reversed, then the 1800 // wide load needs to start at the last vector element. 1801 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 1802 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 1803 Mask[Part] = reverseVector(Mask[Part]); 1804 } 1805 1806 Instruction* NewLI; 1807 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1808 DataTy->getPointerTo(AddressSpace)); 1809 if (Legal->isMaskRequired(LI)) 1810 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 1811 UndefValue::get(DataTy), 1812 "wide.masked.load"); 1813 else 1814 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1815 propagateMetadata(NewLI, LI); 1816 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1817 } 1818 } 1819 1820 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1821 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1822 // Holds vector parameters or scalars, in case of uniform vals. 1823 SmallVector<VectorParts, 4> Params; 1824 1825 setDebugLocFromInst(Builder, Instr); 1826 1827 // Find all of the vectorized parameters. 1828 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1829 Value *SrcOp = Instr->getOperand(op); 1830 1831 // If we are accessing the old induction variable, use the new one. 1832 if (SrcOp == OldInduction) { 1833 Params.push_back(getVectorValue(SrcOp)); 1834 continue; 1835 } 1836 1837 // Try using previously calculated values. 1838 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1839 1840 // If the src is an instruction that appeared earlier in the basic block 1841 // then it should already be vectorized. 1842 if (SrcInst && OrigLoop->contains(SrcInst)) { 1843 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1844 // The parameter is a vector value from earlier. 1845 Params.push_back(WidenMap.get(SrcInst)); 1846 } else { 1847 // The parameter is a scalar from outside the loop. Maybe even a constant. 1848 VectorParts Scalars; 1849 Scalars.append(UF, SrcOp); 1850 Params.push_back(Scalars); 1851 } 1852 } 1853 1854 assert(Params.size() == Instr->getNumOperands() && 1855 "Invalid number of operands"); 1856 1857 // Does this instruction return a value ? 1858 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1859 1860 Value *UndefVec = IsVoidRetTy ? nullptr : 1861 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1862 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1863 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1864 1865 Instruction *InsertPt = Builder.GetInsertPoint(); 1866 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1867 BasicBlock *CondBlock = nullptr; 1868 1869 VectorParts Cond; 1870 Loop *VectorLp = nullptr; 1871 if (IfPredicateStore) { 1872 assert(Instr->getParent()->getSinglePredecessor() && 1873 "Only support single predecessor blocks"); 1874 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1875 Instr->getParent()); 1876 VectorLp = LI->getLoopFor(IfBlock); 1877 assert(VectorLp && "Must have a loop for this block"); 1878 } 1879 1880 // For each vector unroll 'part': 1881 for (unsigned Part = 0; Part < UF; ++Part) { 1882 // For each scalar that we create: 1883 for (unsigned Width = 0; Width < VF; ++Width) { 1884 1885 // Start if-block. 1886 Value *Cmp = nullptr; 1887 if (IfPredicateStore) { 1888 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1889 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1890 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1891 LoopVectorBody.push_back(CondBlock); 1892 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 1893 // Update Builder with newly created basic block. 1894 Builder.SetInsertPoint(InsertPt); 1895 } 1896 1897 Instruction *Cloned = Instr->clone(); 1898 if (!IsVoidRetTy) 1899 Cloned->setName(Instr->getName() + ".cloned"); 1900 // Replace the operands of the cloned instructions with extracted scalars. 1901 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1902 Value *Op = Params[op][Part]; 1903 // Param is a vector. Need to extract the right lane. 1904 if (Op->getType()->isVectorTy()) 1905 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1906 Cloned->setOperand(op, Op); 1907 } 1908 1909 // Place the cloned scalar in the new loop. 1910 Builder.Insert(Cloned); 1911 1912 // If the original scalar returns a value we need to place it in a vector 1913 // so that future users will be able to use it. 1914 if (!IsVoidRetTy) 1915 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1916 Builder.getInt32(Width)); 1917 // End if-block. 1918 if (IfPredicateStore) { 1919 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1920 LoopVectorBody.push_back(NewIfBlock); 1921 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 1922 Builder.SetInsertPoint(InsertPt); 1923 Instruction *OldBr = IfBlock->getTerminator(); 1924 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1925 OldBr->eraseFromParent(); 1926 IfBlock = NewIfBlock; 1927 } 1928 } 1929 } 1930 } 1931 1932 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1933 Instruction *Loc) { 1934 if (FirstInst) 1935 return FirstInst; 1936 if (Instruction *I = dyn_cast<Instruction>(V)) 1937 return I->getParent() == Loc->getParent() ? I : nullptr; 1938 return nullptr; 1939 } 1940 1941 std::pair<Instruction *, Instruction *> 1942 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1943 Instruction *tnullptr = nullptr; 1944 if (!Legal->mustCheckStrides()) 1945 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1946 1947 IRBuilder<> ChkBuilder(Loc); 1948 1949 // Emit checks. 1950 Value *Check = nullptr; 1951 Instruction *FirstInst = nullptr; 1952 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1953 SE = Legal->strides_end(); 1954 SI != SE; ++SI) { 1955 Value *Ptr = stripIntegerCast(*SI); 1956 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 1957 "stride.chk"); 1958 // Store the first instruction we create. 1959 FirstInst = getFirstInst(FirstInst, C, Loc); 1960 if (Check) 1961 Check = ChkBuilder.CreateOr(Check, C); 1962 else 1963 Check = C; 1964 } 1965 1966 // We have to do this trickery because the IRBuilder might fold the check to a 1967 // constant expression in which case there is no Instruction anchored in a 1968 // the block. 1969 LLVMContext &Ctx = Loc->getContext(); 1970 Instruction *TheCheck = 1971 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 1972 ChkBuilder.Insert(TheCheck, "stride.not.one"); 1973 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 1974 1975 return std::make_pair(FirstInst, TheCheck); 1976 } 1977 1978 void InnerLoopVectorizer::createEmptyLoop() { 1979 /* 1980 In this function we generate a new loop. The new loop will contain 1981 the vectorized instructions while the old loop will continue to run the 1982 scalar remainder. 1983 1984 [ ] <-- Back-edge taken count overflow check. 1985 / | 1986 / v 1987 | [ ] <-- vector loop bypass (may consist of multiple blocks). 1988 | / | 1989 | / v 1990 || [ ] <-- vector pre header. 1991 || | 1992 || v 1993 || [ ] \ 1994 || [ ]_| <-- vector loop. 1995 || | 1996 | \ v 1997 | >[ ] <--- middle-block. 1998 | / | 1999 | / v 2000 -|- >[ ] <--- new preheader. 2001 | | 2002 | v 2003 | [ ] \ 2004 | [ ]_| <-- old scalar loop to handle remainder. 2005 \ | 2006 \ v 2007 >[ ] <-- exit block. 2008 ... 2009 */ 2010 2011 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2012 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2013 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2014 assert(BypassBlock && "Invalid loop structure"); 2015 assert(ExitBlock && "Must have an exit block"); 2016 2017 // Some loops have a single integer induction variable, while other loops 2018 // don't. One example is c++ iterators that often have multiple pointer 2019 // induction variables. In the code below we also support a case where we 2020 // don't have a single induction variable. 2021 OldInduction = Legal->getInduction(); 2022 Type *IdxTy = Legal->getWidestInductionType(); 2023 2024 // Find the loop boundaries. 2025 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2026 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2027 2028 // The exit count might have the type of i64 while the phi is i32. This can 2029 // happen if we have an induction variable that is sign extended before the 2030 // compare. The only way that we get a backedge taken count is that the 2031 // induction variable was signed and as such will not overflow. In such a case 2032 // truncation is legal. 2033 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2034 IdxTy->getPrimitiveSizeInBits()) 2035 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2036 2037 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2038 // Get the total trip count from the count by adding 1. 2039 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2040 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2041 2042 const DataLayout &DL = OldBasicBlock->getModule()->getDataLayout(); 2043 2044 // Expand the trip count and place the new instructions in the preheader. 2045 // Notice that the pre-header does not change, only the loop body. 2046 SCEVExpander Exp(*SE, DL, "induction"); 2047 2048 // We need to test whether the backedge-taken count is uint##_max. Adding one 2049 // to it will cause overflow and an incorrect loop trip count in the vector 2050 // body. In case of overflow we want to directly jump to the scalar remainder 2051 // loop. 2052 Value *BackedgeCount = 2053 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2054 BypassBlock->getTerminator()); 2055 if (BackedgeCount->getType()->isPointerTy()) 2056 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2057 "backedge.ptrcnt.to.int", 2058 BypassBlock->getTerminator()); 2059 Instruction *CheckBCOverflow = 2060 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2061 Constant::getAllOnesValue(BackedgeCount->getType()), 2062 "backedge.overflow", BypassBlock->getTerminator()); 2063 2064 // The loop index does not have to start at Zero. Find the original start 2065 // value from the induction PHI node. If we don't have an induction variable 2066 // then we know that it starts at zero. 2067 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2068 Value *StartIdx = ExtendedIdx = OldInduction ? 2069 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2070 IdxTy): 2071 ConstantInt::get(IdxTy, 0); 2072 2073 // We need an instruction to anchor the overflow check on. StartIdx needs to 2074 // be defined before the overflow check branch. Because the scalar preheader 2075 // is going to merge the start index and so the overflow branch block needs to 2076 // contain a definition of the start index. 2077 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2078 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2079 BypassBlock->getTerminator()); 2080 2081 // Count holds the overall loop count (N). 2082 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2083 BypassBlock->getTerminator()); 2084 2085 LoopBypassBlocks.push_back(BypassBlock); 2086 2087 // Split the single block loop into the two loop structure described above. 2088 BasicBlock *VectorPH = 2089 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2090 BasicBlock *VecBody = 2091 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2092 BasicBlock *MiddleBlock = 2093 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2094 BasicBlock *ScalarPH = 2095 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2096 2097 // Create and register the new vector loop. 2098 Loop* Lp = new Loop(); 2099 Loop *ParentLoop = OrigLoop->getParentLoop(); 2100 2101 // Insert the new loop into the loop nest and register the new basic blocks 2102 // before calling any utilities such as SCEV that require valid LoopInfo. 2103 if (ParentLoop) { 2104 ParentLoop->addChildLoop(Lp); 2105 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2106 ParentLoop->addBasicBlockToLoop(VectorPH, *LI); 2107 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2108 } else { 2109 LI->addTopLevelLoop(Lp); 2110 } 2111 Lp->addBasicBlockToLoop(VecBody, *LI); 2112 2113 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2114 // inside the loop. 2115 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2116 2117 // Generate the induction variable. 2118 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2119 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2120 // The loop step is equal to the vectorization factor (num of SIMD elements) 2121 // times the unroll factor (num of SIMD instructions). 2122 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2123 2124 // This is the IR builder that we use to add all of the logic for bypassing 2125 // the new vector loop. 2126 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2127 setDebugLocFromInst(BypassBuilder, 2128 getDebugLocFromInstOrOperands(OldInduction)); 2129 2130 // We may need to extend the index in case there is a type mismatch. 2131 // We know that the count starts at zero and does not overflow. 2132 if (Count->getType() != IdxTy) { 2133 // The exit count can be of pointer type. Convert it to the correct 2134 // integer type. 2135 if (ExitCount->getType()->isPointerTy()) 2136 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2137 else 2138 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2139 } 2140 2141 // Add the start index to the loop count to get the new end index. 2142 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2143 2144 // Now we need to generate the expression for N - (N % VF), which is 2145 // the part that the vectorized body will execute. 2146 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2147 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2148 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2149 "end.idx.rnd.down"); 2150 2151 // Now, compare the new count to zero. If it is zero skip the vector loop and 2152 // jump to the scalar loop. 2153 Value *Cmp = 2154 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2155 2156 BasicBlock *LastBypassBlock = BypassBlock; 2157 2158 // Generate code to check that the loops trip count that we computed by adding 2159 // one to the backedge-taken count will not overflow. 