1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanTransforms.h"
62 #include "llvm/ADT/APInt.h"
63 #include "llvm/ADT/ArrayRef.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/DenseMapInfo.h"
66 #include "llvm/ADT/Hashing.h"
67 #include "llvm/ADT/MapVector.h"
68 #include "llvm/ADT/None.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
90 #include "llvm/Analysis/ProfileSummaryInfo.h"
91 #include "llvm/Analysis/ScalarEvolution.h"
92 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
93 #include "llvm/Analysis/TargetLibraryInfo.h"
94 #include "llvm/Analysis/TargetTransformInfo.h"
95 #include "llvm/Analysis/VectorUtils.h"
96 #include "llvm/IR/Attributes.h"
97 #include "llvm/IR/BasicBlock.h"
98 #include "llvm/IR/CFG.h"
99 #include "llvm/IR/Constant.h"
100 #include "llvm/IR/Constants.h"
101 #include "llvm/IR/DataLayout.h"
102 #include "llvm/IR/DebugInfoMetadata.h"
103 #include "llvm/IR/DebugLoc.h"
104 #include "llvm/IR/DerivedTypes.h"
105 #include "llvm/IR/DiagnosticInfo.h"
106 #include "llvm/IR/Dominators.h"
107 #include "llvm/IR/Function.h"
108 #include "llvm/IR/IRBuilder.h"
109 #include "llvm/IR/InstrTypes.h"
110 #include "llvm/IR/Instruction.h"
111 #include "llvm/IR/Instructions.h"
112 #include "llvm/IR/IntrinsicInst.h"
113 #include "llvm/IR/Intrinsics.h"
114 #include "llvm/IR/Metadata.h"
115 #include "llvm/IR/Module.h"
116 #include "llvm/IR/Operator.h"
117 #include "llvm/IR/PatternMatch.h"
118 #include "llvm/IR/Type.h"
119 #include "llvm/IR/Use.h"
120 #include "llvm/IR/User.h"
121 #include "llvm/IR/Value.h"
122 #include "llvm/IR/ValueHandle.h"
123 #include "llvm/IR/Verifier.h"
124 #include "llvm/InitializePasses.h"
125 #include "llvm/Pass.h"
126 #include "llvm/Support/Casting.h"
127 #include "llvm/Support/CommandLine.h"
128 #include "llvm/Support/Compiler.h"
129 #include "llvm/Support/Debug.h"
130 #include "llvm/Support/ErrorHandling.h"
131 #include "llvm/Support/InstructionCost.h"
132 #include "llvm/Support/MathExtras.h"
133 #include "llvm/Support/raw_ostream.h"
134 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
135 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
136 #include "llvm/Transforms/Utils/LoopSimplify.h"
137 #include "llvm/Transforms/Utils/LoopUtils.h"
138 #include "llvm/Transforms/Utils/LoopVersioning.h"
139 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
140 #include "llvm/Transforms/Utils/SizeOpts.h"
141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
142 #include <algorithm>
143 #include <cassert>
144 #include <cstdint>
145 #include <functional>
146 #include <iterator>
147 #include <limits>
148 #include <map>
149 #include <memory>
150 #include <string>
151 #include <tuple>
152 #include <utility>
153 
154 using namespace llvm;
155 
156 #define LV_NAME "loop-vectorize"
157 #define DEBUG_TYPE LV_NAME
158 
159 #ifndef NDEBUG
160 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
161 #endif
162 
163 /// @{
164 /// Metadata attribute names
165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
166 const char LLVMLoopVectorizeFollowupVectorized[] =
167     "llvm.loop.vectorize.followup_vectorized";
168 const char LLVMLoopVectorizeFollowupEpilogue[] =
169     "llvm.loop.vectorize.followup_epilogue";
170 /// @}
171 
172 STATISTIC(LoopsVectorized, "Number of loops vectorized");
173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
175 
176 static cl::opt<bool> EnableEpilogueVectorization(
177     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
178     cl::desc("Enable vectorization of epilogue loops."));
179 
180 static cl::opt<unsigned> EpilogueVectorizationForceVF(
181     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
182     cl::desc("When epilogue vectorization is enabled, and a value greater than "
183              "1 is specified, forces the given VF for all applicable epilogue "
184              "loops."));
185 
186 static cl::opt<unsigned> EpilogueVectorizationMinVF(
187     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
188     cl::desc("Only loops with vectorization factor equal to or larger than "
189              "the specified value are considered for epilogue vectorization."));
190 
191 /// Loops with a known constant trip count below this number are vectorized only
192 /// if no scalar iteration overheads are incurred.
193 static cl::opt<unsigned> TinyTripCountVectorThreshold(
194     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
195     cl::desc("Loops with a constant trip count that is smaller than this "
196              "value are vectorized only if no scalar iteration overheads "
197              "are incurred."));
198 
199 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
200     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
201     cl::desc("The maximum allowed number of runtime memory checks with a "
202              "vectorize(enable) pragma."));
203 
204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
205 // that predication is preferred, and this lists all options. I.e., the
206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
207 // and predicate the instructions accordingly. If tail-folding fails, there are
208 // different fallback strategies depending on these values:
209 namespace PreferPredicateTy {
210   enum Option {
211     ScalarEpilogue = 0,
212     PredicateElseScalarEpilogue,
213     PredicateOrDontVectorize
214   };
215 } // namespace PreferPredicateTy
216 
217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
218     "prefer-predicate-over-epilogue",
219     cl::init(PreferPredicateTy::ScalarEpilogue),
220     cl::Hidden,
221     cl::desc("Tail-folding and predication preferences over creating a scalar "
222              "epilogue loop."),
223     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
224                          "scalar-epilogue",
225                          "Don't tail-predicate loops, create scalar epilogue"),
226               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
227                          "predicate-else-scalar-epilogue",
228                          "prefer tail-folding, create scalar epilogue if tail "
229                          "folding fails."),
230               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
231                          "predicate-dont-vectorize",
232                          "prefers tail-folding, don't attempt vectorization if "
233                          "tail-folding fails.")));
234 
235 static cl::opt<bool> MaximizeBandwidth(
236     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
237     cl::desc("Maximize bandwidth when selecting vectorization factor which "
238              "will be determined by the smallest type in loop."));
239 
240 static cl::opt<bool> EnableInterleavedMemAccesses(
241     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
242     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
243 
244 /// An interleave-group may need masking if it resides in a block that needs
245 /// predication, or in order to mask away gaps.
246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
247     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
248     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
249 
250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
251     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
252     cl::desc("We don't interleave loops with a estimated constant trip count "
253              "below this number"));
254 
255 static cl::opt<unsigned> ForceTargetNumScalarRegs(
256     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
257     cl::desc("A flag that overrides the target's number of scalar registers."));
258 
259 static cl::opt<unsigned> ForceTargetNumVectorRegs(
260     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
261     cl::desc("A flag that overrides the target's number of vector registers."));
262 
263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
264     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
265     cl::desc("A flag that overrides the target's max interleave factor for "
266              "scalar loops."));
267 
268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
269     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
270     cl::desc("A flag that overrides the target's max interleave factor for "
271              "vectorized loops."));
272 
273 static cl::opt<unsigned> ForceTargetInstructionCost(
274     "force-target-instruction-cost", cl::init(0), cl::Hidden,
275     cl::desc("A flag that overrides the target's expected cost for "
276              "an instruction to a single constant value. Mostly "
277              "useful for getting consistent testing."));
278 
279 static cl::opt<bool> ForceTargetSupportsScalableVectors(
280     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
281     cl::desc(
282         "Pretend that scalable vectors are supported, even if the target does "
283         "not support them. This flag should only be used for testing."));
284 
285 static cl::opt<unsigned> SmallLoopCost(
286     "small-loop-cost", cl::init(20), cl::Hidden,
287     cl::desc(
288         "The cost of a loop that is considered 'small' by the interleaver."));
289 
290 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
291     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
292     cl::desc("Enable the use of the block frequency analysis to access PGO "
293              "heuristics minimizing code growth in cold regions and being more "
294              "aggressive in hot regions."));
295 
296 // Runtime interleave loops for load/store throughput.
297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
298     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
299     cl::desc(
300         "Enable runtime interleaving until load/store ports are saturated"));
301 
302 /// Interleave small loops with scalar reductions.
303 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
304     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
305     cl::desc("Enable interleaving for loops with small iteration counts that "
306              "contain scalar reductions to expose ILP."));
307 
308 /// The number of stores in a loop that are allowed to need predication.
309 static cl::opt<unsigned> NumberOfStoresToPredicate(
310     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
311     cl::desc("Max number of stores to be predicated behind an if."));
312 
313 static cl::opt<bool> EnableIndVarRegisterHeur(
314     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
315     cl::desc("Count the induction variable only once when interleaving"));
316 
317 static cl::opt<bool> EnableCondStoresVectorization(
318     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
319     cl::desc("Enable if predication of stores during vectorization."));
320 
321 static cl::opt<unsigned> MaxNestedScalarReductionIC(
322     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
323     cl::desc("The maximum interleave count to use when interleaving a scalar "
324              "reduction in a nested loop."));
325 
326 static cl::opt<bool>
327     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
328                            cl::Hidden,
329                            cl::desc("Prefer in-loop vector reductions, "
330                                     "overriding the targets preference."));
331 
332 static cl::opt<bool> ForceOrderedReductions(
333     "force-ordered-reductions", cl::init(false), cl::Hidden,
334     cl::desc("Enable the vectorisation of loops with in-order (strict) "
335              "FP reductions"));
336 
337 static cl::opt<bool> PreferPredicatedReductionSelect(
338     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
339     cl::desc(
340         "Prefer predicating a reduction operation over an after loop select."));
341 
342 cl::opt<bool> EnableVPlanNativePath(
343     "enable-vplan-native-path", cl::init(false), cl::Hidden,
344     cl::desc("Enable VPlan-native vectorization path with "
345              "support for outer loop vectorization."));
346 
347 // This flag enables the stress testing of the VPlan H-CFG construction in the
348 // VPlan-native vectorization path. It must be used in conjuction with
349 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
350 // verification of the H-CFGs built.
351 static cl::opt<bool> VPlanBuildStressTest(
352     "vplan-build-stress-test", cl::init(false), cl::Hidden,
353     cl::desc(
354         "Build VPlan for every supported loop nest in the function and bail "
355         "out right after the build (stress test the VPlan H-CFG construction "
356         "in the VPlan-native vectorization path)."));
357 
358 cl::opt<bool> llvm::EnableLoopInterleaving(
359     "interleave-loops", cl::init(true), cl::Hidden,
360     cl::desc("Enable loop interleaving in Loop vectorization passes"));
361 cl::opt<bool> llvm::EnableLoopVectorization(
362     "vectorize-loops", cl::init(true), cl::Hidden,
363     cl::desc("Run the Loop vectorization passes"));
364 
365 cl::opt<bool> PrintVPlansInDotFormat(
366     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
367     cl::desc("Use dot format instead of plain text when dumping VPlans"));
368 
369 /// A helper function that returns true if the given type is irregular. The
370 /// type is irregular if its allocated size doesn't equal the store size of an
371 /// element of the corresponding vector type.
372 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
373   // Determine if an array of N elements of type Ty is "bitcast compatible"
374   // with a <N x Ty> vector.
375   // This is only true if there is no padding between the array elements.
376   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
377 }
378 
379 /// A helper function that returns the reciprocal of the block probability of
380 /// predicated blocks. If we return X, we are assuming the predicated block
381 /// will execute once for every X iterations of the loop header.
382 ///
383 /// TODO: We should use actual block probability here, if available. Currently,
384 ///       we always assume predicated blocks have a 50% chance of executing.
385 static unsigned getReciprocalPredBlockProb() { return 2; }
386 
387 /// A helper function that returns an integer or floating-point constant with
388 /// value C.
389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
390   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
391                            : ConstantFP::get(Ty, C);
392 }
393 
394 /// Returns "best known" trip count for the specified loop \p L as defined by
395 /// the following procedure:
396 ///   1) Returns exact trip count if it is known.
397 ///   2) Returns expected trip count according to profile data if any.
398 ///   3) Returns upper bound estimate if it is known.
399 ///   4) Returns None if all of the above failed.
400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
401   // Check if exact trip count is known.
402   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
403     return ExpectedTC;
404 
405   // Check if there is an expected trip count available from profile data.
406   if (LoopVectorizeWithBlockFrequency)
407     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
408       return EstimatedTC;
409 
410   // Check if upper bound estimate is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
412     return ExpectedTC;
413 
414   return None;
415 }
416 
417 // Forward declare GeneratedRTChecks.
418 class GeneratedRTChecks;
419 
420 namespace llvm {
421 
422 AnalysisKey ShouldRunExtraVectorPasses::Key;
423 
424 /// InnerLoopVectorizer vectorizes loops which contain only one basic
425 /// block to a specified vectorization factor (VF).
426 /// This class performs the widening of scalars into vectors, or multiple
427 /// scalars. This class also implements the following features:
428 /// * It inserts an epilogue loop for handling loops that don't have iteration
429 ///   counts that are known to be a multiple of the vectorization factor.
430 /// * It handles the code generation for reduction variables.
431 /// * Scalarization (implementation using scalars) of un-vectorizable
432 ///   instructions.
433 /// InnerLoopVectorizer does not perform any vectorization-legality
434 /// checks, and relies on the caller to check for the different legality
435 /// aspects. The InnerLoopVectorizer relies on the
436 /// LoopVectorizationLegality class to provide information about the induction
437 /// and reduction variables that were found to a given vectorization factor.
438 class InnerLoopVectorizer {
439 public:
440   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
441                       LoopInfo *LI, DominatorTree *DT,
442                       const TargetLibraryInfo *TLI,
443                       const TargetTransformInfo *TTI, AssumptionCache *AC,
444                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
445                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
446                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
447                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
448       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
449         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
450         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
451         PSI(PSI), RTChecks(RTChecks) {
452     // Query this against the original loop and save it here because the profile
453     // of the original loop header may change as the transformation happens.
454     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
455         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
456   }
457 
458   virtual ~InnerLoopVectorizer() = default;
459 
460   /// Create a new empty loop that will contain vectorized instructions later
461   /// on, while the old loop will be used as the scalar remainder. Control flow
462   /// is generated around the vectorized (and scalar epilogue) loops consisting
463   /// of various checks and bypasses. Return the pre-header block of the new
464   /// loop and the start value for the canonical induction, if it is != 0. The
465   /// latter is the case when vectorizing the epilogue loop. In the case of
466   /// epilogue vectorization, this function is overriden to handle the more
467   /// complex control flow around the loops.
468   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
469 
470   /// Widen a single call instruction within the innermost loop.
471   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
472                             VPTransformState &State);
473 
474   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
475   void fixVectorizedLoop(VPTransformState &State, VPlan &Plan);
476 
477   // Return true if any runtime check is added.
478   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
479 
480   /// A type for vectorized values in the new loop. Each value from the
481   /// original loop, when vectorized, is represented by UF vector values in the
482   /// new unrolled loop, where UF is the unroll factor.
483   using VectorParts = SmallVector<Value *, 2>;
484 
485   /// A helper function to scalarize a single Instruction in the innermost loop.
486   /// Generates a sequence of scalar instances for each lane between \p MinLane
487   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
488   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
489   /// Instr's operands.
490   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
491                             const VPIteration &Instance, bool IfPredicateInstr,
492                             VPTransformState &State);
493 
494   /// Construct the vector value of a scalarized value \p V one lane at a time.
495   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
496                                  VPTransformState &State);
497 
498   /// Try to vectorize interleaved access group \p Group with the base address
499   /// given in \p Addr, optionally masking the vector operations if \p
500   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
501   /// values in the vectorized loop.
502   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
503                                 ArrayRef<VPValue *> VPDefs,
504                                 VPTransformState &State, VPValue *Addr,
505                                 ArrayRef<VPValue *> StoredValues,
506                                 VPValue *BlockInMask = nullptr);
507 
508   /// Set the debug location in the builder \p Ptr using the debug location in
509   /// \p V. If \p Ptr is None then it uses the class member's Builder.
510   void setDebugLocFromInst(const Value *V);
511 
512   /// Fix the non-induction PHIs in \p Plan.
513   void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State);
514 
515   /// Returns true if the reordering of FP operations is not allowed, but we are
516   /// able to vectorize with strict in-order reductions for the given RdxDesc.
517   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
518 
519   /// Create a broadcast instruction. This method generates a broadcast
520   /// instruction (shuffle) for loop invariant values and for the induction
521   /// value. If this is the induction variable then we extend it to N, N+1, ...
522   /// this is needed because each iteration in the loop corresponds to a SIMD
523   /// element.
524   virtual Value *getBroadcastInstrs(Value *V);
525 
526   /// Add metadata from one instruction to another.
527   ///
528   /// This includes both the original MDs from \p From and additional ones (\see
529   /// addNewMetadata).  Use this for *newly created* instructions in the vector
530   /// loop.
531   void addMetadata(Instruction *To, Instruction *From);
532 
533   /// Similar to the previous function but it adds the metadata to a
534   /// vector of instructions.
535   void addMetadata(ArrayRef<Value *> To, Instruction *From);
536 
537   // Returns the resume value (bc.merge.rdx) for a reduction as
538   // generated by fixReduction.
539   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
540 
541 protected:
542   friend class LoopVectorizationPlanner;
543 
544   /// A small list of PHINodes.
545   using PhiVector = SmallVector<PHINode *, 4>;
546 
547   /// A type for scalarized values in the new loop. Each value from the
548   /// original loop, when scalarized, is represented by UF x VF scalar values
549   /// in the new unrolled loop, where UF is the unroll factor and VF is the
550   /// vectorization factor.
551   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
552 
553   /// Set up the values of the IVs correctly when exiting the vector loop.
554   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
555                     Value *VectorTripCount, Value *EndValue,
556                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader,
557                     VPlan &Plan);
558 
559   /// Handle all cross-iteration phis in the header.
560   void fixCrossIterationPHIs(VPTransformState &State);
561 
562   /// Create the exit value of first order recurrences in the middle block and
563   /// update their users.
564   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
565                                VPTransformState &State);
566 
567   /// Create code for the loop exit value of the reduction.
568   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
569 
570   /// Clear NSW/NUW flags from reduction instructions if necessary.
571   void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
572                                VPTransformState &State);
573 
574   /// Iteratively sink the scalarized operands of a predicated instruction into
575   /// the block that was created for it.
576   void sinkScalarOperands(Instruction *PredInst);
577 
578   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
579   /// represented as.
580   void truncateToMinimalBitwidths(VPTransformState &State);
581 
582   /// Returns (and creates if needed) the original loop trip count.
583   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
584 
585   /// Returns (and creates if needed) the trip count of the widened loop.
586   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
587 
588   /// Returns a bitcasted value to the requested vector type.
589   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
590   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
591                                 const DataLayout &DL);
592 
593   /// Emit a bypass check to see if the vector trip count is zero, including if
594   /// it overflows.
595   void emitIterationCountCheck(BasicBlock *Bypass);
596 
597   /// Emit a bypass check to see if all of the SCEV assumptions we've
598   /// had to make are correct. Returns the block containing the checks or
599   /// nullptr if no checks have been added.
600   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
601 
602   /// Emit bypass checks to check any memory assumptions we may have made.
603   /// Returns the block containing the checks or nullptr if no checks have been
604   /// added.
605   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
606 
607   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
608   /// vector loop preheader, middle block and scalar preheader.
609   void createVectorLoopSkeleton(StringRef Prefix);
610 
611   /// Create new phi nodes for the induction variables to resume iteration count
612   /// in the scalar epilogue, from where the vectorized loop left off.
613   /// In cases where the loop skeleton is more complicated (eg. epilogue
614   /// vectorization) and the resume values can come from an additional bypass
615   /// block, the \p AdditionalBypass pair provides information about the bypass
616   /// block and the end value on the edge from bypass to this loop.
617   void createInductionResumeValues(
618       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
619 
620   /// Complete the loop skeleton by adding debug MDs, creating appropriate
621   /// conditional branches in the middle block, preparing the builder and
622   /// running the verifier. Return the preheader of the completed vector loop.
623   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
624 
625   /// Add additional metadata to \p To that was not present on \p Orig.
626   ///
627   /// Currently this is used to add the noalias annotations based on the
628   /// inserted memchecks.  Use this for instructions that are *cloned* into the
629   /// vector loop.
630   void addNewMetadata(Instruction *To, const Instruction *Orig);
631 
632   /// Collect poison-generating recipes that may generate a poison value that is
633   /// used after vectorization, even when their operands are not poison. Those
634   /// recipes meet the following conditions:
635   ///  * Contribute to the address computation of a recipe generating a widen
636   ///    memory load/store (VPWidenMemoryInstructionRecipe or
637   ///    VPInterleaveRecipe).
638   ///  * Such a widen memory load/store has at least one underlying Instruction
639   ///    that is in a basic block that needs predication and after vectorization
640   ///    the generated instruction won't be predicated.
641   void collectPoisonGeneratingRecipes(VPTransformState &State);
642 
643   /// Allow subclasses to override and print debug traces before/after vplan
644   /// execution, when trace information is requested.
645   virtual void printDebugTracesAtStart(){};
646   virtual void printDebugTracesAtEnd(){};
647 
648   /// The original loop.
649   Loop *OrigLoop;
650 
651   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
652   /// dynamic knowledge to simplify SCEV expressions and converts them to a
653   /// more usable form.
654   PredicatedScalarEvolution &PSE;
655 
656   /// Loop Info.
657   LoopInfo *LI;
658 
659   /// Dominator Tree.
660   DominatorTree *DT;
661 
662   /// Alias Analysis.
663   AAResults *AA;
664 
665   /// Target Library Info.
666   const TargetLibraryInfo *TLI;
667 
668   /// Target Transform Info.
669   const TargetTransformInfo *TTI;
670 
671   /// Assumption Cache.
672   AssumptionCache *AC;
673 
674   /// Interface to emit optimization remarks.
675   OptimizationRemarkEmitter *ORE;
676 
677   /// LoopVersioning.  It's only set up (non-null) if memchecks were
678   /// used.
679   ///
680   /// This is currently only used to add no-alias metadata based on the
681   /// memchecks.  The actually versioning is performed manually.
682   std::unique_ptr<LoopVersioning> LVer;
683 
684   /// The vectorization SIMD factor to use. Each vector will have this many
685   /// vector elements.
686   ElementCount VF;
687 
688   /// The vectorization unroll factor to use. Each scalar is vectorized to this
689   /// many different vector instructions.
690   unsigned UF;
691 
692   /// The builder that we use
693   IRBuilder<> Builder;
694 
695   // --- Vectorization state ---
696 
697   /// The vector-loop preheader.
698   BasicBlock *LoopVectorPreHeader;
699 
700   /// The scalar-loop preheader.
701   BasicBlock *LoopScalarPreHeader;
702 
703   /// Middle Block between the vector and the scalar.
704   BasicBlock *LoopMiddleBlock;
705 
706   /// The unique ExitBlock of the scalar loop if one exists.  Note that
707   /// there can be multiple exiting edges reaching this block.
708   BasicBlock *LoopExitBlock;
709 
710   /// The scalar loop body.
711   BasicBlock *LoopScalarBody;
712 
713   /// A list of all bypass blocks. The first block is the entry of the loop.
714   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
715 
716   /// Store instructions that were predicated.
717   SmallVector<Instruction *, 4> PredicatedInstructions;
718 
719   /// Trip count of the original loop.
720   Value *TripCount = nullptr;
721 
722   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
723   Value *VectorTripCount = nullptr;
724 
725   /// The legality analysis.
726   LoopVectorizationLegality *Legal;
727 
728   /// The profitablity analysis.
729   LoopVectorizationCostModel *Cost;
730 
731   // Record whether runtime checks are added.
732   bool AddedSafetyChecks = false;
733 
734   // Holds the end values for each induction variable. We save the end values
735   // so we can later fix-up the external users of the induction variables.
736   DenseMap<PHINode *, Value *> IVEndValues;
737 
738   /// BFI and PSI are used to check for profile guided size optimizations.
739   BlockFrequencyInfo *BFI;
740   ProfileSummaryInfo *PSI;
741 
742   // Whether this loop should be optimized for size based on profile guided size
743   // optimizatios.
744   bool OptForSizeBasedOnProfile;
745 
746   /// Structure to hold information about generated runtime checks, responsible
747   /// for cleaning the checks, if vectorization turns out unprofitable.
748   GeneratedRTChecks &RTChecks;
749 
750   // Holds the resume values for reductions in the loops, used to set the
751   // correct start value of reduction PHIs when vectorizing the epilogue.
752   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
753       ReductionResumeValues;
754 };
755 
756 class InnerLoopUnroller : public InnerLoopVectorizer {
757 public:
758   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
759                     LoopInfo *LI, DominatorTree *DT,
760                     const TargetLibraryInfo *TLI,
761                     const TargetTransformInfo *TTI, AssumptionCache *AC,
762                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
763                     LoopVectorizationLegality *LVL,
764                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
765                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
766       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
767                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
768                             BFI, PSI, Check) {}
769 
770 private:
771   Value *getBroadcastInstrs(Value *V) override;
772 };
773 
774 /// Encapsulate information regarding vectorization of a loop and its epilogue.
775 /// This information is meant to be updated and used across two stages of
776 /// epilogue vectorization.
777 struct EpilogueLoopVectorizationInfo {
778   ElementCount MainLoopVF = ElementCount::getFixed(0);
779   unsigned MainLoopUF = 0;
780   ElementCount EpilogueVF = ElementCount::getFixed(0);
781   unsigned EpilogueUF = 0;
782   BasicBlock *MainLoopIterationCountCheck = nullptr;
783   BasicBlock *EpilogueIterationCountCheck = nullptr;
784   BasicBlock *SCEVSafetyCheck = nullptr;
785   BasicBlock *MemSafetyCheck = nullptr;
786   Value *TripCount = nullptr;
787   Value *VectorTripCount = nullptr;
788 
789   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
790                                 ElementCount EVF, unsigned EUF)
791       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
792     assert(EUF == 1 &&
793            "A high UF for the epilogue loop is likely not beneficial.");
794   }
795 };
796 
797 /// An extension of the inner loop vectorizer that creates a skeleton for a
798 /// vectorized loop that has its epilogue (residual) also vectorized.
799 /// The idea is to run the vplan on a given loop twice, firstly to setup the
800 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
801 /// from the first step and vectorize the epilogue.  This is achieved by
802 /// deriving two concrete strategy classes from this base class and invoking
803 /// them in succession from the loop vectorizer planner.
804 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
805 public:
806   InnerLoopAndEpilogueVectorizer(
807       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
808       DominatorTree *DT, const TargetLibraryInfo *TLI,
809       const TargetTransformInfo *TTI, AssumptionCache *AC,
810       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
811       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
812       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
813       GeneratedRTChecks &Checks)
814       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
815                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
816                             Checks),
817         EPI(EPI) {}
818 
819   // Override this function to handle the more complex control flow around the
820   // three loops.
821   std::pair<BasicBlock *, Value *>
822   createVectorizedLoopSkeleton() final override {
823     return createEpilogueVectorizedLoopSkeleton();
824   }
825 
826   /// The interface for creating a vectorized skeleton using one of two
827   /// different strategies, each corresponding to one execution of the vplan
828   /// as described above.
829   virtual std::pair<BasicBlock *, Value *>
830   createEpilogueVectorizedLoopSkeleton() = 0;
831 
832   /// Holds and updates state information required to vectorize the main loop
833   /// and its epilogue in two separate passes. This setup helps us avoid
834   /// regenerating and recomputing runtime safety checks. It also helps us to
835   /// shorten the iteration-count-check path length for the cases where the
836   /// iteration count of the loop is so small that the main vector loop is
837   /// completely skipped.
838   EpilogueLoopVectorizationInfo &EPI;
839 };
840 
841 /// A specialized derived class of inner loop vectorizer that performs
842 /// vectorization of *main* loops in the process of vectorizing loops and their
843 /// epilogues.
844 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
845 public:
846   EpilogueVectorizerMainLoop(
847       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
848       DominatorTree *DT, const TargetLibraryInfo *TLI,
849       const TargetTransformInfo *TTI, AssumptionCache *AC,
850       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
851       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
852       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
853       GeneratedRTChecks &Check)
854       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
855                                        EPI, LVL, CM, BFI, PSI, Check) {}
856   /// Implements the interface for creating a vectorized skeleton using the
857   /// *main loop* strategy (ie the first pass of vplan execution).
858   std::pair<BasicBlock *, Value *>
859   createEpilogueVectorizedLoopSkeleton() final override;
860 
861 protected:
862   /// Emits an iteration count bypass check once for the main loop (when \p
863   /// ForEpilogue is false) and once for the epilogue loop (when \p
864   /// ForEpilogue is true).
865   BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue);
866   void printDebugTracesAtStart() override;
867   void printDebugTracesAtEnd() override;
868 };
869 
870 // A specialized derived class of inner loop vectorizer that performs
871 // vectorization of *epilogue* loops in the process of vectorizing loops and
872 // their epilogues.
873 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
874 public:
875   EpilogueVectorizerEpilogueLoop(
876       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
877       DominatorTree *DT, const TargetLibraryInfo *TLI,
878       const TargetTransformInfo *TTI, AssumptionCache *AC,
879       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
880       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
881       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
882       GeneratedRTChecks &Checks)
883       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
884                                        EPI, LVL, CM, BFI, PSI, Checks) {
885     TripCount = EPI.TripCount;
886   }
887   /// Implements the interface for creating a vectorized skeleton using the
888   /// *epilogue loop* strategy (ie the second pass of vplan execution).
889   std::pair<BasicBlock *, Value *>
890   createEpilogueVectorizedLoopSkeleton() final override;
891 
892 protected:
893   /// Emits an iteration count bypass check after the main vector loop has
894   /// finished to see if there are any iterations left to execute by either
895   /// the vector epilogue or the scalar epilogue.
896   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
897                                                       BasicBlock *Bypass,
898                                                       BasicBlock *Insert);
899   void printDebugTracesAtStart() override;
900   void printDebugTracesAtEnd() override;
901 };
902 } // end namespace llvm
903 
904 /// Look for a meaningful debug location on the instruction or it's
905 /// operands.
906 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
907   if (!I)
908     return I;
909 
910   DebugLoc Empty;
911   if (I->getDebugLoc() != Empty)
912     return I;
913 
914   for (Use &Op : I->operands()) {
915     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
916       if (OpInst->getDebugLoc() != Empty)
917         return OpInst;
918   }
919 
920   return I;
921 }
922 
923 void InnerLoopVectorizer::setDebugLocFromInst(
924     const Value *V) {
925   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
926     const DILocation *DIL = Inst->getDebugLoc();
927 
928     // When a FSDiscriminator is enabled, we don't need to add the multiply
929     // factors to the discriminators.
930     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
931         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
932       // FIXME: For scalable vectors, assume vscale=1.
933       auto NewDIL =
934           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
935       if (NewDIL)
936         Builder.SetCurrentDebugLocation(*NewDIL);
937       else
938         LLVM_DEBUG(dbgs()
939                    << "Failed to create new discriminator: "
940                    << DIL->getFilename() << " Line: " << DIL->getLine());
941     } else
942       Builder.SetCurrentDebugLocation(DIL);
943   } else
944     Builder.SetCurrentDebugLocation(DebugLoc());
945 }
946 
947 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
948 /// is passed, the message relates to that particular instruction.
949 #ifndef NDEBUG
950 static void debugVectorizationMessage(const StringRef Prefix,
951                                       const StringRef DebugMsg,
952                                       Instruction *I) {
953   dbgs() << "LV: " << Prefix << DebugMsg;
954   if (I != nullptr)
955     dbgs() << " " << *I;
956   else
957     dbgs() << '.';
958   dbgs() << '\n';
959 }
960 #endif
961 
962 /// Create an analysis remark that explains why vectorization failed
963 ///
964 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
965 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
966 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
967 /// the location of the remark.  \return the remark object that can be
968 /// streamed to.
969 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
970     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
971   Value *CodeRegion = TheLoop->getHeader();
972   DebugLoc DL = TheLoop->getStartLoc();
973 
974   if (I) {
975     CodeRegion = I->getParent();
976     // If there is no debug location attached to the instruction, revert back to
977     // using the loop's.
978     if (I->getDebugLoc())
979       DL = I->getDebugLoc();
980   }
981 
982   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
983 }
984 
985 namespace llvm {
986 
987 /// Return a value for Step multiplied by VF.
988 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
989                        int64_t Step) {
990   assert(Ty->isIntegerTy() && "Expected an integer step");
991   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
992   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
993 }
994 
995 /// Return the runtime value for VF.
996 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
997   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
998   return VF.isScalable() ? B.CreateVScale(EC) : EC;
999 }
1000 
1001 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1002                                   ElementCount VF) {
1003   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1004   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1005   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1006   return B.CreateUIToFP(RuntimeVF, FTy);
1007 }
1008 
1009 void reportVectorizationFailure(const StringRef DebugMsg,
1010                                 const StringRef OREMsg, const StringRef ORETag,
1011                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1012                                 Instruction *I) {
1013   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1014   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1015   ORE->emit(
1016       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1017       << "loop not vectorized: " << OREMsg);
1018 }
1019 
1020 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1021                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1022                              Instruction *I) {
1023   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1024   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1025   ORE->emit(
1026       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1027       << Msg);
1028 }
1029 
1030 } // end namespace llvm
1031 
1032 #ifndef NDEBUG
1033 /// \return string containing a file name and a line # for the given loop.
1034 static std::string getDebugLocString(const Loop *L) {
1035   std::string Result;
1036   if (L) {
1037     raw_string_ostream OS(Result);
1038     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1039       LoopDbgLoc.print(OS);
1040     else
1041       // Just print the module name.
1042       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1043     OS.flush();
1044   }
1045   return Result;
1046 }
1047 #endif
1048 
1049 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1050                                          const Instruction *Orig) {
1051   // If the loop was versioned with memchecks, add the corresponding no-alias
1052   // metadata.
1053   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1054     LVer->annotateInstWithNoAlias(To, Orig);
1055 }
1056 
1057 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1058     VPTransformState &State) {
1059 
1060   // Collect recipes in the backward slice of `Root` that may generate a poison
1061   // value that is used after vectorization.
1062   SmallPtrSet<VPRecipeBase *, 16> Visited;
1063   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1064     SmallVector<VPRecipeBase *, 16> Worklist;
1065     Worklist.push_back(Root);
1066 
1067     // Traverse the backward slice of Root through its use-def chain.
1068     while (!Worklist.empty()) {
1069       VPRecipeBase *CurRec = Worklist.back();
1070       Worklist.pop_back();
1071 
1072       if (!Visited.insert(CurRec).second)
1073         continue;
1074 
1075       // Prune search if we find another recipe generating a widen memory
1076       // instruction. Widen memory instructions involved in address computation
1077       // will lead to gather/scatter instructions, which don't need to be
1078       // handled.
1079       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1080           isa<VPInterleaveRecipe>(CurRec) ||
1081           isa<VPScalarIVStepsRecipe>(CurRec) ||
1082           isa<VPCanonicalIVPHIRecipe>(CurRec))
1083         continue;
1084 
1085       // This recipe contributes to the address computation of a widen
1086       // load/store. Collect recipe if its underlying instruction has
1087       // poison-generating flags.
1088       Instruction *Instr = CurRec->getUnderlyingInstr();
1089       if (Instr && Instr->hasPoisonGeneratingFlags())
1090         State.MayGeneratePoisonRecipes.insert(CurRec);
1091 
1092       // Add new definitions to the worklist.
