1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 AnalysisKey ShouldRunExtraVectorPasses::Key; 432 433 /// InnerLoopVectorizer vectorizes loops which contain only one basic 434 /// block to a specified vectorization factor (VF). 435 /// This class performs the widening of scalars into vectors, or multiple 436 /// scalars. This class also implements the following features: 437 /// * It inserts an epilogue loop for handling loops that don't have iteration 438 /// counts that are known to be a multiple of the vectorization factor. 439 /// * It handles the code generation for reduction variables. 440 /// * Scalarization (implementation using scalars) of un-vectorizable 441 /// instructions. 442 /// InnerLoopVectorizer does not perform any vectorization-legality 443 /// checks, and relies on the caller to check for the different legality 444 /// aspects. The InnerLoopVectorizer relies on the 445 /// LoopVectorizationLegality class to provide information about the induction 446 /// and reduction variables that were found to a given vectorization factor. 447 class InnerLoopVectorizer { 448 public: 449 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 450 LoopInfo *LI, DominatorTree *DT, 451 const TargetLibraryInfo *TLI, 452 const TargetTransformInfo *TTI, AssumptionCache *AC, 453 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 454 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 455 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 456 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 457 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 458 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 459 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 460 PSI(PSI), RTChecks(RTChecks) { 461 // Query this against the original loop and save it here because the profile 462 // of the original loop header may change as the transformation happens. 463 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 464 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 465 } 466 467 virtual ~InnerLoopVectorizer() = default; 468 469 /// Create a new empty loop that will contain vectorized instructions later 470 /// on, while the old loop will be used as the scalar remainder. Control flow 471 /// is generated around the vectorized (and scalar epilogue) loops consisting 472 /// of various checks and bypasses. Return the pre-header block of the new 473 /// loop and the start value for the canonical induction, if it is != 0. The 474 /// latter is the case when vectorizing the epilogue loop. In the case of 475 /// epilogue vectorization, this function is overriden to handle the more 476 /// complex control flow around the loops. 477 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 478 479 /// Widen a single call instruction within the innermost loop. 480 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 481 VPTransformState &State); 482 483 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 484 void fixVectorizedLoop(VPTransformState &State); 485 486 // Return true if any runtime check is added. 487 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 488 489 /// A type for vectorized values in the new loop. Each value from the 490 /// original loop, when vectorized, is represented by UF vector values in the 491 /// new unrolled loop, where UF is the unroll factor. 492 using VectorParts = SmallVector<Value *, 2>; 493 494 /// Vectorize a single first-order recurrence or pointer induction PHINode in 495 /// a block. This method handles the induction variable canonicalization. It 496 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 497 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 498 VPTransformState &State); 499 500 /// A helper function to scalarize a single Instruction in the innermost loop. 501 /// Generates a sequence of scalar instances for each lane between \p MinLane 502 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 503 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 504 /// Instr's operands. 505 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 506 const VPIteration &Instance, bool IfPredicateInstr, 507 VPTransformState &State); 508 509 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 510 /// is provided, the integer induction variable will first be truncated to 511 /// the corresponding type. \p CanonicalIV is the scalar value generated for 512 /// the canonical induction variable. 513 void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, 514 VPTransformState &State, Value *CanonicalIV); 515 516 /// Construct the vector value of a scalarized value \p V one lane at a time. 517 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 518 VPTransformState &State); 519 520 /// Try to vectorize interleaved access group \p Group with the base address 521 /// given in \p Addr, optionally masking the vector operations if \p 522 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 523 /// values in the vectorized loop. 524 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 525 ArrayRef<VPValue *> VPDefs, 526 VPTransformState &State, VPValue *Addr, 527 ArrayRef<VPValue *> StoredValues, 528 VPValue *BlockInMask = nullptr); 529 530 /// Set the debug location in the builder \p Ptr using the debug location in 531 /// \p V. If \p Ptr is None then it uses the class member's Builder. 532 void setDebugLocFromInst(const Value *V, 533 Optional<IRBuilderBase *> CustomBuilder = None); 534 535 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 536 void fixNonInductionPHIs(VPTransformState &State); 537 538 /// Returns true if the reordering of FP operations is not allowed, but we are 539 /// able to vectorize with strict in-order reductions for the given RdxDesc. 540 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 541 542 /// Create a broadcast instruction. This method generates a broadcast 543 /// instruction (shuffle) for loop invariant values and for the induction 544 /// value. If this is the induction variable then we extend it to N, N+1, ... 545 /// this is needed because each iteration in the loop corresponds to a SIMD 546 /// element. 547 virtual Value *getBroadcastInstrs(Value *V); 548 549 /// Add metadata from one instruction to another. 550 /// 551 /// This includes both the original MDs from \p From and additional ones (\see 552 /// addNewMetadata). Use this for *newly created* instructions in the vector 553 /// loop. 554 void addMetadata(Instruction *To, Instruction *From); 555 556 /// Similar to the previous function but it adds the metadata to a 557 /// vector of instructions. 558 void addMetadata(ArrayRef<Value *> To, Instruction *From); 559 560 // Returns the resume value (bc.merge.rdx) for a reduction as 561 // generated by fixReduction. 562 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 563 564 protected: 565 friend class LoopVectorizationPlanner; 566 567 /// A small list of PHINodes. 568 using PhiVector = SmallVector<PHINode *, 4>; 569 570 /// A type for scalarized values in the new loop. Each value from the 571 /// original loop, when scalarized, is represented by UF x VF scalar values 572 /// in the new unrolled loop, where UF is the unroll factor and VF is the 573 /// vectorization factor. 574 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 575 576 /// Set up the values of the IVs correctly when exiting the vector loop. 577 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 578 Value *CountRoundDown, Value *EndValue, 579 BasicBlock *MiddleBlock); 580 581 /// Introduce a conditional branch (on true, condition to be set later) at the 582 /// end of the header=latch connecting it to itself (across the backedge) and 583 /// to the exit block of \p L. 584 void createHeaderBranch(Loop *L); 585 586 /// Handle all cross-iteration phis in the header. 587 void fixCrossIterationPHIs(VPTransformState &State); 588 589 /// Create the exit value of first order recurrences in the middle block and 590 /// update their users. 591 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 592 VPTransformState &State); 593 594 /// Create code for the loop exit value of the reduction. 595 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 596 597 /// Clear NSW/NUW flags from reduction instructions if necessary. 598 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 599 VPTransformState &State); 600 601 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 602 /// means we need to add the appropriate incoming value from the middle 603 /// block as exiting edges from the scalar epilogue loop (if present) are 604 /// already in place, and we exit the vector loop exclusively to the middle 605 /// block. 606 void fixLCSSAPHIs(VPTransformState &State); 607 608 /// Iteratively sink the scalarized operands of a predicated instruction into 609 /// the block that was created for it. 610 void sinkScalarOperands(Instruction *PredInst); 611 612 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 613 /// represented as. 614 void truncateToMinimalBitwidths(VPTransformState &State); 615 616 /// Create a vector induction phi node based on an existing scalar one. \p 617 /// EntryVal is the value from the original loop that maps to the vector phi 618 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 619 /// truncate instruction, instead of widening the original IV, we widen a 620 /// version of the IV truncated to \p EntryVal's type. 621 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 622 Value *Step, Value *Start, 623 Instruction *EntryVal, VPValue *Def, 624 VPTransformState &State); 625 626 /// Returns (and creates if needed) the original loop trip count. 627 Value *getOrCreateTripCount(Loop *NewLoop); 628 629 /// Returns (and creates if needed) the trip count of the widened loop. 630 Value *getOrCreateVectorTripCount(Loop *NewLoop); 631 632 /// Returns a bitcasted value to the requested vector type. 633 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 634 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 635 const DataLayout &DL); 636 637 /// Emit a bypass check to see if the vector trip count is zero, including if 638 /// it overflows. 639 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 640 641 /// Emit a bypass check to see if all of the SCEV assumptions we've 642 /// had to make are correct. Returns the block containing the checks or 643 /// nullptr if no checks have been added. 644 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 645 646 /// Emit bypass checks to check any memory assumptions we may have made. 647 /// Returns the block containing the checks or nullptr if no checks have been 648 /// added. 649 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 650 651 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 652 /// vector loop preheader, middle block and scalar preheader. Also 653 /// allocate a loop object for the new vector loop and return it. 654 Loop *createVectorLoopSkeleton(StringRef Prefix); 655 656 /// Create new phi nodes for the induction variables to resume iteration count 657 /// in the scalar epilogue, from where the vectorized loop left off. 658 /// In cases where the loop skeleton is more complicated (eg. epilogue 659 /// vectorization) and the resume values can come from an additional bypass 660 /// block, the \p AdditionalBypass pair provides information about the bypass 661 /// block and the end value on the edge from bypass to this loop. 662 void createInductionResumeValues( 663 Loop *L, 664 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 665 666 /// Complete the loop skeleton by adding debug MDs, creating appropriate 667 /// conditional branches in the middle block, preparing the builder and 668 /// running the verifier. Take in the vector loop \p L as argument, and return 669 /// the preheader of the completed vector loop. 670 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 671 672 /// Add additional metadata to \p To that was not present on \p Orig. 673 /// 674 /// Currently this is used to add the noalias annotations based on the 675 /// inserted memchecks. Use this for instructions that are *cloned* into the 676 /// vector loop. 677 void addNewMetadata(Instruction *To, const Instruction *Orig); 678 679 /// Collect poison-generating recipes that may generate a poison value that is 680 /// used after vectorization, even when their operands are not poison. Those 681 /// recipes meet the following conditions: 682 /// * Contribute to the address computation of a recipe generating a widen 683 /// memory load/store (VPWidenMemoryInstructionRecipe or 684 /// VPInterleaveRecipe). 685 /// * Such a widen memory load/store has at least one underlying Instruction 686 /// that is in a basic block that needs predication and after vectorization 687 /// the generated instruction won't be predicated. 688 void collectPoisonGeneratingRecipes(VPTransformState &State); 689 690 /// Allow subclasses to override and print debug traces before/after vplan 691 /// execution, when trace information is requested. 692 virtual void printDebugTracesAtStart(){}; 693 virtual void printDebugTracesAtEnd(){}; 694 695 /// The original loop. 696 Loop *OrigLoop; 697 698 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 699 /// dynamic knowledge to simplify SCEV expressions and converts them to a 700 /// more usable form. 701 PredicatedScalarEvolution &PSE; 702 703 /// Loop Info. 704 LoopInfo *LI; 705 706 /// Dominator Tree. 707 DominatorTree *DT; 708 709 /// Alias Analysis. 710 AAResults *AA; 711 712 /// Target Library Info. 713 const TargetLibraryInfo *TLI; 714 715 /// Target Transform Info. 716 const TargetTransformInfo *TTI; 717 718 /// Assumption Cache. 719 AssumptionCache *AC; 720 721 /// Interface to emit optimization remarks. 722 OptimizationRemarkEmitter *ORE; 723 724 /// LoopVersioning. It's only set up (non-null) if memchecks were 725 /// used. 726 /// 727 /// This is currently only used to add no-alias metadata based on the 728 /// memchecks. The actually versioning is performed manually. 729 std::unique_ptr<LoopVersioning> LVer; 730 731 /// The vectorization SIMD factor to use. Each vector will have this many 732 /// vector elements. 733 ElementCount VF; 734 735 /// The vectorization unroll factor to use. Each scalar is vectorized to this 736 /// many different vector instructions. 737 unsigned UF; 738 739 /// The builder that we use 740 IRBuilder<> Builder; 741 742 // --- Vectorization state --- 743 744 /// The vector-loop preheader. 745 BasicBlock *LoopVectorPreHeader; 746 747 /// The scalar-loop preheader. 748 BasicBlock *LoopScalarPreHeader; 749 750 /// Middle Block between the vector and the scalar. 751 BasicBlock *LoopMiddleBlock; 752 753 /// The unique ExitBlock of the scalar loop if one exists. Note that 754 /// there can be multiple exiting edges reaching this block. 755 BasicBlock *LoopExitBlock; 756 757 /// The vector loop body. 758 BasicBlock *LoopVectorBody; 759 760 /// The scalar loop body. 761 BasicBlock *LoopScalarBody; 762 763 /// A list of all bypass blocks. The first block is the entry of the loop. 764 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 765 766 /// Store instructions that were predicated. 767 SmallVector<Instruction *, 4> PredicatedInstructions; 768 769 /// Trip count of the original loop. 770 Value *TripCount = nullptr; 771 772 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 773 Value *VectorTripCount = nullptr; 774 775 /// The legality analysis. 776 LoopVectorizationLegality *Legal; 777 778 /// The profitablity analysis. 779 LoopVectorizationCostModel *Cost; 780 781 // Record whether runtime checks are added. 782 bool AddedSafetyChecks = false; 783 784 // Holds the end values for each induction variable. We save the end values 785 // so we can later fix-up the external users of the induction variables. 786 DenseMap<PHINode *, Value *> IVEndValues; 787 788 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 789 // fixed up at the end of vector code generation. 790 SmallVector<PHINode *, 8> OrigPHIsToFix; 791 792 /// BFI and PSI are used to check for profile guided size optimizations. 793 BlockFrequencyInfo *BFI; 794 ProfileSummaryInfo *PSI; 795 796 // Whether this loop should be optimized for size based on profile guided size 797 // optimizatios. 798 bool OptForSizeBasedOnProfile; 799 800 /// Structure to hold information about generated runtime checks, responsible 801 /// for cleaning the checks, if vectorization turns out unprofitable. 802 GeneratedRTChecks &RTChecks; 803 804 // Holds the resume values for reductions in the loops, used to set the 805 // correct start value of reduction PHIs when vectorizing the epilogue. 806 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 807 ReductionResumeValues; 808 }; 809 810 class InnerLoopUnroller : public InnerLoopVectorizer { 811 public: 812 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 813 LoopInfo *LI, DominatorTree *DT, 814 const TargetLibraryInfo *TLI, 815 const TargetTransformInfo *TTI, AssumptionCache *AC, 816 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 817 LoopVectorizationLegality *LVL, 818 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 819 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 820 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 821 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 822 BFI, PSI, Check) {} 823 824 private: 825 Value *getBroadcastInstrs(Value *V) override; 826 }; 827 828 /// Encapsulate information regarding vectorization of a loop and its epilogue. 829 /// This information is meant to be updated and used across two stages of 830 /// epilogue vectorization. 831 struct EpilogueLoopVectorizationInfo { 832 ElementCount MainLoopVF = ElementCount::getFixed(0); 833 unsigned MainLoopUF = 0; 834 ElementCount EpilogueVF = ElementCount::getFixed(0); 835 unsigned EpilogueUF = 0; 836 BasicBlock *MainLoopIterationCountCheck = nullptr; 837 BasicBlock *EpilogueIterationCountCheck = nullptr; 838 BasicBlock *SCEVSafetyCheck = nullptr; 839 BasicBlock *MemSafetyCheck = nullptr; 840 Value *TripCount = nullptr; 841 Value *VectorTripCount = nullptr; 842 843 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 844 ElementCount EVF, unsigned EUF) 845 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 846 assert(EUF == 1 && 847 "A high UF for the epilogue loop is likely not beneficial."); 848 } 849 }; 850 851 /// An extension of the inner loop vectorizer that creates a skeleton for a 852 /// vectorized loop that has its epilogue (residual) also vectorized. 853 /// The idea is to run the vplan on a given loop twice, firstly to setup the 854 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 855 /// from the first step and vectorize the epilogue. This is achieved by 856 /// deriving two concrete strategy classes from this base class and invoking 857 /// them in succession from the loop vectorizer planner. 858 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 859 public: 860 InnerLoopAndEpilogueVectorizer( 861 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 862 DominatorTree *DT, const TargetLibraryInfo *TLI, 863 const TargetTransformInfo *TTI, AssumptionCache *AC, 864 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 865 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 866 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 867 GeneratedRTChecks &Checks) 868 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 869 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 870 Checks), 871 EPI(EPI) {} 872 873 // Override this function to handle the more complex control flow around the 874 // three loops. 875 std::pair<BasicBlock *, Value *> 876 createVectorizedLoopSkeleton() final override { 877 return createEpilogueVectorizedLoopSkeleton(); 878 } 879 880 /// The interface for creating a vectorized skeleton using one of two 881 /// different strategies, each corresponding to one execution of the vplan 882 /// as described above. 883 virtual std::pair<BasicBlock *, Value *> 884 createEpilogueVectorizedLoopSkeleton() = 0; 885 886 /// Holds and updates state information required to vectorize the main loop 887 /// and its epilogue in two separate passes. This setup helps us avoid 888 /// regenerating and recomputing runtime safety checks. It also helps us to 889 /// shorten the iteration-count-check path length for the cases where the 890 /// iteration count of the loop is so small that the main vector loop is 891 /// completely skipped. 892 EpilogueLoopVectorizationInfo &EPI; 893 }; 894 895 /// A specialized derived class of inner loop vectorizer that performs 896 /// vectorization of *main* loops in the process of vectorizing loops and their 897 /// epilogues. 898 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 899 public: 900 EpilogueVectorizerMainLoop( 901 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 902 DominatorTree *DT, const TargetLibraryInfo *TLI, 903 const TargetTransformInfo *TTI, AssumptionCache *AC, 904 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 905 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 906 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 907 GeneratedRTChecks &Check) 908 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 909 EPI, LVL, CM, BFI, PSI, Check) {} 910 /// Implements the interface for creating a vectorized skeleton using the 911 /// *main loop* strategy (ie the first pass of vplan execution). 912 std::pair<BasicBlock *, Value *> 913 createEpilogueVectorizedLoopSkeleton() final override; 914 915 protected: 916 /// Emits an iteration count bypass check once for the main loop (when \p 917 /// ForEpilogue is false) and once for the epilogue loop (when \p 918 /// ForEpilogue is true). 919 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 920 bool ForEpilogue); 921 void printDebugTracesAtStart() override; 922 void printDebugTracesAtEnd() override; 923 }; 924 925 // A specialized derived class of inner loop vectorizer that performs 926 // vectorization of *epilogue* loops in the process of vectorizing loops and 927 // their epilogues. 928 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 929 public: 930 EpilogueVectorizerEpilogueLoop( 931 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 932 DominatorTree *DT, const TargetLibraryInfo *TLI, 933 const TargetTransformInfo *TTI, AssumptionCache *AC, 934 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 935 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 936 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 937 GeneratedRTChecks &Checks) 938 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 939 EPI, LVL, CM, BFI, PSI, Checks) {} 940 /// Implements the interface for creating a vectorized skeleton using the 941 /// *epilogue loop* strategy (ie the second pass of vplan execution). 942 std::pair<BasicBlock *, Value *> 943 createEpilogueVectorizedLoopSkeleton() final override; 944 945 protected: 946 /// Emits an iteration count bypass check after the main vector loop has 947 /// finished to see if there are any iterations left to execute by either 948 /// the vector epilogue or the scalar epilogue. 949 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 950 BasicBlock *Bypass, 951 BasicBlock *Insert); 952 void printDebugTracesAtStart() override; 953 void printDebugTracesAtEnd() override; 954 }; 955 } // end namespace llvm 956 957 /// Look for a meaningful debug location on the instruction or it's 958 /// operands. 959 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 960 if (!I) 961 return I; 962 963 DebugLoc Empty; 964 if (I->getDebugLoc() != Empty) 965 return I; 966 967 for (Use &Op : I->operands()) { 968 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 969 if (OpInst->getDebugLoc() != Empty) 970 return OpInst; 971 } 972 973 return I; 974 } 975 976 void InnerLoopVectorizer::setDebugLocFromInst( 977 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 978 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 979 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 980 const DILocation *DIL = Inst->getDebugLoc(); 981 982 // When a FSDiscriminator is enabled, we don't need to add the multiply 983 // factors to the discriminators. 984 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 985 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 986 // FIXME: For scalable vectors, assume vscale=1. 987 auto NewDIL = 988 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 989 if (NewDIL) 990 B->SetCurrentDebugLocation(NewDIL.getValue()); 991 else 992 LLVM_DEBUG(dbgs() 993 << "Failed to create new discriminator: " 994 << DIL->getFilename() << " Line: " << DIL->getLine()); 995 } else 996 B->SetCurrentDebugLocation(DIL); 997 } else 998 B->SetCurrentDebugLocation(DebugLoc()); 999 } 1000 1001 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1002 /// is passed, the message relates to that particular instruction. 1003 #ifndef NDEBUG 1004 static void debugVectorizationMessage(const StringRef Prefix, 1005 const StringRef DebugMsg, 1006 Instruction *I) { 1007 dbgs() << "LV: " << Prefix << DebugMsg; 1008 if (I != nullptr) 1009 dbgs() << " " << *I; 1010 else 1011 dbgs() << '.'; 1012 dbgs() << '\n'; 1013 } 1014 #endif 1015 1016 /// Create an analysis remark that explains why vectorization failed 1017 /// 1018 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1019 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1020 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1021 /// the location of the remark. \return the remark object that can be 1022 /// streamed to. 1023 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1024 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1025 Value *CodeRegion = TheLoop->getHeader(); 1026 DebugLoc DL = TheLoop->getStartLoc(); 1027 1028 if (I) { 1029 CodeRegion = I->getParent(); 1030 // If there is no debug location attached to the instruction, revert back to 1031 // using the loop's. 1032 if (I->getDebugLoc()) 1033 DL = I->getDebugLoc(); 1034 } 1035 1036 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1037 } 1038 1039 namespace llvm { 1040 1041 /// Return a value for Step multiplied by VF. 1042 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1043 int64_t Step) { 1044 assert(Ty->isIntegerTy() && "Expected an integer step"); 1045 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1046 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1047 } 1048 1049 /// Return the runtime value for VF. 1050 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1051 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1052 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1053 } 1054 1055 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1056 ElementCount VF) { 1057 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1058 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1059 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1060 return B.CreateUIToFP(RuntimeVF, FTy); 1061 } 1062 1063 void reportVectorizationFailure(const StringRef DebugMsg, 1064 const StringRef OREMsg, const StringRef ORETag, 1065 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1066 Instruction *I) { 1067 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1068 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1069 ORE->emit( 1070 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1071 << "loop not vectorized: " << OREMsg); 1072 } 1073 1074 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1075 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1076 Instruction *I) { 1077 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1078 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1079 ORE->emit( 1080 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1081 << Msg); 1082 } 1083 1084 } // end namespace llvm 1085 1086 #ifndef NDEBUG 1087 /// \return string containing a file name and a line # for the given loop. 1088 static std::string getDebugLocString(const Loop *L) { 1089 std::string Result; 1090 if (L) { 1091 raw_string_ostream OS(Result); 1092 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1093 LoopDbgLoc.print(OS); 1094 else 1095 // Just print the module name. 1096 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1097 OS.flush(); 1098 } 1099 return Result; 1100 } 1101 #endif 1102 1103 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1104 const Instruction *Orig) { 1105 // If the loop was versioned with memchecks, add the corresponding no-alias 1106 // metadata. 1107 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1108 LVer->annotateInstWithNoAlias(To, Orig); 1109 } 1110 1111 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1112 VPTransformState &State) { 1113 1114 // Collect recipes in the backward slice of `Root` that may generate a poison 1115 // value that is used after vectorization. 1116 SmallPtrSet<VPRecipeBase *, 16> Visited; 1117 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1118 SmallVector<VPRecipeBase *, 16> Worklist; 1119 Worklist.push_back(Root); 1120 1121 // Traverse the backward slice of Root through its use-def chain. 1122 while (!Worklist.empty()) { 1123 VPRecipeBase *CurRec = Worklist.back(); 1124 Worklist.pop_back(); 1125 1126 if (!Visited.insert(CurRec).second) 1127 continue; 1128 1129 // Prune search if we find another recipe generating a widen memory 1130 // instruction. Widen memory instructions involved in address computation 1131 // will lead to gather/scatter instructions, which don't need to be 1132 // handled. 1133 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1134 isa<VPInterleaveRecipe>(CurRec) || 1135 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1136 continue; 1137 1138 // This recipe contributes to the address computation of a widen 1139 // load/store. Collect recipe if its underlying instruction has 1140 // poison-generating flags. 1141 Instruction *Instr = CurRec->getUnderlyingInstr(); 1142 if (Instr && Instr->hasPoisonGeneratingFlags()) 1143 State.MayGeneratePoisonRecipes.insert(CurRec); 1144 1145 // Add new definitions to the worklist. 1146 for (VPValue *operand : CurRec->operands()) 1147 if (VPDef *OpDef = operand->getDef()) 1148 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1149 } 1150 }); 1151 1152 // Traverse all the recipes in the VPlan and collect the poison-generating 1153 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1154 // VPInterleaveRecipe. 1155 auto Iter = depth_first( 1156 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1157 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1158 for (VPRecipeBase &Recipe : *VPBB) { 1159 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1160 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1161 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1162 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1163 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1164 collectPoisonGeneratingInstrsInBackwardSlice( 1165 cast<VPRecipeBase>(AddrDef)); 1166 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1167 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1168 if (AddrDef) { 1169 // Check if any member of the interleave group needs predication. 1170 const InterleaveGroup<Instruction> *InterGroup = 1171 InterleaveRec->getInterleaveGroup(); 1172 bool NeedPredication = false; 1173 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1174 I < NumMembers; ++I) { 1175 Instruction *Member = InterGroup->getMember(I); 1176 if (Member) 1177 NeedPredication |= 1178 Legal->blockNeedsPredication(Member->getParent()); 1179 } 1180 1181 if (NeedPredication) 1182 collectPoisonGeneratingInstrsInBackwardSlice( 1183 cast<VPRecipeBase>(AddrDef)); 1184 } 1185 } 1186 } 1187 } 1188 } 1189 1190 void InnerLoopVectorizer::addMetadata(Instruction *To, 1191 Instruction *From) { 1192 propagateMetadata(To, From); 1193 addNewMetadata(To, From); 1194 } 1195 1196 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1197 Instruction *From) { 1198 for (Value *V : To) { 1199 if (Instruction *I = dyn_cast<Instruction>(V)) 1200 addMetadata(I, From); 1201 } 1202 } 1203 1204 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1205 const RecurrenceDescriptor &RdxDesc) { 1206 auto It = ReductionResumeValues.find(&RdxDesc); 1207 assert(It != ReductionResumeValues.end() && 1208 "Expected to find a resume value for the reduction."); 1209 return It->second; 1210 } 1211 1212 namespace llvm { 1213 1214 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1215 // lowered. 1216 enum ScalarEpilogueLowering { 1217 1218 // The default: allowing scalar epilogues. 1219 CM_ScalarEpilogueAllowed, 1220 1221 // Vectorization with OptForSize: don't allow epilogues. 1222 CM_ScalarEpilogueNotAllowedOptSize, 1223 1224 // A special case of vectorisation with OptForSize: loops with a very small 1225 // trip count are considered for vectorization under OptForSize, thereby 1226 // making sure the cost of their loop body is dominant, free of runtime 1227 // guards and scalar iteration overheads. 1228 CM_ScalarEpilogueNotAllowedLowTripLoop, 1229 1230 // Loop hint predicate indicating an epilogue is undesired. 1231 CM_ScalarEpilogueNotNeededUsePredicate, 1232 1233 // Directive indicating we must either tail fold or not vectorize 1234 CM_ScalarEpilogueNotAllowedUsePredicate 1235 }; 1236 1237 /// ElementCountComparator creates a total ordering for ElementCount 1238 /// for the purposes of using it in a set structure. 1239 struct ElementCountComparator { 1240 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1241 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1242 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1243 } 1244 }; 1245 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1246 1247 /// LoopVectorizationCostModel - estimates the expected speedups due to 1248 /// vectorization. 1249 /// In many cases vectorization is not profitable. This can happen because of 1250 /// a number of reasons. In this class we mainly attempt to predict the 1251 /// expected speedup/slowdowns due to the supported instruction set. We use the 1252 /// TargetTransformInfo to query the different backends for the cost of 1253 /// different operations. 1254 class LoopVectorizationCostModel { 1255 public: 1256 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1257 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1258 LoopVectorizationLegality *Legal, 1259 const TargetTransformInfo &TTI, 1260 const TargetLibraryInfo *TLI, DemandedBits *DB, 1261 AssumptionCache *AC, 1262 OptimizationRemarkEmitter *ORE, const Function *F, 1263 const LoopVectorizeHints *Hints, 1264 InterleavedAccessInfo &IAI) 1265 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1266 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1267 Hints(Hints), InterleaveInfo(IAI) {} 1268 1269 /// \return An upper bound for the vectorization factors (both fixed and 1270 /// scalable). If the factors are 0, vectorization and interleaving should be 1271 /// avoided up front. 1272 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1273 1274 /// \return True if runtime checks are required for vectorization, and false 1275 /// otherwise. 1276 bool runtimeChecksRequired(); 1277 1278 /// \return The most profitable vectorization factor and the cost of that VF. 1279 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1280 /// then this vectorization factor will be selected if vectorization is 1281 /// possible. 1282 VectorizationFactor 1283 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1284 1285 VectorizationFactor 1286 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1287 const LoopVectorizationPlanner &LVP); 1288 1289 /// Setup cost-based decisions for user vectorization factor. 1290 /// \return true if the UserVF is a feasible VF to be chosen. 1291 bool selectUserVectorizationFactor(ElementCount UserVF) { 1292 collectUniformsAndScalars(UserVF); 1293 collectInstsToScalarize(UserVF); 1294 return expectedCost(UserVF).first.isValid(); 1295 } 1296 1297 /// \return The size (in bits) of the smallest and widest types in the code 1298 /// that needs to be vectorized. We ignore values that remain scalar such as 1299 /// 64 bit loop indices. 1300 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1301 1302 /// \return The desired interleave count. 1303 /// If interleave count has been specified by metadata it will be returned. 1304 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1305 /// are the selected vectorization factor and the cost of the selected VF. 1306 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1307 1308 /// Memory access instruction may be vectorized in more than one way. 1309 /// Form of instruction after vectorization depends on cost. 1310 /// This function takes cost-based decisions for Load/Store instructions 1311 /// and collects them in a map. This decisions map is used for building 1312 /// the lists of loop-uniform and loop-scalar instructions. 1313 /// The calculated cost is saved with widening decision in order to 1314 /// avoid redundant calculations. 1315 void setCostBasedWideningDecision(ElementCount VF); 1316 1317 /// A struct that represents some properties of the register usage 1318 /// of a loop. 1319 struct RegisterUsage { 1320 /// Holds the number of loop invariant values that are used in the loop. 1321 /// The key is ClassID of target-provided register class. 1322 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1323 /// Holds the maximum number of concurrent live intervals in the loop. 1324 /// The key is ClassID of target-provided register class. 1325 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1326 }; 1327 1328 /// \return Returns information about the register usages of the loop for the 1329 /// given vectorization factors. 1330 SmallVector<RegisterUsage, 8> 1331 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1332 1333 /// Collect values we want to ignore in the cost model. 1334 void collectValuesToIgnore(); 1335 1336 /// Collect all element types in the loop for which widening is needed. 1337 void collectElementTypesForWidening(); 1338 1339 /// Split reductions into those that happen in the loop, and those that happen 1340 /// outside. In loop reductions are collected into InLoopReductionChains. 1341 void collectInLoopReductions(); 1342 1343 /// Returns true if we should use strict in-order reductions for the given 1344 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1345 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1346 /// of FP operations. 1347 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1348 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1349 } 1350 1351 /// \returns The smallest bitwidth each instruction can be represented with. 1352 /// The vector equivalents of these instructions should be truncated to this 1353 /// type. 1354 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1355 return MinBWs; 1356 } 1357 1358 /// \returns True if it is more profitable to scalarize instruction \p I for 1359 /// vectorization factor \p VF. 1360 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1361 assert(VF.isVector() && 1362 "Profitable to scalarize relevant only for VF > 1."); 1363 1364 // Cost model is not run in the VPlan-native path - return conservative 1365 // result until this changes. 1366 if (EnableVPlanNativePath) 1367 return false; 1368 1369 auto Scalars = InstsToScalarize.find(VF); 1370 assert(Scalars != InstsToScalarize.end() && 1371 "VF not yet analyzed for scalarization profitability"); 1372 return Scalars->second.find(I) != Scalars->second.end(); 1373 } 1374 1375 /// Returns true if \p I is known to be uniform after vectorization. 1376 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1377 if (VF.isScalar()) 1378 return true; 1379 1380 // Cost model is not run in the VPlan-native path - return conservative 1381 // result until this changes. 1382 if (EnableVPlanNativePath) 1383 return false; 1384 1385 auto UniformsPerVF = Uniforms.find(VF); 1386 assert(UniformsPerVF != Uniforms.end() && 1387 "VF not yet analyzed for uniformity"); 1388 return UniformsPerVF->second.count(I); 1389 } 1390 1391 /// Returns true if \p I is known to be scalar after vectorization. 1392 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1393 if (VF.isScalar()) 1394 return true; 1395 1396 // Cost model is not run in the VPlan-native path - return conservative 1397 // result until this changes. 1398 if (EnableVPlanNativePath) 1399 return false; 1400 1401 auto ScalarsPerVF = Scalars.find(VF); 1402 assert(ScalarsPerVF != Scalars.end() && 1403 "Scalar values are not calculated for VF"); 1404 return ScalarsPerVF->second.count(I); 1405 } 1406 1407 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1408 /// for vectorization factor \p VF. 1409 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1410 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1411 !isProfitableToScalarize(I, VF) && 1412 !isScalarAfterVectorization(I, VF); 1413 } 1414 1415 /// Decision that was taken during cost calculation for memory instruction. 1416 enum InstWidening { 1417 CM_Unknown, 1418 CM_Widen, // For consecutive accesses with stride +1. 1419 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1420 CM_Interleave, 1421 CM_GatherScatter, 1422 CM_Scalarize 1423 }; 1424 1425 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1426 /// instruction \p I and vector width \p VF. 1427 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1428 InstructionCost Cost) { 1429 assert(VF.isVector() && "Expected VF >=2"); 1430 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1431 } 1432 1433 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1434 /// interleaving group \p Grp and vector width \p VF. 1435 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1436 ElementCount VF, InstWidening W, 1437 InstructionCost Cost) { 1438 assert(VF.isVector() && "Expected VF >=2"); 1439 /// Broadcast this decicion to all instructions inside the group. 1440 /// But the cost will be assigned to one instruction only. 1441 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1442 if (auto *I = Grp->getMember(i)) { 1443 if (Grp->getInsertPos() == I) 1444 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1445 else 1446 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1447 } 1448 } 1449 } 1450 1451 /// Return the cost model decision for the given instruction \p I and vector 1452 /// width \p VF. Return CM_Unknown if this instruction did not pass 1453 /// through the cost modeling. 1454 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1455 assert(VF.isVector() && "Expected VF to be a vector VF"); 1456 // Cost model is not run in the VPlan-native path - return conservative 1457 // result until this changes. 1458 if (EnableVPlanNativePath) 1459 return CM_GatherScatter; 1460 1461 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1462 auto Itr = WideningDecisions.find(InstOnVF); 1463 if (Itr == WideningDecisions.end()) 1464 return CM_Unknown; 1465 return Itr->second.first; 1466 } 1467 1468 /// Return the vectorization cost for the given instruction \p I and vector 1469 /// width \p VF. 1470 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1471 assert(VF.isVector() && "Expected VF >=2"); 1472 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1473 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1474 "The cost is not calculated"); 1475 return WideningDecisions[InstOnVF].second; 1476 } 1477 1478 /// Return True if instruction \p I is an optimizable truncate whose operand 1479 /// is an induction variable. Such a truncate will be removed by adding a new 1480 /// induction variable with the destination type. 1481 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1482 // If the instruction is not a truncate, return false. 1483 auto *Trunc = dyn_cast<TruncInst>(I); 1484 if (!Trunc) 1485 return false; 1486 1487 // Get the source and destination types of the truncate. 1488 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1489 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1490 1491 // If the truncate is free for the given types, return false. Replacing a 1492 // free truncate with an induction variable would add an induction variable 1493 // update instruction to each iteration of the loop. We exclude from this 1494 // check the primary induction variable since it will need an update 1495 // instruction regardless. 1496 Value *Op = Trunc->getOperand(0); 1497 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1498 return false; 1499 1500 // If the truncated value is not an induction variable, return false. 1501 return Legal->isInductionPhi(Op); 1502 } 1503 1504 /// Collects the instructions to scalarize for each predicated instruction in 1505 /// the loop. 1506 void collectInstsToScalarize(ElementCount VF); 1507 1508 /// Collect Uniform and Scalar values for the given \p VF. 1509 /// The sets depend on CM decision for Load/Store instructions 1510 /// that may be vectorized as interleave, gather-scatter or scalarized. 1511 void collectUniformsAndScalars(ElementCount VF) { 1512 // Do the analysis once. 1513 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1514 return; 1515 setCostBasedWideningDecision(VF); 1516 collectLoopUniforms(VF); 1517 collectLoopScalars(VF); 1518 } 1519 1520 /// Returns true if the target machine supports masked store operation 1521 /// for the given \p DataType and kind of access to \p Ptr. 1522 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1523 return Legal->isConsecutivePtr(DataType, Ptr) && 1524 TTI.isLegalMaskedStore(DataType, Alignment); 1525 } 1526 1527 /// Returns true if the target machine supports masked load operation 1528 /// for the given \p DataType and kind of access to \p Ptr. 1529 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1530 return Legal->isConsecutivePtr(DataType, Ptr) && 1531 TTI.isLegalMaskedLoad(DataType, Alignment); 1532 } 1533 1534 /// Returns true if the target machine can represent \p V as a masked gather 1535 /// or scatter operation. 1536 bool isLegalGatherOrScatter(Value *V, 1537 ElementCount VF = ElementCount::getFixed(1)) { 1538 bool LI = isa<LoadInst>(V); 1539 bool SI = isa<StoreInst>(V); 1540 if (!LI && !SI) 1541 return false; 1542 auto *Ty = getLoadStoreType(V); 1543 Align Align = getLoadStoreAlignment(V); 1544 if (VF.isVector()) 1545 Ty = VectorType::get(Ty, VF); 1546 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1547 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1548 } 1549 1550 /// Returns true if the target machine supports all of the reduction 1551 /// variables found for the given VF. 1552 bool canVectorizeReductions(ElementCount VF) const { 1553 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1554 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1555 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1556 })); 1557 } 1558 1559 /// Returns true if \p I is an instruction that will be scalarized with 1560 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1561 /// instructions include conditional stores and instructions that may divide 1562 /// by zero. 1563 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1564 1565 // Returns true if \p I is an instruction that will be predicated either 1566 // through scalar predication or masked load/store or masked gather/scatter. 1567 // \p VF is the vectorization factor that will be used to vectorize \p I. 1568 // Superset of instructions that return true for isScalarWithPredication. 1569 bool isPredicatedInst(Instruction *I, ElementCount VF, 1570 bool IsKnownUniform = false) { 1571 // When we know the load is uniform and the original scalar loop was not 1572 // predicated we don't need to mark it as a predicated instruction. Any 1573 // vectorised blocks created when tail-folding are something artificial we 1574 // have introduced and we know there is always at least one active lane. 1575 // That's why we call Legal->blockNeedsPredication here because it doesn't 1576 // query tail-folding. 1577 if (IsKnownUniform && isa<LoadInst>(I) && 1578 !Legal->blockNeedsPredication(I->getParent())) 1579 return false; 1580 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1581 return false; 1582 // Loads and stores that need some form of masked operation are predicated 1583 // instructions. 1584 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1585 return Legal->isMaskRequired(I); 1586 return isScalarWithPredication(I, VF); 1587 } 1588 1589 /// Returns true if \p I is a memory instruction with consecutive memory 1590 /// access that can be widened. 1591 bool 1592 memoryInstructionCanBeWidened(Instruction *I, 1593 ElementCount VF = ElementCount::getFixed(1)); 1594 1595 /// Returns true if \p I is a memory instruction in an interleaved-group 1596 /// of memory accesses that can be vectorized with wide vector loads/stores 1597 /// and shuffles. 1598 bool 1599 interleavedAccessCanBeWidened(Instruction *I, 1600 ElementCount VF = ElementCount::getFixed(1)); 1601 1602 /// Check if \p Instr belongs to any interleaved access group. 1603 bool isAccessInterleaved(Instruction *Instr) { 1604 return InterleaveInfo.isInterleaved(Instr); 1605 } 1606 1607 /// Get the interleaved access group that \p Instr belongs to. 1608 const InterleaveGroup<Instruction> * 1609 getInterleavedAccessGroup(Instruction *Instr) { 1610 return InterleaveInfo.getInterleaveGroup(Instr); 1611 } 1612 1613 /// Returns true if we're required to use a scalar epilogue for at least 1614 /// the final iteration of the original loop. 1615 bool requiresScalarEpilogue(ElementCount VF) const { 1616 if (!isScalarEpilogueAllowed()) 1617 return false; 1618 // If we might exit from anywhere but the latch, must run the exiting 1619 // iteration in scalar form. 1620 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1621 return true; 1622 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1623 } 1624 1625 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1626 /// loop hint annotation. 1627 bool isScalarEpilogueAllowed() const { 1628 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1629 } 1630 1631 /// Returns true if all loop blocks should be masked to fold tail loop. 1632 bool foldTailByMasking() const { return FoldTailByMasking; } 1633 1634 /// Returns true if the instructions in this block requires predication 1635 /// for any reason, e.g. because tail folding now requires a predicate 1636 /// or because the block in the original loop was predicated. 1637 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1638 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1639 } 1640 1641 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1642 /// nodes to the chain of instructions representing the reductions. Uses a 1643 /// MapVector to ensure deterministic iteration order. 1644 using ReductionChainMap = 1645 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1646 1647 /// Return the chain of instructions representing an inloop reduction. 1648 const ReductionChainMap &getInLoopReductionChains() const { 1649 return InLoopReductionChains; 1650 } 1651 1652 /// Returns true if the Phi is part of an inloop reduction. 1653 bool isInLoopReduction(PHINode *Phi) const { 1654 return InLoopReductionChains.count(Phi); 1655 } 1656 1657 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1658 /// with factor VF. Return the cost of the instruction, including 1659 /// scalarization overhead if it's needed. 1660 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1661 1662 /// Estimate cost of a call instruction CI if it were vectorized with factor 1663 /// VF. Return the cost of the instruction, including scalarization overhead 1664 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1665 /// scalarized - 1666 /// i.e. either vector version isn't available, or is too expensive. 1667 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1668 bool &NeedToScalarize) const; 1669 1670 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1671 /// that of B. 1672 bool isMoreProfitable(const VectorizationFactor &A, 1673 const VectorizationFactor &B) const; 1674 1675 /// Invalidates decisions already taken by the cost model. 1676 void invalidateCostModelingDecisions() { 1677 WideningDecisions.clear(); 1678 Uniforms.clear(); 1679 Scalars.clear(); 1680 } 1681 1682 private: 1683 unsigned NumPredStores = 0; 1684 1685 /// Convenience function that returns the value of vscale_range iff 1686 /// vscale_range.min == vscale_range.max or otherwise returns the value 1687 /// returned by the corresponding TLI method. 1688 Optional<unsigned> getVScaleForTuning() const; 1689 1690 /// \return An upper bound for the vectorization factors for both 1691 /// fixed and scalable vectorization, where the minimum-known number of 1692 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1693 /// disabled or unsupported, then the scalable part will be equal to 1694 /// ElementCount::getScalable(0). 