2160 { 2161 auto PastOverflowCheck = 2162 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2163 BasicBlock *CheckBlock = 2164 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2165 if (ParentLoop) 2166 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2167 LoopBypassBlocks.push_back(CheckBlock); 2168 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2169 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2170 OldTerm->eraseFromParent(); 2171 LastBypassBlock = CheckBlock; 2172 } 2173 2174 // Generate the code to check that the strides we assumed to be one are really 2175 // one. We want the new basic block to start at the first instruction in a 2176 // sequence of instructions that form a check. 2177 Instruction *StrideCheck; 2178 Instruction *FirstCheckInst; 2179 std::tie(FirstCheckInst, StrideCheck) = 2180 addStrideCheck(LastBypassBlock->getTerminator()); 2181 if (StrideCheck) { 2182 AddedSafetyChecks = true; 2183 // Create a new block containing the stride check. 2184 BasicBlock *CheckBlock = 2185 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2186 if (ParentLoop) 2187 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2188 LoopBypassBlocks.push_back(CheckBlock); 2189 2190 // Replace the branch into the memory check block with a conditional branch 2191 // for the "few elements case". 2192 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2193 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2194 OldTerm->eraseFromParent(); 2195 2196 Cmp = StrideCheck; 2197 LastBypassBlock = CheckBlock; 2198 } 2199 2200 // Generate the code that checks in runtime if arrays overlap. We put the 2201 // checks into a separate block to make the more common case of few elements 2202 // faster. 2203 Instruction *MemRuntimeCheck; 2204 std::tie(FirstCheckInst, MemRuntimeCheck) = 2205 Legal->getLAI()->addRuntimeCheck(LastBypassBlock->getTerminator()); 2206 if (MemRuntimeCheck) { 2207 AddedSafetyChecks = true; 2208 // Create a new block containing the memory check. 2209 BasicBlock *CheckBlock = 2210 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.memcheck"); 2211 if (ParentLoop) 2212 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2213 LoopBypassBlocks.push_back(CheckBlock); 2214 2215 // Replace the branch into the memory check block with a conditional branch 2216 // for the "few elements case". 2217 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2218 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2219 OldTerm->eraseFromParent(); 2220 2221 Cmp = MemRuntimeCheck; 2222 LastBypassBlock = CheckBlock; 2223 } 2224 2225 LastBypassBlock->getTerminator()->eraseFromParent(); 2226 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2227 LastBypassBlock); 2228 2229 // We are going to resume the execution of the scalar loop. 2230 // Go over all of the induction variables that we found and fix the 2231 // PHIs that are left in the scalar version of the loop. 2232 // The starting values of PHI nodes depend on the counter of the last 2233 // iteration in the vectorized loop. 2234 // If we come from a bypass edge then we need to start from the original 2235 // start value. 2236 2237 // This variable saves the new starting index for the scalar loop. 2238 PHINode *ResumeIndex = nullptr; 2239 LoopVectorizationLegality::InductionList::iterator I, E; 2240 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2241 // Set builder to point to last bypass block. 2242 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2243 for (I = List->begin(), E = List->end(); I != E; ++I) { 2244 PHINode *OrigPhi = I->first; 2245 LoopVectorizationLegality::InductionInfo II = I->second; 2246 2247 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2248 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2249 MiddleBlock->getTerminator()); 2250 // We might have extended the type of the induction variable but we need a 2251 // truncated version for the scalar loop. 2252 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2253 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2254 MiddleBlock->getTerminator()) : nullptr; 2255 2256 // Create phi nodes to merge from the backedge-taken check block. 2257 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2258 ScalarPH->getTerminator()); 2259 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2260 2261 PHINode *BCTruncResumeVal = nullptr; 2262 if (OrigPhi == OldInduction) { 2263 BCTruncResumeVal = 2264 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2265 ScalarPH->getTerminator()); 2266 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2267 } 2268 2269 Value *EndValue = nullptr; 2270 switch (II.IK) { 2271 case LoopVectorizationLegality::IK_NoInduction: 2272 llvm_unreachable("Unknown induction"); 2273 case LoopVectorizationLegality::IK_IntInduction: { 2274 // Handle the integer induction counter. 2275 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2276 2277 // We have the canonical induction variable. 2278 if (OrigPhi == OldInduction) { 2279 // Create a truncated version of the resume value for the scalar loop, 2280 // we might have promoted the type to a larger width. 2281 EndValue = 2282 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2283 // The new PHI merges the original incoming value, in case of a bypass, 2284 // or the value at the end of the vectorized loop. 2285 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2286 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2287 TruncResumeVal->addIncoming(EndValue, VecBody); 2288 2289 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2290 2291 // We know what the end value is. 2292 EndValue = IdxEndRoundDown; 2293 // We also know which PHI node holds it. 2294 ResumeIndex = ResumeVal; 2295 break; 2296 } 2297 2298 // Not the canonical induction variable - add the vector loop count to the 2299 // start value. 2300 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2301 II.StartValue->getType(), 2302 "cast.crd"); 2303 EndValue = II.transform(BypassBuilder, CRD); 2304 EndValue->setName("ind.end"); 2305 break; 2306 } 2307 case LoopVectorizationLegality::IK_PtrInduction: { 2308 EndValue = II.transform(BypassBuilder, CountRoundDown); 2309 EndValue->setName("ptr.ind.end"); 2310 break; 2311 } 2312 }// end of case 2313 2314 // The new PHI merges the original incoming value, in case of a bypass, 2315 // or the value at the end of the vectorized loop. 2316 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2317 if (OrigPhi == OldInduction) 2318 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2319 else 2320 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2321 } 2322 ResumeVal->addIncoming(EndValue, VecBody); 2323 2324 // Fix the scalar body counter (PHI node). 2325 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2326 2327 // The old induction's phi node in the scalar body needs the truncated 2328 // value. 2329 if (OrigPhi == OldInduction) { 2330 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2331 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2332 } else { 2333 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2334 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2335 } 2336 } 2337 2338 // If we are generating a new induction variable then we also need to 2339 // generate the code that calculates the exit value. This value is not 2340 // simply the end of the counter because we may skip the vectorized body 2341 // in case of a runtime check. 2342 if (!OldInduction){ 2343 assert(!ResumeIndex && "Unexpected resume value found"); 2344 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2345 MiddleBlock->getTerminator()); 2346 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2347 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2348 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2349 } 2350 2351 // Make sure that we found the index where scalar loop needs to continue. 2352 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2353 "Invalid resume Index"); 2354 2355 // Add a check in the middle block to see if we have completed 2356 // all of the iterations in the first vector loop. 2357 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2358 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2359 ResumeIndex, "cmp.n", 2360 MiddleBlock->getTerminator()); 2361 2362 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2363 // Remove the old terminator. 2364 MiddleBlock->getTerminator()->eraseFromParent(); 2365 2366 // Create i+1 and fill the PHINode. 2367 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2368 Induction->addIncoming(StartIdx, VectorPH); 2369 Induction->addIncoming(NextIdx, VecBody); 2370 // Create the compare. 2371 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2372 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2373 2374 // Now we have two terminators. Remove the old one from the block. 2375 VecBody->getTerminator()->eraseFromParent(); 2376 2377 // Get ready to start creating new instructions into the vectorized body. 2378 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2379 2380 // Save the state. 2381 LoopVectorPreHeader = VectorPH; 2382 LoopScalarPreHeader = ScalarPH; 2383 LoopMiddleBlock = MiddleBlock; 2384 LoopExitBlock = ExitBlock; 2385 LoopVectorBody.push_back(VecBody); 2386 LoopScalarBody = OldBasicBlock; 2387 2388 LoopVectorizeHints Hints(Lp, true); 2389 Hints.setAlreadyVectorized(); 2390 } 2391 2392 namespace { 2393 struct CSEDenseMapInfo { 2394 static bool canHandle(Instruction *I) { 2395 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2396 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2397 } 2398 static inline Instruction *getEmptyKey() { 2399 return DenseMapInfo<Instruction *>::getEmptyKey(); 2400 } 2401 static inline Instruction *getTombstoneKey() { 2402 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2403 } 2404 static unsigned getHashValue(Instruction *I) { 2405 assert(canHandle(I) && "Unknown instruction!"); 2406 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2407 I->value_op_end())); 2408 } 2409 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2410 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2411 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2412 return LHS == RHS; 2413 return LHS->isIdenticalTo(RHS); 2414 } 2415 }; 2416 } 2417 2418 /// \brief Check whether this block is a predicated block. 2419 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2420 /// = ...; " blocks. We start with one vectorized basic block. For every 2421 /// conditional block we split this vectorized block. Therefore, every second 2422 /// block will be a predicated one. 2423 static bool isPredicatedBlock(unsigned BlockNum) { 2424 return BlockNum % 2; 2425 } 2426 2427 ///\brief Perform cse of induction variable instructions. 2428 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2429 // Perform simple cse. 2430 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2431 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2432 BasicBlock *BB = BBs[i]; 2433 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2434 Instruction *In = I++; 2435 2436 if (!CSEDenseMapInfo::canHandle(In)) 2437 continue; 2438 2439 // Check if we can replace this instruction with any of the 2440 // visited instructions. 2441 if (Instruction *V = CSEMap.lookup(In)) { 2442 In->replaceAllUsesWith(V); 2443 In->eraseFromParent(); 2444 continue; 2445 } 2446 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2447 // ...;" blocks for predicated stores. Every second block is a predicated 2448 // block. 2449 if (isPredicatedBlock(i)) 2450 continue; 2451 2452 CSEMap[In] = In; 2453 } 2454 } 2455 } 2456 2457 /// \brief Adds a 'fast' flag to floating point operations. 2458 static Value *addFastMathFlag(Value *V) { 2459 if (isa<FPMathOperator>(V)){ 2460 FastMathFlags Flags; 2461 Flags.setUnsafeAlgebra(); 2462 cast<Instruction>(V)->setFastMathFlags(Flags); 2463 } 2464 return V; 2465 } 2466 2467 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 2468 /// the result needs to be inserted and/or extracted from vectors. 2469 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 2470 const TargetTransformInfo &TTI) { 2471 if (Ty->isVoidTy()) 2472 return 0; 2473 2474 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 2475 unsigned Cost = 0; 2476 2477 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 2478 if (Insert) 2479 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 2480 if (Extract) 2481 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 2482 } 2483 2484 return Cost; 2485 } 2486 2487 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 2488 // Return the cost of the instruction, including scalarization overhead if it's 2489 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 2490 // i.e. either vector version isn't available, or is too expensive. 2491 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 2492 const TargetTransformInfo &TTI, 2493 const TargetLibraryInfo *TLI, 2494 bool &NeedToScalarize) { 2495 Function *F = CI->getCalledFunction(); 2496 StringRef FnName = CI->getCalledFunction()->getName(); 2497 Type *ScalarRetTy = CI->getType(); 2498 SmallVector<Type *, 4> Tys, ScalarTys; 2499 for (auto &ArgOp : CI->arg_operands()) 2500 ScalarTys.push_back(ArgOp->getType()); 2501 2502 // Estimate cost of scalarized vector call. The source operands are assumed 2503 // to be vectors, so we need to extract individual elements from there, 2504 // execute VF scalar calls, and then gather the result into the vector return 2505 // value. 2506 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 2507 if (VF == 1) 2508 return ScalarCallCost; 2509 2510 // Compute corresponding vector type for return value and arguments. 2511 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 2512 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 2513 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 2514 2515 // Compute costs of unpacking argument values for the scalar calls and 2516 // packing the return values to a vector. 2517 unsigned ScalarizationCost = 2518 getScalarizationOverhead(RetTy, true, false, TTI); 2519 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 2520 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 2521 2522 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 2523 2524 // If we can't emit a vector call for this function, then the currently found 2525 // cost is the cost we need to return. 