1093       for (VPValue *operand : CurRec->operands())
1094         if (VPDef *OpDef = operand->getDef())
1095           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1096     }
1097   });
1098 
1099   // Traverse all the recipes in the VPlan and collect the poison-generating
1100   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1101   // VPInterleaveRecipe.
1102   auto Iter = depth_first(
1103       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1104   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1105     for (VPRecipeBase &Recipe : *VPBB) {
1106       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1107         Instruction &UnderlyingInstr = WidenRec->getIngredient();
1108         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1109         if (AddrDef && WidenRec->isConsecutive() &&
1110             Legal->blockNeedsPredication(UnderlyingInstr.getParent()))
1111           collectPoisonGeneratingInstrsInBackwardSlice(
1112               cast<VPRecipeBase>(AddrDef));
1113       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1114         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1115         if (AddrDef) {
1116           // Check if any member of the interleave group needs predication.
1117           const InterleaveGroup<Instruction> *InterGroup =
1118               InterleaveRec->getInterleaveGroup();
1119           bool NeedPredication = false;
1120           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1121                I < NumMembers; ++I) {
1122             Instruction *Member = InterGroup->getMember(I);
1123             if (Member)
1124               NeedPredication |=
1125                   Legal->blockNeedsPredication(Member->getParent());
1126           }
1127 
1128           if (NeedPredication)
1129             collectPoisonGeneratingInstrsInBackwardSlice(
1130                 cast<VPRecipeBase>(AddrDef));
1131         }
1132       }
1133     }
1134   }
1135 }
1136 
1137 void InnerLoopVectorizer::addMetadata(Instruction *To,
1138                                       Instruction *From) {
1139   propagateMetadata(To, From);
1140   addNewMetadata(To, From);
1141 }
1142 
1143 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1144                                       Instruction *From) {
1145   for (Value *V : To) {
1146     if (Instruction *I = dyn_cast<Instruction>(V))
1147       addMetadata(I, From);
1148   }
1149 }
1150 
1151 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1152     const RecurrenceDescriptor &RdxDesc) {
1153   auto It = ReductionResumeValues.find(&RdxDesc);
1154   assert(It != ReductionResumeValues.end() &&
1155          "Expected to find a resume value for the reduction.");
1156   return It->second;
1157 }
1158 
1159 namespace llvm {
1160 
1161 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1162 // lowered.
1163 enum ScalarEpilogueLowering {
1164 
1165   // The default: allowing scalar epilogues.
1166   CM_ScalarEpilogueAllowed,
1167 
1168   // Vectorization with OptForSize: don't allow epilogues.
1169   CM_ScalarEpilogueNotAllowedOptSize,
1170 
1171   // A special case of vectorisation with OptForSize: loops with a very small
1172   // trip count are considered for vectorization under OptForSize, thereby
1173   // making sure the cost of their loop body is dominant, free of runtime
1174   // guards and scalar iteration overheads.
1175   CM_ScalarEpilogueNotAllowedLowTripLoop,
1176 
1177   // Loop hint predicate indicating an epilogue is undesired.
1178   CM_ScalarEpilogueNotNeededUsePredicate,
1179 
1180   // Directive indicating we must either tail fold or not vectorize
1181   CM_ScalarEpilogueNotAllowedUsePredicate
1182 };
1183 
1184 /// ElementCountComparator creates a total ordering for ElementCount
1185 /// for the purposes of using it in a set structure.
1186 struct ElementCountComparator {
1187   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1188     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1189            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1190   }
1191 };
1192 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1193 
1194 /// LoopVectorizationCostModel - estimates the expected speedups due to
1195 /// vectorization.
1196 /// In many cases vectorization is not profitable. This can happen because of
1197 /// a number of reasons. In this class we mainly attempt to predict the
1198 /// expected speedup/slowdowns due to the supported instruction set. We use the
1199 /// TargetTransformInfo to query the different backends for the cost of
1200 /// different operations.
1201 class LoopVectorizationCostModel {
1202 public:
1203   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1204                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1205                              LoopVectorizationLegality *Legal,
1206                              const TargetTransformInfo &TTI,
1207                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1208                              AssumptionCache *AC,
1209                              OptimizationRemarkEmitter *ORE, const Function *F,
1210                              const LoopVectorizeHints *Hints,
1211                              InterleavedAccessInfo &IAI)
1212       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1213         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1214         Hints(Hints), InterleaveInfo(IAI) {}
1215 
1216   /// \return An upper bound for the vectorization factors (both fixed and
1217   /// scalable). If the factors are 0, vectorization and interleaving should be
1218   /// avoided up front.
1219   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1220 
1221   /// \return True if runtime checks are required for vectorization, and false
1222   /// otherwise.
1223   bool runtimeChecksRequired();
1224 
1225   /// \return The most profitable vectorization factor and the cost of that VF.
1226   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1227   /// then this vectorization factor will be selected if vectorization is
1228   /// possible.
1229   VectorizationFactor
1230   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1231 
1232   VectorizationFactor
1233   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1234                                     const LoopVectorizationPlanner &LVP);
1235 
1236   /// Setup cost-based decisions for user vectorization factor.
1237   /// \return true if the UserVF is a feasible VF to be chosen.
1238   bool selectUserVectorizationFactor(ElementCount UserVF) {
1239     collectUniformsAndScalars(UserVF);
1240     collectInstsToScalarize(UserVF);
1241     return expectedCost(UserVF).first.isValid();
1242   }
1243 
1244   /// \return The size (in bits) of the smallest and widest types in the code
1245   /// that needs to be vectorized. We ignore values that remain scalar such as
1246   /// 64 bit loop indices.
1247   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1248 
1249   /// \return The desired interleave count.
1250   /// If interleave count has been specified by metadata it will be returned.
1251   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1252   /// are the selected vectorization factor and the cost of the selected VF.
1253   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1254 
1255   /// Memory access instruction may be vectorized in more than one way.
1256   /// Form of instruction after vectorization depends on cost.
1257   /// This function takes cost-based decisions for Load/Store instructions
1258   /// and collects them in a map. This decisions map is used for building
1259   /// the lists of loop-uniform and loop-scalar instructions.
1260   /// The calculated cost is saved with widening decision in order to
1261   /// avoid redundant calculations.
1262   void setCostBasedWideningDecision(ElementCount VF);
1263 
1264   /// A struct that represents some properties of the register usage
1265   /// of a loop.
1266   struct RegisterUsage {
1267     /// Holds the number of loop invariant values that are used in the loop.
1268     /// The key is ClassID of target-provided register class.
1269     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1270     /// Holds the maximum number of concurrent live intervals in the loop.
1271     /// The key is ClassID of target-provided register class.
1272     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1273   };
1274 
1275   /// \return Returns information about the register usages of the loop for the
1276   /// given vectorization factors.
1277   SmallVector<RegisterUsage, 8>
1278   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1279 
1280   /// Collect values we want to ignore in the cost model.
1281   void collectValuesToIgnore();
1282 
1283   /// Collect all element types in the loop for which widening is needed.
1284   void collectElementTypesForWidening();
1285 
1286   /// Split reductions into those that happen in the loop, and those that happen
1287   /// outside. In loop reductions are collected into InLoopReductionChains.
1288   void collectInLoopReductions();
1289 
1290   /// Returns true if we should use strict in-order reductions for the given
1291   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1292   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1293   /// of FP operations.
1294   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
1295     return !Hints->allowReordering() && RdxDesc.isOrdered();
1296   }
1297 
1298   /// \returns The smallest bitwidth each instruction can be represented with.
1299   /// The vector equivalents of these instructions should be truncated to this
1300   /// type.
1301   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1302     return MinBWs;
1303   }
1304 
1305   /// \returns True if it is more profitable to scalarize instruction \p I for
1306   /// vectorization factor \p VF.
1307   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1308     assert(VF.isVector() &&
1309            "Profitable to scalarize relevant only for VF > 1.");
1310 
1311     // Cost model is not run in the VPlan-native path - return conservative
1312     // result until this changes.
1313     if (EnableVPlanNativePath)
1314       return false;
1315 
1316     auto Scalars = InstsToScalarize.find(VF);
1317     assert(Scalars != InstsToScalarize.end() &&
1318            "VF not yet analyzed for scalarization profitability");
1319     return Scalars->second.find(I) != Scalars->second.end();
1320   }
1321 
1322   /// Returns true if \p I is known to be uniform after vectorization.
1323   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1324     if (VF.isScalar())
1325       return true;
1326 
1327     // Cost model is not run in the VPlan-native path - return conservative
1328     // result until this changes.
1329     if (EnableVPlanNativePath)
1330       return false;
1331 
1332     auto UniformsPerVF = Uniforms.find(VF);
1333     assert(UniformsPerVF != Uniforms.end() &&
1334            "VF not yet analyzed for uniformity");
1335     return UniformsPerVF->second.count(I);
1336   }
1337 
1338   /// Returns true if \p I is known to be scalar after vectorization.
1339   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1340     if (VF.isScalar())
1341       return true;
1342 
1343     // Cost model is not run in the VPlan-native path - return conservative
1344     // result until this changes.
1345     if (EnableVPlanNativePath)
1346       return false;
1347 
1348     auto ScalarsPerVF = Scalars.find(VF);
1349     assert(ScalarsPerVF != Scalars.end() &&
1350            "Scalar values are not calculated for VF");
1351     return ScalarsPerVF->second.count(I);
1352   }
1353 
1354   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1355   /// for vectorization factor \p VF.
1356   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1357     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1358            !isProfitableToScalarize(I, VF) &&
1359            !isScalarAfterVectorization(I, VF);
1360   }
1361 
1362   /// Decision that was taken during cost calculation for memory instruction.
1363   enum InstWidening {
1364     CM_Unknown,
1365     CM_Widen,         // For consecutive accesses with stride +1.
1366     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1367     CM_Interleave,
1368     CM_GatherScatter,
1369     CM_Scalarize
1370   };
1371 
1372   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1373   /// instruction \p I and vector width \p VF.
1374   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1375                            InstructionCost Cost) {
1376     assert(VF.isVector() && "Expected VF >=2");
1377     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1378   }
1379 
1380   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1381   /// interleaving group \p Grp and vector width \p VF.
1382   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1383                            ElementCount VF, InstWidening W,
1384                            InstructionCost Cost) {
1385     assert(VF.isVector() && "Expected VF >=2");
1386     /// Broadcast this decicion to all instructions inside the group.
1387     /// But the cost will be assigned to one instruction only.
1388     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1389       if (auto *I = Grp->getMember(i)) {
1390         if (Grp->getInsertPos() == I)
1391           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1392         else
1393           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1394       }
1395     }
1396   }
1397 
1398   /// Return the cost model decision for the given instruction \p I and vector
1399   /// width \p VF. Return CM_Unknown if this instruction did not pass
1400   /// through the cost modeling.
1401   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1402     assert(VF.isVector() && "Expected VF to be a vector VF");
1403     // Cost model is not run in the VPlan-native path - return conservative
1404     // result until this changes.
1405     if (EnableVPlanNativePath)
1406       return CM_GatherScatter;
1407 
1408     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1409     auto Itr = WideningDecisions.find(InstOnVF);
1410     if (Itr == WideningDecisions.end())
1411       return CM_Unknown;
1412     return Itr->second.first;
1413   }
1414 
1415   /// Return the vectorization cost for the given instruction \p I and vector
1416   /// width \p VF.
1417   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1418     assert(VF.isVector() && "Expected VF >=2");
1419     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1420     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1421            "The cost is not calculated");
1422     return WideningDecisions[InstOnVF].second;
1423   }
1424 
1425   /// Return True if instruction \p I is an optimizable truncate whose operand
1426   /// is an induction variable. Such a truncate will be removed by adding a new
1427   /// induction variable with the destination type.
1428   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1429     // If the instruction is not a truncate, return false.
1430     auto *Trunc = dyn_cast<TruncInst>(I);
1431     if (!Trunc)
1432       return false;
1433 
1434     // Get the source and destination types of the truncate.
1435     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1436     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1437 
1438     // If the truncate is free for the given types, return false. Replacing a
1439     // free truncate with an induction variable would add an induction variable
1440     // update instruction to each iteration of the loop. We exclude from this
1441     // check the primary induction variable since it will need an update
1442     // instruction regardless.
1443     Value *Op = Trunc->getOperand(0);
1444     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1445       return false;
1446 
1447     // If the truncated value is not an induction variable, return false.
1448     return Legal->isInductionPhi(Op);
1449   }
1450 
1451   /// Collects the instructions to scalarize for each predicated instruction in
1452   /// the loop.
1453   void collectInstsToScalarize(ElementCount VF);
1454 
1455   /// Collect Uniform and Scalar values for the given \p VF.
1456   /// The sets depend on CM decision for Load/Store instructions
1457   /// that may be vectorized as interleave, gather-scatter or scalarized.
1458   void collectUniformsAndScalars(ElementCount VF) {
1459     // Do the analysis once.
1460     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1461       return;
1462     setCostBasedWideningDecision(VF);
1463     collectLoopUniforms(VF);
1464     collectLoopScalars(VF);
1465   }
1466 
1467   /// Returns true if the target machine supports masked store operation
1468   /// for the given \p DataType and kind of access to \p Ptr.
1469   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1470     return Legal->isConsecutivePtr(DataType, Ptr) &&
1471            TTI.isLegalMaskedStore(DataType, Alignment);
1472   }
1473 
1474   /// Returns true if the target machine supports masked load operation
1475   /// for the given \p DataType and kind of access to \p Ptr.
1476   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1477     return Legal->isConsecutivePtr(DataType, Ptr) &&
1478            TTI.isLegalMaskedLoad(DataType, Alignment);
1479   }
1480 
1481   /// Returns true if the target machine can represent \p V as a masked gather
1482   /// or scatter operation.
1483   bool isLegalGatherOrScatter(Value *V,
1484                               ElementCount VF = ElementCount::getFixed(1)) {
1485     bool LI = isa<LoadInst>(V);
1486     bool SI = isa<StoreInst>(V);
1487     if (!LI && !SI)
1488       return false;
1489     auto *Ty = getLoadStoreType(V);
1490     Align Align = getLoadStoreAlignment(V);
1491     if (VF.isVector())
1492       Ty = VectorType::get(Ty, VF);
1493     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1494            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1495   }
1496 
1497   /// Returns true if the target machine supports all of the reduction
1498   /// variables found for the given VF.
1499   bool canVectorizeReductions(ElementCount VF) const {
1500     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1501       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1502       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1503     }));
1504   }
1505 
1506   /// Returns true if \p I is an instruction that will be scalarized with
1507   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1508   /// instructions include conditional stores and instructions that may divide
1509   /// by zero.
1510   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1511 
1512   // Returns true if \p I is an instruction that will be predicated either
1513   // through scalar predication or masked load/store or masked gather/scatter.
1514   // \p VF is the vectorization factor that will be used to vectorize \p I.
1515   // Superset of instructions that return true for isScalarWithPredication.
1516   bool isPredicatedInst(Instruction *I, ElementCount VF,
1517                         bool IsKnownUniform = false) {
1518     // When we know the load is uniform and the original scalar loop was not
1519     // predicated we don't need to mark it as a predicated instruction. Any
1520     // vectorised blocks created when tail-folding are something artificial we
1521     // have introduced and we know there is always at least one active lane.
1522     // That's why we call Legal->blockNeedsPredication here because it doesn't
1523     // query tail-folding.
1524     if (IsKnownUniform && isa<LoadInst>(I) &&
1525         !Legal->blockNeedsPredication(I->getParent()))
1526       return false;
1527     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1528       return false;
1529     // Loads and stores that need some form of masked operation are predicated
1530     // instructions.
1531     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1532       return Legal->isMaskRequired(I);
1533     return isScalarWithPredication(I, VF);
1534   }
1535 
1536   /// Returns true if \p I is a memory instruction with consecutive memory
1537   /// access that can be widened.
1538   bool
1539   memoryInstructionCanBeWidened(Instruction *I,
1540                                 ElementCount VF = ElementCount::getFixed(1));
1541 
1542   /// Returns true if \p I is a memory instruction in an interleaved-group
1543   /// of memory accesses that can be vectorized with wide vector loads/stores
1544   /// and shuffles.
1545   bool
1546   interleavedAccessCanBeWidened(Instruction *I,
1547                                 ElementCount VF = ElementCount::getFixed(1));
1548 
1549   /// Check if \p Instr belongs to any interleaved access group.
1550   bool isAccessInterleaved(Instruction *Instr) {
1551     return InterleaveInfo.isInterleaved(Instr);
1552   }
1553 
1554   /// Get the interleaved access group that \p Instr belongs to.
1555   const InterleaveGroup<Instruction> *
1556   getInterleavedAccessGroup(Instruction *Instr) {
1557     return InterleaveInfo.getInterleaveGroup(Instr);
1558   }
1559 
1560   /// Returns true if we're required to use a scalar epilogue for at least
1561   /// the final iteration of the original loop.
1562   bool requiresScalarEpilogue(ElementCount VF) const {
1563     if (!isScalarEpilogueAllowed())
1564       return false;
1565     // If we might exit from anywhere but the latch, must run the exiting
1566     // iteration in scalar form.
1567     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1568       return true;
1569     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1570   }
1571 
1572   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1573   /// loop hint annotation.
1574   bool isScalarEpilogueAllowed() const {
1575     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1576   }
1577 
1578   /// Returns true if all loop blocks should be masked to fold tail loop.
1579   bool foldTailByMasking() const { return FoldTailByMasking; }
1580 
1581   /// Returns true if the instructions in this block requires predication
1582   /// for any reason, e.g. because tail folding now requires a predicate
1583   /// or because the block in the original loop was predicated.
1584   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1585     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1586   }
1587 
1588   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1589   /// nodes to the chain of instructions representing the reductions. Uses a
1590   /// MapVector to ensure deterministic iteration order.
1591   using ReductionChainMap =
1592       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1593 
1594   /// Return the chain of instructions representing an inloop reduction.
1595   const ReductionChainMap &getInLoopReductionChains() const {
1596     return InLoopReductionChains;
1597   }
1598 
1599   /// Returns true if the Phi is part of an inloop reduction.
1600   bool isInLoopReduction(PHINode *Phi) const {
1601     return InLoopReductionChains.count(Phi);
1602   }
1603 
1604   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1605   /// with factor VF.  Return the cost of the instruction, including
1606   /// scalarization overhead if it's needed.
1607   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1608 
1609   /// Estimate cost of a call instruction CI if it were vectorized with factor
1610   /// VF. Return the cost of the instruction, including scalarization overhead
1611   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1612   /// scalarized -
1613   /// i.e. either vector version isn't available, or is too expensive.
1614   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1615                                     bool &NeedToScalarize) const;
1616 
1617   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1618   /// that of B.
1619   bool isMoreProfitable(const VectorizationFactor &A,
1620                         const VectorizationFactor &B) const;
1621 
1622   /// Invalidates decisions already taken by the cost model.
1623   void invalidateCostModelingDecisions() {
1624     WideningDecisions.clear();
1625     Uniforms.clear();
1626     Scalars.clear();
1627   }
1628 
1629 private:
1630   unsigned NumPredStores = 0;
1631 
1632   /// Convenience function that returns the value of vscale_range iff
1633   /// vscale_range.min == vscale_range.max or otherwise returns the value
1634   /// returned by the corresponding TLI method.
1635   Optional<unsigned> getVScaleForTuning() const;
1636 
1637   /// \return An upper bound for the vectorization factors for both
1638   /// fixed and scalable vectorization, where the minimum-known number of
1639   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1640   /// disabled or unsupported, then the scalable part will be equal to
1641   /// ElementCount::getScalable(0).
1642   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1643                                            ElementCount UserVF,
1644                                            bool FoldTailByMasking);
1645 
1646   /// \return the maximized element count based on the targets vector
1647   /// registers and the loop trip-count, but limited to a maximum safe VF.
1648   /// This is a helper function of computeFeasibleMaxVF.
1649   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1650                                        unsigned SmallestType,
1651                                        unsigned WidestType,
1652                                        ElementCount MaxSafeVF,
1653                                        bool FoldTailByMasking);
1654 
1655   /// \return the maximum legal scalable VF, based on the safe max number
1656   /// of elements.
1657   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1658 
1659   /// The vectorization cost is a combination of the cost itself and a boolean
1660   /// indicating whether any of the contributing operations will actually
1661   /// operate on vector values after type legalization in the backend. If this
1662   /// latter value is false, then all operations will be scalarized (i.e. no
1663   /// vectorization has actually taken place).
1664   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1665 
1666   /// Returns the expected execution cost. The unit of the cost does
1667   /// not matter because we use the 'cost' units to compare different
1668   /// vector widths. The cost that is returned is *not* normalized by
1669   /// the factor width. If \p Invalid is not nullptr, this function
1670   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1671   /// each instruction that has an Invalid cost for the given VF.
1672   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1673   VectorizationCostTy
1674   expectedCost(ElementCount VF,
1675                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1676 
1677   /// Returns the execution time cost of an instruction for a given vector
1678   /// width. Vector width of one means scalar.
1679   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1680 
1681   /// The cost-computation logic from getInstructionCost which provides
1682   /// the vector type as an output parameter.
1683   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1684                                      Type *&VectorTy);
1685 
1686   /// Return the cost of instructions in an inloop reduction pattern, if I is
1687   /// part of that pattern.
1688   Optional<InstructionCost>
1689   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1690                           TTI::TargetCostKind CostKind);
1691 
1692   /// Calculate vectorization cost of memory instruction \p I.
1693   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1694 
1695   /// The cost computation for scalarized memory instruction.
1696   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1697 
1698   /// The cost computation for interleaving group of memory instructions.
1699   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1700 
1701   /// The cost computation for Gather/Scatter instruction.
1702   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1703 
1704   /// The cost computation for widening instruction \p I with consecutive
1705   /// memory access.
1706   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1709   /// Load: scalar load + broadcast.
1710   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1711   /// element)
1712   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1713 
1714   /// Estimate the overhead of scalarizing an instruction. This is a
1715   /// convenience wrapper for the type-based getScalarizationOverhead API.
1716   InstructionCost getScalarizationOverhead(Instruction *I,
1717                                            ElementCount VF) const;
1718 
1719   /// Returns whether the instruction is a load or store and will be a emitted
1720   /// as a vector operation.
1721   bool isConsecutiveLoadOrStore(Instruction *I);
1722 
1723   /// Returns true if an artificially high cost for emulated masked memrefs
1724   /// should be used.
1725   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1726 
1727   /// Map of scalar integer values to the smallest bitwidth they can be legally
1728   /// represented as. The vector equivalents of these values should be truncated
1729   /// to this type.
1730   MapVector<Instruction *, uint64_t> MinBWs;
1731 
1732   /// A type representing the costs for instructions if they were to be
1733   /// scalarized rather than vectorized. The entries are Instruction-Cost
1734   /// pairs.
1735   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1736 
1737   /// A set containing all BasicBlocks that are known to present after
1738   /// vectorization as a predicated block.
1739   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1740 
1741   /// Records whether it is allowed to have the original scalar loop execute at
1742   /// least once. This may be needed as a fallback loop in case runtime
1743   /// aliasing/dependence checks fail, or to handle the tail/remainder
1744   /// iterations when the trip count is unknown or doesn't divide by the VF,
1745   /// or as a peel-loop to handle gaps in interleave-groups.
1746   /// Under optsize and when the trip count is very small we don't allow any
1747   /// iterations to execute in the scalar loop.
1748   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1749 
1750   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1751   bool FoldTailByMasking = false;
1752 
1753   /// A map holding scalar costs for different vectorization factors. The
1754   /// presence of a cost for an instruction in the mapping indicates that the
1755   /// instruction will be scalarized when vectorizing with the associated
1756   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1757   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1758 
1759   /// Holds the instructions known to be uniform after vectorization.
1760   /// The data is collected per VF.
1761   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1762 
1763   /// Holds the instructions known to be scalar after vectorization.
1764   /// The data is collected per VF.
1765   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1766 
1767   /// Holds the instructions (address computations) that are forced to be
1768   /// scalarized.
1769   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1770 
1771   /// PHINodes of the reductions that should be expanded in-loop along with
1772   /// their associated chains of reduction operations, in program order from top
1773   /// (PHI) to bottom
1774   ReductionChainMap InLoopReductionChains;
1775 
1776   /// A Map of inloop reduction operations and their immediate chain operand.
1777   /// FIXME: This can be removed once reductions can be costed correctly in
1778   /// vplan. This was added to allow quick lookup to the inloop operations,
1779   /// without having to loop through InLoopReductionChains.
1780   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1781 
1782   /// Returns the expected difference in cost from scalarizing the expression
1783   /// feeding a predicated instruction \p PredInst. The instructions to
1784   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1785   /// non-negative return value implies the expression will be scalarized.
1786   /// Currently, only single-use chains are considered for scalarization.
1787   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1788                               ElementCount VF);
1789 
1790   /// Collect the instructions that are uniform after vectorization. An
1791   /// instruction is uniform if we represent it with a single scalar value in
1792   /// the vectorized loop corresponding to each vector iteration. Examples of
1793   /// uniform instructions include pointer operands of consecutive or
1794   /// interleaved memory accesses. Note that although uniformity implies an
1795   /// instruction will be scalar, the reverse is not true. In general, a
1796   /// scalarized instruction will be represented by VF scalar values in the
1797   /// vectorized loop, each corresponding to an iteration of the original
1798   /// scalar loop.
1799   void collectLoopUniforms(ElementCount VF);
1800 
1801   /// Collect the instructions that are scalar after vectorization. An
1802   /// instruction is scalar if it is known to be uniform or will be scalarized
1803   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1804   /// to the list if they are used by a load/store instruction that is marked as
1805   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1806   /// VF values in the vectorized loop, each corresponding to an iteration of
1807   /// the original scalar loop.
1808   void collectLoopScalars(ElementCount VF);
1809 
1810   /// Keeps cost model vectorization decision and cost for instructions.
1811   /// Right now it is used for memory instructions only.
1812   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1813                                 std::pair<InstWidening, InstructionCost>>;
1814 
1815   DecisionList WideningDecisions;
1816 
1817   /// Returns true if \p V is expected to be vectorized and it needs to be
1818   /// extracted.
1819   bool needsExtract(Value *V, ElementCount VF) const {
1820     Instruction *I = dyn_cast<Instruction>(V);
1821     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1822         TheLoop->isLoopInvariant(I))
1823       return false;
1824 
1825     // Assume we can vectorize V (and hence we need extraction) if the
1826     // scalars are not computed yet. This can happen, because it is called
1827     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1828     // the scalars are collected. That should be a safe assumption in most
1829     // cases, because we check if the operands have vectorizable types
1830     // beforehand in LoopVectorizationLegality.
1831     return Scalars.find(VF) == Scalars.end() ||
1832            !isScalarAfterVectorization(I, VF);
1833   };
1834 
1835   /// Returns a range containing only operands needing to be extracted.
1836   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1837                                                    ElementCount VF) const {
1838     return SmallVector<Value *, 4>(make_filter_range(
1839         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1840   }
1841 
1842   /// Determines if we have the infrastructure to vectorize loop \p L and its
1843   /// epilogue, assuming the main loop is vectorized by \p VF.
1844   bool isCandidateForEpilogueVectorization(const Loop &L,
1845                                            const ElementCount VF) const;
1846 
1847   /// Returns true if epilogue vectorization is considered profitable, and
1848   /// false otherwise.
1849   /// \p VF is the vectorization factor chosen for the original loop.
1850   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1851 
1852 public:
1853   /// The loop that we evaluate.
1854   Loop *TheLoop;
1855 
1856   /// Predicated scalar evolution analysis.
1857   PredicatedScalarEvolution &PSE;
1858 
1859   /// Loop Info analysis.
1860   LoopInfo *LI;
1861 
1862   /// Vectorization legality.
1863   LoopVectorizationLegality *Legal;
1864 
1865   /// Vector target information.
1866   const TargetTransformInfo &TTI;
1867 
1868   /// Target Library Info.
1869   const TargetLibraryInfo *TLI;
1870 
1871   /// Demanded bits analysis.
1872   DemandedBits *DB;
1873 
1874   /// Assumption cache.
1875   AssumptionCache *AC;
1876 
1877   /// Interface to emit optimization remarks.
1878   OptimizationRemarkEmitter *ORE;
1879 
1880   const Function *TheFunction;
1881 
1882   /// Loop Vectorize Hint.
1883   const LoopVectorizeHints *Hints;
1884 
1885   /// The interleave access information contains groups of interleaved accesses
1886   /// with the same stride and close to each other.
1887   InterleavedAccessInfo &InterleaveInfo;
1888 
1889   /// Values to ignore in the cost model.
1890   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1891 
1892   /// Values to ignore in the cost model when VF > 1.
1893   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1894 
1895   /// All element types found in the loop.
1896   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1897 
1898   /// Profitable vector factors.
1899   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1900 };
1901 } // end namespace llvm
1902 
1903 /// Helper struct to manage generating runtime checks for vectorization.
1904 ///
1905 /// The runtime checks are created up-front in temporary blocks to allow better
1906 /// estimating the cost and un-linked from the existing IR. After deciding to
1907 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1908 /// temporary blocks are completely removed.
1909 class GeneratedRTChecks {
1910   /// Basic block which contains the generated SCEV checks, if any.
1911   BasicBlock *SCEVCheckBlock = nullptr;
1912 
1913   /// The value representing the result of the generated SCEV checks. If it is
1914   /// nullptr, either no SCEV checks have been generated or they have been used.
1915   Value *SCEVCheckCond = nullptr;
1916 
1917   /// Basic block which contains the generated memory runtime checks, if any.
1918   BasicBlock *MemCheckBlock = nullptr;
1919 
1920   /// The value representing the result of the generated memory runtime checks.
1921   /// If it is nullptr, either no memory runtime checks have been generated or
1922   /// they have been used.
1923   Value *MemRuntimeCheckCond = nullptr;
1924 
1925   DominatorTree *DT;
1926   LoopInfo *LI;
1927 
1928   SCEVExpander SCEVExp;
1929   SCEVExpander MemCheckExp;
1930 
1931 public:
1932   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1933                     const DataLayout &DL)
1934       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1935         MemCheckExp(SE, DL, "scev.check") {}
1936 
1937   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1938   /// accurately estimate the cost of the runtime checks. The blocks are
1939   /// un-linked from the IR and is added back during vector code generation. If
1940   /// there is no vector code generation, the check blocks are removed
1941   /// completely.
1942   void Create(Loop *L, const LoopAccessInfo &LAI,
1943               const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1944 
1945     BasicBlock *LoopHeader = L->getHeader();
1946     BasicBlock *Preheader = L->getLoopPreheader();
1947 
1948     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1949     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1950     // may be used by SCEVExpander. The blocks will be un-linked from their
1951     // predecessors and removed from LI & DT at the end of the function.
1952     if (!UnionPred.isAlwaysTrue()) {
1953       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1954                                   nullptr, "vector.scevcheck");
1955 
1956       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1957           &UnionPred, SCEVCheckBlock->getTerminator());
1958     }
1959 
1960     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1961     if (RtPtrChecking.Need) {
1962       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1963       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1964                                  "vector.memcheck");
1965 
1966       auto DiffChecks = RtPtrChecking.getDiffChecks();
1967       if (DiffChecks) {
1968         MemRuntimeCheckCond = addDiffRuntimeChecks(
1969             MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp,
1970             [VF](IRBuilderBase &B, unsigned Bits) {
1971               return getRuntimeVF(B, B.getIntNTy(Bits), VF);
1972             },
1973             IC);
1974       } else {
1975         MemRuntimeCheckCond =
1976             addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1977                              RtPtrChecking.getChecks(), MemCheckExp);
1978       }
1979       assert(MemRuntimeCheckCond &&
1980              "no RT checks generated although RtPtrChecking "
1981              "claimed checks are required");
1982     }
1983 
1984     if (!MemCheckBlock && !SCEVCheckBlock)
1985       return;
1986 
1987     // Unhook the temporary block with the checks, update various places
1988     // accordingly.
1989     if (SCEVCheckBlock)
1990       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1991     if (MemCheckBlock)
1992       MemCheckBlock->replaceAllUsesWith(Preheader);
1993 
1994     if (SCEVCheckBlock) {
1995       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1996       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1997       Preheader->getTerminator()->eraseFromParent();
1998     }
1999     if (MemCheckBlock) {
2000       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2001       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2002       Preheader->getTerminator()->eraseFromParent();
2003     }
2004 
2005     DT->changeImmediateDominator(LoopHeader, Preheader);
2006     if (MemCheckBlock) {
2007       DT->eraseNode(MemCheckBlock);
2008       LI->removeBlock(MemCheckBlock);
2009     }
2010     if (SCEVCheckBlock) {
2011       DT->eraseNode(SCEVCheckBlock);
2012       LI->removeBlock(SCEVCheckBlock);
2013     }
2014   }
2015 
2016   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2017   /// unused.
2018   ~GeneratedRTChecks() {
2019     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2020     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2021     if (!SCEVCheckCond)
2022       SCEVCleaner.markResultUsed();
2023 
2024     if (!MemRuntimeCheckCond)
2025       MemCheckCleaner.markResultUsed();
2026 
2027     if (MemRuntimeCheckCond) {
2028       auto &SE = *MemCheckExp.getSE();
2029       // Memory runtime check generation creates compares that use expanded
2030       // values. Remove them before running the SCEVExpanderCleaners.
2031       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2032         if (MemCheckExp.isInsertedInstruction(&I))
2033           continue;
2034         SE.forgetValue(&I);
2035         I.eraseFromParent();
2036       }
2037     }
2038     MemCheckCleaner.cleanup();
2039     SCEVCleaner.cleanup();
2040 
2041     if (SCEVCheckCond)
2042       SCEVCheckBlock->eraseFromParent();
2043     if (MemRuntimeCheckCond)
2044       MemCheckBlock->eraseFromParent();
2045   }
2046 
2047   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2048   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2049   /// depending on the generated condition.
2050   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2051                              BasicBlock *LoopVectorPreHeader,
2052                              BasicBlock *LoopExitBlock) {
2053     if (!SCEVCheckCond)
2054       return nullptr;
2055 
2056     Value *Cond = SCEVCheckCond;
2057     // Mark the check as used, to prevent it from being removed during cleanup.
2058     SCEVCheckCond = nullptr;
2059     if (auto *C = dyn_cast<ConstantInt>(Cond))
2060       if (C->isZero())
2061         return nullptr;
2062 
2063     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2064 
2065     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2066     // Create new preheader for vector loop.
2067     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2068       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2069 
2070     SCEVCheckBlock->getTerminator()->eraseFromParent();
2071     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2072     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2073                                                 SCEVCheckBlock);
2074 
2075     DT->addNewBlock(SCEVCheckBlock, Pred);
2076     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2077 
2078     ReplaceInstWithInst(SCEVCheckBlock->getTerminator(),
2079                         BranchInst::Create(Bypass, LoopVectorPreHeader, Cond));
2080     return SCEVCheckBlock;
2081   }
2082 
2083   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2084   /// the branches to branch to the vector preheader or \p Bypass, depending on
2085   /// the generated condition.
2086   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2087                                    BasicBlock *LoopVectorPreHeader) {
2088     // Check if we generated code that checks in runtime if arrays overlap.
2089     if (!MemRuntimeCheckCond)
2090       return nullptr;
2091 
2092     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2093     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2094                                                 MemCheckBlock);
2095 
2096     DT->addNewBlock(MemCheckBlock, Pred);
2097     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2098     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2099 
2100     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2101       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2102 
2103     ReplaceInstWithInst(
2104         MemCheckBlock->getTerminator(),
2105         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2106     MemCheckBlock->getTerminator()->setDebugLoc(
2107         Pred->getTerminator()->getDebugLoc());
2108 
2109     // Mark the check as used, to prevent it from being removed during cleanup.