1695 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1696 ElementCount UserVF, 1697 bool FoldTailByMasking); 1698 1699 /// \return the maximized element count based on the targets vector 1700 /// registers and the loop trip-count, but limited to a maximum safe VF. 1701 /// This is a helper function of computeFeasibleMaxVF. 1702 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1703 /// issue that occurred on one of the buildbots which cannot be reproduced 1704 /// without having access to the properietary compiler (see comments on 1705 /// D98509). The issue is currently under investigation and this workaround 1706 /// will be removed as soon as possible. 1707 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1708 unsigned SmallestType, 1709 unsigned WidestType, 1710 const ElementCount &MaxSafeVF, 1711 bool FoldTailByMasking); 1712 1713 /// \return the maximum legal scalable VF, based on the safe max number 1714 /// of elements. 1715 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1716 1717 /// The vectorization cost is a combination of the cost itself and a boolean 1718 /// indicating whether any of the contributing operations will actually 1719 /// operate on vector values after type legalization in the backend. If this 1720 /// latter value is false, then all operations will be scalarized (i.e. no 1721 /// vectorization has actually taken place). 1722 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1723 1724 /// Returns the expected execution cost. The unit of the cost does 1725 /// not matter because we use the 'cost' units to compare different 1726 /// vector widths. The cost that is returned is *not* normalized by 1727 /// the factor width. If \p Invalid is not nullptr, this function 1728 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1729 /// each instruction that has an Invalid cost for the given VF. 1730 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1731 VectorizationCostTy 1732 expectedCost(ElementCount VF, 1733 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1734 1735 /// Returns the execution time cost of an instruction for a given vector 1736 /// width. Vector width of one means scalar. 1737 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1738 1739 /// The cost-computation logic from getInstructionCost which provides 1740 /// the vector type as an output parameter. 1741 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1742 Type *&VectorTy); 1743 1744 /// Return the cost of instructions in an inloop reduction pattern, if I is 1745 /// part of that pattern. 1746 Optional<InstructionCost> 1747 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1748 TTI::TargetCostKind CostKind); 1749 1750 /// Calculate vectorization cost of memory instruction \p I. 1751 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1752 1753 /// The cost computation for scalarized memory instruction. 1754 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1755 1756 /// The cost computation for interleaving group of memory instructions. 1757 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1758 1759 /// The cost computation for Gather/Scatter instruction. 1760 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1761 1762 /// The cost computation for widening instruction \p I with consecutive 1763 /// memory access. 1764 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1765 1766 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1767 /// Load: scalar load + broadcast. 1768 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1769 /// element) 1770 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1771 1772 /// Estimate the overhead of scalarizing an instruction. This is a 1773 /// convenience wrapper for the type-based getScalarizationOverhead API. 1774 InstructionCost getScalarizationOverhead(Instruction *I, 1775 ElementCount VF) const; 1776 1777 /// Returns whether the instruction is a load or store and will be a emitted 1778 /// as a vector operation. 1779 bool isConsecutiveLoadOrStore(Instruction *I); 1780 1781 /// Returns true if an artificially high cost for emulated masked memrefs 1782 /// should be used. 1783 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1784 1785 /// Map of scalar integer values to the smallest bitwidth they can be legally 1786 /// represented as. The vector equivalents of these values should be truncated 1787 /// to this type. 1788 MapVector<Instruction *, uint64_t> MinBWs; 1789 1790 /// A type representing the costs for instructions if they were to be 1791 /// scalarized rather than vectorized. The entries are Instruction-Cost 1792 /// pairs. 1793 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1794 1795 /// A set containing all BasicBlocks that are known to present after 1796 /// vectorization as a predicated block. 1797 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1798 1799 /// Records whether it is allowed to have the original scalar loop execute at 1800 /// least once. This may be needed as a fallback loop in case runtime 1801 /// aliasing/dependence checks fail, or to handle the tail/remainder 1802 /// iterations when the trip count is unknown or doesn't divide by the VF, 1803 /// or as a peel-loop to handle gaps in interleave-groups. 1804 /// Under optsize and when the trip count is very small we don't allow any 1805 /// iterations to execute in the scalar loop. 1806 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1807 1808 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1809 bool FoldTailByMasking = false; 1810 1811 /// A map holding scalar costs for different vectorization factors. The 1812 /// presence of a cost for an instruction in the mapping indicates that the 1813 /// instruction will be scalarized when vectorizing with the associated 1814 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1815 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1816 1817 /// Holds the instructions known to be uniform after vectorization. 1818 /// The data is collected per VF. 1819 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1820 1821 /// Holds the instructions known to be scalar after vectorization. 1822 /// The data is collected per VF. 1823 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1824 1825 /// Holds the instructions (address computations) that are forced to be 1826 /// scalarized. 1827 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1828 1829 /// PHINodes of the reductions that should be expanded in-loop along with 1830 /// their associated chains of reduction operations, in program order from top 1831 /// (PHI) to bottom 1832 ReductionChainMap InLoopReductionChains; 1833 1834 /// A Map of inloop reduction operations and their immediate chain operand. 1835 /// FIXME: This can be removed once reductions can be costed correctly in 1836 /// vplan. This was added to allow quick lookup to the inloop operations, 1837 /// without having to loop through InLoopReductionChains. 1838 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1839 1840 /// Returns the expected difference in cost from scalarizing the expression 1841 /// feeding a predicated instruction \p PredInst. The instructions to 1842 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1843 /// non-negative return value implies the expression will be scalarized. 1844 /// Currently, only single-use chains are considered for scalarization. 1845 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1846 ElementCount VF); 1847 1848 /// Collect the instructions that are uniform after vectorization. An 1849 /// instruction is uniform if we represent it with a single scalar value in 1850 /// the vectorized loop corresponding to each vector iteration. Examples of 1851 /// uniform instructions include pointer operands of consecutive or 1852 /// interleaved memory accesses. Note that although uniformity implies an 1853 /// instruction will be scalar, the reverse is not true. In general, a 1854 /// scalarized instruction will be represented by VF scalar values in the 1855 /// vectorized loop, each corresponding to an iteration of the original 1856 /// scalar loop. 1857 void collectLoopUniforms(ElementCount VF); 1858 1859 /// Collect the instructions that are scalar after vectorization. An 1860 /// instruction is scalar if it is known to be uniform or will be scalarized 1861 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1862 /// to the list if they are used by a load/store instruction that is marked as 1863 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1864 /// VF values in the vectorized loop, each corresponding to an iteration of 1865 /// the original scalar loop. 1866 void collectLoopScalars(ElementCount VF); 1867 1868 /// Keeps cost model vectorization decision and cost for instructions. 1869 /// Right now it is used for memory instructions only. 1870 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1871 std::pair<InstWidening, InstructionCost>>; 1872 1873 DecisionList WideningDecisions; 1874 1875 /// Returns true if \p V is expected to be vectorized and it needs to be 1876 /// extracted. 1877 bool needsExtract(Value *V, ElementCount VF) const { 1878 Instruction *I = dyn_cast<Instruction>(V); 1879 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1880 TheLoop->isLoopInvariant(I)) 1881 return false; 1882 1883 // Assume we can vectorize V (and hence we need extraction) if the 1884 // scalars are not computed yet. This can happen, because it is called 1885 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1886 // the scalars are collected. That should be a safe assumption in most 1887 // cases, because we check if the operands have vectorizable types 1888 // beforehand in LoopVectorizationLegality. 1889 return Scalars.find(VF) == Scalars.end() || 1890 !isScalarAfterVectorization(I, VF); 1891 }; 1892 1893 /// Returns a range containing only operands needing to be extracted. 1894 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1895 ElementCount VF) const { 1896 return SmallVector<Value *, 4>(make_filter_range( 1897 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1898 } 1899 1900 /// Determines if we have the infrastructure to vectorize loop \p L and its 1901 /// epilogue, assuming the main loop is vectorized by \p VF. 1902 bool isCandidateForEpilogueVectorization(const Loop &L, 1903 const ElementCount VF) const; 1904 1905 /// Returns true if epilogue vectorization is considered profitable, and 1906 /// false otherwise. 1907 /// \p VF is the vectorization factor chosen for the original loop. 1908 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1909 1910 public: 1911 /// The loop that we evaluate. 1912 Loop *TheLoop; 1913 1914 /// Predicated scalar evolution analysis. 1915 PredicatedScalarEvolution &PSE; 1916 1917 /// Loop Info analysis. 1918 LoopInfo *LI; 1919 1920 /// Vectorization legality. 1921 LoopVectorizationLegality *Legal; 1922 1923 /// Vector target information. 1924 const TargetTransformInfo &TTI; 1925 1926 /// Target Library Info. 1927 const TargetLibraryInfo *TLI; 1928 1929 /// Demanded bits analysis. 1930 DemandedBits *DB; 1931 1932 /// Assumption cache. 1933 AssumptionCache *AC; 1934 1935 /// Interface to emit optimization remarks. 1936 OptimizationRemarkEmitter *ORE; 1937 1938 const Function *TheFunction; 1939 1940 /// Loop Vectorize Hint. 1941 const LoopVectorizeHints *Hints; 1942 1943 /// The interleave access information contains groups of interleaved accesses 1944 /// with the same stride and close to each other. 1945 InterleavedAccessInfo &InterleaveInfo; 1946 1947 /// Values to ignore in the cost model. 1948 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1949 1950 /// Values to ignore in the cost model when VF > 1. 1951 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1952 1953 /// All element types found in the loop. 1954 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1955 1956 /// Profitable vector factors. 1957 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1958 }; 1959 } // end namespace llvm 1960 1961 /// Helper struct to manage generating runtime checks for vectorization. 1962 /// 1963 /// The runtime checks are created up-front in temporary blocks to allow better 1964 /// estimating the cost and un-linked from the existing IR. After deciding to 1965 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1966 /// temporary blocks are completely removed. 1967 class GeneratedRTChecks { 1968 /// Basic block which contains the generated SCEV checks, if any. 1969 BasicBlock *SCEVCheckBlock = nullptr; 1970 1971 /// The value representing the result of the generated SCEV checks. If it is 1972 /// nullptr, either no SCEV checks have been generated or they have been used. 1973 Value *SCEVCheckCond = nullptr; 1974 1975 /// Basic block which contains the generated memory runtime checks, if any. 1976 BasicBlock *MemCheckBlock = nullptr; 1977 1978 /// The value representing the result of the generated memory runtime checks. 1979 /// If it is nullptr, either no memory runtime checks have been generated or 1980 /// they have been used. 1981 Value *MemRuntimeCheckCond = nullptr; 1982 1983 DominatorTree *DT; 1984 LoopInfo *LI; 1985 1986 SCEVExpander SCEVExp; 1987 SCEVExpander MemCheckExp; 1988 1989 public: 1990 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1991 const DataLayout &DL) 1992 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1993 MemCheckExp(SE, DL, "scev.check") {} 1994 1995 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1996 /// accurately estimate the cost of the runtime checks. The blocks are 1997 /// un-linked from the IR and is added back during vector code generation. If 1998 /// there is no vector code generation, the check blocks are removed 1999 /// completely. 2000 void Create(Loop *L, const LoopAccessInfo &LAI, 2001 const SCEVUnionPredicate &UnionPred) { 2002 2003 BasicBlock *LoopHeader = L->getHeader(); 2004 BasicBlock *Preheader = L->getLoopPreheader(); 2005 2006 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 2007 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 2008 // may be used by SCEVExpander. The blocks will be un-linked from their 2009 // predecessors and removed from LI & DT at the end of the function. 2010 if (!UnionPred.isAlwaysTrue()) { 2011 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 2012 nullptr, "vector.scevcheck"); 2013 2014 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 2015 &UnionPred, SCEVCheckBlock->getTerminator()); 2016 } 2017 2018 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 2019 if (RtPtrChecking.Need) { 2020 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2021 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2022 "vector.memcheck"); 2023 2024 MemRuntimeCheckCond = 2025 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2026 RtPtrChecking.getChecks(), MemCheckExp); 2027 assert(MemRuntimeCheckCond && 2028 "no RT checks generated although RtPtrChecking " 2029 "claimed checks are required"); 2030 } 2031 2032 if (!MemCheckBlock && !SCEVCheckBlock) 2033 return; 2034 2035 // Unhook the temporary block with the checks, update various places 2036 // accordingly. 2037 if (SCEVCheckBlock) 2038 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2039 if (MemCheckBlock) 2040 MemCheckBlock->replaceAllUsesWith(Preheader); 2041 2042 if (SCEVCheckBlock) { 2043 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2044 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2045 Preheader->getTerminator()->eraseFromParent(); 2046 } 2047 if (MemCheckBlock) { 2048 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2049 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2050 Preheader->getTerminator()->eraseFromParent(); 2051 } 2052 2053 DT->changeImmediateDominator(LoopHeader, Preheader); 2054 if (MemCheckBlock) { 2055 DT->eraseNode(MemCheckBlock); 2056 LI->removeBlock(MemCheckBlock); 2057 } 2058 if (SCEVCheckBlock) { 2059 DT->eraseNode(SCEVCheckBlock); 2060 LI->removeBlock(SCEVCheckBlock); 2061 } 2062 } 2063 2064 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2065 /// unused. 2066 ~GeneratedRTChecks() { 2067 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2068 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2069 if (!SCEVCheckCond) 2070 SCEVCleaner.markResultUsed(); 2071 2072 if (!MemRuntimeCheckCond) 2073 MemCheckCleaner.markResultUsed(); 2074 2075 if (MemRuntimeCheckCond) { 2076 auto &SE = *MemCheckExp.getSE(); 2077 // Memory runtime check generation creates compares that use expanded 2078 // values. Remove them before running the SCEVExpanderCleaners. 2079 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2080 if (MemCheckExp.isInsertedInstruction(&I)) 2081 continue; 2082 SE.forgetValue(&I); 2083 I.eraseFromParent(); 2084 } 2085 } 2086 MemCheckCleaner.cleanup(); 2087 SCEVCleaner.cleanup(); 2088 2089 if (SCEVCheckCond) 2090 SCEVCheckBlock->eraseFromParent(); 2091 if (MemRuntimeCheckCond) 2092 MemCheckBlock->eraseFromParent(); 2093 } 2094 2095 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2096 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2097 /// depending on the generated condition. 2098 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2099 BasicBlock *LoopVectorPreHeader, 2100 BasicBlock *LoopExitBlock) { 2101 if (!SCEVCheckCond) 2102 return nullptr; 2103 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2104 if (C->isZero()) 2105 return nullptr; 2106 2107 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2108 2109 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2110 // Create new preheader for vector loop. 2111 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2112 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2113 2114 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2115 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2116 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2117 SCEVCheckBlock); 2118 2119 DT->addNewBlock(SCEVCheckBlock, Pred); 2120 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2121 2122 ReplaceInstWithInst( 2123 SCEVCheckBlock->getTerminator(), 2124 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2125 // Mark the check as used, to prevent it from being removed during cleanup. 2126 SCEVCheckCond = nullptr; 2127 return SCEVCheckBlock; 2128 } 2129 2130 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2131 /// the branches to branch to the vector preheader or \p Bypass, depending on 2132 /// the generated condition. 2133 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2134 BasicBlock *LoopVectorPreHeader) { 2135 // Check if we generated code that checks in runtime if arrays overlap. 2136 if (!MemRuntimeCheckCond) 2137 return nullptr; 2138 2139 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2140 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2141 MemCheckBlock); 2142 2143 DT->addNewBlock(MemCheckBlock, Pred); 2144 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2145 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2146 2147 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2148 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2149 2150 ReplaceInstWithInst( 2151 MemCheckBlock->getTerminator(), 2152 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2153 MemCheckBlock->getTerminator()->setDebugLoc( 2154 Pred->getTerminator()->getDebugLoc()); 2155 2156 // Mark the check as used, to prevent it from being removed during cleanup. 2157 MemRuntimeCheckCond = nullptr; 2158 return MemCheckBlock; 2159 } 2160 }; 2161 2162 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2163 // vectorization. The loop needs to be annotated with #pragma omp simd 2164 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2165 // vector length information is not provided, vectorization is not considered 2166 // explicit. Interleave hints are not allowed either. These limitations will be 2167 // relaxed in the future. 2168 // Please, note that we are currently forced to abuse the pragma 'clang 2169 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2170 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2171 // provides *explicit vectorization hints* (LV can bypass legal checks and 2172 // assume that vectorization is legal). However, both hints are implemented 2173 // using the same metadata (llvm.loop.vectorize, processed by 2174 // LoopVectorizeHints). This will be fixed in the future when the native IR 2175 // representation for pragma 'omp simd' is introduced. 2176 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2177 OptimizationRemarkEmitter *ORE) { 2178 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2179 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2180 2181 // Only outer loops with an explicit vectorization hint are supported. 2182 // Unannotated outer loops are ignored. 2183 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2184 return false; 2185 2186 Function *Fn = OuterLp->getHeader()->getParent(); 2187 if (!Hints.allowVectorization(Fn, OuterLp, 2188 true /*VectorizeOnlyWhenForced*/)) { 2189 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2190 return false; 2191 } 2192 2193 if (Hints.getInterleave() > 1) { 2194 // TODO: Interleave support is future work. 2195 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2196 "outer loops.\n"); 2197 Hints.emitRemarkWithHints(); 2198 return false; 2199 } 2200 2201 return true; 2202 } 2203 2204 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2205 OptimizationRemarkEmitter *ORE, 2206 SmallVectorImpl<Loop *> &V) { 2207 // Collect inner loops and outer loops without irreducible control flow. For 2208 // now, only collect outer loops that have explicit vectorization hints. If we 2209 // are stress testing the VPlan H-CFG construction, we collect the outermost 2210 // loop of every loop nest. 2211 if (L.isInnermost() || VPlanBuildStressTest || 2212 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2213 LoopBlocksRPO RPOT(&L); 2214 RPOT.perform(LI); 2215 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2216 V.push_back(&L); 2217 // TODO: Collect inner loops inside marked outer loops in case 2218 // vectorization fails for the outer loop. Do not invoke 2219 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2220 // already known to be reducible. We can use an inherited attribute for 2221 // that. 2222 return; 2223 } 2224 } 2225 for (Loop *InnerL : L) 2226 collectSupportedLoops(*InnerL, LI, ORE, V); 2227 } 2228 2229 namespace { 2230 2231 /// The LoopVectorize Pass. 2232 struct LoopVectorize : public FunctionPass { 2233 /// Pass identification, replacement for typeid 2234 static char ID; 2235 2236 LoopVectorizePass Impl; 2237 2238 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2239 bool VectorizeOnlyWhenForced = false) 2240 : FunctionPass(ID), 2241 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2242 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2243 } 2244 2245 bool runOnFunction(Function &F) override { 2246 if (skipFunction(F)) 2247 return false; 2248 2249 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2250 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2251 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2252 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2253 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2254 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2255 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2256 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2257 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2258 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2259 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2260 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2261 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2262 2263 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2264 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2265 2266 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2267 GetLAA, *ORE, PSI).MadeAnyChange; 2268 } 2269 2270 void getAnalysisUsage(AnalysisUsage &AU) const override { 2271 AU.addRequired<AssumptionCacheTracker>(); 2272 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2273 AU.addRequired<DominatorTreeWrapperPass>(); 2274 AU.addRequired<LoopInfoWrapperPass>(); 2275 AU.addRequired<ScalarEvolutionWrapperPass>(); 2276 AU.addRequired<TargetTransformInfoWrapperPass>(); 2277 AU.addRequired<AAResultsWrapperPass>(); 2278 AU.addRequired<LoopAccessLegacyAnalysis>(); 2279 AU.addRequired<DemandedBitsWrapperPass>(); 2280 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2281 AU.addRequired<InjectTLIMappingsLegacy>(); 2282 2283 // We currently do not preserve loopinfo/dominator analyses with outer loop 2284 // vectorization. Until this is addressed, mark these analyses as preserved 2285 // only for non-VPlan-native path. 2286 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2287 if (!EnableVPlanNativePath) { 2288 AU.addPreserved<LoopInfoWrapperPass>(); 2289 AU.addPreserved<DominatorTreeWrapperPass>(); 2290 } 2291 2292 AU.addPreserved<BasicAAWrapperPass>(); 2293 AU.addPreserved<GlobalsAAWrapperPass>(); 2294 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2295 } 2296 }; 2297 2298 } // end anonymous namespace 2299 2300 //===----------------------------------------------------------------------===// 2301 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2302 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2303 //===----------------------------------------------------------------------===// 2304 2305 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2306 // We need to place the broadcast of invariant variables outside the loop, 2307 // but only if it's proven safe to do so. Else, broadcast will be inside 2308 // vector loop body. 2309 Instruction *Instr = dyn_cast<Instruction>(V); 2310 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2311 (!Instr || 2312 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2313 // Place the code for broadcasting invariant variables in the new preheader. 2314 IRBuilder<>::InsertPointGuard Guard(Builder); 2315 if (SafeToHoist) 2316 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2317 2318 // Broadcast the scalar into all locations in the vector. 2319 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2320 2321 return Shuf; 2322 } 2323 2324 /// This function adds 2325 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2326 /// to each vector element of Val. The sequence starts at StartIndex. 2327 /// \p Opcode is relevant for FP induction variable. 2328 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2329 Instruction::BinaryOps BinOp, ElementCount VF, 2330 IRBuilderBase &Builder) { 2331 assert(VF.isVector() && "only vector VFs are supported"); 2332 2333 // Create and check the types. 2334 auto *ValVTy = cast<VectorType>(Val->getType()); 2335 ElementCount VLen = ValVTy->getElementCount(); 2336 2337 Type *STy = Val->getType()->getScalarType(); 2338 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2339 "Induction Step must be an integer or FP"); 2340 assert(Step->getType() == STy && "Step has wrong type"); 2341 2342 SmallVector<Constant *, 8> Indices; 2343 2344 // Create a vector of consecutive numbers from zero to VF. 2345 VectorType *InitVecValVTy = ValVTy; 2346 Type *InitVecValSTy = STy; 2347 if (STy->isFloatingPointTy()) { 2348 InitVecValSTy = 2349 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2350 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2351 } 2352 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2353 2354 // Splat the StartIdx 2355 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2356 2357 if (STy->isIntegerTy()) { 2358 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2359 Step = Builder.CreateVectorSplat(VLen, Step); 2360 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2361 // FIXME: The newly created binary instructions should contain nsw/nuw 2362 // flags, which can be found from the original scalar operations. 2363 Step = Builder.CreateMul(InitVec, Step); 2364 return Builder.CreateAdd(Val, Step, "induction"); 2365 } 2366 2367 // Floating point induction. 2368 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2369 "Binary Opcode should be specified for FP induction"); 2370 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2371 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2372 2373 Step = Builder.CreateVectorSplat(VLen, Step); 2374 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2375 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2376 } 2377 2378 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2379 const InductionDescriptor &II, Value *Step, Value *Start, 2380 Instruction *EntryVal, VPValue *Def, VPTransformState &State) { 2381 IRBuilderBase &Builder = State.Builder; 2382 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2383 "Expected either an induction phi-node or a truncate of it!"); 2384 2385 // Construct the initial value of the vector IV in the vector loop preheader 2386 auto CurrIP = Builder.saveIP(); 2387 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2388 if (isa<TruncInst>(EntryVal)) { 2389 assert(Start->getType()->isIntegerTy() && 2390 "Truncation requires an integer type"); 2391 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2392 Step = Builder.CreateTrunc(Step, TruncType); 2393 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2394 } 2395 2396 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2397 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 2398 Value *SteppedStart = getStepVector( 2399 SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder); 2400 2401 // We create vector phi nodes for both integer and floating-point induction 2402 // variables. Here, we determine the kind of arithmetic we will perform. 2403 Instruction::BinaryOps AddOp; 2404 Instruction::BinaryOps MulOp; 2405 if (Step->getType()->isIntegerTy()) { 2406 AddOp = Instruction::Add; 2407 MulOp = Instruction::Mul; 2408 } else { 2409 AddOp = II.getInductionOpcode(); 2410 MulOp = Instruction::FMul; 2411 } 2412 2413 // Multiply the vectorization factor by the step using integer or 2414 // floating-point arithmetic as appropriate. 2415 Type *StepType = Step->getType(); 2416 Value *RuntimeVF; 2417 if (Step->getType()->isFloatingPointTy()) 2418 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 2419 else 2420 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 2421 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2422 2423 // Create a vector splat to use in the induction update. 2424 // 2425 // FIXME: If the step is non-constant, we create the vector splat with 2426 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2427 // handle a constant vector splat. 2428 Value *SplatVF = isa<Constant>(Mul) 2429 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 2430 : Builder.CreateVectorSplat(State.VF, Mul); 2431 Builder.restoreIP(CurrIP); 2432 2433 // We may need to add the step a number of times, depending on the unroll 2434 // factor. The last of those goes into the PHI. 2435 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2436 &*LoopVectorBody->getFirstInsertionPt()); 2437 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2438 Instruction *LastInduction = VecInd; 2439 for (unsigned Part = 0; Part < UF; ++Part) { 2440 State.set(Def, LastInduction, Part); 2441 2442 if (isa<TruncInst>(EntryVal)) 2443 addMetadata(LastInduction, EntryVal); 2444 2445 LastInduction = cast<Instruction>( 2446 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2447 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2448 } 2449 2450 // Move the last step to the end of the latch block. This ensures consistent 2451 // placement of all induction updates. 2452 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2453 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2454 LastInduction->moveBefore(Br); 2455 LastInduction->setName("vec.ind.next"); 2456 2457 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2458 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2459 } 2460 2461 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2462 /// variable on which to base the steps, \p Step is the size of the step, and 2463 /// \p EntryVal is the value from the original loop that maps to the steps. 2464 /// Note that \p EntryVal doesn't have to be an induction variable - it 2465 /// can also be a truncate instruction. 2466 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2467 Instruction *EntryVal, 2468 const InductionDescriptor &ID, VPValue *Def, 2469 VPTransformState &State) { 2470 IRBuilderBase &Builder = State.Builder; 2471 // We shouldn't have to build scalar steps if we aren't vectorizing. 2472 assert(State.VF.isVector() && "VF should be greater than one"); 2473 // Get the value type and ensure it and the step have the same integer type. 2474 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2475 assert(ScalarIVTy == Step->getType() && 2476 "Val and Step should have the same type"); 2477 2478 // We build scalar steps for both integer and floating-point induction 2479 // variables. Here, we determine the kind of arithmetic we will perform. 2480 Instruction::BinaryOps AddOp; 2481 Instruction::BinaryOps MulOp; 2482 if (ScalarIVTy->isIntegerTy()) { 2483 AddOp = Instruction::Add; 2484 MulOp = Instruction::Mul; 2485 } else { 2486 AddOp = ID.getInductionOpcode(); 2487 MulOp = Instruction::FMul; 2488 } 2489 2490 // Determine the number of scalars we need to generate for each unroll 2491 // iteration. 2492 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2493 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2494 // Compute the scalar steps and save the results in State. 2495 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2496 ScalarIVTy->getScalarSizeInBits()); 2497 Type *VecIVTy = nullptr; 2498 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2499 if (!FirstLaneOnly && State.VF.isScalable()) { 2500 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2501 UnitStepVec = 2502 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2503 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2504 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2505 } 2506 2507 for (unsigned Part = 0; Part < State.UF; ++Part) { 2508 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2509 2510 if (!FirstLaneOnly && State.VF.isScalable()) { 2511 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2512 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2513 if (ScalarIVTy->isFloatingPointTy()) 2514 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2515 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2516 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2517 State.set(Def, Add, Part); 2518 // It's useful to record the lane values too for the known minimum number 2519 // of elements so we do those below. This improves the code quality when 2520 // trying to extract the first element, for example. 2521 } 2522 2523 if (ScalarIVTy->isFloatingPointTy()) 2524 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2525 2526 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2527 Value *StartIdx = Builder.CreateBinOp( 2528 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2529 // The step returned by `createStepForVF` is a runtime-evaluated value 2530 // when VF is scalable. Otherwise, it should be folded into a Constant. 2531 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2532 "Expected StartIdx to be folded to a constant when VF is not " 2533 "scalable"); 2534 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2535 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2536 State.set(Def, Add, VPIteration(Part, Lane)); 2537 } 2538 } 2539 } 2540 2541 // Generate code for the induction step. Note that induction steps are 2542 // required to be loop-invariant 2543 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2544 Instruction *InsertBefore, 2545 Loop *OrigLoop = nullptr) { 2546 const DataLayout &DL = SE.getDataLayout(); 2547 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2548 "Induction step should be loop invariant"); 2549 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2550 return E->getValue(); 2551 2552 SCEVExpander Exp(SE, DL, "induction"); 2553 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2554 } 2555 2556 /// Compute the transformed value of Index at offset StartValue using step 2557 /// StepValue. 2558 /// For integer induction, returns StartValue + Index * StepValue. 2559 /// For pointer induction, returns StartValue[Index * StepValue]. 2560 /// FIXME: The newly created binary instructions should contain nsw/nuw 2561 /// flags, which can be found from the original scalar operations. 2562 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *Step, 2563 const InductionDescriptor &ID) { 2564 2565 auto StartValue = ID.getStartValue(); 2566 assert(Index->getType()->getScalarType() == Step->getType() && 2567 "Index scalar type does not match StepValue type"); 2568 2569 // Note: the IR at this point is broken. We cannot use SE to create any new 2570 // SCEV and then expand it, hoping that SCEV's simplification will give us 2571 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2572 // lead to various SCEV crashes. So all we can do is to use builder and rely 2573 // on InstCombine for future simplifications. Here we handle some trivial 2574 // cases only. 2575 auto CreateAdd = [&B](Value *X, Value *Y) { 2576 assert(X->getType() == Y->getType() && "Types don't match!"); 2577 if (auto *CX = dyn_cast<ConstantInt>(X)) 2578 if (CX->isZero()) 2579 return Y; 2580 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2581 if (CY->isZero()) 2582 return X; 2583 return B.CreateAdd(X, Y); 2584 }; 2585 2586 // We allow X to be a vector type, in which case Y will potentially be 2587 // splatted into a vector with the same element count. 2588 auto CreateMul = [&B](Value *X, Value *Y) { 2589 assert(X->getType()->getScalarType() == Y->getType() && 2590 "Types don't match!"); 2591 if (auto *CX = dyn_cast<ConstantInt>(X)) 2592 if (CX->isOne()) 2593 return Y; 2594 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2595 if (CY->isOne()) 2596 return X; 2597 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2598 if (XVTy && !isa<VectorType>(Y->getType())) 2599 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2600 return B.CreateMul(X, Y); 2601 }; 2602 2603 switch (ID.getKind()) { 2604 case InductionDescriptor::IK_IntInduction: { 2605 assert(!isa<VectorType>(Index->getType()) && 2606 "Vector indices not supported for integer inductions yet"); 2607 assert(Index->getType() == StartValue->getType() && 2608 "Index type does not match StartValue type"); 2609 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2610 return B.CreateSub(StartValue, Index); 2611 auto *Offset = CreateMul(Index, Step); 2612 return CreateAdd(StartValue, Offset); 2613 } 2614 case InductionDescriptor::IK_PtrInduction: { 2615 assert(isa<Constant>(Step) && 2616 "Expected constant step for pointer induction"); 2617 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2618 } 2619 case InductionDescriptor::IK_FpInduction: { 2620 assert(!isa<VectorType>(Index->getType()) && 2621 "Vector indices not supported for FP inductions yet"); 2622 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2623 auto InductionBinOp = ID.getInductionBinOp(); 2624 assert(InductionBinOp && 2625 (InductionBinOp->getOpcode() == Instruction::FAdd || 2626 InductionBinOp->getOpcode() == Instruction::FSub) && 2627 "Original bin op should be defined for FP induction"); 2628 2629 Value *MulExp = B.CreateFMul(Step, Index); 2630 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2631 "induction"); 2632 } 2633 case InductionDescriptor::IK_NoInduction: 2634 return nullptr; 2635 } 2636 llvm_unreachable("invalid enum"); 2637 } 2638 2639 void InnerLoopVectorizer::widenIntOrFpInduction( 2640 PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State, 2641 Value *CanonicalIV) { 2642 Value *Start = Def->getStartValue()->getLiveInIRValue(); 2643 const InductionDescriptor &ID = Def->getInductionDescriptor(); 2644 TruncInst *Trunc = Def->getTruncInst(); 2645 IRBuilderBase &Builder = State.Builder; 2646 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2647 assert(!State.VF.isZero() && "VF must be non-zero"); 2648 2649 // The value from the original loop to which we are mapping the new induction 2650 // variable. 2651 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2652 2653 auto &DL = EntryVal->getModule()->getDataLayout(); 2654 2655 // Generate code for the induction step. Note that induction steps are 2656 // required to be loop-invariant 2657 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2658 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2659 "Induction step should be loop invariant"); 2660 if (PSE.getSE()->isSCEVable(IV->getType())) { 2661 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2662 return Exp.expandCodeFor(Step, Step->getType(), 2663 State.CFG.VectorPreHeader->getTerminator()); 2664 } 2665 return cast<SCEVUnknown>(Step)->getValue(); 2666 }; 2667 2668 // The scalar value to broadcast. This is derived from the canonical 2669 // induction variable. If a truncation type is given, truncate the canonical 2670 // induction variable and step. Otherwise, derive these values from the 2671 // induction descriptor. 2672 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2673 Value *ScalarIV = CanonicalIV; 2674 Type *NeededType = IV->getType(); 2675 if (!Def->isCanonical() || ScalarIV->getType() != NeededType) { 2676 ScalarIV = 2677 NeededType->isIntegerTy() 2678 ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType) 2679 : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType); 2680 ScalarIV = emitTransformedIndex(Builder, ScalarIV, Step, ID); 2681 ScalarIV->setName("offset.idx"); 2682 } 2683 if (Trunc) { 2684 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2685 assert(Step->getType()->isIntegerTy() && 2686 "Truncation requires an integer step"); 2687 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2688 Step = Builder.CreateTrunc(Step, TruncType); 2689 } 2690 return ScalarIV; 2691 }; 2692 2693 // Fast-math-flags propagate from the original induction instruction. 2694 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2695 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2696 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2697 2698 // Now do the actual transformations, and start with creating the step value. 2699 Value *Step = CreateStepValue(ID.getStep()); 2700 if (State.VF.isScalar()) { 2701 Value *ScalarIV = CreateScalarIV(Step); 2702 Type *ScalarTy = IntegerType::get(ScalarIV->getContext(), 2703 Step->getType()->getScalarSizeInBits()); 2704 2705 Instruction::BinaryOps IncOp = ID.getInductionOpcode(); 2706 if (IncOp == Instruction::BinaryOpsEnd) 2707 IncOp = Instruction::Add; 2708 for (unsigned Part = 0; Part < UF; ++Part) { 2709 Value *StartIdx = ConstantInt::get(ScalarTy, Part); 2710 Instruction::BinaryOps MulOp = Instruction::Mul; 2711 if (Step->getType()->isFloatingPointTy()) { 2712 StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType()); 2713 MulOp = Instruction::FMul; 2714 } 2715 2716 Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2717 Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction"); 2718 State.set(Def, EntryPart, Part); 2719 if (Trunc) { 2720 assert(!Step->getType()->isFloatingPointTy() && 2721 "fp inductions shouldn't be truncated"); 2722 addMetadata(EntryPart, Trunc); 2723 } 2724 } 2725 return; 2726 } 2727 2728 // Create a new independent vector induction variable, if one is needed. 2729 if (Def->needsVectorIV()) 2730 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2731 2732 if (Def->needsScalarIV()) { 2733 // Create scalar steps that can be used by instructions we will later 2734 // scalarize. Note that the addition of the scalar steps will not increase 2735 // the number of instructions in the loop in the common case prior to 2736 // InstCombine. We will be trading one vector extract for each scalar step. 2737 Value *ScalarIV = CreateScalarIV(Step); 2738 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2739 } 2740 } 2741 2742 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2743 const VPIteration &Instance, 2744 VPTransformState &State) { 2745 Value *ScalarInst = State.get(Def, Instance); 2746 Value *VectorValue = State.get(Def, Instance.Part); 2747 VectorValue = Builder.CreateInsertElement( 2748 VectorValue, ScalarInst, 2749 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2750 State.set(Def, VectorValue, Instance.Part); 2751 } 2752 2753 // Return whether we allow using masked interleave-groups (for dealing with 2754 // strided loads/stores that reside in predicated blocks, or for dealing 2755 // with gaps). 2756 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2757 // If an override option has been passed in for interleaved accesses, use it. 2758 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2759 return EnableMaskedInterleavedMemAccesses; 2760 2761 return TTI.enableMaskedInterleavedAccessVectorization(); 2762 } 2763 2764 // Try to vectorize the interleave group that \p Instr belongs to. 2765 // 2766 // E.g. Translate following interleaved load group (factor = 3): 2767 // for (i = 0; i < N; i+=3) { 2768 // R = Pic[i]; // Member of index 0 2769 // G = Pic[i+1]; // Member of index 1 2770 // B = Pic[i+2]; // Member of index 2 2771 // ... // do something to R, G, B 2772 // } 2773 // To: 2774 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2775 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2776 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2777 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2778 // 2779 // Or translate following interleaved store group (factor = 3): 2780 // for (i = 0; i < N; i+=3) { 2781 // ... do something to R, G, B 2782 // Pic[i] = R; // Member of index 0 2783 // Pic[i+1] = G; // Member of index 1 2784 // Pic[i+2] = B; // Member of index 2 2785 // } 2786 // To: 2787 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2788 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2789 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2790 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2791 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2792 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2793 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2794 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2795 VPValue *BlockInMask) { 2796 Instruction *Instr = Group->getInsertPos(); 2797 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2798 2799 // Prepare for the vector type of the interleaved load/store. 2800 Type *ScalarTy = getLoadStoreType(Instr); 2801 unsigned InterleaveFactor = Group->getFactor(); 2802 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2803 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2804 2805 // Prepare for the new pointers. 2806 SmallVector<Value *, 2> AddrParts; 2807 unsigned Index = Group->getIndex(Instr); 2808 2809 // TODO: extend the masked interleaved-group support to reversed access. 2810 assert((!BlockInMask || !Group->isReverse()) && 2811 "Reversed masked interleave-group not supported."); 2812 2813 // If the group is reverse, adjust the index to refer to the last vector lane 2814 // instead of the first. We adjust the index from the first vector lane, 2815 // rather than directly getting the pointer for lane VF - 1, because the 2816 // pointer operand of the interleaved access is supposed to be uniform. For 2817 // uniform instructions, we're only required to generate a value for the 2818 // first vector lane in each unroll iteration. 2819 if (Group->isReverse()) 2820 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2821 2822 for (unsigned Part = 0; Part < UF; Part++) { 2823 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2824 setDebugLocFromInst(AddrPart); 2825 2826 // Notice current instruction could be any index. Need to adjust the address 2827 // to the member of index 0. 2828 // 2829 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2830 // b = A[i]; // Member of index 0 2831 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2832 // 2833 // E.g. A[i+1] = a; // Member of index 1 2834 // A[i] = b; // Member of index 0 2835 // A[i+2] = c; // Member of index 2 (Current instruction) 2836 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2837 2838 bool InBounds = false; 2839 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2840 InBounds = gep->isInBounds(); 2841 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2842 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2843 2844 // Cast to the vector pointer type. 2845 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2846 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2847 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2848 } 2849 2850 setDebugLocFromInst(Instr); 2851 Value *PoisonVec = PoisonValue::get(VecTy); 2852 2853 Value *MaskForGaps = nullptr; 2854 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2855 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2856 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2857 } 2858 2859 // Vectorize the interleaved load group. 2860 if (isa<LoadInst>(Instr)) { 2861 // For each unroll part, create a wide load for the group. 2862 SmallVector<Value *, 2> NewLoads; 2863 for (unsigned Part = 0; Part < UF; Part++) { 2864 Instruction *NewLoad; 2865 if (BlockInMask || MaskForGaps) { 2866 assert(useMaskedInterleavedAccesses(*TTI) && 2867 "masked interleaved groups are not allowed."); 2868 Value *GroupMask = MaskForGaps; 2869 if (BlockInMask) { 2870 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2871 Value *ShuffledMask = Builder.CreateShuffleVector( 2872 BlockInMaskPart, 2873 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2874 "interleaved.mask"); 2875 GroupMask = MaskForGaps 2876 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2877 MaskForGaps) 2878 : ShuffledMask; 2879 } 2880 NewLoad = 2881 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2882 GroupMask, PoisonVec, "wide.masked.vec"); 2883 } 2884 else 2885 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2886 Group->getAlign(), "wide.vec"); 2887 Group->addMetadata(NewLoad); 2888 NewLoads.push_back(NewLoad); 2889 } 2890 2891 // For each member in the group, shuffle out the appropriate data from the 2892 // wide loads. 2893 unsigned J = 0; 2894 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2895 Instruction *Member = Group->getMember(I); 2896 2897 // Skip the gaps in the group. 2898 if (!Member) 2899 continue; 2900 2901 auto StrideMask = 2902 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2903 for (unsigned Part = 0; Part < UF; Part++) { 2904 Value *StridedVec = Builder.CreateShuffleVector( 2905 NewLoads[Part], StrideMask, "strided.vec"); 2906 2907 // If this member has different type, cast the result type. 2908 if (Member->getType() != ScalarTy) { 2909 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2910 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2911 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2912 } 2913 2914 if (Group->isReverse()) 2915 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2916 2917 State.set(VPDefs[J], StridedVec, Part); 2918 } 2919 ++J; 2920 } 2921 return; 2922 } 2923 2924 // The sub vector type for current instruction. 2925 auto *SubVT = VectorType::get(ScalarTy, VF); 2926 2927 // Vectorize the interleaved store group. 2928 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2929 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2930 "masked interleaved groups are not allowed."); 2931 assert((!MaskForGaps || !VF.isScalable()) && 2932 "masking gaps for scalable vectors is not yet supported."); 2933 for (unsigned Part = 0; Part < UF; Part++) { 2934 // Collect the stored vector from each member. 2935 SmallVector<Value *, 4> StoredVecs; 2936 for (unsigned i = 0; i < InterleaveFactor; i++) { 2937 assert((Group->getMember(i) || MaskForGaps) && 2938 "Fail to get a member from an interleaved store group"); 2939 Instruction *Member = Group->getMember(i); 2940 2941 // Skip the gaps in the group. 