2526 NeedToScalarize = true; 2527 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 2528 return Cost; 2529 2530 // If the corresponding vector cost is cheaper, return its cost. 2531 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 2532 if (VectorCallCost < Cost) { 2533 NeedToScalarize = false; 2534 return VectorCallCost; 2535 } 2536 return Cost; 2537 } 2538 2539 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 2540 // factor VF. Return the cost of the instruction, including scalarization 2541 // overhead if it's needed. 2542 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 2543 const TargetTransformInfo &TTI, 2544 const TargetLibraryInfo *TLI) { 2545 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 2546 assert(ID && "Expected intrinsic call!"); 2547 2548 Type *RetTy = ToVectorTy(CI->getType(), VF); 2549 SmallVector<Type *, 4> Tys; 2550 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 2551 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 2552 2553 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 2554 } 2555 2556 void InnerLoopVectorizer::vectorizeLoop() { 2557 //===------------------------------------------------===// 2558 // 2559 // Notice: any optimization or new instruction that go 2560 // into the code below should be also be implemented in 2561 // the cost-model. 2562 // 2563 //===------------------------------------------------===// 2564 Constant *Zero = Builder.getInt32(0); 2565 2566 // In order to support reduction variables we need to be able to vectorize 2567 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2568 // stages. First, we create a new vector PHI node with no incoming edges. 2569 // We use this value when we vectorize all of the instructions that use the 2570 // PHI. Next, after all of the instructions in the block are complete we 2571 // add the new incoming edges to the PHI. At this point all of the 2572 // instructions in the basic block are vectorized, so we can use them to 2573 // construct the PHI. 2574 PhiVector RdxPHIsToFix; 2575 2576 // Scan the loop in a topological order to ensure that defs are vectorized 2577 // before users. 2578 LoopBlocksDFS DFS(OrigLoop); 2579 DFS.perform(LI); 2580 2581 // Vectorize all of the blocks in the original loop. 2582 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2583 be = DFS.endRPO(); bb != be; ++bb) 2584 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2585 2586 // At this point every instruction in the original loop is widened to 2587 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2588 // that we vectorized. The PHI nodes are currently empty because we did 2589 // not want to introduce cycles. Notice that the remaining PHI nodes 2590 // that we need to fix are reduction variables. 2591 2592 // Create the 'reduced' values for each of the induction vars. 2593 // The reduced values are the vector values that we scalarize and combine 2594 // after the loop is finished. 2595 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2596 it != e; ++it) { 2597 PHINode *RdxPhi = *it; 2598 assert(RdxPhi && "Unable to recover vectorized PHI"); 2599 2600 // Find the reduction variable descriptor. 2601 assert(Legal->getReductionVars()->count(RdxPhi) && 2602 "Unable to find the reduction variable"); 2603 ReductionDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; 2604 2605 ReductionDescriptor::ReductionKind RK = RdxDesc.getReductionKind(); 2606 TrackingVH<Value> ReductionStartValue = RdxDesc.getReductionStartValue(); 2607 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 2608 ReductionInstDesc::MinMaxReductionKind MinMaxKind = 2609 RdxDesc.getMinMaxReductionKind(); 2610 setDebugLocFromInst(Builder, ReductionStartValue); 2611 2612 // We need to generate a reduction vector from the incoming scalar. 2613 // To do so, we need to generate the 'identity' vector and override 2614 // one of the elements with the incoming scalar reduction. We need 2615 // to do it in the vector-loop preheader. 2616 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2617 2618 // This is the vector-clone of the value that leaves the loop. 2619 VectorParts &VectorExit = getVectorValue(LoopExitInst); 2620 Type *VecTy = VectorExit[0]->getType(); 2621 2622 // Find the reduction identity variable. Zero for addition, or, xor, 2623 // one for multiplication, -1 for And. 2624 Value *Identity; 2625 Value *VectorStart; 2626 if (RK == ReductionDescriptor::RK_IntegerMinMax || 2627 RK == ReductionDescriptor::RK_FloatMinMax) { 2628 // MinMax reduction have the start value as their identify. 2629 if (VF == 1) { 2630 VectorStart = Identity = ReductionStartValue; 2631 } else { 2632 VectorStart = Identity = 2633 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 2634 } 2635 } else { 2636 // Handle other reduction kinds: 2637 Constant *Iden = 2638 ReductionDescriptor::getReductionIdentity(RK, VecTy->getScalarType()); 2639 if (VF == 1) { 2640 Identity = Iden; 2641 // This vector is the Identity vector where the first element is the 2642 // incoming scalar reduction. 2643 VectorStart = ReductionStartValue; 2644 } else { 2645 Identity = ConstantVector::getSplat(VF, Iden); 2646 2647 // This vector is the Identity vector where the first element is the 2648 // incoming scalar reduction. 2649 VectorStart = 2650 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 2651 } 2652 } 2653 2654 // Fix the vector-loop phi. 2655 2656 // Reductions do not have to start at zero. They can start with 2657 // any loop invariant values. 2658 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2659 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2660 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2661 VectorParts &Val = getVectorValue(LoopVal); 2662 for (unsigned part = 0; part < UF; ++part) { 2663 // Make sure to add the reduction stat value only to the 2664 // first unroll part. 2665 Value *StartVal = (part == 0) ? VectorStart : Identity; 2666 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 2667 LoopVectorPreHeader); 2668 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2669 LoopVectorBody.back()); 2670 } 2671 2672 // Before each round, move the insertion point right between 2673 // the PHIs and the values we are going to write. 2674 // This allows us to write both PHINodes and the extractelement 2675 // instructions. 2676 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2677 2678 VectorParts RdxParts; 2679 setDebugLocFromInst(Builder, LoopExitInst); 2680 for (unsigned part = 0; part < UF; ++part) { 2681 // This PHINode contains the vectorized reduction variable, or 2682 // the initial value vector, if we bypass the vector loop. 2683 VectorParts &RdxExitVal = getVectorValue(LoopExitInst); 2684 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2685 Value *StartVal = (part == 0) ? VectorStart : Identity; 2686 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2687 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2688 NewPhi->addIncoming(RdxExitVal[part], 2689 LoopVectorBody.back()); 2690 RdxParts.push_back(NewPhi); 2691 } 2692 2693 // Reduce all of the unrolled parts into a single vector. 2694 Value *ReducedPartRdx = RdxParts[0]; 2695 unsigned Op = ReductionDescriptor::getReductionBinOp(RK); 2696 setDebugLocFromInst(Builder, ReducedPartRdx); 2697 for (unsigned part = 1; part < UF; ++part) { 2698 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2699 // Floating point operations had to be 'fast' to enable the reduction. 2700 ReducedPartRdx = addFastMathFlag( 2701 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2702 ReducedPartRdx, "bin.rdx")); 2703 else 2704 ReducedPartRdx = ReductionDescriptor::createMinMaxOp( 2705 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 2706 } 2707 2708 if (VF > 1) { 2709 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2710 // and vector ops, reducing the set of values being computed by half each 2711 // round. 2712 assert(isPowerOf2_32(VF) && 2713 "Reduction emission only supported for pow2 vectors!"); 2714 Value *TmpVec = ReducedPartRdx; 2715 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2716 for (unsigned i = VF; i != 1; i >>= 1) { 2717 // Move the upper half of the vector to the lower half. 2718 for (unsigned j = 0; j != i/2; ++j) 2719 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2720 2721 // Fill the rest of the mask with undef. 2722 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2723 UndefValue::get(Builder.getInt32Ty())); 2724 2725 Value *Shuf = 2726 Builder.CreateShuffleVector(TmpVec, 2727 UndefValue::get(TmpVec->getType()), 2728 ConstantVector::get(ShuffleMask), 2729 "rdx.shuf"); 2730 2731 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2732 // Floating point operations had to be 'fast' to enable the reduction. 2733 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2734 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2735 else 2736 TmpVec = ReductionDescriptor::createMinMaxOp(Builder, MinMaxKind, 2737 TmpVec, Shuf); 2738 } 2739 2740 // The result is in the first element of the vector. 2741 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2742 Builder.getInt32(0)); 2743 } 2744 2745 // Create a phi node that merges control-flow from the backedge-taken check 2746 // block and the middle block. 2747 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2748 LoopScalarPreHeader->getTerminator()); 2749 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[0]); 2750 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2751 2752 // Now, we need to fix the users of the reduction variable 2753 // inside and outside of the scalar remainder loop. 2754 // We know that the loop is in LCSSA form. We need to update the 2755 // PHI nodes in the exit blocks. 2756 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2757 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2758 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2759 if (!LCSSAPhi) break; 2760 2761 // All PHINodes need to have a single entry edge, or two if 2762 // we already fixed them. 2763 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2764 2765 // We found our reduction value exit-PHI. Update it with the 2766 // incoming bypass edge. 2767 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 2768 // Add an edge coming from the bypass. 2769 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2770 break; 2771 } 2772 }// end of the LCSSA phi scan. 2773 2774 // Fix the scalar loop reduction variable with the incoming reduction sum 2775 // from the vector body and from the backedge value. 2776 int IncomingEdgeBlockIdx = 2777 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2778 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2779 // Pick the other block. 2780 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2781 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2782 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 2783 }// end of for each redux variable. 2784 2785 fixLCSSAPHIs(); 2786 2787 // Remove redundant induction instructions. 2788 cse(LoopVectorBody); 2789 } 2790 2791 void InnerLoopVectorizer::fixLCSSAPHIs() { 2792 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2793 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2794 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2795 if (!LCSSAPhi) break; 2796 if (LCSSAPhi->getNumIncomingValues() == 1) 2797 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2798 LoopMiddleBlock); 2799 } 2800 } 2801 2802 InnerLoopVectorizer::VectorParts 2803 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2804 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2805 "Invalid edge"); 2806 2807 // Look for cached value. 2808 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2809 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2810 if (ECEntryIt != MaskCache.end()) 2811 return ECEntryIt->second; 2812 2813 VectorParts SrcMask = createBlockInMask(Src); 2814 2815 // The terminator has to be a branch inst! 2816 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2817 assert(BI && "Unexpected terminator found"); 2818 2819 if (BI->isConditional()) { 2820 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2821 2822 if (BI->getSuccessor(0) != Dst) 2823 for (unsigned part = 0; part < UF; ++part) 2824 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2825 2826 for (unsigned part = 0; part < UF; ++part) 2827 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2828 2829 MaskCache[Edge] = EdgeMask; 2830 return EdgeMask; 2831 } 2832 2833 MaskCache[Edge] = SrcMask; 2834 return SrcMask; 2835 } 2836 2837 InnerLoopVectorizer::VectorParts 2838 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2839 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2840 2841 // Loop incoming mask is all-one. 2842 if (OrigLoop->getHeader() == BB) { 2843 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2844 return getVectorValue(C); 2845 } 2846 2847 // This is the block mask. We OR all incoming edges, and with zero. 2848 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2849 VectorParts BlockMask = getVectorValue(Zero); 2850 2851 // For each pred: 2852 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2853 VectorParts EM = createEdgeMask(*it, BB); 2854 for (unsigned part = 0; part < UF; ++part) 2855 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2856 } 2857 2858 return BlockMask; 2859 } 2860 2861 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2862 InnerLoopVectorizer::VectorParts &Entry, 2863 unsigned UF, unsigned VF, PhiVector *PV) { 2864 PHINode* P = cast<PHINode>(PN); 2865 // Handle reduction variables: 2866 if (Legal->getReductionVars()->count(P)) { 2867 for (unsigned part = 0; part < UF; ++part) { 2868 // This is phase one of vectorizing PHIs. 2869 Type *VecTy = (VF == 1) ? PN->getType() : 2870 VectorType::get(PN->getType(), VF); 2871 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2872 LoopVectorBody.back()-> getFirstInsertionPt()); 2873 } 2874 PV->push_back(P); 2875 return; 2876 } 2877 2878 setDebugLocFromInst(Builder, P); 2879 // Check for PHI nodes that are lowered to vector selects. 