2110     MemRuntimeCheckCond = nullptr;
2111     return MemCheckBlock;
2112   }
2113 };
2114 
2115 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2116 // vectorization. The loop needs to be annotated with #pragma omp simd
2117 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2118 // vector length information is not provided, vectorization is not considered
2119 // explicit. Interleave hints are not allowed either. These limitations will be
2120 // relaxed in the future.
2121 // Please, note that we are currently forced to abuse the pragma 'clang
2122 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2123 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2124 // provides *explicit vectorization hints* (LV can bypass legal checks and
2125 // assume that vectorization is legal). However, both hints are implemented
2126 // using the same metadata (llvm.loop.vectorize, processed by
2127 // LoopVectorizeHints). This will be fixed in the future when the native IR
2128 // representation for pragma 'omp simd' is introduced.
2129 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2130                                    OptimizationRemarkEmitter *ORE) {
2131   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2132   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2133 
2134   // Only outer loops with an explicit vectorization hint are supported.
2135   // Unannotated outer loops are ignored.
2136   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2137     return false;
2138 
2139   Function *Fn = OuterLp->getHeader()->getParent();
2140   if (!Hints.allowVectorization(Fn, OuterLp,
2141                                 true /*VectorizeOnlyWhenForced*/)) {
2142     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2143     return false;
2144   }
2145 
2146   if (Hints.getInterleave() > 1) {
2147     // TODO: Interleave support is future work.
2148     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2149                          "outer loops.\n");
2150     Hints.emitRemarkWithHints();
2151     return false;
2152   }
2153 
2154   return true;
2155 }
2156 
2157 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2158                                   OptimizationRemarkEmitter *ORE,
2159                                   SmallVectorImpl<Loop *> &V) {
2160   // Collect inner loops and outer loops without irreducible control flow. For
2161   // now, only collect outer loops that have explicit vectorization hints. If we
2162   // are stress testing the VPlan H-CFG construction, we collect the outermost
2163   // loop of every loop nest.
2164   if (L.isInnermost() || VPlanBuildStressTest ||
2165       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2166     LoopBlocksRPO RPOT(&L);
2167     RPOT.perform(LI);
2168     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2169       V.push_back(&L);
2170       // TODO: Collect inner loops inside marked outer loops in case
2171       // vectorization fails for the outer loop. Do not invoke
2172       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2173       // already known to be reducible. We can use an inherited attribute for
2174       // that.
2175       return;
2176     }
2177   }
2178   for (Loop *InnerL : L)
2179     collectSupportedLoops(*InnerL, LI, ORE, V);
2180 }
2181 
2182 namespace {
2183 
2184 /// The LoopVectorize Pass.
2185 struct LoopVectorize : public FunctionPass {
2186   /// Pass identification, replacement for typeid
2187   static char ID;
2188 
2189   LoopVectorizePass Impl;
2190 
2191   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2192                          bool VectorizeOnlyWhenForced = false)
2193       : FunctionPass(ID),
2194         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2195     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2196   }
2197 
2198   bool runOnFunction(Function &F) override {
2199     if (skipFunction(F))
2200       return false;
2201 
2202     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2203     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2204     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2205     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2206     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2207     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2208     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2209     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2210     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2211     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2212     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2213     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2214     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2215 
2216     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2217         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2218 
2219     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2220                         GetLAA, *ORE, PSI).MadeAnyChange;
2221   }
2222 
2223   void getAnalysisUsage(AnalysisUsage &AU) const override {
2224     AU.addRequired<AssumptionCacheTracker>();
2225     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2226     AU.addRequired<DominatorTreeWrapperPass>();
2227     AU.addRequired<LoopInfoWrapperPass>();
2228     AU.addRequired<ScalarEvolutionWrapperPass>();
2229     AU.addRequired<TargetTransformInfoWrapperPass>();
2230     AU.addRequired<AAResultsWrapperPass>();
2231     AU.addRequired<LoopAccessLegacyAnalysis>();
2232     AU.addRequired<DemandedBitsWrapperPass>();
2233     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2234     AU.addRequired<InjectTLIMappingsLegacy>();
2235 
2236     // We currently do not preserve loopinfo/dominator analyses with outer loop
2237     // vectorization. Until this is addressed, mark these analyses as preserved
2238     // only for non-VPlan-native path.
2239     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2240     if (!EnableVPlanNativePath) {
2241       AU.addPreserved<LoopInfoWrapperPass>();
2242       AU.addPreserved<DominatorTreeWrapperPass>();
2243     }
2244 
2245     AU.addPreserved<BasicAAWrapperPass>();
2246     AU.addPreserved<GlobalsAAWrapperPass>();
2247     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2248   }
2249 };
2250 
2251 } // end anonymous namespace
2252 
2253 //===----------------------------------------------------------------------===//
2254 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2255 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2256 //===----------------------------------------------------------------------===//
2257 
2258 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2259   // We need to place the broadcast of invariant variables outside the loop,
2260   // but only if it's proven safe to do so. Else, broadcast will be inside
2261   // vector loop body.
2262   Instruction *Instr = dyn_cast<Instruction>(V);
2263   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2264                      (!Instr ||
2265                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2266   // Place the code for broadcasting invariant variables in the new preheader.
2267   IRBuilder<>::InsertPointGuard Guard(Builder);
2268   if (SafeToHoist)
2269     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2270 
2271   // Broadcast the scalar into all locations in the vector.
2272   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2273 
2274   return Shuf;
2275 }
2276 
2277 /// This function adds
2278 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2279 /// to each vector element of Val. The sequence starts at StartIndex.
2280 /// \p Opcode is relevant for FP induction variable.
2281 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2282                             Instruction::BinaryOps BinOp, ElementCount VF,
2283                             IRBuilderBase &Builder) {
2284   assert(VF.isVector() && "only vector VFs are supported");
2285 
2286   // Create and check the types.
2287   auto *ValVTy = cast<VectorType>(Val->getType());
2288   ElementCount VLen = ValVTy->getElementCount();
2289 
2290   Type *STy = Val->getType()->getScalarType();
2291   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2292          "Induction Step must be an integer or FP");
2293   assert(Step->getType() == STy && "Step has wrong type");
2294 
2295   SmallVector<Constant *, 8> Indices;
2296 
2297   // Create a vector of consecutive numbers from zero to VF.
2298   VectorType *InitVecValVTy = ValVTy;
2299   if (STy->isFloatingPointTy()) {
2300     Type *InitVecValSTy =
2301         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2302     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2303   }
2304   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2305 
2306   // Splat the StartIdx
2307   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2308 
2309   if (STy->isIntegerTy()) {
2310     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2311     Step = Builder.CreateVectorSplat(VLen, Step);
2312     assert(Step->getType() == Val->getType() && "Invalid step vec");
2313     // FIXME: The newly created binary instructions should contain nsw/nuw
2314     // flags, which can be found from the original scalar operations.
2315     Step = Builder.CreateMul(InitVec, Step);
2316     return Builder.CreateAdd(Val, Step, "induction");
2317   }
2318 
2319   // Floating point induction.
2320   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2321          "Binary Opcode should be specified for FP induction");
2322   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2323   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2324 
2325   Step = Builder.CreateVectorSplat(VLen, Step);
2326   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2327   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2328 }
2329 
2330 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2331 /// variable on which to base the steps, \p Step is the size of the step.
2332 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2333                              const InductionDescriptor &ID, VPValue *Def,
2334                              VPTransformState &State) {
2335   IRBuilderBase &Builder = State.Builder;
2336   // We shouldn't have to build scalar steps if we aren't vectorizing.
2337   assert(State.VF.isVector() && "VF should be greater than one");
2338   // Get the value type and ensure it and the step have the same integer type.
2339   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2340   assert(ScalarIVTy == Step->getType() &&
2341          "Val and Step should have the same type");
2342 
2343   // We build scalar steps for both integer and floating-point induction
2344   // variables. Here, we determine the kind of arithmetic we will perform.
2345   Instruction::BinaryOps AddOp;
2346   Instruction::BinaryOps MulOp;
2347   if (ScalarIVTy->isIntegerTy()) {
2348     AddOp = Instruction::Add;
2349     MulOp = Instruction::Mul;
2350   } else {
2351     AddOp = ID.getInductionOpcode();
2352     MulOp = Instruction::FMul;
2353   }
2354 
2355   // Determine the number of scalars we need to generate for each unroll
2356   // iteration.
2357   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2358   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2359   // Compute the scalar steps and save the results in State.
2360   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2361                                      ScalarIVTy->getScalarSizeInBits());
2362   Type *VecIVTy = nullptr;
2363   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2364   if (!FirstLaneOnly && State.VF.isScalable()) {
2365     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2366     UnitStepVec =
2367         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2368     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2369     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2370   }
2371 
2372   for (unsigned Part = 0; Part < State.UF; ++Part) {
2373     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2374 
2375     if (!FirstLaneOnly && State.VF.isScalable()) {
2376       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2377       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2378       if (ScalarIVTy->isFloatingPointTy())
2379         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2380       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2381       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2382       State.set(Def, Add, Part);
2383       // It's useful to record the lane values too for the known minimum number
2384       // of elements so we do those below. This improves the code quality when
2385       // trying to extract the first element, for example.
2386     }
2387 
2388     if (ScalarIVTy->isFloatingPointTy())
2389       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2390 
2391     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2392       Value *StartIdx = Builder.CreateBinOp(
2393           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2394       // The step returned by `createStepForVF` is a runtime-evaluated value
2395       // when VF is scalable. Otherwise, it should be folded into a Constant.
2396       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2397              "Expected StartIdx to be folded to a constant when VF is not "
2398              "scalable");
2399       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2400       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2401       State.set(Def, Add, VPIteration(Part, Lane));
2402     }
2403   }
2404 }
2405 
2406 // Generate code for the induction step. Note that induction steps are
2407 // required to be loop-invariant
2408 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2409                               Instruction *InsertBefore,
2410                               Loop *OrigLoop = nullptr) {
2411   const DataLayout &DL = SE.getDataLayout();
2412   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2413          "Induction step should be loop invariant");
2414   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2415     return E->getValue();
2416 
2417   SCEVExpander Exp(SE, DL, "induction");
2418   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2419 }
2420 
2421 /// Compute the transformed value of Index at offset StartValue using step
2422 /// StepValue.
2423 /// For integer induction, returns StartValue + Index * StepValue.
2424 /// For pointer induction, returns StartValue[Index * StepValue].
2425 /// FIXME: The newly created binary instructions should contain nsw/nuw
2426 /// flags, which can be found from the original scalar operations.
2427 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2428                                    Value *StartValue, Value *Step,
2429                                    const InductionDescriptor &ID) {
2430   assert(Index->getType()->getScalarType() == Step->getType() &&
2431          "Index scalar type does not match StepValue type");
2432 
2433   // Note: the IR at this point is broken. We cannot use SE to create any new
2434   // SCEV and then expand it, hoping that SCEV's simplification will give us
2435   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2436   // lead to various SCEV crashes. So all we can do is to use builder and rely
2437   // on InstCombine for future simplifications. Here we handle some trivial
2438   // cases only.
2439   auto CreateAdd = [&B](Value *X, Value *Y) {
2440     assert(X->getType() == Y->getType() && "Types don't match!");
2441     if (auto *CX = dyn_cast<ConstantInt>(X))
2442       if (CX->isZero())
2443         return Y;
2444     if (auto *CY = dyn_cast<ConstantInt>(Y))
2445       if (CY->isZero())
2446         return X;
2447     return B.CreateAdd(X, Y);
2448   };
2449 
2450   // We allow X to be a vector type, in which case Y will potentially be
2451   // splatted into a vector with the same element count.
2452   auto CreateMul = [&B](Value *X, Value *Y) {
2453     assert(X->getType()->getScalarType() == Y->getType() &&
2454            "Types don't match!");
2455     if (auto *CX = dyn_cast<ConstantInt>(X))
2456       if (CX->isOne())
2457         return Y;
2458     if (auto *CY = dyn_cast<ConstantInt>(Y))
2459       if (CY->isOne())
2460         return X;
2461     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2462     if (XVTy && !isa<VectorType>(Y->getType()))
2463       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2464     return B.CreateMul(X, Y);
2465   };
2466 
2467   switch (ID.getKind()) {
2468   case InductionDescriptor::IK_IntInduction: {
2469     assert(!isa<VectorType>(Index->getType()) &&
2470            "Vector indices not supported for integer inductions yet");
2471     assert(Index->getType() == StartValue->getType() &&
2472            "Index type does not match StartValue type");
2473     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2474       return B.CreateSub(StartValue, Index);
2475     auto *Offset = CreateMul(Index, Step);
2476     return CreateAdd(StartValue, Offset);
2477   }
2478   case InductionDescriptor::IK_PtrInduction: {
2479     assert(isa<Constant>(Step) &&
2480            "Expected constant step for pointer induction");
2481     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2482   }
2483   case InductionDescriptor::IK_FpInduction: {
2484     assert(!isa<VectorType>(Index->getType()) &&
2485            "Vector indices not supported for FP inductions yet");
2486     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2487     auto InductionBinOp = ID.getInductionBinOp();
2488     assert(InductionBinOp &&
2489            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2490             InductionBinOp->getOpcode() == Instruction::FSub) &&
2491            "Original bin op should be defined for FP induction");
2492 
2493     Value *MulExp = B.CreateFMul(Step, Index);
2494     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2495                          "induction");
2496   }
2497   case InductionDescriptor::IK_NoInduction:
2498     return nullptr;
2499   }
2500   llvm_unreachable("invalid enum");
2501 }
2502 
2503 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2504                                                     const VPIteration &Instance,
2505                                                     VPTransformState &State) {
2506   Value *ScalarInst = State.get(Def, Instance);
2507   Value *VectorValue = State.get(Def, Instance.Part);
2508   VectorValue = Builder.CreateInsertElement(
2509       VectorValue, ScalarInst,
2510       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2511   State.set(Def, VectorValue, Instance.Part);
2512 }
2513 
2514 // Return whether we allow using masked interleave-groups (for dealing with
2515 // strided loads/stores that reside in predicated blocks, or for dealing
2516 // with gaps).
2517 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2518   // If an override option has been passed in for interleaved accesses, use it.
2519   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2520     return EnableMaskedInterleavedMemAccesses;
2521 
2522   return TTI.enableMaskedInterleavedAccessVectorization();
2523 }
2524 
2525 // Try to vectorize the interleave group that \p Instr belongs to.
2526 //
2527 // E.g. Translate following interleaved load group (factor = 3):
2528 //   for (i = 0; i < N; i+=3) {
2529 //     R = Pic[i];             // Member of index 0
2530 //     G = Pic[i+1];           // Member of index 1
2531 //     B = Pic[i+2];           // Member of index 2
2532 //     ... // do something to R, G, B
2533 //   }
2534 // To:
2535 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2536 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2537 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2538 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2539 //
2540 // Or translate following interleaved store group (factor = 3):
2541 //   for (i = 0; i < N; i+=3) {
2542 //     ... do something to R, G, B
2543 //     Pic[i]   = R;           // Member of index 0
2544 //     Pic[i+1] = G;           // Member of index 1
2545 //     Pic[i+2] = B;           // Member of index 2
2546 //   }
2547 // To:
2548 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2549 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2550 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2551 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2552 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2553 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2554     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2555     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2556     VPValue *BlockInMask) {
2557   Instruction *Instr = Group->getInsertPos();
2558   const DataLayout &DL = Instr->getModule()->getDataLayout();
2559 
2560   // Prepare for the vector type of the interleaved load/store.
2561   Type *ScalarTy = getLoadStoreType(Instr);
2562   unsigned InterleaveFactor = Group->getFactor();
2563   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2564   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2565 
2566   // Prepare for the new pointers.
2567   SmallVector<Value *, 2> AddrParts;
2568   unsigned Index = Group->getIndex(Instr);
2569 
2570   // TODO: extend the masked interleaved-group support to reversed access.
2571   assert((!BlockInMask || !Group->isReverse()) &&
2572          "Reversed masked interleave-group not supported.");
2573 
2574   // If the group is reverse, adjust the index to refer to the last vector lane
2575   // instead of the first. We adjust the index from the first vector lane,
2576   // rather than directly getting the pointer for lane VF - 1, because the
2577   // pointer operand of the interleaved access is supposed to be uniform. For
2578   // uniform instructions, we're only required to generate a value for the
2579   // first vector lane in each unroll iteration.
2580   if (Group->isReverse())
2581     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2582 
2583   for (unsigned Part = 0; Part < UF; Part++) {
2584     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2585     setDebugLocFromInst(AddrPart);
2586 
2587     // Notice current instruction could be any index. Need to adjust the address
2588     // to the member of index 0.
2589     //
2590     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2591     //       b = A[i];       // Member of index 0
2592     // Current pointer is pointed to A[i+1], adjust it to A[i].
2593     //
2594     // E.g.  A[i+1] = a;     // Member of index 1
2595     //       A[i]   = b;     // Member of index 0
2596     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2597     // Current pointer is pointed to A[i+2], adjust it to A[i].
2598 
2599     bool InBounds = false;
2600     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2601       InBounds = gep->isInBounds();
2602     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2603     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2604 
2605     // Cast to the vector pointer type.
2606     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2607     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2608     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2609   }
2610 
2611   setDebugLocFromInst(Instr);
2612   Value *PoisonVec = PoisonValue::get(VecTy);
2613 
2614   Value *MaskForGaps = nullptr;
2615   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2616     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2617     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2618   }
2619 
2620   // Vectorize the interleaved load group.
2621   if (isa<LoadInst>(Instr)) {
2622     // For each unroll part, create a wide load for the group.
2623     SmallVector<Value *, 2> NewLoads;
2624     for (unsigned Part = 0; Part < UF; Part++) {
2625       Instruction *NewLoad;
2626       if (BlockInMask || MaskForGaps) {
2627         assert(useMaskedInterleavedAccesses(*TTI) &&
2628                "masked interleaved groups are not allowed.");
2629         Value *GroupMask = MaskForGaps;
2630         if (BlockInMask) {
2631           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2632           Value *ShuffledMask = Builder.CreateShuffleVector(
2633               BlockInMaskPart,
2634               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2635               "interleaved.mask");
2636           GroupMask = MaskForGaps
2637                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2638                                                 MaskForGaps)
2639                           : ShuffledMask;
2640         }
2641         NewLoad =
2642             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2643                                      GroupMask, PoisonVec, "wide.masked.vec");
2644       }
2645       else
2646         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2647                                             Group->getAlign(), "wide.vec");
2648       Group->addMetadata(NewLoad);
2649       NewLoads.push_back(NewLoad);
2650     }
2651 
2652     // For each member in the group, shuffle out the appropriate data from the
2653     // wide loads.
2654     unsigned J = 0;
2655     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2656       Instruction *Member = Group->getMember(I);
2657 
2658       // Skip the gaps in the group.
2659       if (!Member)
2660         continue;
2661 
2662       auto StrideMask =
2663           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2664       for (unsigned Part = 0; Part < UF; Part++) {
2665         Value *StridedVec = Builder.CreateShuffleVector(
2666             NewLoads[Part], StrideMask, "strided.vec");
2667 
2668         // If this member has different type, cast the result type.
2669         if (Member->getType() != ScalarTy) {
2670           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2671           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2672           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2673         }
2674 
2675         if (Group->isReverse())
2676           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2677 
2678         State.set(VPDefs[J], StridedVec, Part);
2679       }
2680       ++J;
2681     }
2682     return;
2683   }
2684 
2685   // The sub vector type for current instruction.
2686   auto *SubVT = VectorType::get(ScalarTy, VF);
2687 
2688   // Vectorize the interleaved store group.
2689   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2690   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2691          "masked interleaved groups are not allowed.");
2692   assert((!MaskForGaps || !VF.isScalable()) &&
2693          "masking gaps for scalable vectors is not yet supported.");
2694   for (unsigned Part = 0; Part < UF; Part++) {
2695     // Collect the stored vector from each member.
2696     SmallVector<Value *, 4> StoredVecs;
2697     for (unsigned i = 0; i < InterleaveFactor; i++) {
2698       assert((Group->getMember(i) || MaskForGaps) &&
2699              "Fail to get a member from an interleaved store group");
2700       Instruction *Member = Group->getMember(i);
2701 
2702       // Skip the gaps in the group.
2703       if (!Member) {
2704         Value *Undef = PoisonValue::get(SubVT);
2705         StoredVecs.push_back(Undef);
2706         continue;
2707       }
2708 
2709       Value *StoredVec = State.get(StoredValues[i], Part);
2710 
2711       if (Group->isReverse())
2712         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2713 
2714       // If this member has different type, cast it to a unified type.
2715 
2716       if (StoredVec->getType() != SubVT)
2717         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2718 
2719       StoredVecs.push_back(StoredVec);
2720     }
2721 
2722     // Concatenate all vectors into a wide vector.
2723     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2724 
2725     // Interleave the elements in the wide vector.
2726     Value *IVec = Builder.CreateShuffleVector(
2727         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2728         "interleaved.vec");
2729 
2730     Instruction *NewStoreInstr;
2731     if (BlockInMask || MaskForGaps) {
2732       Value *GroupMask = MaskForGaps;
2733       if (BlockInMask) {
2734         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2735         Value *ShuffledMask = Builder.CreateShuffleVector(
2736             BlockInMaskPart,
2737             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2738             "interleaved.mask");
2739         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2740                                                       ShuffledMask, MaskForGaps)
2741                                 : ShuffledMask;
2742       }
2743       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2744                                                 Group->getAlign(), GroupMask);
2745     } else
2746       NewStoreInstr =
2747           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2748 
2749     Group->addMetadata(NewStoreInstr);
2750   }
2751 }
2752 
2753 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2754                                                VPReplicateRecipe *RepRecipe,
2755                                                const VPIteration &Instance,
2756                                                bool IfPredicateInstr,
2757                                                VPTransformState &State) {
2758   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2759 
2760   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2761   // the first lane and part.
2762   if (isa<NoAliasScopeDeclInst>(Instr))
2763     if (!Instance.isFirstIteration())
2764       return;
2765 
2766   // Does this instruction return a value ?
2767   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2768 
2769   Instruction *Cloned = Instr->clone();
2770   if (!IsVoidRetTy)
2771     Cloned->setName(Instr->getName() + ".cloned");
2772 
2773   // If the scalarized instruction contributes to the address computation of a
2774   // widen masked load/store which was in a basic block that needed predication
2775   // and is not predicated after vectorization, we can't propagate
2776   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2777   // instruction could feed a poison value to the base address of the widen
2778   // load/store.
2779   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2780     Cloned->dropPoisonGeneratingFlags();
2781 
2782   if (Instr->getDebugLoc())
2783     setDebugLocFromInst(Instr);
2784 
2785   // Replace the operands of the cloned instructions with their scalar
2786   // equivalents in the new loop.
2787   for (auto &I : enumerate(RepRecipe->operands())) {
2788     auto InputInstance = Instance;
2789     VPValue *Operand = I.value();
2790     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2791     if (OperandR && OperandR->isUniform())
2792       InputInstance.Lane = VPLane::getFirstLane();
2793     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2794   }
2795   addNewMetadata(Cloned, Instr);
2796 
2797   // Place the cloned scalar in the new loop.
2798   State.Builder.Insert(Cloned);
2799 
2800   State.set(RepRecipe, Cloned, Instance);
2801 
2802   // If we just cloned a new assumption, add it the assumption cache.
2803   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2804     AC->registerAssumption(II);
2805 
2806   // End if-block.
2807   if (IfPredicateInstr)
2808     PredicatedInstructions.push_back(Cloned);
2809 }
2810 
2811 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2812   if (TripCount)
2813     return TripCount;
2814 
2815   assert(InsertBlock);
2816   IRBuilder<> Builder(InsertBlock->getTerminator());
2817   // Find the loop boundaries.
2818   ScalarEvolution *SE = PSE.getSE();
2819   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2820   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2821          "Invalid loop count");
2822 
2823   Type *IdxTy = Legal->getWidestInductionType();
2824   assert(IdxTy && "No type for induction");
2825 
2826   // The exit count might have the type of i64 while the phi is i32. This can
2827   // happen if we have an induction variable that is sign extended before the
2828   // compare. The only way that we get a backedge taken count is that the
2829   // induction variable was signed and as such will not overflow. In such a case
2830   // truncation is legal.
2831   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2832       IdxTy->getPrimitiveSizeInBits())
2833     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2834   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2835 
2836   // Get the total trip count from the count by adding 1.
2837   const SCEV *ExitCount = SE->getAddExpr(
2838       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2839 
2840   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2841 
2842   // Expand the trip count and place the new instructions in the preheader.
2843   // Notice that the pre-header does not change, only the loop body.
2844   SCEVExpander Exp(*SE, DL, "induction");
2845 
2846   // Count holds the overall loop count (N).
2847   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2848                                 InsertBlock->getTerminator());
2849 
2850   if (TripCount->getType()->isPointerTy())
2851     TripCount =
2852         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2853                                     InsertBlock->getTerminator());
2854 
2855   return TripCount;
2856 }
2857 
2858 Value *
2859 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2860   if (VectorTripCount)
2861     return VectorTripCount;
2862 
2863   Value *TC = getOrCreateTripCount(InsertBlock);
2864   IRBuilder<> Builder(InsertBlock->getTerminator());
2865 
2866   Type *Ty = TC->getType();
2867   // This is where we can make the step a runtime constant.
2868   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2869 
2870   // If the tail is to be folded by masking, round the number of iterations N
2871   // up to a multiple of Step instead of rounding down. This is done by first
2872   // adding Step-1 and then rounding down. Note that it's ok if this addition
2873   // overflows: the vector induction variable will eventually wrap to zero given
2874   // that it starts at zero and its Step is a power of two; the loop will then
2875   // exit, with the last early-exit vector comparison also producing all-true.
2876   // For scalable vectors the VF is not guaranteed to be a power of 2, but this
2877   // is accounted for in emitIterationCountCheck that adds an overflow check.
2878   if (Cost->foldTailByMasking()) {
2879     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2880            "VF*UF must be a power of 2 when folding tail by masking");
2881     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2882     TC = Builder.CreateAdd(
2883         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2884   }
2885 
2886   // Now we need to generate the expression for the part of the loop that the
2887   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2888   // iterations are not required for correctness, or N - Step, otherwise. Step
2889   // is equal to the vectorization factor (number of SIMD elements) times the
2890   // unroll factor (number of SIMD instructions).
2891   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2892 
2893   // There are cases where we *must* run at least one iteration in the remainder
2894   // loop.  See the cost model for when this can happen.  If the step evenly
2895   // divides the trip count, we set the remainder to be equal to the step. If
2896   // the step does not evenly divide the trip count, no adjustment is necessary
2897   // since there will already be scalar iterations. Note that the minimum
2898   // iterations check ensures that N >= Step.
2899   if (Cost->requiresScalarEpilogue(VF)) {
2900     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2901     R = Builder.CreateSelect(IsZero, Step, R);
2902   }
2903 
2904   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2905 
2906   return VectorTripCount;
2907 }
2908 
2909 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2910                                                    const DataLayout &DL) {
2911   // Verify that V is a vector type with same number of elements as DstVTy.
2912   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2913   unsigned VF = DstFVTy->getNumElements();
2914   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2915   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2916   Type *SrcElemTy = SrcVecTy->getElementType();
2917   Type *DstElemTy = DstFVTy->getElementType();
2918   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2919          "Vector elements must have same size");
2920 
2921   // Do a direct cast if element types are castable.
2922   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2923     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2924   }
2925   // V cannot be directly casted to desired vector type.
2926   // May happen when V is a floating point vector but DstVTy is a vector of
2927   // pointers or vice-versa. Handle this using a two-step bitcast using an
2928   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2929   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2930          "Only one type should be a pointer type");
2931   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2932          "Only one type should be a floating point type");
2933   Type *IntTy =
2934       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2935   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2936   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2937   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2938 }
2939 
2940 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) {
2941   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2942   // Reuse existing vector loop preheader for TC checks.
2943   // Note that new preheader block is generated for vector loop.
2944   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2945   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2946 
2947   // Generate code to check if the loop's trip count is less than VF * UF, or
2948   // equal to it in case a scalar epilogue is required; this implies that the
2949   // vector trip count is zero. This check also covers the case where adding one
2950   // to the backedge-taken count overflowed leading to an incorrect trip count
2951   // of zero. In this case we will also jump to the scalar loop.
2952   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2953                                             : ICmpInst::ICMP_ULT;
2954 
2955   // If tail is to be folded, vector loop takes care of all iterations.
2956   Type *CountTy = Count->getType();
2957   Value *CheckMinIters = Builder.getFalse();
2958   Value *Step = createStepForVF(Builder, CountTy, VF, UF);
2959   if (!Cost->foldTailByMasking())
2960     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2961   else if (VF.isScalable()) {
2962     // vscale is not necessarily a power-of-2, which means we cannot guarantee
2963     // an overflow to zero when updating induction variables and so an
2964     // additional overflow check is required before entering the vector loop.
2965 
2966     // Get the maximum unsigned value for the type.
2967     Value *MaxUIntTripCount =
2968         ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2969     Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2970 
2971     // Don't execute the vector loop if (UMax - n) < (VF * UF).
2972     CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, Step);
2973   }
2974   // Create new preheader for vector loop.
2975   LoopVectorPreHeader =
2976       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2977                  "vector.ph");
2978 
2979   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2980                                DT->getNode(Bypass)->getIDom()) &&
2981          "TC check is expected to dominate Bypass");
2982 
2983   // Update dominator for Bypass & LoopExit (if needed).
2984   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2985   if (!Cost->requiresScalarEpilogue(VF))
2986     // If there is an epilogue which must run, there's no edge from the
2987     // middle block to exit blocks  and thus no need to update the immediate
2988     // dominator of the exit blocks.
2989     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2990 
2991   ReplaceInstWithInst(
2992       TCCheckBlock->getTerminator(),
2993       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2994   LoopBypassBlocks.push_back(TCCheckBlock);
2995 }
2996 
2997 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
2998 
2999   BasicBlock *const SCEVCheckBlock =
3000       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3001   if (!SCEVCheckBlock)
3002     return nullptr;
3003 
3004   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3005            (OptForSizeBasedOnProfile &&
3006             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3007          "Cannot SCEV check stride or overflow when optimizing for size");
3008 
3009 
3010   // Update dominator only if this is first RT check.
3011   if (LoopBypassBlocks.empty()) {
3012     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3013     if (!Cost->requiresScalarEpilogue(VF))
3014       // If there is an epilogue which must run, there's no edge from the
3015       // middle block to exit blocks  and thus no need to update the immediate
3016       // dominator of the exit blocks.
3017       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3018   }
3019 
3020   LoopBypassBlocks.push_back(SCEVCheckBlock);
3021   AddedSafetyChecks = true;
3022   return SCEVCheckBlock;
3023 }
3024 
3025 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3026   // VPlan-native path does not do any analysis for runtime checks currently.
3027   if (EnableVPlanNativePath)
3028     return nullptr;
3029 
3030   BasicBlock *const MemCheckBlock =
3031       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3032 
3033   // Check if we generated code that checks in runtime if arrays overlap. We put
3034   // the checks into a separate block to make the more common case of few
3035   // elements faster.
3036   if (!MemCheckBlock)
3037     return nullptr;
3038 
3039   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3040     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3041            "Cannot emit memory checks when optimizing for size, unless forced "
3042            "to vectorize.");
3043     ORE->emit([&]() {
3044       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3045                                         OrigLoop->getStartLoc(),
3046                                         OrigLoop->getHeader())
3047              << "Code-size may be reduced by not forcing "
3048                 "vectorization, or by source-code modifications "
3049                 "eliminating the need for runtime checks "
3050                 "(e.g., adding 'restrict').";
3051     });
3052   }
3053 
3054   LoopBypassBlocks.push_back(MemCheckBlock);
3055 
3056   AddedSafetyChecks = true;
3057 
3058   // Only use noalias metadata when using memory checks guaranteeing no overlap
3059   // across all iterations.
3060   if (!Legal->getLAI()->getRuntimePointerChecking()->getDiffChecks()) {
3061     //  We currently don't use LoopVersioning for the actual loop cloning but we
3062     //  still use it to add the noalias metadata.
3063     LVer = std::make_unique<LoopVersioning>(
3064         *Legal->getLAI(),
3065         Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3066         DT, PSE.getSE());
3067     LVer->prepareNoAliasMetadata();
3068   }
3069   return MemCheckBlock;
3070 }
3071 
3072 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3073   LoopScalarBody = OrigLoop->getHeader();
3074   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3075   assert(LoopVectorPreHeader && "Invalid loop structure");
3076   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3077   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3078          "multiple exit loop without required epilogue?");
3079 
3080   LoopMiddleBlock =
3081       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3082                  LI, nullptr, Twine(Prefix) + "middle.block");
3083   LoopScalarPreHeader =
3084       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3085                  nullptr, Twine(Prefix) + "scalar.ph");
3086 
3087   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3088 
3089   // Set up the middle block terminator.  Two cases:
3090   // 1) If we know that we must execute the scalar epilogue, emit an
3091   //    unconditional branch.
3092   // 2) Otherwise, we must have a single unique exit block (due to how we
3093   //    implement the multiple exit case).  In this case, set up a conditonal
3094   //    branch from the middle block to the loop scalar preheader, and the
3095   //    exit block.  completeLoopSkeleton will update the condition to use an
3096   //    iteration check, if required to decide whether to execute the remainder.
3097   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3098     BranchInst::Create(LoopScalarPreHeader) :
3099     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3100                        Builder.getTrue());
3101   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3102   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3103 
3104   // Update dominator for loop exit. During skeleton creation, only the vector
3105   // pre-header and the middle block are created. The vector loop is entirely
3106   // created during VPlan exection.
3107   if (!Cost->requiresScalarEpilogue(VF))
3108     // If there is an epilogue which must run, there's no edge from the
3109     // middle block to exit blocks  and thus no need to update the immediate
3110     // dominator of the exit blocks.
3111     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3112 }
3113 
3114 void InnerLoopVectorizer::createInductionResumeValues(
3115     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3116   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3117           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3118          "Inconsistent information about additional bypass.");
3119 
3120   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3121   assert(VectorTripCount && "Expected valid arguments");
3122   // We are going to resume the execution of the scalar loop.
3123   // Go over all of the induction variables that we found and fix the
3124   // PHIs that are left in the scalar version of the loop.
3125   // The starting values of PHI nodes depend on the counter of the last
3126   // iteration in the vectorized loop.
3127   // If we come from a bypass edge then we need to start from the original
3128   // start value.
3129   Instruction *OldInduction = Legal->getPrimaryInduction();
3130   for (auto &InductionEntry : Legal->getInductionVars()) {
3131     PHINode *OrigPhi = InductionEntry.first;
3132     InductionDescriptor II = InductionEntry.second;
3133 
3134     Value *&EndValue = IVEndValues[OrigPhi];
3135     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3136     if (OrigPhi == OldInduction) {
3137       // We know what the end value is.
3138       EndValue = VectorTripCount;
3139     } else {
3140       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3141 
3142       // Fast-math-flags propagate from the original induction instruction.
3143       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3144         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3145 
3146       Type *StepType = II.getStep()->getType();
3147       Instruction::CastOps CastOp =
3148           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3149       Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc");
3150       Value *Step =
3151           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3152       EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3153       EndValue->setName("ind.end");
3154 
3155       // Compute the end value for the additional bypass (if applicable).