2942 if (!Member) { 2943 Value *Undef = PoisonValue::get(SubVT); 2944 StoredVecs.push_back(Undef); 2945 continue; 2946 } 2947 2948 Value *StoredVec = State.get(StoredValues[i], Part); 2949 2950 if (Group->isReverse()) 2951 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2952 2953 // If this member has different type, cast it to a unified type. 2954 2955 if (StoredVec->getType() != SubVT) 2956 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2957 2958 StoredVecs.push_back(StoredVec); 2959 } 2960 2961 // Concatenate all vectors into a wide vector. 2962 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2963 2964 // Interleave the elements in the wide vector. 2965 Value *IVec = Builder.CreateShuffleVector( 2966 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2967 "interleaved.vec"); 2968 2969 Instruction *NewStoreInstr; 2970 if (BlockInMask || MaskForGaps) { 2971 Value *GroupMask = MaskForGaps; 2972 if (BlockInMask) { 2973 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2974 Value *ShuffledMask = Builder.CreateShuffleVector( 2975 BlockInMaskPart, 2976 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2977 "interleaved.mask"); 2978 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2979 ShuffledMask, MaskForGaps) 2980 : ShuffledMask; 2981 } 2982 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2983 Group->getAlign(), GroupMask); 2984 } else 2985 NewStoreInstr = 2986 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2987 2988 Group->addMetadata(NewStoreInstr); 2989 } 2990 } 2991 2992 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2993 VPReplicateRecipe *RepRecipe, 2994 const VPIteration &Instance, 2995 bool IfPredicateInstr, 2996 VPTransformState &State) { 2997 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2998 2999 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3000 // the first lane and part. 3001 if (isa<NoAliasScopeDeclInst>(Instr)) 3002 if (!Instance.isFirstIteration()) 3003 return; 3004 3005 setDebugLocFromInst(Instr); 3006 3007 // Does this instruction return a value ? 3008 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3009 3010 Instruction *Cloned = Instr->clone(); 3011 if (!IsVoidRetTy) 3012 Cloned->setName(Instr->getName() + ".cloned"); 3013 3014 // If the scalarized instruction contributes to the address computation of a 3015 // widen masked load/store which was in a basic block that needed predication 3016 // and is not predicated after vectorization, we can't propagate 3017 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 3018 // instruction could feed a poison value to the base address of the widen 3019 // load/store. 3020 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 3021 Cloned->dropPoisonGeneratingFlags(); 3022 3023 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3024 Builder.GetInsertPoint()); 3025 // Replace the operands of the cloned instructions with their scalar 3026 // equivalents in the new loop. 3027 for (auto &I : enumerate(RepRecipe->operands())) { 3028 auto InputInstance = Instance; 3029 VPValue *Operand = I.value(); 3030 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 3031 if (OperandR && OperandR->isUniform()) 3032 InputInstance.Lane = VPLane::getFirstLane(); 3033 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 3034 } 3035 addNewMetadata(Cloned, Instr); 3036 3037 // Place the cloned scalar in the new loop. 3038 Builder.Insert(Cloned); 3039 3040 State.set(RepRecipe, Cloned, Instance); 3041 3042 // If we just cloned a new assumption, add it the assumption cache. 3043 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3044 AC->registerAssumption(II); 3045 3046 // End if-block. 3047 if (IfPredicateInstr) 3048 PredicatedInstructions.push_back(Cloned); 3049 } 3050 3051 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 3052 BasicBlock *Header = L->getHeader(); 3053 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 3054 3055 IRBuilder<> B(Header->getTerminator()); 3056 Instruction *OldInst = 3057 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 3058 setDebugLocFromInst(OldInst, &B); 3059 3060 // Connect the header to the exit and header blocks and replace the old 3061 // terminator. 3062 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 3063 3064 // Now we have two terminators. Remove the old one from the block. 3065 Header->getTerminator()->eraseFromParent(); 3066 } 3067 3068 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3069 if (TripCount) 3070 return TripCount; 3071 3072 assert(L && "Create Trip Count for null loop."); 3073 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3074 // Find the loop boundaries. 3075 ScalarEvolution *SE = PSE.getSE(); 3076 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3077 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3078 "Invalid loop count"); 3079 3080 Type *IdxTy = Legal->getWidestInductionType(); 3081 assert(IdxTy && "No type for induction"); 3082 3083 // The exit count might have the type of i64 while the phi is i32. This can 3084 // happen if we have an induction variable that is sign extended before the 3085 // compare. The only way that we get a backedge taken count is that the 3086 // induction variable was signed and as such will not overflow. In such a case 3087 // truncation is legal. 3088 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3089 IdxTy->getPrimitiveSizeInBits()) 3090 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3091 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3092 3093 // Get the total trip count from the count by adding 1. 3094 const SCEV *ExitCount = SE->getAddExpr( 3095 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3096 3097 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3098 3099 // Expand the trip count and place the new instructions in the preheader. 3100 // Notice that the pre-header does not change, only the loop body. 3101 SCEVExpander Exp(*SE, DL, "induction"); 3102 3103 // Count holds the overall loop count (N). 3104 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3105 L->getLoopPreheader()->getTerminator()); 3106 3107 if (TripCount->getType()->isPointerTy()) 3108 TripCount = 3109 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3110 L->getLoopPreheader()->getTerminator()); 3111 3112 return TripCount; 3113 } 3114 3115 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3116 if (VectorTripCount) 3117 return VectorTripCount; 3118 3119 Value *TC = getOrCreateTripCount(L); 3120 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3121 3122 Type *Ty = TC->getType(); 3123 // This is where we can make the step a runtime constant. 3124 Value *Step = createStepForVF(Builder, Ty, VF, UF); 3125 3126 // If the tail is to be folded by masking, round the number of iterations N 3127 // up to a multiple of Step instead of rounding down. This is done by first 3128 // adding Step-1 and then rounding down. Note that it's ok if this addition 3129 // overflows: the vector induction variable will eventually wrap to zero given 3130 // that it starts at zero and its Step is a power of two; the loop will then 3131 // exit, with the last early-exit vector comparison also producing all-true. 3132 if (Cost->foldTailByMasking()) { 3133 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3134 "VF*UF must be a power of 2 when folding tail by masking"); 3135 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 3136 TC = Builder.CreateAdd( 3137 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 3138 } 3139 3140 // Now we need to generate the expression for the part of the loop that the 3141 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3142 // iterations are not required for correctness, or N - Step, otherwise. Step 3143 // is equal to the vectorization factor (number of SIMD elements) times the 3144 // unroll factor (number of SIMD instructions). 3145 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3146 3147 // There are cases where we *must* run at least one iteration in the remainder 3148 // loop. See the cost model for when this can happen. If the step evenly 3149 // divides the trip count, we set the remainder to be equal to the step. If 3150 // the step does not evenly divide the trip count, no adjustment is necessary 3151 // since there will already be scalar iterations. Note that the minimum 3152 // iterations check ensures that N >= Step. 3153 if (Cost->requiresScalarEpilogue(VF)) { 3154 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3155 R = Builder.CreateSelect(IsZero, Step, R); 3156 } 3157 3158 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3159 3160 return VectorTripCount; 3161 } 3162 3163 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3164 const DataLayout &DL) { 3165 // Verify that V is a vector type with same number of elements as DstVTy. 3166 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3167 unsigned VF = DstFVTy->getNumElements(); 3168 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3169 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3170 Type *SrcElemTy = SrcVecTy->getElementType(); 3171 Type *DstElemTy = DstFVTy->getElementType(); 3172 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3173 "Vector elements must have same size"); 3174 3175 // Do a direct cast if element types are castable. 3176 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3177 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3178 } 3179 // V cannot be directly casted to desired vector type. 3180 // May happen when V is a floating point vector but DstVTy is a vector of 3181 // pointers or vice-versa. Handle this using a two-step bitcast using an 3182 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3183 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3184 "Only one type should be a pointer type"); 3185 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3186 "Only one type should be a floating point type"); 3187 Type *IntTy = 3188 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3189 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3190 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3191 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3192 } 3193 3194 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3195 BasicBlock *Bypass) { 3196 Value *Count = getOrCreateTripCount(L); 3197 // Reuse existing vector loop preheader for TC checks. 3198 // Note that new preheader block is generated for vector loop. 3199 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3200 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3201 3202 // Generate code to check if the loop's trip count is less than VF * UF, or 3203 // equal to it in case a scalar epilogue is required; this implies that the 3204 // vector trip count is zero. This check also covers the case where adding one 3205 // to the backedge-taken count overflowed leading to an incorrect trip count 3206 // of zero. In this case we will also jump to the scalar loop. 3207 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3208 : ICmpInst::ICMP_ULT; 3209 3210 // If tail is to be folded, vector loop takes care of all iterations. 3211 Value *CheckMinIters = Builder.getFalse(); 3212 if (!Cost->foldTailByMasking()) { 3213 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3214 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3215 } 3216 // Create new preheader for vector loop. 3217 LoopVectorPreHeader = 3218 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3219 "vector.ph"); 3220 3221 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3222 DT->getNode(Bypass)->getIDom()) && 3223 "TC check is expected to dominate Bypass"); 3224 3225 // Update dominator for Bypass & LoopExit (if needed). 3226 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3227 if (!Cost->requiresScalarEpilogue(VF)) 3228 // If there is an epilogue which must run, there's no edge from the 3229 // middle block to exit blocks and thus no need to update the immediate 3230 // dominator of the exit blocks. 3231 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3232 3233 ReplaceInstWithInst( 3234 TCCheckBlock->getTerminator(), 3235 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3236 LoopBypassBlocks.push_back(TCCheckBlock); 3237 } 3238 3239 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3240 3241 BasicBlock *const SCEVCheckBlock = 3242 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3243 if (!SCEVCheckBlock) 3244 return nullptr; 3245 3246 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3247 (OptForSizeBasedOnProfile && 3248 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3249 "Cannot SCEV check stride or overflow when optimizing for size"); 3250 3251 3252 // Update dominator only if this is first RT check. 3253 if (LoopBypassBlocks.empty()) { 3254 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3255 if (!Cost->requiresScalarEpilogue(VF)) 3256 // If there is an epilogue which must run, there's no edge from the 3257 // middle block to exit blocks and thus no need to update the immediate 3258 // dominator of the exit blocks. 3259 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3260 } 3261 3262 LoopBypassBlocks.push_back(SCEVCheckBlock); 3263 AddedSafetyChecks = true; 3264 return SCEVCheckBlock; 3265 } 3266 3267 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3268 BasicBlock *Bypass) { 3269 // VPlan-native path does not do any analysis for runtime checks currently. 3270 if (EnableVPlanNativePath) 3271 return nullptr; 3272 3273 BasicBlock *const MemCheckBlock = 3274 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3275 3276 // Check if we generated code that checks in runtime if arrays overlap. We put 3277 // the checks into a separate block to make the more common case of few 3278 // elements faster. 3279 if (!MemCheckBlock) 3280 return nullptr; 3281 3282 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3283 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3284 "Cannot emit memory checks when optimizing for size, unless forced " 3285 "to vectorize."); 3286 ORE->emit([&]() { 3287 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3288 L->getStartLoc(), L->getHeader()) 3289 << "Code-size may be reduced by not forcing " 3290 "vectorization, or by source-code modifications " 3291 "eliminating the need for runtime checks " 3292 "(e.g., adding 'restrict')."; 3293 }); 3294 } 3295 3296 LoopBypassBlocks.push_back(MemCheckBlock); 3297 3298 AddedSafetyChecks = true; 3299 3300 // We currently don't use LoopVersioning for the actual loop cloning but we 3301 // still use it to add the noalias metadata. 3302 LVer = std::make_unique<LoopVersioning>( 3303 *Legal->getLAI(), 3304 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3305 DT, PSE.getSE()); 3306 LVer->prepareNoAliasMetadata(); 3307 return MemCheckBlock; 3308 } 3309 3310 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3311 LoopScalarBody = OrigLoop->getHeader(); 3312 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3313 assert(LoopVectorPreHeader && "Invalid loop structure"); 3314 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3315 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3316 "multiple exit loop without required epilogue?"); 3317 3318 LoopMiddleBlock = 3319 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3320 LI, nullptr, Twine(Prefix) + "middle.block"); 3321 LoopScalarPreHeader = 3322 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3323 nullptr, Twine(Prefix) + "scalar.ph"); 3324 3325 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3326 3327 // Set up the middle block terminator. Two cases: 3328 // 1) If we know that we must execute the scalar epilogue, emit an 3329 // unconditional branch. 3330 // 2) Otherwise, we must have a single unique exit block (due to how we 3331 // implement the multiple exit case). In this case, set up a conditonal 3332 // branch from the middle block to the loop scalar preheader, and the 3333 // exit block. completeLoopSkeleton will update the condition to use an 3334 // iteration check, if required to decide whether to execute the remainder. 3335 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3336 BranchInst::Create(LoopScalarPreHeader) : 3337 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3338 Builder.getTrue()); 3339 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3340 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3341 3342 // We intentionally don't let SplitBlock to update LoopInfo since 3343 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3344 // LoopVectorBody is explicitly added to the correct place few lines later. 3345 LoopVectorBody = 3346 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3347 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3348 3349 // Update dominator for loop exit. 3350 if (!Cost->requiresScalarEpilogue(VF)) 3351 // If there is an epilogue which must run, there's no edge from the 3352 // middle block to exit blocks and thus no need to update the immediate 3353 // dominator of the exit blocks. 3354 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3355 3356 // Create and register the new vector loop. 3357 Loop *Lp = LI->AllocateLoop(); 3358 Loop *ParentLoop = OrigLoop->getParentLoop(); 3359 3360 // Insert the new loop into the loop nest and register the new basic blocks 3361 // before calling any utilities such as SCEV that require valid LoopInfo. 3362 if (ParentLoop) { 3363 ParentLoop->addChildLoop(Lp); 3364 } else { 3365 LI->addTopLevelLoop(Lp); 3366 } 3367 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3368 return Lp; 3369 } 3370 3371 void InnerLoopVectorizer::createInductionResumeValues( 3372 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3373 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3374 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3375 "Inconsistent information about additional bypass."); 3376 3377 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3378 assert(VectorTripCount && L && "Expected valid arguments"); 3379 // We are going to resume the execution of the scalar loop. 3380 // Go over all of the induction variables that we found and fix the 3381 // PHIs that are left in the scalar version of the loop. 3382 // The starting values of PHI nodes depend on the counter of the last 3383 // iteration in the vectorized loop. 3384 // If we come from a bypass edge then we need to start from the original 3385 // start value. 3386 Instruction *OldInduction = Legal->getPrimaryInduction(); 3387 for (auto &InductionEntry : Legal->getInductionVars()) { 3388 PHINode *OrigPhi = InductionEntry.first; 3389 InductionDescriptor II = InductionEntry.second; 3390 3391 // Create phi nodes to merge from the backedge-taken check block. 3392 PHINode *BCResumeVal = 3393 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3394 LoopScalarPreHeader->getTerminator()); 3395 // Copy original phi DL over to the new one. 3396 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3397 Value *&EndValue = IVEndValues[OrigPhi]; 3398 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3399 if (OrigPhi == OldInduction) { 3400 // We know what the end value is. 3401 EndValue = VectorTripCount; 3402 } else { 3403 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3404 3405 // Fast-math-flags propagate from the original induction instruction. 3406 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3407 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3408 3409 Type *StepType = II.getStep()->getType(); 3410 Instruction::CastOps CastOp = 3411 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3412 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3413 Value *Step = 3414 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3415 EndValue = emitTransformedIndex(B, CRD, Step, II); 3416 EndValue->setName("ind.end"); 3417 3418 // Compute the end value for the additional bypass (if applicable). 3419 if (AdditionalBypass.first) { 3420 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3421 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3422 StepType, true); 3423 Value *Step = 3424 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3425 CRD = 3426 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3427 EndValueFromAdditionalBypass = emitTransformedIndex(B, CRD, Step, II); 3428 EndValueFromAdditionalBypass->setName("ind.end"); 3429 } 3430 } 3431 // The new PHI merges the original incoming value, in case of a bypass, 3432 // or the value at the end of the vectorized loop. 3433 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3434 3435 // Fix the scalar body counter (PHI node). 3436 // The old induction's phi node in the scalar body needs the truncated 3437 // value. 3438 for (BasicBlock *BB : LoopBypassBlocks) 3439 BCResumeVal->addIncoming(II.getStartValue(), BB); 3440 3441 if (AdditionalBypass.first) 3442 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3443 EndValueFromAdditionalBypass); 3444 3445 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3446 } 3447 } 3448 3449 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3450 MDNode *OrigLoopID) { 3451 assert(L && "Expected valid loop."); 3452 3453 // The trip counts should be cached by now. 3454 Value *Count = getOrCreateTripCount(L); 3455 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3456 3457 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3458 3459 // Add a check in the middle block to see if we have completed 3460 // all of the iterations in the first vector loop. Three cases: 3461 // 1) If we require a scalar epilogue, there is no conditional branch as 3462 // we unconditionally branch to the scalar preheader. Do nothing. 3463 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3464 // Thus if tail is to be folded, we know we don't need to run the 3465 // remainder and we can use the previous value for the condition (true). 3466 // 3) Otherwise, construct a runtime check. 3467 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3468 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3469 Count, VectorTripCount, "cmp.n", 3470 LoopMiddleBlock->getTerminator()); 3471 3472 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3473 // of the corresponding compare because they may have ended up with 3474 // different line numbers and we want to avoid awkward line stepping while 3475 // debugging. Eg. if the compare has got a line number inside the loop. 3476 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3477 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3478 } 3479 3480 // Get ready to start creating new instructions into the vectorized body. 3481 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3482 "Inconsistent vector loop preheader"); 3483 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3484 3485 #ifdef EXPENSIVE_CHECKS 3486 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3487 LI->verify(*DT); 3488 #endif 3489 3490 return LoopVectorPreHeader; 3491 } 3492 3493 std::pair<BasicBlock *, Value *> 3494 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3495 /* 3496 In this function we generate a new loop. The new loop will contain 3497 the vectorized instructions while the old loop will continue to run the 3498 scalar remainder. 3499 3500 [ ] <-- loop iteration number check. 3501 / | 3502 / v 3503 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3504 | / | 3505 | / v 3506 || [ ] <-- vector pre header. 3507 |/ | 3508 | v 3509 | [ ] \ 3510 | [ ]_| <-- vector loop. 3511 | | 3512 | v 3513 \ -[ ] <--- middle-block. 3514 \/ | 3515 /\ v 3516 | ->[ ] <--- new preheader. 3517 | | 3518 (opt) v <-- edge from middle to exit iff epilogue is not required. 3519 | [ ] \ 3520 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3521 \ | 3522 \ v 3523 >[ ] <-- exit block(s). 3524 ... 3525 */ 3526 3527 // Get the metadata of the original loop before it gets modified. 3528 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3529 3530 // Workaround! Compute the trip count of the original loop and cache it 3531 // before we start modifying the CFG. This code has a systemic problem 3532 // wherein it tries to run analysis over partially constructed IR; this is 3533 // wrong, and not simply for SCEV. The trip count of the original loop 3534 // simply happens to be prone to hitting this in practice. In theory, we 3535 // can hit the same issue for any SCEV, or ValueTracking query done during 3536 // mutation. See PR49900. 3537 getOrCreateTripCount(OrigLoop); 3538 3539 // Create an empty vector loop, and prepare basic blocks for the runtime 3540 // checks. 3541 Loop *Lp = createVectorLoopSkeleton(""); 3542 3543 // Now, compare the new count to zero. If it is zero skip the vector loop and 3544 // jump to the scalar loop. This check also covers the case where the 3545 // backedge-taken count is uint##_max: adding one to it will overflow leading 3546 // to an incorrect trip count of zero. In this (rare) case we will also jump 3547 // to the scalar loop. 3548 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3549 3550 // Generate the code to check any assumptions that we've made for SCEV 3551 // expressions. 3552 emitSCEVChecks(Lp, LoopScalarPreHeader); 3553 3554 // Generate the code that checks in runtime if arrays overlap. We put the 3555 // checks into a separate block to make the more common case of few elements 3556 // faster. 3557 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3558 3559 createHeaderBranch(Lp); 3560 3561 // Emit phis for the new starting index of the scalar loop. 3562 createInductionResumeValues(Lp); 3563 3564 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3565 } 3566 3567 // Fix up external users of the induction variable. At this point, we are 3568 // in LCSSA form, with all external PHIs that use the IV having one input value, 3569 // coming from the remainder loop. We need those PHIs to also have a correct 3570 // value for the IV when arriving directly from the middle block. 3571 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3572 const InductionDescriptor &II, 3573 Value *CountRoundDown, Value *EndValue, 3574 BasicBlock *MiddleBlock) { 3575 // There are two kinds of external IV usages - those that use the value 3576 // computed in the last iteration (the PHI) and those that use the penultimate 3577 // value (the value that feeds into the phi from the loop latch). 3578 // We allow both, but they, obviously, have different values. 3579 3580 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3581 3582 DenseMap<Value *, Value *> MissingVals; 3583 3584 // An external user of the last iteration's value should see the value that 3585 // the remainder loop uses to initialize its own IV. 3586 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3587 for (User *U : PostInc->users()) { 3588 Instruction *UI = cast<Instruction>(U); 3589 if (!OrigLoop->contains(UI)) { 3590 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3591 MissingVals[UI] = EndValue; 3592 } 3593 } 3594 3595 // An external user of the penultimate value need to see EndValue - Step. 3596 // The simplest way to get this is to recompute it from the constituent SCEVs, 3597 // that is Start + (Step * (CRD - 1)). 3598 for (User *U : OrigPhi->users()) { 3599 auto *UI = cast<Instruction>(U); 3600 if (!OrigLoop->contains(UI)) { 3601 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3602 3603 IRBuilder<> B(MiddleBlock->getTerminator()); 3604 3605 // Fast-math-flags propagate from the original induction instruction. 3606 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3607 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3608 3609 Value *CountMinusOne = B.CreateSub( 3610 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3611 Value *CMO = 3612 !II.getStep()->getType()->isIntegerTy() 3613 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3614 II.getStep()->getType()) 3615 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3616 CMO->setName("cast.cmo"); 3617 3618 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3619 LoopVectorBody->getTerminator()); 3620 Value *Escape = emitTransformedIndex(B, CMO, Step, II); 3621 Escape->setName("ind.escape"); 3622 MissingVals[UI] = Escape; 3623 } 3624 } 3625 3626 for (auto &I : MissingVals) { 3627 PHINode *PHI = cast<PHINode>(I.first); 3628 // One corner case we have to handle is two IVs "chasing" each-other, 3629 // that is %IV2 = phi [...], [ %IV1, %latch ] 3630 // In this case, if IV1 has an external use, we need to avoid adding both 3631 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3632 // don't already have an incoming value for the middle block. 3633 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3634 PHI->addIncoming(I.second, MiddleBlock); 3635 } 3636 } 3637 3638 namespace { 3639 3640 struct CSEDenseMapInfo { 3641 static bool canHandle(const Instruction *I) { 3642 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3643 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3644 } 3645 3646 static inline Instruction *getEmptyKey() { 3647 return DenseMapInfo<Instruction *>::getEmptyKey(); 3648 } 3649 3650 static inline Instruction *getTombstoneKey() { 3651 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3652 } 3653 3654 static unsigned getHashValue(const Instruction *I) { 3655 assert(canHandle(I) && "Unknown instruction!"); 3656 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3657 I->value_op_end())); 3658 } 3659 3660 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3661 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3662 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3663 return LHS == RHS; 3664 return LHS->isIdenticalTo(RHS); 3665 } 3666 }; 3667 3668 } // end anonymous namespace 3669 3670 ///Perform cse of induction variable instructions. 3671 static void cse(BasicBlock *BB) { 3672 // Perform simple cse. 3673 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3674 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3675 if (!CSEDenseMapInfo::canHandle(&In)) 3676 continue; 3677 3678 // Check if we can replace this instruction with any of the 3679 // visited instructions. 3680 if (Instruction *V = CSEMap.lookup(&In)) { 3681 In.replaceAllUsesWith(V); 3682 In.eraseFromParent(); 3683 continue; 3684 } 3685 3686 CSEMap[&In] = &In; 3687 } 3688 } 3689 3690 InstructionCost 3691 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3692 bool &NeedToScalarize) const { 3693 Function *F = CI->getCalledFunction(); 3694 Type *ScalarRetTy = CI->getType(); 3695 SmallVector<Type *, 4> Tys, ScalarTys; 3696 for (auto &ArgOp : CI->args()) 3697 ScalarTys.push_back(ArgOp->getType()); 3698 3699 // Estimate cost of scalarized vector call. The source operands are assumed 3700 // to be vectors, so we need to extract individual elements from there, 3701 // execute VF scalar calls, and then gather the result into the vector return 3702 // value. 3703 InstructionCost ScalarCallCost = 3704 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3705 if (VF.isScalar()) 3706 return ScalarCallCost; 3707 3708 // Compute corresponding vector type for return value and arguments. 3709 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3710 for (Type *ScalarTy : ScalarTys) 3711 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3712 3713 // Compute costs of unpacking argument values for the scalar calls and 3714 // packing the return values to a vector. 3715 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3716 3717 InstructionCost Cost = 3718 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3719 3720 // If we can't emit a vector call for this function, then the currently found 3721 // cost is the cost we need to return. 3722 NeedToScalarize = true; 3723 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3724 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3725 3726 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3727 return Cost; 3728 3729 // If the corresponding vector cost is cheaper, return its cost. 3730 InstructionCost VectorCallCost = 3731 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3732 if (VectorCallCost < Cost) { 3733 NeedToScalarize = false; 3734 Cost = VectorCallCost; 3735 } 3736 return Cost; 3737 } 3738 3739 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3740 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3741 return Elt; 3742 return VectorType::get(Elt, VF); 3743 } 3744 3745 InstructionCost 3746 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3747 ElementCount VF) const { 3748 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3749 assert(ID && "Expected intrinsic call!"); 3750 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3751 FastMathFlags FMF; 3752 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3753 FMF = FPMO->getFastMathFlags(); 3754 3755 SmallVector<const Value *> Arguments(CI->args()); 3756 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3757 SmallVector<Type *> ParamTys; 3758 std::transform(FTy->param_begin(), FTy->param_end(), 3759 std::back_inserter(ParamTys), 3760 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3761 3762 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3763 dyn_cast<IntrinsicInst>(CI)); 3764 return TTI.getIntrinsicInstrCost(CostAttrs, 3765 TargetTransformInfo::TCK_RecipThroughput); 3766 } 3767 3768 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3769 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3770 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3771 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3772 } 3773 3774 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3775 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3776 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3777 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3778 } 3779 3780 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3781 // For every instruction `I` in MinBWs, truncate the operands, create a 3782 // truncated version of `I` and reextend its result. InstCombine runs 3783 // later and will remove any ext/trunc pairs. 3784 SmallPtrSet<Value *, 4> Erased; 3785 for (const auto &KV : Cost->getMinimalBitwidths()) { 3786 // If the value wasn't vectorized, we must maintain the original scalar 3787 // type. The absence of the value from State indicates that it 3788 // wasn't vectorized. 3789 // FIXME: Should not rely on getVPValue at this point. 3790 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3791 if (!State.hasAnyVectorValue(Def)) 3792 continue; 3793 for (unsigned Part = 0; Part < UF; ++Part) { 3794 Value *I = State.get(Def, Part); 3795 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3796 continue; 3797 Type *OriginalTy = I->getType(); 3798 Type *ScalarTruncatedTy = 3799 IntegerType::get(OriginalTy->getContext(), KV.second); 3800 auto *TruncatedTy = VectorType::get( 3801 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3802 if (TruncatedTy == OriginalTy) 3803 continue; 3804 3805 IRBuilder<> B(cast<Instruction>(I)); 3806 auto ShrinkOperand = [&](Value *V) -> Value * { 3807 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3808 if (ZI->getSrcTy() == TruncatedTy) 3809 return ZI->getOperand(0); 3810 return B.CreateZExtOrTrunc(V, TruncatedTy); 3811 }; 3812 3813 // The actual instruction modification depends on the instruction type, 3814 // unfortunately. 3815 Value *NewI = nullptr; 3816 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3817 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3818 ShrinkOperand(BO->getOperand(1))); 3819 3820 // Any wrapping introduced by shrinking this operation shouldn't be 3821 // considered undefined behavior. So, we can't unconditionally copy 3822 // arithmetic wrapping flags to NewI. 3823 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3824 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3825 NewI = 3826 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3827 ShrinkOperand(CI->getOperand(1))); 3828 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3829 NewI = B.CreateSelect(SI->getCondition(), 3830 ShrinkOperand(SI->getTrueValue()), 3831 ShrinkOperand(SI->getFalseValue())); 3832 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3833 switch (CI->getOpcode()) { 3834 default: 3835 llvm_unreachable("Unhandled cast!"); 3836 case Instruction::Trunc: 3837 NewI = ShrinkOperand(CI->getOperand(0)); 3838 break; 3839 case Instruction::SExt: 3840 NewI = B.CreateSExtOrTrunc( 3841 CI->getOperand(0), 3842 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3843 break; 3844 case Instruction::ZExt: 3845 NewI = B.CreateZExtOrTrunc( 3846 CI->getOperand(0), 3847 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3848 break; 3849 } 3850 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3851 auto Elements0 = 3852 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3853 auto *O0 = B.CreateZExtOrTrunc( 3854 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3855 auto Elements1 = 3856 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3857 auto *O1 = B.CreateZExtOrTrunc( 3858 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3859 3860 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3861 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3862 // Don't do anything with the operands, just extend the result. 3863 continue; 3864 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3865 auto Elements = 3866 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3867 auto *O0 = B.CreateZExtOrTrunc( 3868 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3869 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3870 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3871 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3872 auto Elements = 3873 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3874 auto *O0 = B.CreateZExtOrTrunc( 3875 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3876 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3877 } else { 3878 // If we don't know what to do, be conservative and don't do anything. 3879 continue; 3880 } 3881 3882 // Lastly, extend the result. 3883 NewI->takeName(cast<Instruction>(I)); 3884 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3885 I->replaceAllUsesWith(Res); 3886 cast<Instruction>(I)->eraseFromParent(); 3887 Erased.insert(I); 3888 State.reset(Def, Res, Part); 3889 } 3890 } 3891 3892 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3893 for (const auto &KV : Cost->getMinimalBitwidths()) { 3894 // If the value wasn't vectorized, we must maintain the original scalar 3895 // type. The absence of the value from State indicates that it 3896 // wasn't vectorized. 3897 // FIXME: Should not rely on getVPValue at this point. 3898 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3899 if (!State.hasAnyVectorValue(Def)) 3900 continue; 3901 for (unsigned Part = 0; Part < UF; ++Part) { 3902 Value *I = State.get(Def, Part); 3903 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3904 if (Inst && Inst->use_empty()) { 3905 Value *NewI = Inst->getOperand(0); 3906 Inst->eraseFromParent(); 3907 State.reset(Def, NewI, Part); 3908 } 3909 } 3910 } 3911 } 3912 3913 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3914 // Insert truncates and extends for any truncated instructions as hints to 3915 // InstCombine. 3916 if (VF.isVector()) 3917 truncateToMinimalBitwidths(State); 3918 3919 // Fix widened non-induction PHIs by setting up the PHI operands. 3920 if (OrigPHIsToFix.size()) { 3921 assert(EnableVPlanNativePath && 3922 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3923 fixNonInductionPHIs(State); 3924 } 3925 3926 // At this point every instruction in the original loop is widened to a 3927 // vector form. Now we need to fix the recurrences in the loop. These PHI 3928 // nodes are currently empty because we did not want to introduce cycles. 3929 // This is the second stage of vectorizing recurrences. 3930 fixCrossIterationPHIs(State); 3931 3932 // Forget the original basic block. 3933 PSE.getSE()->forgetLoop(OrigLoop); 3934 3935 // If we inserted an edge from the middle block to the unique exit block, 3936 // update uses outside the loop (phis) to account for the newly inserted 3937 // edge. 3938 if (!Cost->requiresScalarEpilogue(VF)) { 3939 // Fix-up external users of the induction variables. 3940 for (auto &Entry : Legal->getInductionVars()) 3941 fixupIVUsers(Entry.first, Entry.second, 3942 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3943 IVEndValues[Entry.first], LoopMiddleBlock); 3944 3945 fixLCSSAPHIs(State); 3946 } 3947 3948 for (Instruction *PI : PredicatedInstructions) 3949 sinkScalarOperands(&*PI); 3950 3951 // Remove redundant induction instructions. 3952 cse(LoopVectorBody); 3953 3954 // Set/update profile weights for the vector and remainder loops as original 3955 // loop iterations are now distributed among them. Note that original loop 3956 // represented by LoopScalarBody becomes remainder loop after vectorization. 3957 // 3958 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3959 // end up getting slightly roughened result but that should be OK since 3960 // profile is not inherently precise anyway. Note also possible bypass of 3961 // vector code caused by legality checks is ignored, assigning all the weight 3962 // to the vector loop, optimistically. 3963 // 3964 // For scalable vectorization we can't know at compile time how many iterations 3965 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3966 // vscale of '1'. 3967 setProfileInfoAfterUnrolling( 3968 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3969 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3970 } 3971 3972 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3973 // In order to support recurrences we need to be able to vectorize Phi nodes. 3974 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3975 // stage #2: We now need to fix the recurrences by adding incoming edges to 3976 // the currently empty PHI nodes. At this point every instruction in the 3977 // original loop is widened to a vector form so we can use them to construct 3978 // the incoming edges. 3979 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 3980 for (VPRecipeBase &R : Header->phis()) { 3981 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3982 fixReduction(ReductionPhi, State); 3983 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3984 fixFirstOrderRecurrence(FOR, State); 3985 } 3986 } 3987 3988 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3989 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3990 // This is the second phase of vectorizing first-order recurrences. An 3991 // overview of the transformation is described below. Suppose we have the 3992 // following loop. 3993 // 3994 // for (int i = 0; i < n; ++i) 3995 // b[i] = a[i] - a[i - 1]; 3996 // 3997 // There is a first-order recurrence on "a". For this loop, the shorthand 3998 // scalar IR looks like: 3999 // 4000 // scalar.ph: 4001 // s_init = a[-1] 4002 // br scalar.body 4003 // 4004 // scalar.body: 4005 // i = phi [0, scalar.ph], [i+1, scalar.body] 4006 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4007 // s2 = a[i] 4008 // b[i] = s2 - s1 4009 // br cond, scalar.body, ... 4010 // 4011 // In this example, s1 is a recurrence because it's value depends on the 4012 // previous iteration. In the first phase of vectorization, we created a 4013 // vector phi v1 for s1. We now complete the vectorization and produce the 4014 // shorthand vector IR shown below (for VF = 4, UF = 1). 4015 // 4016 // vector.ph: 4017 // v_init = vector(..., ..., ..., a[-1]) 4018 // br vector.body 4019 // 4020 // vector.body 4021 // i = phi [0, vector.ph], [i+4, vector.body] 4022 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4023 // v2 = a[i, i+1, i+2, i+3]; 4024 // v3 = vector(v1(3), v2(0, 1, 2)) 4025 // b[i, i+1, i+2, i+3] = v2 - v3 4026 // br cond, vector.body, middle.block 4027 // 4028 // middle.block: 4029 // x = v2(3) 4030 // br scalar.ph 4031 // 4032 // scalar.ph: 4033 // s_init = phi [x, middle.block], [a[-1], otherwise] 4034 // br scalar.body 4035 // 4036 // After execution completes the vector loop, we extract the next value of 4037 // the recurrence (x) to use as the initial value in the scalar loop. 4038 4039 // Extract the last vector element in the middle block. This will be the 4040 // initial value for the recurrence when jumping to the scalar loop. 4041 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4042 Value *Incoming = State.get(PreviousDef, UF - 1); 4043 auto *ExtractForScalar = Incoming; 4044 auto *IdxTy = Builder.getInt32Ty(); 4045 if (VF.isVector()) { 4046 auto *One = ConstantInt::get(IdxTy, 1); 4047 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4048 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4049 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4050 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4051 "vector.recur.extract"); 4052 } 4053 // Extract the second last element in the middle block if the 4054 // Phi is used outside the loop. We need to extract the phi itself 4055 // and not the last element (the phi update in the current iteration). This 4056 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4057 // when the scalar loop is not run at all. 4058 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4059 if (VF.isVector()) { 4060 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4061 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4062 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4063 Incoming, Idx, "vector.recur.extract.for.phi"); 4064 } else if (UF > 1) 4065 // When loop is unrolled without vectorizing, initialize 4066 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4067 // of `Incoming`. This is analogous to the vectorized case above: extracting 4068 // the second last element when VF > 1. 4069 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4070 4071 // Fix the initial value of the original recurrence in the scalar loop. 4072 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4073 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4074 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4075 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4076 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4077 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4078 Start->addIncoming(Incoming, BB); 4079 } 4080 4081 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4082 Phi->setName("scalar.recur"); 4083 4084 // Finally, fix users of the recurrence outside the loop. The users will need 4085 // either the last value of the scalar recurrence or the last value of the 4086 // vector recurrence we extracted in the middle block. Since the loop is in 4087 // LCSSA form, we just need to find all the phi nodes for the original scalar 4088 // recurrence in the exit block, and then add an edge for the middle block. 4089 // Note that LCSSA does not imply single entry when the original scalar loop 4090 // had multiple exiting edges (as we always run the last iteration in the 4091 // scalar epilogue); in that case, there is no edge from middle to exit and 4092 // and thus no phis which needed updated. 4093 if (!Cost->requiresScalarEpilogue(VF)) 4094 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4095 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4096 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4097 } 4098 4099 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4100 VPTransformState &State) { 4101 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4102 // Get it's reduction variable descriptor. 4103 assert(Legal->isReductionVariable(OrigPhi) && 4104 "Unable to find the reduction variable"); 4105 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4106 4107 RecurKind RK = RdxDesc.getRecurrenceKind(); 4108 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4109 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4110 setDebugLocFromInst(ReductionStartValue); 4111 4112 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4113 // This is the vector-clone of the value that leaves the loop. 4114 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4115 4116 // Wrap flags are in general invalid after vectorization, clear them. 4117 clearReductionWrapFlags(RdxDesc, State); 4118 4119 // Before each round, move the insertion point right between 4120 // the PHIs and the values we are going to write. 4121 // This allows us to write both PHINodes and the extractelement 4122 // instructions. 4123 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4124 4125 setDebugLocFromInst(LoopExitInst); 4126 4127 Type *PhiTy = OrigPhi->getType(); 4128 // If tail is folded by masking, the vector value to leave the loop should be 4129 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4130 // instead of the former. For an inloop reduction the reduction will already 4131 // be predicated, and does not need to be handled here. 4132 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4133 for (unsigned Part = 0; Part < UF; ++Part) { 4134 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4135 Value *Sel = nullptr; 4136 for (User *U : VecLoopExitInst->users()) { 4137 if (isa<SelectInst>(U)) { 4138 assert(!Sel && "Reduction exit feeding two selects"); 4139 Sel = U; 4140 } else 4141 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4142 } 4143 assert(Sel && "Reduction exit feeds no select"); 4144 State.reset(LoopExitInstDef, Sel, Part); 4145 4146 // If the target can create a predicated operator for the reduction at no 4147 // extra cost in the loop (for example a predicated vadd), it can be 4148 // cheaper for the select to remain in the loop than be sunk out of it, 4149 // and so use the select value for the phi instead of the old 4150 // LoopExitValue. 4151 if (PreferPredicatedReductionSelect || 4152 TTI->preferPredicatedReductionSelect( 4153 RdxDesc.getOpcode(), PhiTy, 4154 TargetTransformInfo::ReductionFlags())) { 4155 auto *VecRdxPhi = 4156 cast<PHINode>(State.get(PhiR, Part)); 4157 VecRdxPhi->setIncomingValueForBlock( 4158 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4159 } 4160 } 4161 } 4162 4163 // If the vector reduction can be performed in a smaller type, we truncate 4164 // then extend the loop exit value to enable InstCombine to evaluate the 4165 // entire expression in the smaller type. 4166 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4167 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4168 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4169 Builder.SetInsertPoint( 4170 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4171 VectorParts RdxParts(UF); 4172 for (unsigned Part = 0; Part < UF; ++Part) { 4173 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4174 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4175 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4176 : Builder.CreateZExt(Trunc, VecTy); 4177 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 4178 if (U != Trunc) { 4179 U->replaceUsesOfWith(RdxParts[Part], Extnd); 4180 RdxParts[Part] = Extnd; 4181 } 4182 } 4183 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4184 for (unsigned Part = 0; Part < UF; ++Part) { 4185 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4186 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4187 } 4188 } 4189 4190 // Reduce all of the unrolled parts into a single vector. 4191 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4192 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4193 4194 // The middle block terminator has already been assigned a DebugLoc here (the 4195 // OrigLoop's single latch terminator). We want the whole middle block to 4196 // appear to execute on this line because: (a) it is all compiler generated, 4197 // (b) these instructions are always executed after evaluating the latch 4198 // conditional branch, and (c) other passes may add new predecessors which 4199 // terminate on this line. This is the easiest way to ensure we don't 4200 // accidentally cause an extra step back into the loop while debugging. 4201 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4202 if (PhiR->isOrdered()) 4203 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4204 else { 4205 // Floating-point operations should have some FMF to enable the reduction. 4206 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4207 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4208 for (unsigned Part = 1; Part < UF; ++Part) { 4209 Value *RdxPart = State.get(LoopExitInstDef, Part); 4210 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4211 ReducedPartRdx = Builder.CreateBinOp( 4212 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4213 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4214 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4215 ReducedPartRdx, RdxPart); 4216 else 4217 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4218 } 4219 } 4220 4221 // Create the reduction after the loop. Note that inloop reductions create the 4222 // target reduction in the loop using a Reduction recipe. 