2880 if (P->getParent() != OrigLoop->getHeader()) { 2881 // We know that all PHIs in non-header blocks are converted into 2882 // selects, so we don't have to worry about the insertion order and we 2883 // can just use the builder. 2884 // At this point we generate the predication tree. There may be 2885 // duplications since this is a simple recursive scan, but future 2886 // optimizations will clean it up. 2887 2888 unsigned NumIncoming = P->getNumIncomingValues(); 2889 2890 // Generate a sequence of selects of the form: 2891 // SELECT(Mask3, In3, 2892 // SELECT(Mask2, In2, 2893 // ( ...))) 2894 for (unsigned In = 0; In < NumIncoming; In++) { 2895 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2896 P->getParent()); 2897 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2898 2899 for (unsigned part = 0; part < UF; ++part) { 2900 // We might have single edge PHIs (blocks) - use an identity 2901 // 'select' for the first PHI operand. 2902 if (In == 0) 2903 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2904 In0[part]); 2905 else 2906 // Select between the current value and the previous incoming edge 2907 // based on the incoming mask. 2908 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2909 Entry[part], "predphi"); 2910 } 2911 } 2912 return; 2913 } 2914 2915 // This PHINode must be an induction variable. 2916 // Make sure that we know about it. 2917 assert(Legal->getInductionVars()->count(P) && 2918 "Not an induction variable"); 2919 2920 LoopVectorizationLegality::InductionInfo II = 2921 Legal->getInductionVars()->lookup(P); 2922 2923 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2924 // which can be found from the original scalar operations. 2925 switch (II.IK) { 2926 case LoopVectorizationLegality::IK_NoInduction: 2927 llvm_unreachable("Unknown induction"); 2928 case LoopVectorizationLegality::IK_IntInduction: { 2929 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2930 Type *PhiTy = P->getType(); 2931 Value *Broadcasted; 2932 if (P == OldInduction) { 2933 // Handle the canonical induction variable. We might have had to 2934 // extend the type. 2935 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2936 } else { 2937 // Handle other induction variables that are now based on the 2938 // canonical one. 2939 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2940 "normalized.idx"); 2941 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2942 Broadcasted = II.transform(Builder, NormalizedIdx); 2943 Broadcasted->setName("offset.idx"); 2944 } 2945 Broadcasted = getBroadcastInstrs(Broadcasted); 2946 // After broadcasting the induction variable we need to make the vector 2947 // consecutive by adding 0, 1, 2, etc. 2948 for (unsigned part = 0; part < UF; ++part) 2949 Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue); 2950 return; 2951 } 2952 case LoopVectorizationLegality::IK_PtrInduction: 2953 // Handle the pointer induction variable case. 2954 assert(P->getType()->isPointerTy() && "Unexpected type."); 2955 // This is the normalized GEP that starts counting at zero. 2956 Value *NormalizedIdx = 2957 Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx"); 2958 // This is the vector of results. Notice that we don't generate 2959 // vector geps because scalar geps result in better code. 2960 for (unsigned part = 0; part < UF; ++part) { 2961 if (VF == 1) { 2962 int EltIndex = part; 2963 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2964 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 2965 Value *SclrGep = II.transform(Builder, GlobalIdx); 2966 SclrGep->setName("next.gep"); 2967 Entry[part] = SclrGep; 2968 continue; 2969 } 2970 2971 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 2972 for (unsigned int i = 0; i < VF; ++i) { 2973 int EltIndex = i + part * VF; 2974 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2975 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 2976 Value *SclrGep = II.transform(Builder, GlobalIdx); 2977 SclrGep->setName("next.gep"); 2978 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 2979 Builder.getInt32(i), 2980 "insert.gep"); 2981 } 2982 Entry[part] = VecVal; 2983 } 2984 return; 2985 } 2986 } 2987 2988 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 2989 // For each instruction in the old loop. 2990 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 2991 VectorParts &Entry = WidenMap.get(it); 2992 switch (it->getOpcode()) { 2993 case Instruction::Br: 2994 // Nothing to do for PHIs and BR, since we already took care of the 2995 // loop control flow instructions. 2996 continue; 2997 case Instruction::PHI: { 2998 // Vectorize PHINodes. 2999 widenPHIInstruction(it, Entry, UF, VF, PV); 3000 continue; 3001 }// End of PHI. 3002 3003 case Instruction::Add: 3004 case Instruction::FAdd: 3005 case Instruction::Sub: 3006 case Instruction::FSub: 3007 case Instruction::Mul: 3008 case Instruction::FMul: 3009 case Instruction::UDiv: 3010 case Instruction::SDiv: 3011 case Instruction::FDiv: 3012 case Instruction::URem: 3013 case Instruction::SRem: 3014 case Instruction::FRem: 3015 case Instruction::Shl: 3016 case Instruction::LShr: 3017 case Instruction::AShr: 3018 case Instruction::And: 3019 case Instruction::Or: 3020 case Instruction::Xor: { 3021 // Just widen binops. 3022 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3023 setDebugLocFromInst(Builder, BinOp); 3024 VectorParts &A = getVectorValue(it->getOperand(0)); 3025 VectorParts &B = getVectorValue(it->getOperand(1)); 3026 3027 // Use this vector value for all users of the original instruction. 3028 for (unsigned Part = 0; Part < UF; ++Part) { 3029 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3030 3031 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3032 VecOp->copyIRFlags(BinOp); 3033 3034 Entry[Part] = V; 3035 } 3036 3037 propagateMetadata(Entry, it); 3038 break; 3039 } 3040 case Instruction::Select: { 3041 // Widen selects. 3042 // If the selector is loop invariant we can create a select 3043 // instruction with a scalar condition. Otherwise, use vector-select. 3044 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3045 OrigLoop); 3046 setDebugLocFromInst(Builder, it); 3047 3048 // The condition can be loop invariant but still defined inside the 3049 // loop. This means that we can't just use the original 'cond' value. 3050 // We have to take the 'vectorized' value and pick the first lane. 3051 // Instcombine will make this a no-op. 3052 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3053 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3054 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3055 3056 Value *ScalarCond = (VF == 1) ? Cond[0] : 3057 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3058 3059 for (unsigned Part = 0; Part < UF; ++Part) { 3060 Entry[Part] = Builder.CreateSelect( 3061 InvariantCond ? ScalarCond : Cond[Part], 3062 Op0[Part], 3063 Op1[Part]); 3064 } 3065 3066 propagateMetadata(Entry, it); 3067 break; 3068 } 3069 3070 case Instruction::ICmp: 3071 case Instruction::FCmp: { 3072 // Widen compares. Generate vector compares. 3073 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3074 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3075 setDebugLocFromInst(Builder, it); 3076 VectorParts &A = getVectorValue(it->getOperand(0)); 3077 VectorParts &B = getVectorValue(it->getOperand(1)); 3078 for (unsigned Part = 0; Part < UF; ++Part) { 3079 Value *C = nullptr; 3080 if (FCmp) 3081 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3082 else 3083 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3084 Entry[Part] = C; 3085 } 3086 3087 propagateMetadata(Entry, it); 3088 break; 3089 } 3090 3091 case Instruction::Store: 3092 case Instruction::Load: 3093 vectorizeMemoryInstruction(it); 3094 break; 3095 case Instruction::ZExt: 3096 case Instruction::SExt: 3097 case Instruction::FPToUI: 3098 case Instruction::FPToSI: 3099 case Instruction::FPExt: 3100 case Instruction::PtrToInt: 3101 case Instruction::IntToPtr: 3102 case Instruction::SIToFP: 3103 case Instruction::UIToFP: 3104 case Instruction::Trunc: 3105 case Instruction::FPTrunc: 3106 case Instruction::BitCast: { 3107 CastInst *CI = dyn_cast<CastInst>(it); 3108 setDebugLocFromInst(Builder, it); 3109 /// Optimize the special case where the source is the induction 3110 /// variable. Notice that we can only optimize the 'trunc' case 3111 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3112 /// c. other casts depend on pointer size. 3113 if (CI->getOperand(0) == OldInduction && 3114 it->getOpcode() == Instruction::Trunc) { 3115 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3116 CI->getType()); 3117 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3118 LoopVectorizationLegality::InductionInfo II = 3119 Legal->getInductionVars()->lookup(OldInduction); 3120 Constant *Step = 3121 ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue()); 3122 for (unsigned Part = 0; Part < UF; ++Part) 3123 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3124 propagateMetadata(Entry, it); 3125 break; 3126 } 3127 /// Vectorize casts. 3128 Type *DestTy = (VF == 1) ? CI->getType() : 3129 VectorType::get(CI->getType(), VF); 3130 3131 VectorParts &A = getVectorValue(it->getOperand(0)); 3132 for (unsigned Part = 0; Part < UF; ++Part) 3133 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3134 propagateMetadata(Entry, it); 3135 break; 3136 } 3137 3138 case Instruction::Call: { 3139 // Ignore dbg intrinsics. 3140 if (isa<DbgInfoIntrinsic>(it)) 3141 break; 3142 setDebugLocFromInst(Builder, it); 3143 3144 Module *M = BB->getParent()->getParent(); 3145 CallInst *CI = cast<CallInst>(it); 3146 3147 StringRef FnName = CI->getCalledFunction()->getName(); 3148 Function *F = CI->getCalledFunction(); 3149 Type *RetTy = ToVectorTy(CI->getType(), VF); 3150 SmallVector<Type *, 4> Tys; 3151 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3152 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3153 3154 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3155 if (ID && 3156 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 3157 ID == Intrinsic::lifetime_start)) { 3158 scalarizeInstruction(it); 3159 break; 3160 } 3161 // The flag shows whether we use Intrinsic or a usual Call for vectorized 3162 // version of the instruction. 3163 // Is it beneficial to perform intrinsic call compared to lib call? 3164 bool NeedToScalarize; 3165 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 3166 bool UseVectorIntrinsic = 3167 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 3168 if (!UseVectorIntrinsic && NeedToScalarize) { 3169 scalarizeInstruction(it); 3170 break; 3171 } 3172 3173 for (unsigned Part = 0; Part < UF; ++Part) { 3174 SmallVector<Value *, 4> Args; 3175 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3176 Value *Arg = CI->getArgOperand(i); 3177 // Some intrinsics have a scalar argument - don't replace it with a 3178 // vector. 3179 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 3180 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 3181 Arg = VectorArg[Part]; 3182 } 3183 Args.push_back(Arg); 3184 } 3185 3186 Function *VectorF; 3187 if (UseVectorIntrinsic) { 3188 // Use vector version of the intrinsic. 3189 Type *TysForDecl[] = {CI->getType()}; 3190 if (VF > 1) 3191 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3192 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 3193 } else { 3194 // Use vector version of the library call. 3195 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 3196 assert(!VFnName.empty() && "Vector function name is empty."); 3197 VectorF = M->getFunction(VFnName); 3198 if (!VectorF) { 3199 // Generate a declaration 3200 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 3201 VectorF = 3202 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 3203 VectorF->copyAttributesFrom(F); 3204 } 3205 } 3206 assert(VectorF && "Can't create vector function."); 3207 Entry[Part] = Builder.CreateCall(VectorF, Args); 3208 } 3209 3210 propagateMetadata(Entry, it); 3211 break; 3212 } 3213 3214 default: 3215 // All other instructions are unsupported. Scalarize them. 3216 scalarizeInstruction(it); 3217 break; 3218 }// end of switch. 3219 }// end of for_each instr. 3220 } 3221 3222 void InnerLoopVectorizer::updateAnalysis() { 3223 // Forget the original basic block. 3224 SE->forgetLoop(OrigLoop); 3225 3226 // Update the dominator tree information. 3227 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3228 "Entry does not dominate exit."); 3229 3230 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3231 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3232 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3233 3234 // Due to if predication of stores we might create a sequence of "if(pred) 3235 // a[i] = ...; " blocks. 3236 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3237 if (i == 0) 3238 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3239 else if (isPredicatedBlock(i)) { 3240 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3241 } else { 3242 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3243 } 3244 } 3245 3246 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3247 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3248 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3249 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3250 3251 DEBUG(DT->verifyDomTree()); 3252 } 3253 3254 /// \brief Check whether it is safe to if-convert this phi node. 3255 /// 3256 /// Phi nodes with constant expressions that can trap are not safe to if 3257 /// convert. 3258 static bool canIfConvertPHINodes(BasicBlock *BB) { 3259 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3260 PHINode *Phi = dyn_cast<PHINode>(I); 3261 if (!Phi) 3262 return true; 3263 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3264 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3265 if (C->canTrap()) 3266 return false; 3267 } 3268 return true; 3269 } 3270 3271 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3272 if (!EnableIfConversion) { 3273 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 3274 return false; 3275 } 3276 3277 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3278 3279 // A list of pointers that we can safely read and write to. 3280 SmallPtrSet<Value *, 8> SafePointes; 3281 3282 // Collect safe addresses. 