3156       if (AdditionalBypass.first) {
3157         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3158         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3159                                          StepType, true);
3160         Value *Step =
3161             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3162         VTC =
3163             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc");
3164         EndValueFromAdditionalBypass =
3165             emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3166         EndValueFromAdditionalBypass->setName("ind.end");
3167       }
3168     }
3169 
3170     // Create phi nodes to merge from the  backedge-taken check block.
3171     PHINode *BCResumeVal =
3172         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3173                         LoopScalarPreHeader->getTerminator());
3174     // Copy original phi DL over to the new one.
3175     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3176 
3177     // The new PHI merges the original incoming value, in case of a bypass,
3178     // or the value at the end of the vectorized loop.
3179     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3180 
3181     // Fix the scalar body counter (PHI node).
3182     // The old induction's phi node in the scalar body needs the truncated
3183     // value.
3184     for (BasicBlock *BB : LoopBypassBlocks)
3185       BCResumeVal->addIncoming(II.getStartValue(), BB);
3186 
3187     if (AdditionalBypass.first)
3188       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3189                                             EndValueFromAdditionalBypass);
3190 
3191     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3192   }
3193 }
3194 
3195 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3196   // The trip counts should be cached by now.
3197   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3198   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3199 
3200   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3201 
3202   // Add a check in the middle block to see if we have completed
3203   // all of the iterations in the first vector loop.  Three cases:
3204   // 1) If we require a scalar epilogue, there is no conditional branch as
3205   //    we unconditionally branch to the scalar preheader.  Do nothing.
3206   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3207   //    Thus if tail is to be folded, we know we don't need to run the
3208   //    remainder and we can use the previous value for the condition (true).
3209   // 3) Otherwise, construct a runtime check.
3210   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3211     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3212                                         Count, VectorTripCount, "cmp.n",
3213                                         LoopMiddleBlock->getTerminator());
3214 
3215     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3216     // of the corresponding compare because they may have ended up with
3217     // different line numbers and we want to avoid awkward line stepping while
3218     // debugging. Eg. if the compare has got a line number inside the loop.
3219     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3220     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3221   }
3222 
3223 #ifdef EXPENSIVE_CHECKS
3224   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3225 #endif
3226 
3227   return LoopVectorPreHeader;
3228 }
3229 
3230 std::pair<BasicBlock *, Value *>
3231 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3232   /*
3233    In this function we generate a new loop. The new loop will contain
3234    the vectorized instructions while the old loop will continue to run the
3235    scalar remainder.
3236 
3237        [ ] <-- loop iteration number check.
3238     /   |
3239    /    v
3240   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3241   |  /  |
3242   | /   v
3243   ||   [ ]     <-- vector pre header.
3244   |/    |
3245   |     v
3246   |    [  ] \
3247   |    [  ]_|   <-- vector loop (created during VPlan execution).
3248   |     |
3249   |     v
3250   \   -[ ]   <--- middle-block.
3251    \/   |
3252    /\   v
3253    | ->[ ]     <--- new preheader.
3254    |    |
3255  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3256    |   [ ] \
3257    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3258     \   |
3259      \  v
3260       >[ ]     <-- exit block(s).
3261    ...
3262    */
3263 
3264   // Get the metadata of the original loop before it gets modified.
3265   MDNode *OrigLoopID = OrigLoop->getLoopID();
3266 
3267   // Workaround!  Compute the trip count of the original loop and cache it
3268   // before we start modifying the CFG.  This code has a systemic problem
3269   // wherein it tries to run analysis over partially constructed IR; this is
3270   // wrong, and not simply for SCEV.  The trip count of the original loop
3271   // simply happens to be prone to hitting this in practice.  In theory, we
3272   // can hit the same issue for any SCEV, or ValueTracking query done during
3273   // mutation.  See PR49900.
3274   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3275 
3276   // Create an empty vector loop, and prepare basic blocks for the runtime
3277   // checks.
3278   createVectorLoopSkeleton("");
3279 
3280   // Now, compare the new count to zero. If it is zero skip the vector loop and
3281   // jump to the scalar loop. This check also covers the case where the
3282   // backedge-taken count is uint##_max: adding one to it will overflow leading
3283   // to an incorrect trip count of zero. In this (rare) case we will also jump
3284   // to the scalar loop.
3285   emitIterationCountCheck(LoopScalarPreHeader);
3286 
3287   // Generate the code to check any assumptions that we've made for SCEV
3288   // expressions.
3289   emitSCEVChecks(LoopScalarPreHeader);
3290 
3291   // Generate the code that checks in runtime if arrays overlap. We put the
3292   // checks into a separate block to make the more common case of few elements
3293   // faster.
3294   emitMemRuntimeChecks(LoopScalarPreHeader);
3295 
3296   // Emit phis for the new starting index of the scalar loop.
3297   createInductionResumeValues();
3298 
3299   return {completeLoopSkeleton(OrigLoopID), nullptr};
3300 }
3301 
3302 // Fix up external users of the induction variable. At this point, we are
3303 // in LCSSA form, with all external PHIs that use the IV having one input value,
3304 // coming from the remainder loop. We need those PHIs to also have a correct
3305 // value for the IV when arriving directly from the middle block.
3306 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3307                                        const InductionDescriptor &II,
3308                                        Value *VectorTripCount, Value *EndValue,
3309                                        BasicBlock *MiddleBlock,
3310                                        BasicBlock *VectorHeader, VPlan &Plan) {
3311   // There are two kinds of external IV usages - those that use the value
3312   // computed in the last iteration (the PHI) and those that use the penultimate
3313   // value (the value that feeds into the phi from the loop latch).
3314   // We allow both, but they, obviously, have different values.
3315 
3316   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3317 
3318   DenseMap<Value *, Value *> MissingVals;
3319 
3320   // An external user of the last iteration's value should see the value that
3321   // the remainder loop uses to initialize its own IV.
3322   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3323   for (User *U : PostInc->users()) {
3324     Instruction *UI = cast<Instruction>(U);
3325     if (!OrigLoop->contains(UI)) {
3326       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3327       MissingVals[UI] = EndValue;
3328     }
3329   }
3330 
3331   // An external user of the penultimate value need to see EndValue - Step.
3332   // The simplest way to get this is to recompute it from the constituent SCEVs,
3333   // that is Start + (Step * (CRD - 1)).
3334   for (User *U : OrigPhi->users()) {
3335     auto *UI = cast<Instruction>(U);
3336     if (!OrigLoop->contains(UI)) {
3337       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3338 
3339       IRBuilder<> B(MiddleBlock->getTerminator());
3340 
3341       // Fast-math-flags propagate from the original induction instruction.
3342       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3343         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3344 
3345       Value *CountMinusOne = B.CreateSub(
3346           VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1));
3347       Value *CMO =
3348           !II.getStep()->getType()->isIntegerTy()
3349               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3350                              II.getStep()->getType())
3351               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3352       CMO->setName("cast.cmo");
3353 
3354       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3355                                     VectorHeader->getTerminator());
3356       Value *Escape =
3357           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3358       Escape->setName("ind.escape");
3359       MissingVals[UI] = Escape;
3360     }
3361   }
3362 
3363   for (auto &I : MissingVals) {
3364     PHINode *PHI = cast<PHINode>(I.first);
3365     // One corner case we have to handle is two IVs "chasing" each-other,
3366     // that is %IV2 = phi [...], [ %IV1, %latch ]
3367     // In this case, if IV1 has an external use, we need to avoid adding both
3368     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3369     // don't already have an incoming value for the middle block.
3370     if (PHI->getBasicBlockIndex(MiddleBlock) == -1) {
3371       PHI->addIncoming(I.second, MiddleBlock);
3372       Plan.removeLiveOut(PHI);
3373     }
3374   }
3375 }
3376 
3377 namespace {
3378 
3379 struct CSEDenseMapInfo {
3380   static bool canHandle(const Instruction *I) {
3381     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3382            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3383   }
3384 
3385   static inline Instruction *getEmptyKey() {
3386     return DenseMapInfo<Instruction *>::getEmptyKey();
3387   }
3388 
3389   static inline Instruction *getTombstoneKey() {
3390     return DenseMapInfo<Instruction *>::getTombstoneKey();
3391   }
3392 
3393   static unsigned getHashValue(const Instruction *I) {
3394     assert(canHandle(I) && "Unknown instruction!");
3395     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3396                                                            I->value_op_end()));
3397   }
3398 
3399   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3400     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3401         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3402       return LHS == RHS;
3403     return LHS->isIdenticalTo(RHS);
3404   }
3405 };
3406 
3407 } // end anonymous namespace
3408 
3409 ///Perform cse of induction variable instructions.
3410 static void cse(BasicBlock *BB) {
3411   // Perform simple cse.
3412   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3413   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3414     if (!CSEDenseMapInfo::canHandle(&In))
3415       continue;
3416 
3417     // Check if we can replace this instruction with any of the
3418     // visited instructions.
3419     if (Instruction *V = CSEMap.lookup(&In)) {
3420       In.replaceAllUsesWith(V);
3421       In.eraseFromParent();
3422       continue;
3423     }
3424 
3425     CSEMap[&In] = &In;
3426   }
3427 }
3428 
3429 InstructionCost
3430 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3431                                               bool &NeedToScalarize) const {
3432   Function *F = CI->getCalledFunction();
3433   Type *ScalarRetTy = CI->getType();
3434   SmallVector<Type *, 4> Tys, ScalarTys;
3435   for (auto &ArgOp : CI->args())
3436     ScalarTys.push_back(ArgOp->getType());
3437 
3438   // Estimate cost of scalarized vector call. The source operands are assumed
3439   // to be vectors, so we need to extract individual elements from there,
3440   // execute VF scalar calls, and then gather the result into the vector return
3441   // value.
3442   InstructionCost ScalarCallCost =
3443       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3444   if (VF.isScalar())
3445     return ScalarCallCost;
3446 
3447   // Compute corresponding vector type for return value and arguments.
3448   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3449   for (Type *ScalarTy : ScalarTys)
3450     Tys.push_back(ToVectorTy(ScalarTy, VF));
3451 
3452   // Compute costs of unpacking argument values for the scalar calls and
3453   // packing the return values to a vector.
3454   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3455 
3456   InstructionCost Cost =
3457       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3458 
3459   // If we can't emit a vector call for this function, then the currently found
3460   // cost is the cost we need to return.
3461   NeedToScalarize = true;
3462   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3463   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3464 
3465   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3466     return Cost;
3467 
3468   // If the corresponding vector cost is cheaper, return its cost.
3469   InstructionCost VectorCallCost =
3470       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3471   if (VectorCallCost < Cost) {
3472     NeedToScalarize = false;
3473     Cost = VectorCallCost;
3474   }
3475   return Cost;
3476 }
3477 
3478 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3479   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3480     return Elt;
3481   return VectorType::get(Elt, VF);
3482 }
3483 
3484 InstructionCost
3485 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3486                                                    ElementCount VF) const {
3487   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3488   assert(ID && "Expected intrinsic call!");
3489   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3490   FastMathFlags FMF;
3491   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3492     FMF = FPMO->getFastMathFlags();
3493 
3494   SmallVector<const Value *> Arguments(CI->args());
3495   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3496   SmallVector<Type *> ParamTys;
3497   std::transform(FTy->param_begin(), FTy->param_end(),
3498                  std::back_inserter(ParamTys),
3499                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3500 
3501   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3502                                     dyn_cast<IntrinsicInst>(CI));
3503   return TTI.getIntrinsicInstrCost(CostAttrs,
3504                                    TargetTransformInfo::TCK_RecipThroughput);
3505 }
3506 
3507 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3508   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3509   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3510   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3511 }
3512 
3513 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3514   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3515   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3516   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3517 }
3518 
3519 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3520   // For every instruction `I` in MinBWs, truncate the operands, create a
3521   // truncated version of `I` and reextend its result. InstCombine runs
3522   // later and will remove any ext/trunc pairs.
3523   SmallPtrSet<Value *, 4> Erased;
3524   for (const auto &KV : Cost->getMinimalBitwidths()) {
3525     // If the value wasn't vectorized, we must maintain the original scalar
3526     // type. The absence of the value from State indicates that it
3527     // wasn't vectorized.
3528     // FIXME: Should not rely on getVPValue at this point.
3529     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3530     if (!State.hasAnyVectorValue(Def))
3531       continue;
3532     for (unsigned Part = 0; Part < UF; ++Part) {
3533       Value *I = State.get(Def, Part);
3534       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3535         continue;
3536       Type *OriginalTy = I->getType();
3537       Type *ScalarTruncatedTy =
3538           IntegerType::get(OriginalTy->getContext(), KV.second);
3539       auto *TruncatedTy = VectorType::get(
3540           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3541       if (TruncatedTy == OriginalTy)
3542         continue;
3543 
3544       IRBuilder<> B(cast<Instruction>(I));
3545       auto ShrinkOperand = [&](Value *V) -> Value * {
3546         if (auto *ZI = dyn_cast<ZExtInst>(V))
3547           if (ZI->getSrcTy() == TruncatedTy)
3548             return ZI->getOperand(0);
3549         return B.CreateZExtOrTrunc(V, TruncatedTy);
3550       };
3551 
3552       // The actual instruction modification depends on the instruction type,
3553       // unfortunately.
3554       Value *NewI = nullptr;
3555       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3556         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3557                              ShrinkOperand(BO->getOperand(1)));
3558 
3559         // Any wrapping introduced by shrinking this operation shouldn't be
3560         // considered undefined behavior. So, we can't unconditionally copy
3561         // arithmetic wrapping flags to NewI.
3562         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3563       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3564         NewI =
3565             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3566                          ShrinkOperand(CI->getOperand(1)));
3567       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3568         NewI = B.CreateSelect(SI->getCondition(),
3569                               ShrinkOperand(SI->getTrueValue()),
3570                               ShrinkOperand(SI->getFalseValue()));
3571       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3572         switch (CI->getOpcode()) {
3573         default:
3574           llvm_unreachable("Unhandled cast!");
3575         case Instruction::Trunc:
3576           NewI = ShrinkOperand(CI->getOperand(0));
3577           break;
3578         case Instruction::SExt:
3579           NewI = B.CreateSExtOrTrunc(
3580               CI->getOperand(0),
3581               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3582           break;
3583         case Instruction::ZExt:
3584           NewI = B.CreateZExtOrTrunc(
3585               CI->getOperand(0),
3586               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3587           break;
3588         }
3589       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3590         auto Elements0 =
3591             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3592         auto *O0 = B.CreateZExtOrTrunc(
3593             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3594         auto Elements1 =
3595             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3596         auto *O1 = B.CreateZExtOrTrunc(
3597             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3598 
3599         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3600       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3601         // Don't do anything with the operands, just extend the result.
3602         continue;
3603       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3604         auto Elements =
3605             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3606         auto *O0 = B.CreateZExtOrTrunc(
3607             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3608         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3609         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3610       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3611         auto Elements =
3612             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3613         auto *O0 = B.CreateZExtOrTrunc(
3614             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3615         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3616       } else {
3617         // If we don't know what to do, be conservative and don't do anything.
3618         continue;
3619       }
3620 
3621       // Lastly, extend the result.
3622       NewI->takeName(cast<Instruction>(I));
3623       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3624       I->replaceAllUsesWith(Res);
3625       cast<Instruction>(I)->eraseFromParent();
3626       Erased.insert(I);
3627       State.reset(Def, Res, Part);
3628     }
3629   }
3630 
3631   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3632   for (const auto &KV : Cost->getMinimalBitwidths()) {
3633     // If the value wasn't vectorized, we must maintain the original scalar
3634     // type. The absence of the value from State indicates that it
3635     // wasn't vectorized.
3636     // FIXME: Should not rely on getVPValue at this point.
3637     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3638     if (!State.hasAnyVectorValue(Def))
3639       continue;
3640     for (unsigned Part = 0; Part < UF; ++Part) {
3641       Value *I = State.get(Def, Part);
3642       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3643       if (Inst && Inst->use_empty()) {
3644         Value *NewI = Inst->getOperand(0);
3645         Inst->eraseFromParent();
3646         State.reset(Def, NewI, Part);
3647       }
3648     }
3649   }
3650 }
3651 
3652 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State,
3653                                             VPlan &Plan) {
3654   // Insert truncates and extends for any truncated instructions as hints to
3655   // InstCombine.
3656   if (VF.isVector())
3657     truncateToMinimalBitwidths(State);
3658 
3659   // Fix widened non-induction PHIs by setting up the PHI operands.
3660   if (EnableVPlanNativePath)
3661     fixNonInductionPHIs(Plan, State);
3662 
3663   // At this point every instruction in the original loop is widened to a
3664   // vector form. Now we need to fix the recurrences in the loop. These PHI
3665   // nodes are currently empty because we did not want to introduce cycles.
3666   // This is the second stage of vectorizing recurrences.
3667   fixCrossIterationPHIs(State);
3668 
3669   // Forget the original basic block.
3670   PSE.getSE()->forgetLoop(OrigLoop);
3671 
3672   VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock();
3673   Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]);
3674   if (Cost->requiresScalarEpilogue(VF)) {
3675     // No edge from the middle block to the unique exit block has been inserted
3676     // and there is nothing to fix from vector loop; phis should have incoming
3677     // from scalar loop only.
3678     Plan.clearLiveOuts();
3679   } else {
3680     // If we inserted an edge from the middle block to the unique exit block,
3681     // update uses outside the loop (phis) to account for the newly inserted
3682     // edge.
3683 
3684     // Fix-up external users of the induction variables.
3685     for (auto &Entry : Legal->getInductionVars())
3686       fixupIVUsers(Entry.first, Entry.second,
3687                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3688                    IVEndValues[Entry.first], LoopMiddleBlock,
3689                    VectorLoop->getHeader(), Plan);
3690   }
3691 
3692   // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated
3693   // in the exit block, so update the builder.
3694   State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI());
3695   for (auto &KV : Plan.getLiveOuts())
3696     KV.second->fixPhi(Plan, State);
3697 
3698   for (Instruction *PI : PredicatedInstructions)
3699     sinkScalarOperands(&*PI);
3700 
3701   // Remove redundant induction instructions.
3702   cse(VectorLoop->getHeader());
3703 
3704   // Set/update profile weights for the vector and remainder loops as original
3705   // loop iterations are now distributed among them. Note that original loop
3706   // represented by LoopScalarBody becomes remainder loop after vectorization.
3707   //
3708   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3709   // end up getting slightly roughened result but that should be OK since
3710   // profile is not inherently precise anyway. Note also possible bypass of
3711   // vector code caused by legality checks is ignored, assigning all the weight
3712   // to the vector loop, optimistically.
3713   //
3714   // For scalable vectorization we can't know at compile time how many iterations
3715   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3716   // vscale of '1'.
3717   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3718                                LI->getLoopFor(LoopScalarBody),
3719                                VF.getKnownMinValue() * UF);
3720 }
3721 
3722 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3723   // In order to support recurrences we need to be able to vectorize Phi nodes.
3724   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3725   // stage #2: We now need to fix the recurrences by adding incoming edges to
3726   // the currently empty PHI nodes. At this point every instruction in the
3727   // original loop is widened to a vector form so we can use them to construct
3728   // the incoming edges.
3729   VPBasicBlock *Header =
3730       State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
3731   for (VPRecipeBase &R : Header->phis()) {
3732     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3733       fixReduction(ReductionPhi, State);
3734     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3735       fixFirstOrderRecurrence(FOR, State);
3736   }
3737 }
3738 
3739 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3740     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3741   // This is the second phase of vectorizing first-order recurrences. An
3742   // overview of the transformation is described below. Suppose we have the
3743   // following loop.
3744   //
3745   //   for (int i = 0; i < n; ++i)
3746   //     b[i] = a[i] - a[i - 1];
3747   //
3748   // There is a first-order recurrence on "a". For this loop, the shorthand
3749   // scalar IR looks like:
3750   //
3751   //   scalar.ph:
3752   //     s_init = a[-1]
3753   //     br scalar.body
3754   //
3755   //   scalar.body:
3756   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3757   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3758   //     s2 = a[i]
3759   //     b[i] = s2 - s1
3760   //     br cond, scalar.body, ...
3761   //
3762   // In this example, s1 is a recurrence because it's value depends on the
3763   // previous iteration. In the first phase of vectorization, we created a
3764   // vector phi v1 for s1. We now complete the vectorization and produce the
3765   // shorthand vector IR shown below (for VF = 4, UF = 1).
3766   //
3767   //   vector.ph:
3768   //     v_init = vector(..., ..., ..., a[-1])
3769   //     br vector.body
3770   //
3771   //   vector.body
3772   //     i = phi [0, vector.ph], [i+4, vector.body]
3773   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3774   //     v2 = a[i, i+1, i+2, i+3];
3775   //     v3 = vector(v1(3), v2(0, 1, 2))
3776   //     b[i, i+1, i+2, i+3] = v2 - v3
3777   //     br cond, vector.body, middle.block
3778   //
3779   //   middle.block:
3780   //     x = v2(3)
3781   //     br scalar.ph
3782   //
3783   //   scalar.ph:
3784   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3785   //     br scalar.body
3786   //
3787   // After execution completes the vector loop, we extract the next value of
3788   // the recurrence (x) to use as the initial value in the scalar loop.
3789 
3790   // Extract the last vector element in the middle block. This will be the
3791   // initial value for the recurrence when jumping to the scalar loop.
3792   VPValue *PreviousDef = PhiR->getBackedgeValue();
3793   Value *Incoming = State.get(PreviousDef, UF - 1);
3794   auto *ExtractForScalar = Incoming;
3795   auto *IdxTy = Builder.getInt32Ty();
3796   if (VF.isVector()) {
3797     auto *One = ConstantInt::get(IdxTy, 1);
3798     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3799     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3800     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3801     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3802                                                     "vector.recur.extract");
3803   }
3804   // Extract the second last element in the middle block if the
3805   // Phi is used outside the loop. We need to extract the phi itself
3806   // and not the last element (the phi update in the current iteration). This
3807   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3808   // when the scalar loop is not run at all.
3809   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3810   if (VF.isVector()) {
3811     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3812     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3813     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3814         Incoming, Idx, "vector.recur.extract.for.phi");
3815   } else if (UF > 1)
3816     // When loop is unrolled without vectorizing, initialize
3817     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3818     // of `Incoming`. This is analogous to the vectorized case above: extracting
3819     // the second last element when VF > 1.
3820     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3821 
3822   // Fix the initial value of the original recurrence in the scalar loop.
3823   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3824   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3825   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3826   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3827   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3828     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3829     Start->addIncoming(Incoming, BB);
3830   }
3831 
3832   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3833   Phi->setName("scalar.recur");
3834 
3835   // Finally, fix users of the recurrence outside the loop. The users will need
3836   // either the last value of the scalar recurrence or the last value of the
3837   // vector recurrence we extracted in the middle block. Since the loop is in
3838   // LCSSA form, we just need to find all the phi nodes for the original scalar
3839   // recurrence in the exit block, and then add an edge for the middle block.
3840   // Note that LCSSA does not imply single entry when the original scalar loop
3841   // had multiple exiting edges (as we always run the last iteration in the
3842   // scalar epilogue); in that case, there is no edge from middle to exit and
3843   // and thus no phis which needed updated.
3844   if (!Cost->requiresScalarEpilogue(VF))
3845     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3846       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) {
3847         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3848         State.Plan->removeLiveOut(&LCSSAPhi);
3849       }
3850 }
3851 
3852 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3853                                        VPTransformState &State) {
3854   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3855   // Get it's reduction variable descriptor.
3856   assert(Legal->isReductionVariable(OrigPhi) &&
3857          "Unable to find the reduction variable");
3858   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3859 
3860   RecurKind RK = RdxDesc.getRecurrenceKind();
3861   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3862   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3863   setDebugLocFromInst(ReductionStartValue);
3864 
3865   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3866   // This is the vector-clone of the value that leaves the loop.
3867   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3868 
3869   // Wrap flags are in general invalid after vectorization, clear them.
3870   clearReductionWrapFlags(PhiR, State);
3871 
3872   // Before each round, move the insertion point right between
3873   // the PHIs and the values we are going to write.
3874   // This allows us to write both PHINodes and the extractelement
3875   // instructions.
3876   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3877 
3878   setDebugLocFromInst(LoopExitInst);
3879 
3880   Type *PhiTy = OrigPhi->getType();
3881 
3882   VPBasicBlock *LatchVPBB =
3883       PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock();
3884   BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB];
3885   // If tail is folded by masking, the vector value to leave the loop should be
3886   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3887   // instead of the former. For an inloop reduction the reduction will already
3888   // be predicated, and does not need to be handled here.
3889   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3890     for (unsigned Part = 0; Part < UF; ++Part) {
3891       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3892       SelectInst *Sel = nullptr;
3893       for (User *U : VecLoopExitInst->users()) {
3894         if (isa<SelectInst>(U)) {
3895           assert(!Sel && "Reduction exit feeding two selects");
3896           Sel = cast<SelectInst>(U);
3897         } else
3898           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3899       }
3900       assert(Sel && "Reduction exit feeds no select");
3901       State.reset(LoopExitInstDef, Sel, Part);
3902 
3903       if (isa<FPMathOperator>(Sel))
3904         Sel->setFastMathFlags(RdxDesc.getFastMathFlags());
3905 
3906       // If the target can create a predicated operator for the reduction at no
3907       // extra cost in the loop (for example a predicated vadd), it can be
3908       // cheaper for the select to remain in the loop than be sunk out of it,
3909       // and so use the select value for the phi instead of the old
3910       // LoopExitValue.
3911       if (PreferPredicatedReductionSelect ||
3912           TTI->preferPredicatedReductionSelect(
3913               RdxDesc.getOpcode(), PhiTy,
3914               TargetTransformInfo::ReductionFlags())) {
3915         auto *VecRdxPhi =
3916             cast<PHINode>(State.get(PhiR, Part));
3917         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3918       }
3919     }
3920   }
3921 
3922   // If the vector reduction can be performed in a smaller type, we truncate
3923   // then extend the loop exit value to enable InstCombine to evaluate the
3924   // entire expression in the smaller type.
3925   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3926     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3927     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3928     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3929     VectorParts RdxParts(UF);
3930     for (unsigned Part = 0; Part < UF; ++Part) {
3931       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3932       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3933       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3934                                         : Builder.CreateZExt(Trunc, VecTy);
3935       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3936         if (U != Trunc) {
3937           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3938           RdxParts[Part] = Extnd;
3939         }
3940     }
3941     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3942     for (unsigned Part = 0; Part < UF; ++Part) {
3943       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3944       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3945     }
3946   }
3947 
3948   // Reduce all of the unrolled parts into a single vector.
3949   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3950   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3951 
3952   // The middle block terminator has already been assigned a DebugLoc here (the
3953   // OrigLoop's single latch terminator). We want the whole middle block to
3954   // appear to execute on this line because: (a) it is all compiler generated,
3955   // (b) these instructions are always executed after evaluating the latch
3956   // conditional branch, and (c) other passes may add new predecessors which
3957   // terminate on this line. This is the easiest way to ensure we don't
3958   // accidentally cause an extra step back into the loop while debugging.
3959   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3960   if (PhiR->isOrdered())
3961     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3962   else {
3963     // Floating-point operations should have some FMF to enable the reduction.
3964     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3965     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3966     for (unsigned Part = 1; Part < UF; ++Part) {
3967       Value *RdxPart = State.get(LoopExitInstDef, Part);
3968       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3969         ReducedPartRdx = Builder.CreateBinOp(
3970             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3971       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3972         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3973                                            ReducedPartRdx, RdxPart);
3974       else
3975         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
3976     }
3977   }
3978 
3979   // Create the reduction after the loop. Note that inloop reductions create the
3980   // target reduction in the loop using a Reduction recipe.
3981   if (VF.isVector() && !PhiR->isInLoop()) {
3982     ReducedPartRdx =
3983         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
3984     // If the reduction can be performed in a smaller type, we need to extend
3985     // the reduction to the wider type before we branch to the original loop.
3986     if (PhiTy != RdxDesc.getRecurrenceType())
3987       ReducedPartRdx = RdxDesc.isSigned()
3988                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
3989                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
3990   }
3991 
3992   PHINode *ResumePhi =
3993       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
3994 
3995   // Create a phi node that merges control-flow from the backedge-taken check
3996   // block and the middle block.
3997   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
3998                                         LoopScalarPreHeader->getTerminator());
3999 
4000   // If we are fixing reductions in the epilogue loop then we should already
4001   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4002   // we carry over the incoming values correctly.
4003   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4004     if (Incoming == LoopMiddleBlock)
4005       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4006     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4007       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4008                               Incoming);
4009     else
4010       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4011   }
4012 
4013   // Set the resume value for this reduction
4014   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4015 
4016   // If there were stores of the reduction value to a uniform memory address
4017   // inside the loop, create the final store here.
4018   if (StoreInst *SI = RdxDesc.IntermediateStore) {
4019     StoreInst *NewSI =
4020         Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand());
4021     propagateMetadata(NewSI, SI);
4022 
4023     // If the reduction value is used in other places,
4024     // then let the code below create PHI's for that.
4025   }
4026 
4027   // Now, we need to fix the users of the reduction variable
4028   // inside and outside of the scalar remainder loop.
4029 
4030   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4031   // in the exit blocks.  See comment on analogous loop in
4032   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4033   if (!Cost->requiresScalarEpilogue(VF))
4034     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4035       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) {
4036         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4037         State.Plan->removeLiveOut(&LCSSAPhi);
4038       }
4039 
4040   // Fix the scalar loop reduction variable with the incoming reduction sum
4041   // from the vector body and from the backedge value.
4042   int IncomingEdgeBlockIdx =
4043       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4044   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4045   // Pick the other block.
4046   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4047   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4048   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4049 }
4050 
4051 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
4052                                                   VPTransformState &State) {
4053   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4054   RecurKind RK = RdxDesc.getRecurrenceKind();
4055   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4056     return;
4057 
4058   SmallVector<VPValue *, 8> Worklist;
4059   SmallPtrSet<VPValue *, 8> Visited;
4060   Worklist.push_back(PhiR);
4061   Visited.insert(PhiR);
4062 
4063   while (!Worklist.empty()) {
4064     VPValue *Cur = Worklist.pop_back_val();
4065     for (unsigned Part = 0; Part < UF; ++Part) {
4066       Value *V = State.get(Cur, Part);
4067       if (!isa<OverflowingBinaryOperator>(V))
4068         break;
4069       cast<Instruction>(V)->dropPoisonGeneratingFlags();
4070       }
4071 
4072       for (VPUser *U : Cur->users()) {
4073         auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
4074         if (!UserRecipe)
4075           continue;
4076         for (VPValue *V : UserRecipe->definedValues())
4077           if (Visited.insert(V).second)
4078             Worklist.push_back(V);
4079       }
4080   }
4081 }
4082 
4083 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4084   // The basic block and loop containing the predicated instruction.
4085   auto *PredBB = PredInst->getParent();
4086   auto *VectorLoop = LI->getLoopFor(PredBB);
4087 
4088   // Initialize a worklist with the operands of the predicated instruction.
4089   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4090 
4091   // Holds instructions that we need to analyze again. An instruction may be
4092   // reanalyzed if we don't yet know if we can sink it or not.
4093   SmallVector<Instruction *, 8> InstsToReanalyze;
4094 
4095   // Returns true if a given use occurs in the predicated block. Phi nodes use
4096   // their operands in their corresponding predecessor blocks.
4097   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4098     auto *I = cast<Instruction>(U.getUser());
4099     BasicBlock *BB = I->getParent();
4100     if (auto *Phi = dyn_cast<PHINode>(I))
4101       BB = Phi->getIncomingBlock(
4102           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4103     return BB == PredBB;
4104   };
4105 
4106   // Iteratively sink the scalarized operands of the predicated instruction
4107   // into the block we created for it. When an instruction is sunk, it's
4108   // operands are then added to the worklist. The algorithm ends after one pass
4109   // through the worklist doesn't sink a single instruction.
4110   bool Changed;
4111   do {
4112     // Add the instructions that need to be reanalyzed to the worklist, and
4113     // reset the changed indicator.
4114     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4115     InstsToReanalyze.clear();
4116     Changed = false;
4117 
4118     while (!Worklist.empty()) {
4119       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4120 
4121       // We can't sink an instruction if it is a phi node, is not in the loop,
4122       // or may have side effects.
4123       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4124           I->mayHaveSideEffects())
4125         continue;
4126 
4127       // If the instruction is already in PredBB, check if we can sink its
4128       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4129       // sinking the scalar instruction I, hence it appears in PredBB; but it
4130       // may have failed to sink I's operands (recursively), which we try
4131       // (again) here.
4132       if (I->getParent() == PredBB) {
4133         Worklist.insert(I->op_begin(), I->op_end());
4134         continue;
4135       }
4136 
4137       // It's legal to sink the instruction if all its uses occur in the
4138       // predicated block. Otherwise, there's nothing to do yet, and we may
4139       // need to reanalyze the instruction.
4140       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4141         InstsToReanalyze.push_back(I);
4142         continue;
4143       }
4144 
4145       // Move the instruction to the beginning of the predicated block, and add
4146       // it's operands to the worklist.
4147       I->moveBefore(&*PredBB->getFirstInsertionPt());
4148       Worklist.insert(I->op_begin(), I->op_end());
4149 
4150       // The sinking may have enabled other instructions to be sunk, so we will
4151       // need to iterate.
4152       Changed = true;
4153     }
4154   } while (Changed);
4155 }
4156 
4157 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan,
4158                                               VPTransformState &State) {
4159   auto Iter = depth_first(
4160       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry()));
4161   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
4162     for (VPRecipeBase &P : VPBB->phis()) {
4163       VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P);
4164       if (!VPPhi)
4165         continue;
4166       PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4167       // Make sure the builder has a valid insert point.
4168       Builder.SetInsertPoint(NewPhi);
4169       for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4170         VPValue *Inc = VPPhi->getIncomingValue(i);
4171         VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4172         NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4173       }
4174     }
4175   }
4176 }
4177 
4178 bool InnerLoopVectorizer::useOrderedReductions(
4179     const RecurrenceDescriptor &RdxDesc) {
4180   return Cost->useOrderedReductions(RdxDesc);
4181 }
4182 
4183 /// A helper function for checking whether an integer division-related
4184 /// instruction may divide by zero (in which case it must be predicated if
4185 /// executed conditionally in the scalar code).
4186 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4187 /// Non-zero divisors that are non compile-time constants will not be
4188 /// converted into multiplication, so we will still end up scalarizing
4189 /// the division, but can do so w/o predication.
4190 static bool mayDivideByZero(Instruction &I) {
4191   assert((I.getOpcode() == Instruction::UDiv ||
4192           I.getOpcode() == Instruction::SDiv ||
4193           I.getOpcode() == Instruction::URem ||
4194           I.getOpcode() == Instruction::SRem) &&
4195          "Unexpected instruction");
4196   Value *Divisor = I.getOperand(1);
4197   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4198   return !CInt || CInt->isZero();
4199 }
4200 
4201 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4202                                                VPUser &ArgOperands,
4203                                                VPTransformState &State) {
4204   assert(!isa<DbgInfoIntrinsic>(I) &&
4205          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4206   setDebugLocFromInst(&I);
4207 
4208   Module *M = I.getParent()->getParent()->getParent();
4209   auto *CI = cast<CallInst>(&I);
4210 
4211   SmallVector<Type *, 4> Tys;
4212   for (Value *ArgOperand : CI->args())
4213     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4214 
4215   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4216 
4217   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4218   // version of the instruction.