4223 if (VF.isVector() && !PhiR->isInLoop()) { 4224 ReducedPartRdx = 4225 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4226 // If the reduction can be performed in a smaller type, we need to extend 4227 // the reduction to the wider type before we branch to the original loop. 4228 if (PhiTy != RdxDesc.getRecurrenceType()) 4229 ReducedPartRdx = RdxDesc.isSigned() 4230 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4231 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4232 } 4233 4234 PHINode *ResumePhi = 4235 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 4236 4237 // Create a phi node that merges control-flow from the backedge-taken check 4238 // block and the middle block. 4239 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4240 LoopScalarPreHeader->getTerminator()); 4241 4242 // If we are fixing reductions in the epilogue loop then we should already 4243 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4244 // we carry over the incoming values correctly. 4245 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4246 if (Incoming == LoopMiddleBlock) 4247 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4248 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4249 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4250 Incoming); 4251 else 4252 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4253 } 4254 4255 // Set the resume value for this reduction 4256 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4257 4258 // Now, we need to fix the users of the reduction variable 4259 // inside and outside of the scalar remainder loop. 4260 4261 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4262 // in the exit blocks. See comment on analogous loop in 4263 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4264 if (!Cost->requiresScalarEpilogue(VF)) 4265 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4266 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4267 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4268 4269 // Fix the scalar loop reduction variable with the incoming reduction sum 4270 // from the vector body and from the backedge value. 4271 int IncomingEdgeBlockIdx = 4272 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4273 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4274 // Pick the other block. 4275 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4276 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4277 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4278 } 4279 4280 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4281 VPTransformState &State) { 4282 RecurKind RK = RdxDesc.getRecurrenceKind(); 4283 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4284 return; 4285 4286 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4287 assert(LoopExitInstr && "null loop exit instruction"); 4288 SmallVector<Instruction *, 8> Worklist; 4289 SmallPtrSet<Instruction *, 8> Visited; 4290 Worklist.push_back(LoopExitInstr); 4291 Visited.insert(LoopExitInstr); 4292 4293 while (!Worklist.empty()) { 4294 Instruction *Cur = Worklist.pop_back_val(); 4295 if (isa<OverflowingBinaryOperator>(Cur)) 4296 for (unsigned Part = 0; Part < UF; ++Part) { 4297 // FIXME: Should not rely on getVPValue at this point. 4298 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4299 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4300 } 4301 4302 for (User *U : Cur->users()) { 4303 Instruction *UI = cast<Instruction>(U); 4304 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4305 Visited.insert(UI).second) 4306 Worklist.push_back(UI); 4307 } 4308 } 4309 } 4310 4311 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4312 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4313 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4314 // Some phis were already hand updated by the reduction and recurrence 4315 // code above, leave them alone. 4316 continue; 4317 4318 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4319 // Non-instruction incoming values will have only one value. 4320 4321 VPLane Lane = VPLane::getFirstLane(); 4322 if (isa<Instruction>(IncomingValue) && 4323 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4324 VF)) 4325 Lane = VPLane::getLastLaneForVF(VF); 4326 4327 // Can be a loop invariant incoming value or the last scalar value to be 4328 // extracted from the vectorized loop. 4329 // FIXME: Should not rely on getVPValue at this point. 4330 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4331 Value *lastIncomingValue = 4332 OrigLoop->isLoopInvariant(IncomingValue) 4333 ? IncomingValue 4334 : State.get(State.Plan->getVPValue(IncomingValue, true), 4335 VPIteration(UF - 1, Lane)); 4336 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4337 } 4338 } 4339 4340 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4341 // The basic block and loop containing the predicated instruction. 4342 auto *PredBB = PredInst->getParent(); 4343 auto *VectorLoop = LI->getLoopFor(PredBB); 4344 4345 // Initialize a worklist with the operands of the predicated instruction. 4346 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4347 4348 // Holds instructions that we need to analyze again. An instruction may be 4349 // reanalyzed if we don't yet know if we can sink it or not. 4350 SmallVector<Instruction *, 8> InstsToReanalyze; 4351 4352 // Returns true if a given use occurs in the predicated block. Phi nodes use 4353 // their operands in their corresponding predecessor blocks. 4354 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4355 auto *I = cast<Instruction>(U.getUser()); 4356 BasicBlock *BB = I->getParent(); 4357 if (auto *Phi = dyn_cast<PHINode>(I)) 4358 BB = Phi->getIncomingBlock( 4359 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4360 return BB == PredBB; 4361 }; 4362 4363 // Iteratively sink the scalarized operands of the predicated instruction 4364 // into the block we created for it. When an instruction is sunk, it's 4365 // operands are then added to the worklist. The algorithm ends after one pass 4366 // through the worklist doesn't sink a single instruction. 4367 bool Changed; 4368 do { 4369 // Add the instructions that need to be reanalyzed to the worklist, and 4370 // reset the changed indicator. 4371 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4372 InstsToReanalyze.clear(); 4373 Changed = false; 4374 4375 while (!Worklist.empty()) { 4376 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4377 4378 // We can't sink an instruction if it is a phi node, is not in the loop, 4379 // or may have side effects. 4380 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4381 I->mayHaveSideEffects()) 4382 continue; 4383 4384 // If the instruction is already in PredBB, check if we can sink its 4385 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4386 // sinking the scalar instruction I, hence it appears in PredBB; but it 4387 // may have failed to sink I's operands (recursively), which we try 4388 // (again) here. 4389 if (I->getParent() == PredBB) { 4390 Worklist.insert(I->op_begin(), I->op_end()); 4391 continue; 4392 } 4393 4394 // It's legal to sink the instruction if all its uses occur in the 4395 // predicated block. Otherwise, there's nothing to do yet, and we may 4396 // need to reanalyze the instruction. 4397 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4398 InstsToReanalyze.push_back(I); 4399 continue; 4400 } 4401 4402 // Move the instruction to the beginning of the predicated block, and add 4403 // it's operands to the worklist. 4404 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4405 Worklist.insert(I->op_begin(), I->op_end()); 4406 4407 // The sinking may have enabled other instructions to be sunk, so we will 4408 // need to iterate. 4409 Changed = true; 4410 } 4411 } while (Changed); 4412 } 4413 4414 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4415 for (PHINode *OrigPhi : OrigPHIsToFix) { 4416 VPWidenPHIRecipe *VPPhi = 4417 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4418 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4419 // Make sure the builder has a valid insert point. 4420 Builder.SetInsertPoint(NewPhi); 4421 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4422 VPValue *Inc = VPPhi->getIncomingValue(i); 4423 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4424 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4425 } 4426 } 4427 } 4428 4429 bool InnerLoopVectorizer::useOrderedReductions( 4430 const RecurrenceDescriptor &RdxDesc) { 4431 return Cost->useOrderedReductions(RdxDesc); 4432 } 4433 4434 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4435 VPWidenPHIRecipe *PhiR, 4436 VPTransformState &State) { 4437 PHINode *P = cast<PHINode>(PN); 4438 if (EnableVPlanNativePath) { 4439 // Currently we enter here in the VPlan-native path for non-induction 4440 // PHIs where all control flow is uniform. We simply widen these PHIs. 4441 // Create a vector phi with no operands - the vector phi operands will be 4442 // set at the end of vector code generation. 4443 Type *VecTy = (State.VF.isScalar()) 4444 ? PN->getType() 4445 : VectorType::get(PN->getType(), State.VF); 4446 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4447 State.set(PhiR, VecPhi, 0); 4448 OrigPHIsToFix.push_back(P); 4449 4450 return; 4451 } 4452 4453 assert(PN->getParent() == OrigLoop->getHeader() && 4454 "Non-header phis should have been handled elsewhere"); 4455 4456 // In order to support recurrences we need to be able to vectorize Phi nodes. 4457 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4458 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4459 // this value when we vectorize all of the instructions that use the PHI. 4460 4461 assert(!Legal->isReductionVariable(P) && 4462 "reductions should be handled elsewhere"); 4463 4464 setDebugLocFromInst(P); 4465 4466 // This PHINode must be an induction variable. 4467 // Make sure that we know about it. 4468 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4469 4470 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4471 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4472 4473 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4474 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4475 4476 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4477 // which can be found from the original scalar operations. 4478 switch (II.getKind()) { 4479 case InductionDescriptor::IK_NoInduction: 4480 llvm_unreachable("Unknown induction"); 4481 case InductionDescriptor::IK_IntInduction: 4482 case InductionDescriptor::IK_FpInduction: 4483 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4484 case InductionDescriptor::IK_PtrInduction: { 4485 // Handle the pointer induction variable case. 4486 assert(P->getType()->isPointerTy() && "Unexpected type."); 4487 4488 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4489 // This is the normalized GEP that starts counting at zero. 4490 Value *PtrInd = 4491 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4492 // Determine the number of scalars we need to generate for each unroll 4493 // iteration. If the instruction is uniform, we only need to generate the 4494 // first lane. Otherwise, we generate all VF values. 4495 bool IsUniform = vputils::onlyFirstLaneUsed(PhiR); 4496 assert((IsUniform || !State.VF.isScalable()) && 4497 "Cannot scalarize a scalable VF"); 4498 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4499 4500 for (unsigned Part = 0; Part < UF; ++Part) { 4501 Value *PartStart = 4502 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4503 4504 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4505 Value *Idx = Builder.CreateAdd( 4506 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4507 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4508 4509 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 4510 State.CFG.PrevBB->getTerminator()); 4511 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, Step, II); 4512 SclrGep->setName("next.gep"); 4513 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4514 } 4515 } 4516 return; 4517 } 4518 assert(isa<SCEVConstant>(II.getStep()) && 4519 "Induction step not a SCEV constant!"); 4520 Type *PhiType = II.getStep()->getType(); 4521 4522 // Build a pointer phi 4523 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4524 Type *ScStValueType = ScalarStartValue->getType(); 4525 PHINode *NewPointerPhi = 4526 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4527 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4528 4529 // A pointer induction, performed by using a gep 4530 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4531 Instruction *InductionLoc = LoopLatch->getTerminator(); 4532 const SCEV *ScalarStep = II.getStep(); 4533 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4534 Value *ScalarStepValue = 4535 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4536 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4537 Value *NumUnrolledElems = 4538 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4539 Value *InductionGEP = GetElementPtrInst::Create( 4540 II.getElementType(), NewPointerPhi, 4541 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4542 InductionLoc); 4543 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4544 4545 // Create UF many actual address geps that use the pointer 4546 // phi as base and a vectorized version of the step value 4547 // (<step*0, ..., step*N>) as offset. 4548 for (unsigned Part = 0; Part < State.UF; ++Part) { 4549 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4550 Value *StartOffsetScalar = 4551 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4552 Value *StartOffset = 4553 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4554 // Create a vector of consecutive numbers from zero to VF. 4555 StartOffset = 4556 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4557 4558 Value *GEP = Builder.CreateGEP( 4559 II.getElementType(), NewPointerPhi, 4560 Builder.CreateMul( 4561 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4562 "vector.gep")); 4563 State.set(PhiR, GEP, Part); 4564 } 4565 } 4566 } 4567 } 4568 4569 /// A helper function for checking whether an integer division-related 4570 /// instruction may divide by zero (in which case it must be predicated if 4571 /// executed conditionally in the scalar code). 4572 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4573 /// Non-zero divisors that are non compile-time constants will not be 4574 /// converted into multiplication, so we will still end up scalarizing 4575 /// the division, but can do so w/o predication. 4576 static bool mayDivideByZero(Instruction &I) { 4577 assert((I.getOpcode() == Instruction::UDiv || 4578 I.getOpcode() == Instruction::SDiv || 4579 I.getOpcode() == Instruction::URem || 4580 I.getOpcode() == Instruction::SRem) && 4581 "Unexpected instruction"); 4582 Value *Divisor = I.getOperand(1); 4583 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4584 return !CInt || CInt->isZero(); 4585 } 4586 4587 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4588 VPUser &ArgOperands, 4589 VPTransformState &State) { 4590 assert(!isa<DbgInfoIntrinsic>(I) && 4591 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4592 setDebugLocFromInst(&I); 4593 4594 Module *M = I.getParent()->getParent()->getParent(); 4595 auto *CI = cast<CallInst>(&I); 4596 4597 SmallVector<Type *, 4> Tys; 4598 for (Value *ArgOperand : CI->args()) 4599 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4600 4601 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4602 4603 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4604 // version of the instruction. 4605 // Is it beneficial to perform intrinsic call compared to lib call? 4606 bool NeedToScalarize = false; 4607 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4608 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4609 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4610 assert((UseVectorIntrinsic || !NeedToScalarize) && 4611 "Instruction should be scalarized elsewhere."); 4612 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4613 "Either the intrinsic cost or vector call cost must be valid"); 4614 4615 for (unsigned Part = 0; Part < UF; ++Part) { 4616 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4617 SmallVector<Value *, 4> Args; 4618 for (auto &I : enumerate(ArgOperands.operands())) { 4619 // Some intrinsics have a scalar argument - don't replace it with a 4620 // vector. 4621 Value *Arg; 4622 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4623 Arg = State.get(I.value(), Part); 4624 else { 4625 Arg = State.get(I.value(), VPIteration(0, 0)); 4626 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4627 TysForDecl.push_back(Arg->getType()); 4628 } 4629 Args.push_back(Arg); 4630 } 4631 4632 Function *VectorF; 4633 if (UseVectorIntrinsic) { 4634 // Use vector version of the intrinsic. 4635 if (VF.isVector()) 4636 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4637 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4638 assert(VectorF && "Can't retrieve vector intrinsic."); 4639 } else { 4640 // Use vector version of the function call. 4641 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4642 #ifndef NDEBUG 4643 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4644 "Can't create vector function."); 4645 #endif 4646 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4647 } 4648 SmallVector<OperandBundleDef, 1> OpBundles; 4649 CI->getOperandBundlesAsDefs(OpBundles); 4650 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4651 4652 if (isa<FPMathOperator>(V)) 4653 V->copyFastMathFlags(CI); 4654 4655 State.set(Def, V, Part); 4656 addMetadata(V, &I); 4657 } 4658 } 4659 4660 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4661 // We should not collect Scalars more than once per VF. Right now, this 4662 // function is called from collectUniformsAndScalars(), which already does 4663 // this check. Collecting Scalars for VF=1 does not make any sense. 4664 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4665 "This function should not be visited twice for the same VF"); 4666 4667 SmallSetVector<Instruction *, 8> Worklist; 4668 4669 // These sets are used to seed the analysis with pointers used by memory 4670 // accesses that will remain scalar. 4671 SmallSetVector<Instruction *, 8> ScalarPtrs; 4672 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4673 auto *Latch = TheLoop->getLoopLatch(); 4674 4675 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4676 // The pointer operands of loads and stores will be scalar as long as the 4677 // memory access is not a gather or scatter operation. The value operand of a 4678 // store will remain scalar if the store is scalarized. 4679 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4680 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4681 assert(WideningDecision != CM_Unknown && 4682 "Widening decision should be ready at this moment"); 4683 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4684 if (Ptr == Store->getValueOperand()) 4685 return WideningDecision == CM_Scalarize; 4686 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4687 "Ptr is neither a value or pointer operand"); 4688 return WideningDecision != CM_GatherScatter; 4689 }; 4690 4691 // A helper that returns true if the given value is a bitcast or 4692 // getelementptr instruction contained in the loop. 4693 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4694 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4695 isa<GetElementPtrInst>(V)) && 4696 !TheLoop->isLoopInvariant(V); 4697 }; 4698 4699 // A helper that evaluates a memory access's use of a pointer. If the use will 4700 // be a scalar use and the pointer is only used by memory accesses, we place 4701 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4702 // PossibleNonScalarPtrs. 4703 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4704 // We only care about bitcast and getelementptr instructions contained in 4705 // the loop. 4706 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4707 return; 4708 4709 // If the pointer has already been identified as scalar (e.g., if it was 4710 // also identified as uniform), there's nothing to do. 4711 auto *I = cast<Instruction>(Ptr); 4712 if (Worklist.count(I)) 4713 return; 4714 4715 // If the use of the pointer will be a scalar use, and all users of the 4716 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4717 // place the pointer in PossibleNonScalarPtrs. 4718 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4719 return isa<LoadInst>(U) || isa<StoreInst>(U); 4720 })) 4721 ScalarPtrs.insert(I); 4722 else 4723 PossibleNonScalarPtrs.insert(I); 4724 }; 4725 4726 // We seed the scalars analysis with three classes of instructions: (1) 4727 // instructions marked uniform-after-vectorization and (2) bitcast, 4728 // getelementptr and (pointer) phi instructions used by memory accesses 4729 // requiring a scalar use. 4730 // 4731 // (1) Add to the worklist all instructions that have been identified as 4732 // uniform-after-vectorization. 4733 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4734 4735 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4736 // memory accesses requiring a scalar use. The pointer operands of loads and 4737 // stores will be scalar as long as the memory accesses is not a gather or 4738 // scatter operation. The value operand of a store will remain scalar if the 4739 // store is scalarized. 4740 for (auto *BB : TheLoop->blocks()) 4741 for (auto &I : *BB) { 4742 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4743 evaluatePtrUse(Load, Load->getPointerOperand()); 4744 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4745 evaluatePtrUse(Store, Store->getPointerOperand()); 4746 evaluatePtrUse(Store, Store->getValueOperand()); 4747 } 4748 } 4749 for (auto *I : ScalarPtrs) 4750 if (!PossibleNonScalarPtrs.count(I)) { 4751 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4752 Worklist.insert(I); 4753 } 4754 4755 // Insert the forced scalars. 4756 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4757 // induction variable when the PHI user is scalarized. 4758 auto ForcedScalar = ForcedScalars.find(VF); 4759 if (ForcedScalar != ForcedScalars.end()) 4760 for (auto *I : ForcedScalar->second) 4761 Worklist.insert(I); 4762 4763 // Expand the worklist by looking through any bitcasts and getelementptr 4764 // instructions we've already identified as scalar. This is similar to the 4765 // expansion step in collectLoopUniforms(); however, here we're only 4766 // expanding to include additional bitcasts and getelementptr instructions. 4767 unsigned Idx = 0; 4768 while (Idx != Worklist.size()) { 4769 Instruction *Dst = Worklist[Idx++]; 4770 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4771 continue; 4772 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4773 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4774 auto *J = cast<Instruction>(U); 4775 return !TheLoop->contains(J) || Worklist.count(J) || 4776 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4777 isScalarUse(J, Src)); 4778 })) { 4779 Worklist.insert(Src); 4780 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4781 } 4782 } 4783 4784 // An induction variable will remain scalar if all users of the induction 4785 // variable and induction variable update remain scalar. 4786 for (auto &Induction : Legal->getInductionVars()) { 4787 auto *Ind = Induction.first; 4788 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4789 4790 // If tail-folding is applied, the primary induction variable will be used 4791 // to feed a vector compare. 4792 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4793 continue; 4794 4795 // Returns true if \p Indvar is a pointer induction that is used directly by 4796 // load/store instruction \p I. 4797 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4798 Instruction *I) { 4799 return Induction.second.getKind() == 4800 InductionDescriptor::IK_PtrInduction && 4801 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4802 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4803 }; 4804 4805 // Determine if all users of the induction variable are scalar after 4806 // vectorization. 4807 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4808 auto *I = cast<Instruction>(U); 4809 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4810 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4811 }); 4812 if (!ScalarInd) 4813 continue; 4814 4815 // Determine if all users of the induction variable update instruction are 4816 // scalar after vectorization. 4817 auto ScalarIndUpdate = 4818 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4819 auto *I = cast<Instruction>(U); 4820 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4821 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4822 }); 4823 if (!ScalarIndUpdate) 4824 continue; 4825 4826 // The induction variable and its update instruction will remain scalar. 4827 Worklist.insert(Ind); 4828 Worklist.insert(IndUpdate); 4829 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4830 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4831 << "\n"); 4832 } 4833 4834 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4835 } 4836 4837 bool LoopVectorizationCostModel::isScalarWithPredication( 4838 Instruction *I, ElementCount VF) const { 4839 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4840 return false; 4841 switch(I->getOpcode()) { 4842 default: 4843 break; 4844 case Instruction::Load: 4845 case Instruction::Store: { 4846 if (!Legal->isMaskRequired(I)) 4847 return false; 4848 auto *Ptr = getLoadStorePointerOperand(I); 4849 auto *Ty = getLoadStoreType(I); 4850 Type *VTy = Ty; 4851 if (VF.isVector()) 4852 VTy = VectorType::get(Ty, VF); 4853 const Align Alignment = getLoadStoreAlignment(I); 4854 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4855 TTI.isLegalMaskedGather(VTy, Alignment)) 4856 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4857 TTI.isLegalMaskedScatter(VTy, Alignment)); 4858 } 4859 case Instruction::UDiv: 4860 case Instruction::SDiv: 4861 case Instruction::SRem: 4862 case Instruction::URem: 4863 return mayDivideByZero(*I); 4864 } 4865 return false; 4866 } 4867 4868 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4869 Instruction *I, ElementCount VF) { 4870 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4871 assert(getWideningDecision(I, VF) == CM_Unknown && 4872 "Decision should not be set yet."); 4873 auto *Group = getInterleavedAccessGroup(I); 4874 assert(Group && "Must have a group."); 4875 4876 // If the instruction's allocated size doesn't equal it's type size, it 4877 // requires padding and will be scalarized. 4878 auto &DL = I->getModule()->getDataLayout(); 4879 auto *ScalarTy = getLoadStoreType(I); 4880 if (hasIrregularType(ScalarTy, DL)) 4881 return false; 4882 4883 // Check if masking is required. 4884 // A Group may need masking for one of two reasons: it resides in a block that 4885 // needs predication, or it was decided to use masking to deal with gaps 4886 // (either a gap at the end of a load-access that may result in a speculative 4887 // load, or any gaps in a store-access). 4888 bool PredicatedAccessRequiresMasking = 4889 blockNeedsPredicationForAnyReason(I->getParent()) && 4890 Legal->isMaskRequired(I); 4891 bool LoadAccessWithGapsRequiresEpilogMasking = 4892 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4893 !isScalarEpilogueAllowed(); 4894 bool StoreAccessWithGapsRequiresMasking = 4895 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4896 if (!PredicatedAccessRequiresMasking && 4897 !LoadAccessWithGapsRequiresEpilogMasking && 4898 !StoreAccessWithGapsRequiresMasking) 4899 return true; 4900 4901 // If masked interleaving is required, we expect that the user/target had 4902 // enabled it, because otherwise it either wouldn't have been created or 4903 // it should have been invalidated by the CostModel. 4904 assert(useMaskedInterleavedAccesses(TTI) && 4905 "Masked interleave-groups for predicated accesses are not enabled."); 4906 4907 if (Group->isReverse()) 4908 return false; 4909 4910 auto *Ty = getLoadStoreType(I); 4911 const Align Alignment = getLoadStoreAlignment(I); 4912 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4913 : TTI.isLegalMaskedStore(Ty, Alignment); 4914 } 4915 4916 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4917 Instruction *I, ElementCount VF) { 4918 // Get and ensure we have a valid memory instruction. 4919 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4920 4921 auto *Ptr = getLoadStorePointerOperand(I); 4922 auto *ScalarTy = getLoadStoreType(I); 4923 4924 // In order to be widened, the pointer should be consecutive, first of all. 4925 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4926 return false; 4927 4928 // If the instruction is a store located in a predicated block, it will be 4929 // scalarized. 4930 if (isScalarWithPredication(I, VF)) 4931 return false; 4932 4933 // If the instruction's allocated size doesn't equal it's type size, it 4934 // requires padding and will be scalarized. 4935 auto &DL = I->getModule()->getDataLayout(); 4936 if (hasIrregularType(ScalarTy, DL)) 4937 return false; 4938 4939 return true; 4940 } 4941 4942 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4943 // We should not collect Uniforms more than once per VF. Right now, 4944 // this function is called from collectUniformsAndScalars(), which 4945 // already does this check. Collecting Uniforms for VF=1 does not make any 4946 // sense. 4947 4948 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4949 "This function should not be visited twice for the same VF"); 4950 4951 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4952 // not analyze again. Uniforms.count(VF) will return 1. 4953 Uniforms[VF].clear(); 4954 4955 // We now know that the loop is vectorizable! 4956 // Collect instructions inside the loop that will remain uniform after 4957 // vectorization. 4958 4959 // Global values, params and instructions outside of current loop are out of 4960 // scope. 4961 auto isOutOfScope = [&](Value *V) -> bool { 4962 Instruction *I = dyn_cast<Instruction>(V); 4963 return (!I || !TheLoop->contains(I)); 4964 }; 4965 4966 // Worklist containing uniform instructions demanding lane 0. 4967 SetVector<Instruction *> Worklist; 4968 BasicBlock *Latch = TheLoop->getLoopLatch(); 4969 4970 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4971 // that are scalar with predication must not be considered uniform after 4972 // vectorization, because that would create an erroneous replicating region 4973 // where only a single instance out of VF should be formed. 4974 // TODO: optimize such seldom cases if found important, see PR40816. 4975 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4976 if (isOutOfScope(I)) { 4977 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4978 << *I << "\n"); 4979 return; 4980 } 4981 if (isScalarWithPredication(I, VF)) { 4982 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4983 << *I << "\n"); 4984 return; 4985 } 4986 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4987 Worklist.insert(I); 4988 }; 4989 4990 // Start with the conditional branch. If the branch condition is an 4991 // instruction contained in the loop that is only used by the branch, it is 4992 // uniform. 4993 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4994 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4995 addToWorklistIfAllowed(Cmp); 4996 4997 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4998 InstWidening WideningDecision = getWideningDecision(I, VF); 4999 assert(WideningDecision != CM_Unknown && 5000 "Widening decision should be ready at this moment"); 5001 5002 // A uniform memory op is itself uniform. We exclude uniform stores 5003 // here as they demand the last lane, not the first one. 5004 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5005 assert(WideningDecision == CM_Scalarize); 5006 return true; 5007 } 5008 5009 return (WideningDecision == CM_Widen || 5010 WideningDecision == CM_Widen_Reverse || 5011 WideningDecision == CM_Interleave); 5012 }; 5013 5014 5015 // Returns true if Ptr is the pointer operand of a memory access instruction 5016 // I, and I is known to not require scalarization. 5017 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5018 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5019 }; 5020 5021 // Holds a list of values which are known to have at least one uniform use. 5022 // Note that there may be other uses which aren't uniform. A "uniform use" 5023 // here is something which only demands lane 0 of the unrolled iterations; 5024 // it does not imply that all lanes produce the same value (e.g. this is not 5025 // the usual meaning of uniform) 5026 SetVector<Value *> HasUniformUse; 5027 5028 // Scan the loop for instructions which are either a) known to have only 5029 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5030 for (auto *BB : TheLoop->blocks()) 5031 for (auto &I : *BB) { 5032 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5033 switch (II->getIntrinsicID()) { 5034 case Intrinsic::sideeffect: 5035 case Intrinsic::experimental_noalias_scope_decl: 5036 case Intrinsic::assume: 5037 case Intrinsic::lifetime_start: 5038 case Intrinsic::lifetime_end: 5039 if (TheLoop->hasLoopInvariantOperands(&I)) 5040 addToWorklistIfAllowed(&I); 5041 break; 5042 default: 5043 break; 5044 } 5045 } 5046 5047 // ExtractValue instructions must be uniform, because the operands are 5048 // known to be loop-invariant. 5049 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5050 assert(isOutOfScope(EVI->getAggregateOperand()) && 5051 "Expected aggregate value to be loop invariant"); 5052 addToWorklistIfAllowed(EVI); 5053 continue; 5054 } 5055 5056 // If there's no pointer operand, there's nothing to do. 5057 auto *Ptr = getLoadStorePointerOperand(&I); 5058 if (!Ptr) 5059 continue; 5060 5061 // A uniform memory op is itself uniform. We exclude uniform stores 5062 // here as they demand the last lane, not the first one. 5063 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5064 addToWorklistIfAllowed(&I); 5065 5066 if (isUniformDecision(&I, VF)) { 5067 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5068 HasUniformUse.insert(Ptr); 5069 } 5070 } 5071 5072 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5073 // demanding) users. Since loops are assumed to be in LCSSA form, this 5074 // disallows uses outside the loop as well. 5075 for (auto *V : HasUniformUse) { 5076 if (isOutOfScope(V)) 5077 continue; 5078 auto *I = cast<Instruction>(V); 5079 auto UsersAreMemAccesses = 5080 llvm::all_of(I->users(), [&](User *U) -> bool { 5081 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5082 }); 5083 if (UsersAreMemAccesses) 5084 addToWorklistIfAllowed(I); 5085 } 5086 5087 // Expand Worklist in topological order: whenever a new instruction 5088 // is added , its users should be already inside Worklist. It ensures 5089 // a uniform instruction will only be used by uniform instructions. 5090 unsigned idx = 0; 5091 while (idx != Worklist.size()) { 5092 Instruction *I = Worklist[idx++]; 5093 5094 for (auto OV : I->operand_values()) { 5095 // isOutOfScope operands cannot be uniform instructions. 5096 if (isOutOfScope(OV)) 5097 continue; 5098 // First order recurrence Phi's should typically be considered 5099 // non-uniform. 5100 auto *OP = dyn_cast<PHINode>(OV); 5101 if (OP && Legal->isFirstOrderRecurrence(OP)) 5102 continue; 5103 // If all the users of the operand are uniform, then add the 5104 // operand into the uniform worklist. 5105 auto *OI = cast<Instruction>(OV); 5106 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5107 auto *J = cast<Instruction>(U); 5108 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5109 })) 5110 addToWorklistIfAllowed(OI); 5111 } 5112 } 5113 5114 // For an instruction to be added into Worklist above, all its users inside 5115 // the loop should also be in Worklist. However, this condition cannot be 5116 // true for phi nodes that form a cyclic dependence. We must process phi 5117 // nodes separately. An induction variable will remain uniform if all users 5118 // of the induction variable and induction variable update remain uniform. 5119 // The code below handles both pointer and non-pointer induction variables. 5120 for (auto &Induction : Legal->getInductionVars()) { 5121 auto *Ind = Induction.first; 5122 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5123 5124 // Determine if all users of the induction variable are uniform after 5125 // vectorization. 5126 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5127 auto *I = cast<Instruction>(U); 5128 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5129 isVectorizedMemAccessUse(I, Ind); 5130 }); 5131 if (!UniformInd) 5132 continue; 5133 5134 // Determine if all users of the induction variable update instruction are 5135 // uniform after vectorization. 5136 auto UniformIndUpdate = 5137 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5138 auto *I = cast<Instruction>(U); 5139 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5140 isVectorizedMemAccessUse(I, IndUpdate); 5141 }); 5142 if (!UniformIndUpdate) 5143 continue; 5144 5145 // The induction variable and its update instruction will remain uniform. 5146 addToWorklistIfAllowed(Ind); 5147 addToWorklistIfAllowed(IndUpdate); 5148 } 5149 5150 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5151 } 5152 5153 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5154 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5155 5156 if (Legal->getRuntimePointerChecking()->Need) { 5157 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5158 "runtime pointer checks needed. Enable vectorization of this " 5159 "loop with '#pragma clang loop vectorize(enable)' when " 5160 "compiling with -Os/-Oz", 5161 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5162 return true; 5163 } 5164 5165 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5166 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5167 "runtime SCEV checks needed. Enable vectorization of this " 5168 "loop with '#pragma clang loop vectorize(enable)' when " 5169 "compiling with -Os/-Oz", 5170 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5171 return true; 5172 } 5173 5174 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5175 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5176 reportVectorizationFailure("Runtime stride check for small trip count", 5177 "runtime stride == 1 checks needed. Enable vectorization of " 5178 "this loop without such check by compiling with -Os/-Oz", 5179 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5180 return true; 5181 } 5182 5183 return false; 5184 } 5185 5186 ElementCount 5187 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5188 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5189 return ElementCount::getScalable(0); 5190 5191 if (Hints->isScalableVectorizationDisabled()) { 5192 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5193 "ScalableVectorizationDisabled", ORE, TheLoop); 5194 return ElementCount::getScalable(0); 5195 } 5196 5197 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5198 5199 auto MaxScalableVF = ElementCount::getScalable( 5200 std::numeric_limits<ElementCount::ScalarTy>::max()); 5201 5202 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5203 // FIXME: While for scalable vectors this is currently sufficient, this should 5204 // be replaced by a more detailed mechanism that filters out specific VFs, 5205 // instead of invalidating vectorization for a whole set of VFs based on the 5206 // MaxVF. 5207 5208 // Disable scalable vectorization if the loop contains unsupported reductions. 5209 if (!canVectorizeReductions(MaxScalableVF)) { 5210 reportVectorizationInfo( 5211 "Scalable vectorization not supported for the reduction " 5212 "operations found in this loop.", 5213 "ScalableVFUnfeasible", ORE, TheLoop); 5214 return ElementCount::getScalable(0); 5215 } 5216 5217 // Disable scalable vectorization if the loop contains any instructions 5218 // with element types not supported for scalable vectors. 5219 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5220 return !Ty->isVoidTy() && 5221 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5222 })) { 5223 reportVectorizationInfo("Scalable vectorization is not supported " 5224 "for all element types found in this loop.", 5225 "ScalableVFUnfeasible", ORE, TheLoop); 5226 return ElementCount::getScalable(0); 5227 } 5228 5229 if (Legal->isSafeForAnyVectorWidth()) 5230 return MaxScalableVF; 5231 5232 // Limit MaxScalableVF by the maximum safe dependence distance. 5233 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5234 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5235 MaxVScale = 5236 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5237 MaxScalableVF = ElementCount::getScalable( 5238 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5239 if (!MaxScalableVF) 5240 reportVectorizationInfo( 5241 "Max legal vector width too small, scalable vectorization " 5242 "unfeasible.", 5243 "ScalableVFUnfeasible", ORE, TheLoop); 5244 5245 return MaxScalableVF; 5246 } 5247 5248 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5249 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5250 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5251 unsigned SmallestType, WidestType; 5252 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5253 5254 // Get the maximum safe dependence distance in bits computed by LAA. 5255 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5256 // the memory accesses that is most restrictive (involved in the smallest 5257 // dependence distance). 5258 unsigned MaxSafeElements = 5259 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5260 5261 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5262 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5263 5264 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5265 << ".\n"); 5266 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5267 << ".\n"); 5268 5269 // First analyze the UserVF, fall back if the UserVF should be ignored. 5270 if (UserVF) { 5271 auto MaxSafeUserVF = 5272 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5273 5274 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5275 // If `VF=vscale x N` is safe, then so is `VF=N` 5276 if (UserVF.isScalable()) 5277 return FixedScalableVFPair( 5278 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5279 else 5280 return UserVF; 5281 } 5282 5283 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5284 5285 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5286 // is better to ignore the hint and let the compiler choose a suitable VF. 5287 if (!UserVF.isScalable()) { 5288 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5289 << " is unsafe, clamping to max safe VF=" 5290 << MaxSafeFixedVF << ".\n"); 5291 ORE->emit([&]() { 5292 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5293 TheLoop->getStartLoc(), 5294 TheLoop->getHeader()) 5295 << "User-specified vectorization factor " 5296 << ore::NV("UserVectorizationFactor", UserVF) 5297 << " is unsafe, clamping to maximum safe vectorization factor " 5298 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5299 }); 5300 return MaxSafeFixedVF; 5301 } 5302 5303 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5304 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5305 << " is ignored because scalable vectors are not " 5306 "available.\n"); 5307 ORE->emit([&]() { 5308 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5309 TheLoop->getStartLoc(), 5310 TheLoop->getHeader()) 5311 << "User-specified vectorization factor " 5312 << ore::NV("UserVectorizationFactor", UserVF) 5313 << " is ignored because the target does not support scalable " 5314 "vectors. The compiler will pick a more suitable value."; 5315 }); 5316 } else { 5317 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5318 << " is unsafe. Ignoring scalable UserVF.\n"); 5319 ORE->emit([&]() { 5320 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5321 TheLoop->getStartLoc(), 5322 TheLoop->getHeader()) 5323 << "User-specified vectorization factor " 5324 << ore::NV("UserVectorizationFactor", UserVF) 5325 << " is unsafe. Ignoring the hint to let the compiler pick a " 5326 "more suitable value."; 5327 }); 5328 } 5329 } 5330 5331 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5332 << " / " << WidestType << " bits.\n"); 5333 5334 FixedScalableVFPair Result(ElementCount::getFixed(1), 5335 ElementCount::getScalable(0)); 5336 if (auto MaxVF = 5337 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5338 MaxSafeFixedVF, FoldTailByMasking)) 5339 Result.FixedVF = MaxVF; 5340 5341 if (auto MaxVF = 5342 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5343 MaxSafeScalableVF, FoldTailByMasking)) 5344 if (MaxVF.isScalable()) { 5345 Result.ScalableVF = MaxVF; 5346 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5347 << "\n"); 5348 } 5349 5350 return Result; 5351 } 5352 5353 FixedScalableVFPair 5354 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5355 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5356 // TODO: It may by useful to do since it's still likely to be dynamically 5357 // uniform if the target can skip. 5358 reportVectorizationFailure( 5359 "Not inserting runtime ptr check for divergent target", 5360 "runtime pointer checks needed. Not enabled for divergent target", 5361 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5362 return FixedScalableVFPair::getNone(); 5363 } 5364 5365 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5366 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5367 if (TC == 1) { 5368 reportVectorizationFailure("Single iteration (non) loop", 5369 "loop trip count is one, irrelevant for vectorization", 5370 "SingleIterationLoop", ORE, TheLoop); 5371 return FixedScalableVFPair::getNone(); 5372 } 5373 5374 switch (ScalarEpilogueStatus) { 5375 case CM_ScalarEpilogueAllowed: 5376 return computeFeasibleMaxVF(TC, UserVF, false); 5377 case CM_ScalarEpilogueNotAllowedUsePredicate: 5378 LLVM_FALLTHROUGH; 5379 case CM_ScalarEpilogueNotNeededUsePredicate: 5380 LLVM_DEBUG( 5381 dbgs() << "LV: vector predicate hint/switch found.\n" 5382 << "LV: Not allowing scalar epilogue, creating predicated " 5383 << "vector loop.\n"); 5384 break; 5385 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5386 // fallthrough as a special case of OptForSize 5387 case CM_ScalarEpilogueNotAllowedOptSize: 5388 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5389 LLVM_DEBUG( 5390 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5391 else 5392 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5393 << "count.\n"); 5394 5395 // Bail if runtime checks are required, which are not good when optimising 5396 // for size. 5397 if (runtimeChecksRequired()) 5398 return FixedScalableVFPair::getNone(); 5399 5400 break; 5401 } 5402 5403 // The only loops we can vectorize without a scalar epilogue, are loops with 5404 // a bottom-test and a single exiting block. We'd have to handle the fact 5405 // that not every instruction executes on the last iteration. This will 5406 // require a lane mask which varies through the vector loop body. (TODO) 5407 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5408 // If there was a tail-folding hint/switch, but we can't fold the tail by 5409 // masking, fallback to a vectorization with a scalar epilogue. 5410 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5411 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5412 "scalar epilogue instead.\n"); 5413 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5414 return computeFeasibleMaxVF(TC, UserVF, false); 5415 } 5416 return FixedScalableVFPair::getNone(); 5417 } 5418 5419 // Now try the tail folding 5420 5421 // Invalidate interleave groups that require an epilogue if we can't mask 5422 // the interleave-group. 5423 if (!useMaskedInterleavedAccesses(TTI)) { 5424 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5425 "No decisions should have been taken at this point"); 5426 // Note: There is no need to invalidate any cost modeling decisions here, as 5427 // non where taken so far. 5428 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5429 } 5430 5431 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5432 // Avoid tail folding if the trip count is known to be a multiple of any VF 5433 // we chose. 5434 // FIXME: The condition below pessimises the case for fixed-width vectors, 5435 // when scalable VFs are also candidates for vectorization. 5436 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5437 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5438 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5439 "MaxFixedVF must be a power of 2"); 5440 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5441 : MaxFixedVF.getFixedValue(); 5442 ScalarEvolution *SE = PSE.getSE(); 5443 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5444 const SCEV *ExitCount = SE->getAddExpr( 5445 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5446 const SCEV *Rem = SE->getURemExpr( 5447 SE->applyLoopGuards(ExitCount, TheLoop), 5448 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5449 if (Rem->isZero()) { 5450 // Accept MaxFixedVF if we do not have a tail. 5451 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5452 return MaxFactors; 5453 } 5454 } 5455 5456 // For scalable vectors don't use tail folding for low trip counts or 5457 // optimizing for code size. We only permit this if the user has explicitly 5458 // requested it. 5459 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5460 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5461 MaxFactors.ScalableVF.isVector()) 5462 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5463 5464 // If we don't know the precise trip count, or if the trip count that we 5465 // found modulo the vectorization factor is not zero, try to fold the tail 5466 // by masking. 5467 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5468 if (Legal->prepareToFoldTailByMasking()) { 5469 FoldTailByMasking = true; 5470 return MaxFactors; 5471 } 5472 5473 // If there was a tail-folding hint/switch, but we can't fold the tail by 5474 // masking, fallback to a vectorization with a scalar epilogue. 5475 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5476 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5477 "scalar epilogue instead.\n"); 5478 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5479 return MaxFactors; 5480 } 5481 5482 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5483 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5484 return FixedScalableVFPair::getNone(); 5485 } 5486 5487 if (TC == 0) { 5488 reportVectorizationFailure( 5489 "Unable to calculate the loop count due to complex control flow", 5490 "unable to calculate the loop count due to complex control flow", 5491 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5492 return FixedScalableVFPair::getNone(); 5493 } 5494 5495 reportVectorizationFailure( 5496 "Cannot optimize for size and vectorize at the same time.", 5497 "cannot optimize for size and vectorize at the same time. " 5498 "Enable vectorization of this loop with '#pragma clang loop " 5499 "vectorize(enable)' when compiling with -Os/-Oz", 5500 "NoTailLoopWithOptForSize", ORE, TheLoop); 5501 return FixedScalableVFPair::getNone(); 5502 } 5503 5504 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5505 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5506 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5507 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5508 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5509 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5510 : TargetTransformInfo::RGK_FixedWidthVector); 5511 5512 // Convenience function to return the minimum of two ElementCounts. 5513 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5514 assert((LHS.isScalable() == RHS.isScalable()) && 5515 "Scalable flags must match"); 5516 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5517 }; 5518 5519 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5520 // Note that both WidestRegister and WidestType may not be a powers of 2. 