3283 for (Loop::block_iterator BI = TheLoop->block_begin(), 3284 BE = TheLoop->block_end(); BI != BE; ++BI) { 3285 BasicBlock *BB = *BI; 3286 3287 if (blockNeedsPredication(BB)) 3288 continue; 3289 3290 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3291 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3292 SafePointes.insert(LI->getPointerOperand()); 3293 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3294 SafePointes.insert(SI->getPointerOperand()); 3295 } 3296 } 3297 3298 // Collect the blocks that need predication. 3299 BasicBlock *Header = TheLoop->getHeader(); 3300 for (Loop::block_iterator BI = TheLoop->block_begin(), 3301 BE = TheLoop->block_end(); BI != BE; ++BI) { 3302 BasicBlock *BB = *BI; 3303 3304 // We don't support switch statements inside loops. 3305 if (!isa<BranchInst>(BB->getTerminator())) { 3306 emitAnalysis(VectorizationReport(BB->getTerminator()) 3307 << "loop contains a switch statement"); 3308 return false; 3309 } 3310 3311 // We must be able to predicate all blocks that need to be predicated. 3312 if (blockNeedsPredication(BB)) { 3313 if (!blockCanBePredicated(BB, SafePointes)) { 3314 emitAnalysis(VectorizationReport(BB->getTerminator()) 3315 << "control flow cannot be substituted for a select"); 3316 return false; 3317 } 3318 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3319 emitAnalysis(VectorizationReport(BB->getTerminator()) 3320 << "control flow cannot be substituted for a select"); 3321 return false; 3322 } 3323 } 3324 3325 // We can if-convert this loop. 3326 return true; 3327 } 3328 3329 bool LoopVectorizationLegality::canVectorize() { 3330 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3331 // be canonicalized. 3332 if (!TheLoop->getLoopPreheader()) { 3333 emitAnalysis( 3334 VectorizationReport() << 3335 "loop control flow is not understood by vectorizer"); 3336 return false; 3337 } 3338 3339 // We can only vectorize innermost loops. 3340 if (!TheLoop->getSubLoopsVector().empty()) { 3341 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 3342 return false; 3343 } 3344 3345 // We must have a single backedge. 3346 if (TheLoop->getNumBackEdges() != 1) { 3347 emitAnalysis( 3348 VectorizationReport() << 3349 "loop control flow is not understood by vectorizer"); 3350 return false; 3351 } 3352 3353 // We must have a single exiting block. 3354 if (!TheLoop->getExitingBlock()) { 3355 emitAnalysis( 3356 VectorizationReport() << 3357 "loop control flow is not understood by vectorizer"); 3358 return false; 3359 } 3360 3361 // We only handle bottom-tested loops, i.e. loop in which the condition is 3362 // checked at the end of each iteration. With that we can assume that all 3363 // instructions in the loop are executed the same number of times. 3364 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3365 emitAnalysis( 3366 VectorizationReport() << 3367 "loop control flow is not understood by vectorizer"); 3368 return false; 3369 } 3370 3371 // We need to have a loop header. 3372 DEBUG(dbgs() << "LV: Found a loop: " << 3373 TheLoop->getHeader()->getName() << '\n'); 3374 3375 // Check if we can if-convert non-single-bb loops. 3376 unsigned NumBlocks = TheLoop->getNumBlocks(); 3377 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3378 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3379 return false; 3380 } 3381 3382 // ScalarEvolution needs to be able to find the exit count. 3383 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3384 if (ExitCount == SE->getCouldNotCompute()) { 3385 emitAnalysis(VectorizationReport() << 3386 "could not determine number of loop iterations"); 3387 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3388 return false; 3389 } 3390 3391 // Check if we can vectorize the instructions and CFG in this loop. 3392 if (!canVectorizeInstrs()) { 3393 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3394 return false; 3395 } 3396 3397 // Go over each instruction and look at memory deps. 3398 if (!canVectorizeMemory()) { 3399 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3400 return false; 3401 } 3402 3403 // Collect all of the variables that remain uniform after vectorization. 3404 collectLoopUniforms(); 3405 3406 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3407 (LAI->getRuntimePointerCheck()->Need ? " (with a runtime bound check)" : 3408 "") 3409 <<"!\n"); 3410 3411 // Okay! We can vectorize. At this point we don't have any other mem analysis 3412 // which may limit our maximum vectorization factor, so just return true with 3413 // no restrictions. 3414 return true; 3415 } 3416 3417 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3418 if (Ty->isPointerTy()) 3419 return DL.getIntPtrType(Ty); 3420 3421 // It is possible that char's or short's overflow when we ask for the loop's 3422 // trip count, work around this by changing the type size. 3423 if (Ty->getScalarSizeInBits() < 32) 3424 return Type::getInt32Ty(Ty->getContext()); 3425 3426 return Ty; 3427 } 3428 3429 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3430 Ty0 = convertPointerToIntegerType(DL, Ty0); 3431 Ty1 = convertPointerToIntegerType(DL, Ty1); 3432 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3433 return Ty0; 3434 return Ty1; 3435 } 3436 3437 /// \brief Check that the instruction has outside loop users and is not an 3438 /// identified reduction variable. 3439 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3440 SmallPtrSetImpl<Value *> &Reductions) { 3441 // Reduction instructions are allowed to have exit users. All other 3442 // instructions must not have external users. 3443 if (!Reductions.count(Inst)) 3444 //Check that all of the users of the loop are inside the BB. 3445 for (User *U : Inst->users()) { 3446 Instruction *UI = cast<Instruction>(U); 3447 // This user may be a reduction exit value. 3448 if (!TheLoop->contains(UI)) { 3449 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3450 return true; 3451 } 3452 } 3453 return false; 3454 } 3455 3456 bool LoopVectorizationLegality::canVectorizeInstrs() { 3457 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3458 BasicBlock *Header = TheLoop->getHeader(); 3459 3460 // Look for the attribute signaling the absence of NaNs. 3461 Function &F = *Header->getParent(); 3462 const DataLayout &DL = F.getParent()->getDataLayout(); 3463 if (F.hasFnAttribute("no-nans-fp-math")) 3464 HasFunNoNaNAttr = 3465 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 3466 3467 // For each block in the loop. 3468 for (Loop::block_iterator bb = TheLoop->block_begin(), 3469 be = TheLoop->block_end(); bb != be; ++bb) { 3470 3471 // Scan the instructions in the block and look for hazards. 3472 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3473 ++it) { 3474 3475 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3476 Type *PhiTy = Phi->getType(); 3477 // Check that this PHI type is allowed. 3478 if (!PhiTy->isIntegerTy() && 3479 !PhiTy->isFloatingPointTy() && 3480 !PhiTy->isPointerTy()) { 3481 emitAnalysis(VectorizationReport(it) 3482 << "loop control flow is not understood by vectorizer"); 3483 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3484 return false; 3485 } 3486 3487 // If this PHINode is not in the header block, then we know that we 3488 // can convert it to select during if-conversion. No need to check if 3489 // the PHIs in this block are induction or reduction variables. 3490 if (*bb != Header) { 3491 // Check that this instruction has no outside users or is an 3492 // identified reduction value with an outside user. 3493 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3494 continue; 3495 emitAnalysis(VectorizationReport(it) << 3496 "value could not be identified as " 3497 "an induction or reduction variable"); 3498 return false; 3499 } 3500 3501 // We only allow if-converted PHIs with exactly two incoming values. 3502 if (Phi->getNumIncomingValues() != 2) { 3503 emitAnalysis(VectorizationReport(it) 3504 << "control flow not understood by vectorizer"); 3505 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3506 return false; 3507 } 3508 3509 // This is the value coming from the preheader. 3510 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3511 ConstantInt *StepValue = nullptr; 3512 // Check if this is an induction variable. 3513 InductionKind IK = isInductionVariable(Phi, StepValue); 3514 3515 if (IK_NoInduction != IK) { 3516 // Get the widest type. 3517 if (!WidestIndTy) 3518 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 3519 else 3520 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 3521 3522 // Int inductions are special because we only allow one IV. 3523 if (IK == IK_IntInduction && StepValue->isOne()) { 3524 // Use the phi node with the widest type as induction. Use the last 3525 // one if there are multiple (no good reason for doing this other 3526 // than it is expedient). 3527 if (!Induction || PhiTy == WidestIndTy) 3528 Induction = Phi; 3529 } 3530 3531 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3532 Inductions[Phi] = InductionInfo(StartValue, IK, StepValue); 3533 3534 // Until we explicitly handle the case of an induction variable with 3535 // an outside loop user we have to give up vectorizing this loop. 3536 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3537 emitAnalysis(VectorizationReport(it) << 3538 "use of induction value outside of the " 3539 "loop is not handled by vectorizer"); 3540 return false; 3541 } 3542 3543 continue; 3544 } 3545 3546 if (ReductionDescriptor::isReductionPHI(Phi, TheLoop, 3547 Reductions[Phi])) { 3548 AllowedExit.insert(Reductions[Phi].getLoopExitInstr()); 3549 continue; 3550 } 3551 3552 emitAnalysis(VectorizationReport(it) << 3553 "value that could not be identified as " 3554 "reduction is used outside the loop"); 3555 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3556 return false; 3557 }// end of PHI handling 3558 3559 // We handle calls that: 3560 // * Are debug info intrinsics. 3561 // * Have a mapping to an IR intrinsic. 3562 // * Have a vector version available. 3563 CallInst *CI = dyn_cast<CallInst>(it); 3564 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 3565 !(CI->getCalledFunction() && TLI && 3566 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 3567 emitAnalysis(VectorizationReport(it) << 3568 "call instruction cannot be vectorized"); 3569 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 3570 return false; 3571 } 3572 3573 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3574 // second argument is the same (i.e. loop invariant) 3575 if (CI && 3576 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3577 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3578 emitAnalysis(VectorizationReport(it) 3579 << "intrinsic instruction cannot be vectorized"); 3580 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3581 return false; 3582 } 3583 } 3584 3585 // Check that the instruction return type is vectorizable. 3586 // Also, we can't vectorize extractelement instructions. 3587 if ((!VectorType::isValidElementType(it->getType()) && 3588 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3589 emitAnalysis(VectorizationReport(it) 3590 << "instruction return type cannot be vectorized"); 3591 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3592 return false; 3593 } 3594 3595 // Check that the stored type is vectorizable. 3596 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3597 Type *T = ST->getValueOperand()->getType(); 3598 if (!VectorType::isValidElementType(T)) { 3599 emitAnalysis(VectorizationReport(ST) << 3600 "store instruction cannot be vectorized"); 3601 return false; 3602 } 3603 if (EnableMemAccessVersioning) 3604 collectStridedAccess(ST); 3605 } 3606 3607 if (EnableMemAccessVersioning) 3608 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3609 collectStridedAccess(LI); 3610 3611 // Reduction instructions are allowed to have exit users. 3612 // All other instructions must not have external users. 3613 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3614 emitAnalysis(VectorizationReport(it) << 3615 "value cannot be used outside the loop"); 3616 return false; 3617 } 3618 3619 } // next instr. 3620 3621 } 3622 3623 if (!Induction) { 3624 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3625 if (Inductions.empty()) { 3626 emitAnalysis(VectorizationReport() 3627 << "loop induction variable could not be identified"); 3628 return false; 3629 } 3630 } 3631 3632 return true; 3633 } 3634 3635 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3636 /// return the induction operand of the gep pointer. 3637 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 3638 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3639 if (!GEP) 3640 return Ptr; 3641 3642 unsigned InductionOperand = getGEPInductionOperand(GEP); 3643 3644 // Check that all of the gep indices are uniform except for our induction 3645 // operand. 3646 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3647 if (i != InductionOperand && 3648 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3649 return Ptr; 3650 return GEP->getOperand(InductionOperand); 3651 } 3652 3653 ///\brief Look for a cast use of the passed value. 3654 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3655 Value *UniqueCast = nullptr; 3656 for (User *U : Ptr->users()) { 3657 CastInst *CI = dyn_cast<CastInst>(U); 3658 if (CI && CI->getType() == Ty) { 3659 if (!UniqueCast) 3660 UniqueCast = CI; 3661 else 3662 return nullptr; 3663 } 3664 } 3665 return UniqueCast; 3666 } 3667 3668 ///\brief Get the stride of a pointer access in a loop. 3669 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3670 /// pointer to the Value, or null otherwise. 3671 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 3672 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3673 if (!PtrTy || PtrTy->isAggregateType()) 3674 return nullptr; 3675 3676 // Try to remove a gep instruction to make the pointer (actually index at this 3677 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3678 // pointer, otherwise, we are analyzing the index. 