4219   // Is it beneficial to perform intrinsic call compared to lib call?
4220   bool NeedToScalarize = false;
4221   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4222   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4223   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4224   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4225          "Instruction should be scalarized elsewhere.");
4226   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4227          "Either the intrinsic cost or vector call cost must be valid");
4228 
4229   for (unsigned Part = 0; Part < UF; ++Part) {
4230     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4231     SmallVector<Value *, 4> Args;
4232     for (auto &I : enumerate(ArgOperands.operands())) {
4233       // Some intrinsics have a scalar argument - don't replace it with a
4234       // vector.
4235       Value *Arg;
4236       if (!UseVectorIntrinsic ||
4237           !isVectorIntrinsicWithScalarOpAtArg(ID, I.index()))
4238         Arg = State.get(I.value(), Part);
4239       else
4240         Arg = State.get(I.value(), VPIteration(0, 0));
4241       if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index()))
4242         TysForDecl.push_back(Arg->getType());
4243       Args.push_back(Arg);
4244     }
4245 
4246     Function *VectorF;
4247     if (UseVectorIntrinsic) {
4248       // Use vector version of the intrinsic.
4249       if (VF.isVector())
4250         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4251       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4252       assert(VectorF && "Can't retrieve vector intrinsic.");
4253     } else {
4254       // Use vector version of the function call.
4255       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4256 #ifndef NDEBUG
4257       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4258              "Can't create vector function.");
4259 #endif
4260         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4261     }
4262       SmallVector<OperandBundleDef, 1> OpBundles;
4263       CI->getOperandBundlesAsDefs(OpBundles);
4264       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4265 
4266       if (isa<FPMathOperator>(V))
4267         V->copyFastMathFlags(CI);
4268 
4269       State.set(Def, V, Part);
4270       addMetadata(V, &I);
4271   }
4272 }
4273 
4274 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4275   // We should not collect Scalars more than once per VF. Right now, this
4276   // function is called from collectUniformsAndScalars(), which already does
4277   // this check. Collecting Scalars for VF=1 does not make any sense.
4278   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4279          "This function should not be visited twice for the same VF");
4280 
4281   // This avoids any chances of creating a REPLICATE recipe during planning
4282   // since that would result in generation of scalarized code during execution,
4283   // which is not supported for scalable vectors.
4284   if (VF.isScalable()) {
4285     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4286     return;
4287   }
4288 
4289   SmallSetVector<Instruction *, 8> Worklist;
4290 
4291   // These sets are used to seed the analysis with pointers used by memory
4292   // accesses that will remain scalar.
4293   SmallSetVector<Instruction *, 8> ScalarPtrs;
4294   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4295   auto *Latch = TheLoop->getLoopLatch();
4296 
4297   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4298   // The pointer operands of loads and stores will be scalar as long as the
4299   // memory access is not a gather or scatter operation. The value operand of a
4300   // store will remain scalar if the store is scalarized.
4301   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4302     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4303     assert(WideningDecision != CM_Unknown &&
4304            "Widening decision should be ready at this moment");
4305     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4306       if (Ptr == Store->getValueOperand())
4307         return WideningDecision == CM_Scalarize;
4308     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4309            "Ptr is neither a value or pointer operand");
4310     return WideningDecision != CM_GatherScatter;
4311   };
4312 
4313   // A helper that returns true if the given value is a bitcast or
4314   // getelementptr instruction contained in the loop.
4315   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4316     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4317             isa<GetElementPtrInst>(V)) &&
4318            !TheLoop->isLoopInvariant(V);
4319   };
4320 
4321   // A helper that evaluates a memory access's use of a pointer. If the use will
4322   // be a scalar use and the pointer is only used by memory accesses, we place
4323   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4324   // PossibleNonScalarPtrs.
4325   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4326     // We only care about bitcast and getelementptr instructions contained in
4327     // the loop.
4328     if (!isLoopVaryingBitCastOrGEP(Ptr))
4329       return;
4330 
4331     // If the pointer has already been identified as scalar (e.g., if it was
4332     // also identified as uniform), there's nothing to do.
4333     auto *I = cast<Instruction>(Ptr);
4334     if (Worklist.count(I))
4335       return;
4336 
4337     // If the use of the pointer will be a scalar use, and all users of the
4338     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4339     // place the pointer in PossibleNonScalarPtrs.
4340     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4341           return isa<LoadInst>(U) || isa<StoreInst>(U);
4342         }))
4343       ScalarPtrs.insert(I);
4344     else
4345       PossibleNonScalarPtrs.insert(I);
4346   };
4347 
4348   // We seed the scalars analysis with three classes of instructions: (1)
4349   // instructions marked uniform-after-vectorization and (2) bitcast,
4350   // getelementptr and (pointer) phi instructions used by memory accesses
4351   // requiring a scalar use.
4352   //
4353   // (1) Add to the worklist all instructions that have been identified as
4354   // uniform-after-vectorization.
4355   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4356 
4357   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4358   // memory accesses requiring a scalar use. The pointer operands of loads and
4359   // stores will be scalar as long as the memory accesses is not a gather or
4360   // scatter operation. The value operand of a store will remain scalar if the
4361   // store is scalarized.
4362   for (auto *BB : TheLoop->blocks())
4363     for (auto &I : *BB) {
4364       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4365         evaluatePtrUse(Load, Load->getPointerOperand());
4366       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4367         evaluatePtrUse(Store, Store->getPointerOperand());
4368         evaluatePtrUse(Store, Store->getValueOperand());
4369       }
4370     }
4371   for (auto *I : ScalarPtrs)
4372     if (!PossibleNonScalarPtrs.count(I)) {
4373       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4374       Worklist.insert(I);
4375     }
4376 
4377   // Insert the forced scalars.
4378   // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
4379   // induction variable when the PHI user is scalarized.
4380   auto ForcedScalar = ForcedScalars.find(VF);
4381   if (ForcedScalar != ForcedScalars.end())
4382     for (auto *I : ForcedScalar->second)
4383       Worklist.insert(I);
4384 
4385   // Expand the worklist by looking through any bitcasts and getelementptr
4386   // instructions we've already identified as scalar. This is similar to the
4387   // expansion step in collectLoopUniforms(); however, here we're only
4388   // expanding to include additional bitcasts and getelementptr instructions.
4389   unsigned Idx = 0;
4390   while (Idx != Worklist.size()) {
4391     Instruction *Dst = Worklist[Idx++];
4392     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4393       continue;
4394     auto *Src = cast<Instruction>(Dst->getOperand(0));
4395     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4396           auto *J = cast<Instruction>(U);
4397           return !TheLoop->contains(J) || Worklist.count(J) ||
4398                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4399                   isScalarUse(J, Src));
4400         })) {
4401       Worklist.insert(Src);
4402       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4403     }
4404   }
4405 
4406   // An induction variable will remain scalar if all users of the induction
4407   // variable and induction variable update remain scalar.
4408   for (auto &Induction : Legal->getInductionVars()) {
4409     auto *Ind = Induction.first;
4410     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4411 
4412     // If tail-folding is applied, the primary induction variable will be used
4413     // to feed a vector compare.
4414     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4415       continue;
4416 
4417     // Returns true if \p Indvar is a pointer induction that is used directly by
4418     // load/store instruction \p I.
4419     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4420                                               Instruction *I) {
4421       return Induction.second.getKind() ==
4422                  InductionDescriptor::IK_PtrInduction &&
4423              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4424              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4425     };
4426 
4427     // Determine if all users of the induction variable are scalar after
4428     // vectorization.
4429     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4430       auto *I = cast<Instruction>(U);
4431       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4432              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4433     });
4434     if (!ScalarInd)
4435       continue;
4436 
4437     // Determine if all users of the induction variable update instruction are
4438     // scalar after vectorization.
4439     auto ScalarIndUpdate =
4440         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4441           auto *I = cast<Instruction>(U);
4442           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4443                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4444         });
4445     if (!ScalarIndUpdate)
4446       continue;
4447 
4448     // The induction variable and its update instruction will remain scalar.
4449     Worklist.insert(Ind);
4450     Worklist.insert(IndUpdate);
4451     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4452     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4453                       << "\n");
4454   }
4455 
4456   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4457 }
4458 
4459 bool LoopVectorizationCostModel::isScalarWithPredication(
4460     Instruction *I, ElementCount VF) const {
4461   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4462     return false;
4463   switch(I->getOpcode()) {
4464   default:
4465     break;
4466   case Instruction::Load:
4467   case Instruction::Store: {
4468     if (!Legal->isMaskRequired(I))
4469       return false;
4470     auto *Ptr = getLoadStorePointerOperand(I);
4471     auto *Ty = getLoadStoreType(I);
4472     Type *VTy = Ty;
4473     if (VF.isVector())
4474       VTy = VectorType::get(Ty, VF);
4475     const Align Alignment = getLoadStoreAlignment(I);
4476     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4477                                 TTI.isLegalMaskedGather(VTy, Alignment))
4478                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4479                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4480   }
4481   case Instruction::UDiv:
4482   case Instruction::SDiv:
4483   case Instruction::SRem:
4484   case Instruction::URem:
4485     return mayDivideByZero(*I);
4486   }
4487   return false;
4488 }
4489 
4490 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4491     Instruction *I, ElementCount VF) {
4492   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4493   assert(getWideningDecision(I, VF) == CM_Unknown &&
4494          "Decision should not be set yet.");
4495   auto *Group = getInterleavedAccessGroup(I);
4496   assert(Group && "Must have a group.");
4497 
4498   // If the instruction's allocated size doesn't equal it's type size, it
4499   // requires padding and will be scalarized.
4500   auto &DL = I->getModule()->getDataLayout();
4501   auto *ScalarTy = getLoadStoreType(I);
4502   if (hasIrregularType(ScalarTy, DL))
4503     return false;
4504 
4505   // If the group involves a non-integral pointer, we may not be able to
4506   // losslessly cast all values to a common type.
4507   unsigned InterleaveFactor = Group->getFactor();
4508   bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
4509   for (unsigned i = 0; i < InterleaveFactor; i++) {
4510     Instruction *Member = Group->getMember(i);
4511     if (!Member)
4512       continue;
4513     auto *MemberTy = getLoadStoreType(Member);
4514     bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
4515     // Don't coerce non-integral pointers to integers or vice versa.
4516     if (MemberNI != ScalarNI) {
4517       // TODO: Consider adding special nullptr value case here
4518       return false;
4519     } else if (MemberNI && ScalarNI &&
4520                ScalarTy->getPointerAddressSpace() !=
4521                MemberTy->getPointerAddressSpace()) {
4522       return false;
4523     }
4524   }
4525 
4526   // Check if masking is required.
4527   // A Group may need masking for one of two reasons: it resides in a block that
4528   // needs predication, or it was decided to use masking to deal with gaps
4529   // (either a gap at the end of a load-access that may result in a speculative
4530   // load, or any gaps in a store-access).
4531   bool PredicatedAccessRequiresMasking =
4532       blockNeedsPredicationForAnyReason(I->getParent()) &&
4533       Legal->isMaskRequired(I);
4534   bool LoadAccessWithGapsRequiresEpilogMasking =
4535       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4536       !isScalarEpilogueAllowed();
4537   bool StoreAccessWithGapsRequiresMasking =
4538       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4539   if (!PredicatedAccessRequiresMasking &&
4540       !LoadAccessWithGapsRequiresEpilogMasking &&
4541       !StoreAccessWithGapsRequiresMasking)
4542     return true;
4543 
4544   // If masked interleaving is required, we expect that the user/target had
4545   // enabled it, because otherwise it either wouldn't have been created or
4546   // it should have been invalidated by the CostModel.
4547   assert(useMaskedInterleavedAccesses(TTI) &&
4548          "Masked interleave-groups for predicated accesses are not enabled.");
4549 
4550   if (Group->isReverse())
4551     return false;
4552 
4553   auto *Ty = getLoadStoreType(I);
4554   const Align Alignment = getLoadStoreAlignment(I);
4555   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4556                           : TTI.isLegalMaskedStore(Ty, Alignment);
4557 }
4558 
4559 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4560     Instruction *I, ElementCount VF) {
4561   // Get and ensure we have a valid memory instruction.
4562   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4563 
4564   auto *Ptr = getLoadStorePointerOperand(I);
4565   auto *ScalarTy = getLoadStoreType(I);
4566 
4567   // In order to be widened, the pointer should be consecutive, first of all.
4568   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4569     return false;
4570 
4571   // If the instruction is a store located in a predicated block, it will be
4572   // scalarized.
4573   if (isScalarWithPredication(I, VF))
4574     return false;
4575 
4576   // If the instruction's allocated size doesn't equal it's type size, it
4577   // requires padding and will be scalarized.
4578   auto &DL = I->getModule()->getDataLayout();
4579   if (hasIrregularType(ScalarTy, DL))
4580     return false;
4581 
4582   return true;
4583 }
4584 
4585 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4586   // We should not collect Uniforms more than once per VF. Right now,
4587   // this function is called from collectUniformsAndScalars(), which
4588   // already does this check. Collecting Uniforms for VF=1 does not make any
4589   // sense.
4590 
4591   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4592          "This function should not be visited twice for the same VF");
4593 
4594   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4595   // not analyze again.  Uniforms.count(VF) will return 1.
4596   Uniforms[VF].clear();
4597 
4598   // We now know that the loop is vectorizable!
4599   // Collect instructions inside the loop that will remain uniform after
4600   // vectorization.
4601 
4602   // Global values, params and instructions outside of current loop are out of
4603   // scope.
4604   auto isOutOfScope = [&](Value *V) -> bool {
4605     Instruction *I = dyn_cast<Instruction>(V);
4606     return (!I || !TheLoop->contains(I));
4607   };
4608 
4609   // Worklist containing uniform instructions demanding lane 0.
4610   SetVector<Instruction *> Worklist;
4611   BasicBlock *Latch = TheLoop->getLoopLatch();
4612 
4613   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4614   // that are scalar with predication must not be considered uniform after
4615   // vectorization, because that would create an erroneous replicating region
4616   // where only a single instance out of VF should be formed.
4617   // TODO: optimize such seldom cases if found important, see PR40816.
4618   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4619     if (isOutOfScope(I)) {
4620       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4621                         << *I << "\n");
4622       return;
4623     }
4624     if (isScalarWithPredication(I, VF)) {
4625       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4626                         << *I << "\n");
4627       return;
4628     }
4629     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4630     Worklist.insert(I);
4631   };
4632 
4633   // Start with the conditional branch. If the branch condition is an
4634   // instruction contained in the loop that is only used by the branch, it is
4635   // uniform.
4636   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4637   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4638     addToWorklistIfAllowed(Cmp);
4639 
4640   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4641     InstWidening WideningDecision = getWideningDecision(I, VF);
4642     assert(WideningDecision != CM_Unknown &&
4643            "Widening decision should be ready at this moment");
4644 
4645     // A uniform memory op is itself uniform.  We exclude uniform stores
4646     // here as they demand the last lane, not the first one.
4647     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4648       assert(WideningDecision == CM_Scalarize);
4649       return true;
4650     }
4651 
4652     return (WideningDecision == CM_Widen ||
4653             WideningDecision == CM_Widen_Reverse ||
4654             WideningDecision == CM_Interleave);
4655   };
4656 
4657 
4658   // Returns true if Ptr is the pointer operand of a memory access instruction
4659   // I, and I is known to not require scalarization.
4660   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4661     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4662   };
4663 
4664   // Holds a list of values which are known to have at least one uniform use.
4665   // Note that there may be other uses which aren't uniform.  A "uniform use"
4666   // here is something which only demands lane 0 of the unrolled iterations;
4667   // it does not imply that all lanes produce the same value (e.g. this is not
4668   // the usual meaning of uniform)
4669   SetVector<Value *> HasUniformUse;
4670 
4671   // Scan the loop for instructions which are either a) known to have only
4672   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4673   for (auto *BB : TheLoop->blocks())
4674     for (auto &I : *BB) {
4675       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4676         switch (II->getIntrinsicID()) {
4677         case Intrinsic::sideeffect:
4678         case Intrinsic::experimental_noalias_scope_decl:
4679         case Intrinsic::assume:
4680         case Intrinsic::lifetime_start:
4681         case Intrinsic::lifetime_end:
4682           if (TheLoop->hasLoopInvariantOperands(&I))
4683             addToWorklistIfAllowed(&I);
4684           break;
4685         default:
4686           break;
4687         }
4688       }
4689 
4690       // ExtractValue instructions must be uniform, because the operands are
4691       // known to be loop-invariant.
4692       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4693         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4694                "Expected aggregate value to be loop invariant");
4695         addToWorklistIfAllowed(EVI);
4696         continue;
4697       }
4698 
4699       // If there's no pointer operand, there's nothing to do.
4700       auto *Ptr = getLoadStorePointerOperand(&I);
4701       if (!Ptr)
4702         continue;
4703 
4704       // A uniform memory op is itself uniform.  We exclude uniform stores
4705       // here as they demand the last lane, not the first one.
4706       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4707         addToWorklistIfAllowed(&I);
4708 
4709       if (isUniformDecision(&I, VF)) {
4710         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4711         HasUniformUse.insert(Ptr);
4712       }
4713     }
4714 
4715   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4716   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4717   // disallows uses outside the loop as well.
4718   for (auto *V : HasUniformUse) {
4719     if (isOutOfScope(V))
4720       continue;
4721     auto *I = cast<Instruction>(V);
4722     auto UsersAreMemAccesses =
4723       llvm::all_of(I->users(), [&](User *U) -> bool {
4724         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4725       });
4726     if (UsersAreMemAccesses)
4727       addToWorklistIfAllowed(I);
4728   }
4729 
4730   // Expand Worklist in topological order: whenever a new instruction
4731   // is added , its users should be already inside Worklist.  It ensures
4732   // a uniform instruction will only be used by uniform instructions.
4733   unsigned idx = 0;
4734   while (idx != Worklist.size()) {
4735     Instruction *I = Worklist[idx++];
4736 
4737     for (auto OV : I->operand_values()) {
4738       // isOutOfScope operands cannot be uniform instructions.
4739       if (isOutOfScope(OV))
4740         continue;
4741       // First order recurrence Phi's should typically be considered
4742       // non-uniform.
4743       auto *OP = dyn_cast<PHINode>(OV);
4744       if (OP && Legal->isFirstOrderRecurrence(OP))
4745         continue;
4746       // If all the users of the operand are uniform, then add the
4747       // operand into the uniform worklist.
4748       auto *OI = cast<Instruction>(OV);
4749       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4750             auto *J = cast<Instruction>(U);
4751             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4752           }))
4753         addToWorklistIfAllowed(OI);
4754     }
4755   }
4756 
4757   // For an instruction to be added into Worklist above, all its users inside
4758   // the loop should also be in Worklist. However, this condition cannot be
4759   // true for phi nodes that form a cyclic dependence. We must process phi
4760   // nodes separately. An induction variable will remain uniform if all users
4761   // of the induction variable and induction variable update remain uniform.
4762   // The code below handles both pointer and non-pointer induction variables.
4763   for (auto &Induction : Legal->getInductionVars()) {
4764     auto *Ind = Induction.first;
4765     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4766 
4767     // Determine if all users of the induction variable are uniform after
4768     // vectorization.
4769     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4770       auto *I = cast<Instruction>(U);
4771       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4772              isVectorizedMemAccessUse(I, Ind);
4773     });
4774     if (!UniformInd)
4775       continue;
4776 
4777     // Determine if all users of the induction variable update instruction are
4778     // uniform after vectorization.
4779     auto UniformIndUpdate =
4780         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4781           auto *I = cast<Instruction>(U);
4782           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4783                  isVectorizedMemAccessUse(I, IndUpdate);
4784         });
4785     if (!UniformIndUpdate)
4786       continue;
4787 
4788     // The induction variable and its update instruction will remain uniform.
4789     addToWorklistIfAllowed(Ind);
4790     addToWorklistIfAllowed(IndUpdate);
4791   }
4792 
4793   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4794 }
4795 
4796 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4797   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4798 
4799   if (Legal->getRuntimePointerChecking()->Need) {
4800     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4801         "runtime pointer checks needed. Enable vectorization of this "
4802         "loop with '#pragma clang loop vectorize(enable)' when "
4803         "compiling with -Os/-Oz",
4804         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4805     return true;
4806   }
4807 
4808   if (!PSE.getPredicate().isAlwaysTrue()) {
4809     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4810         "runtime SCEV checks needed. Enable vectorization of this "
4811         "loop with '#pragma clang loop vectorize(enable)' when "
4812         "compiling with -Os/-Oz",
4813         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4814     return true;
4815   }
4816 
4817   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4818   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4819     reportVectorizationFailure("Runtime stride check for small trip count",
4820         "runtime stride == 1 checks needed. Enable vectorization of "
4821         "this loop without such check by compiling with -Os/-Oz",
4822         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4823     return true;
4824   }
4825 
4826   return false;
4827 }
4828 
4829 ElementCount
4830 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4831   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4832     return ElementCount::getScalable(0);
4833 
4834   if (Hints->isScalableVectorizationDisabled()) {
4835     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4836                             "ScalableVectorizationDisabled", ORE, TheLoop);
4837     return ElementCount::getScalable(0);
4838   }
4839 
4840   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4841 
4842   auto MaxScalableVF = ElementCount::getScalable(
4843       std::numeric_limits<ElementCount::ScalarTy>::max());
4844 
4845   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4846   // FIXME: While for scalable vectors this is currently sufficient, this should
4847   // be replaced by a more detailed mechanism that filters out specific VFs,
4848   // instead of invalidating vectorization for a whole set of VFs based on the
4849   // MaxVF.
4850 
4851   // Disable scalable vectorization if the loop contains unsupported reductions.
4852   if (!canVectorizeReductions(MaxScalableVF)) {
4853     reportVectorizationInfo(
4854         "Scalable vectorization not supported for the reduction "
4855         "operations found in this loop.",
4856         "ScalableVFUnfeasible", ORE, TheLoop);
4857     return ElementCount::getScalable(0);
4858   }
4859 
4860   // Disable scalable vectorization if the loop contains any instructions
4861   // with element types not supported for scalable vectors.
4862   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
4863         return !Ty->isVoidTy() &&
4864                !this->TTI.isElementTypeLegalForScalableVector(Ty);
4865       })) {
4866     reportVectorizationInfo("Scalable vectorization is not supported "
4867                             "for all element types found in this loop.",
4868                             "ScalableVFUnfeasible", ORE, TheLoop);
4869     return ElementCount::getScalable(0);
4870   }
4871 
4872   if (Legal->isSafeForAnyVectorWidth())
4873     return MaxScalableVF;
4874 
4875   // Limit MaxScalableVF by the maximum safe dependence distance.
4876   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
4877   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
4878     MaxVScale =
4879         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
4880   MaxScalableVF = ElementCount::getScalable(
4881       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
4882   if (!MaxScalableVF)
4883     reportVectorizationInfo(
4884         "Max legal vector width too small, scalable vectorization "
4885         "unfeasible.",
4886         "ScalableVFUnfeasible", ORE, TheLoop);
4887 
4888   return MaxScalableVF;
4889 }
4890 
4891 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
4892     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
4893   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4894   unsigned SmallestType, WidestType;
4895   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4896 
4897   // Get the maximum safe dependence distance in bits computed by LAA.
4898   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4899   // the memory accesses that is most restrictive (involved in the smallest
4900   // dependence distance).
4901   unsigned MaxSafeElements =
4902       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
4903 
4904   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
4905   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4906 
4907   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
4908                     << ".\n");
4909   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
4910                     << ".\n");
4911 
4912   // First analyze the UserVF, fall back if the UserVF should be ignored.
4913   if (UserVF) {
4914     auto MaxSafeUserVF =
4915         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4916 
4917     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
4918       // If `VF=vscale x N` is safe, then so is `VF=N`
4919       if (UserVF.isScalable())
4920         return FixedScalableVFPair(
4921             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
4922       else
4923         return UserVF;
4924     }
4925 
4926     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
4927 
4928     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
4929     // is better to ignore the hint and let the compiler choose a suitable VF.
4930     if (!UserVF.isScalable()) {
4931       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4932                         << " is unsafe, clamping to max safe VF="
4933                         << MaxSafeFixedVF << ".\n");
4934       ORE->emit([&]() {
4935         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4936                                           TheLoop->getStartLoc(),
4937                                           TheLoop->getHeader())
4938                << "User-specified vectorization factor "
4939                << ore::NV("UserVectorizationFactor", UserVF)
4940                << " is unsafe, clamping to maximum safe vectorization factor "
4941                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
4942       });
4943       return MaxSafeFixedVF;
4944     }
4945 
4946     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
4947       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4948                         << " is ignored because scalable vectors are not "
4949                            "available.\n");
4950       ORE->emit([&]() {
4951         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4952                                           TheLoop->getStartLoc(),
4953                                           TheLoop->getHeader())
4954                << "User-specified vectorization factor "
4955                << ore::NV("UserVectorizationFactor", UserVF)
4956                << " is ignored because the target does not support scalable "
4957                   "vectors. The compiler will pick a more suitable value.";
4958       });
4959     } else {
4960       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4961                         << " is unsafe. Ignoring scalable UserVF.\n");
4962       ORE->emit([&]() {
4963         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4964                                           TheLoop->getStartLoc(),
4965                                           TheLoop->getHeader())
4966                << "User-specified vectorization factor "
4967                << ore::NV("UserVectorizationFactor", UserVF)
4968                << " is unsafe. Ignoring the hint to let the compiler pick a "
4969                   "more suitable value.";
4970       });
4971     }
4972   }
4973 
4974   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
4975                     << " / " << WidestType << " bits.\n");
4976 
4977   FixedScalableVFPair Result(ElementCount::getFixed(1),
4978                              ElementCount::getScalable(0));
4979   if (auto MaxVF =
4980           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4981                                   MaxSafeFixedVF, FoldTailByMasking))
4982     Result.FixedVF = MaxVF;
4983 
4984   if (auto MaxVF =
4985           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4986                                   MaxSafeScalableVF, FoldTailByMasking))
4987     if (MaxVF.isScalable()) {
4988       Result.ScalableVF = MaxVF;
4989       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
4990                         << "\n");
4991     }
4992 
4993   return Result;
4994 }
4995 
4996 FixedScalableVFPair
4997 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
4998   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4999     // TODO: It may by useful to do since it's still likely to be dynamically
5000     // uniform if the target can skip.
5001     reportVectorizationFailure(
5002         "Not inserting runtime ptr check for divergent target",
5003         "runtime pointer checks needed. Not enabled for divergent target",
5004         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5005     return FixedScalableVFPair::getNone();
5006   }
5007 
5008   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5009   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5010   if (TC == 1) {
5011     reportVectorizationFailure("Single iteration (non) loop",
5012         "loop trip count is one, irrelevant for vectorization",
5013         "SingleIterationLoop", ORE, TheLoop);
5014     return FixedScalableVFPair::getNone();
5015   }
5016 
5017   switch (ScalarEpilogueStatus) {
5018   case CM_ScalarEpilogueAllowed:
5019     return computeFeasibleMaxVF(TC, UserVF, false);
5020   case CM_ScalarEpilogueNotAllowedUsePredicate:
5021     LLVM_FALLTHROUGH;
5022   case CM_ScalarEpilogueNotNeededUsePredicate:
5023     LLVM_DEBUG(
5024         dbgs() << "LV: vector predicate hint/switch found.\n"
5025                << "LV: Not allowing scalar epilogue, creating predicated "
5026                << "vector loop.\n");
5027     break;
5028   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5029     // fallthrough as a special case of OptForSize
5030   case CM_ScalarEpilogueNotAllowedOptSize:
5031     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5032       LLVM_DEBUG(
5033           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5034     else
5035       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5036                         << "count.\n");
5037 
5038     // Bail if runtime checks are required, which are not good when optimising
5039     // for size.
5040     if (runtimeChecksRequired())
5041       return FixedScalableVFPair::getNone();
5042 
5043     break;
5044   }
5045 
5046   // The only loops we can vectorize without a scalar epilogue, are loops with
5047   // a bottom-test and a single exiting block. We'd have to handle the fact
5048   // that not every instruction executes on the last iteration.  This will
5049   // require a lane mask which varies through the vector loop body.  (TODO)
5050   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5051     // If there was a tail-folding hint/switch, but we can't fold the tail by
5052     // masking, fallback to a vectorization with a scalar epilogue.
5053     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5054       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5055                            "scalar epilogue instead.\n");
5056       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5057       return computeFeasibleMaxVF(TC, UserVF, false);
5058     }
5059     return FixedScalableVFPair::getNone();
5060   }
5061 
5062   // Now try the tail folding
5063 
5064   // Invalidate interleave groups that require an epilogue if we can't mask
5065   // the interleave-group.
5066   if (!useMaskedInterleavedAccesses(TTI)) {
5067     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5068            "No decisions should have been taken at this point");
5069     // Note: There is no need to invalidate any cost modeling decisions here, as
5070     // non where taken so far.
5071     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5072   }
5073 
5074   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5075   // Avoid tail folding if the trip count is known to be a multiple of any VF
5076   // we chose.
5077   // FIXME: The condition below pessimises the case for fixed-width vectors,
5078   // when scalable VFs are also candidates for vectorization.
5079   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5080     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5081     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5082            "MaxFixedVF must be a power of 2");
5083     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5084                                    : MaxFixedVF.getFixedValue();
5085     ScalarEvolution *SE = PSE.getSE();
5086     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5087     const SCEV *ExitCount = SE->getAddExpr(
5088         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5089     const SCEV *Rem = SE->getURemExpr(
5090         SE->applyLoopGuards(ExitCount, TheLoop),
5091         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5092     if (Rem->isZero()) {
5093       // Accept MaxFixedVF if we do not have a tail.
5094       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5095       return MaxFactors;
5096     }
5097   }
5098 
5099   // If we don't know the precise trip count, or if the trip count that we
5100   // found modulo the vectorization factor is not zero, try to fold the tail
5101   // by masking.
5102   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5103   if (Legal->prepareToFoldTailByMasking()) {
5104     FoldTailByMasking = true;
5105     return MaxFactors;
5106   }
5107 
5108   // If there was a tail-folding hint/switch, but we can't fold the tail by
5109   // masking, fallback to a vectorization with a scalar epilogue.
5110   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5111     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5112                          "scalar epilogue instead.\n");
5113     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5114     return MaxFactors;
5115   }
5116 
5117   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5118     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5119     return FixedScalableVFPair::getNone();
5120   }
5121 
5122   if (TC == 0) {
5123     reportVectorizationFailure(
5124         "Unable to calculate the loop count due to complex control flow",
5125         "unable to calculate the loop count due to complex control flow",
5126         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5127     return FixedScalableVFPair::getNone();
5128   }
5129 
5130   reportVectorizationFailure(
5131       "Cannot optimize for size and vectorize at the same time.",
5132       "cannot optimize for size and vectorize at the same time. "
5133       "Enable vectorization of this loop with '#pragma clang loop "
5134       "vectorize(enable)' when compiling with -Os/-Oz",
5135       "NoTailLoopWithOptForSize", ORE, TheLoop);
5136   return FixedScalableVFPair::getNone();
5137 }
5138 
5139 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5140     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5141     ElementCount MaxSafeVF, bool FoldTailByMasking) {
5142   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5143   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5144       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5145                            : TargetTransformInfo::RGK_FixedWidthVector);
5146 
5147   // Convenience function to return the minimum of two ElementCounts.
5148   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5149     assert((LHS.isScalable() == RHS.isScalable()) &&
5150            "Scalable flags must match");
5151     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5152   };
5153 
5154   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5155   // Note that both WidestRegister and WidestType may not be a powers of 2.
5156   auto MaxVectorElementCount = ElementCount::get(
5157       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5158       ComputeScalableMaxVF);
5159   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5160   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5161                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5162 
5163   if (!MaxVectorElementCount) {
5164     LLVM_DEBUG(dbgs() << "LV: The target has no "
5165                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5166                       << " vector registers.\n");
5167     return ElementCount::getFixed(1);
5168   }
5169 
5170   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5171   if (ConstTripCount &&
5172       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5173       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5174     // If loop trip count (TC) is known at compile time there is no point in
5175     // choosing VF greater than TC (as done in the loop below). Select maximum
5176     // power of two which doesn't exceed TC.
5177     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5178     // when the TC is less than or equal to the known number of lanes.
5179     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5180     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5181                          "exceeding the constant trip count: "
5182                       << ClampedConstTripCount << "\n");
5183     return ElementCount::getFixed(ClampedConstTripCount);
5184   }
5185 
5186   TargetTransformInfo::RegisterKind RegKind =
5187       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5188                            : TargetTransformInfo::RGK_FixedWidthVector;
5189   ElementCount MaxVF = MaxVectorElementCount;
5190   if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
5191                             TTI.shouldMaximizeVectorBandwidth(RegKind))) {
5192     auto MaxVectorElementCountMaxBW = ElementCount::get(
5193         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5194         ComputeScalableMaxVF);
5195     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5196 
5197     // Collect all viable vectorization factors larger than the default MaxVF
5198     // (i.e. MaxVectorElementCount).
5199     SmallVector<ElementCount, 8> VFs;
5200     for (ElementCount VS = MaxVectorElementCount * 2;
5201          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5202       VFs.push_back(VS);
5203 
5204     // For each VF calculate its register usage.
5205     auto RUs = calculateRegisterUsage(VFs);
5206 
5207     // Select the largest VF which doesn't require more registers than existing
5208     // ones.
5209     for (int i = RUs.size() - 1; i >= 0; --i) {
5210       bool Selected = true;
5211       for (auto &pair : RUs[i].MaxLocalUsers) {
5212         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5213         if (pair.second > TargetNumRegisters)
5214           Selected = false;
5215       }
5216       if (Selected) {
5217         MaxVF = VFs[i];
5218         break;
5219       }
5220     }
5221     if (ElementCount MinVF =
5222             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5223       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5224         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5225                           << ") with target's minimum: " << MinVF << '\n');
5226         MaxVF = MinVF;
5227       }
5228     }
5229 
5230     // Invalidate any widening decisions we might have made, in case the loop
5231     // requires prediction (decided later), but we have already made some
5232     // load/store widening decisions.
5233     invalidateCostModelingDecisions();
5234   }
5235   return MaxVF;
5236 }
5237 
5238 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5239   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5240     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5241     auto Min = Attr.getVScaleRangeMin();
5242     auto Max = Attr.getVScaleRangeMax();
5243     if (Max && Min == Max)
5244       return Max;
5245   }
5246 
5247   return TTI.getVScaleForTuning();
5248 }
5249 
5250 bool LoopVectorizationCostModel::isMoreProfitable(
5251     const VectorizationFactor &A, const VectorizationFactor &B) const {
5252   InstructionCost CostA = A.Cost;
5253   InstructionCost CostB = B.Cost;
5254 
5255   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5256 
5257   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5258       MaxTripCount) {
5259     // If we are folding the tail and the trip count is a known (possibly small)
5260     // constant, the trip count will be rounded up to an integer number of
5261     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5262     // which we compare directly. When not folding the tail, the total cost will
5263     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5264     // approximated with the per-lane cost below instead of using the tripcount
5265     // as here.
5266     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5267     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5268     return RTCostA < RTCostB;
5269   }
5270 
5271   // Improve estimate for the vector width if it is scalable.
5272   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5273   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5274   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5275     if (A.Width.isScalable())
5276       EstimatedWidthA *= VScale.getValue();
5277     if (B.Width.isScalable())
5278       EstimatedWidthB *= VScale.getValue();
5279   }
5280 
5281   // Assume vscale may be larger than 1 (or the value being tuned for),
5282   // so that scalable vectorization is slightly favorable over fixed-width
5283   // vectorization.