5521 auto MaxVectorElementCount = ElementCount::get( 5522 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5523 ComputeScalableMaxVF); 5524 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5525 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5526 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5527 5528 if (!MaxVectorElementCount) { 5529 LLVM_DEBUG(dbgs() << "LV: The target has no " 5530 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5531 << " vector registers.\n"); 5532 return ElementCount::getFixed(1); 5533 } 5534 5535 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5536 if (ConstTripCount && 5537 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5538 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5539 // If loop trip count (TC) is known at compile time there is no point in 5540 // choosing VF greater than TC (as done in the loop below). Select maximum 5541 // power of two which doesn't exceed TC. 5542 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5543 // when the TC is less than or equal to the known number of lanes. 5544 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5545 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5546 "exceeding the constant trip count: " 5547 << ClampedConstTripCount << "\n"); 5548 return ElementCount::getFixed(ClampedConstTripCount); 5549 } 5550 5551 ElementCount MaxVF = MaxVectorElementCount; 5552 if (TTI.shouldMaximizeVectorBandwidth() || 5553 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5554 auto MaxVectorElementCountMaxBW = ElementCount::get( 5555 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5556 ComputeScalableMaxVF); 5557 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5558 5559 // Collect all viable vectorization factors larger than the default MaxVF 5560 // (i.e. MaxVectorElementCount). 5561 SmallVector<ElementCount, 8> VFs; 5562 for (ElementCount VS = MaxVectorElementCount * 2; 5563 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5564 VFs.push_back(VS); 5565 5566 // For each VF calculate its register usage. 5567 auto RUs = calculateRegisterUsage(VFs); 5568 5569 // Select the largest VF which doesn't require more registers than existing 5570 // ones. 5571 for (int i = RUs.size() - 1; i >= 0; --i) { 5572 bool Selected = true; 5573 for (auto &pair : RUs[i].MaxLocalUsers) { 5574 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5575 if (pair.second > TargetNumRegisters) 5576 Selected = false; 5577 } 5578 if (Selected) { 5579 MaxVF = VFs[i]; 5580 break; 5581 } 5582 } 5583 if (ElementCount MinVF = 5584 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5585 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5586 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5587 << ") with target's minimum: " << MinVF << '\n'); 5588 MaxVF = MinVF; 5589 } 5590 } 5591 } 5592 return MaxVF; 5593 } 5594 5595 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5596 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5597 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5598 auto Min = Attr.getVScaleRangeMin(); 5599 auto Max = Attr.getVScaleRangeMax(); 5600 if (Max && Min == Max) 5601 return Max; 5602 } 5603 5604 return TTI.getVScaleForTuning(); 5605 } 5606 5607 bool LoopVectorizationCostModel::isMoreProfitable( 5608 const VectorizationFactor &A, const VectorizationFactor &B) const { 5609 InstructionCost CostA = A.Cost; 5610 InstructionCost CostB = B.Cost; 5611 5612 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5613 5614 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5615 MaxTripCount) { 5616 // If we are folding the tail and the trip count is a known (possibly small) 5617 // constant, the trip count will be rounded up to an integer number of 5618 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5619 // which we compare directly. When not folding the tail, the total cost will 5620 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5621 // approximated with the per-lane cost below instead of using the tripcount 5622 // as here. 5623 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5624 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5625 return RTCostA < RTCostB; 5626 } 5627 5628 // Improve estimate for the vector width if it is scalable. 5629 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5630 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5631 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5632 if (A.Width.isScalable()) 5633 EstimatedWidthA *= VScale.getValue(); 5634 if (B.Width.isScalable()) 5635 EstimatedWidthB *= VScale.getValue(); 5636 } 5637 5638 // Assume vscale may be larger than 1 (or the value being tuned for), 5639 // so that scalable vectorization is slightly favorable over fixed-width 5640 // vectorization. 5641 if (A.Width.isScalable() && !B.Width.isScalable()) 5642 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5643 5644 // To avoid the need for FP division: 5645 // (CostA / A.Width) < (CostB / B.Width) 5646 // <=> (CostA * B.Width) < (CostB * A.Width) 5647 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5648 } 5649 5650 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5651 const ElementCountSet &VFCandidates) { 5652 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5653 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5654 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5655 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5656 "Expected Scalar VF to be a candidate"); 5657 5658 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5659 VectorizationFactor ChosenFactor = ScalarCost; 5660 5661 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5662 if (ForceVectorization && VFCandidates.size() > 1) { 5663 // Ignore scalar width, because the user explicitly wants vectorization. 5664 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5665 // evaluation. 5666 ChosenFactor.Cost = InstructionCost::getMax(); 5667 } 5668 5669 SmallVector<InstructionVFPair> InvalidCosts; 5670 for (const auto &i : VFCandidates) { 5671 // The cost for scalar VF=1 is already calculated, so ignore it. 5672 if (i.isScalar()) 5673 continue; 5674 5675 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5676 VectorizationFactor Candidate(i, C.first); 5677 5678 #ifndef NDEBUG 5679 unsigned AssumedMinimumVscale = 1; 5680 if (Optional<unsigned> VScale = getVScaleForTuning()) 5681 AssumedMinimumVscale = VScale.getValue(); 5682 unsigned Width = 5683 Candidate.Width.isScalable() 5684 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5685 : Candidate.Width.getFixedValue(); 5686 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5687 << " costs: " << (Candidate.Cost / Width)); 5688 if (i.isScalable()) 5689 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5690 << AssumedMinimumVscale << ")"); 5691 LLVM_DEBUG(dbgs() << ".\n"); 5692 #endif 5693 5694 if (!C.second && !ForceVectorization) { 5695 LLVM_DEBUG( 5696 dbgs() << "LV: Not considering vector loop of width " << i 5697 << " because it will not generate any vector instructions.\n"); 5698 continue; 5699 } 5700 5701 // If profitable add it to ProfitableVF list. 5702 if (isMoreProfitable(Candidate, ScalarCost)) 5703 ProfitableVFs.push_back(Candidate); 5704 5705 if (isMoreProfitable(Candidate, ChosenFactor)) 5706 ChosenFactor = Candidate; 5707 } 5708 5709 // Emit a report of VFs with invalid costs in the loop. 5710 if (!InvalidCosts.empty()) { 5711 // Group the remarks per instruction, keeping the instruction order from 5712 // InvalidCosts. 5713 std::map<Instruction *, unsigned> Numbering; 5714 unsigned I = 0; 5715 for (auto &Pair : InvalidCosts) 5716 if (!Numbering.count(Pair.first)) 5717 Numbering[Pair.first] = I++; 5718 5719 // Sort the list, first on instruction(number) then on VF. 5720 llvm::sort(InvalidCosts, 5721 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5722 if (Numbering[A.first] != Numbering[B.first]) 5723 return Numbering[A.first] < Numbering[B.first]; 5724 ElementCountComparator ECC; 5725 return ECC(A.second, B.second); 5726 }); 5727 5728 // For a list of ordered instruction-vf pairs: 5729 // [(load, vf1), (load, vf2), (store, vf1)] 5730 // Group the instructions together to emit separate remarks for: 5731 // load (vf1, vf2) 5732 // store (vf1) 5733 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5734 auto Subset = ArrayRef<InstructionVFPair>(); 5735 do { 5736 if (Subset.empty()) 5737 Subset = Tail.take_front(1); 5738 5739 Instruction *I = Subset.front().first; 5740 5741 // If the next instruction is different, or if there are no other pairs, 5742 // emit a remark for the collated subset. e.g. 5743 // [(load, vf1), (load, vf2))] 5744 // to emit: 5745 // remark: invalid costs for 'load' at VF=(vf, vf2) 5746 if (Subset == Tail || Tail[Subset.size()].first != I) { 5747 std::string OutString; 5748 raw_string_ostream OS(OutString); 5749 assert(!Subset.empty() && "Unexpected empty range"); 5750 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5751 for (auto &Pair : Subset) 5752 OS << (Pair.second == Subset.front().second ? "" : ", ") 5753 << Pair.second; 5754 OS << "):"; 5755 if (auto *CI = dyn_cast<CallInst>(I)) 5756 OS << " call to " << CI->getCalledFunction()->getName(); 5757 else 5758 OS << " " << I->getOpcodeName(); 5759 OS.flush(); 5760 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5761 Tail = Tail.drop_front(Subset.size()); 5762 Subset = {}; 5763 } else 5764 // Grow the subset by one element 5765 Subset = Tail.take_front(Subset.size() + 1); 5766 } while (!Tail.empty()); 5767 } 5768 5769 if (!EnableCondStoresVectorization && NumPredStores) { 5770 reportVectorizationFailure("There are conditional stores.", 5771 "store that is conditionally executed prevents vectorization", 5772 "ConditionalStore", ORE, TheLoop); 5773 ChosenFactor = ScalarCost; 5774 } 5775 5776 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5777 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5778 << "LV: Vectorization seems to be not beneficial, " 5779 << "but was forced by a user.\n"); 5780 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5781 return ChosenFactor; 5782 } 5783 5784 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5785 const Loop &L, ElementCount VF) const { 5786 // Cross iteration phis such as reductions need special handling and are 5787 // currently unsupported. 5788 if (any_of(L.getHeader()->phis(), 5789 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5790 return false; 5791 5792 // Phis with uses outside of the loop require special handling and are 5793 // currently unsupported. 5794 for (auto &Entry : Legal->getInductionVars()) { 5795 // Look for uses of the value of the induction at the last iteration. 5796 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5797 for (User *U : PostInc->users()) 5798 if (!L.contains(cast<Instruction>(U))) 5799 return false; 5800 // Look for uses of penultimate value of the induction. 5801 for (User *U : Entry.first->users()) 5802 if (!L.contains(cast<Instruction>(U))) 5803 return false; 5804 } 5805 5806 // Induction variables that are widened require special handling that is 5807 // currently not supported. 5808 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5809 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5810 this->isProfitableToScalarize(Entry.first, VF)); 5811 })) 5812 return false; 5813 5814 // Epilogue vectorization code has not been auditted to ensure it handles 5815 // non-latch exits properly. It may be fine, but it needs auditted and 5816 // tested. 5817 if (L.getExitingBlock() != L.getLoopLatch()) 5818 return false; 5819 5820 return true; 5821 } 5822 5823 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5824 const ElementCount VF) const { 5825 // FIXME: We need a much better cost-model to take different parameters such 5826 // as register pressure, code size increase and cost of extra branches into 5827 // account. For now we apply a very crude heuristic and only consider loops 5828 // with vectorization factors larger than a certain value. 5829 // We also consider epilogue vectorization unprofitable for targets that don't 5830 // consider interleaving beneficial (eg. MVE). 5831 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5832 return false; 5833 // FIXME: We should consider changing the threshold for scalable 5834 // vectors to take VScaleForTuning into account. 5835 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5836 return true; 5837 return false; 5838 } 5839 5840 VectorizationFactor 5841 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5842 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5843 VectorizationFactor Result = VectorizationFactor::Disabled(); 5844 if (!EnableEpilogueVectorization) { 5845 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5846 return Result; 5847 } 5848 5849 if (!isScalarEpilogueAllowed()) { 5850 LLVM_DEBUG( 5851 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5852 "allowed.\n";); 5853 return Result; 5854 } 5855 5856 // Not really a cost consideration, but check for unsupported cases here to 5857 // simplify the logic. 5858 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5859 LLVM_DEBUG( 5860 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5861 "not a supported candidate.\n";); 5862 return Result; 5863 } 5864 5865 if (EpilogueVectorizationForceVF > 1) { 5866 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5867 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5868 if (LVP.hasPlanWithVF(ForcedEC)) 5869 return {ForcedEC, 0}; 5870 else { 5871 LLVM_DEBUG( 5872 dbgs() 5873 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5874 return Result; 5875 } 5876 } 5877 5878 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5879 TheLoop->getHeader()->getParent()->hasMinSize()) { 5880 LLVM_DEBUG( 5881 dbgs() 5882 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5883 return Result; 5884 } 5885 5886 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5887 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5888 "this loop\n"); 5889 return Result; 5890 } 5891 5892 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5893 // the main loop handles 8 lanes per iteration. We could still benefit from 5894 // vectorizing the epilogue loop with VF=4. 5895 ElementCount EstimatedRuntimeVF = MainLoopVF; 5896 if (MainLoopVF.isScalable()) { 5897 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5898 if (Optional<unsigned> VScale = getVScaleForTuning()) 5899 EstimatedRuntimeVF *= VScale.getValue(); 5900 } 5901 5902 for (auto &NextVF : ProfitableVFs) 5903 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5904 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5905 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5906 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5907 LVP.hasPlanWithVF(NextVF.Width)) 5908 Result = NextVF; 5909 5910 if (Result != VectorizationFactor::Disabled()) 5911 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5912 << Result.Width << "\n";); 5913 return Result; 5914 } 5915 5916 std::pair<unsigned, unsigned> 5917 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5918 unsigned MinWidth = -1U; 5919 unsigned MaxWidth = 8; 5920 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5921 // For in-loop reductions, no element types are added to ElementTypesInLoop 5922 // if there are no loads/stores in the loop. In this case, check through the 5923 // reduction variables to determine the maximum width. 5924 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5925 // Reset MaxWidth so that we can find the smallest type used by recurrences 5926 // in the loop. 5927 MaxWidth = -1U; 5928 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5929 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5930 // When finding the min width used by the recurrence we need to account 5931 // for casts on the input operands of the recurrence. 5932 MaxWidth = std::min<unsigned>( 5933 MaxWidth, std::min<unsigned>( 5934 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5935 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5936 } 5937 } else { 5938 for (Type *T : ElementTypesInLoop) { 5939 MinWidth = std::min<unsigned>( 5940 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5941 MaxWidth = std::max<unsigned>( 5942 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5943 } 5944 } 5945 return {MinWidth, MaxWidth}; 5946 } 5947 5948 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5949 ElementTypesInLoop.clear(); 5950 // For each block. 5951 for (BasicBlock *BB : TheLoop->blocks()) { 5952 // For each instruction in the loop. 5953 for (Instruction &I : BB->instructionsWithoutDebug()) { 5954 Type *T = I.getType(); 5955 5956 // Skip ignored values. 5957 if (ValuesToIgnore.count(&I)) 5958 continue; 5959 5960 // Only examine Loads, Stores and PHINodes. 5961 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5962 continue; 5963 5964 // Examine PHI nodes that are reduction variables. Update the type to 5965 // account for the recurrence type. 5966 if (auto *PN = dyn_cast<PHINode>(&I)) { 5967 if (!Legal->isReductionVariable(PN)) 5968 continue; 5969 const RecurrenceDescriptor &RdxDesc = 5970 Legal->getReductionVars().find(PN)->second; 5971 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5972 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5973 RdxDesc.getRecurrenceType(), 5974 TargetTransformInfo::ReductionFlags())) 5975 continue; 5976 T = RdxDesc.getRecurrenceType(); 5977 } 5978 5979 // Examine the stored values. 5980 if (auto *ST = dyn_cast<StoreInst>(&I)) 5981 T = ST->getValueOperand()->getType(); 5982 5983 assert(T->isSized() && 5984 "Expected the load/store/recurrence type to be sized"); 5985 5986 ElementTypesInLoop.insert(T); 5987 } 5988 } 5989 } 5990 5991 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5992 unsigned LoopCost) { 5993 // -- The interleave heuristics -- 5994 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5995 // There are many micro-architectural considerations that we can't predict 5996 // at this level. For example, frontend pressure (on decode or fetch) due to 5997 // code size, or the number and capabilities of the execution ports. 5998 // 5999 // We use the following heuristics to select the interleave count: 6000 // 1. If the code has reductions, then we interleave to break the cross 6001 // iteration dependency. 6002 // 2. If the loop is really small, then we interleave to reduce the loop 6003 // overhead. 6004 // 3. We don't interleave if we think that we will spill registers to memory 6005 // due to the increased register pressure. 6006 6007 if (!isScalarEpilogueAllowed()) 6008 return 1; 6009 6010 // We used the distance for the interleave count. 6011 if (Legal->getMaxSafeDepDistBytes() != -1U) 6012 return 1; 6013 6014 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6015 const bool HasReductions = !Legal->getReductionVars().empty(); 6016 // Do not interleave loops with a relatively small known or estimated trip 6017 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6018 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6019 // because with the above conditions interleaving can expose ILP and break 6020 // cross iteration dependences for reductions. 6021 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6022 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6023 return 1; 6024 6025 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6026 // We divide by these constants so assume that we have at least one 6027 // instruction that uses at least one register. 6028 for (auto& pair : R.MaxLocalUsers) { 6029 pair.second = std::max(pair.second, 1U); 6030 } 6031 6032 // We calculate the interleave count using the following formula. 6033 // Subtract the number of loop invariants from the number of available 6034 // registers. These registers are used by all of the interleaved instances. 6035 // Next, divide the remaining registers by the number of registers that is 6036 // required by the loop, in order to estimate how many parallel instances 6037 // fit without causing spills. All of this is rounded down if necessary to be 6038 // a power of two. We want power of two interleave count to simplify any 6039 // addressing operations or alignment considerations. 6040 // We also want power of two interleave counts to ensure that the induction 6041 // variable of the vector loop wraps to zero, when tail is folded by masking; 6042 // this currently happens when OptForSize, in which case IC is set to 1 above. 6043 unsigned IC = UINT_MAX; 6044 6045 for (auto& pair : R.MaxLocalUsers) { 6046 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6047 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6048 << " registers of " 6049 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6050 if (VF.isScalar()) { 6051 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6052 TargetNumRegisters = ForceTargetNumScalarRegs; 6053 } else { 6054 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6055 TargetNumRegisters = ForceTargetNumVectorRegs; 6056 } 6057 unsigned MaxLocalUsers = pair.second; 6058 unsigned LoopInvariantRegs = 0; 6059 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6060 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6061 6062 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6063 // Don't count the induction variable as interleaved. 6064 if (EnableIndVarRegisterHeur) { 6065 TmpIC = 6066 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6067 std::max(1U, (MaxLocalUsers - 1))); 6068 } 6069 6070 IC = std::min(IC, TmpIC); 6071 } 6072 6073 // Clamp the interleave ranges to reasonable counts. 6074 unsigned MaxInterleaveCount = 6075 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6076 6077 // Check if the user has overridden the max. 6078 if (VF.isScalar()) { 6079 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6080 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6081 } else { 6082 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6083 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6084 } 6085 6086 // If trip count is known or estimated compile time constant, limit the 6087 // interleave count to be less than the trip count divided by VF, provided it 6088 // is at least 1. 6089 // 6090 // For scalable vectors we can't know if interleaving is beneficial. It may 6091 // not be beneficial for small loops if none of the lanes in the second vector 6092 // iterations is enabled. However, for larger loops, there is likely to be a 6093 // similar benefit as for fixed-width vectors. For now, we choose to leave 6094 // the InterleaveCount as if vscale is '1', although if some information about 6095 // the vector is known (e.g. min vector size), we can make a better decision. 6096 if (BestKnownTC) { 6097 MaxInterleaveCount = 6098 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6099 // Make sure MaxInterleaveCount is greater than 0. 6100 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6101 } 6102 6103 assert(MaxInterleaveCount > 0 && 6104 "Maximum interleave count must be greater than 0"); 6105 6106 // Clamp the calculated IC to be between the 1 and the max interleave count 6107 // that the target and trip count allows. 6108 if (IC > MaxInterleaveCount) 6109 IC = MaxInterleaveCount; 6110 else 6111 // Make sure IC is greater than 0. 6112 IC = std::max(1u, IC); 6113 6114 assert(IC > 0 && "Interleave count must be greater than 0."); 6115 6116 // If we did not calculate the cost for VF (because the user selected the VF) 6117 // then we calculate the cost of VF here. 6118 if (LoopCost == 0) { 6119 InstructionCost C = expectedCost(VF).first; 6120 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6121 LoopCost = *C.getValue(); 6122 } 6123 6124 assert(LoopCost && "Non-zero loop cost expected"); 6125 6126 // Interleave if we vectorized this loop and there is a reduction that could 6127 // benefit from interleaving. 6128 if (VF.isVector() && HasReductions) { 6129 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6130 return IC; 6131 } 6132 6133 // For any scalar loop that either requires runtime checks or predication we 6134 // are better off leaving this to the unroller. Note that if we've already 6135 // vectorized the loop we will have done the runtime check and so interleaving 6136 // won't require further checks. 6137 bool ScalarInterleavingRequiresPredication = 6138 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 6139 return Legal->blockNeedsPredication(BB); 6140 })); 6141 bool ScalarInterleavingRequiresRuntimePointerCheck = 6142 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6143 6144 // We want to interleave small loops in order to reduce the loop overhead and 6145 // potentially expose ILP opportunities. 6146 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6147 << "LV: IC is " << IC << '\n' 6148 << "LV: VF is " << VF << '\n'); 6149 const bool AggressivelyInterleaveReductions = 6150 TTI.enableAggressiveInterleaving(HasReductions); 6151 if (!ScalarInterleavingRequiresRuntimePointerCheck && 6152 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 6153 // We assume that the cost overhead is 1 and we use the cost model 6154 // to estimate the cost of the loop and interleave until the cost of the 6155 // loop overhead is about 5% of the cost of the loop. 6156 unsigned SmallIC = 6157 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6158 6159 // Interleave until store/load ports (estimated by max interleave count) are 6160 // saturated. 6161 unsigned NumStores = Legal->getNumStores(); 6162 unsigned NumLoads = Legal->getNumLoads(); 6163 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6164 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6165 6166 // There is little point in interleaving for reductions containing selects 6167 // and compares when VF=1 since it may just create more overhead than it's 6168 // worth for loops with small trip counts. This is because we still have to 6169 // do the final reduction after the loop. 6170 bool HasSelectCmpReductions = 6171 HasReductions && 6172 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6173 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6174 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6175 RdxDesc.getRecurrenceKind()); 6176 }); 6177 if (HasSelectCmpReductions) { 6178 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6179 return 1; 6180 } 6181 6182 // If we have a scalar reduction (vector reductions are already dealt with 6183 // by this point), we can increase the critical path length if the loop 6184 // we're interleaving is inside another loop. For tree-wise reductions 6185 // set the limit to 2, and for ordered reductions it's best to disable 6186 // interleaving entirely. 6187 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6188 bool HasOrderedReductions = 6189 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6190 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6191 return RdxDesc.isOrdered(); 6192 }); 6193 if (HasOrderedReductions) { 6194 LLVM_DEBUG( 6195 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6196 return 1; 6197 } 6198 6199 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6200 SmallIC = std::min(SmallIC, F); 6201 StoresIC = std::min(StoresIC, F); 6202 LoadsIC = std::min(LoadsIC, F); 6203 } 6204 6205 if (EnableLoadStoreRuntimeInterleave && 6206 std::max(StoresIC, LoadsIC) > SmallIC) { 6207 LLVM_DEBUG( 6208 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6209 return std::max(StoresIC, LoadsIC); 6210 } 6211 6212 // If there are scalar reductions and TTI has enabled aggressive 6213 // interleaving for reductions, we will interleave to expose ILP. 6214 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6215 AggressivelyInterleaveReductions) { 6216 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6217 // Interleave no less than SmallIC but not as aggressive as the normal IC 6218 // to satisfy the rare situation when resources are too limited. 6219 return std::max(IC / 2, SmallIC); 6220 } else { 6221 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6222 return SmallIC; 6223 } 6224 } 6225 6226 // Interleave if this is a large loop (small loops are already dealt with by 6227 // this point) that could benefit from interleaving. 6228 if (AggressivelyInterleaveReductions) { 6229 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6230 return IC; 6231 } 6232 6233 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6234 return 1; 6235 } 6236 6237 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6238 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6239 // This function calculates the register usage by measuring the highest number 6240 // of values that are alive at a single location. Obviously, this is a very 6241 // rough estimation. We scan the loop in a topological order in order and 6242 // assign a number to each instruction. We use RPO to ensure that defs are 6243 // met before their users. We assume that each instruction that has in-loop 6244 // users starts an interval. We record every time that an in-loop value is 6245 // used, so we have a list of the first and last occurrences of each 6246 // instruction. Next, we transpose this data structure into a multi map that 6247 // holds the list of intervals that *end* at a specific location. This multi 6248 // map allows us to perform a linear search. We scan the instructions linearly 6249 // and record each time that a new interval starts, by placing it in a set. 6250 // If we find this value in the multi-map then we remove it from the set. 6251 // The max register usage is the maximum size of the set. 6252 // We also search for instructions that are defined outside the loop, but are 6253 // used inside the loop. We need this number separately from the max-interval 6254 // usage number because when we unroll, loop-invariant values do not take 6255 // more register. 6256 LoopBlocksDFS DFS(TheLoop); 6257 DFS.perform(LI); 6258 6259 RegisterUsage RU; 6260 6261 // Each 'key' in the map opens a new interval. The values 6262 // of the map are the index of the 'last seen' usage of the 6263 // instruction that is the key. 6264 using IntervalMap = DenseMap<Instruction *, unsigned>; 6265 6266 // Maps instruction to its index. 6267 SmallVector<Instruction *, 64> IdxToInstr; 6268 // Marks the end of each interval. 6269 IntervalMap EndPoint; 6270 // Saves the list of instruction indices that are used in the loop. 6271 SmallPtrSet<Instruction *, 8> Ends; 6272 // Saves the list of values that are used in the loop but are 6273 // defined outside the loop, such as arguments and constants. 6274 SmallPtrSet<Value *, 8> LoopInvariants; 6275 6276 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6277 for (Instruction &I : BB->instructionsWithoutDebug()) { 6278 IdxToInstr.push_back(&I); 6279 6280 // Save the end location of each USE. 6281 for (Value *U : I.operands()) { 6282 auto *Instr = dyn_cast<Instruction>(U); 6283 6284 // Ignore non-instruction values such as arguments, constants, etc. 6285 if (!Instr) 6286 continue; 6287 6288 // If this instruction is outside the loop then record it and continue. 6289 if (!TheLoop->contains(Instr)) { 6290 LoopInvariants.insert(Instr); 6291 continue; 6292 } 6293 6294 // Overwrite previous end points. 6295 EndPoint[Instr] = IdxToInstr.size(); 6296 Ends.insert(Instr); 6297 } 6298 } 6299 } 6300 6301 // Saves the list of intervals that end with the index in 'key'. 6302 using InstrList = SmallVector<Instruction *, 2>; 6303 DenseMap<unsigned, InstrList> TransposeEnds; 6304 6305 // Transpose the EndPoints to a list of values that end at each index. 6306 for (auto &Interval : EndPoint) 6307 TransposeEnds[Interval.second].push_back(Interval.first); 6308 6309 SmallPtrSet<Instruction *, 8> OpenIntervals; 6310 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6311 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6312 6313 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6314 6315 // A lambda that gets the register usage for the given type and VF. 6316 const auto &TTICapture = TTI; 6317 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6318 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6319 return 0; 6320 InstructionCost::CostType RegUsage = 6321 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6322 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6323 "Nonsensical values for register usage."); 6324 return RegUsage; 6325 }; 6326 6327 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6328 Instruction *I = IdxToInstr[i]; 6329 6330 // Remove all of the instructions that end at this location. 6331 InstrList &List = TransposeEnds[i]; 6332 for (Instruction *ToRemove : List) 6333 OpenIntervals.erase(ToRemove); 6334 6335 // Ignore instructions that are never used within the loop. 6336 if (!Ends.count(I)) 6337 continue; 6338 6339 // Skip ignored values. 6340 if (ValuesToIgnore.count(I)) 6341 continue; 6342 6343 // For each VF find the maximum usage of registers. 6344 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6345 // Count the number of live intervals. 6346 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6347 6348 if (VFs[j].isScalar()) { 6349 for (auto Inst : OpenIntervals) { 6350 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6351 if (RegUsage.find(ClassID) == RegUsage.end()) 6352 RegUsage[ClassID] = 1; 6353 else 6354 RegUsage[ClassID] += 1; 6355 } 6356 } else { 6357 collectUniformsAndScalars(VFs[j]); 6358 for (auto Inst : OpenIntervals) { 6359 // Skip ignored values for VF > 1. 6360 if (VecValuesToIgnore.count(Inst)) 6361 continue; 6362 if (isScalarAfterVectorization(Inst, VFs[j])) { 6363 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6364 if (RegUsage.find(ClassID) == RegUsage.end()) 6365 RegUsage[ClassID] = 1; 6366 else 6367 RegUsage[ClassID] += 1; 6368 } else { 6369 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6370 if (RegUsage.find(ClassID) == RegUsage.end()) 6371 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6372 else 6373 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6374 } 6375 } 6376 } 6377 6378 for (auto& pair : RegUsage) { 6379 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6380 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6381 else 6382 MaxUsages[j][pair.first] = pair.second; 6383 } 6384 } 6385 6386 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6387 << OpenIntervals.size() << '\n'); 6388 6389 // Add the current instruction to the list of open intervals. 6390 OpenIntervals.insert(I); 6391 } 6392 6393 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6394 SmallMapVector<unsigned, unsigned, 4> Invariant; 6395 6396 for (auto Inst : LoopInvariants) { 6397 unsigned Usage = 6398 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6399 unsigned ClassID = 6400 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6401 if (Invariant.find(ClassID) == Invariant.end()) 6402 Invariant[ClassID] = Usage; 6403 else 6404 Invariant[ClassID] += Usage; 6405 } 6406 6407 LLVM_DEBUG({ 6408 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6409 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6410 << " item\n"; 6411 for (const auto &pair : MaxUsages[i]) { 6412 dbgs() << "LV(REG): RegisterClass: " 6413 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6414 << " registers\n"; 6415 } 6416 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6417 << " item\n"; 6418 for (const auto &pair : Invariant) { 6419 dbgs() << "LV(REG): RegisterClass: " 6420 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6421 << " registers\n"; 6422 } 6423 }); 6424 6425 RU.LoopInvariantRegs = Invariant; 6426 RU.MaxLocalUsers = MaxUsages[i]; 6427 RUs[i] = RU; 6428 } 6429 6430 return RUs; 6431 } 6432 6433 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6434 ElementCount VF) { 6435 // TODO: Cost model for emulated masked load/store is completely 6436 // broken. This hack guides the cost model to use an artificially 6437 // high enough value to practically disable vectorization with such 6438 // operations, except where previously deployed legality hack allowed 6439 // using very low cost values. This is to avoid regressions coming simply 6440 // from moving "masked load/store" check from legality to cost model. 6441 // Masked Load/Gather emulation was previously never allowed. 6442 // Limited number of Masked Store/Scatter emulation was allowed. 6443 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6444 return isa<LoadInst>(I) || 6445 (isa<StoreInst>(I) && 6446 NumPredStores > NumberOfStoresToPredicate); 6447 } 6448 6449 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6450 // If we aren't vectorizing the loop, or if we've already collected the 6451 // instructions to scalarize, there's nothing to do. Collection may already 6452 // have occurred if we have a user-selected VF and are now computing the 6453 // expected cost for interleaving. 6454 if (VF.isScalar() || VF.isZero() || 6455 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6456 return; 6457 6458 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6459 // not profitable to scalarize any instructions, the presence of VF in the 6460 // map will indicate that we've analyzed it already. 6461 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6462 6463 // Find all the instructions that are scalar with predication in the loop and 6464 // determine if it would be better to not if-convert the blocks they are in. 6465 // If so, we also record the instructions to scalarize. 6466 for (BasicBlock *BB : TheLoop->blocks()) { 6467 if (!blockNeedsPredicationForAnyReason(BB)) 6468 continue; 6469 for (Instruction &I : *BB) 6470 if (isScalarWithPredication(&I, VF)) { 6471 ScalarCostsTy ScalarCosts; 6472 // Do not apply discount if scalable, because that would lead to 6473 // invalid scalarization costs. 6474 // Do not apply discount logic if hacked cost is needed 6475 // for emulated masked memrefs. 6476 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6477 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6478 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6479 // Remember that BB will remain after vectorization. 6480 PredicatedBBsAfterVectorization.insert(BB); 6481 } 6482 } 6483 } 6484 6485 int LoopVectorizationCostModel::computePredInstDiscount( 6486 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6487 assert(!isUniformAfterVectorization(PredInst, VF) && 6488 "Instruction marked uniform-after-vectorization will be predicated"); 6489 6490 // Initialize the discount to zero, meaning that the scalar version and the 6491 // vector version cost the same. 6492 InstructionCost Discount = 0; 6493 6494 // Holds instructions to analyze. The instructions we visit are mapped in 6495 // ScalarCosts. Those instructions are the ones that would be scalarized if 6496 // we find that the scalar version costs less. 6497 SmallVector<Instruction *, 8> Worklist; 6498 6499 // Returns true if the given instruction can be scalarized. 6500 auto canBeScalarized = [&](Instruction *I) -> bool { 6501 // We only attempt to scalarize instructions forming a single-use chain 6502 // from the original predicated block that would otherwise be vectorized. 6503 // Although not strictly necessary, we give up on instructions we know will 6504 // already be scalar to avoid traversing chains that are unlikely to be 6505 // beneficial. 6506 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6507 isScalarAfterVectorization(I, VF)) 6508 return false; 6509 6510 // If the instruction is scalar with predication, it will be analyzed 6511 // separately. We ignore it within the context of PredInst. 6512 if (isScalarWithPredication(I, VF)) 6513 return false; 6514 6515 // If any of the instruction's operands are uniform after vectorization, 6516 // the instruction cannot be scalarized. This prevents, for example, a 6517 // masked load from being scalarized. 6518 // 6519 // We assume we will only emit a value for lane zero of an instruction 6520 // marked uniform after vectorization, rather than VF identical values. 6521 // Thus, if we scalarize an instruction that uses a uniform, we would 6522 // create uses of values corresponding to the lanes we aren't emitting code 6523 // for. This behavior can be changed by allowing getScalarValue to clone 6524 // the lane zero values for uniforms rather than asserting. 6525 for (Use &U : I->operands()) 6526 if (auto *J = dyn_cast<Instruction>(U.get())) 6527 if (isUniformAfterVectorization(J, VF)) 6528 return false; 6529 6530 // Otherwise, we can scalarize the instruction. 6531 return true; 6532 }; 6533 6534 // Compute the expected cost discount from scalarizing the entire expression 6535 // feeding the predicated instruction. We currently only consider expressions 6536 // that are single-use instruction chains. 6537 Worklist.push_back(PredInst); 6538 while (!Worklist.empty()) { 6539 Instruction *I = Worklist.pop_back_val(); 6540 6541 // If we've already analyzed the instruction, there's nothing to do. 6542 if (ScalarCosts.find(I) != ScalarCosts.end()) 6543 continue; 6544 6545 // Compute the cost of the vector instruction. Note that this cost already 6546 // includes the scalarization overhead of the predicated instruction. 6547 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6548 6549 // Compute the cost of the scalarized instruction. This cost is the cost of 6550 // the instruction as if it wasn't if-converted and instead remained in the 6551 // predicated block. We will scale this cost by block probability after 6552 // computing the scalarization overhead. 6553 InstructionCost ScalarCost = 6554 VF.getFixedValue() * 6555 getInstructionCost(I, ElementCount::getFixed(1)).first; 6556 6557 // Compute the scalarization overhead of needed insertelement instructions 6558 // and phi nodes. 6559 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6560 ScalarCost += TTI.getScalarizationOverhead( 6561 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6562 APInt::getAllOnes(VF.getFixedValue()), true, false); 6563 ScalarCost += 6564 VF.getFixedValue() * 6565 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6566 } 6567 6568 // Compute the scalarization overhead of needed extractelement 6569 // instructions. For each of the instruction's operands, if the operand can 6570 // be scalarized, add it to the worklist; otherwise, account for the 6571 // overhead. 6572 for (Use &U : I->operands()) 6573 if (auto *J = dyn_cast<Instruction>(U.get())) { 6574 assert(VectorType::isValidElementType(J->getType()) && 6575 "Instruction has non-scalar type"); 6576 if (canBeScalarized(J)) 6577 Worklist.push_back(J); 6578 else if (needsExtract(J, VF)) { 6579 ScalarCost += TTI.getScalarizationOverhead( 6580 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6581 APInt::getAllOnes(VF.getFixedValue()), false, true); 6582 } 6583 } 6584 6585 // Scale the total scalar cost by block probability. 6586 ScalarCost /= getReciprocalPredBlockProb(); 6587 6588 // Compute the discount. A non-negative discount means the vector version 6589 // of the instruction costs more, and scalarizing would be beneficial. 6590 Discount += VectorCost - ScalarCost; 6591 ScalarCosts[I] = ScalarCost; 6592 } 6593 6594 return *Discount.getValue(); 6595 } 6596 6597 LoopVectorizationCostModel::VectorizationCostTy 6598 LoopVectorizationCostModel::expectedCost( 6599 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6600 VectorizationCostTy Cost; 6601 6602 // For each block. 6603 for (BasicBlock *BB : TheLoop->blocks()) { 6604 VectorizationCostTy BlockCost; 6605 6606 // For each instruction in the old loop. 6607 for (Instruction &I : BB->instructionsWithoutDebug()) { 6608 // Skip ignored values. 6609 if (ValuesToIgnore.count(&I) || 6610 (VF.isVector() && VecValuesToIgnore.count(&I))) 6611 continue; 6612 6613 VectorizationCostTy C = getInstructionCost(&I, VF); 6614 6615 // Check if we should override the cost. 6616 if (C.first.isValid() && 6617 ForceTargetInstructionCost.getNumOccurrences() > 0) 6618 C.first = InstructionCost(ForceTargetInstructionCost); 6619 6620 // Keep a list of instructions with invalid costs. 6621 if (Invalid && !C.first.isValid()) 6622 Invalid->emplace_back(&I, VF); 6623 6624 BlockCost.first += C.first; 6625 BlockCost.second |= C.second; 6626 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6627 << " for VF " << VF << " For instruction: " << I 6628 << '\n'); 6629 } 6630 6631 // If we are vectorizing a predicated block, it will have been 6632 // if-converted. This means that the block's instructions (aside from 6633 // stores and instructions that may divide by zero) will now be 6634 // unconditionally executed. For the scalar case, we may not always execute 6635 // the predicated block, if it is an if-else block. Thus, scale the block's 6636 // cost by the probability of executing it. blockNeedsPredication from 6637 // Legal is used so as to not include all blocks in tail folded loops. 6638 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6639 BlockCost.first /= getReciprocalPredBlockProb(); 6640 6641 Cost.first += BlockCost.first; 6642 Cost.second |= BlockCost.second; 6643 } 6644 6645 return Cost; 6646 } 6647 6648 /// Gets Address Access SCEV after verifying that the access pattern 6649 /// is loop invariant except the induction variable dependence. 6650 /// 6651 /// This SCEV can be sent to the Target in order to estimate the address 6652 /// calculation cost. 6653 static const SCEV *getAddressAccessSCEV( 6654 Value *Ptr, 6655 LoopVectorizationLegality *Legal, 6656 PredicatedScalarEvolution &PSE, 6657 const Loop *TheLoop) { 6658 6659 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6660 if (!Gep) 6661 return nullptr; 6662 6663 // We are looking for a gep with all loop invariant indices except for one 6664 // which should be an induction variable. 6665 auto SE = PSE.getSE(); 6666 unsigned NumOperands = Gep->getNumOperands(); 6667 for (unsigned i = 1; i < NumOperands; ++i) { 6668 Value *Opd = Gep->getOperand(i); 6669 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6670 !Legal->isInductionVariable(Opd)) 6671 return nullptr; 6672 } 6673 6674 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6675 return PSE.getSCEV(Ptr); 6676 } 6677 6678 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6679 return Legal->hasStride(I->getOperand(0)) || 6680 Legal->hasStride(I->getOperand(1)); 6681 } 6682 6683 InstructionCost 6684 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6685 ElementCount VF) { 6686 assert(VF.isVector() && 6687 "Scalarization cost of instruction implies vectorization."); 6688 if (VF.isScalable()) 6689 return InstructionCost::getInvalid(); 6690 6691 Type *ValTy = getLoadStoreType(I); 6692 auto SE = PSE.getSE(); 6693 6694 unsigned AS = getLoadStoreAddressSpace(I); 6695 Value *Ptr = getLoadStorePointerOperand(I); 6696 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6697 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6698 // that it is being called from this specific place. 6699 6700 // Figure out whether the access is strided and get the stride value 6701 // if it's known in compile time 6702 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6703 6704 // Get the cost of the scalar memory instruction and address computation. 6705 InstructionCost Cost = 6706 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6707 6708 // Don't pass *I here, since it is scalar but will actually be part of a 6709 // vectorized loop where the user of it is a vectorized instruction. 6710 const Align Alignment = getLoadStoreAlignment(I); 6711 Cost += VF.getKnownMinValue() * 6712 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6713 AS, TTI::TCK_RecipThroughput); 6714 6715 // Get the overhead of the extractelement and insertelement instructions 6716 // we might create due to scalarization. 6717 Cost += getScalarizationOverhead(I, VF); 6718 6719 // If we have a predicated load/store, it will need extra i1 extracts and 6720 // conditional branches, but may not be executed for each vector lane. Scale 6721 // the cost by the probability of executing the predicated block. 6722 if (isPredicatedInst(I, VF)) { 6723 Cost /= getReciprocalPredBlockProb(); 6724 6725 // Add the cost of an i1 extract and a branch 6726 auto *Vec_i1Ty = 6727 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6728 Cost += TTI.getScalarizationOverhead( 6729 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6730 /*Insert=*/false, /*Extract=*/true); 6731 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6732 6733 if (useEmulatedMaskMemRefHack(I, VF)) 6734 // Artificially setting to a high enough value to practically disable 6735 // vectorization with such operations. 6736 Cost = 3000000; 6737 } 6738 6739 return Cost; 6740 } 6741 6742 InstructionCost 6743 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6744 ElementCount VF) { 6745 Type *ValTy = getLoadStoreType(I); 6746 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6747 Value *Ptr = getLoadStorePointerOperand(I); 6748 unsigned AS = getLoadStoreAddressSpace(I); 6749 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6750 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6751 6752 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6753 "Stride should be 1 or -1 for consecutive memory access"); 6754 const Align Alignment = getLoadStoreAlignment(I); 6755 InstructionCost Cost = 0; 6756 if (Legal->isMaskRequired(I)) 6757 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6758 CostKind); 6759 else 6760 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6761 CostKind, I); 6762 6763 bool Reverse = ConsecutiveStride < 0; 6764 if (Reverse) 6765 Cost += 6766 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6767 return Cost; 6768 } 6769 6770 InstructionCost 6771 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6772 ElementCount VF) { 6773 assert(Legal->isUniformMemOp(*I)); 6774 6775 Type *ValTy = getLoadStoreType(I); 6776 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6777 const Align Alignment = getLoadStoreAlignment(I); 6778 unsigned AS = getLoadStoreAddressSpace(I); 6779 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6780 if (isa<LoadInst>(I)) { 6781 return TTI.getAddressComputationCost(ValTy) + 6782 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6783 CostKind) + 6784 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6785 } 6786 StoreInst *SI = cast<StoreInst>(I); 6787 6788 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6789 return TTI.getAddressComputationCost(ValTy) + 6790 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6791 CostKind) + 6792 (isLoopInvariantStoreValue 6793 ? 0 6794 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6795 VF.getKnownMinValue() - 1)); 6796 } 6797 6798 InstructionCost 6799 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6800 ElementCount VF) { 6801 Type *ValTy = getLoadStoreType(I); 6802 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6803 const Align Alignment = getLoadStoreAlignment(I); 6804 const Value *Ptr = getLoadStorePointerOperand(I); 6805 6806 return TTI.getAddressComputationCost(VectorTy) + 6807 TTI.getGatherScatterOpCost( 6808 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6809 TargetTransformInfo::TCK_RecipThroughput, I); 6810 } 6811 6812 InstructionCost 6813 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6814 ElementCount VF) { 6815 // TODO: Once we have support for interleaving with scalable vectors 6816 // we can calculate the cost properly here. 6817 if (VF.isScalable()) 6818 return InstructionCost::getInvalid(); 6819 6820 Type *ValTy = getLoadStoreType(I); 6821 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6822 unsigned AS = getLoadStoreAddressSpace(I); 6823 6824 auto Group = getInterleavedAccessGroup(I); 6825 assert(Group && "Fail to get an interleaved access group."); 6826 6827 unsigned InterleaveFactor = Group->getFactor(); 6828 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6829 6830 // Holds the indices of existing members in the interleaved group. 6831 SmallVector<unsigned, 4> Indices; 6832 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6833 if (Group->getMember(IF)) 6834 Indices.push_back(IF); 6835 6836 // Calculate the cost of the whole interleaved group. 6837 bool UseMaskForGaps = 6838 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6839 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6840 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6841 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6842 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6843 6844 if (Group->isReverse()) { 6845 // TODO: Add support for reversed masked interleaved access. 