3679 Value *OrigPtr = Ptr; 3680 3681 // The size of the pointer access. 3682 int64_t PtrAccessSize = 1; 3683 3684 Ptr = stripGetElementPtr(Ptr, SE, Lp); 3685 const SCEV *V = SE->getSCEV(Ptr); 3686 3687 if (Ptr != OrigPtr) 3688 // Strip off casts. 3689 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3690 V = C->getOperand(); 3691 3692 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3693 if (!S) 3694 return nullptr; 3695 3696 V = S->getStepRecurrence(*SE); 3697 if (!V) 3698 return nullptr; 3699 3700 // Strip off the size of access multiplication if we are still analyzing the 3701 // pointer. 3702 if (OrigPtr == Ptr) { 3703 const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout(); 3704 DL.getTypeAllocSize(PtrTy->getElementType()); 3705 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3706 if (M->getOperand(0)->getSCEVType() != scConstant) 3707 return nullptr; 3708 3709 const APInt &APStepVal = 3710 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3711 3712 // Huge step value - give up. 3713 if (APStepVal.getBitWidth() > 64) 3714 return nullptr; 3715 3716 int64_t StepVal = APStepVal.getSExtValue(); 3717 if (PtrAccessSize != StepVal) 3718 return nullptr; 3719 V = M->getOperand(1); 3720 } 3721 } 3722 3723 // Strip off casts. 3724 Type *StripedOffRecurrenceCast = nullptr; 3725 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3726 StripedOffRecurrenceCast = C->getType(); 3727 V = C->getOperand(); 3728 } 3729 3730 // Look for the loop invariant symbolic value. 3731 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3732 if (!U) 3733 return nullptr; 3734 3735 Value *Stride = U->getValue(); 3736 if (!Lp->isLoopInvariant(Stride)) 3737 return nullptr; 3738 3739 // If we have stripped off the recurrence cast we have to make sure that we 3740 // return the value that is used in this loop so that we can replace it later. 3741 if (StripedOffRecurrenceCast) 3742 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3743 3744 return Stride; 3745 } 3746 3747 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 3748 Value *Ptr = nullptr; 3749 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3750 Ptr = LI->getPointerOperand(); 3751 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3752 Ptr = SI->getPointerOperand(); 3753 else 3754 return; 3755 3756 Value *Stride = getStrideFromPointer(Ptr, SE, TheLoop); 3757 if (!Stride) 3758 return; 3759 3760 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3761 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3762 Strides[Ptr] = Stride; 3763 StrideSet.insert(Stride); 3764 } 3765 3766 void LoopVectorizationLegality::collectLoopUniforms() { 3767 // We now know that the loop is vectorizable! 3768 // Collect variables that will remain uniform after vectorization. 3769 std::vector<Value*> Worklist; 3770 BasicBlock *Latch = TheLoop->getLoopLatch(); 3771 3772 // Start with the conditional branch and walk up the block. 3773 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3774 3775 // Also add all consecutive pointer values; these values will be uniform 3776 // after vectorization (and subsequent cleanup) and, until revectorization is 3777 // supported, all dependencies must also be uniform. 3778 for (Loop::block_iterator B = TheLoop->block_begin(), 3779 BE = TheLoop->block_end(); B != BE; ++B) 3780 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3781 I != IE; ++I) 3782 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3783 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3784 3785 while (!Worklist.empty()) { 3786 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3787 Worklist.pop_back(); 3788 3789 // Look at instructions inside this loop. 3790 // Stop when reaching PHI nodes. 3791 // TODO: we need to follow values all over the loop, not only in this block. 3792 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3793 continue; 3794 3795 // This is a known uniform. 3796 Uniforms.insert(I); 3797 3798 // Insert all operands. 3799 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3800 } 3801 } 3802 3803 bool LoopVectorizationLegality::canVectorizeMemory() { 3804 LAI = &LAA->getInfo(TheLoop, Strides); 3805 auto &OptionalReport = LAI->getReport(); 3806 if (OptionalReport) 3807 emitAnalysis(VectorizationReport(*OptionalReport)); 3808 if (!LAI->canVectorizeMemory()) 3809 return false; 3810 3811 if (LAI->hasStoreToLoopInvariantAddress()) { 3812 emitAnalysis( 3813 VectorizationReport() 3814 << "write to a loop invariant address could not be vectorized"); 3815 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 3816 return false; 3817 } 3818 3819 if (LAI->getNumRuntimePointerChecks() > 3820 VectorizerParams::RuntimeMemoryCheckThreshold) { 3821 emitAnalysis(VectorizationReport() 3822 << LAI->getNumRuntimePointerChecks() << " exceeds limit of " 3823 << VectorizerParams::RuntimeMemoryCheckThreshold 3824 << " dependent memory operations checked at runtime"); 3825 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 3826 return false; 3827 } 3828 return true; 3829 } 3830 3831 LoopVectorizationLegality::InductionKind 3832 LoopVectorizationLegality::isInductionVariable(PHINode *Phi, 3833 ConstantInt *&StepValue) { 3834 if (!isInductionPHI(Phi, SE, StepValue)) 3835 return IK_NoInduction; 3836 3837 Type *PhiTy = Phi->getType(); 3838 // Found an Integer induction variable. 3839 if (PhiTy->isIntegerTy()) 3840 return IK_IntInduction; 3841 // Found an Pointer induction variable. 3842 return IK_PtrInduction; 3843 } 3844 3845 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 3846 Value *In0 = const_cast<Value*>(V); 3847 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 3848 if (!PN) 3849 return false; 3850 3851 return Inductions.count(PN); 3852 } 3853 3854 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 3855 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 3856 } 3857 3858 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 3859 SmallPtrSetImpl<Value *> &SafePtrs) { 3860 3861 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3862 // Check that we don't have a constant expression that can trap as operand. 3863 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 3864 OI != OE; ++OI) { 3865 if (Constant *C = dyn_cast<Constant>(*OI)) 3866 if (C->canTrap()) 3867 return false; 3868 } 3869 // We might be able to hoist the load. 3870 if (it->mayReadFromMemory()) { 3871 LoadInst *LI = dyn_cast<LoadInst>(it); 3872 if (!LI) 3873 return false; 3874 if (!SafePtrs.count(LI->getPointerOperand())) { 3875 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 3876 MaskedOp.insert(LI); 3877 continue; 3878 } 3879 return false; 3880 } 3881 } 3882 3883 // We don't predicate stores at the moment. 3884 if (it->mayWriteToMemory()) { 3885 StoreInst *SI = dyn_cast<StoreInst>(it); 3886 // We only support predication of stores in basic blocks with one 3887 // predecessor. 3888 if (!SI) 3889 return false; 3890 3891 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 3892 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 3893 3894 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 3895 !isSinglePredecessor) { 3896 // Build a masked store if it is legal for the target, otherwise scalarize 3897 // the block. 3898 bool isLegalMaskedOp = 3899 isLegalMaskedStore(SI->getValueOperand()->getType(), 3900 SI->getPointerOperand()); 3901 if (isLegalMaskedOp) { 3902 --NumPredStores; 3903 MaskedOp.insert(SI); 3904 continue; 3905 } 3906 return false; 3907 } 3908 } 3909 if (it->mayThrow()) 3910 return false; 3911 3912 // The instructions below can trap. 3913 switch (it->getOpcode()) { 3914 default: continue; 3915 case Instruction::UDiv: 3916 case Instruction::SDiv: 3917 case Instruction::URem: 3918 case Instruction::SRem: 3919 return false; 3920 } 3921 } 3922 3923 return true; 3924 } 3925 3926 LoopVectorizationCostModel::VectorizationFactor 3927 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 3928 // Width 1 means no vectorize 3929 VectorizationFactor Factor = { 1U, 0U }; 3930 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 3931 emitAnalysis(VectorizationReport() << 3932 "runtime pointer checks needed. Enable vectorization of this " 3933 "loop with '#pragma clang loop vectorize(enable)' when " 3934 "compiling with -Os"); 3935 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 3936 return Factor; 3937 } 3938 3939 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 3940 emitAnalysis(VectorizationReport() << 3941 "store that is conditionally executed prevents vectorization"); 3942 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 3943 return Factor; 3944 } 3945 3946 // Find the trip count. 3947 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 3948 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 3949 3950 unsigned WidestType = getWidestType(); 3951 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 3952 unsigned MaxSafeDepDist = -1U; 3953 if (Legal->getMaxSafeDepDistBytes() != -1U) 3954 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 3955 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 3956 WidestRegister : MaxSafeDepDist); 3957 unsigned MaxVectorSize = WidestRegister / WidestType; 3958 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 3959 DEBUG(dbgs() << "LV: The Widest register is: " 3960 << WidestRegister << " bits.\n"); 3961 3962 if (MaxVectorSize == 0) { 3963 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 3964 MaxVectorSize = 1; 3965 } 3966 3967 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 3968 " into one vector!"); 3969 3970 unsigned VF = MaxVectorSize; 3971 3972 // If we optimize the program for size, avoid creating the tail loop. 3973 if (OptForSize) { 3974 // If we are unable to calculate the trip count then don't try to vectorize. 3975 if (TC < 2) { 3976 emitAnalysis 3977 (VectorizationReport() << 3978 "unable to calculate the loop count due to complex control flow"); 3979 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 3980 return Factor; 3981 } 3982 3983 // Find the maximum SIMD width that can fit within the trip count. 3984 VF = TC % MaxVectorSize; 3985 3986 if (VF == 0) 3987 VF = MaxVectorSize; 3988 3989 // If the trip count that we found modulo the vectorization factor is not 3990 // zero then we require a tail. 3991 if (VF < 2) { 3992 emitAnalysis(VectorizationReport() << 3993 "cannot optimize for size and vectorize at the " 3994 "same time. Enable vectorization of this loop " 3995 "with '#pragma clang loop vectorize(enable)' " 3996 "when compiling with -Os"); 3997 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 3998 return Factor; 3999 } 4000 } 4001 4002 int UserVF = Hints->getWidth(); 4003 if (UserVF != 0) { 4004 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4005 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4006 4007 Factor.Width = UserVF; 4008 return Factor; 4009 } 4010 4011 float Cost = expectedCost(1); 4012 #ifndef NDEBUG 4013 const float ScalarCost = Cost; 4014 #endif /* NDEBUG */ 4015 unsigned Width = 1; 4016 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4017 4018 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4019 // Ignore scalar width, because the user explicitly wants vectorization. 4020 if (ForceVectorization && VF > 1) { 4021 Width = 2; 4022 Cost = expectedCost(Width) / (float)Width; 4023 } 4024 4025 for (unsigned i=2; i <= VF; i*=2) { 4026 // Notice that the vector loop needs to be executed less times, so 4027 // we need to divide the cost of the vector loops by the width of 4028 // the vector elements. 4029 float VectorCost = expectedCost(i) / (float)i; 4030 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4031 (int)VectorCost << ".\n"); 4032 if (VectorCost < Cost) { 4033 Cost = VectorCost; 4034 Width = i; 4035 } 4036 } 4037 4038 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4039 << "LV: Vectorization seems to be not beneficial, " 4040 << "but was forced by a user.\n"); 4041 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4042 Factor.Width = Width; 4043 Factor.Cost = Width * Cost; 4044 return Factor; 4045 } 4046 4047 unsigned LoopVectorizationCostModel::getWidestType() { 4048 unsigned MaxWidth = 8; 4049 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4050 4051 // For each block. 4052 for (Loop::block_iterator bb = TheLoop->block_begin(), 4053 be = TheLoop->block_end(); bb != be; ++bb) { 4054 BasicBlock *BB = *bb; 4055 4056 // For each instruction in the loop. 4057 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4058 Type *T = it->getType(); 4059 4060 // Ignore ephemeral values. 4061 if (EphValues.count(it)) 4062 continue; 4063 4064 // Only examine Loads, Stores and PHINodes. 4065 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4066 continue; 4067 4068 // Examine PHI nodes that are reduction variables. 4069 if (PHINode *PN = dyn_cast<PHINode>(it)) 4070 if (!Legal->getReductionVars()->count(PN)) 4071 continue; 4072 4073 // Examine the stored values. 4074 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4075 T = ST->getValueOperand()->getType(); 4076 4077 // Ignore loaded pointer types and stored pointer types that are not 4078 // consecutive. However, we do want to take consecutive stores/loads of 4079 // pointer vectors into account. 4080 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4081 continue; 4082 4083 MaxWidth = std::max(MaxWidth, 4084 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4085 } 4086 } 4087 4088 return MaxWidth; 4089 } 4090 4091 unsigned 4092 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 4093 unsigned VF, 4094 unsigned LoopCost) { 4095 4096 // -- The unroll heuristics -- 4097 // We unroll the loop in order to expose ILP and reduce the loop overhead. 4098 // There are many micro-architectural considerations that we can't predict 4099 // at this level. For example, frontend pressure (on decode or fetch) due to 4100 // code size, or the number and capabilities of the execution ports. 