5284   if (A.Width.isScalable() && !B.Width.isScalable())
5285     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5286 
5287   // To avoid the need for FP division:
5288   //      (CostA / A.Width) < (CostB / B.Width)
5289   // <=>  (CostA * B.Width) < (CostB * A.Width)
5290   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5291 }
5292 
5293 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5294     const ElementCountSet &VFCandidates) {
5295   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5296   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5297   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5298   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5299          "Expected Scalar VF to be a candidate");
5300 
5301   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5302   VectorizationFactor ChosenFactor = ScalarCost;
5303 
5304   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5305   if (ForceVectorization && VFCandidates.size() > 1) {
5306     // Ignore scalar width, because the user explicitly wants vectorization.
5307     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5308     // evaluation.
5309     ChosenFactor.Cost = InstructionCost::getMax();
5310   }
5311 
5312   SmallVector<InstructionVFPair> InvalidCosts;
5313   for (const auto &i : VFCandidates) {
5314     // The cost for scalar VF=1 is already calculated, so ignore it.
5315     if (i.isScalar())
5316       continue;
5317 
5318     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5319     VectorizationFactor Candidate(i, C.first);
5320 
5321 #ifndef NDEBUG
5322     unsigned AssumedMinimumVscale = 1;
5323     if (Optional<unsigned> VScale = getVScaleForTuning())
5324       AssumedMinimumVscale = *VScale;
5325     unsigned Width =
5326         Candidate.Width.isScalable()
5327             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5328             : Candidate.Width.getFixedValue();
5329     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5330                       << " costs: " << (Candidate.Cost / Width));
5331     if (i.isScalable())
5332       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5333                         << AssumedMinimumVscale << ")");
5334     LLVM_DEBUG(dbgs() << ".\n");
5335 #endif
5336 
5337     if (!C.second && !ForceVectorization) {
5338       LLVM_DEBUG(
5339           dbgs() << "LV: Not considering vector loop of width " << i
5340                  << " because it will not generate any vector instructions.\n");
5341       continue;
5342     }
5343 
5344     // If profitable add it to ProfitableVF list.
5345     if (isMoreProfitable(Candidate, ScalarCost))
5346       ProfitableVFs.push_back(Candidate);
5347 
5348     if (isMoreProfitable(Candidate, ChosenFactor))
5349       ChosenFactor = Candidate;
5350   }
5351 
5352   // Emit a report of VFs with invalid costs in the loop.
5353   if (!InvalidCosts.empty()) {
5354     // Group the remarks per instruction, keeping the instruction order from
5355     // InvalidCosts.
5356     std::map<Instruction *, unsigned> Numbering;
5357     unsigned I = 0;
5358     for (auto &Pair : InvalidCosts)
5359       if (!Numbering.count(Pair.first))
5360         Numbering[Pair.first] = I++;
5361 
5362     // Sort the list, first on instruction(number) then on VF.
5363     llvm::sort(InvalidCosts,
5364                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5365                  if (Numbering[A.first] != Numbering[B.first])
5366                    return Numbering[A.first] < Numbering[B.first];
5367                  ElementCountComparator ECC;
5368                  return ECC(A.second, B.second);
5369                });
5370 
5371     // For a list of ordered instruction-vf pairs:
5372     //   [(load, vf1), (load, vf2), (store, vf1)]
5373     // Group the instructions together to emit separate remarks for:
5374     //   load  (vf1, vf2)
5375     //   store (vf1)
5376     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5377     auto Subset = ArrayRef<InstructionVFPair>();
5378     do {
5379       if (Subset.empty())
5380         Subset = Tail.take_front(1);
5381 
5382       Instruction *I = Subset.front().first;
5383 
5384       // If the next instruction is different, or if there are no other pairs,
5385       // emit a remark for the collated subset. e.g.
5386       //   [(load, vf1), (load, vf2))]
5387       // to emit:
5388       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5389       if (Subset == Tail || Tail[Subset.size()].first != I) {
5390         std::string OutString;
5391         raw_string_ostream OS(OutString);
5392         assert(!Subset.empty() && "Unexpected empty range");
5393         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5394         for (auto &Pair : Subset)
5395           OS << (Pair.second == Subset.front().second ? "" : ", ")
5396              << Pair.second;
5397         OS << "):";
5398         if (auto *CI = dyn_cast<CallInst>(I))
5399           OS << " call to " << CI->getCalledFunction()->getName();
5400         else
5401           OS << " " << I->getOpcodeName();
5402         OS.flush();
5403         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5404         Tail = Tail.drop_front(Subset.size());
5405         Subset = {};
5406       } else
5407         // Grow the subset by one element
5408         Subset = Tail.take_front(Subset.size() + 1);
5409     } while (!Tail.empty());
5410   }
5411 
5412   if (!EnableCondStoresVectorization && NumPredStores) {
5413     reportVectorizationFailure("There are conditional stores.",
5414         "store that is conditionally executed prevents vectorization",
5415         "ConditionalStore", ORE, TheLoop);
5416     ChosenFactor = ScalarCost;
5417   }
5418 
5419   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5420                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5421              << "LV: Vectorization seems to be not beneficial, "
5422              << "but was forced by a user.\n");
5423   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5424   return ChosenFactor;
5425 }
5426 
5427 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5428     const Loop &L, ElementCount VF) const {
5429   // Cross iteration phis such as reductions need special handling and are
5430   // currently unsupported.
5431   if (any_of(L.getHeader()->phis(),
5432              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5433     return false;
5434 
5435   // Phis with uses outside of the loop require special handling and are
5436   // currently unsupported.
5437   for (auto &Entry : Legal->getInductionVars()) {
5438     // Look for uses of the value of the induction at the last iteration.
5439     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5440     for (User *U : PostInc->users())
5441       if (!L.contains(cast<Instruction>(U)))
5442         return false;
5443     // Look for uses of penultimate value of the induction.
5444     for (User *U : Entry.first->users())
5445       if (!L.contains(cast<Instruction>(U)))
5446         return false;
5447   }
5448 
5449   // Induction variables that are widened require special handling that is
5450   // currently not supported.
5451   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5452         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5453                  this->isProfitableToScalarize(Entry.first, VF));
5454       }))
5455     return false;
5456 
5457   // Epilogue vectorization code has not been auditted to ensure it handles
5458   // non-latch exits properly.  It may be fine, but it needs auditted and
5459   // tested.
5460   if (L.getExitingBlock() != L.getLoopLatch())
5461     return false;
5462 
5463   return true;
5464 }
5465 
5466 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5467     const ElementCount VF) const {
5468   // FIXME: We need a much better cost-model to take different parameters such
5469   // as register pressure, code size increase and cost of extra branches into
5470   // account. For now we apply a very crude heuristic and only consider loops
5471   // with vectorization factors larger than a certain value.
5472   // We also consider epilogue vectorization unprofitable for targets that don't
5473   // consider interleaving beneficial (eg. MVE).
5474   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5475     return false;
5476   // FIXME: We should consider changing the threshold for scalable
5477   // vectors to take VScaleForTuning into account.
5478   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5479     return true;
5480   return false;
5481 }
5482 
5483 VectorizationFactor
5484 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5485     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5486   VectorizationFactor Result = VectorizationFactor::Disabled();
5487   if (!EnableEpilogueVectorization) {
5488     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5489     return Result;
5490   }
5491 
5492   if (!isScalarEpilogueAllowed()) {
5493     LLVM_DEBUG(
5494         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5495                   "allowed.\n";);
5496     return Result;
5497   }
5498 
5499   // Not really a cost consideration, but check for unsupported cases here to
5500   // simplify the logic.
5501   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5502     LLVM_DEBUG(
5503         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5504                   "not a supported candidate.\n";);
5505     return Result;
5506   }
5507 
5508   if (EpilogueVectorizationForceVF > 1) {
5509     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5510     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5511     if (LVP.hasPlanWithVF(ForcedEC))
5512       return {ForcedEC, 0};
5513     else {
5514       LLVM_DEBUG(
5515           dbgs()
5516               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5517       return Result;
5518     }
5519   }
5520 
5521   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5522       TheLoop->getHeader()->getParent()->hasMinSize()) {
5523     LLVM_DEBUG(
5524         dbgs()
5525             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5526     return Result;
5527   }
5528 
5529   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5530     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5531                          "this loop\n");
5532     return Result;
5533   }
5534 
5535   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5536   // the main loop handles 8 lanes per iteration. We could still benefit from
5537   // vectorizing the epilogue loop with VF=4.
5538   ElementCount EstimatedRuntimeVF = MainLoopVF;
5539   if (MainLoopVF.isScalable()) {
5540     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5541     if (Optional<unsigned> VScale = getVScaleForTuning())
5542       EstimatedRuntimeVF *= *VScale;
5543   }
5544 
5545   for (auto &NextVF : ProfitableVFs)
5546     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5547           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5548          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5549         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5550         LVP.hasPlanWithVF(NextVF.Width))
5551       Result = NextVF;
5552 
5553   if (Result != VectorizationFactor::Disabled())
5554     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5555                       << Result.Width << "\n";);
5556   return Result;
5557 }
5558 
5559 std::pair<unsigned, unsigned>
5560 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5561   unsigned MinWidth = -1U;
5562   unsigned MaxWidth = 8;
5563   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5564   // For in-loop reductions, no element types are added to ElementTypesInLoop
5565   // if there are no loads/stores in the loop. In this case, check through the
5566   // reduction variables to determine the maximum width.
5567   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5568     // Reset MaxWidth so that we can find the smallest type used by recurrences
5569     // in the loop.
5570     MaxWidth = -1U;
5571     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5572       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5573       // When finding the min width used by the recurrence we need to account
5574       // for casts on the input operands of the recurrence.
5575       MaxWidth = std::min<unsigned>(
5576           MaxWidth, std::min<unsigned>(
5577                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5578                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5579     }
5580   } else {
5581     for (Type *T : ElementTypesInLoop) {
5582       MinWidth = std::min<unsigned>(
5583           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5584       MaxWidth = std::max<unsigned>(
5585           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5586     }
5587   }
5588   return {MinWidth, MaxWidth};
5589 }
5590 
5591 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5592   ElementTypesInLoop.clear();
5593   // For each block.
5594   for (BasicBlock *BB : TheLoop->blocks()) {
5595     // For each instruction in the loop.
5596     for (Instruction &I : BB->instructionsWithoutDebug()) {
5597       Type *T = I.getType();
5598 
5599       // Skip ignored values.
5600       if (ValuesToIgnore.count(&I))
5601         continue;
5602 
5603       // Only examine Loads, Stores and PHINodes.
5604       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5605         continue;
5606 
5607       // Examine PHI nodes that are reduction variables. Update the type to
5608       // account for the recurrence type.
5609       if (auto *PN = dyn_cast<PHINode>(&I)) {
5610         if (!Legal->isReductionVariable(PN))
5611           continue;
5612         const RecurrenceDescriptor &RdxDesc =
5613             Legal->getReductionVars().find(PN)->second;
5614         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5615             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5616                                       RdxDesc.getRecurrenceType(),
5617                                       TargetTransformInfo::ReductionFlags()))
5618           continue;
5619         T = RdxDesc.getRecurrenceType();
5620       }
5621 
5622       // Examine the stored values.
5623       if (auto *ST = dyn_cast<StoreInst>(&I))
5624         T = ST->getValueOperand()->getType();
5625 
5626       assert(T->isSized() &&
5627              "Expected the load/store/recurrence type to be sized");
5628 
5629       ElementTypesInLoop.insert(T);
5630     }
5631   }
5632 }
5633 
5634 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5635                                                            unsigned LoopCost) {
5636   // -- The interleave heuristics --
5637   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5638   // There are many micro-architectural considerations that we can't predict
5639   // at this level. For example, frontend pressure (on decode or fetch) due to
5640   // code size, or the number and capabilities of the execution ports.
5641   //
5642   // We use the following heuristics to select the interleave count:
5643   // 1. If the code has reductions, then we interleave to break the cross
5644   // iteration dependency.
5645   // 2. If the loop is really small, then we interleave to reduce the loop
5646   // overhead.
5647   // 3. We don't interleave if we think that we will spill registers to memory
5648   // due to the increased register pressure.
5649 
5650   if (!isScalarEpilogueAllowed())
5651     return 1;
5652 
5653   // We used the distance for the interleave count.
5654   if (Legal->getMaxSafeDepDistBytes() != -1U)
5655     return 1;
5656 
5657   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5658   const bool HasReductions = !Legal->getReductionVars().empty();
5659   // Do not interleave loops with a relatively small known or estimated trip
5660   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5661   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5662   // because with the above conditions interleaving can expose ILP and break
5663   // cross iteration dependences for reductions.
5664   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5665       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5666     return 1;
5667 
5668   // If we did not calculate the cost for VF (because the user selected the VF)
5669   // then we calculate the cost of VF here.
5670   if (LoopCost == 0) {
5671     InstructionCost C = expectedCost(VF).first;
5672     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5673     LoopCost = *C.getValue();
5674 
5675     // Loop body is free and there is no need for interleaving.
5676     if (LoopCost == 0)
5677       return 1;
5678   }
5679 
5680   RegisterUsage R = calculateRegisterUsage({VF})[0];
5681   // We divide by these constants so assume that we have at least one
5682   // instruction that uses at least one register.
5683   for (auto& pair : R.MaxLocalUsers) {
5684     pair.second = std::max(pair.second, 1U);
5685   }
5686 
5687   // We calculate the interleave count using the following formula.
5688   // Subtract the number of loop invariants from the number of available
5689   // registers. These registers are used by all of the interleaved instances.
5690   // Next, divide the remaining registers by the number of registers that is
5691   // required by the loop, in order to estimate how many parallel instances
5692   // fit without causing spills. All of this is rounded down if necessary to be
5693   // a power of two. We want power of two interleave count to simplify any
5694   // addressing operations or alignment considerations.
5695   // We also want power of two interleave counts to ensure that the induction
5696   // variable of the vector loop wraps to zero, when tail is folded by masking;
5697   // this currently happens when OptForSize, in which case IC is set to 1 above.
5698   unsigned IC = UINT_MAX;
5699 
5700   for (auto& pair : R.MaxLocalUsers) {
5701     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5702     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5703                       << " registers of "
5704                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5705     if (VF.isScalar()) {
5706       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5707         TargetNumRegisters = ForceTargetNumScalarRegs;
5708     } else {
5709       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5710         TargetNumRegisters = ForceTargetNumVectorRegs;
5711     }
5712     unsigned MaxLocalUsers = pair.second;
5713     unsigned LoopInvariantRegs = 0;
5714     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5715       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5716 
5717     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5718     // Don't count the induction variable as interleaved.
5719     if (EnableIndVarRegisterHeur) {
5720       TmpIC =
5721           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5722                         std::max(1U, (MaxLocalUsers - 1)));
5723     }
5724 
5725     IC = std::min(IC, TmpIC);
5726   }
5727 
5728   // Clamp the interleave ranges to reasonable counts.
5729   unsigned MaxInterleaveCount =
5730       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5731 
5732   // Check if the user has overridden the max.
5733   if (VF.isScalar()) {
5734     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5735       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5736   } else {
5737     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5738       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5739   }
5740 
5741   // If trip count is known or estimated compile time constant, limit the
5742   // interleave count to be less than the trip count divided by VF, provided it
5743   // is at least 1.
5744   //
5745   // For scalable vectors we can't know if interleaving is beneficial. It may
5746   // not be beneficial for small loops if none of the lanes in the second vector
5747   // iterations is enabled. However, for larger loops, there is likely to be a
5748   // similar benefit as for fixed-width vectors. For now, we choose to leave
5749   // the InterleaveCount as if vscale is '1', although if some information about
5750   // the vector is known (e.g. min vector size), we can make a better decision.
5751   if (BestKnownTC) {
5752     MaxInterleaveCount =
5753         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5754     // Make sure MaxInterleaveCount is greater than 0.
5755     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5756   }
5757 
5758   assert(MaxInterleaveCount > 0 &&
5759          "Maximum interleave count must be greater than 0");
5760 
5761   // Clamp the calculated IC to be between the 1 and the max interleave count
5762   // that the target and trip count allows.
5763   if (IC > MaxInterleaveCount)
5764     IC = MaxInterleaveCount;
5765   else
5766     // Make sure IC is greater than 0.
5767     IC = std::max(1u, IC);
5768 
5769   assert(IC > 0 && "Interleave count must be greater than 0.");
5770 
5771   // Interleave if we vectorized this loop and there is a reduction that could
5772   // benefit from interleaving.
5773   if (VF.isVector() && HasReductions) {
5774     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5775     return IC;
5776   }
5777 
5778   // For any scalar loop that either requires runtime checks or predication we
5779   // are better off leaving this to the unroller. Note that if we've already
5780   // vectorized the loop we will have done the runtime check and so interleaving
5781   // won't require further checks.
5782   bool ScalarInterleavingRequiresPredication =
5783       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5784          return Legal->blockNeedsPredication(BB);
5785        }));
5786   bool ScalarInterleavingRequiresRuntimePointerCheck =
5787       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5788 
5789   // We want to interleave small loops in order to reduce the loop overhead and
5790   // potentially expose ILP opportunities.
5791   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5792                     << "LV: IC is " << IC << '\n'
5793                     << "LV: VF is " << VF << '\n');
5794   const bool AggressivelyInterleaveReductions =
5795       TTI.enableAggressiveInterleaving(HasReductions);
5796   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5797       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5798     // We assume that the cost overhead is 1 and we use the cost model
5799     // to estimate the cost of the loop and interleave until the cost of the
5800     // loop overhead is about 5% of the cost of the loop.
5801     unsigned SmallIC =
5802         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5803 
5804     // Interleave until store/load ports (estimated by max interleave count) are
5805     // saturated.
5806     unsigned NumStores = Legal->getNumStores();
5807     unsigned NumLoads = Legal->getNumLoads();
5808     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5809     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5810 
5811     // There is little point in interleaving for reductions containing selects
5812     // and compares when VF=1 since it may just create more overhead than it's
5813     // worth for loops with small trip counts. This is because we still have to
5814     // do the final reduction after the loop.
5815     bool HasSelectCmpReductions =
5816         HasReductions &&
5817         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5818           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5819           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5820               RdxDesc.getRecurrenceKind());
5821         });
5822     if (HasSelectCmpReductions) {
5823       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5824       return 1;
5825     }
5826 
5827     // If we have a scalar reduction (vector reductions are already dealt with
5828     // by this point), we can increase the critical path length if the loop
5829     // we're interleaving is inside another loop. For tree-wise reductions
5830     // set the limit to 2, and for ordered reductions it's best to disable
5831     // interleaving entirely.
5832     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5833       bool HasOrderedReductions =
5834           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5835             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5836             return RdxDesc.isOrdered();
5837           });
5838       if (HasOrderedReductions) {
5839         LLVM_DEBUG(
5840             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5841         return 1;
5842       }
5843 
5844       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5845       SmallIC = std::min(SmallIC, F);
5846       StoresIC = std::min(StoresIC, F);
5847       LoadsIC = std::min(LoadsIC, F);
5848     }
5849 
5850     if (EnableLoadStoreRuntimeInterleave &&
5851         std::max(StoresIC, LoadsIC) > SmallIC) {
5852       LLVM_DEBUG(
5853           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5854       return std::max(StoresIC, LoadsIC);
5855     }
5856 
5857     // If there are scalar reductions and TTI has enabled aggressive
5858     // interleaving for reductions, we will interleave to expose ILP.
5859     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5860         AggressivelyInterleaveReductions) {
5861       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5862       // Interleave no less than SmallIC but not as aggressive as the normal IC
5863       // to satisfy the rare situation when resources are too limited.
5864       return std::max(IC / 2, SmallIC);
5865     } else {
5866       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5867       return SmallIC;
5868     }
5869   }
5870 
5871   // Interleave if this is a large loop (small loops are already dealt with by
5872   // this point) that could benefit from interleaving.
5873   if (AggressivelyInterleaveReductions) {
5874     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5875     return IC;
5876   }
5877 
5878   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5879   return 1;
5880 }
5881 
5882 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5883 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5884   // This function calculates the register usage by measuring the highest number
5885   // of values that are alive at a single location. Obviously, this is a very
5886   // rough estimation. We scan the loop in a topological order in order and
5887   // assign a number to each instruction. We use RPO to ensure that defs are
5888   // met before their users. We assume that each instruction that has in-loop
5889   // users starts an interval. We record every time that an in-loop value is
5890   // used, so we have a list of the first and last occurrences of each
5891   // instruction. Next, we transpose this data structure into a multi map that
5892   // holds the list of intervals that *end* at a specific location. This multi
5893   // map allows us to perform a linear search. We scan the instructions linearly
5894   // and record each time that a new interval starts, by placing it in a set.
5895   // If we find this value in the multi-map then we remove it from the set.
5896   // The max register usage is the maximum size of the set.
5897   // We also search for instructions that are defined outside the loop, but are
5898   // used inside the loop. We need this number separately from the max-interval
5899   // usage number because when we unroll, loop-invariant values do not take
5900   // more register.
5901   LoopBlocksDFS DFS(TheLoop);
5902   DFS.perform(LI);
5903 
5904   RegisterUsage RU;
5905 
5906   // Each 'key' in the map opens a new interval. The values
5907   // of the map are the index of the 'last seen' usage of the
5908   // instruction that is the key.
5909   using IntervalMap = DenseMap<Instruction *, unsigned>;
5910 
5911   // Maps instruction to its index.
5912   SmallVector<Instruction *, 64> IdxToInstr;
5913   // Marks the end of each interval.
5914   IntervalMap EndPoint;
5915   // Saves the list of instruction indices that are used in the loop.
5916   SmallPtrSet<Instruction *, 8> Ends;
5917   // Saves the list of values that are used in the loop but are
5918   // defined outside the loop, such as arguments and constants.
5919   SmallPtrSet<Value *, 8> LoopInvariants;
5920 
5921   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5922     for (Instruction &I : BB->instructionsWithoutDebug()) {
5923       IdxToInstr.push_back(&I);
5924 
5925       // Save the end location of each USE.
5926       for (Value *U : I.operands()) {
5927         auto *Instr = dyn_cast<Instruction>(U);
5928 
5929         // Ignore non-instruction values such as arguments, constants, etc.
5930         if (!Instr)
5931           continue;
5932 
5933         // If this instruction is outside the loop then record it and continue.
5934         if (!TheLoop->contains(Instr)) {
5935           LoopInvariants.insert(Instr);
5936           continue;
5937         }
5938 
5939         // Overwrite previous end points.
5940         EndPoint[Instr] = IdxToInstr.size();
5941         Ends.insert(Instr);
5942       }
5943     }
5944   }
5945 
5946   // Saves the list of intervals that end with the index in 'key'.
5947   using InstrList = SmallVector<Instruction *, 2>;
5948   DenseMap<unsigned, InstrList> TransposeEnds;
5949 
5950   // Transpose the EndPoints to a list of values that end at each index.
5951   for (auto &Interval : EndPoint)
5952     TransposeEnds[Interval.second].push_back(Interval.first);
5953 
5954   SmallPtrSet<Instruction *, 8> OpenIntervals;
5955   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5956   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5957 
5958   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5959 
5960   auto GetRegUsage = [&TTI = TTI](Type *Ty, ElementCount VF) -> unsigned {
5961     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5962       return 0;
5963     return TTI.getRegUsageForType(VectorType::get(Ty, VF));
5964   };
5965 
5966   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5967     Instruction *I = IdxToInstr[i];
5968 
5969     // Remove all of the instructions that end at this location.
5970     InstrList &List = TransposeEnds[i];
5971     for (Instruction *ToRemove : List)
5972       OpenIntervals.erase(ToRemove);
5973 
5974     // Ignore instructions that are never used within the loop.
5975     if (!Ends.count(I))
5976       continue;
5977 
5978     // Skip ignored values.
5979     if (ValuesToIgnore.count(I))
5980       continue;
5981 
5982     // For each VF find the maximum usage of registers.
5983     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5984       // Count the number of live intervals.
5985       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5986 
5987       if (VFs[j].isScalar()) {
5988         for (auto Inst : OpenIntervals) {
5989           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5990           if (RegUsage.find(ClassID) == RegUsage.end())
5991             RegUsage[ClassID] = 1;
5992           else
5993             RegUsage[ClassID] += 1;
5994         }
5995       } else {
5996         collectUniformsAndScalars(VFs[j]);
5997         for (auto Inst : OpenIntervals) {
5998           // Skip ignored values for VF > 1.
5999           if (VecValuesToIgnore.count(Inst))
6000             continue;
6001           if (isScalarAfterVectorization(Inst, VFs[j])) {
6002             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6003             if (RegUsage.find(ClassID) == RegUsage.end())
6004               RegUsage[ClassID] = 1;
6005             else
6006               RegUsage[ClassID] += 1;
6007           } else {
6008             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6009             if (RegUsage.find(ClassID) == RegUsage.end())
6010               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6011             else
6012               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6013           }
6014         }
6015       }
6016 
6017       for (auto& pair : RegUsage) {
6018         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6019           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6020         else
6021           MaxUsages[j][pair.first] = pair.second;
6022       }
6023     }
6024 
6025     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6026                       << OpenIntervals.size() << '\n');
6027 
6028     // Add the current instruction to the list of open intervals.
6029     OpenIntervals.insert(I);
6030   }
6031 
6032   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6033     SmallMapVector<unsigned, unsigned, 4> Invariant;
6034 
6035     for (auto Inst : LoopInvariants) {
6036       unsigned Usage =
6037           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6038       unsigned ClassID =
6039           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6040       if (Invariant.find(ClassID) == Invariant.end())
6041         Invariant[ClassID] = Usage;
6042       else
6043         Invariant[ClassID] += Usage;
6044     }
6045 
6046     LLVM_DEBUG({
6047       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6048       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6049              << " item\n";
6050       for (const auto &pair : MaxUsages[i]) {
6051         dbgs() << "LV(REG): RegisterClass: "
6052                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6053                << " registers\n";
6054       }
6055       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6056              << " item\n";
6057       for (const auto &pair : Invariant) {
6058         dbgs() << "LV(REG): RegisterClass: "
6059                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6060                << " registers\n";
6061       }
6062     });
6063 
6064     RU.LoopInvariantRegs = Invariant;
6065     RU.MaxLocalUsers = MaxUsages[i];
6066     RUs[i] = RU;
6067   }
6068 
6069   return RUs;
6070 }
6071 
6072 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6073                                                            ElementCount VF) {
6074   // TODO: Cost model for emulated masked load/store is completely
6075   // broken. This hack guides the cost model to use an artificially
6076   // high enough value to practically disable vectorization with such
6077   // operations, except where previously deployed legality hack allowed
6078   // using very low cost values. This is to avoid regressions coming simply
6079   // from moving "masked load/store" check from legality to cost model.
6080   // Masked Load/Gather emulation was previously never allowed.
6081   // Limited number of Masked Store/Scatter emulation was allowed.
6082   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6083   return isa<LoadInst>(I) ||
6084          (isa<StoreInst>(I) &&
6085           NumPredStores > NumberOfStoresToPredicate);
6086 }
6087 
6088 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6089   // If we aren't vectorizing the loop, or if we've already collected the
6090   // instructions to scalarize, there's nothing to do. Collection may already
6091   // have occurred if we have a user-selected VF and are now computing the
6092   // expected cost for interleaving.
6093   if (VF.isScalar() || VF.isZero() ||
6094       InstsToScalarize.find(VF) != InstsToScalarize.end())
6095     return;
6096 
6097   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6098   // not profitable to scalarize any instructions, the presence of VF in the
6099   // map will indicate that we've analyzed it already.
6100   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6101 
6102   // Find all the instructions that are scalar with predication in the loop and
6103   // determine if it would be better to not if-convert the blocks they are in.
6104   // If so, we also record the instructions to scalarize.
6105   for (BasicBlock *BB : TheLoop->blocks()) {
6106     if (!blockNeedsPredicationForAnyReason(BB))
6107       continue;
6108     for (Instruction &I : *BB)
6109       if (isScalarWithPredication(&I, VF)) {
6110         ScalarCostsTy ScalarCosts;
6111         // Do not apply discount if scalable, because that would lead to
6112         // invalid scalarization costs.
6113         // Do not apply discount logic if hacked cost is needed
6114         // for emulated masked memrefs.
6115         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6116             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6117           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6118         // Remember that BB will remain after vectorization.
6119         PredicatedBBsAfterVectorization.insert(BB);
6120       }
6121   }
6122 }
6123 
6124 int LoopVectorizationCostModel::computePredInstDiscount(
6125     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6126   assert(!isUniformAfterVectorization(PredInst, VF) &&
6127          "Instruction marked uniform-after-vectorization will be predicated");
6128 
6129   // Initialize the discount to zero, meaning that the scalar version and the
6130   // vector version cost the same.
6131   InstructionCost Discount = 0;
6132 
6133   // Holds instructions to analyze. The instructions we visit are mapped in
6134   // ScalarCosts. Those instructions are the ones that would be scalarized if
6135   // we find that the scalar version costs less.
6136   SmallVector<Instruction *, 8> Worklist;
6137 
6138   // Returns true if the given instruction can be scalarized.
6139   auto canBeScalarized = [&](Instruction *I) -> bool {
6140     // We only attempt to scalarize instructions forming a single-use chain
6141     // from the original predicated block that would otherwise be vectorized.
6142     // Although not strictly necessary, we give up on instructions we know will
6143     // already be scalar to avoid traversing chains that are unlikely to be
6144     // beneficial.
6145     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6146         isScalarAfterVectorization(I, VF))
6147       return false;
6148 
6149     // If the instruction is scalar with predication, it will be analyzed
6150     // separately. We ignore it within the context of PredInst.
6151     if (isScalarWithPredication(I, VF))
6152       return false;
6153 
6154     // If any of the instruction's operands are uniform after vectorization,
6155     // the instruction cannot be scalarized. This prevents, for example, a
6156     // masked load from being scalarized.
6157     //
6158     // We assume we will only emit a value for lane zero of an instruction
6159     // marked uniform after vectorization, rather than VF identical values.
6160     // Thus, if we scalarize an instruction that uses a uniform, we would
6161     // create uses of values corresponding to the lanes we aren't emitting code
6162     // for. This behavior can be changed by allowing getScalarValue to clone
6163     // the lane zero values for uniforms rather than asserting.
6164     for (Use &U : I->operands())
6165       if (auto *J = dyn_cast<Instruction>(U.get()))
6166         if (isUniformAfterVectorization(J, VF))
6167           return false;
6168 
6169     // Otherwise, we can scalarize the instruction.
6170     return true;
6171   };
6172 
6173   // Compute the expected cost discount from scalarizing the entire expression
6174   // feeding the predicated instruction. We currently only consider expressions
6175   // that are single-use instruction chains.
6176   Worklist.push_back(PredInst);
6177   while (!Worklist.empty()) {
6178     Instruction *I = Worklist.pop_back_val();
6179 
6180     // If we've already analyzed the instruction, there's nothing to do.
6181     if (ScalarCosts.find(I) != ScalarCosts.end())
6182       continue;
6183 
6184     // Compute the cost of the vector instruction. Note that this cost already
6185     // includes the scalarization overhead of the predicated instruction.
6186     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6187 
6188     // Compute the cost of the scalarized instruction. This cost is the cost of
6189     // the instruction as if it wasn't if-converted and instead remained in the
6190     // predicated block. We will scale this cost by block probability after
6191     // computing the scalarization overhead.
6192     InstructionCost ScalarCost =
6193         VF.getFixedValue() *
6194         getInstructionCost(I, ElementCount::getFixed(1)).first;
6195 
6196     // Compute the scalarization overhead of needed insertelement instructions
6197     // and phi nodes.
6198     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6199       ScalarCost += TTI.getScalarizationOverhead(
6200           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6201           APInt::getAllOnes(VF.getFixedValue()), true, false);
6202       ScalarCost +=
6203           VF.getFixedValue() *
6204           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6205     }
6206 
6207     // Compute the scalarization overhead of needed extractelement
6208     // instructions. For each of the instruction's operands, if the operand can
6209     // be scalarized, add it to the worklist; otherwise, account for the
6210     // overhead.
6211     for (Use &U : I->operands())
6212       if (auto *J = dyn_cast<Instruction>(U.get())) {
6213         assert(VectorType::isValidElementType(J->getType()) &&
6214                "Instruction has non-scalar type");
6215         if (canBeScalarized(J))
6216           Worklist.push_back(J);
6217         else if (needsExtract(J, VF)) {
6218           ScalarCost += TTI.getScalarizationOverhead(
6219               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6220               APInt::getAllOnes(VF.getFixedValue()), false, true);
6221         }
6222       }
6223 
6224     // Scale the total scalar cost by block probability.
6225     ScalarCost /= getReciprocalPredBlockProb();
6226 
6227     // Compute the discount. A non-negative discount means the vector version
6228     // of the instruction costs more, and scalarizing would be beneficial.
6229     Discount += VectorCost - ScalarCost;
6230     ScalarCosts[I] = ScalarCost;
6231   }
6232 
6233   return *Discount.getValue();
6234 }
6235 
6236 LoopVectorizationCostModel::VectorizationCostTy
6237 LoopVectorizationCostModel::expectedCost(
6238     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6239   VectorizationCostTy Cost;
6240 
6241   // For each block.
6242   for (BasicBlock *BB : TheLoop->blocks()) {
6243     VectorizationCostTy BlockCost;
6244 
6245     // For each instruction in the old loop.
6246     for (Instruction &I : BB->instructionsWithoutDebug()) {
6247       // Skip ignored values.
6248       if (ValuesToIgnore.count(&I) ||
6249           (VF.isVector() && VecValuesToIgnore.count(&I)))
6250         continue;
6251 
6252       VectorizationCostTy C = getInstructionCost(&I, VF);
6253 
6254       // Check if we should override the cost.
6255       if (C.first.isValid() &&
6256           ForceTargetInstructionCost.getNumOccurrences() > 0)
6257         C.first = InstructionCost(ForceTargetInstructionCost);
6258 
6259       // Keep a list of instructions with invalid costs.
6260       if (Invalid && !C.first.isValid())
6261         Invalid->emplace_back(&I, VF);
6262 
6263       BlockCost.first += C.first;
6264       BlockCost.second |= C.second;
6265       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6266                         << " for VF " << VF << " For instruction: " << I
6267                         << '\n');
6268     }
6269 
6270     // If we are vectorizing a predicated block, it will have been
6271     // if-converted. This means that the block's instructions (aside from
6272     // stores and instructions that may divide by zero) will now be
6273     // unconditionally executed. For the scalar case, we may not always execute
6274     // the predicated block, if it is an if-else block. Thus, scale the block's
6275     // cost by the probability of executing it. blockNeedsPredication from
6276     // Legal is used so as to not include all blocks in tail folded loops.
6277     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6278       BlockCost.first /= getReciprocalPredBlockProb();
6279 
6280     Cost.first += BlockCost.first;
6281     Cost.second |= BlockCost.second;
6282   }
6283 
6284   return Cost;
6285 }
6286 
6287 /// Gets Address Access SCEV after verifying that the access pattern
6288 /// is loop invariant except the induction variable dependence.
6289 ///
6290 /// This SCEV can be sent to the Target in order to estimate the address
6291 /// calculation cost.