6846 assert(!Legal->isMaskRequired(I) && 6847 "Reverse masked interleaved access not supported."); 6848 Cost += 6849 Group->getNumMembers() * 6850 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6851 } 6852 return Cost; 6853 } 6854 6855 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6856 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6857 using namespace llvm::PatternMatch; 6858 // Early exit for no inloop reductions 6859 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6860 return None; 6861 auto *VectorTy = cast<VectorType>(Ty); 6862 6863 // We are looking for a pattern of, and finding the minimal acceptable cost: 6864 // reduce(mul(ext(A), ext(B))) or 6865 // reduce(mul(A, B)) or 6866 // reduce(ext(A)) or 6867 // reduce(A). 6868 // The basic idea is that we walk down the tree to do that, finding the root 6869 // reduction instruction in InLoopReductionImmediateChains. From there we find 6870 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6871 // of the components. If the reduction cost is lower then we return it for the 6872 // reduction instruction and 0 for the other instructions in the pattern. If 6873 // it is not we return an invalid cost specifying the orignal cost method 6874 // should be used. 6875 Instruction *RetI = I; 6876 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6877 if (!RetI->hasOneUser()) 6878 return None; 6879 RetI = RetI->user_back(); 6880 } 6881 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6882 RetI->user_back()->getOpcode() == Instruction::Add) { 6883 if (!RetI->hasOneUser()) 6884 return None; 6885 RetI = RetI->user_back(); 6886 } 6887 6888 // Test if the found instruction is a reduction, and if not return an invalid 6889 // cost specifying the parent to use the original cost modelling. 6890 if (!InLoopReductionImmediateChains.count(RetI)) 6891 return None; 6892 6893 // Find the reduction this chain is a part of and calculate the basic cost of 6894 // the reduction on its own. 6895 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6896 Instruction *ReductionPhi = LastChain; 6897 while (!isa<PHINode>(ReductionPhi)) 6898 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6899 6900 const RecurrenceDescriptor &RdxDesc = 6901 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6902 6903 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6904 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6905 6906 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6907 // normal fmul instruction to the cost of the fadd reduction. 6908 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6909 BaseCost += 6910 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6911 6912 // If we're using ordered reductions then we can just return the base cost 6913 // here, since getArithmeticReductionCost calculates the full ordered 6914 // reduction cost when FP reassociation is not allowed. 6915 if (useOrderedReductions(RdxDesc)) 6916 return BaseCost; 6917 6918 // Get the operand that was not the reduction chain and match it to one of the 6919 // patterns, returning the better cost if it is found. 6920 Instruction *RedOp = RetI->getOperand(1) == LastChain 6921 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6922 : dyn_cast<Instruction>(RetI->getOperand(1)); 6923 6924 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6925 6926 Instruction *Op0, *Op1; 6927 if (RedOp && 6928 match(RedOp, 6929 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6930 match(Op0, m_ZExtOrSExt(m_Value())) && 6931 Op0->getOpcode() == Op1->getOpcode() && 6932 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6933 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6934 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6935 6936 // Matched reduce(ext(mul(ext(A), ext(B))) 6937 // Note that the extend opcodes need to all match, or if A==B they will have 6938 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6939 // which is equally fine. 6940 bool IsUnsigned = isa<ZExtInst>(Op0); 6941 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6942 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6943 6944 InstructionCost ExtCost = 6945 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6946 TTI::CastContextHint::None, CostKind, Op0); 6947 InstructionCost MulCost = 6948 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6949 InstructionCost Ext2Cost = 6950 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6951 TTI::CastContextHint::None, CostKind, RedOp); 6952 6953 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6954 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6955 CostKind); 6956 6957 if (RedCost.isValid() && 6958 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6959 return I == RetI ? RedCost : 0; 6960 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6961 !TheLoop->isLoopInvariant(RedOp)) { 6962 // Matched reduce(ext(A)) 6963 bool IsUnsigned = isa<ZExtInst>(RedOp); 6964 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6965 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6966 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6967 CostKind); 6968 6969 InstructionCost ExtCost = 6970 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6971 TTI::CastContextHint::None, CostKind, RedOp); 6972 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6973 return I == RetI ? RedCost : 0; 6974 } else if (RedOp && 6975 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6976 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6977 Op0->getOpcode() == Op1->getOpcode() && 6978 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6979 bool IsUnsigned = isa<ZExtInst>(Op0); 6980 Type *Op0Ty = Op0->getOperand(0)->getType(); 6981 Type *Op1Ty = Op1->getOperand(0)->getType(); 6982 Type *LargestOpTy = 6983 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6984 : Op0Ty; 6985 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6986 6987 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6988 // different sizes. We take the largest type as the ext to reduce, and add 6989 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6990 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6991 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6992 TTI::CastContextHint::None, CostKind, Op0); 6993 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6994 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6995 TTI::CastContextHint::None, CostKind, Op1); 6996 InstructionCost MulCost = 6997 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6998 6999 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7000 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7001 CostKind); 7002 InstructionCost ExtraExtCost = 0; 7003 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 7004 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 7005 ExtraExtCost = TTI.getCastInstrCost( 7006 ExtraExtOp->getOpcode(), ExtType, 7007 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 7008 TTI::CastContextHint::None, CostKind, ExtraExtOp); 7009 } 7010 7011 if (RedCost.isValid() && 7012 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 7013 return I == RetI ? RedCost : 0; 7014 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7015 // Matched reduce(mul()) 7016 InstructionCost MulCost = 7017 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7018 7019 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7020 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7021 CostKind); 7022 7023 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7024 return I == RetI ? RedCost : 0; 7025 } 7026 } 7027 7028 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7029 } 7030 7031 InstructionCost 7032 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7033 ElementCount VF) { 7034 // Calculate scalar cost only. Vectorization cost should be ready at this 7035 // moment. 7036 if (VF.isScalar()) { 7037 Type *ValTy = getLoadStoreType(I); 7038 const Align Alignment = getLoadStoreAlignment(I); 7039 unsigned AS = getLoadStoreAddressSpace(I); 7040 7041 return TTI.getAddressComputationCost(ValTy) + 7042 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7043 TTI::TCK_RecipThroughput, I); 7044 } 7045 return getWideningCost(I, VF); 7046 } 7047 7048 LoopVectorizationCostModel::VectorizationCostTy 7049 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7050 ElementCount VF) { 7051 // If we know that this instruction will remain uniform, check the cost of 7052 // the scalar version. 7053 if (isUniformAfterVectorization(I, VF)) 7054 VF = ElementCount::getFixed(1); 7055 7056 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7057 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7058 7059 // Forced scalars do not have any scalarization overhead. 7060 auto ForcedScalar = ForcedScalars.find(VF); 7061 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7062 auto InstSet = ForcedScalar->second; 7063 if (InstSet.count(I)) 7064 return VectorizationCostTy( 7065 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7066 VF.getKnownMinValue()), 7067 false); 7068 } 7069 7070 Type *VectorTy; 7071 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7072 7073 bool TypeNotScalarized = false; 7074 if (VF.isVector() && VectorTy->isVectorTy()) { 7075 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 7076 if (NumParts) 7077 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 7078 else 7079 C = InstructionCost::getInvalid(); 7080 } 7081 return VectorizationCostTy(C, TypeNotScalarized); 7082 } 7083 7084 InstructionCost 7085 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7086 ElementCount VF) const { 7087 7088 // There is no mechanism yet to create a scalable scalarization loop, 7089 // so this is currently Invalid. 7090 if (VF.isScalable()) 7091 return InstructionCost::getInvalid(); 7092 7093 if (VF.isScalar()) 7094 return 0; 7095 7096 InstructionCost Cost = 0; 7097 Type *RetTy = ToVectorTy(I->getType(), VF); 7098 if (!RetTy->isVoidTy() && 7099 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7100 Cost += TTI.getScalarizationOverhead( 7101 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7102 false); 7103 7104 // Some targets keep addresses scalar. 7105 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7106 return Cost; 7107 7108 // Some targets support efficient element stores. 7109 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7110 return Cost; 7111 7112 // Collect operands to consider. 7113 CallInst *CI = dyn_cast<CallInst>(I); 7114 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7115 7116 // Skip operands that do not require extraction/scalarization and do not incur 7117 // any overhead. 7118 SmallVector<Type *> Tys; 7119 for (auto *V : filterExtractingOperands(Ops, VF)) 7120 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7121 return Cost + TTI.getOperandsScalarizationOverhead( 7122 filterExtractingOperands(Ops, VF), Tys); 7123 } 7124 7125 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7126 if (VF.isScalar()) 7127 return; 7128 NumPredStores = 0; 7129 for (BasicBlock *BB : TheLoop->blocks()) { 7130 // For each instruction in the old loop. 7131 for (Instruction &I : *BB) { 7132 Value *Ptr = getLoadStorePointerOperand(&I); 7133 if (!Ptr) 7134 continue; 7135 7136 // TODO: We should generate better code and update the cost model for 7137 // predicated uniform stores. Today they are treated as any other 7138 // predicated store (see added test cases in 7139 // invariant-store-vectorization.ll). 7140 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 7141 NumPredStores++; 7142 7143 if (Legal->isUniformMemOp(I)) { 7144 // TODO: Avoid replicating loads and stores instead of 7145 // relying on instcombine to remove them. 7146 // Load: Scalar load + broadcast 7147 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7148 InstructionCost Cost; 7149 if (isa<StoreInst>(&I) && VF.isScalable() && 7150 isLegalGatherOrScatter(&I, VF)) { 7151 Cost = getGatherScatterCost(&I, VF); 7152 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7153 } else { 7154 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7155 "Cannot yet scalarize uniform stores"); 7156 Cost = getUniformMemOpCost(&I, VF); 7157 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7158 } 7159 continue; 7160 } 7161 7162 // We assume that widening is the best solution when possible. 7163 if (memoryInstructionCanBeWidened(&I, VF)) { 7164 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7165 int ConsecutiveStride = Legal->isConsecutivePtr( 7166 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7167 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7168 "Expected consecutive stride."); 7169 InstWidening Decision = 7170 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7171 setWideningDecision(&I, VF, Decision, Cost); 7172 continue; 7173 } 7174 7175 // Choose between Interleaving, Gather/Scatter or Scalarization. 7176 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7177 unsigned NumAccesses = 1; 7178 if (isAccessInterleaved(&I)) { 7179 auto Group = getInterleavedAccessGroup(&I); 7180 assert(Group && "Fail to get an interleaved access group."); 7181 7182 // Make one decision for the whole group. 7183 if (getWideningDecision(&I, VF) != CM_Unknown) 7184 continue; 7185 7186 NumAccesses = Group->getNumMembers(); 7187 if (interleavedAccessCanBeWidened(&I, VF)) 7188 InterleaveCost = getInterleaveGroupCost(&I, VF); 7189 } 7190 7191 InstructionCost GatherScatterCost = 7192 isLegalGatherOrScatter(&I, VF) 7193 ? getGatherScatterCost(&I, VF) * NumAccesses 7194 : InstructionCost::getInvalid(); 7195 7196 InstructionCost ScalarizationCost = 7197 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7198 7199 // Choose better solution for the current VF, 7200 // write down this decision and use it during vectorization. 7201 InstructionCost Cost; 7202 InstWidening Decision; 7203 if (InterleaveCost <= GatherScatterCost && 7204 InterleaveCost < ScalarizationCost) { 7205 Decision = CM_Interleave; 7206 Cost = InterleaveCost; 7207 } else if (GatherScatterCost < ScalarizationCost) { 7208 Decision = CM_GatherScatter; 7209 Cost = GatherScatterCost; 7210 } else { 7211 Decision = CM_Scalarize; 7212 Cost = ScalarizationCost; 7213 } 7214 // If the instructions belongs to an interleave group, the whole group 7215 // receives the same decision. The whole group receives the cost, but 7216 // the cost will actually be assigned to one instruction. 7217 if (auto Group = getInterleavedAccessGroup(&I)) 7218 setWideningDecision(Group, VF, Decision, Cost); 7219 else 7220 setWideningDecision(&I, VF, Decision, Cost); 7221 } 7222 } 7223 7224 // Make sure that any load of address and any other address computation 7225 // remains scalar unless there is gather/scatter support. This avoids 7226 // inevitable extracts into address registers, and also has the benefit of 7227 // activating LSR more, since that pass can't optimize vectorized 7228 // addresses. 7229 if (TTI.prefersVectorizedAddressing()) 7230 return; 7231 7232 // Start with all scalar pointer uses. 7233 SmallPtrSet<Instruction *, 8> AddrDefs; 7234 for (BasicBlock *BB : TheLoop->blocks()) 7235 for (Instruction &I : *BB) { 7236 Instruction *PtrDef = 7237 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7238 if (PtrDef && TheLoop->contains(PtrDef) && 7239 getWideningDecision(&I, VF) != CM_GatherScatter) 7240 AddrDefs.insert(PtrDef); 7241 } 7242 7243 // Add all instructions used to generate the addresses. 7244 SmallVector<Instruction *, 4> Worklist; 7245 append_range(Worklist, AddrDefs); 7246 while (!Worklist.empty()) { 7247 Instruction *I = Worklist.pop_back_val(); 7248 for (auto &Op : I->operands()) 7249 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7250 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7251 AddrDefs.insert(InstOp).second) 7252 Worklist.push_back(InstOp); 7253 } 7254 7255 for (auto *I : AddrDefs) { 7256 if (isa<LoadInst>(I)) { 7257 // Setting the desired widening decision should ideally be handled in 7258 // by cost functions, but since this involves the task of finding out 7259 // if the loaded register is involved in an address computation, it is 7260 // instead changed here when we know this is the case. 7261 InstWidening Decision = getWideningDecision(I, VF); 7262 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7263 // Scalarize a widened load of address. 7264 setWideningDecision( 7265 I, VF, CM_Scalarize, 7266 (VF.getKnownMinValue() * 7267 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7268 else if (auto Group = getInterleavedAccessGroup(I)) { 7269 // Scalarize an interleave group of address loads. 7270 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7271 if (Instruction *Member = Group->getMember(I)) 7272 setWideningDecision( 7273 Member, VF, CM_Scalarize, 7274 (VF.getKnownMinValue() * 7275 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7276 } 7277 } 7278 } else 7279 // Make sure I gets scalarized and a cost estimate without 7280 // scalarization overhead. 7281 ForcedScalars[VF].insert(I); 7282 } 7283 } 7284 7285 InstructionCost 7286 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7287 Type *&VectorTy) { 7288 Type *RetTy = I->getType(); 7289 if (canTruncateToMinimalBitwidth(I, VF)) 7290 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7291 auto SE = PSE.getSE(); 7292 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7293 7294 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7295 ElementCount VF) -> bool { 7296 if (VF.isScalar()) 7297 return true; 7298 7299 auto Scalarized = InstsToScalarize.find(VF); 7300 assert(Scalarized != InstsToScalarize.end() && 7301 "VF not yet analyzed for scalarization profitability"); 7302 return !Scalarized->second.count(I) && 7303 llvm::all_of(I->users(), [&](User *U) { 7304 auto *UI = cast<Instruction>(U); 7305 return !Scalarized->second.count(UI); 7306 }); 7307 }; 7308 (void) hasSingleCopyAfterVectorization; 7309 7310 if (isScalarAfterVectorization(I, VF)) { 7311 // With the exception of GEPs and PHIs, after scalarization there should 7312 // only be one copy of the instruction generated in the loop. This is 7313 // because the VF is either 1, or any instructions that need scalarizing 7314 // have already been dealt with by the the time we get here. As a result, 7315 // it means we don't have to multiply the instruction cost by VF. 7316 assert(I->getOpcode() == Instruction::GetElementPtr || 7317 I->getOpcode() == Instruction::PHI || 7318 (I->getOpcode() == Instruction::BitCast && 7319 I->getType()->isPointerTy()) || 7320 hasSingleCopyAfterVectorization(I, VF)); 7321 VectorTy = RetTy; 7322 } else 7323 VectorTy = ToVectorTy(RetTy, VF); 7324 7325 // TODO: We need to estimate the cost of intrinsic calls. 7326 switch (I->getOpcode()) { 7327 case Instruction::GetElementPtr: 7328 // We mark this instruction as zero-cost because the cost of GEPs in 7329 // vectorized code depends on whether the corresponding memory instruction 7330 // is scalarized or not. Therefore, we handle GEPs with the memory 7331 // instruction cost. 7332 return 0; 7333 case Instruction::Br: { 7334 // In cases of scalarized and predicated instructions, there will be VF 7335 // predicated blocks in the vectorized loop. Each branch around these 7336 // blocks requires also an extract of its vector compare i1 element. 7337 bool ScalarPredicatedBB = false; 7338 BranchInst *BI = cast<BranchInst>(I); 7339 if (VF.isVector() && BI->isConditional() && 7340 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7341 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7342 ScalarPredicatedBB = true; 7343 7344 if (ScalarPredicatedBB) { 7345 // Not possible to scalarize scalable vector with predicated instructions. 7346 if (VF.isScalable()) 7347 return InstructionCost::getInvalid(); 7348 // Return cost for branches around scalarized and predicated blocks. 7349 auto *Vec_i1Ty = 7350 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7351 return ( 7352 TTI.getScalarizationOverhead( 7353 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7354 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7355 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7356 // The back-edge branch will remain, as will all scalar branches. 7357 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7358 else 7359 // This branch will be eliminated by if-conversion. 7360 return 0; 7361 // Note: We currently assume zero cost for an unconditional branch inside 7362 // a predicated block since it will become a fall-through, although we 7363 // may decide in the future to call TTI for all branches. 7364 } 7365 case Instruction::PHI: { 7366 auto *Phi = cast<PHINode>(I); 7367 7368 // First-order recurrences are replaced by vector shuffles inside the loop. 7369 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7370 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7371 return TTI.getShuffleCost( 7372 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7373 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7374 7375 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7376 // converted into select instructions. We require N - 1 selects per phi 7377 // node, where N is the number of incoming values. 7378 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7379 return (Phi->getNumIncomingValues() - 1) * 7380 TTI.getCmpSelInstrCost( 7381 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7382 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7383 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7384 7385 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7386 } 7387 case Instruction::UDiv: 7388 case Instruction::SDiv: 7389 case Instruction::URem: 7390 case Instruction::SRem: 7391 // If we have a predicated instruction, it may not be executed for each 7392 // vector lane. Get the scalarization cost and scale this amount by the 7393 // probability of executing the predicated block. If the instruction is not 7394 // predicated, we fall through to the next case. 7395 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7396 InstructionCost Cost = 0; 7397 7398 // These instructions have a non-void type, so account for the phi nodes 7399 // that we will create. This cost is likely to be zero. The phi node 7400 // cost, if any, should be scaled by the block probability because it 7401 // models a copy at the end of each predicated block. 7402 Cost += VF.getKnownMinValue() * 7403 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7404 7405 // The cost of the non-predicated instruction. 7406 Cost += VF.getKnownMinValue() * 7407 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7408 7409 // The cost of insertelement and extractelement instructions needed for 7410 // scalarization. 7411 Cost += getScalarizationOverhead(I, VF); 7412 7413 // Scale the cost by the probability of executing the predicated blocks. 7414 // This assumes the predicated block for each vector lane is equally 7415 // likely. 7416 return Cost / getReciprocalPredBlockProb(); 7417 } 7418 LLVM_FALLTHROUGH; 7419 case Instruction::Add: 7420 case Instruction::FAdd: 7421 case Instruction::Sub: 7422 case Instruction::FSub: 7423 case Instruction::Mul: 7424 case Instruction::FMul: 7425 case Instruction::FDiv: 7426 case Instruction::FRem: 7427 case Instruction::Shl: 7428 case Instruction::LShr: 7429 case Instruction::AShr: 7430 case Instruction::And: 7431 case Instruction::Or: 7432 case Instruction::Xor: { 7433 // Since we will replace the stride by 1 the multiplication should go away. 7434 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7435 return 0; 7436 7437 // Detect reduction patterns 7438 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7439 return *RedCost; 7440 7441 // Certain instructions can be cheaper to vectorize if they have a constant 7442 // second vector operand. One example of this are shifts on x86. 7443 Value *Op2 = I->getOperand(1); 7444 TargetTransformInfo::OperandValueProperties Op2VP; 7445 TargetTransformInfo::OperandValueKind Op2VK = 7446 TTI.getOperandInfo(Op2, Op2VP); 7447 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7448 Op2VK = TargetTransformInfo::OK_UniformValue; 7449 7450 SmallVector<const Value *, 4> Operands(I->operand_values()); 7451 return TTI.getArithmeticInstrCost( 7452 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7453 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7454 } 7455 case Instruction::FNeg: { 7456 return TTI.getArithmeticInstrCost( 7457 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7458 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7459 TargetTransformInfo::OP_None, I->getOperand(0), I); 7460 } 7461 case Instruction::Select: { 7462 SelectInst *SI = cast<SelectInst>(I); 7463 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7464 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7465 7466 const Value *Op0, *Op1; 7467 using namespace llvm::PatternMatch; 7468 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7469 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7470 // select x, y, false --> x & y 7471 // select x, true, y --> x | y 7472 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7473 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7474 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7475 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7476 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7477 Op1->getType()->getScalarSizeInBits() == 1); 7478 7479 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7480 return TTI.getArithmeticInstrCost( 7481 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7482 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7483 } 7484 7485 Type *CondTy = SI->getCondition()->getType(); 7486 if (!ScalarCond) 7487 CondTy = VectorType::get(CondTy, VF); 7488 7489 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7490 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7491 Pred = Cmp->getPredicate(); 7492 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7493 CostKind, I); 7494 } 7495 case Instruction::ICmp: 7496 case Instruction::FCmp: { 7497 Type *ValTy = I->getOperand(0)->getType(); 7498 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7499 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7500 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7501 VectorTy = ToVectorTy(ValTy, VF); 7502 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7503 cast<CmpInst>(I)->getPredicate(), CostKind, 7504 I); 7505 } 7506 case Instruction::Store: 7507 case Instruction::Load: { 7508 ElementCount Width = VF; 7509 if (Width.isVector()) { 7510 InstWidening Decision = getWideningDecision(I, Width); 7511 assert(Decision != CM_Unknown && 7512 "CM decision should be taken at this point"); 7513 if (Decision == CM_Scalarize) 7514 Width = ElementCount::getFixed(1); 7515 } 7516 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7517 return getMemoryInstructionCost(I, VF); 7518 } 7519 case Instruction::BitCast: 7520 if (I->getType()->isPointerTy()) 7521 return 0; 7522 LLVM_FALLTHROUGH; 7523 case Instruction::ZExt: 7524 case Instruction::SExt: 7525 case Instruction::FPToUI: 7526 case Instruction::FPToSI: 7527 case Instruction::FPExt: 7528 case Instruction::PtrToInt: 7529 case Instruction::IntToPtr: 7530 case Instruction::SIToFP: 7531 case Instruction::UIToFP: 7532 case Instruction::Trunc: 7533 case Instruction::FPTrunc: { 7534 // Computes the CastContextHint from a Load/Store instruction. 7535 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7536 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7537 "Expected a load or a store!"); 7538 7539 if (VF.isScalar() || !TheLoop->contains(I)) 7540 return TTI::CastContextHint::Normal; 7541 7542 switch (getWideningDecision(I, VF)) { 7543 case LoopVectorizationCostModel::CM_GatherScatter: 7544 return TTI::CastContextHint::GatherScatter; 7545 case LoopVectorizationCostModel::CM_Interleave: 7546 return TTI::CastContextHint::Interleave; 7547 case LoopVectorizationCostModel::CM_Scalarize: 7548 case LoopVectorizationCostModel::CM_Widen: 7549 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7550 : TTI::CastContextHint::Normal; 7551 case LoopVectorizationCostModel::CM_Widen_Reverse: 7552 return TTI::CastContextHint::Reversed; 7553 case LoopVectorizationCostModel::CM_Unknown: 7554 llvm_unreachable("Instr did not go through cost modelling?"); 7555 } 7556 7557 llvm_unreachable("Unhandled case!"); 7558 }; 7559 7560 unsigned Opcode = I->getOpcode(); 7561 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7562 // For Trunc, the context is the only user, which must be a StoreInst. 7563 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7564 if (I->hasOneUse()) 7565 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7566 CCH = ComputeCCH(Store); 7567 } 7568 // For Z/Sext, the context is the operand, which must be a LoadInst. 7569 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7570 Opcode == Instruction::FPExt) { 7571 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7572 CCH = ComputeCCH(Load); 7573 } 7574 7575 // We optimize the truncation of induction variables having constant 7576 // integer steps. The cost of these truncations is the same as the scalar 7577 // operation. 7578 if (isOptimizableIVTruncate(I, VF)) { 7579 auto *Trunc = cast<TruncInst>(I); 7580 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7581 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7582 } 7583 7584 // Detect reduction patterns 7585 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7586 return *RedCost; 7587 7588 Type *SrcScalarTy = I->getOperand(0)->getType(); 7589 Type *SrcVecTy = 7590 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7591 if (canTruncateToMinimalBitwidth(I, VF)) { 7592 // This cast is going to be shrunk. This may remove the cast or it might 7593 // turn it into slightly different cast. For example, if MinBW == 16, 7594 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7595 // 7596 // Calculate the modified src and dest types. 7597 Type *MinVecTy = VectorTy; 7598 if (Opcode == Instruction::Trunc) { 7599 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7600 VectorTy = 7601 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7602 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7603 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7604 VectorTy = 7605 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7606 } 7607 } 7608 7609 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7610 } 7611 case Instruction::Call: { 7612 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7613 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7614 return *RedCost; 7615 bool NeedToScalarize; 7616 CallInst *CI = cast<CallInst>(I); 7617 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7618 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7619 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7620 return std::min(CallCost, IntrinsicCost); 7621 } 7622 return CallCost; 7623 } 7624 case Instruction::ExtractValue: 7625 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7626 case Instruction::Alloca: 7627 // We cannot easily widen alloca to a scalable alloca, as 7628 // the result would need to be a vector of pointers. 7629 if (VF.isScalable()) 7630 return InstructionCost::getInvalid(); 7631 LLVM_FALLTHROUGH; 7632 default: 7633 // This opcode is unknown. Assume that it is the same as 'mul'. 7634 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7635 } // end of switch. 7636 } 7637 7638 char LoopVectorize::ID = 0; 7639 7640 static const char lv_name[] = "Loop Vectorization"; 7641 7642 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7643 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7644 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7645 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7646 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7647 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7648 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7649 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7650 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7651 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7652 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7653 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7654 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7655 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7656 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7657 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7658 7659 namespace llvm { 7660 7661 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7662 7663 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7664 bool VectorizeOnlyWhenForced) { 7665 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7666 } 7667 7668 } // end namespace llvm 7669 7670 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7671 // Check if the pointer operand of a load or store instruction is 7672 // consecutive. 7673 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7674 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7675 return false; 7676 } 7677 7678 void LoopVectorizationCostModel::collectValuesToIgnore() { 7679 // Ignore ephemeral values. 7680 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7681 7682 // Ignore type-promoting instructions we identified during reduction 7683 // detection. 7684 for (auto &Reduction : Legal->getReductionVars()) { 7685 const RecurrenceDescriptor &RedDes = Reduction.second; 7686 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7687 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7688 } 7689 // Ignore type-casting instructions we identified during induction 7690 // detection. 7691 for (auto &Induction : Legal->getInductionVars()) { 7692 const InductionDescriptor &IndDes = Induction.second; 7693 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7694 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7695 } 7696 } 7697 7698 void LoopVectorizationCostModel::collectInLoopReductions() { 7699 for (auto &Reduction : Legal->getReductionVars()) { 7700 PHINode *Phi = Reduction.first; 7701 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7702 7703 // We don't collect reductions that are type promoted (yet). 7704 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7705 continue; 7706 7707 // If the target would prefer this reduction to happen "in-loop", then we 7708 // want to record it as such. 7709 unsigned Opcode = RdxDesc.getOpcode(); 7710 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7711 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7712 TargetTransformInfo::ReductionFlags())) 7713 continue; 7714 7715 // Check that we can correctly put the reductions into the loop, by 7716 // finding the chain of operations that leads from the phi to the loop 7717 // exit value. 7718 SmallVector<Instruction *, 4> ReductionOperations = 7719 RdxDesc.getReductionOpChain(Phi, TheLoop); 7720 bool InLoop = !ReductionOperations.empty(); 7721 if (InLoop) { 7722 InLoopReductionChains[Phi] = ReductionOperations; 7723 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7724 Instruction *LastChain = Phi; 7725 for (auto *I : ReductionOperations) { 7726 InLoopReductionImmediateChains[I] = LastChain; 7727 LastChain = I; 7728 } 7729 } 7730 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7731 << " reduction for phi: " << *Phi << "\n"); 7732 } 7733 } 7734 7735 // TODO: we could return a pair of values that specify the max VF and 7736 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7737 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7738 // doesn't have a cost model that can choose which plan to execute if 7739 // more than one is generated. 7740 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7741 LoopVectorizationCostModel &CM) { 7742 unsigned WidestType; 7743 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7744 return WidestVectorRegBits / WidestType; 7745 } 7746 7747 VectorizationFactor 7748 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7749 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7750 ElementCount VF = UserVF; 7751 // Outer loop handling: They may require CFG and instruction level 7752 // transformations before even evaluating whether vectorization is profitable. 7753 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7754 // the vectorization pipeline. 7755 if (!OrigLoop->isInnermost()) { 7756 // If the user doesn't provide a vectorization factor, determine a 7757 // reasonable one. 7758 if (UserVF.isZero()) { 7759 VF = ElementCount::getFixed(determineVPlanVF( 7760 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7761 .getFixedSize(), 7762 CM)); 7763 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7764 7765 // Make sure we have a VF > 1 for stress testing. 7766 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7767 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7768 << "overriding computed VF.\n"); 7769 VF = ElementCount::getFixed(4); 7770 } 7771 } 7772 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7773 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7774 "VF needs to be a power of two"); 7775 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7776 << "VF " << VF << " to build VPlans.\n"); 7777 buildVPlans(VF, VF); 7778 7779 // For VPlan build stress testing, we bail out after VPlan construction. 7780 if (VPlanBuildStressTest) 7781 return VectorizationFactor::Disabled(); 7782 7783 return {VF, 0 /*Cost*/}; 7784 } 7785 7786 LLVM_DEBUG( 7787 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7788 "VPlan-native path.\n"); 7789 return VectorizationFactor::Disabled(); 7790 } 7791 7792 Optional<VectorizationFactor> 7793 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7794 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7795 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7796 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7797 return None; 7798 7799 // Invalidate interleave groups if all blocks of loop will be predicated. 7800 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7801 !useMaskedInterleavedAccesses(*TTI)) { 7802 LLVM_DEBUG( 7803 dbgs() 7804 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7805 "which requires masked-interleaved support.\n"); 7806 if (CM.InterleaveInfo.invalidateGroups()) 7807 // Invalidating interleave groups also requires invalidating all decisions 7808 // based on them, which includes widening decisions and uniform and scalar 7809 // values. 7810 CM.invalidateCostModelingDecisions(); 7811 } 7812 7813 ElementCount MaxUserVF = 7814 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7815 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7816 if (!UserVF.isZero() && UserVFIsLegal) { 7817 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7818 "VF needs to be a power of two"); 7819 // Collect the instructions (and their associated costs) that will be more 7820 // profitable to scalarize. 7821 if (CM.selectUserVectorizationFactor(UserVF)) { 7822 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7823 CM.collectInLoopReductions(); 7824 buildVPlansWithVPRecipes(UserVF, UserVF); 7825 LLVM_DEBUG(printPlans(dbgs())); 7826 return {{UserVF, 0}}; 7827 } else 7828 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7829 "InvalidCost", ORE, OrigLoop); 7830 } 7831 7832 // Populate the set of Vectorization Factor Candidates. 7833 ElementCountSet VFCandidates; 7834 for (auto VF = ElementCount::getFixed(1); 7835 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7836 VFCandidates.insert(VF); 7837 for (auto VF = ElementCount::getScalable(1); 7838 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7839 VFCandidates.insert(VF); 7840 7841 for (const auto &VF : VFCandidates) { 7842 // Collect Uniform and Scalar instructions after vectorization with VF. 7843 CM.collectUniformsAndScalars(VF); 7844 7845 // Collect the instructions (and their associated costs) that will be more 7846 // profitable to scalarize. 7847 if (VF.isVector()) 7848 CM.collectInstsToScalarize(VF); 7849 } 7850 7851 CM.collectInLoopReductions(); 7852 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7853 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7854 7855 LLVM_DEBUG(printPlans(dbgs())); 7856 if (!MaxFactors.hasVector()) 7857 return VectorizationFactor::Disabled(); 7858 7859 // Select the optimal vectorization factor. 7860 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7861 7862 // Check if it is profitable to vectorize with runtime checks. 7863 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7864 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7865 bool PragmaThresholdReached = 7866 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7867 bool ThresholdReached = 7868 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7869 if ((ThresholdReached && !Hints.allowReordering()) || 7870 PragmaThresholdReached) { 7871 ORE->emit([&]() { 7872 return OptimizationRemarkAnalysisAliasing( 7873 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7874 OrigLoop->getHeader()) 7875 << "loop not vectorized: cannot prove it is safe to reorder " 7876 "memory operations"; 7877 }); 7878 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7879 Hints.emitRemarkWithHints(); 7880 return VectorizationFactor::Disabled(); 7881 } 7882 } 7883 return SelectedVF; 7884 } 7885 7886 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7887 assert(count_if(VPlans, 7888 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7889 1 && 7890 "Best VF has not a single VPlan."); 7891 7892 for (const VPlanPtr &Plan : VPlans) { 7893 if (Plan->hasVF(VF)) 7894 return *Plan.get(); 7895 } 7896 llvm_unreachable("No plan found!"); 7897 } 7898 7899 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7900 SmallVector<Metadata *, 4> MDs; 7901 // Reserve first location for self reference to the LoopID metadata node. 7902 MDs.push_back(nullptr); 7903 bool IsUnrollMetadata = false; 7904 MDNode *LoopID = L->getLoopID(); 7905 if (LoopID) { 7906 // First find existing loop unrolling disable metadata. 7907 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7908 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7909 if (MD) { 7910 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7911 IsUnrollMetadata = 7912 S && S->getString().startswith("llvm.loop.unroll.disable"); 7913 } 7914 MDs.push_back(LoopID->getOperand(i)); 7915 } 7916 } 7917 7918 if (!IsUnrollMetadata) { 7919 // Add runtime unroll disable metadata. 7920 LLVMContext &Context = L->getHeader()->getContext(); 7921 SmallVector<Metadata *, 1> DisableOperands; 7922 DisableOperands.push_back( 7923 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7924 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7925 MDs.push_back(DisableNode); 7926 MDNode *NewLoopID = MDNode::get(Context, MDs); 7927 // Set operand 0 to refer to the loop id itself. 7928 NewLoopID->replaceOperandWith(0, NewLoopID); 7929 L->setLoopID(NewLoopID); 7930 } 7931 } 7932 7933 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7934 VPlan &BestVPlan, 7935 InnerLoopVectorizer &ILV, 7936 DominatorTree *DT) { 7937 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7938 << '\n'); 7939 7940 // Perform the actual loop transformation. 7941 7942 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7943 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7944 Value *CanonicalIVStartValue; 7945 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7946 ILV.createVectorizedLoopSkeleton(); 7947 ILV.collectPoisonGeneratingRecipes(State); 7948 7949 ILV.printDebugTracesAtStart(); 7950 7951 //===------------------------------------------------===// 7952 // 7953 // Notice: any optimization or new instruction that go 7954 // into the code below should also be implemented in 7955 // the cost-model. 7956 // 7957 //===------------------------------------------------===// 7958 7959 // 2. Copy and widen instructions from the old loop into the new loop. 7960 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7961 ILV.getOrCreateVectorTripCount(nullptr), 7962 CanonicalIVStartValue, State); 7963 BestVPlan.execute(&State); 7964 7965 // Keep all loop hints from the original loop on the vector loop (we'll 7966 // replace the vectorizer-specific hints below). 7967 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7968 7969 Optional<MDNode *> VectorizedLoopID = 7970 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7971 LLVMLoopVectorizeFollowupVectorized}); 7972 7973 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7974 if (VectorizedLoopID.hasValue()) 7975 L->setLoopID(VectorizedLoopID.getValue()); 7976 else { 7977 // Keep all loop hints from the original loop on the vector loop (we'll 7978 // replace the vectorizer-specific hints below). 7979 if (MDNode *LID = OrigLoop->getLoopID()) 7980 L->setLoopID(LID); 7981 7982 LoopVectorizeHints Hints(L, true, *ORE); 7983 Hints.setAlreadyVectorized(); 7984 } 7985 // Disable runtime unrolling when vectorizing the epilogue loop. 7986 if (CanonicalIVStartValue) 7987 AddRuntimeUnrollDisableMetaData(L); 7988 7989 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7990 // predication, updating analyses. 7991 ILV.fixVectorizedLoop(State); 7992 7993 ILV.printDebugTracesAtEnd(); 7994 } 7995 7996 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7997 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7998 for (const auto &Plan : VPlans) 7999 if (PrintVPlansInDotFormat) 8000 Plan->printDOT(O); 8001 else 8002 Plan->print(O); 8003 } 8004 #endif 8005 8006 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8007 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8008 8009 // We create new control-flow for the vectorized loop, so the original exit 8010 // conditions will be dead after vectorization if it's only used by the 8011 // terminator 8012 SmallVector<BasicBlock*> ExitingBlocks; 8013 OrigLoop->getExitingBlocks(ExitingBlocks); 8014 for (auto *BB : ExitingBlocks) { 8015 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8016 if (!Cmp || !Cmp->hasOneUse()) 8017 continue; 8018 8019 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8020 if (!DeadInstructions.insert(Cmp).second) 8021 continue; 8022 8023 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8024 // TODO: can recurse through operands in general 8025 for (Value *Op : Cmp->operands()) { 8026 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8027 DeadInstructions.insert(cast<Instruction>(Op)); 8028 } 8029 } 8030 8031 // We create new "steps" for induction variable updates to which the original 8032 // induction variables map. An original update instruction will be dead if 8033 // all its users except the induction variable are dead. 8034 auto *Latch = OrigLoop->getLoopLatch(); 8035 for (auto &Induction : Legal->getInductionVars()) { 8036 PHINode *Ind = Induction.first; 8037 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8038 8039 // If the tail is to be folded by masking, the primary induction variable, 8040 // if exists, isn't dead: it will be used for masking. Don't kill it. 8041 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8042 continue; 8043 8044 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8045 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8046 })) 8047 DeadInstructions.insert(IndUpdate); 8048 } 8049 } 8050 8051 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8052 8053 //===--------------------------------------------------------------------===// 8054 // EpilogueVectorizerMainLoop 8055 //===--------------------------------------------------------------------===// 8056 8057 /// This function is partially responsible for generating the control flow 8058 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8059 std::pair<BasicBlock *, Value *> 8060 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8061 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8062 Loop *Lp = createVectorLoopSkeleton(""); 8063 8064 // Generate the code to check the minimum iteration count of the vector 8065 // epilogue (see below). 8066 EPI.EpilogueIterationCountCheck = 8067 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8068 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8069 8070 // Generate the code to check any assumptions that we've made for SCEV 8071 // expressions. 8072 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8073 8074 // Generate the code that checks at runtime if arrays overlap. We put the 8075 // checks into a separate block to make the more common case of few elements 8076 // faster. 8077 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8078 8079 // Generate the iteration count check for the main loop, *after* the check 8080 // for the epilogue loop, so that the path-length is shorter for the case 8081 // that goes directly through the vector epilogue. The longer-path length for 8082 // the main loop is compensated for, by the gain from vectorizing the larger 8083 // trip count. Note: the branch will get updated later on when we vectorize 8084 // the epilogue. 8085 EPI.MainLoopIterationCountCheck = 8086 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8087 8088 // Generate the induction variable. 8089 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8090 EPI.VectorTripCount = CountRoundDown; 8091 createHeaderBranch(Lp); 8092 8093 // Skip induction resume value creation here because they will be created in 8094 // the second pass. If we created them here, they wouldn't be used anyway, 8095 // because the vplan in the second pass still contains the inductions from the 8096 // original loop. 8097 8098 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 8099 } 8100 8101 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8102 LLVM_DEBUG({ 8103 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8104 << "Main Loop VF:" << EPI.MainLoopVF 8105 << ", Main Loop UF:" << EPI.MainLoopUF 8106 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8107 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8108 }); 8109 } 8110 8111 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8112 DEBUG_WITH_TYPE(VerboseDebug, { 8113 dbgs() << "intermediate fn:\n" 8114 << *OrigLoop->getHeader()->getParent() << "\n"; 8115 }); 8116 } 8117 8118 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8119 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8120 assert(L && "Expected valid Loop."); 8121 assert(Bypass && "Expected valid bypass basic block."); 8122 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8123 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8124 Value *Count = getOrCreateTripCount(L); 8125 // Reuse existing vector loop preheader for TC checks. 8126 // Note that new preheader block is generated for vector loop. 8127 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8128 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8129 8130 // Generate code to check if the loop's trip count is less than VF * UF of the 8131 // main vector loop. 8132 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8133 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8134 8135 Value *CheckMinIters = Builder.CreateICmp( 8136 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 8137 "min.iters.check"); 8138 8139 if (!ForEpilogue) 8140 TCCheckBlock->setName("vector.main.loop.iter.check"); 8141 8142 // Create new preheader for vector loop. 8143 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8144 DT, LI, nullptr, "vector.ph"); 8145 8146 if (ForEpilogue) { 8147 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8148 DT->getNode(Bypass)->getIDom()) && 8149 "TC check is expected to dominate Bypass"); 8150 8151 // Update dominator for Bypass & LoopExit. 8152 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8153 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8154 // For loops with multiple exits, there's no edge from the middle block 8155 // to exit blocks (as the epilogue must run) and thus no need to update 8156 // the immediate dominator of the exit blocks. 8157 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8158 8159 LoopBypassBlocks.push_back(TCCheckBlock); 8160 8161 // Save the trip count so we don't have to regenerate it in the 8162 // vec.epilog.iter.check. This is safe to do because the trip count 8163 // generated here dominates the vector epilog iter check. 