4101 // 4102 // We use the following heuristics to select the unroll factor: 4103 // 1. If the code has reductions, then we unroll in order to break the cross 4104 // iteration dependency. 4105 // 2. If the loop is really small, then we unroll in order to reduce the loop 4106 // overhead. 4107 // 3. We don't unroll if we think that we will spill registers to memory due 4108 // to the increased register pressure. 4109 4110 // Use the user preference, unless 'auto' is selected. 4111 int UserUF = Hints->getInterleave(); 4112 if (UserUF != 0) 4113 return UserUF; 4114 4115 // When we optimize for size, we don't unroll. 4116 if (OptForSize) 4117 return 1; 4118 4119 // We used the distance for the unroll factor. 4120 if (Legal->getMaxSafeDepDistBytes() != -1U) 4121 return 1; 4122 4123 // Do not unroll loops with a relatively small trip count. 4124 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4125 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 4126 return 1; 4127 4128 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4129 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4130 " registers\n"); 4131 4132 if (VF == 1) { 4133 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4134 TargetNumRegisters = ForceTargetNumScalarRegs; 4135 } else { 4136 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4137 TargetNumRegisters = ForceTargetNumVectorRegs; 4138 } 4139 4140 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4141 // We divide by these constants so assume that we have at least one 4142 // instruction that uses at least one register. 4143 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4144 R.NumInstructions = std::max(R.NumInstructions, 1U); 4145 4146 // We calculate the unroll factor using the following formula. 4147 // Subtract the number of loop invariants from the number of available 4148 // registers. These registers are used by all of the unrolled instances. 4149 // Next, divide the remaining registers by the number of registers that is 4150 // required by the loop, in order to estimate how many parallel instances 4151 // fit without causing spills. All of this is rounded down if necessary to be 4152 // a power of two. We want power of two unroll factors to simplify any 4153 // addressing operations or alignment considerations. 4154 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4155 R.MaxLocalUsers); 4156 4157 // Don't count the induction variable as unrolled. 4158 if (EnableIndVarRegisterHeur) 4159 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4160 std::max(1U, (R.MaxLocalUsers - 1))); 4161 4162 // Clamp the unroll factor ranges to reasonable factors. 4163 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(VF); 4164 4165 // Check if the user has overridden the unroll max. 4166 if (VF == 1) { 4167 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4168 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 4169 } else { 4170 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4171 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 4172 } 4173 4174 // If we did not calculate the cost for VF (because the user selected the VF) 4175 // then we calculate the cost of VF here. 4176 if (LoopCost == 0) 4177 LoopCost = expectedCost(VF); 4178 4179 // Clamp the calculated UF to be between the 1 and the max unroll factor 4180 // that the target allows. 4181 if (UF > MaxInterleaveSize) 4182 UF = MaxInterleaveSize; 4183 else if (UF < 1) 4184 UF = 1; 4185 4186 // Unroll if we vectorized this loop and there is a reduction that could 4187 // benefit from unrolling. 4188 if (VF > 1 && Legal->getReductionVars()->size()) { 4189 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 4190 return UF; 4191 } 4192 4193 // Note that if we've already vectorized the loop we will have done the 4194 // runtime check and so unrolling won't require further checks. 4195 bool UnrollingRequiresRuntimePointerCheck = 4196 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 4197 4198 // We want to unroll small loops in order to reduce the loop overhead and 4199 // potentially expose ILP opportunities. 4200 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4201 if (!UnrollingRequiresRuntimePointerCheck && 4202 LoopCost < SmallLoopCost) { 4203 // We assume that the cost overhead is 1 and we use the cost model 4204 // to estimate the cost of the loop and unroll until the cost of the 4205 // loop overhead is about 5% of the cost of the loop. 4206 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 4207 4208 // Unroll until store/load ports (estimated by max unroll factor) are 4209 // saturated. 4210 unsigned NumStores = Legal->getNumStores(); 4211 unsigned NumLoads = Legal->getNumLoads(); 4212 unsigned StoresUF = UF / (NumStores ? NumStores : 1); 4213 unsigned LoadsUF = UF / (NumLoads ? NumLoads : 1); 4214 4215 // If we have a scalar reduction (vector reductions are already dealt with 4216 // by this point), we can increase the critical path length if the loop 4217 // we're unrolling is inside another loop. Limit, by default to 2, so the 4218 // critical path only gets increased by one reduction operation. 4219 if (Legal->getReductionVars()->size() && 4220 TheLoop->getLoopDepth() > 1) { 4221 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 4222 SmallUF = std::min(SmallUF, F); 4223 StoresUF = std::min(StoresUF, F); 4224 LoadsUF = std::min(LoadsUF, F); 4225 } 4226 4227 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 4228 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 4229 return std::max(StoresUF, LoadsUF); 4230 } 4231 4232 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 4233 return SmallUF; 4234 } 4235 4236 // Unroll if this is a large loop (small loops are already dealt with by this 4237 // point) that could benefit from interleaved unrolling. 4238 bool HasReductions = (Legal->getReductionVars()->size() > 0); 4239 if (TTI.enableAggressiveInterleaving(HasReductions)) { 4240 DEBUG(dbgs() << "LV: Unrolling to expose ILP.\n"); 4241 return UF; 4242 } 4243 4244 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 4245 return 1; 4246 } 4247 4248 LoopVectorizationCostModel::RegisterUsage 4249 LoopVectorizationCostModel::calculateRegisterUsage() { 4250 // This function calculates the register usage by measuring the highest number 4251 // of values that are alive at a single location. Obviously, this is a very 4252 // rough estimation. We scan the loop in a topological order in order and 4253 // assign a number to each instruction. We use RPO to ensure that defs are 4254 // met before their users. We assume that each instruction that has in-loop 4255 // users starts an interval. We record every time that an in-loop value is 4256 // used, so we have a list of the first and last occurrences of each 4257 // instruction. Next, we transpose this data structure into a multi map that 4258 // holds the list of intervals that *end* at a specific location. This multi 4259 // map allows us to perform a linear search. We scan the instructions linearly 4260 // and record each time that a new interval starts, by placing it in a set. 4261 // If we find this value in the multi-map then we remove it from the set. 4262 // The max register usage is the maximum size of the set. 4263 // We also search for instructions that are defined outside the loop, but are 4264 // used inside the loop. We need this number separately from the max-interval 4265 // usage number because when we unroll, loop-invariant values do not take 4266 // more register. 4267 LoopBlocksDFS DFS(TheLoop); 4268 DFS.perform(LI); 4269 4270 RegisterUsage R; 4271 R.NumInstructions = 0; 4272 4273 // Each 'key' in the map opens a new interval. The values 4274 // of the map are the index of the 'last seen' usage of the 4275 // instruction that is the key. 4276 typedef DenseMap<Instruction*, unsigned> IntervalMap; 4277 // Maps instruction to its index. 4278 DenseMap<unsigned, Instruction*> IdxToInstr; 4279 // Marks the end of each interval. 4280 IntervalMap EndPoint; 4281 // Saves the list of instruction indices that are used in the loop. 4282 SmallSet<Instruction*, 8> Ends; 4283 // Saves the list of values that are used in the loop but are 4284 // defined outside the loop, such as arguments and constants. 4285 SmallPtrSet<Value*, 8> LoopInvariants; 4286 4287 unsigned Index = 0; 4288 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 4289 be = DFS.endRPO(); bb != be; ++bb) { 4290 R.NumInstructions += (*bb)->size(); 4291 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4292 ++it) { 4293 Instruction *I = it; 4294 IdxToInstr[Index++] = I; 4295 4296 // Save the end location of each USE. 4297 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 4298 Value *U = I->getOperand(i); 4299 Instruction *Instr = dyn_cast<Instruction>(U); 4300 4301 // Ignore non-instruction values such as arguments, constants, etc. 4302 if (!Instr) continue; 4303 4304 // If this instruction is outside the loop then record it and continue. 4305 if (!TheLoop->contains(Instr)) { 4306 LoopInvariants.insert(Instr); 4307 continue; 4308 } 4309 4310 // Overwrite previous end points. 4311 EndPoint[Instr] = Index; 4312 Ends.insert(Instr); 4313 } 4314 } 4315 } 4316 4317 // Saves the list of intervals that end with the index in 'key'. 4318 typedef SmallVector<Instruction*, 2> InstrList; 4319 DenseMap<unsigned, InstrList> TransposeEnds; 4320 4321 // Transpose the EndPoints to a list of values that end at each index. 4322 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 4323 it != e; ++it) 4324 TransposeEnds[it->second].push_back(it->first); 4325 4326 SmallSet<Instruction*, 8> OpenIntervals; 4327 unsigned MaxUsage = 0; 4328 4329 4330 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4331 for (unsigned int i = 0; i < Index; ++i) { 4332 Instruction *I = IdxToInstr[i]; 4333 // Ignore instructions that are never used within the loop. 4334 if (!Ends.count(I)) continue; 4335 4336 // Ignore ephemeral values. 4337 if (EphValues.count(I)) 4338 continue; 4339 4340 // Remove all of the instructions that end at this location. 4341 InstrList &List = TransposeEnds[i]; 4342 for (unsigned int j=0, e = List.size(); j < e; ++j) 4343 OpenIntervals.erase(List[j]); 4344 4345 // Count the number of live interals. 4346 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 4347 4348 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 4349 OpenIntervals.size() << '\n'); 4350 4351 // Add the current instruction to the list of open intervals. 4352 OpenIntervals.insert(I); 4353 } 4354 4355 unsigned Invariant = LoopInvariants.size(); 4356 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 4357 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 4358 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 4359 4360 R.LoopInvariantRegs = Invariant; 4361 R.MaxLocalUsers = MaxUsage; 4362 return R; 4363 } 4364 4365 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 4366 unsigned Cost = 0; 4367 4368 // For each block. 4369 for (Loop::block_iterator bb = TheLoop->block_begin(), 4370 be = TheLoop->block_end(); bb != be; ++bb) { 4371 unsigned BlockCost = 0; 4372 BasicBlock *BB = *bb; 4373 4374 // For each instruction in the old loop. 4375 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4376 // Skip dbg intrinsics. 4377 if (isa<DbgInfoIntrinsic>(it)) 4378 continue; 4379 4380 // Ignore ephemeral values. 4381 if (EphValues.count(it)) 4382 continue; 4383 4384 unsigned C = getInstructionCost(it, VF); 4385 4386 // Check if we should override the cost. 4387 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 4388 C = ForceTargetInstructionCost; 4389 4390 BlockCost += C; 4391 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 4392 VF << " For instruction: " << *it << '\n'); 4393 } 4394 4395 // We assume that if-converted blocks have a 50% chance of being executed. 4396 // When the code is scalar then some of the blocks are avoided due to CF. 4397 // When the code is vectorized we execute all code paths. 4398 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 4399 BlockCost /= 2; 4400 4401 Cost += BlockCost; 4402 } 4403 4404 return Cost; 4405 } 4406 4407 /// \brief Check whether the address computation for a non-consecutive memory 4408 /// access looks like an unlikely candidate for being merged into the indexing 4409 /// mode. 4410 /// 4411 /// We look for a GEP which has one index that is an induction variable and all 4412 /// other indices are loop invariant. If the stride of this access is also 4413 /// within a small bound we decide that this address computation can likely be 4414 /// merged into the addressing mode. 4415 /// In all other cases, we identify the address computation as complex. 4416 static bool isLikelyComplexAddressComputation(Value *Ptr, 4417 LoopVectorizationLegality *Legal, 4418 ScalarEvolution *SE, 4419 const Loop *TheLoop) { 4420 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 4421 if (!Gep) 4422 return true; 4423 4424 // We are looking for a gep with all loop invariant indices except for one 4425 // which should be an induction variable. 4426 unsigned NumOperands = Gep->getNumOperands(); 4427 for (unsigned i = 1; i < NumOperands; ++i) { 4428 Value *Opd = Gep->getOperand(i); 4429 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 4430 !Legal->isInductionVariable(Opd)) 4431 return true; 4432 } 4433 4434 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 4435 // can likely be merged into the address computation. 4436 unsigned MaxMergeDistance = 64; 4437 4438 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 4439 if (!AddRec) 4440 return true; 4441 4442 // Check the step is constant. 4443 const SCEV *Step = AddRec->getStepRecurrence(*SE); 4444 // Calculate the pointer stride and check if it is consecutive. 4445 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4446 if (!C) 4447 return true; 4448 4449 const APInt &APStepVal = C->getValue()->getValue(); 4450 4451 // Huge step value - give up. 4452 if (APStepVal.getBitWidth() > 64) 4453 return true; 4454 4455 int64_t StepVal = APStepVal.getSExtValue(); 4456 4457 return StepVal > MaxMergeDistance; 4458 } 4459 4460 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 4461 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 4462 return true; 4463 return false; 4464 } 4465 4466 unsigned 4467 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 4468 // If we know that this instruction will remain uniform, check the cost of 4469 // the scalar version. 