6292 static const SCEV *getAddressAccessSCEV(
6293               Value *Ptr,
6294               LoopVectorizationLegality *Legal,
6295               PredicatedScalarEvolution &PSE,
6296               const Loop *TheLoop) {
6297 
6298   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6299   if (!Gep)
6300     return nullptr;
6301 
6302   // We are looking for a gep with all loop invariant indices except for one
6303   // which should be an induction variable.
6304   auto SE = PSE.getSE();
6305   unsigned NumOperands = Gep->getNumOperands();
6306   for (unsigned i = 1; i < NumOperands; ++i) {
6307     Value *Opd = Gep->getOperand(i);
6308     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6309         !Legal->isInductionVariable(Opd))
6310       return nullptr;
6311   }
6312 
6313   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6314   return PSE.getSCEV(Ptr);
6315 }
6316 
6317 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6318   return Legal->hasStride(I->getOperand(0)) ||
6319          Legal->hasStride(I->getOperand(1));
6320 }
6321 
6322 InstructionCost
6323 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6324                                                         ElementCount VF) {
6325   assert(VF.isVector() &&
6326          "Scalarization cost of instruction implies vectorization.");
6327   if (VF.isScalable())
6328     return InstructionCost::getInvalid();
6329 
6330   Type *ValTy = getLoadStoreType(I);
6331   auto SE = PSE.getSE();
6332 
6333   unsigned AS = getLoadStoreAddressSpace(I);
6334   Value *Ptr = getLoadStorePointerOperand(I);
6335   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6336   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6337   //       that it is being called from this specific place.
6338 
6339   // Figure out whether the access is strided and get the stride value
6340   // if it's known in compile time
6341   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6342 
6343   // Get the cost of the scalar memory instruction and address computation.
6344   InstructionCost Cost =
6345       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6346 
6347   // Don't pass *I here, since it is scalar but will actually be part of a
6348   // vectorized loop where the user of it is a vectorized instruction.
6349   const Align Alignment = getLoadStoreAlignment(I);
6350   Cost += VF.getKnownMinValue() *
6351           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6352                               AS, TTI::TCK_RecipThroughput);
6353 
6354   // Get the overhead of the extractelement and insertelement instructions
6355   // we might create due to scalarization.
6356   Cost += getScalarizationOverhead(I, VF);
6357 
6358   // If we have a predicated load/store, it will need extra i1 extracts and
6359   // conditional branches, but may not be executed for each vector lane. Scale
6360   // the cost by the probability of executing the predicated block.
6361   if (isPredicatedInst(I, VF)) {
6362     Cost /= getReciprocalPredBlockProb();
6363 
6364     // Add the cost of an i1 extract and a branch
6365     auto *Vec_i1Ty =
6366         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6367     Cost += TTI.getScalarizationOverhead(
6368         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6369         /*Insert=*/false, /*Extract=*/true);
6370     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6371 
6372     if (useEmulatedMaskMemRefHack(I, VF))
6373       // Artificially setting to a high enough value to practically disable
6374       // vectorization with such operations.
6375       Cost = 3000000;
6376   }
6377 
6378   return Cost;
6379 }
6380 
6381 InstructionCost
6382 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6383                                                     ElementCount VF) {
6384   Type *ValTy = getLoadStoreType(I);
6385   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6386   Value *Ptr = getLoadStorePointerOperand(I);
6387   unsigned AS = getLoadStoreAddressSpace(I);
6388   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6389   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6390 
6391   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6392          "Stride should be 1 or -1 for consecutive memory access");
6393   const Align Alignment = getLoadStoreAlignment(I);
6394   InstructionCost Cost = 0;
6395   if (Legal->isMaskRequired(I))
6396     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6397                                       CostKind);
6398   else
6399     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6400                                 CostKind, I);
6401 
6402   bool Reverse = ConsecutiveStride < 0;
6403   if (Reverse)
6404     Cost +=
6405         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6406   return Cost;
6407 }
6408 
6409 InstructionCost
6410 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6411                                                 ElementCount VF) {
6412   assert(Legal->isUniformMemOp(*I));
6413 
6414   Type *ValTy = getLoadStoreType(I);
6415   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6416   const Align Alignment = getLoadStoreAlignment(I);
6417   unsigned AS = getLoadStoreAddressSpace(I);
6418   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6419   if (isa<LoadInst>(I)) {
6420     return TTI.getAddressComputationCost(ValTy) +
6421            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6422                                CostKind) +
6423            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6424   }
6425   StoreInst *SI = cast<StoreInst>(I);
6426 
6427   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6428   return TTI.getAddressComputationCost(ValTy) +
6429          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6430                              CostKind) +
6431          (isLoopInvariantStoreValue
6432               ? 0
6433               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6434                                        VF.getKnownMinValue() - 1));
6435 }
6436 
6437 InstructionCost
6438 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6439                                                  ElementCount VF) {
6440   Type *ValTy = getLoadStoreType(I);
6441   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6442   const Align Alignment = getLoadStoreAlignment(I);
6443   const Value *Ptr = getLoadStorePointerOperand(I);
6444 
6445   return TTI.getAddressComputationCost(VectorTy) +
6446          TTI.getGatherScatterOpCost(
6447              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6448              TargetTransformInfo::TCK_RecipThroughput, I);
6449 }
6450 
6451 InstructionCost
6452 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6453                                                    ElementCount VF) {
6454   // TODO: Once we have support for interleaving with scalable vectors
6455   // we can calculate the cost properly here.
6456   if (VF.isScalable())
6457     return InstructionCost::getInvalid();
6458 
6459   Type *ValTy = getLoadStoreType(I);
6460   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6461   unsigned AS = getLoadStoreAddressSpace(I);
6462 
6463   auto Group = getInterleavedAccessGroup(I);
6464   assert(Group && "Fail to get an interleaved access group.");
6465 
6466   unsigned InterleaveFactor = Group->getFactor();
6467   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6468 
6469   // Holds the indices of existing members in the interleaved group.
6470   SmallVector<unsigned, 4> Indices;
6471   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6472     if (Group->getMember(IF))
6473       Indices.push_back(IF);
6474 
6475   // Calculate the cost of the whole interleaved group.
6476   bool UseMaskForGaps =
6477       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6478       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6479   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6480       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6481       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6482 
6483   if (Group->isReverse()) {
6484     // TODO: Add support for reversed masked interleaved access.
6485     assert(!Legal->isMaskRequired(I) &&
6486            "Reverse masked interleaved access not supported.");
6487     Cost +=
6488         Group->getNumMembers() *
6489         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6490   }
6491   return Cost;
6492 }
6493 
6494 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6495     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6496   using namespace llvm::PatternMatch;
6497   // Early exit for no inloop reductions
6498   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6499     return None;
6500   auto *VectorTy = cast<VectorType>(Ty);
6501 
6502   // We are looking for a pattern of, and finding the minimal acceptable cost:
6503   //  reduce(mul(ext(A), ext(B))) or
6504   //  reduce(mul(A, B)) or
6505   //  reduce(ext(A)) or
6506   //  reduce(A).
6507   // The basic idea is that we walk down the tree to do that, finding the root
6508   // reduction instruction in InLoopReductionImmediateChains. From there we find
6509   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6510   // of the components. If the reduction cost is lower then we return it for the
6511   // reduction instruction and 0 for the other instructions in the pattern. If
6512   // it is not we return an invalid cost specifying the orignal cost method
6513   // should be used.
6514   Instruction *RetI = I;
6515   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6516     if (!RetI->hasOneUser())
6517       return None;
6518     RetI = RetI->user_back();
6519   }
6520   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6521       RetI->user_back()->getOpcode() == Instruction::Add) {
6522     if (!RetI->hasOneUser())
6523       return None;
6524     RetI = RetI->user_back();
6525   }
6526 
6527   // Test if the found instruction is a reduction, and if not return an invalid
6528   // cost specifying the parent to use the original cost modelling.
6529   if (!InLoopReductionImmediateChains.count(RetI))
6530     return None;
6531 
6532   // Find the reduction this chain is a part of and calculate the basic cost of
6533   // the reduction on its own.
6534   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6535   Instruction *ReductionPhi = LastChain;
6536   while (!isa<PHINode>(ReductionPhi))
6537     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6538 
6539   const RecurrenceDescriptor &RdxDesc =
6540       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6541 
6542   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6543       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6544 
6545   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6546   // normal fmul instruction to the cost of the fadd reduction.
6547   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6548     BaseCost +=
6549         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6550 
6551   // If we're using ordered reductions then we can just return the base cost
6552   // here, since getArithmeticReductionCost calculates the full ordered
6553   // reduction cost when FP reassociation is not allowed.
6554   if (useOrderedReductions(RdxDesc))
6555     return BaseCost;
6556 
6557   // Get the operand that was not the reduction chain and match it to one of the
6558   // patterns, returning the better cost if it is found.
6559   Instruction *RedOp = RetI->getOperand(1) == LastChain
6560                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6561                            : dyn_cast<Instruction>(RetI->getOperand(1));
6562 
6563   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6564 
6565   Instruction *Op0, *Op1;
6566   if (RedOp &&
6567       match(RedOp,
6568             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6569       match(Op0, m_ZExtOrSExt(m_Value())) &&
6570       Op0->getOpcode() == Op1->getOpcode() &&
6571       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6572       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6573       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6574 
6575     // Matched reduce(ext(mul(ext(A), ext(B)))
6576     // Note that the extend opcodes need to all match, or if A==B they will have
6577     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6578     // which is equally fine.
6579     bool IsUnsigned = isa<ZExtInst>(Op0);
6580     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6581     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6582 
6583     InstructionCost ExtCost =
6584         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6585                              TTI::CastContextHint::None, CostKind, Op0);
6586     InstructionCost MulCost =
6587         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6588     InstructionCost Ext2Cost =
6589         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6590                              TTI::CastContextHint::None, CostKind, RedOp);
6591 
6592     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6593         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6594         CostKind);
6595 
6596     if (RedCost.isValid() &&
6597         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6598       return I == RetI ? RedCost : 0;
6599   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6600              !TheLoop->isLoopInvariant(RedOp)) {
6601     // Matched reduce(ext(A))
6602     bool IsUnsigned = isa<ZExtInst>(RedOp);
6603     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6604     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6605         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6606         CostKind);
6607 
6608     InstructionCost ExtCost =
6609         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6610                              TTI::CastContextHint::None, CostKind, RedOp);
6611     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6612       return I == RetI ? RedCost : 0;
6613   } else if (RedOp &&
6614              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6615     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6616         Op0->getOpcode() == Op1->getOpcode() &&
6617         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6618       bool IsUnsigned = isa<ZExtInst>(Op0);
6619       Type *Op0Ty = Op0->getOperand(0)->getType();
6620       Type *Op1Ty = Op1->getOperand(0)->getType();
6621       Type *LargestOpTy =
6622           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6623                                                                     : Op0Ty;
6624       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6625 
6626       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6627       // different sizes. We take the largest type as the ext to reduce, and add
6628       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6629       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6630           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6631           TTI::CastContextHint::None, CostKind, Op0);
6632       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6633           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6634           TTI::CastContextHint::None, CostKind, Op1);
6635       InstructionCost MulCost =
6636           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6637 
6638       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6639           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6640           CostKind);
6641       InstructionCost ExtraExtCost = 0;
6642       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6643         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6644         ExtraExtCost = TTI.getCastInstrCost(
6645             ExtraExtOp->getOpcode(), ExtType,
6646             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6647             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6648       }
6649 
6650       if (RedCost.isValid() &&
6651           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6652         return I == RetI ? RedCost : 0;
6653     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6654       // Matched reduce(mul())
6655       InstructionCost MulCost =
6656           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6657 
6658       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6659           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6660           CostKind);
6661 
6662       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6663         return I == RetI ? RedCost : 0;
6664     }
6665   }
6666 
6667   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6668 }
6669 
6670 InstructionCost
6671 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6672                                                      ElementCount VF) {
6673   // Calculate scalar cost only. Vectorization cost should be ready at this
6674   // moment.
6675   if (VF.isScalar()) {
6676     Type *ValTy = getLoadStoreType(I);
6677     const Align Alignment = getLoadStoreAlignment(I);
6678     unsigned AS = getLoadStoreAddressSpace(I);
6679 
6680     return TTI.getAddressComputationCost(ValTy) +
6681            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6682                                TTI::TCK_RecipThroughput, I);
6683   }
6684   return getWideningCost(I, VF);
6685 }
6686 
6687 LoopVectorizationCostModel::VectorizationCostTy
6688 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6689                                                ElementCount VF) {
6690   // If we know that this instruction will remain uniform, check the cost of
6691   // the scalar version.
6692   if (isUniformAfterVectorization(I, VF))
6693     VF = ElementCount::getFixed(1);
6694 
6695   if (VF.isVector() && isProfitableToScalarize(I, VF))
6696     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6697 
6698   // Forced scalars do not have any scalarization overhead.
6699   auto ForcedScalar = ForcedScalars.find(VF);
6700   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6701     auto InstSet = ForcedScalar->second;
6702     if (InstSet.count(I))
6703       return VectorizationCostTy(
6704           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6705            VF.getKnownMinValue()),
6706           false);
6707   }
6708 
6709   Type *VectorTy;
6710   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6711 
6712   bool TypeNotScalarized = false;
6713   if (VF.isVector() && VectorTy->isVectorTy()) {
6714     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
6715     if (NumParts)
6716       TypeNotScalarized = NumParts < VF.getKnownMinValue();
6717     else
6718       C = InstructionCost::getInvalid();
6719   }
6720   return VectorizationCostTy(C, TypeNotScalarized);
6721 }
6722 
6723 InstructionCost
6724 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6725                                                      ElementCount VF) const {
6726 
6727   // There is no mechanism yet to create a scalable scalarization loop,
6728   // so this is currently Invalid.
6729   if (VF.isScalable())
6730     return InstructionCost::getInvalid();
6731 
6732   if (VF.isScalar())
6733     return 0;
6734 
6735   InstructionCost Cost = 0;
6736   Type *RetTy = ToVectorTy(I->getType(), VF);
6737   if (!RetTy->isVoidTy() &&
6738       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6739     Cost += TTI.getScalarizationOverhead(
6740         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6741         false);
6742 
6743   // Some targets keep addresses scalar.
6744   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6745     return Cost;
6746 
6747   // Some targets support efficient element stores.
6748   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6749     return Cost;
6750 
6751   // Collect operands to consider.
6752   CallInst *CI = dyn_cast<CallInst>(I);
6753   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6754 
6755   // Skip operands that do not require extraction/scalarization and do not incur
6756   // any overhead.
6757   SmallVector<Type *> Tys;
6758   for (auto *V : filterExtractingOperands(Ops, VF))
6759     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6760   return Cost + TTI.getOperandsScalarizationOverhead(
6761                     filterExtractingOperands(Ops, VF), Tys);
6762 }
6763 
6764 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6765   if (VF.isScalar())
6766     return;
6767   NumPredStores = 0;
6768   for (BasicBlock *BB : TheLoop->blocks()) {
6769     // For each instruction in the old loop.
6770     for (Instruction &I : *BB) {
6771       Value *Ptr =  getLoadStorePointerOperand(&I);
6772       if (!Ptr)
6773         continue;
6774 
6775       // TODO: We should generate better code and update the cost model for
6776       // predicated uniform stores. Today they are treated as any other
6777       // predicated store (see added test cases in
6778       // invariant-store-vectorization.ll).
6779       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6780         NumPredStores++;
6781 
6782       if (Legal->isUniformMemOp(I)) {
6783         // TODO: Avoid replicating loads and stores instead of
6784         // relying on instcombine to remove them.
6785         // Load: Scalar load + broadcast
6786         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6787         InstructionCost Cost;
6788         if (isa<StoreInst>(&I) && VF.isScalable() &&
6789             isLegalGatherOrScatter(&I, VF)) {
6790           Cost = getGatherScatterCost(&I, VF);
6791           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6792         } else {
6793           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
6794                  "Cannot yet scalarize uniform stores");
6795           Cost = getUniformMemOpCost(&I, VF);
6796           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6797         }
6798         continue;
6799       }
6800 
6801       // We assume that widening is the best solution when possible.
6802       if (memoryInstructionCanBeWidened(&I, VF)) {
6803         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6804         int ConsecutiveStride = Legal->isConsecutivePtr(
6805             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6806         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6807                "Expected consecutive stride.");
6808         InstWidening Decision =
6809             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6810         setWideningDecision(&I, VF, Decision, Cost);
6811         continue;
6812       }
6813 
6814       // Choose between Interleaving, Gather/Scatter or Scalarization.
6815       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6816       unsigned NumAccesses = 1;
6817       if (isAccessInterleaved(&I)) {
6818         auto Group = getInterleavedAccessGroup(&I);
6819         assert(Group && "Fail to get an interleaved access group.");
6820 
6821         // Make one decision for the whole group.
6822         if (getWideningDecision(&I, VF) != CM_Unknown)
6823           continue;
6824 
6825         NumAccesses = Group->getNumMembers();
6826         if (interleavedAccessCanBeWidened(&I, VF))
6827           InterleaveCost = getInterleaveGroupCost(&I, VF);
6828       }
6829 
6830       InstructionCost GatherScatterCost =
6831           isLegalGatherOrScatter(&I, VF)
6832               ? getGatherScatterCost(&I, VF) * NumAccesses
6833               : InstructionCost::getInvalid();
6834 
6835       InstructionCost ScalarizationCost =
6836           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6837 
6838       // Choose better solution for the current VF,
6839       // write down this decision and use it during vectorization.
6840       InstructionCost Cost;
6841       InstWidening Decision;
6842       if (InterleaveCost <= GatherScatterCost &&
6843           InterleaveCost < ScalarizationCost) {
6844         Decision = CM_Interleave;
6845         Cost = InterleaveCost;
6846       } else if (GatherScatterCost < ScalarizationCost) {
6847         Decision = CM_GatherScatter;
6848         Cost = GatherScatterCost;
6849       } else {
6850         Decision = CM_Scalarize;
6851         Cost = ScalarizationCost;
6852       }
6853       // If the instructions belongs to an interleave group, the whole group
6854       // receives the same decision. The whole group receives the cost, but
6855       // the cost will actually be assigned to one instruction.
6856       if (auto Group = getInterleavedAccessGroup(&I))
6857         setWideningDecision(Group, VF, Decision, Cost);
6858       else
6859         setWideningDecision(&I, VF, Decision, Cost);
6860     }
6861   }
6862 
6863   // Make sure that any load of address and any other address computation
6864   // remains scalar unless there is gather/scatter support. This avoids
6865   // inevitable extracts into address registers, and also has the benefit of
6866   // activating LSR more, since that pass can't optimize vectorized
6867   // addresses.
6868   if (TTI.prefersVectorizedAddressing())
6869     return;
6870 
6871   // Start with all scalar pointer uses.
6872   SmallPtrSet<Instruction *, 8> AddrDefs;
6873   for (BasicBlock *BB : TheLoop->blocks())
6874     for (Instruction &I : *BB) {
6875       Instruction *PtrDef =
6876         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6877       if (PtrDef && TheLoop->contains(PtrDef) &&
6878           getWideningDecision(&I, VF) != CM_GatherScatter)
6879         AddrDefs.insert(PtrDef);
6880     }
6881 
6882   // Add all instructions used to generate the addresses.
6883   SmallVector<Instruction *, 4> Worklist;
6884   append_range(Worklist, AddrDefs);
6885   while (!Worklist.empty()) {
6886     Instruction *I = Worklist.pop_back_val();
6887     for (auto &Op : I->operands())
6888       if (auto *InstOp = dyn_cast<Instruction>(Op))
6889         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6890             AddrDefs.insert(InstOp).second)
6891           Worklist.push_back(InstOp);
6892   }
6893 
6894   for (auto *I : AddrDefs) {
6895     if (isa<LoadInst>(I)) {
6896       // Setting the desired widening decision should ideally be handled in
6897       // by cost functions, but since this involves the task of finding out
6898       // if the loaded register is involved in an address computation, it is
6899       // instead changed here when we know this is the case.
6900       InstWidening Decision = getWideningDecision(I, VF);
6901       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6902         // Scalarize a widened load of address.
6903         setWideningDecision(
6904             I, VF, CM_Scalarize,
6905             (VF.getKnownMinValue() *
6906              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6907       else if (auto Group = getInterleavedAccessGroup(I)) {
6908         // Scalarize an interleave group of address loads.
6909         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6910           if (Instruction *Member = Group->getMember(I))
6911             setWideningDecision(
6912                 Member, VF, CM_Scalarize,
6913                 (VF.getKnownMinValue() *
6914                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6915         }
6916       }
6917     } else
6918       // Make sure I gets scalarized and a cost estimate without
6919       // scalarization overhead.
6920       ForcedScalars[VF].insert(I);
6921   }
6922 }
6923 
6924 InstructionCost
6925 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
6926                                                Type *&VectorTy) {
6927   Type *RetTy = I->getType();
6928   if (canTruncateToMinimalBitwidth(I, VF))
6929     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6930   auto SE = PSE.getSE();
6931   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6932 
6933   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
6934                                                 ElementCount VF) -> bool {
6935     if (VF.isScalar())
6936       return true;
6937 
6938     auto Scalarized = InstsToScalarize.find(VF);
6939     assert(Scalarized != InstsToScalarize.end() &&
6940            "VF not yet analyzed for scalarization profitability");
6941     return !Scalarized->second.count(I) &&
6942            llvm::all_of(I->users(), [&](User *U) {
6943              auto *UI = cast<Instruction>(U);
6944              return !Scalarized->second.count(UI);
6945            });
6946   };
6947   (void) hasSingleCopyAfterVectorization;
6948 
6949   if (isScalarAfterVectorization(I, VF)) {
6950     // With the exception of GEPs and PHIs, after scalarization there should
6951     // only be one copy of the instruction generated in the loop. This is
6952     // because the VF is either 1, or any instructions that need scalarizing
6953     // have already been dealt with by the the time we get here. As a result,
6954     // it means we don't have to multiply the instruction cost by VF.
6955     assert(I->getOpcode() == Instruction::GetElementPtr ||
6956            I->getOpcode() == Instruction::PHI ||
6957            (I->getOpcode() == Instruction::BitCast &&
6958             I->getType()->isPointerTy()) ||
6959            hasSingleCopyAfterVectorization(I, VF));
6960     VectorTy = RetTy;
6961   } else
6962     VectorTy = ToVectorTy(RetTy, VF);
6963 
6964   // TODO: We need to estimate the cost of intrinsic calls.
6965   switch (I->getOpcode()) {
6966   case Instruction::GetElementPtr:
6967     // We mark this instruction as zero-cost because the cost of GEPs in
6968     // vectorized code depends on whether the corresponding memory instruction
6969     // is scalarized or not. Therefore, we handle GEPs with the memory
6970     // instruction cost.
6971     return 0;
6972   case Instruction::Br: {
6973     // In cases of scalarized and predicated instructions, there will be VF
6974     // predicated blocks in the vectorized loop. Each branch around these
6975     // blocks requires also an extract of its vector compare i1 element.
6976     bool ScalarPredicatedBB = false;
6977     BranchInst *BI = cast<BranchInst>(I);
6978     if (VF.isVector() && BI->isConditional() &&
6979         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
6980          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
6981       ScalarPredicatedBB = true;
6982 
6983     if (ScalarPredicatedBB) {
6984       // Not possible to scalarize scalable vector with predicated instructions.
6985       if (VF.isScalable())
6986         return InstructionCost::getInvalid();
6987       // Return cost for branches around scalarized and predicated blocks.
6988       auto *Vec_i1Ty =
6989           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6990       return (
6991           TTI.getScalarizationOverhead(
6992               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
6993           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6994     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6995       // The back-edge branch will remain, as will all scalar branches.
6996       return TTI.getCFInstrCost(Instruction::Br, CostKind);
6997     else
6998       // This branch will be eliminated by if-conversion.
6999       return 0;
7000     // Note: We currently assume zero cost for an unconditional branch inside
7001     // a predicated block since it will become a fall-through, although we
7002     // may decide in the future to call TTI for all branches.
7003   }
7004   case Instruction::PHI: {
7005     auto *Phi = cast<PHINode>(I);
7006 
7007     // First-order recurrences are replaced by vector shuffles inside the loop.
7008     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7009     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7010       return TTI.getShuffleCost(
7011           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7012           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7013 
7014     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7015     // converted into select instructions. We require N - 1 selects per phi
7016     // node, where N is the number of incoming values.
7017     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7018       return (Phi->getNumIncomingValues() - 1) *
7019              TTI.getCmpSelInstrCost(
7020                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7021                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7022                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7023 
7024     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7025   }
7026   case Instruction::UDiv:
7027   case Instruction::SDiv:
7028   case Instruction::URem:
7029   case Instruction::SRem:
7030     // If we have a predicated instruction, it may not be executed for each
7031     // vector lane. Get the scalarization cost and scale this amount by the
7032     // probability of executing the predicated block. If the instruction is not
7033     // predicated, we fall through to the next case.
7034     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7035       InstructionCost Cost = 0;
7036 
7037       // These instructions have a non-void type, so account for the phi nodes
7038       // that we will create. This cost is likely to be zero. The phi node
7039       // cost, if any, should be scaled by the block probability because it
7040       // models a copy at the end of each predicated block.
7041       Cost += VF.getKnownMinValue() *
7042               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7043 
7044       // The cost of the non-predicated instruction.
7045       Cost += VF.getKnownMinValue() *
7046               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7047 
7048       // The cost of insertelement and extractelement instructions needed for
7049       // scalarization.
7050       Cost += getScalarizationOverhead(I, VF);
7051 
7052       // Scale the cost by the probability of executing the predicated blocks.
7053       // This assumes the predicated block for each vector lane is equally
7054       // likely.
7055       return Cost / getReciprocalPredBlockProb();
7056     }
7057     LLVM_FALLTHROUGH;
7058   case Instruction::Add:
7059   case Instruction::FAdd:
7060   case Instruction::Sub:
7061   case Instruction::FSub:
7062   case Instruction::Mul:
7063   case Instruction::FMul:
7064   case Instruction::FDiv:
7065   case Instruction::FRem:
7066   case Instruction::Shl:
7067   case Instruction::LShr:
7068   case Instruction::AShr:
7069   case Instruction::And:
7070   case Instruction::Or:
7071   case Instruction::Xor: {
7072     // Since we will replace the stride by 1 the multiplication should go away.
7073     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7074       return 0;
7075 
7076     // Detect reduction patterns
7077     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7078       return *RedCost;
7079 
7080     // Certain instructions can be cheaper to vectorize if they have a constant
7081     // second vector operand. One example of this are shifts on x86.
7082     Value *Op2 = I->getOperand(1);
7083     TargetTransformInfo::OperandValueProperties Op2VP;
7084     TargetTransformInfo::OperandValueKind Op2VK =
7085         TTI.getOperandInfo(Op2, Op2VP);
7086     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7087       Op2VK = TargetTransformInfo::OK_UniformValue;
7088 
7089     SmallVector<const Value *, 4> Operands(I->operand_values());
7090     return TTI.getArithmeticInstrCost(
7091         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7092         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7093   }
7094   case Instruction::FNeg: {
7095     return TTI.getArithmeticInstrCost(
7096         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7097         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7098         TargetTransformInfo::OP_None, I->getOperand(0), I);
7099   }
7100   case Instruction::Select: {
7101     SelectInst *SI = cast<SelectInst>(I);
7102     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7103     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7104 
7105     const Value *Op0, *Op1;
7106     using namespace llvm::PatternMatch;
7107     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7108                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7109       // select x, y, false --> x & y
7110       // select x, true, y --> x | y
7111       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7112       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7113       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7114       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7115       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7116               Op1->getType()->getScalarSizeInBits() == 1);
7117 
7118       SmallVector<const Value *, 2> Operands{Op0, Op1};
7119       return TTI.getArithmeticInstrCost(
7120           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7121           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7122     }
7123 
7124     Type *CondTy = SI->getCondition()->getType();
7125     if (!ScalarCond)
7126       CondTy = VectorType::get(CondTy, VF);
7127 
7128     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7129     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7130       Pred = Cmp->getPredicate();
7131     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7132                                   CostKind, I);
7133   }
7134   case Instruction::ICmp:
7135   case Instruction::FCmp: {
7136     Type *ValTy = I->getOperand(0)->getType();
7137     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7138     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7139       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7140     VectorTy = ToVectorTy(ValTy, VF);
7141     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7142                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7143                                   I);
7144   }
7145   case Instruction::Store:
7146   case Instruction::Load: {
7147     ElementCount Width = VF;
7148     if (Width.isVector()) {
7149       InstWidening Decision = getWideningDecision(I, Width);
7150       assert(Decision != CM_Unknown &&
7151              "CM decision should be taken at this point");
7152       if (Decision == CM_Scalarize)
7153         Width = ElementCount::getFixed(1);
7154     }
7155     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7156     return getMemoryInstructionCost(I, VF);
7157   }
7158   case Instruction::BitCast:
7159     if (I->getType()->isPointerTy())
7160       return 0;
7161     LLVM_FALLTHROUGH;
7162   case Instruction::ZExt:
7163   case Instruction::SExt:
7164   case Instruction::FPToUI:
7165   case Instruction::FPToSI:
7166   case Instruction::FPExt:
7167   case Instruction::PtrToInt:
7168   case Instruction::IntToPtr:
7169   case Instruction::SIToFP:
7170   case Instruction::UIToFP:
7171   case Instruction::Trunc:
7172   case Instruction::FPTrunc: {
7173     // Computes the CastContextHint from a Load/Store instruction.
7174     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7175       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7176              "Expected a load or a store!");
7177 
7178       if (VF.isScalar() || !TheLoop->contains(I))
7179         return TTI::CastContextHint::Normal;
7180 
7181       switch (getWideningDecision(I, VF)) {
7182       case LoopVectorizationCostModel::CM_GatherScatter:
7183         return TTI::CastContextHint::GatherScatter;
7184       case LoopVectorizationCostModel::CM_Interleave:
7185         return TTI::CastContextHint::Interleave;
7186       case LoopVectorizationCostModel::CM_Scalarize:
7187       case LoopVectorizationCostModel::CM_Widen:
7188         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7189                                         : TTI::CastContextHint::Normal;
7190       case LoopVectorizationCostModel::CM_Widen_Reverse:
7191         return TTI::CastContextHint::Reversed;
7192       case LoopVectorizationCostModel::CM_Unknown:
7193         llvm_unreachable("Instr did not go through cost modelling?");
7194       }
7195 
7196       llvm_unreachable("Unhandled case!");
7197     };
7198 
7199     unsigned Opcode = I->getOpcode();
7200     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7201     // For Trunc, the context is the only user, which must be a StoreInst.
7202     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7203       if (I->hasOneUse())
7204         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7205           CCH = ComputeCCH(Store);
7206     }
7207     // For Z/Sext, the context is the operand, which must be a LoadInst.
7208     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7209              Opcode == Instruction::FPExt) {
7210       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7211         CCH = ComputeCCH(Load);
7212     }
7213 
7214     // We optimize the truncation of induction variables having constant
7215     // integer steps. The cost of these truncations is the same as the scalar
7216     // operation.
7217     if (isOptimizableIVTruncate(I, VF)) {
7218       auto *Trunc = cast<TruncInst>(I);
7219       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7220                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7221     }
7222 
7223     // Detect reduction patterns
7224     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7225       return *RedCost;
7226 
7227     Type *SrcScalarTy = I->getOperand(0)->getType();
7228     Type *SrcVecTy =
7229         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7230     if (canTruncateToMinimalBitwidth(I, VF)) {
7231       // This cast is going to be shrunk. This may remove the cast or it might
7232       // turn it into slightly different cast. For example, if MinBW == 16,
7233       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7234       //
7235       // Calculate the modified src and dest types.
7236       Type *MinVecTy = VectorTy;
7237       if (Opcode == Instruction::Trunc) {
7238         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7239         VectorTy =
7240             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7241       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7242         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7243         VectorTy =
7244             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7245       }
7246     }
7247 
7248     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7249   }
7250   case Instruction::Call: {
7251     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7252       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7253         return *RedCost;
7254     bool NeedToScalarize;
7255     CallInst *CI = cast<CallInst>(I);
7256     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7257     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7258       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7259       return std::min(CallCost, IntrinsicCost);
7260     }
7261     return CallCost;
7262   }
7263   case Instruction::ExtractValue:
7264     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7265   case Instruction::Alloca:
7266     // We cannot easily widen alloca to a scalable alloca, as
7267     // the result would need to be a vector of pointers.
7268     if (VF.isScalable())
7269       return InstructionCost::getInvalid();
7270     LLVM_FALLTHROUGH;
7271   default:
7272     // This opcode is unknown. Assume that it is the same as 'mul'.
7273     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7274   } // end of switch.
7275 }
7276 
7277 char LoopVectorize::ID = 0;
7278 
7279 static const char lv_name[] = "Loop Vectorization";
7280 
7281 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7282 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7283 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7284 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7285 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7286 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7287 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7288 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7289 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7290 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7291 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7292 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7293 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7294 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7295 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7296 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7297 
7298 namespace llvm {
7299 
7300 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7301 
7302 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7303                               bool VectorizeOnlyWhenForced) {
7304   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7305 }
7306 
7307 } // end namespace llvm
7308 
7309 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7310   // Check if the pointer operand of a load or store instruction is
7311   // consecutive.
7312   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7313     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7314   return false;
7315 }
7316 
7317 void LoopVectorizationCostModel::collectValuesToIgnore() {
7318   // Ignore ephemeral values.
7319   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7320 
7321   // Find all stores to invariant variables. Since they are going to sink
7322   // outside the loop we do not need calculate cost for them.
7323   for (BasicBlock *BB : TheLoop->blocks())
7324     for (Instruction &I : *BB) {
7325       StoreInst *SI;
7326       if ((SI = dyn_cast<StoreInst>(&I)) &&
7327           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
7328         ValuesToIgnore.insert(&I);
7329     }
7330 
7331   // Ignore type-promoting instructions we identified during reduction
7332   // detection.
7333   for (auto &Reduction : Legal->getReductionVars()) {
7334     const RecurrenceDescriptor &RedDes = Reduction.second;
7335     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7336     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7337   }
7338   // Ignore type-casting instructions we identified during induction
7339   // detection.
7340   for (auto &Induction : Legal->getInductionVars()) {
7341     const InductionDescriptor &IndDes = Induction.second;
7342     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7343     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7344   }
7345 }
7346 
7347 void LoopVectorizationCostModel::collectInLoopReductions() {
7348   for (auto &Reduction : Legal->getReductionVars()) {
7349     PHINode *Phi = Reduction.first;
7350     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7351 
7352     // We don't collect reductions that are type promoted (yet).
7353     if (RdxDesc.getRecurrenceType() != Phi->getType())
7354       continue;
7355 
7356     // If the target would prefer this reduction to happen "in-loop", then we
7357     // want to record it as such.
7358     unsigned Opcode = RdxDesc.getOpcode();
7359     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7360         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7361                                    TargetTransformInfo::ReductionFlags()))
7362       continue;
7363 
7364     // Check that we can correctly put the reductions into the loop, by
7365     // finding the chain of operations that leads from the phi to the loop
7366     // exit value.
7367     SmallVector<Instruction *, 4> ReductionOperations =
7368         RdxDesc.getReductionOpChain(Phi, TheLoop);
7369     bool InLoop = !ReductionOperations.empty();
7370     if (InLoop) {
7371       InLoopReductionChains[Phi] = ReductionOperations;
7372       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7373       Instruction *LastChain = Phi;
7374       for (auto *I : ReductionOperations) {
7375         InLoopReductionImmediateChains[I] = LastChain;
7376         LastChain = I;
7377       }
7378     }
7379     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7380                       << " reduction for phi: " << *Phi << "\n");
7381   }
7382 }
7383 
7384 // TODO: we could return a pair of values that specify the max VF and
7385 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7386 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7387 // doesn't have a cost model that can choose which plan to execute if
7388 // more than one is generated.