8164 EPI.TripCount = Count; 8165 } 8166 8167 ReplaceInstWithInst( 8168 TCCheckBlock->getTerminator(), 8169 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8170 8171 return TCCheckBlock; 8172 } 8173 8174 //===--------------------------------------------------------------------===// 8175 // EpilogueVectorizerEpilogueLoop 8176 //===--------------------------------------------------------------------===// 8177 8178 /// This function is partially responsible for generating the control flow 8179 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8180 std::pair<BasicBlock *, Value *> 8181 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8182 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8183 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8184 8185 // Now, compare the remaining count and if there aren't enough iterations to 8186 // execute the vectorized epilogue skip to the scalar part. 8187 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8188 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8189 LoopVectorPreHeader = 8190 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8191 LI, nullptr, "vec.epilog.ph"); 8192 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8193 VecEpilogueIterationCountCheck); 8194 8195 // Adjust the control flow taking the state info from the main loop 8196 // vectorization into account. 8197 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8198 "expected this to be saved from the previous pass."); 8199 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8200 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8201 8202 DT->changeImmediateDominator(LoopVectorPreHeader, 8203 EPI.MainLoopIterationCountCheck); 8204 8205 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8206 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8207 8208 if (EPI.SCEVSafetyCheck) 8209 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8210 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8211 if (EPI.MemSafetyCheck) 8212 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8213 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8214 8215 DT->changeImmediateDominator( 8216 VecEpilogueIterationCountCheck, 8217 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8218 8219 DT->changeImmediateDominator(LoopScalarPreHeader, 8220 EPI.EpilogueIterationCountCheck); 8221 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8222 // If there is an epilogue which must run, there's no edge from the 8223 // middle block to exit blocks and thus no need to update the immediate 8224 // dominator of the exit blocks. 8225 DT->changeImmediateDominator(LoopExitBlock, 8226 EPI.EpilogueIterationCountCheck); 8227 8228 // Keep track of bypass blocks, as they feed start values to the induction 8229 // phis in the scalar loop preheader. 8230 if (EPI.SCEVSafetyCheck) 8231 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8232 if (EPI.MemSafetyCheck) 8233 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8234 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8235 8236 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 8237 // merge control-flow from the latch block and the middle block. Update the 8238 // incoming values here and move the Phi into the preheader. 8239 SmallVector<PHINode *, 4> PhisInBlock; 8240 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 8241 PhisInBlock.push_back(&Phi); 8242 8243 for (PHINode *Phi : PhisInBlock) { 8244 Phi->replaceIncomingBlockWith( 8245 VecEpilogueIterationCountCheck->getSinglePredecessor(), 8246 VecEpilogueIterationCountCheck); 8247 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 8248 if (EPI.SCEVSafetyCheck) 8249 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 8250 if (EPI.MemSafetyCheck) 8251 Phi->removeIncomingValue(EPI.MemSafetyCheck); 8252 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 8253 } 8254 8255 // Generate a resume induction for the vector epilogue and put it in the 8256 // vector epilogue preheader 8257 Type *IdxTy = Legal->getWidestInductionType(); 8258 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8259 LoopVectorPreHeader->getFirstNonPHI()); 8260 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8261 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8262 EPI.MainLoopIterationCountCheck); 8263 8264 // Generate the induction variable. 8265 createHeaderBranch(Lp); 8266 8267 // Generate induction resume values. These variables save the new starting 8268 // indexes for the scalar loop. They are used to test if there are any tail 8269 // iterations left once the vector loop has completed. 8270 // Note that when the vectorized epilogue is skipped due to iteration count 8271 // check, then the resume value for the induction variable comes from 8272 // the trip count of the main vector loop, hence passing the AdditionalBypass 8273 // argument. 8274 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8275 EPI.VectorTripCount} /* AdditionalBypass */); 8276 8277 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8278 } 8279 8280 BasicBlock * 8281 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8282 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8283 8284 assert(EPI.TripCount && 8285 "Expected trip count to have been safed in the first pass."); 8286 assert( 8287 (!isa<Instruction>(EPI.TripCount) || 8288 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8289 "saved trip count does not dominate insertion point."); 8290 Value *TC = EPI.TripCount; 8291 IRBuilder<> Builder(Insert->getTerminator()); 8292 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8293 8294 // Generate code to check if the loop's trip count is less than VF * UF of the 8295 // vector epilogue loop. 8296 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8297 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8298 8299 Value *CheckMinIters = 8300 Builder.CreateICmp(P, Count, 8301 createStepForVF(Builder, Count->getType(), 8302 EPI.EpilogueVF, EPI.EpilogueUF), 8303 "min.epilog.iters.check"); 8304 8305 ReplaceInstWithInst( 8306 Insert->getTerminator(), 8307 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8308 8309 LoopBypassBlocks.push_back(Insert); 8310 return Insert; 8311 } 8312 8313 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8314 LLVM_DEBUG({ 8315 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8316 << "Epilogue Loop VF:" << EPI.EpilogueVF 8317 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8318 }); 8319 } 8320 8321 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8322 DEBUG_WITH_TYPE(VerboseDebug, { 8323 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8324 }); 8325 } 8326 8327 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8328 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8329 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8330 bool PredicateAtRangeStart = Predicate(Range.Start); 8331 8332 for (ElementCount TmpVF = Range.Start * 2; 8333 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8334 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8335 Range.End = TmpVF; 8336 break; 8337 } 8338 8339 return PredicateAtRangeStart; 8340 } 8341 8342 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8343 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8344 /// of VF's starting at a given VF and extending it as much as possible. Each 8345 /// vectorization decision can potentially shorten this sub-range during 8346 /// buildVPlan(). 8347 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8348 ElementCount MaxVF) { 8349 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8350 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8351 VFRange SubRange = {VF, MaxVFPlusOne}; 8352 VPlans.push_back(buildVPlan(SubRange)); 8353 VF = SubRange.End; 8354 } 8355 } 8356 8357 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8358 VPlanPtr &Plan) { 8359 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8360 8361 // Look for cached value. 8362 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8363 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8364 if (ECEntryIt != EdgeMaskCache.end()) 8365 return ECEntryIt->second; 8366 8367 VPValue *SrcMask = createBlockInMask(Src, Plan); 8368 8369 // The terminator has to be a branch inst! 8370 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8371 assert(BI && "Unexpected terminator found"); 8372 8373 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8374 return EdgeMaskCache[Edge] = SrcMask; 8375 8376 // If source is an exiting block, we know the exit edge is dynamically dead 8377 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8378 // adding uses of an otherwise potentially dead instruction. 8379 if (OrigLoop->isLoopExiting(Src)) 8380 return EdgeMaskCache[Edge] = SrcMask; 8381 8382 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8383 assert(EdgeMask && "No Edge Mask found for condition"); 8384 8385 if (BI->getSuccessor(0) != Dst) 8386 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8387 8388 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8389 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8390 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8391 // The select version does not introduce new UB if SrcMask is false and 8392 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8393 VPValue *False = Plan->getOrAddVPValue( 8394 ConstantInt::getFalse(BI->getCondition()->getType())); 8395 EdgeMask = 8396 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8397 } 8398 8399 return EdgeMaskCache[Edge] = EdgeMask; 8400 } 8401 8402 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8403 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8404 8405 // Look for cached value. 8406 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8407 if (BCEntryIt != BlockMaskCache.end()) 8408 return BCEntryIt->second; 8409 8410 // All-one mask is modelled as no-mask following the convention for masked 8411 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8412 VPValue *BlockMask = nullptr; 8413 8414 if (OrigLoop->getHeader() == BB) { 8415 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8416 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8417 8418 // Introduce the early-exit compare IV <= BTC to form header block mask. 8419 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8420 // constructing the desired canonical IV in the header block as its first 8421 // non-phi instructions. 8422 assert(CM.foldTailByMasking() && "must fold the tail"); 8423 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8424 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8425 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8426 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8427 8428 VPBuilder::InsertPointGuard Guard(Builder); 8429 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8430 if (CM.TTI.emitGetActiveLaneMask()) { 8431 VPValue *TC = Plan->getOrCreateTripCount(); 8432 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8433 } else { 8434 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8435 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8436 } 8437 return BlockMaskCache[BB] = BlockMask; 8438 } 8439 8440 // This is the block mask. We OR all incoming edges. 8441 for (auto *Predecessor : predecessors(BB)) { 8442 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8443 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8444 return BlockMaskCache[BB] = EdgeMask; 8445 8446 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8447 BlockMask = EdgeMask; 8448 continue; 8449 } 8450 8451 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8452 } 8453 8454 return BlockMaskCache[BB] = BlockMask; 8455 } 8456 8457 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8458 ArrayRef<VPValue *> Operands, 8459 VFRange &Range, 8460 VPlanPtr &Plan) { 8461 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8462 "Must be called with either a load or store"); 8463 8464 auto willWiden = [&](ElementCount VF) -> bool { 8465 if (VF.isScalar()) 8466 return false; 8467 LoopVectorizationCostModel::InstWidening Decision = 8468 CM.getWideningDecision(I, VF); 8469 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8470 "CM decision should be taken at this point."); 8471 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8472 return true; 8473 if (CM.isScalarAfterVectorization(I, VF) || 8474 CM.isProfitableToScalarize(I, VF)) 8475 return false; 8476 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8477 }; 8478 8479 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8480 return nullptr; 8481 8482 VPValue *Mask = nullptr; 8483 if (Legal->isMaskRequired(I)) 8484 Mask = createBlockInMask(I->getParent(), Plan); 8485 8486 // Determine if the pointer operand of the access is either consecutive or 8487 // reverse consecutive. 8488 LoopVectorizationCostModel::InstWidening Decision = 8489 CM.getWideningDecision(I, Range.Start); 8490 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8491 bool Consecutive = 8492 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8493 8494 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8495 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8496 Consecutive, Reverse); 8497 8498 StoreInst *Store = cast<StoreInst>(I); 8499 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8500 Mask, Consecutive, Reverse); 8501 } 8502 8503 static VPWidenIntOrFpInductionRecipe * 8504 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8505 VPValue *Start, const InductionDescriptor &IndDesc, 8506 LoopVectorizationCostModel &CM, Loop &OrigLoop, 8507 VFRange &Range) { 8508 // Returns true if an instruction \p I should be scalarized instead of 8509 // vectorized for the chosen vectorization factor. 8510 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8511 return CM.isScalarAfterVectorization(I, VF) || 8512 CM.isProfitableToScalarize(I, VF); 8513 }; 8514 8515 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8516 [&](ElementCount VF) { 8517 // Returns true if we should generate a scalar version of \p IV. 8518 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8519 return true; 8520 auto isScalarInst = [&](User *U) -> bool { 8521 auto *I = cast<Instruction>(U); 8522 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8523 }; 8524 return any_of(PhiOrTrunc->users(), isScalarInst); 8525 }, 8526 Range); 8527 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8528 [&](ElementCount VF) { 8529 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8530 }, 8531 Range); 8532 assert(IndDesc.getStartValue() == 8533 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8534 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8535 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI, 8536 NeedsScalarIV, !NeedsScalarIVOnly); 8537 } 8538 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8539 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8540 !NeedsScalarIVOnly); 8541 } 8542 8543 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( 8544 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8545 8546 // Check if this is an integer or fp induction. If so, build the recipe that 8547 // produces its scalar and vector values. 8548 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8549 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop, 8550 Range); 8551 8552 return nullptr; 8553 } 8554 8555 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8556 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8557 VPlan &Plan) const { 8558 // Optimize the special case where the source is a constant integer 8559 // induction variable. Notice that we can only optimize the 'trunc' case 8560 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8561 // (c) other casts depend on pointer size. 8562 8563 // Determine whether \p K is a truncation based on an induction variable that 8564 // can be optimized. 8565 auto isOptimizableIVTruncate = 8566 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8567 return [=](ElementCount VF) -> bool { 8568 return CM.isOptimizableIVTruncate(K, VF); 8569 }; 8570 }; 8571 8572 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8573 isOptimizableIVTruncate(I), Range)) { 8574 8575 auto *Phi = cast<PHINode>(I->getOperand(0)); 8576 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8577 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8578 return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range); 8579 } 8580 return nullptr; 8581 } 8582 8583 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8584 ArrayRef<VPValue *> Operands, 8585 VPlanPtr &Plan) { 8586 // If all incoming values are equal, the incoming VPValue can be used directly 8587 // instead of creating a new VPBlendRecipe. 8588 VPValue *FirstIncoming = Operands[0]; 8589 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8590 return FirstIncoming == Inc; 8591 })) { 8592 return Operands[0]; 8593 } 8594 8595 // We know that all PHIs in non-header blocks are converted into selects, so 8596 // we don't have to worry about the insertion order and we can just use the 8597 // builder. At this point we generate the predication tree. There may be 8598 // duplications since this is a simple recursive scan, but future 8599 // optimizations will clean it up. 8600 SmallVector<VPValue *, 2> OperandsWithMask; 8601 unsigned NumIncoming = Phi->getNumIncomingValues(); 8602 8603 for (unsigned In = 0; In < NumIncoming; In++) { 8604 VPValue *EdgeMask = 8605 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8606 assert((EdgeMask || NumIncoming == 1) && 8607 "Multiple predecessors with one having a full mask"); 8608 OperandsWithMask.push_back(Operands[In]); 8609 if (EdgeMask) 8610 OperandsWithMask.push_back(EdgeMask); 8611 } 8612 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8613 } 8614 8615 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8616 ArrayRef<VPValue *> Operands, 8617 VFRange &Range) const { 8618 8619 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8620 [this, CI](ElementCount VF) { 8621 return CM.isScalarWithPredication(CI, VF); 8622 }, 8623 Range); 8624 8625 if (IsPredicated) 8626 return nullptr; 8627 8628 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8629 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8630 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8631 ID == Intrinsic::pseudoprobe || 8632 ID == Intrinsic::experimental_noalias_scope_decl)) 8633 return nullptr; 8634 8635 auto willWiden = [&](ElementCount VF) -> bool { 8636 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8637 // The following case may be scalarized depending on the VF. 8638 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8639 // version of the instruction. 8640 // Is it beneficial to perform intrinsic call compared to lib call? 8641 bool NeedToScalarize = false; 8642 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8643 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8644 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8645 return UseVectorIntrinsic || !NeedToScalarize; 8646 }; 8647 8648 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8649 return nullptr; 8650 8651 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8652 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8653 } 8654 8655 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8656 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8657 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8658 // Instruction should be widened, unless it is scalar after vectorization, 8659 // scalarization is profitable or it is predicated. 8660 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8661 return CM.isScalarAfterVectorization(I, VF) || 8662 CM.isProfitableToScalarize(I, VF) || 8663 CM.isScalarWithPredication(I, VF); 8664 }; 8665 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8666 Range); 8667 } 8668 8669 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8670 ArrayRef<VPValue *> Operands) const { 8671 auto IsVectorizableOpcode = [](unsigned Opcode) { 8672 switch (Opcode) { 8673 case Instruction::Add: 8674 case Instruction::And: 8675 case Instruction::AShr: 8676 case Instruction::BitCast: 8677 case Instruction::FAdd: 8678 case Instruction::FCmp: 8679 case Instruction::FDiv: 8680 case Instruction::FMul: 8681 case Instruction::FNeg: 8682 case Instruction::FPExt: 8683 case Instruction::FPToSI: 8684 case Instruction::FPToUI: 8685 case Instruction::FPTrunc: 8686 case Instruction::FRem: 8687 case Instruction::FSub: 8688 case Instruction::ICmp: 8689 case Instruction::IntToPtr: 8690 case Instruction::LShr: 8691 case Instruction::Mul: 8692 case Instruction::Or: 8693 case Instruction::PtrToInt: 8694 case Instruction::SDiv: 8695 case Instruction::Select: 8696 case Instruction::SExt: 8697 case Instruction::Shl: 8698 case Instruction::SIToFP: 8699 case Instruction::SRem: 8700 case Instruction::Sub: 8701 case Instruction::Trunc: 8702 case Instruction::UDiv: 8703 case Instruction::UIToFP: 8704 case Instruction::URem: 8705 case Instruction::Xor: 8706 case Instruction::ZExt: 8707 return true; 8708 } 8709 return false; 8710 }; 8711 8712 if (!IsVectorizableOpcode(I->getOpcode())) 8713 return nullptr; 8714 8715 // Success: widen this instruction. 8716 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8717 } 8718 8719 void VPRecipeBuilder::fixHeaderPhis() { 8720 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8721 for (VPHeaderPHIRecipe *R : PhisToFix) { 8722 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8723 VPRecipeBase *IncR = 8724 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8725 R->addOperand(IncR->getVPSingleValue()); 8726 } 8727 } 8728 8729 VPBasicBlock *VPRecipeBuilder::handleReplication( 8730 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8731 VPlanPtr &Plan) { 8732 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8733 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8734 Range); 8735 8736 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8737 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8738 Range); 8739 8740 // Even if the instruction is not marked as uniform, there are certain 8741 // intrinsic calls that can be effectively treated as such, so we check for 8742 // them here. Conservatively, we only do this for scalable vectors, since 8743 // for fixed-width VFs we can always fall back on full scalarization. 8744 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8745 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8746 case Intrinsic::assume: 8747 case Intrinsic::lifetime_start: 8748 case Intrinsic::lifetime_end: 8749 // For scalable vectors if one of the operands is variant then we still 8750 // want to mark as uniform, which will generate one instruction for just 8751 // the first lane of the vector. We can't scalarize the call in the same 8752 // way as for fixed-width vectors because we don't know how many lanes 8753 // there are. 8754 // 8755 // The reasons for doing it this way for scalable vectors are: 8756 // 1. For the assume intrinsic generating the instruction for the first 8757 // lane is still be better than not generating any at all. For 8758 // example, the input may be a splat across all lanes. 8759 // 2. For the lifetime start/end intrinsics the pointer operand only 8760 // does anything useful when the input comes from a stack object, 8761 // which suggests it should always be uniform. For non-stack objects 8762 // the effect is to poison the object, which still allows us to 8763 // remove the call. 8764 IsUniform = true; 8765 break; 8766 default: 8767 break; 8768 } 8769 } 8770 8771 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8772 IsUniform, IsPredicated); 8773 setRecipe(I, Recipe); 8774 Plan->addVPValue(I, Recipe); 8775 8776 // Find if I uses a predicated instruction. If so, it will use its scalar 8777 // value. Avoid hoisting the insert-element which packs the scalar value into 8778 // a vector value, as that happens iff all users use the vector value. 8779 for (VPValue *Op : Recipe->operands()) { 8780 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8781 if (!PredR) 8782 continue; 8783 auto *RepR = 8784 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8785 assert(RepR->isPredicated() && 8786 "expected Replicate recipe to be predicated"); 8787 RepR->setAlsoPack(false); 8788 } 8789 8790 // Finalize the recipe for Instr, first if it is not predicated. 8791 if (!IsPredicated) { 8792 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8793 VPBB->appendRecipe(Recipe); 8794 return VPBB; 8795 } 8796 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8797 8798 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8799 assert(SingleSucc && "VPBB must have a single successor when handling " 8800 "predicated replication."); 8801 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8802 // Record predicated instructions for above packing optimizations. 8803 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8804 VPBlockUtils::insertBlockAfter(Region, VPBB); 8805 auto *RegSucc = new VPBasicBlock(); 8806 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8807 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8808 return RegSucc; 8809 } 8810 8811 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8812 VPRecipeBase *PredRecipe, 8813 VPlanPtr &Plan) { 8814 // Instructions marked for predication are replicated and placed under an 8815 // if-then construct to prevent side-effects. 8816 8817 // Generate recipes to compute the block mask for this region. 8818 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8819 8820 // Build the triangular if-then region. 8821 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8822 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8823 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8824 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8825 auto *PHIRecipe = Instr->getType()->isVoidTy() 8826 ? nullptr 8827 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8828 if (PHIRecipe) { 8829 Plan->removeVPValueFor(Instr); 8830 Plan->addVPValue(Instr, PHIRecipe); 8831 } 8832 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8833 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8834 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8835 8836 // Note: first set Entry as region entry and then connect successors starting 8837 // from it in order, to propagate the "parent" of each VPBasicBlock. 8838 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8839 VPBlockUtils::connectBlocks(Pred, Exit); 8840 8841 return Region; 8842 } 8843 8844 VPRecipeOrVPValueTy 8845 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8846 ArrayRef<VPValue *> Operands, 8847 VFRange &Range, VPlanPtr &Plan) { 8848 // First, check for specific widening recipes that deal with calls, memory 8849 // operations, inductions and Phi nodes. 8850 if (auto *CI = dyn_cast<CallInst>(Instr)) 8851 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8852 8853 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8854 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8855 8856 VPRecipeBase *Recipe; 8857 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8858 if (Phi->getParent() != OrigLoop->getHeader()) 8859 return tryToBlend(Phi, Operands, Plan); 8860 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8861 return toVPRecipeResult(Recipe); 8862 8863 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8864 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8865 VPValue *StartV = Operands[0]; 8866 if (Legal->isReductionVariable(Phi)) { 8867 const RecurrenceDescriptor &RdxDesc = 8868 Legal->getReductionVars().find(Phi)->second; 8869 assert(RdxDesc.getRecurrenceStartValue() == 8870 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8871 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8872 CM.isInLoopReduction(Phi), 8873 CM.useOrderedReductions(RdxDesc)); 8874 } else { 8875 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8876 } 8877 8878 // Record the incoming value from the backedge, so we can add the incoming 8879 // value from the backedge after all recipes have been created. 8880 recordRecipeOf(cast<Instruction>( 8881 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8882 PhisToFix.push_back(PhiRecipe); 8883 } else { 8884 // TODO: record backedge value for remaining pointer induction phis. 8885 assert(Phi->getType()->isPointerTy() && 8886 "only pointer phis should be handled here"); 8887 assert(Legal->getInductionVars().count(Phi) && 8888 "Not an induction variable"); 8889 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8890 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8891 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8892 } 8893 8894 return toVPRecipeResult(PhiRecipe); 8895 } 8896 8897 if (isa<TruncInst>(Instr) && 8898 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8899 Range, *Plan))) 8900 return toVPRecipeResult(Recipe); 8901 8902 if (!shouldWiden(Instr, Range)) 8903 return nullptr; 8904 8905 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8906 return toVPRecipeResult(new VPWidenGEPRecipe( 8907 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8908 8909 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8910 bool InvariantCond = 8911 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8912 return toVPRecipeResult(new VPWidenSelectRecipe( 8913 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8914 } 8915 8916 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8917 } 8918 8919 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8920 ElementCount MaxVF) { 8921 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8922 8923 // Collect instructions from the original loop that will become trivially dead 8924 // in the vectorized loop. We don't need to vectorize these instructions. For 8925 // example, original induction update instructions can become dead because we 8926 // separately emit induction "steps" when generating code for the new loop. 8927 // Similarly, we create a new latch condition when setting up the structure 8928 // of the new loop, so the old one can become dead. 8929 SmallPtrSet<Instruction *, 4> DeadInstructions; 8930 collectTriviallyDeadInstructions(DeadInstructions); 8931 8932 // Add assume instructions we need to drop to DeadInstructions, to prevent 8933 // them from being added to the VPlan. 8934 // TODO: We only need to drop assumes in blocks that get flattend. If the 8935 // control flow is preserved, we should keep them. 8936 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8937 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8938 8939 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8940 // Dead instructions do not need sinking. Remove them from SinkAfter. 8941 for (Instruction *I : DeadInstructions) 8942 SinkAfter.erase(I); 8943 8944 // Cannot sink instructions after dead instructions (there won't be any 8945 // recipes for them). Instead, find the first non-dead previous instruction. 8946 for (auto &P : Legal->getSinkAfter()) { 8947 Instruction *SinkTarget = P.second; 8948 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8949 (void)FirstInst; 8950 while (DeadInstructions.contains(SinkTarget)) { 8951 assert( 8952 SinkTarget != FirstInst && 8953 "Must find a live instruction (at least the one feeding the " 8954 "first-order recurrence PHI) before reaching beginning of the block"); 8955 SinkTarget = SinkTarget->getPrevNode(); 8956 assert(SinkTarget != P.first && 8957 "sink source equals target, no sinking required"); 8958 } 8959 P.second = SinkTarget; 8960 } 8961 8962 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8963 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8964 VFRange SubRange = {VF, MaxVFPlusOne}; 8965 VPlans.push_back( 8966 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8967 VF = SubRange.End; 8968 } 8969 } 8970 8971 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8972 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8973 // BranchOnCount VPInstruction to the latch. 8974 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8975 bool HasNUW, bool IsVPlanNative) { 8976 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8977 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8978 8979 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8980 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8981 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8982 if (IsVPlanNative) 8983 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8984 Header->insert(CanonicalIVPHI, Header->begin()); 8985 8986 auto *CanonicalIVIncrement = 8987 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8988 : VPInstruction::CanonicalIVIncrement, 8989 {CanonicalIVPHI}, DL); 8990 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8991 8992 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8993 if (IsVPlanNative) { 8994 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8995 EB->setCondBit(nullptr); 8996 } 8997 EB->appendRecipe(CanonicalIVIncrement); 8998 8999 auto *BranchOnCount = 9000 new VPInstruction(VPInstruction::BranchOnCount, 9001 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 9002 EB->appendRecipe(BranchOnCount); 9003 } 9004 9005 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9006 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9007 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9008 9009 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9010 9011 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9012 9013 // --------------------------------------------------------------------------- 9014 // Pre-construction: record ingredients whose recipes we'll need to further 9015 // process after constructing the initial VPlan. 9016 // --------------------------------------------------------------------------- 9017 9018 // Mark instructions we'll need to sink later and their targets as 9019 // ingredients whose recipe we'll need to record. 9020 for (auto &Entry : SinkAfter) { 9021 RecipeBuilder.recordRecipeOf(Entry.first); 9022 RecipeBuilder.recordRecipeOf(Entry.second); 9023 } 9024 for (auto &Reduction : CM.getInLoopReductionChains()) { 9025 PHINode *Phi = Reduction.first; 9026 RecurKind Kind = 9027 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 9028 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9029 9030 RecipeBuilder.recordRecipeOf(Phi); 9031 for (auto &R : ReductionOperations) { 9032 RecipeBuilder.recordRecipeOf(R); 9033 // For min/max reducitons, where we have a pair of icmp/select, we also 9034 // need to record the ICmp recipe, so it can be removed later. 9035 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9036 "Only min/max recurrences allowed for inloop reductions"); 9037 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9038 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9039 } 9040 } 9041 9042 // For each interleave group which is relevant for this (possibly trimmed) 9043 // Range, add it to the set of groups to be later applied to the VPlan and add 9044 // placeholders for its members' Recipes which we'll be replacing with a 9045 // single VPInterleaveRecipe. 9046 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9047 auto applyIG = [IG, this](ElementCount VF) -> bool { 9048 return (VF.isVector() && // Query is illegal for VF == 1 9049 CM.getWideningDecision(IG->getInsertPos(), VF) == 9050 LoopVectorizationCostModel::CM_Interleave); 9051 }; 9052 if (!getDecisionAndClampRange(applyIG, Range)) 9053 continue; 9054 InterleaveGroups.insert(IG); 9055 for (unsigned i = 0; i < IG->getFactor(); i++) 9056 if (Instruction *Member = IG->getMember(i)) 9057 RecipeBuilder.recordRecipeOf(Member); 9058 }; 9059 9060 // --------------------------------------------------------------------------- 9061 // Build initial VPlan: Scan the body of the loop in a topological order to 9062 // visit each basic block after having visited its predecessor basic blocks. 9063 // --------------------------------------------------------------------------- 9064 9065 // Create initial VPlan skeleton, with separate header and latch blocks. 9066 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 9067 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 9068 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 9069 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 9070 auto Plan = std::make_unique<VPlan>(TopRegion); 9071 9072 Instruction *DLInst = 9073 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 9074 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 9075 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 9076 !CM.foldTailByMasking(), false); 9077 9078 // Scan the body of the loop in a topological order to visit each basic block 9079 // after having visited its predecessor basic blocks. 9080 LoopBlocksDFS DFS(OrigLoop); 9081 DFS.perform(LI); 9082 9083 VPBasicBlock *VPBB = HeaderVPBB; 9084 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 9085 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9086 // Relevant instructions from basic block BB will be grouped into VPRecipe 9087 // ingredients and fill a new VPBasicBlock. 9088 unsigned VPBBsForBB = 0; 9089 VPBB->setName(BB->getName()); 9090 Builder.setInsertPoint(VPBB); 9091 9092 // Introduce each ingredient into VPlan. 9093 // TODO: Model and preserve debug instrinsics in VPlan. 9094 for (Instruction &I : BB->instructionsWithoutDebug()) { 9095 Instruction *Instr = &I; 9096 9097 // First filter out irrelevant instructions, to ensure no recipes are 9098 // built for them. 9099 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9100 continue; 9101 9102 SmallVector<VPValue *, 4> Operands; 9103 auto *Phi = dyn_cast<PHINode>(Instr); 9104 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9105 Operands.push_back(Plan->getOrAddVPValue( 9106 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9107 } else { 9108 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9109 Operands = {OpRange.begin(), OpRange.end()}; 9110 } 9111 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9112 Instr, Operands, Range, Plan)) { 9113 // If Instr can be simplified to an existing VPValue, use it. 9114 if (RecipeOrValue.is<VPValue *>()) { 9115 auto *VPV = RecipeOrValue.get<VPValue *>(); 9116 Plan->addVPValue(Instr, VPV); 9117 // If the re-used value is a recipe, register the recipe for the 9118 // instruction, in case the recipe for Instr needs to be recorded. 9119 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9120 RecipeBuilder.setRecipe(Instr, R); 9121 continue; 9122 } 9123 // Otherwise, add the new recipe. 9124 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9125 for (auto *Def : Recipe->definedValues()) { 9126 auto *UV = Def->getUnderlyingValue(); 9127 Plan->addVPValue(UV, Def); 9128 } 9129 9130 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 9131 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 9132 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 9133 // of the header block. That can happen for truncates of induction 9134 // variables. Those recipes are moved to the phi section of the header 9135 // block after applying SinkAfter, which relies on the original 9136 // position of the trunc. 9137 assert(isa<TruncInst>(Instr)); 9138 InductionsToMove.push_back( 9139 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 9140 } 9141 RecipeBuilder.setRecipe(Instr, Recipe); 9142 VPBB->appendRecipe(Recipe); 9143 continue; 9144 } 9145 9146 // Otherwise, if all widening options failed, Instruction is to be 9147 // replicated. This may create a successor for VPBB. 9148 VPBasicBlock *NextVPBB = 9149 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9150 if (NextVPBB != VPBB) { 9151 VPBB = NextVPBB; 9152 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9153 : ""); 9154 } 9155 } 9156 9157 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 9158 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 9159 } 9160 9161 // Fold the last, empty block into its predecessor. 9162 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 9163 assert(VPBB && "expected to fold last (empty) block"); 9164 // After here, VPBB should not be used. 9165 VPBB = nullptr; 9166 9167 assert(isa<VPRegionBlock>(Plan->getEntry()) && 9168 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9169 "entry block must be set to a VPRegionBlock having a non-empty entry " 9170 "VPBasicBlock"); 9171 RecipeBuilder.fixHeaderPhis(); 9172 9173 // --------------------------------------------------------------------------- 9174 // Transform initial VPlan: Apply previously taken decisions, in order, to 9175 // bring the VPlan to its final state. 9176 // --------------------------------------------------------------------------- 9177 9178 // Apply Sink-After legal constraints. 9179 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9180 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9181 if (Region && Region->isReplicator()) { 9182 assert(Region->getNumSuccessors() == 1 && 9183 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9184 assert(R->getParent()->size() == 1 && 9185 "A recipe in an original replicator region must be the only " 9186 "recipe in its block"); 9187 return Region; 9188 } 9189 return nullptr; 9190 }; 9191 for (auto &Entry : SinkAfter) { 9192 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9193 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9194 9195 auto *TargetRegion = GetReplicateRegion(Target); 9196 auto *SinkRegion = GetReplicateRegion(Sink); 9197 if (!SinkRegion) { 9198 // If the sink source is not a replicate region, sink the recipe directly. 9199 if (TargetRegion) { 9200 // The target is in a replication region, make sure to move Sink to 9201 // the block after it, not into the replication region itself. 9202 VPBasicBlock *NextBlock = 9203 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9204 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9205 } else 9206 Sink->moveAfter(Target); 9207 continue; 9208 } 9209 9210 // The sink source is in a replicate region. Unhook the region from the CFG. 9211 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9212 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9213 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9214 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9215 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9216 9217 if (TargetRegion) { 9218 // The target recipe is also in a replicate region, move the sink region 9219 // after the target region. 9220 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9221 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9222 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9223 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9224 } else { 9225 // The sink source is in a replicate region, we need to move the whole 9226 // replicate region, which should only contain a single recipe in the 9227 // main block. 9228 auto *SplitBlock = 9229 Target->getParent()->splitAt(std::next(Target->getIterator())); 9230 9231 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9232 9233 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9234 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9235 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9236 } 9237 } 9238 9239 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 9240 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9241 9242 // Now that sink-after is done, move induction recipes for optimized truncates 9243 // to the phi section of the header block. 9244 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9245 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9246 9247 // Adjust the recipes for any inloop reductions. 9248 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9249 RecipeBuilder, Range.Start); 9250 9251 // Introduce a recipe to combine the incoming and previous values of a 9252 // first-order recurrence. 9253 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9254 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9255 if (!RecurPhi) 9256 continue; 9257 9258 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9259 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9260 auto *Region = GetReplicateRegion(PrevRecipe); 9261 if (Region) 9262 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9263 if (Region || PrevRecipe->isPhi()) 9264 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9265 else 9266 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9267 9268 auto *RecurSplice = cast<VPInstruction>( 9269 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9270 {RecurPhi, RecurPhi->getBackedgeValue()})); 9271 9272 RecurPhi->replaceAllUsesWith(RecurSplice); 9273 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9274 // all users. 9275 RecurSplice->setOperand(0, RecurPhi); 9276 } 9277 9278 // Interleave memory: for each Interleave Group we marked earlier as relevant 9279 // for this VPlan, replace the Recipes widening its memory instructions with a 9280 // single VPInterleaveRecipe at its insertion point. 9281 for (auto IG : InterleaveGroups) { 9282 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9283 RecipeBuilder.getRecipe(IG->getInsertPos())); 9284 SmallVector<VPValue *, 4> StoredValues; 9285 for (unsigned i = 0; i < IG->getFactor(); ++i) 9286 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9287 auto *StoreR = 9288 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9289 StoredValues.push_back(StoreR->getStoredValue()); 9290 } 9291 9292 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9293 Recipe->getMask()); 9294 VPIG->insertBefore(Recipe); 9295 unsigned J = 0; 9296 for (unsigned i = 0; i < IG->getFactor(); ++i) 9297 if (Instruction *Member = IG->getMember(i)) { 9298 if (!Member->getType()->isVoidTy()) { 9299 VPValue *OriginalV = Plan->getVPValue(Member); 9300 Plan->removeVPValueFor(Member); 9301 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9302 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9303 J++; 9304 } 9305 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9306 } 9307 } 9308 9309 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9310 // in ways that accessing values using original IR values is incorrect. 9311 Plan->disableValue2VPValue(); 9312 9313 VPlanTransforms::sinkScalarOperands(*Plan); 9314 VPlanTransforms::mergeReplicateRegions(*Plan); 9315 9316 std::string PlanName; 9317 raw_string_ostream RSO(PlanName); 9318 ElementCount VF = Range.Start; 9319 Plan->addVF(VF); 9320 RSO << "Initial VPlan for VF={" << VF; 9321 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9322 Plan->addVF(VF); 9323 RSO << "," << VF; 9324 } 9325 RSO << "},UF>=1"; 9326 RSO.flush(); 9327 Plan->setName(PlanName); 9328 9329 // Fold Exit block into its predecessor if possible. 9330 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9331 // VPBasicBlock as exit. 9332 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9333 9334 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9335 return Plan; 9336 } 9337 9338 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9339 // Outer loop handling: They may require CFG and instruction level 9340 // transformations before even evaluating whether vectorization is profitable. 9341 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9342 // the vectorization pipeline. 9343 assert(!OrigLoop->isInnermost()); 9344 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9345 9346 // Create new empty VPlan 9347 auto Plan = std::make_unique<VPlan>(); 9348 9349 // Build hierarchical CFG 9350 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9351 HCFGBuilder.buildHierarchicalCFG(); 9352 9353 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9354 VF *= 2) 9355 Plan->addVF(VF); 9356 9357 if (EnableVPlanPredication) { 9358 VPlanPredicator VPP(*Plan); 9359 VPP.predicate(); 9360 9361 // Avoid running transformation to recipes until masked code generation in 9362 // VPlan-native path is in place. 9363 return Plan; 9364 } 9365 9366 SmallPtrSet<Instruction *, 1> DeadInstructions; 9367 VPlanTransforms::VPInstructionsToVPRecipes( 9368 OrigLoop, Plan, 9369 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9370 DeadInstructions, *PSE.getSE()); 9371 9372 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9373 true, true); 9374 return Plan; 9375 } 9376 9377 // Adjust the recipes for reductions. For in-loop reductions the chain of 9378 // instructions leading from the loop exit instr to the phi need to be converted 9379 // to reductions, with one operand being vector and the other being the scalar 9380 // reduction chain. For other reductions, a select is introduced between the phi 9381 // and live-out recipes when folding the tail. 9382 void LoopVectorizationPlanner::adjustRecipesForReductions( 9383 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9384 ElementCount MinVF) { 9385 for (auto &Reduction : CM.getInLoopReductionChains()) { 9386 PHINode *Phi = Reduction.first; 9387 const RecurrenceDescriptor &RdxDesc = 9388 Legal->getReductionVars().find(Phi)->second; 9389 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9390 9391 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9392 continue; 9393 9394 // ReductionOperations are orders top-down from the phi's use to the 9395 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9396 // which of the two operands will remain scalar and which will be reduced. 9397 // For minmax the chain will be the select instructions. 9398 Instruction *Chain = Phi; 9399 for (Instruction *R : ReductionOperations) { 9400 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9401 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9402 9403 VPValue *ChainOp = Plan->getVPValue(Chain); 9404 unsigned FirstOpId; 9405 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9406 "Only min/max recurrences allowed for inloop reductions"); 9407 // Recognize a call to the llvm.fmuladd intrinsic. 9408 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9409 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9410 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9411 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9412 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9413 "Expected to replace a VPWidenSelectSC"); 9414 FirstOpId = 1; 9415 } else { 9416 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9417 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9418 "Expected to replace a VPWidenSC"); 9419 FirstOpId = 0; 9420 } 9421 unsigned VecOpId = 9422 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9423 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9424 9425 auto *CondOp = CM.foldTailByMasking() 9426 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9427 : nullptr; 9428 9429 if (IsFMulAdd) { 9430 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9431 // need to create an fmul recipe to use as the vector operand for the 9432 // fadd reduction. 9433 VPInstruction *FMulRecipe = new VPInstruction( 9434 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9435 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9436 WidenRecipe->getParent()->insert(FMulRecipe, 9437 WidenRecipe->getIterator()); 9438 VecOp = FMulRecipe; 9439 } 9440 VPReductionRecipe *RedRecipe = 9441 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9442 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9443 Plan->removeVPValueFor(R); 9444 Plan->addVPValue(R, RedRecipe); 9445 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9446 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9447 WidenRecipe->eraseFromParent(); 9448 9449 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9450 VPRecipeBase *CompareRecipe = 9451 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9452 assert(isa<VPWidenRecipe>(CompareRecipe) && 9453 "Expected to replace a VPWidenSC"); 9454 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9455 "Expected no remaining users"); 9456 CompareRecipe->eraseFromParent(); 9457 } 9458 Chain = R; 9459 } 9460 } 9461 9462 // If tail is folded by masking, introduce selects between the phi 9463 // and the live-out instruction of each reduction, at the beginning of the 9464 // dedicated latch block. 9465 if (CM.foldTailByMasking()) { 9466 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9467 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9468 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9469 if (!PhiR || PhiR->isInLoop()) 9470 continue; 9471 VPValue *Cond = 9472 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9473 VPValue *Red = PhiR->getBackedgeValue(); 9474 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9475 "reduction recipe must be defined before latch"); 9476 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9477 } 9478 } 9479 } 9480 9481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9482 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9483 VPSlotTracker &SlotTracker) const { 9484 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9485 IG->getInsertPos()->printAsOperand(O, false); 9486 O << ", "; 9487 getAddr()->printAsOperand(O, SlotTracker); 9488 VPValue *Mask = getMask(); 9489 if (Mask) { 9490 O << ", "; 9491 Mask->printAsOperand(O, SlotTracker); 9492 } 9493 9494 unsigned OpIdx = 0; 9495 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9496 if (!IG->getMember(i)) 9497 continue; 9498 if (getNumStoreOperands() > 0) { 9499 O << "\n" << Indent << " store "; 9500 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9501 O << " to index " << i; 9502 } else { 9503 O << "\n" << Indent << " "; 9504 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9505 O << " = load from index " << i; 9506 } 9507 ++OpIdx; 9508 } 9509 } 9510 #endif 9511 9512 void VPWidenCallRecipe::execute(VPTransformState &State) { 9513 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9514 *this, State); 9515 } 9516 9517 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9518 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9519 State.ILV->setDebugLocFromInst(&I); 9520 9521 // The condition can be loop invariant but still defined inside the 9522 // loop. This means that we can't just use the original 'cond' value. 