4470 if (Legal->isUniformAfterVectorization(I)) 4471 VF = 1; 4472 4473 Type *RetTy = I->getType(); 4474 Type *VectorTy = ToVectorTy(RetTy, VF); 4475 4476 // TODO: We need to estimate the cost of intrinsic calls. 4477 switch (I->getOpcode()) { 4478 case Instruction::GetElementPtr: 4479 // We mark this instruction as zero-cost because the cost of GEPs in 4480 // vectorized code depends on whether the corresponding memory instruction 4481 // is scalarized or not. Therefore, we handle GEPs with the memory 4482 // instruction cost. 4483 return 0; 4484 case Instruction::Br: { 4485 return TTI.getCFInstrCost(I->getOpcode()); 4486 } 4487 case Instruction::PHI: 4488 //TODO: IF-converted IFs become selects. 4489 return 0; 4490 case Instruction::Add: 4491 case Instruction::FAdd: 4492 case Instruction::Sub: 4493 case Instruction::FSub: 4494 case Instruction::Mul: 4495 case Instruction::FMul: 4496 case Instruction::UDiv: 4497 case Instruction::SDiv: 4498 case Instruction::FDiv: 4499 case Instruction::URem: 4500 case Instruction::SRem: 4501 case Instruction::FRem: 4502 case Instruction::Shl: 4503 case Instruction::LShr: 4504 case Instruction::AShr: 4505 case Instruction::And: 4506 case Instruction::Or: 4507 case Instruction::Xor: { 4508 // Since we will replace the stride by 1 the multiplication should go away. 4509 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 4510 return 0; 4511 // Certain instructions can be cheaper to vectorize if they have a constant 4512 // second vector operand. One example of this are shifts on x86. 4513 TargetTransformInfo::OperandValueKind Op1VK = 4514 TargetTransformInfo::OK_AnyValue; 4515 TargetTransformInfo::OperandValueKind Op2VK = 4516 TargetTransformInfo::OK_AnyValue; 4517 TargetTransformInfo::OperandValueProperties Op1VP = 4518 TargetTransformInfo::OP_None; 4519 TargetTransformInfo::OperandValueProperties Op2VP = 4520 TargetTransformInfo::OP_None; 4521 Value *Op2 = I->getOperand(1); 4522 4523 // Check for a splat of a constant or for a non uniform vector of constants. 4524 if (isa<ConstantInt>(Op2)) { 4525 ConstantInt *CInt = cast<ConstantInt>(Op2); 4526 if (CInt && CInt->getValue().isPowerOf2()) 4527 Op2VP = TargetTransformInfo::OP_PowerOf2; 4528 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 4529 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 4530 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4531 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 4532 if (SplatValue) { 4533 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 4534 if (CInt && CInt->getValue().isPowerOf2()) 4535 Op2VP = TargetTransformInfo::OP_PowerOf2; 4536 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 4537 } 4538 } 4539 4540 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 4541 Op1VP, Op2VP); 4542 } 4543 case Instruction::Select: { 4544 SelectInst *SI = cast<SelectInst>(I); 4545 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 4546 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 4547 Type *CondTy = SI->getCondition()->getType(); 4548 if (!ScalarCond) 4549 CondTy = VectorType::get(CondTy, VF); 4550 4551 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 4552 } 4553 case Instruction::ICmp: 4554 case Instruction::FCmp: { 4555 Type *ValTy = I->getOperand(0)->getType(); 4556 VectorTy = ToVectorTy(ValTy, VF); 4557 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 4558 } 4559 case Instruction::Store: 4560 case Instruction::Load: { 4561 StoreInst *SI = dyn_cast<StoreInst>(I); 4562 LoadInst *LI = dyn_cast<LoadInst>(I); 4563 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 4564 LI->getType()); 4565 VectorTy = ToVectorTy(ValTy, VF); 4566 4567 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 4568 unsigned AS = SI ? SI->getPointerAddressSpace() : 4569 LI->getPointerAddressSpace(); 4570 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 4571 // We add the cost of address computation here instead of with the gep 4572 // instruction because only here we know whether the operation is 4573 // scalarized. 4574 if (VF == 1) 4575 return TTI.getAddressComputationCost(VectorTy) + 4576 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4577 4578 // Scalarized loads/stores. 4579 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 4580 bool Reverse = ConsecutiveStride < 0; 4581 const DataLayout &DL = I->getModule()->getDataLayout(); 4582 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 4583 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 4584 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 4585 bool IsComplexComputation = 4586 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 4587 unsigned Cost = 0; 4588 // The cost of extracting from the value vector and pointer vector. 4589 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 4590 for (unsigned i = 0; i < VF; ++i) { 4591 // The cost of extracting the pointer operand. 4592 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 4593 // In case of STORE, the cost of ExtractElement from the vector. 4594 // In case of LOAD, the cost of InsertElement into the returned 4595 // vector. 4596 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 4597 Instruction::InsertElement, 4598 VectorTy, i); 4599 } 4600 4601 // The cost of the scalar loads/stores. 4602 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 4603 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 4604 Alignment, AS); 4605 return Cost; 4606 } 4607 4608 // Wide load/stores. 4609 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 4610 if (Legal->isMaskRequired(I)) 4611 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 4612 AS); 4613 else 4614 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4615 4616 if (Reverse) 4617 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 4618 VectorTy, 0); 4619 return Cost; 4620 } 4621 case Instruction::ZExt: 4622 case Instruction::SExt: 4623 case Instruction::FPToUI: 4624 case Instruction::FPToSI: 4625 case Instruction::FPExt: 4626 case Instruction::PtrToInt: 4627 case Instruction::IntToPtr: 4628 case Instruction::SIToFP: 4629 case Instruction::UIToFP: 4630 case Instruction::Trunc: 4631 case Instruction::FPTrunc: 4632 case Instruction::BitCast: { 4633 // We optimize the truncation of induction variable. 4634 // The cost of these is the same as the scalar operation. 4635 if (I->getOpcode() == Instruction::Trunc && 4636 Legal->isInductionVariable(I->getOperand(0))) 4637 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 4638 I->getOperand(0)->getType()); 4639 4640 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 4641 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 4642 } 4643 case Instruction::Call: { 4644 bool NeedToScalarize; 4645 CallInst *CI = cast<CallInst>(I); 4646 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 4647 if (getIntrinsicIDForCall(CI, TLI)) 4648 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 4649 return CallCost; 4650 } 4651 default: { 4652 // We are scalarizing the instruction. Return the cost of the scalar 4653 // instruction, plus the cost of insert and extract into vector 4654 // elements, times the vector width. 4655 unsigned Cost = 0; 4656 4657 if (!RetTy->isVoidTy() && VF != 1) { 4658 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 4659 VectorTy); 4660 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 4661 VectorTy); 4662 4663 // The cost of inserting the results plus extracting each one of the 4664 // operands. 4665 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 4666 } 4667 4668 // The cost of executing VF copies of the scalar instruction. This opcode 4669 // is unknown. Assume that it is the same as 'mul'. 4670 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 4671 return Cost; 4672 } 4673 }// end of switch. 4674 } 4675 4676 char LoopVectorize::ID = 0; 4677 static const char lv_name[] = "Loop Vectorization"; 4678 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 4679 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4680 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 4681 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4682 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 4683 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4684 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 4685 INITIALIZE_PASS_DEPENDENCY(LCSSA) 4686 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 4687 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4688 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 4689 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 4690 4691 namespace llvm { 4692 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 4693 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 4694 } 4695 } 4696 4697 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 4698 // Check for a store. 4699 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 4700 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 4701 4702 // Check for a load. 4703 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 4704 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 4705 4706 return false; 4707 } 4708 4709 4710 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 4711 bool IfPredicateStore) { 4712 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 4713 // Holds vector parameters or scalars, in case of uniform vals. 4714 SmallVector<VectorParts, 4> Params; 4715 4716 setDebugLocFromInst(Builder, Instr); 4717 4718 // Find all of the vectorized parameters. 4719 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 4720 Value *SrcOp = Instr->getOperand(op); 4721 4722 // If we are accessing the old induction variable, use the new one. 4723 if (SrcOp == OldInduction) { 4724 Params.push_back(getVectorValue(SrcOp)); 4725 continue; 4726 } 4727 4728 // Try using previously calculated values. 4729 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 4730 4731 // If the src is an instruction that appeared earlier in the basic block 4732 // then it should already be vectorized. 4733 if (SrcInst && OrigLoop->contains(SrcInst)) { 4734 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 4735 // The parameter is a vector value from earlier. 4736 Params.push_back(WidenMap.get(SrcInst)); 4737 } else { 4738 // The parameter is a scalar from outside the loop. Maybe even a constant. 4739 VectorParts Scalars; 4740 Scalars.append(UF, SrcOp); 4741 Params.push_back(Scalars); 4742 } 4743 } 4744 4745 assert(Params.size() == Instr->getNumOperands() && 4746 "Invalid number of operands"); 4747 4748 // Does this instruction return a value ? 4749 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 4750 4751 Value *UndefVec = IsVoidRetTy ? nullptr : 4752 UndefValue::get(Instr->getType()); 4753 // Create a new entry in the WidenMap and initialize it to Undef or Null. 4754 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 4755 4756 Instruction *InsertPt = Builder.GetInsertPoint(); 4757 BasicBlock *IfBlock = Builder.GetInsertBlock(); 4758 BasicBlock *CondBlock = nullptr; 4759 4760 VectorParts Cond; 4761 Loop *VectorLp = nullptr; 4762 if (IfPredicateStore) { 4763 assert(Instr->getParent()->getSinglePredecessor() && 4764 "Only support single predecessor blocks"); 4765 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 4766 Instr->getParent()); 4767 VectorLp = LI->getLoopFor(IfBlock); 4768 assert(VectorLp && "Must have a loop for this block"); 4769 } 4770 4771 // For each vector unroll 'part': 4772 for (unsigned Part = 0; Part < UF; ++Part) { 4773 // For each scalar that we create: 4774 4775 // Start an "if (pred) a[i] = ..." block. 4776 Value *Cmp = nullptr; 4777 if (IfPredicateStore) { 4778 if (Cond[Part]->getType()->isVectorTy()) 4779 Cond[Part] = 4780 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 4781 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 4782 ConstantInt::get(Cond[Part]->getType(), 1)); 4783 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 4784 LoopVectorBody.push_back(CondBlock); 4785 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 4786 // Update Builder with newly created basic block. 4787 Builder.SetInsertPoint(InsertPt); 4788 } 4789 4790 Instruction *Cloned = Instr->clone(); 4791 if (!IsVoidRetTy) 4792 Cloned->setName(Instr->getName() + ".cloned"); 4793 // Replace the operands of the cloned instructions with extracted scalars. 4794 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 4795 Value *Op = Params[op][Part]; 4796 Cloned->setOperand(op, Op); 4797 } 4798 4799 // Place the cloned scalar in the new loop. 4800 Builder.Insert(Cloned); 4801 4802 // If the original scalar returns a value we need to place it in a vector 4803 // so that future users will be able to use it. 4804 if (!IsVoidRetTy) 4805 VecResults[Part] = Cloned; 4806 4807 // End if-block. 4808 if (IfPredicateStore) { 4809 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 4810 LoopVectorBody.push_back(NewIfBlock); 4811 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 4812 Builder.SetInsertPoint(InsertPt); 4813 Instruction *OldBr = IfBlock->getTerminator(); 4814 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 4815 OldBr->eraseFromParent(); 4816 IfBlock = NewIfBlock; 4817 } 4818 } 4819 } 4820 4821 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 4822 StoreInst *SI = dyn_cast<StoreInst>(Instr); 4823 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 4824 4825 return scalarizeInstruction(Instr, IfPredicateStore); 4826 } 4827 4828 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 4829 return Vec; 4830 } 4831 4832 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 4833 return V; 4834 } 4835 4836 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 4837 // When unrolling and the VF is 1, we only need to add a simple scalar. 4838 Type *ITy = Val->getType(); 4839 assert(!ITy->isVectorTy() && "Val must be a scalar"); 4840 Constant *C = ConstantInt::get(ITy, StartIdx); 4841 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 4842 } 4843