9523 // We have to take the 'vectorized' value and pick the first lane. 9524 // Instcombine will make this a no-op. 9525 auto *InvarCond = 9526 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9527 9528 for (unsigned Part = 0; Part < State.UF; ++Part) { 9529 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9530 Value *Op0 = State.get(getOperand(1), Part); 9531 Value *Op1 = State.get(getOperand(2), Part); 9532 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9533 State.set(this, Sel, Part); 9534 State.ILV->addMetadata(Sel, &I); 9535 } 9536 } 9537 9538 void VPWidenRecipe::execute(VPTransformState &State) { 9539 auto &I = *cast<Instruction>(getUnderlyingValue()); 9540 auto &Builder = State.Builder; 9541 switch (I.getOpcode()) { 9542 case Instruction::Call: 9543 case Instruction::Br: 9544 case Instruction::PHI: 9545 case Instruction::GetElementPtr: 9546 case Instruction::Select: 9547 llvm_unreachable("This instruction is handled by a different recipe."); 9548 case Instruction::UDiv: 9549 case Instruction::SDiv: 9550 case Instruction::SRem: 9551 case Instruction::URem: 9552 case Instruction::Add: 9553 case Instruction::FAdd: 9554 case Instruction::Sub: 9555 case Instruction::FSub: 9556 case Instruction::FNeg: 9557 case Instruction::Mul: 9558 case Instruction::FMul: 9559 case Instruction::FDiv: 9560 case Instruction::FRem: 9561 case Instruction::Shl: 9562 case Instruction::LShr: 9563 case Instruction::AShr: 9564 case Instruction::And: 9565 case Instruction::Or: 9566 case Instruction::Xor: { 9567 // Just widen unops and binops. 9568 State.ILV->setDebugLocFromInst(&I); 9569 9570 for (unsigned Part = 0; Part < State.UF; ++Part) { 9571 SmallVector<Value *, 2> Ops; 9572 for (VPValue *VPOp : operands()) 9573 Ops.push_back(State.get(VPOp, Part)); 9574 9575 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9576 9577 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9578 VecOp->copyIRFlags(&I); 9579 9580 // If the instruction is vectorized and was in a basic block that needed 9581 // predication, we can't propagate poison-generating flags (nuw/nsw, 9582 // exact, etc.). The control flow has been linearized and the 9583 // instruction is no longer guarded by the predicate, which could make 9584 // the flag properties to no longer hold. 9585 if (State.MayGeneratePoisonRecipes.contains(this)) 9586 VecOp->dropPoisonGeneratingFlags(); 9587 } 9588 9589 // Use this vector value for all users of the original instruction. 9590 State.set(this, V, Part); 9591 State.ILV->addMetadata(V, &I); 9592 } 9593 9594 break; 9595 } 9596 case Instruction::ICmp: 9597 case Instruction::FCmp: { 9598 // Widen compares. Generate vector compares. 9599 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9600 auto *Cmp = cast<CmpInst>(&I); 9601 State.ILV->setDebugLocFromInst(Cmp); 9602 for (unsigned Part = 0; Part < State.UF; ++Part) { 9603 Value *A = State.get(getOperand(0), Part); 9604 Value *B = State.get(getOperand(1), Part); 9605 Value *C = nullptr; 9606 if (FCmp) { 9607 // Propagate fast math flags. 9608 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9609 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9610 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9611 } else { 9612 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9613 } 9614 State.set(this, C, Part); 9615 State.ILV->addMetadata(C, &I); 9616 } 9617 9618 break; 9619 } 9620 9621 case Instruction::ZExt: 9622 case Instruction::SExt: 9623 case Instruction::FPToUI: 9624 case Instruction::FPToSI: 9625 case Instruction::FPExt: 9626 case Instruction::PtrToInt: 9627 case Instruction::IntToPtr: 9628 case Instruction::SIToFP: 9629 case Instruction::UIToFP: 9630 case Instruction::Trunc: 9631 case Instruction::FPTrunc: 9632 case Instruction::BitCast: { 9633 auto *CI = cast<CastInst>(&I); 9634 State.ILV->setDebugLocFromInst(CI); 9635 9636 /// Vectorize casts. 9637 Type *DestTy = (State.VF.isScalar()) 9638 ? CI->getType() 9639 : VectorType::get(CI->getType(), State.VF); 9640 9641 for (unsigned Part = 0; Part < State.UF; ++Part) { 9642 Value *A = State.get(getOperand(0), Part); 9643 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9644 State.set(this, Cast, Part); 9645 State.ILV->addMetadata(Cast, &I); 9646 } 9647 break; 9648 } 9649 default: 9650 // This instruction is not vectorized by simple widening. 9651 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9652 llvm_unreachable("Unhandled instruction!"); 9653 } // end of switch. 9654 } 9655 9656 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9657 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9658 // Construct a vector GEP by widening the operands of the scalar GEP as 9659 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9660 // results in a vector of pointers when at least one operand of the GEP 9661 // is vector-typed. Thus, to keep the representation compact, we only use 9662 // vector-typed operands for loop-varying values. 9663 9664 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9665 // If we are vectorizing, but the GEP has only loop-invariant operands, 9666 // the GEP we build (by only using vector-typed operands for 9667 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9668 // produce a vector of pointers, we need to either arbitrarily pick an 9669 // operand to broadcast, or broadcast a clone of the original GEP. 9670 // Here, we broadcast a clone of the original. 9671 // 9672 // TODO: If at some point we decide to scalarize instructions having 9673 // loop-invariant operands, this special case will no longer be 9674 // required. We would add the scalarization decision to 9675 // collectLoopScalars() and teach getVectorValue() to broadcast 9676 // the lane-zero scalar value. 9677 auto *Clone = State.Builder.Insert(GEP->clone()); 9678 for (unsigned Part = 0; Part < State.UF; ++Part) { 9679 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9680 State.set(this, EntryPart, Part); 9681 State.ILV->addMetadata(EntryPart, GEP); 9682 } 9683 } else { 9684 // If the GEP has at least one loop-varying operand, we are sure to 9685 // produce a vector of pointers. But if we are only unrolling, we want 9686 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9687 // produce with the code below will be scalar (if VF == 1) or vector 9688 // (otherwise). Note that for the unroll-only case, we still maintain 9689 // values in the vector mapping with initVector, as we do for other 9690 // instructions. 9691 for (unsigned Part = 0; Part < State.UF; ++Part) { 9692 // The pointer operand of the new GEP. If it's loop-invariant, we 9693 // won't broadcast it. 9694 auto *Ptr = IsPtrLoopInvariant 9695 ? State.get(getOperand(0), VPIteration(0, 0)) 9696 : State.get(getOperand(0), Part); 9697 9698 // Collect all the indices for the new GEP. If any index is 9699 // loop-invariant, we won't broadcast it. 9700 SmallVector<Value *, 4> Indices; 9701 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9702 VPValue *Operand = getOperand(I); 9703 if (IsIndexLoopInvariant[I - 1]) 9704 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9705 else 9706 Indices.push_back(State.get(Operand, Part)); 9707 } 9708 9709 // If the GEP instruction is vectorized and was in a basic block that 9710 // needed predication, we can't propagate the poison-generating 'inbounds' 9711 // flag. The control flow has been linearized and the GEP is no longer 9712 // guarded by the predicate, which could make the 'inbounds' properties to 9713 // no longer hold. 9714 bool IsInBounds = 9715 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9716 9717 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9718 // but it should be a vector, otherwise. 9719 auto *NewGEP = IsInBounds 9720 ? State.Builder.CreateInBoundsGEP( 9721 GEP->getSourceElementType(), Ptr, Indices) 9722 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9723 Ptr, Indices); 9724 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9725 "NewGEP is not a pointer vector"); 9726 State.set(this, NewGEP, Part); 9727 State.ILV->addMetadata(NewGEP, GEP); 9728 } 9729 } 9730 } 9731 9732 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9733 assert(!State.Instance && "Int or FP induction being replicated."); 9734 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9735 State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV); 9736 } 9737 9738 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9739 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9740 State); 9741 } 9742 9743 void VPBlendRecipe::execute(VPTransformState &State) { 9744 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9745 // We know that all PHIs in non-header blocks are converted into 9746 // selects, so we don't have to worry about the insertion order and we 9747 // can just use the builder. 9748 // At this point we generate the predication tree. There may be 9749 // duplications since this is a simple recursive scan, but future 9750 // optimizations will clean it up. 9751 9752 unsigned NumIncoming = getNumIncomingValues(); 9753 9754 // Generate a sequence of selects of the form: 9755 // SELECT(Mask3, In3, 9756 // SELECT(Mask2, In2, 9757 // SELECT(Mask1, In1, 9758 // In0))) 9759 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9760 // are essentially undef are taken from In0. 9761 InnerLoopVectorizer::VectorParts Entry(State.UF); 9762 for (unsigned In = 0; In < NumIncoming; ++In) { 9763 for (unsigned Part = 0; Part < State.UF; ++Part) { 9764 // We might have single edge PHIs (blocks) - use an identity 9765 // 'select' for the first PHI operand. 9766 Value *In0 = State.get(getIncomingValue(In), Part); 9767 if (In == 0) 9768 Entry[Part] = In0; // Initialize with the first incoming value. 9769 else { 9770 // Select between the current value and the previous incoming edge 9771 // based on the incoming mask. 9772 Value *Cond = State.get(getMask(In), Part); 9773 Entry[Part] = 9774 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9775 } 9776 } 9777 } 9778 for (unsigned Part = 0; Part < State.UF; ++Part) 9779 State.set(this, Entry[Part], Part); 9780 } 9781 9782 void VPInterleaveRecipe::execute(VPTransformState &State) { 9783 assert(!State.Instance && "Interleave group being replicated."); 9784 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9785 getStoredValues(), getMask()); 9786 } 9787 9788 void VPReductionRecipe::execute(VPTransformState &State) { 9789 assert(!State.Instance && "Reduction being replicated."); 9790 Value *PrevInChain = State.get(getChainOp(), 0); 9791 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9792 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9793 // Propagate the fast-math flags carried by the underlying instruction. 9794 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9795 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9796 for (unsigned Part = 0; Part < State.UF; ++Part) { 9797 Value *NewVecOp = State.get(getVecOp(), Part); 9798 if (VPValue *Cond = getCondOp()) { 9799 Value *NewCond = State.get(Cond, Part); 9800 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9801 Value *Iden = RdxDesc->getRecurrenceIdentity( 9802 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9803 Value *IdenVec = 9804 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9805 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9806 NewVecOp = Select; 9807 } 9808 Value *NewRed; 9809 Value *NextInChain; 9810 if (IsOrdered) { 9811 if (State.VF.isVector()) 9812 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9813 PrevInChain); 9814 else 9815 NewRed = State.Builder.CreateBinOp( 9816 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9817 NewVecOp); 9818 PrevInChain = NewRed; 9819 } else { 9820 PrevInChain = State.get(getChainOp(), Part); 9821 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9822 } 9823 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9824 NextInChain = 9825 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9826 NewRed, PrevInChain); 9827 } else if (IsOrdered) 9828 NextInChain = NewRed; 9829 else 9830 NextInChain = State.Builder.CreateBinOp( 9831 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9832 PrevInChain); 9833 State.set(this, NextInChain, Part); 9834 } 9835 } 9836 9837 void VPReplicateRecipe::execute(VPTransformState &State) { 9838 if (State.Instance) { // Generate a single instance. 9839 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9840 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9841 IsPredicated, State); 9842 // Insert scalar instance packing it into a vector. 9843 if (AlsoPack && State.VF.isVector()) { 9844 // If we're constructing lane 0, initialize to start from poison. 9845 if (State.Instance->Lane.isFirstLane()) { 9846 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9847 Value *Poison = PoisonValue::get( 9848 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9849 State.set(this, Poison, State.Instance->Part); 9850 } 9851 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9852 } 9853 return; 9854 } 9855 9856 // Generate scalar instances for all VF lanes of all UF parts, unless the 9857 // instruction is uniform inwhich case generate only the first lane for each 9858 // of the UF parts. 9859 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9860 assert((!State.VF.isScalable() || IsUniform) && 9861 "Can't scalarize a scalable vector"); 9862 for (unsigned Part = 0; Part < State.UF; ++Part) 9863 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9864 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9865 VPIteration(Part, Lane), IsPredicated, 9866 State); 9867 } 9868 9869 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9870 assert(State.Instance && "Branch on Mask works only on single instance."); 9871 9872 unsigned Part = State.Instance->Part; 9873 unsigned Lane = State.Instance->Lane.getKnownLane(); 9874 9875 Value *ConditionBit = nullptr; 9876 VPValue *BlockInMask = getMask(); 9877 if (BlockInMask) { 9878 ConditionBit = State.get(BlockInMask, Part); 9879 if (ConditionBit->getType()->isVectorTy()) 9880 ConditionBit = State.Builder.CreateExtractElement( 9881 ConditionBit, State.Builder.getInt32(Lane)); 9882 } else // Block in mask is all-one. 9883 ConditionBit = State.Builder.getTrue(); 9884 9885 // Replace the temporary unreachable terminator with a new conditional branch, 9886 // whose two destinations will be set later when they are created. 9887 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9888 assert(isa<UnreachableInst>(CurrentTerminator) && 9889 "Expected to replace unreachable terminator with conditional branch."); 9890 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9891 CondBr->setSuccessor(0, nullptr); 9892 ReplaceInstWithInst(CurrentTerminator, CondBr); 9893 } 9894 9895 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9896 assert(State.Instance && "Predicated instruction PHI works per instance."); 9897 Instruction *ScalarPredInst = 9898 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9899 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9900 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9901 assert(PredicatingBB && "Predicated block has no single predecessor."); 9902 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9903 "operand must be VPReplicateRecipe"); 9904 9905 // By current pack/unpack logic we need to generate only a single phi node: if 9906 // a vector value for the predicated instruction exists at this point it means 9907 // the instruction has vector users only, and a phi for the vector value is 9908 // needed. In this case the recipe of the predicated instruction is marked to 9909 // also do that packing, thereby "hoisting" the insert-element sequence. 9910 // Otherwise, a phi node for the scalar value is needed. 9911 unsigned Part = State.Instance->Part; 9912 if (State.hasVectorValue(getOperand(0), Part)) { 9913 Value *VectorValue = State.get(getOperand(0), Part); 9914 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9915 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9916 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9917 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9918 if (State.hasVectorValue(this, Part)) 9919 State.reset(this, VPhi, Part); 9920 else 9921 State.set(this, VPhi, Part); 9922 // NOTE: Currently we need to update the value of the operand, so the next 9923 // predicated iteration inserts its generated value in the correct vector. 9924 State.reset(getOperand(0), VPhi, Part); 9925 } else { 9926 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9927 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9928 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9929 PredicatingBB); 9930 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9931 if (State.hasScalarValue(this, *State.Instance)) 9932 State.reset(this, Phi, *State.Instance); 9933 else 9934 State.set(this, Phi, *State.Instance); 9935 // NOTE: Currently we need to update the value of the operand, so the next 9936 // predicated iteration inserts its generated value in the correct vector. 9937 State.reset(getOperand(0), Phi, *State.Instance); 9938 } 9939 } 9940 9941 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9942 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9943 9944 // Attempt to issue a wide load. 9945 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9946 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9947 9948 assert((LI || SI) && "Invalid Load/Store instruction"); 9949 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9950 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9951 9952 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9953 9954 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9955 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9956 bool CreateGatherScatter = !Consecutive; 9957 9958 auto &Builder = State.Builder; 9959 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9960 bool isMaskRequired = getMask(); 9961 if (isMaskRequired) 9962 for (unsigned Part = 0; Part < State.UF; ++Part) 9963 BlockInMaskParts[Part] = State.get(getMask(), Part); 9964 9965 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9966 // Calculate the pointer for the specific unroll-part. 9967 GetElementPtrInst *PartPtr = nullptr; 9968 9969 bool InBounds = false; 9970 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9971 InBounds = gep->isInBounds(); 9972 if (Reverse) { 9973 // If the address is consecutive but reversed, then the 9974 // wide store needs to start at the last vector element. 9975 // RunTimeVF = VScale * VF.getKnownMinValue() 9976 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9977 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9978 // NumElt = -Part * RunTimeVF 9979 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9980 // LastLane = 1 - RunTimeVF 9981 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9982 PartPtr = 9983 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9984 PartPtr->setIsInBounds(InBounds); 9985 PartPtr = cast<GetElementPtrInst>( 9986 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9987 PartPtr->setIsInBounds(InBounds); 9988 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9989 BlockInMaskParts[Part] = 9990 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9991 } else { 9992 Value *Increment = 9993 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9994 PartPtr = cast<GetElementPtrInst>( 9995 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9996 PartPtr->setIsInBounds(InBounds); 9997 } 9998 9999 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 10000 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 10001 }; 10002 10003 // Handle Stores: 10004 if (SI) { 10005 State.ILV->setDebugLocFromInst(SI); 10006 10007 for (unsigned Part = 0; Part < State.UF; ++Part) { 10008 Instruction *NewSI = nullptr; 10009 Value *StoredVal = State.get(StoredValue, Part); 10010 if (CreateGatherScatter) { 10011 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10012 Value *VectorGep = State.get(getAddr(), Part); 10013 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 10014 MaskPart); 10015 } else { 10016 if (Reverse) { 10017 // If we store to reverse consecutive memory locations, then we need 10018 // to reverse the order of elements in the stored value. 10019 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10020 // We don't want to update the value in the map as it might be used in 10021 // another expression. So don't call resetVectorValue(StoredVal). 10022 } 10023 auto *VecPtr = 10024 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10025 if (isMaskRequired) 10026 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10027 BlockInMaskParts[Part]); 10028 else 10029 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10030 } 10031 State.ILV->addMetadata(NewSI, SI); 10032 } 10033 return; 10034 } 10035 10036 // Handle loads. 10037 assert(LI && "Must have a load instruction"); 10038 State.ILV->setDebugLocFromInst(LI); 10039 for (unsigned Part = 0; Part < State.UF; ++Part) { 10040 Value *NewLI; 10041 if (CreateGatherScatter) { 10042 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10043 Value *VectorGep = State.get(getAddr(), Part); 10044 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10045 nullptr, "wide.masked.gather"); 10046 State.ILV->addMetadata(NewLI, LI); 10047 } else { 10048 auto *VecPtr = 10049 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10050 if (isMaskRequired) 10051 NewLI = Builder.CreateMaskedLoad( 10052 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10053 PoisonValue::get(DataTy), "wide.masked.load"); 10054 else 10055 NewLI = 10056 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10057 10058 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10059 State.ILV->addMetadata(NewLI, LI); 10060 if (Reverse) 10061 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10062 } 10063 10064 State.set(this, NewLI, Part); 10065 } 10066 } 10067 10068 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10069 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10070 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10071 // for predication. 10072 static ScalarEpilogueLowering getScalarEpilogueLowering( 10073 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10074 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10075 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10076 LoopVectorizationLegality &LVL) { 10077 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10078 // don't look at hints or options, and don't request a scalar epilogue. 10079 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10080 // LoopAccessInfo (due to code dependency and not being able to reliably get 10081 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10082 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10083 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10084 // back to the old way and vectorize with versioning when forced. See D81345.) 10085 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10086 PGSOQueryType::IRPass) && 10087 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10088 return CM_ScalarEpilogueNotAllowedOptSize; 10089 10090 // 2) If set, obey the directives 10091 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10092 switch (PreferPredicateOverEpilogue) { 10093 case PreferPredicateTy::ScalarEpilogue: 10094 return CM_ScalarEpilogueAllowed; 10095 case PreferPredicateTy::PredicateElseScalarEpilogue: 10096 return CM_ScalarEpilogueNotNeededUsePredicate; 10097 case PreferPredicateTy::PredicateOrDontVectorize: 10098 return CM_ScalarEpilogueNotAllowedUsePredicate; 10099 }; 10100 } 10101 10102 // 3) If set, obey the hints 10103 switch (Hints.getPredicate()) { 10104 case LoopVectorizeHints::FK_Enabled: 10105 return CM_ScalarEpilogueNotNeededUsePredicate; 10106 case LoopVectorizeHints::FK_Disabled: 10107 return CM_ScalarEpilogueAllowed; 10108 }; 10109 10110 // 4) if the TTI hook indicates this is profitable, request predication. 10111 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10112 LVL.getLAI())) 10113 return CM_ScalarEpilogueNotNeededUsePredicate; 10114 10115 return CM_ScalarEpilogueAllowed; 10116 } 10117 10118 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10119 // If Values have been set for this Def return the one relevant for \p Part. 10120 if (hasVectorValue(Def, Part)) 10121 return Data.PerPartOutput[Def][Part]; 10122 10123 if (!hasScalarValue(Def, {Part, 0})) { 10124 Value *IRV = Def->getLiveInIRValue(); 10125 Value *B = ILV->getBroadcastInstrs(IRV); 10126 set(Def, B, Part); 10127 return B; 10128 } 10129 10130 Value *ScalarValue = get(Def, {Part, 0}); 10131 // If we aren't vectorizing, we can just copy the scalar map values over 10132 // to the vector map. 10133 if (VF.isScalar()) { 10134 set(Def, ScalarValue, Part); 10135 return ScalarValue; 10136 } 10137 10138 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10139 bool IsUniform = RepR && RepR->isUniform(); 10140 10141 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10142 // Check if there is a scalar value for the selected lane. 10143 if (!hasScalarValue(Def, {Part, LastLane})) { 10144 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10145 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10146 "unexpected recipe found to be invariant"); 10147 IsUniform = true; 10148 LastLane = 0; 10149 } 10150 10151 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10152 // Set the insert point after the last scalarized instruction or after the 10153 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10154 // will directly follow the scalar definitions. 10155 auto OldIP = Builder.saveIP(); 10156 auto NewIP = 10157 isa<PHINode>(LastInst) 10158 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10159 : std::next(BasicBlock::iterator(LastInst)); 10160 Builder.SetInsertPoint(&*NewIP); 10161 10162 // However, if we are vectorizing, we need to construct the vector values. 10163 // If the value is known to be uniform after vectorization, we can just 10164 // broadcast the scalar value corresponding to lane zero for each unroll 10165 // iteration. Otherwise, we construct the vector values using 10166 // insertelement instructions. Since the resulting vectors are stored in 10167 // State, we will only generate the insertelements once. 10168 Value *VectorValue = nullptr; 10169 if (IsUniform) { 10170 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10171 set(Def, VectorValue, Part); 10172 } else { 10173 // Initialize packing with insertelements to start from undef. 10174 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10175 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10176 set(Def, Undef, Part); 10177 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10178 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10179 VectorValue = get(Def, Part); 10180 } 10181 Builder.restoreIP(OldIP); 10182 return VectorValue; 10183 } 10184 10185 // Process the loop in the VPlan-native vectorization path. This path builds 10186 // VPlan upfront in the vectorization pipeline, which allows to apply 10187 // VPlan-to-VPlan transformations from the very beginning without modifying the 10188 // input LLVM IR. 10189 static bool processLoopInVPlanNativePath( 10190 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10191 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10192 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10193 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10194 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10195 LoopVectorizationRequirements &Requirements) { 10196 10197 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10198 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10199 return false; 10200 } 10201 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10202 Function *F = L->getHeader()->getParent(); 10203 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10204 10205 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10206 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10207 10208 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10209 &Hints, IAI); 10210 // Use the planner for outer loop vectorization. 10211 // TODO: CM is not used at this point inside the planner. Turn CM into an 10212 // optional argument if we don't need it in the future. 10213 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10214 Requirements, ORE); 10215 10216 // Get user vectorization factor. 10217 ElementCount UserVF = Hints.getWidth(); 10218 10219 CM.collectElementTypesForWidening(); 10220 10221 // Plan how to best vectorize, return the best VF and its cost. 10222 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10223 10224 // If we are stress testing VPlan builds, do not attempt to generate vector 10225 // code. Masked vector code generation support will follow soon. 10226 // Also, do not attempt to vectorize if no vector code will be produced. 10227 if (VPlanBuildStressTest || EnableVPlanPredication || 10228 VectorizationFactor::Disabled() == VF) 10229 return false; 10230 10231 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10232 10233 { 10234 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10235 F->getParent()->getDataLayout()); 10236 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10237 &CM, BFI, PSI, Checks); 10238 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10239 << L->getHeader()->getParent()->getName() << "\"\n"); 10240 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10241 } 10242 10243 // Mark the loop as already vectorized to avoid vectorizing again. 10244 Hints.setAlreadyVectorized(); 10245 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10246 return true; 10247 } 10248 10249 // Emit a remark if there are stores to floats that required a floating point 10250 // extension. If the vectorized loop was generated with floating point there 10251 // will be a performance penalty from the conversion overhead and the change in 10252 // the vector width. 10253 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10254 SmallVector<Instruction *, 4> Worklist; 10255 for (BasicBlock *BB : L->getBlocks()) { 10256 for (Instruction &Inst : *BB) { 10257 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10258 if (S->getValueOperand()->getType()->isFloatTy()) 10259 Worklist.push_back(S); 10260 } 10261 } 10262 } 10263 10264 // Traverse the floating point stores upwards searching, for floating point 10265 // conversions. 10266 SmallPtrSet<const Instruction *, 4> Visited; 10267 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10268 while (!Worklist.empty()) { 10269 auto *I = Worklist.pop_back_val(); 10270 if (!L->contains(I)) 10271 continue; 10272 if (!Visited.insert(I).second) 10273 continue; 10274 10275 // Emit a remark if the floating point store required a floating 10276 // point conversion. 10277 // TODO: More work could be done to identify the root cause such as a 10278 // constant or a function return type and point the user to it. 10279 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10280 ORE->emit([&]() { 10281 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10282 I->getDebugLoc(), L->getHeader()) 10283 << "floating point conversion changes vector width. " 10284 << "Mixed floating point precision requires an up/down " 10285 << "cast that will negatively impact performance."; 10286 }); 10287 10288 for (Use &Op : I->operands()) 10289 if (auto *OpI = dyn_cast<Instruction>(Op)) 10290 Worklist.push_back(OpI); 10291 } 10292 } 10293 10294 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10295 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10296 !EnableLoopInterleaving), 10297 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10298 !EnableLoopVectorization) {} 10299 10300 bool LoopVectorizePass::processLoop(Loop *L) { 10301 assert((EnableVPlanNativePath || L->isInnermost()) && 10302 "VPlan-native path is not enabled. Only process inner loops."); 10303 10304 #ifndef NDEBUG 10305 const std::string DebugLocStr = getDebugLocString(L); 10306 #endif /* NDEBUG */ 10307 10308 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10309 << L->getHeader()->getParent()->getName() << "\" from " 10310 << DebugLocStr << "\n"); 10311 10312 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10313 10314 LLVM_DEBUG( 10315 dbgs() << "LV: Loop hints:" 10316 << " force=" 10317 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10318 ? "disabled" 10319 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10320 ? "enabled" 10321 : "?")) 10322 << " width=" << Hints.getWidth() 10323 << " interleave=" << Hints.getInterleave() << "\n"); 10324 10325 // Function containing loop 10326 Function *F = L->getHeader()->getParent(); 10327 10328 // Looking at the diagnostic output is the only way to determine if a loop 10329 // was vectorized (other than looking at the IR or machine code), so it 10330 // is important to generate an optimization remark for each loop. Most of 10331 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10332 // generated as OptimizationRemark and OptimizationRemarkMissed are 10333 // less verbose reporting vectorized loops and unvectorized loops that may 10334 // benefit from vectorization, respectively. 10335 10336 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10337 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10338 return false; 10339 } 10340 10341 PredicatedScalarEvolution PSE(*SE, *L); 10342 10343 // Check if it is legal to vectorize the loop. 10344 LoopVectorizationRequirements Requirements; 10345 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10346 &Requirements, &Hints, DB, AC, BFI, PSI); 10347 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10348 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10349 Hints.emitRemarkWithHints(); 10350 return false; 10351 } 10352 10353 // Check the function attributes and profiles to find out if this function 10354 // should be optimized for size. 10355 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10356 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10357 10358 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10359 // here. They may require CFG and instruction level transformations before 10360 // even evaluating whether vectorization is profitable. Since we cannot modify 10361 // the incoming IR, we need to build VPlan upfront in the vectorization 10362 // pipeline. 10363 if (!L->isInnermost()) 10364 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10365 ORE, BFI, PSI, Hints, Requirements); 10366 10367 assert(L->isInnermost() && "Inner loop expected."); 10368 10369 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10370 // count by optimizing for size, to minimize overheads. 10371 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10372 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10373 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10374 << "This loop is worth vectorizing only if no scalar " 10375 << "iteration overheads are incurred."); 10376 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10377 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10378 else { 10379 LLVM_DEBUG(dbgs() << "\n"); 10380 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10381 } 10382 } 10383 10384 // Check the function attributes to see if implicit floats are allowed. 10385 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10386 // an integer loop and the vector instructions selected are purely integer 10387 // vector instructions? 10388 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10389 reportVectorizationFailure( 10390 "Can't vectorize when the NoImplicitFloat attribute is used", 10391 "loop not vectorized due to NoImplicitFloat attribute", 10392 "NoImplicitFloat", ORE, L); 10393 Hints.emitRemarkWithHints(); 10394 return false; 10395 } 10396 10397 // Check if the target supports potentially unsafe FP vectorization. 10398 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10399 // for the target we're vectorizing for, to make sure none of the 10400 // additional fp-math flags can help. 10401 if (Hints.isPotentiallyUnsafe() && 10402 TTI->isFPVectorizationPotentiallyUnsafe()) { 10403 reportVectorizationFailure( 10404 "Potentially unsafe FP op prevents vectorization", 10405 "loop not vectorized due to unsafe FP support.", 10406 "UnsafeFP", ORE, L); 10407 Hints.emitRemarkWithHints(); 10408 return false; 10409 } 10410 10411 bool AllowOrderedReductions; 10412 // If the flag is set, use that instead and override the TTI behaviour. 10413 if (ForceOrderedReductions.getNumOccurrences() > 0) 10414 AllowOrderedReductions = ForceOrderedReductions; 10415 else 10416 AllowOrderedReductions = TTI->enableOrderedReductions(); 10417 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10418 ORE->emit([&]() { 10419 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10420 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10421 ExactFPMathInst->getDebugLoc(), 10422 ExactFPMathInst->getParent()) 10423 << "loop not vectorized: cannot prove it is safe to reorder " 10424 "floating-point operations"; 10425 }); 10426 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10427 "reorder floating-point operations\n"); 10428 Hints.emitRemarkWithHints(); 10429 return false; 10430 } 10431 10432 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10433 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10434 10435 // If an override option has been passed in for interleaved accesses, use it. 10436 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10437 UseInterleaved = EnableInterleavedMemAccesses; 10438 10439 // Analyze interleaved memory accesses. 10440 if (UseInterleaved) { 10441 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10442 } 10443 10444 // Use the cost model. 10445 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10446 F, &Hints, IAI); 10447 CM.collectValuesToIgnore(); 10448 CM.collectElementTypesForWidening(); 10449 10450 // Use the planner for vectorization. 10451 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10452 Requirements, ORE); 10453 10454 // Get user vectorization factor and interleave count. 10455 ElementCount UserVF = Hints.getWidth(); 10456 unsigned UserIC = Hints.getInterleave(); 10457 10458 // Plan how to best vectorize, return the best VF and its cost. 10459 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10460 10461 VectorizationFactor VF = VectorizationFactor::Disabled(); 10462 unsigned IC = 1; 10463 10464 if (MaybeVF) { 10465 VF = *MaybeVF; 10466 // Select the interleave count. 10467 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10468 } 10469 10470 // Identify the diagnostic messages that should be produced. 10471 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10472 bool VectorizeLoop = true, InterleaveLoop = true; 10473 if (VF.Width.isScalar()) { 10474 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10475 VecDiagMsg = std::make_pair( 10476 "VectorizationNotBeneficial", 10477 "the cost-model indicates that vectorization is not beneficial"); 10478 VectorizeLoop = false; 10479 } 10480 10481 if (!MaybeVF && UserIC > 1) { 10482 // Tell the user interleaving was avoided up-front, despite being explicitly 10483 // requested. 10484 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10485 "interleaving should be avoided up front\n"); 10486 IntDiagMsg = std::make_pair( 10487 "InterleavingAvoided", 10488 "Ignoring UserIC, because interleaving was avoided up front"); 10489 InterleaveLoop = false; 10490 } else if (IC == 1 && UserIC <= 1) { 10491 // Tell the user interleaving is not beneficial. 10492 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10493 IntDiagMsg = std::make_pair( 10494 "InterleavingNotBeneficial", 10495 "the cost-model indicates that interleaving is not beneficial"); 10496 InterleaveLoop = false; 10497 if (UserIC == 1) { 10498 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10499 IntDiagMsg.second += 10500 " and is explicitly disabled or interleave count is set to 1"; 10501 } 10502 } else if (IC > 1 && UserIC == 1) { 10503 // Tell the user interleaving is beneficial, but it explicitly disabled. 10504 LLVM_DEBUG( 10505 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10506 IntDiagMsg = std::make_pair( 10507 "InterleavingBeneficialButDisabled", 10508 "the cost-model indicates that interleaving is beneficial " 10509 "but is explicitly disabled or interleave count is set to 1"); 10510 InterleaveLoop = false; 10511 } 10512 10513 // Override IC if user provided an interleave count. 10514 IC = UserIC > 0 ? UserIC : IC; 10515 10516 // Emit diagnostic messages, if any. 10517 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10518 if (!VectorizeLoop && !InterleaveLoop) { 10519 // Do not vectorize or interleaving the loop. 10520 ORE->emit([&]() { 10521 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10522 L->getStartLoc(), L->getHeader()) 10523 << VecDiagMsg.second; 10524 }); 10525 ORE->emit([&]() { 10526 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10527 L->getStartLoc(), L->getHeader()) 10528 << IntDiagMsg.second; 10529 }); 10530 return false; 10531 } else if (!VectorizeLoop && InterleaveLoop) { 10532 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10533 ORE->emit([&]() { 10534 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10535 L->getStartLoc(), L->getHeader()) 10536 << VecDiagMsg.second; 10537 }); 10538 } else if (VectorizeLoop && !InterleaveLoop) { 10539 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10540 << ") in " << DebugLocStr << '\n'); 10541 ORE->emit([&]() { 10542 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10543 L->getStartLoc(), L->getHeader()) 10544 << IntDiagMsg.second; 10545 }); 10546 } else if (VectorizeLoop && InterleaveLoop) { 10547 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10548 << ") in " << DebugLocStr << '\n'); 10549 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10550 } 10551 10552 bool DisableRuntimeUnroll = false; 10553 MDNode *OrigLoopID = L->getLoopID(); 10554 { 10555 // Optimistically generate runtime checks. Drop them if they turn out to not 10556 // be profitable. Limit the scope of Checks, so the cleanup happens 10557 // immediately after vector codegeneration is done. 10558 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10559 F->getParent()->getDataLayout()); 10560 if (!VF.Width.isScalar() || IC > 1) 10561 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10562 10563 using namespace ore; 10564 if (!VectorizeLoop) { 10565 assert(IC > 1 && "interleave count should not be 1 or 0"); 10566 // If we decided that it is not legal to vectorize the loop, then 10567 // interleave it. 10568 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10569 &CM, BFI, PSI, Checks); 10570 10571 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10572 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10573 10574 ORE->emit([&]() { 10575 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10576 L->getHeader()) 10577 << "interleaved loop (interleaved count: " 10578 << NV("InterleaveCount", IC) << ")"; 10579 }); 10580 } else { 10581 // If we decided that it is *legal* to vectorize the loop, then do it. 10582 10583 // Consider vectorizing the epilogue too if it's profitable. 10584 VectorizationFactor EpilogueVF = 10585 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10586 if (EpilogueVF.Width.isVector()) { 10587 10588 // The first pass vectorizes the main loop and creates a scalar epilogue 10589 // to be vectorized by executing the plan (potentially with a different 10590 // factor) again shortly afterwards. 10591 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10592 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10593 EPI, &LVL, &CM, BFI, PSI, Checks); 10594 10595 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10596 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10597 DT); 10598 ++LoopsVectorized; 10599 10600 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10601 formLCSSARecursively(*L, *DT, LI, SE); 10602 10603 // Second pass vectorizes the epilogue and adjusts the control flow 10604 // edges from the first pass. 10605 EPI.MainLoopVF = EPI.EpilogueVF; 10606 EPI.MainLoopUF = EPI.EpilogueUF; 10607 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10608 ORE, EPI, &LVL, &CM, BFI, PSI, 10609 Checks); 10610 10611 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10612 10613 // Ensure that the start values for any VPReductionPHIRecipes are 10614 // updated before vectorising the epilogue loop. 10615 VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock(); 10616 for (VPRecipeBase &R : Header->phis()) { 10617 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10618 if (auto *Resume = MainILV.getReductionResumeValue( 10619 ReductionPhi->getRecurrenceDescriptor())) { 10620 VPValue *StartVal = new VPValue(Resume); 10621 BestEpiPlan.addExternalDef(StartVal); 10622 ReductionPhi->setOperand(0, StartVal); 10623 } 10624 } 10625 } 10626 10627 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10628 DT); 10629 ++LoopsEpilogueVectorized; 10630 10631 if (!MainILV.areSafetyChecksAdded()) 10632 DisableRuntimeUnroll = true; 10633 } else { 10634 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10635 &LVL, &CM, BFI, PSI, Checks); 10636 10637 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10638 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10639 ++LoopsVectorized; 10640 10641 // Add metadata to disable runtime unrolling a scalar loop when there 10642 // are no runtime checks about strides and memory. A scalar loop that is 10643 // rarely used is not worth unrolling. 10644 if (!LB.areSafetyChecksAdded()) 10645 DisableRuntimeUnroll = true; 10646 } 10647 // Report the vectorization decision. 10648 ORE->emit([&]() { 10649 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10650 L->getHeader()) 10651 << "vectorized loop (vectorization width: " 10652 << NV("VectorizationFactor", VF.Width) 10653 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10654 }); 10655 } 10656 10657 if (ORE->allowExtraAnalysis(LV_NAME)) 10658 checkMixedPrecision(L, ORE); 10659 } 10660 10661 Optional<MDNode *> RemainderLoopID = 10662 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10663 LLVMLoopVectorizeFollowupEpilogue}); 10664 if (RemainderLoopID.hasValue()) { 10665 L->setLoopID(RemainderLoopID.getValue()); 10666 } else { 10667 if (DisableRuntimeUnroll) 10668 AddRuntimeUnrollDisableMetaData(L); 10669 10670 // Mark the loop as already vectorized to avoid vectorizing again. 10671 Hints.setAlreadyVectorized(); 10672 } 10673 10674 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10675 return true; 10676 } 10677 10678 LoopVectorizeResult LoopVectorizePass::runImpl( 10679 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10680 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10681 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10682 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10683 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10684 SE = &SE_; 10685 LI = &LI_; 10686 TTI = &TTI_; 10687 DT = &DT_; 10688 BFI = &BFI_; 10689 TLI = TLI_; 10690 AA = &AA_; 10691 AC = &AC_; 10692 GetLAA = &GetLAA_; 10693 DB = &DB_; 10694 ORE = &ORE_; 10695 PSI = PSI_; 10696 10697 // Don't attempt if 10698 // 1. the target claims to have no vector registers, and 10699 // 2. interleaving won't help ILP. 10700 // 10701 // The second condition is necessary because, even if the target has no 10702 // vector registers, loop vectorization may still enable scalar 10703 // interleaving. 10704 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10705 TTI->getMaxInterleaveFactor(1) < 2) 10706 return LoopVectorizeResult(false, false); 10707 10708 bool Changed = false, CFGChanged = false; 10709 10710 // The vectorizer requires loops to be in simplified form. 10711 // Since simplification may add new inner loops, it has to run before the 10712 // legality and profitability checks. This means running the loop vectorizer 10713 // will simplify all loops, regardless of whether anything end up being 10714 // vectorized. 10715 for (auto &L : *LI) 10716 Changed |= CFGChanged |= 10717 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10718 10719 // Build up a worklist of inner-loops to vectorize. This is necessary as 10720 // the act of vectorizing or partially unrolling a loop creates new loops 10721 // and can invalidate iterators across the loops. 10722 SmallVector<Loop *, 8> Worklist; 10723 10724 for (Loop *L : *LI) 10725 collectSupportedLoops(*L, LI, ORE, Worklist); 10726 10727 LoopsAnalyzed += Worklist.size(); 10728 10729 // Now walk the identified inner loops. 10730 while (!Worklist.empty()) { 10731 Loop *L = Worklist.pop_back_val(); 10732 10733 // For the inner loops we actually process, form LCSSA to simplify the 10734 // transform. 10735 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10736 10737 Changed |= CFGChanged |= processLoop(L); 10738 } 10739 10740 // Process each loop nest in the function. 10741 return LoopVectorizeResult(Changed, CFGChanged); 10742 } 10743 10744 PreservedAnalyses LoopVectorizePass::run(Function &F, 10745 FunctionAnalysisManager &AM) { 10746 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10747 auto &LI = AM.getResult<LoopAnalysis>(F); 10748 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10749 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10750 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10751 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10752 auto &AA = AM.getResult<AAManager>(F); 10753 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10754 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10755 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10756 10757 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10758 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10759 [&](Loop &L) -> const LoopAccessInfo & { 10760 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10761 TLI, TTI, nullptr, nullptr, nullptr}; 10762 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10763 }; 10764 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10765 ProfileSummaryInfo *PSI = 10766 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10767 LoopVectorizeResult Result = 10768 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10769 if (!Result.MadeAnyChange) 10770 return PreservedAnalyses::all(); 10771 PreservedAnalyses PA; 10772 10773 // We currently do not preserve loopinfo/dominator analyses with outer loop 10774 // vectorization. Until this is addressed, mark these analyses as preserved 10775 // only for non-VPlan-native path. 10776 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10777 if (!EnableVPlanNativePath) { 10778 PA.preserve<LoopAnalysis>(); 10779 PA.preserve<DominatorTreeAnalysis>(); 10780 } 10781 10782 if (Result.MadeCFGChange) { 10783 // Making CFG changes likely means a loop got vectorized. Indicate that 10784 // extra simplification passes should be run. 10785 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10786 // be run if runtime checks have been added. 10787 AM.getResult<ShouldRunExtraVectorPasses>(F); 10788 PA.preserve<ShouldRunExtraVectorPasses>(); 10789 } else { 10790 PA.preserveSet<CFGAnalyses>(); 10791 } 10792 return PA; 10793 } 10794 10795 void LoopVectorizePass::printPipeline( 10796 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10797 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10798 OS, MapClassName2PassName); 10799 10800 OS << "<"; 10801 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10802 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10803 OS << ">"; 10804 } 10805