7389 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7390                                  LoopVectorizationCostModel &CM) {
7391   unsigned WidestType;
7392   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7393   return WidestVectorRegBits / WidestType;
7394 }
7395 
7396 VectorizationFactor
7397 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7398   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7399   ElementCount VF = UserVF;
7400   // Outer loop handling: They may require CFG and instruction level
7401   // transformations before even evaluating whether vectorization is profitable.
7402   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7403   // the vectorization pipeline.
7404   if (!OrigLoop->isInnermost()) {
7405     // If the user doesn't provide a vectorization factor, determine a
7406     // reasonable one.
7407     if (UserVF.isZero()) {
7408       VF = ElementCount::getFixed(determineVPlanVF(
7409           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7410               .getFixedSize(),
7411           CM));
7412       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7413 
7414       // Make sure we have a VF > 1 for stress testing.
7415       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7416         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7417                           << "overriding computed VF.\n");
7418         VF = ElementCount::getFixed(4);
7419       }
7420     }
7421     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7422     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7423            "VF needs to be a power of two");
7424     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7425                       << "VF " << VF << " to build VPlans.\n");
7426     buildVPlans(VF, VF);
7427 
7428     // For VPlan build stress testing, we bail out after VPlan construction.
7429     if (VPlanBuildStressTest)
7430       return VectorizationFactor::Disabled();
7431 
7432     return {VF, 0 /*Cost*/};
7433   }
7434 
7435   LLVM_DEBUG(
7436       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7437                 "VPlan-native path.\n");
7438   return VectorizationFactor::Disabled();
7439 }
7440 
7441 bool LoopVectorizationPlanner::requiresTooManyRuntimeChecks() const {
7442   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7443   return (NumRuntimePointerChecks >
7444               VectorizerParams::RuntimeMemoryCheckThreshold &&
7445           !Hints.allowReordering()) ||
7446          NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7447 }
7448 
7449 Optional<VectorizationFactor>
7450 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7451   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7452   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7453   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7454     return None;
7455 
7456   // Invalidate interleave groups if all blocks of loop will be predicated.
7457   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7458       !useMaskedInterleavedAccesses(*TTI)) {
7459     LLVM_DEBUG(
7460         dbgs()
7461         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7462            "which requires masked-interleaved support.\n");
7463     if (CM.InterleaveInfo.invalidateGroups())
7464       // Invalidating interleave groups also requires invalidating all decisions
7465       // based on them, which includes widening decisions and uniform and scalar
7466       // values.
7467       CM.invalidateCostModelingDecisions();
7468   }
7469 
7470   ElementCount MaxUserVF =
7471       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7472   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7473   if (!UserVF.isZero() && UserVFIsLegal) {
7474     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7475            "VF needs to be a power of two");
7476     // Collect the instructions (and their associated costs) that will be more
7477     // profitable to scalarize.
7478     if (CM.selectUserVectorizationFactor(UserVF)) {
7479       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7480       CM.collectInLoopReductions();
7481       buildVPlansWithVPRecipes(UserVF, UserVF);
7482       LLVM_DEBUG(printPlans(dbgs()));
7483       return {{UserVF, 0}};
7484     } else
7485       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7486                               "InvalidCost", ORE, OrigLoop);
7487   }
7488 
7489   // Populate the set of Vectorization Factor Candidates.
7490   ElementCountSet VFCandidates;
7491   for (auto VF = ElementCount::getFixed(1);
7492        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7493     VFCandidates.insert(VF);
7494   for (auto VF = ElementCount::getScalable(1);
7495        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7496     VFCandidates.insert(VF);
7497 
7498   for (const auto &VF : VFCandidates) {
7499     // Collect Uniform and Scalar instructions after vectorization with VF.
7500     CM.collectUniformsAndScalars(VF);
7501 
7502     // Collect the instructions (and their associated costs) that will be more
7503     // profitable to scalarize.
7504     if (VF.isVector())
7505       CM.collectInstsToScalarize(VF);
7506   }
7507 
7508   CM.collectInLoopReductions();
7509   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7510   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7511 
7512   LLVM_DEBUG(printPlans(dbgs()));
7513   if (!MaxFactors.hasVector())
7514     return VectorizationFactor::Disabled();
7515 
7516   // Select the optimal vectorization factor.
7517   return CM.selectVectorizationFactor(VFCandidates);
7518 }
7519 
7520 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7521   assert(count_if(VPlans,
7522                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7523              1 &&
7524          "Best VF has not a single VPlan.");
7525 
7526   for (const VPlanPtr &Plan : VPlans) {
7527     if (Plan->hasVF(VF))
7528       return *Plan.get();
7529   }
7530   llvm_unreachable("No plan found!");
7531 }
7532 
7533 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7534   SmallVector<Metadata *, 4> MDs;
7535   // Reserve first location for self reference to the LoopID metadata node.
7536   MDs.push_back(nullptr);
7537   bool IsUnrollMetadata = false;
7538   MDNode *LoopID = L->getLoopID();
7539   if (LoopID) {
7540     // First find existing loop unrolling disable metadata.
7541     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7542       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7543       if (MD) {
7544         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7545         IsUnrollMetadata =
7546             S && S->getString().startswith("llvm.loop.unroll.disable");
7547       }
7548       MDs.push_back(LoopID->getOperand(i));
7549     }
7550   }
7551 
7552   if (!IsUnrollMetadata) {
7553     // Add runtime unroll disable metadata.
7554     LLVMContext &Context = L->getHeader()->getContext();
7555     SmallVector<Metadata *, 1> DisableOperands;
7556     DisableOperands.push_back(
7557         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7558     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7559     MDs.push_back(DisableNode);
7560     MDNode *NewLoopID = MDNode::get(Context, MDs);
7561     // Set operand 0 to refer to the loop id itself.
7562     NewLoopID->replaceOperandWith(0, NewLoopID);
7563     L->setLoopID(NewLoopID);
7564   }
7565 }
7566 
7567 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7568                                            VPlan &BestVPlan,
7569                                            InnerLoopVectorizer &ILV,
7570                                            DominatorTree *DT) {
7571   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7572                     << '\n');
7573 
7574   // Perform the actual loop transformation.
7575 
7576   // 1. Set up the skeleton for vectorization, including vector pre-header and
7577   // middle block. The vector loop is created during VPlan execution.
7578   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7579   Value *CanonicalIVStartValue;
7580   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7581       ILV.createVectorizedLoopSkeleton();
7582   ILV.collectPoisonGeneratingRecipes(State);
7583 
7584   ILV.printDebugTracesAtStart();
7585 
7586   //===------------------------------------------------===//
7587   //
7588   // Notice: any optimization or new instruction that go
7589   // into the code below should also be implemented in
7590   // the cost-model.
7591   //
7592   //===------------------------------------------------===//
7593 
7594   // 2. Copy and widen instructions from the old loop into the new loop.
7595   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7596                              ILV.getOrCreateVectorTripCount(nullptr),
7597                              CanonicalIVStartValue, State);
7598   BestVPlan.execute(&State);
7599 
7600   // Keep all loop hints from the original loop on the vector loop (we'll
7601   // replace the vectorizer-specific hints below).
7602   MDNode *OrigLoopID = OrigLoop->getLoopID();
7603 
7604   Optional<MDNode *> VectorizedLoopID =
7605       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7606                                       LLVMLoopVectorizeFollowupVectorized});
7607 
7608   VPBasicBlock *HeaderVPBB =
7609       BestVPlan.getVectorLoopRegion()->getEntryBasicBlock();
7610   Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]);
7611   if (VectorizedLoopID.hasValue())
7612     L->setLoopID(VectorizedLoopID.getValue());
7613   else {
7614     // Keep all loop hints from the original loop on the vector loop (we'll
7615     // replace the vectorizer-specific hints below).
7616     if (MDNode *LID = OrigLoop->getLoopID())
7617       L->setLoopID(LID);
7618 
7619     LoopVectorizeHints Hints(L, true, *ORE);
7620     Hints.setAlreadyVectorized();
7621   }
7622   // Disable runtime unrolling when vectorizing the epilogue loop.
7623   if (CanonicalIVStartValue)
7624     AddRuntimeUnrollDisableMetaData(L);
7625 
7626   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7627   //    predication, updating analyses.
7628   ILV.fixVectorizedLoop(State, BestVPlan);
7629 
7630   ILV.printDebugTracesAtEnd();
7631 }
7632 
7633 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7634 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7635   for (const auto &Plan : VPlans)
7636     if (PrintVPlansInDotFormat)
7637       Plan->printDOT(O);
7638     else
7639       Plan->print(O);
7640 }
7641 #endif
7642 
7643 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7644     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7645 
7646   // We create new control-flow for the vectorized loop, so the original exit
7647   // conditions will be dead after vectorization if it's only used by the
7648   // terminator
7649   SmallVector<BasicBlock*> ExitingBlocks;
7650   OrigLoop->getExitingBlocks(ExitingBlocks);
7651   for (auto *BB : ExitingBlocks) {
7652     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7653     if (!Cmp || !Cmp->hasOneUse())
7654       continue;
7655 
7656     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7657     if (!DeadInstructions.insert(Cmp).second)
7658       continue;
7659 
7660     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7661     // TODO: can recurse through operands in general
7662     for (Value *Op : Cmp->operands()) {
7663       if (isa<TruncInst>(Op) && Op->hasOneUse())
7664           DeadInstructions.insert(cast<Instruction>(Op));
7665     }
7666   }
7667 
7668   // We create new "steps" for induction variable updates to which the original
7669   // induction variables map. An original update instruction will be dead if
7670   // all its users except the induction variable are dead.
7671   auto *Latch = OrigLoop->getLoopLatch();
7672   for (auto &Induction : Legal->getInductionVars()) {
7673     PHINode *Ind = Induction.first;
7674     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7675 
7676     // If the tail is to be folded by masking, the primary induction variable,
7677     // if exists, isn't dead: it will be used for masking. Don't kill it.
7678     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7679       continue;
7680 
7681     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7682           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7683         }))
7684       DeadInstructions.insert(IndUpdate);
7685   }
7686 }
7687 
7688 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7689 
7690 //===--------------------------------------------------------------------===//
7691 // EpilogueVectorizerMainLoop
7692 //===--------------------------------------------------------------------===//
7693 
7694 /// This function is partially responsible for generating the control flow
7695 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7696 std::pair<BasicBlock *, Value *>
7697 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7698   MDNode *OrigLoopID = OrigLoop->getLoopID();
7699 
7700   // Workaround!  Compute the trip count of the original loop and cache it
7701   // before we start modifying the CFG.  This code has a systemic problem
7702   // wherein it tries to run analysis over partially constructed IR; this is
7703   // wrong, and not simply for SCEV.  The trip count of the original loop
7704   // simply happens to be prone to hitting this in practice.  In theory, we
7705   // can hit the same issue for any SCEV, or ValueTracking query done during
7706   // mutation.  See PR49900.
7707   getOrCreateTripCount(OrigLoop->getLoopPreheader());
7708   createVectorLoopSkeleton("");
7709 
7710   // Generate the code to check the minimum iteration count of the vector
7711   // epilogue (see below).
7712   EPI.EpilogueIterationCountCheck =
7713       emitIterationCountCheck(LoopScalarPreHeader, true);
7714   EPI.EpilogueIterationCountCheck->setName("iter.check");
7715 
7716   // Generate the code to check any assumptions that we've made for SCEV
7717   // expressions.
7718   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7719 
7720   // Generate the code that checks at runtime if arrays overlap. We put the
7721   // checks into a separate block to make the more common case of few elements
7722   // faster.
7723   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7724 
7725   // Generate the iteration count check for the main loop, *after* the check
7726   // for the epilogue loop, so that the path-length is shorter for the case
7727   // that goes directly through the vector epilogue. The longer-path length for
7728   // the main loop is compensated for, by the gain from vectorizing the larger
7729   // trip count. Note: the branch will get updated later on when we vectorize
7730   // the epilogue.
7731   EPI.MainLoopIterationCountCheck =
7732       emitIterationCountCheck(LoopScalarPreHeader, false);
7733 
7734   // Generate the induction variable.
7735   EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
7736 
7737   // Skip induction resume value creation here because they will be created in
7738   // the second pass. If we created them here, they wouldn't be used anyway,
7739   // because the vplan in the second pass still contains the inductions from the
7740   // original loop.
7741 
7742   return {completeLoopSkeleton(OrigLoopID), nullptr};
7743 }
7744 
7745 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7746   LLVM_DEBUG({
7747     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7748            << "Main Loop VF:" << EPI.MainLoopVF
7749            << ", Main Loop UF:" << EPI.MainLoopUF
7750            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7751            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7752   });
7753 }
7754 
7755 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7756   DEBUG_WITH_TYPE(VerboseDebug, {
7757     dbgs() << "intermediate fn:\n"
7758            << *OrigLoop->getHeader()->getParent() << "\n";
7759   });
7760 }
7761 
7762 BasicBlock *
7763 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass,
7764                                                     bool ForEpilogue) {
7765   assert(Bypass && "Expected valid bypass basic block.");
7766   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7767   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7768   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7769   // Reuse existing vector loop preheader for TC checks.
7770   // Note that new preheader block is generated for vector loop.
7771   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7772   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7773 
7774   // Generate code to check if the loop's trip count is less than VF * UF of the
7775   // main vector loop.
7776   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7777       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7778 
7779   Value *CheckMinIters = Builder.CreateICmp(
7780       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7781       "min.iters.check");
7782 
7783   if (!ForEpilogue)
7784     TCCheckBlock->setName("vector.main.loop.iter.check");
7785 
7786   // Create new preheader for vector loop.
7787   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7788                                    DT, LI, nullptr, "vector.ph");
7789 
7790   if (ForEpilogue) {
7791     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7792                                  DT->getNode(Bypass)->getIDom()) &&
7793            "TC check is expected to dominate Bypass");
7794 
7795     // Update dominator for Bypass & LoopExit.
7796     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7797     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7798       // For loops with multiple exits, there's no edge from the middle block
7799       // to exit blocks (as the epilogue must run) and thus no need to update
7800       // the immediate dominator of the exit blocks.
7801       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7802 
7803     LoopBypassBlocks.push_back(TCCheckBlock);
7804 
7805     // Save the trip count so we don't have to regenerate it in the
7806     // vec.epilog.iter.check. This is safe to do because the trip count
7807     // generated here dominates the vector epilog iter check.
7808     EPI.TripCount = Count;
7809   }
7810 
7811   ReplaceInstWithInst(
7812       TCCheckBlock->getTerminator(),
7813       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7814 
7815   return TCCheckBlock;
7816 }
7817 
7818 //===--------------------------------------------------------------------===//
7819 // EpilogueVectorizerEpilogueLoop
7820 //===--------------------------------------------------------------------===//
7821 
7822 /// This function is partially responsible for generating the control flow
7823 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7824 std::pair<BasicBlock *, Value *>
7825 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7826   MDNode *OrigLoopID = OrigLoop->getLoopID();
7827   createVectorLoopSkeleton("vec.epilog.");
7828 
7829   // Now, compare the remaining count and if there aren't enough iterations to
7830   // execute the vectorized epilogue skip to the scalar part.
7831   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7832   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7833   LoopVectorPreHeader =
7834       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7835                  LI, nullptr, "vec.epilog.ph");
7836   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7837                                           VecEpilogueIterationCountCheck);
7838 
7839   // Adjust the control flow taking the state info from the main loop
7840   // vectorization into account.
7841   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7842          "expected this to be saved from the previous pass.");
7843   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7844       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7845 
7846   DT->changeImmediateDominator(LoopVectorPreHeader,
7847                                EPI.MainLoopIterationCountCheck);
7848 
7849   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7850       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7851 
7852   if (EPI.SCEVSafetyCheck)
7853     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
7854         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7855   if (EPI.MemSafetyCheck)
7856     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
7857         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7858 
7859   DT->changeImmediateDominator(
7860       VecEpilogueIterationCountCheck,
7861       VecEpilogueIterationCountCheck->getSinglePredecessor());
7862 
7863   DT->changeImmediateDominator(LoopScalarPreHeader,
7864                                EPI.EpilogueIterationCountCheck);
7865   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7866     // If there is an epilogue which must run, there's no edge from the
7867     // middle block to exit blocks  and thus no need to update the immediate
7868     // dominator of the exit blocks.
7869     DT->changeImmediateDominator(LoopExitBlock,
7870                                  EPI.EpilogueIterationCountCheck);
7871 
7872   // Keep track of bypass blocks, as they feed start values to the induction
7873   // phis in the scalar loop preheader.
7874   if (EPI.SCEVSafetyCheck)
7875     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
7876   if (EPI.MemSafetyCheck)
7877     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
7878   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
7879 
7880   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
7881   // merge control-flow from the latch block and the middle block. Update the
7882   // incoming values here and move the Phi into the preheader.
7883   SmallVector<PHINode *, 4> PhisInBlock;
7884   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
7885     PhisInBlock.push_back(&Phi);
7886 
7887   for (PHINode *Phi : PhisInBlock) {
7888     Phi->replaceIncomingBlockWith(
7889         VecEpilogueIterationCountCheck->getSinglePredecessor(),
7890         VecEpilogueIterationCountCheck);
7891     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7892     if (EPI.SCEVSafetyCheck)
7893       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
7894     if (EPI.MemSafetyCheck)
7895       Phi->removeIncomingValue(EPI.MemSafetyCheck);
7896     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
7897   }
7898 
7899   // Generate a resume induction for the vector epilogue and put it in the
7900   // vector epilogue preheader
7901   Type *IdxTy = Legal->getWidestInductionType();
7902   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
7903                                          LoopVectorPreHeader->getFirstNonPHI());
7904   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
7905   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
7906                            EPI.MainLoopIterationCountCheck);
7907 
7908   // Generate induction resume values. These variables save the new starting
7909   // indexes for the scalar loop. They are used to test if there are any tail
7910   // iterations left once the vector loop has completed.
7911   // Note that when the vectorized epilogue is skipped due to iteration count
7912   // check, then the resume value for the induction variable comes from
7913   // the trip count of the main vector loop, hence passing the AdditionalBypass
7914   // argument.
7915   createInductionResumeValues({VecEpilogueIterationCountCheck,
7916                                EPI.VectorTripCount} /* AdditionalBypass */);
7917 
7918   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
7919 }
7920 
7921 BasicBlock *
7922 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
7923     BasicBlock *Bypass, BasicBlock *Insert) {
7924 
7925   assert(EPI.TripCount &&
7926          "Expected trip count to have been safed in the first pass.");
7927   assert(
7928       (!isa<Instruction>(EPI.TripCount) ||
7929        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
7930       "saved trip count does not dominate insertion point.");
7931   Value *TC = EPI.TripCount;
7932   IRBuilder<> Builder(Insert->getTerminator());
7933   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7934 
7935   // Generate code to check if the loop's trip count is less than VF * UF of the
7936   // vector epilogue loop.
7937   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
7938       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7939 
7940   Value *CheckMinIters =
7941       Builder.CreateICmp(P, Count,
7942                          createStepForVF(Builder, Count->getType(),
7943                                          EPI.EpilogueVF, EPI.EpilogueUF),
7944                          "min.epilog.iters.check");
7945 
7946   ReplaceInstWithInst(
7947       Insert->getTerminator(),
7948       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7949 
7950   LoopBypassBlocks.push_back(Insert);
7951   return Insert;
7952 }
7953 
7954 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
7955   LLVM_DEBUG({
7956     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7957            << "Epilogue Loop VF:" << EPI.EpilogueVF
7958            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7959   });
7960 }
7961 
7962 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
7963   DEBUG_WITH_TYPE(VerboseDebug, {
7964     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7965   });
7966 }
7967 
7968 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7969     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7970   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7971   bool PredicateAtRangeStart = Predicate(Range.Start);
7972 
7973   for (ElementCount TmpVF = Range.Start * 2;
7974        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
7975     if (Predicate(TmpVF) != PredicateAtRangeStart) {
7976       Range.End = TmpVF;
7977       break;
7978     }
7979 
7980   return PredicateAtRangeStart;
7981 }
7982 
7983 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
7984 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
7985 /// of VF's starting at a given VF and extending it as much as possible. Each
7986 /// vectorization decision can potentially shorten this sub-range during
7987 /// buildVPlan().
7988 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
7989                                            ElementCount MaxVF) {
7990   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
7991   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
7992     VFRange SubRange = {VF, MaxVFPlusOne};
7993     VPlans.push_back(buildVPlan(SubRange));
7994     VF = SubRange.End;
7995   }
7996 }
7997 
7998 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
7999                                          VPlanPtr &Plan) {
8000   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8001 
8002   // Look for cached value.
8003   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8004   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8005   if (ECEntryIt != EdgeMaskCache.end())
8006     return ECEntryIt->second;
8007 
8008   VPValue *SrcMask = createBlockInMask(Src, Plan);
8009 
8010   // The terminator has to be a branch inst!
8011   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8012   assert(BI && "Unexpected terminator found");
8013 
8014   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8015     return EdgeMaskCache[Edge] = SrcMask;
8016 
8017   // If source is an exiting block, we know the exit edge is dynamically dead
8018   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8019   // adding uses of an otherwise potentially dead instruction.
8020   if (OrigLoop->isLoopExiting(Src))
8021     return EdgeMaskCache[Edge] = SrcMask;
8022 
8023   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8024   assert(EdgeMask && "No Edge Mask found for condition");
8025 
8026   if (BI->getSuccessor(0) != Dst)
8027     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8028 
8029   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8030     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8031     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8032     // The select version does not introduce new UB if SrcMask is false and
8033     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8034     VPValue *False = Plan->getOrAddVPValue(
8035         ConstantInt::getFalse(BI->getCondition()->getType()));
8036     EdgeMask =
8037         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8038   }
8039 
8040   return EdgeMaskCache[Edge] = EdgeMask;
8041 }
8042 
8043 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8044   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8045 
8046   // Look for cached value.
8047   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8048   if (BCEntryIt != BlockMaskCache.end())
8049     return BCEntryIt->second;
8050 
8051   // All-one mask is modelled as no-mask following the convention for masked
8052   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8053   VPValue *BlockMask = nullptr;
8054 
8055   if (OrigLoop->getHeader() == BB) {
8056     if (!CM.blockNeedsPredicationForAnyReason(BB))
8057       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8058 
8059     // Introduce the early-exit compare IV <= BTC to form header block mask.
8060     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8061     // constructing the desired canonical IV in the header block as its first
8062     // non-phi instructions.
8063     assert(CM.foldTailByMasking() && "must fold the tail");
8064     VPBasicBlock *HeaderVPBB =
8065         Plan->getVectorLoopRegion()->getEntryBasicBlock();
8066     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8067     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8068     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8069 
8070     VPBuilder::InsertPointGuard Guard(Builder);
8071     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8072     if (CM.TTI.emitGetActiveLaneMask()) {
8073       VPValue *TC = Plan->getOrCreateTripCount();
8074       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8075     } else {
8076       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8077       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8078     }
8079     return BlockMaskCache[BB] = BlockMask;
8080   }
8081 
8082   // This is the block mask. We OR all incoming edges.
8083   for (auto *Predecessor : predecessors(BB)) {
8084     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8085     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8086       return BlockMaskCache[BB] = EdgeMask;
8087 
8088     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8089       BlockMask = EdgeMask;
8090       continue;
8091     }
8092 
8093     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8094   }
8095 
8096   return BlockMaskCache[BB] = BlockMask;
8097 }
8098 
8099 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8100                                                 ArrayRef<VPValue *> Operands,
8101                                                 VFRange &Range,
8102                                                 VPlanPtr &Plan) {
8103   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8104          "Must be called with either a load or store");
8105 
8106   auto willWiden = [&](ElementCount VF) -> bool {
8107     LoopVectorizationCostModel::InstWidening Decision =
8108         CM.getWideningDecision(I, VF);
8109     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8110            "CM decision should be taken at this point.");
8111     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8112       return true;
8113     if (CM.isScalarAfterVectorization(I, VF) ||
8114         CM.isProfitableToScalarize(I, VF))
8115       return false;
8116     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8117   };
8118 
8119   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8120     return nullptr;
8121 
8122   VPValue *Mask = nullptr;
8123   if (Legal->isMaskRequired(I))
8124     Mask = createBlockInMask(I->getParent(), Plan);
8125 
8126   // Determine if the pointer operand of the access is either consecutive or
8127   // reverse consecutive.
8128   LoopVectorizationCostModel::InstWidening Decision =
8129       CM.getWideningDecision(I, Range.Start);
8130   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8131   bool Consecutive =
8132       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8133 
8134   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8135     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8136                                               Consecutive, Reverse);
8137 
8138   StoreInst *Store = cast<StoreInst>(I);
8139   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8140                                             Mask, Consecutive, Reverse);
8141 }
8142 
8143 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
8144 /// insert a recipe to expand the step for the induction recipe.
8145 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes(
8146     PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start,
8147     const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM,
8148     VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) {
8149   // Returns true if an instruction \p I should be scalarized instead of
8150   // vectorized for the chosen vectorization factor.
8151   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8152     return CM.isScalarAfterVectorization(I, VF) ||
8153            CM.isProfitableToScalarize(I, VF);
8154   };
8155 
8156   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8157       [&](ElementCount VF) {
8158         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8159       },
8160       Range);
8161   assert(IndDesc.getStartValue() ==
8162          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8163   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8164          "step must be loop invariant");
8165 
8166   VPValue *Step =
8167       vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE);
8168   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8169     return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI,
8170                                              !NeedsScalarIVOnly);
8171   }
8172   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8173   return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc,
8174                                            !NeedsScalarIVOnly);
8175 }
8176 
8177 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
8178     PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) {
8179 
8180   // Check if this is an integer or fp induction. If so, build the recipe that
8181   // produces its scalar and vector values.
8182   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8183     return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan,
8184                                        *PSE.getSE(), *OrigLoop, Range);
8185 
8186   // Check if this is pointer induction. If so, build the recipe for it.
8187   if (auto *II = Legal->getPointerInductionDescriptor(Phi))
8188     return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II,
8189                                              *PSE.getSE());
8190   return nullptr;
8191 }
8192 
8193 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8194     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) {
8195   // Optimize the special case where the source is a constant integer
8196   // induction variable. Notice that we can only optimize the 'trunc' case
8197   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8198   // (c) other casts depend on pointer size.
8199 
8200   // Determine whether \p K is a truncation based on an induction variable that
8201   // can be optimized.
8202   auto isOptimizableIVTruncate =
8203       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8204     return [=](ElementCount VF) -> bool {
8205       return CM.isOptimizableIVTruncate(K, VF);
8206     };
8207   };
8208 
8209   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8210           isOptimizableIVTruncate(I), Range)) {
8211 
8212     auto *Phi = cast<PHINode>(I->getOperand(0));
8213     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8214     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8215     return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan,
8216                                        *PSE.getSE(), *OrigLoop, Range);
8217   }
8218   return nullptr;
8219 }
8220 
8221 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8222                                                 ArrayRef<VPValue *> Operands,
8223                                                 VPlanPtr &Plan) {
8224   // If all incoming values are equal, the incoming VPValue can be used directly
8225   // instead of creating a new VPBlendRecipe.
8226   VPValue *FirstIncoming = Operands[0];
8227   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8228         return FirstIncoming == Inc;
8229       })) {
8230     return Operands[0];
8231   }
8232 
8233   unsigned NumIncoming = Phi->getNumIncomingValues();
8234   // For in-loop reductions, we do not need to create an additional select.
8235   VPValue *InLoopVal = nullptr;
8236   for (unsigned In = 0; In < NumIncoming; In++) {
8237     PHINode *PhiOp =
8238         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8239     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8240       assert(!InLoopVal && "Found more than one in-loop reduction!");
8241       InLoopVal = Operands[In];
8242     }
8243   }
8244 
8245   assert((!InLoopVal || NumIncoming == 2) &&
8246          "Found an in-loop reduction for PHI with unexpected number of "
8247          "incoming values");
8248   if (InLoopVal)
8249     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8250 
8251   // We know that all PHIs in non-header blocks are converted into selects, so
8252   // we don't have to worry about the insertion order and we can just use the
8253   // builder. At this point we generate the predication tree. There may be
8254   // duplications since this is a simple recursive scan, but future
8255   // optimizations will clean it up.
8256   SmallVector<VPValue *, 2> OperandsWithMask;
8257 
8258   for (unsigned In = 0; In < NumIncoming; In++) {
8259     VPValue *EdgeMask =
8260       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8261     assert((EdgeMask || NumIncoming == 1) &&
8262            "Multiple predecessors with one having a full mask");
8263     OperandsWithMask.push_back(Operands[In]);
8264     if (EdgeMask)
8265       OperandsWithMask.push_back(EdgeMask);
8266   }
8267   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8268 }
8269 
8270 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8271                                                    ArrayRef<VPValue *> Operands,
8272                                                    VFRange &Range) const {
8273 
8274   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8275       [this, CI](ElementCount VF) {
8276         return CM.isScalarWithPredication(CI, VF);
8277       },
8278       Range);
8279 
8280   if (IsPredicated)
8281     return nullptr;
8282 
8283   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8284   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8285              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8286              ID == Intrinsic::pseudoprobe ||
8287              ID == Intrinsic::experimental_noalias_scope_decl))
8288     return nullptr;
8289 
8290   auto willWiden = [&](ElementCount VF) -> bool {
8291     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8292     // The following case may be scalarized depending on the VF.
8293     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8294     // version of the instruction.
8295     // Is it beneficial to perform intrinsic call compared to lib call?
8296     bool NeedToScalarize = false;
8297     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8298     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8299     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8300     return UseVectorIntrinsic || !NeedToScalarize;
8301   };
8302 
8303   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8304     return nullptr;
8305 
8306   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8307   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8308 }
8309 
8310 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8311   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8312          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8313   // Instruction should be widened, unless it is scalar after vectorization,
8314   // scalarization is profitable or it is predicated.
8315   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8316     return CM.isScalarAfterVectorization(I, VF) ||
8317            CM.isProfitableToScalarize(I, VF) ||
8318            CM.isScalarWithPredication(I, VF);
8319   };
8320   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8321                                                              Range);
8322 }
8323 
8324 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8325                                            ArrayRef<VPValue *> Operands) const {
8326   auto IsVectorizableOpcode = [](unsigned Opcode) {
8327     switch (Opcode) {
8328     case Instruction::Add:
8329     case Instruction::And:
8330     case Instruction::AShr:
8331     case Instruction::BitCast:
8332     case Instruction::FAdd:
8333     case Instruction::FCmp:
8334     case Instruction::FDiv:
8335     case Instruction::FMul:
8336     case Instruction::FNeg:
8337     case Instruction::FPExt:
8338     case Instruction::FPToSI:
8339     case Instruction::FPToUI:
8340     case Instruction::FPTrunc:
8341     case Instruction::FRem:
8342     case Instruction::FSub:
8343     case Instruction::ICmp:
8344     case Instruction::IntToPtr:
8345     case Instruction::LShr:
8346     case Instruction::Mul:
8347     case Instruction::Or:
8348     case Instruction::PtrToInt:
8349     case Instruction::SDiv:
8350     case Instruction::Select:
8351     case Instruction::SExt:
8352     case Instruction::Shl:
8353     case Instruction::SIToFP:
8354     case Instruction::SRem:
8355     case Instruction::Sub:
8356     case Instruction::Trunc:
8357     case Instruction::UDiv:
8358     case Instruction::UIToFP:
8359     case Instruction::URem:
8360     case Instruction::Xor:
8361     case Instruction::ZExt:
8362     case Instruction::Freeze:
8363       return true;
8364     }
8365     return false;
8366   };
8367 
8368   if (!IsVectorizableOpcode(I->getOpcode()))
8369     return nullptr;
8370 
8371   // Success: widen this instruction.
8372   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8373 }
8374 
8375 void VPRecipeBuilder::fixHeaderPhis() {
8376   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8377   for (VPHeaderPHIRecipe *R : PhisToFix) {
8378     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8379     VPRecipeBase *IncR =
8380         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8381     R->addOperand(IncR->getVPSingleValue());
8382   }
8383 }
8384 
8385 VPBasicBlock *VPRecipeBuilder::handleReplication(
8386     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8387     VPlanPtr &Plan) {
8388   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8389       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8390       Range);
8391 
8392   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8393       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8394       Range);
8395 
8396   // Even if the instruction is not marked as uniform, there are certain
8397   // intrinsic calls that can be effectively treated as such, so we check for
8398   // them here. Conservatively, we only do this for scalable vectors, since
8399   // for fixed-width VFs we can always fall back on full scalarization.
8400   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8401     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8402     case Intrinsic::assume:
8403     case Intrinsic::lifetime_start:
8404     case Intrinsic::lifetime_end:
8405       // For scalable vectors if one of the operands is variant then we still
8406       // want to mark as uniform, which will generate one instruction for just
8407       // the first lane of the vector. We can't scalarize the call in the same
8408       // way as for fixed-width vectors because we don't know how many lanes
8409       // there are.
8410       //
8411       // The reasons for doing it this way for scalable vectors are:
8412       //   1. For the assume intrinsic generating the instruction for the first
8413       //      lane is still be better than not generating any at all. For
8414       //      example, the input may be a splat across all lanes.
8415       //   2. For the lifetime start/end intrinsics the pointer operand only
8416       //      does anything useful when the input comes from a stack object,
8417       //      which suggests it should always be uniform. For non-stack objects
8418       //      the effect is to poison the object, which still allows us to
8419       //      remove the call.
8420       IsUniform = true;
8421       break;
8422     default:
8423       break;
8424     }
8425   }
8426 
8427   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8428                                        IsUniform, IsPredicated);
8429   setRecipe(I, Recipe);
8430   Plan->addVPValue(I, Recipe);
8431 
8432   // Find if I uses a predicated instruction. If so, it will use its scalar
8433   // value. Avoid hoisting the insert-element which packs the scalar value into
8434   // a vector value, as that happens iff all users use the vector value.
8435   for (VPValue *Op : Recipe->operands()) {
8436     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8437     if (!PredR)
8438       continue;
8439     auto *RepR =
8440         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8441     assert(RepR->isPredicated() &&
8442            "expected Replicate recipe to be predicated");
8443     RepR->setAlsoPack(false);
8444   }
8445 
8446   // Finalize the recipe for Instr, first if it is not predicated.
8447   if (!IsPredicated) {
8448     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8449     VPBB->appendRecipe(Recipe);
8450     return VPBB;
8451   }
8452   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8453 
8454   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8455   assert(SingleSucc && "VPBB must have a single successor when handling "
8456                        "predicated replication.");
8457   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8458   // Record predicated instructions for above packing optimizations.
8459   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8460   VPBlockUtils::insertBlockAfter(Region, VPBB);
8461   auto *RegSucc = new VPBasicBlock();
8462   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8463   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8464   return RegSucc;
8465 }
8466 
8467 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8468                                                       VPRecipeBase *PredRecipe,
8469                                                       VPlanPtr &Plan) {
8470   // Instructions marked for predication are replicated and placed under an
8471   // if-then construct to prevent side-effects.
8472 
8473   // Generate recipes to compute the block mask for this region.
8474   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8475 
8476   // Build the triangular if-then region.
8477   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8478   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8479   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8480   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8481   auto *PHIRecipe = Instr->getType()->isVoidTy()
8482                         ? nullptr
8483                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8484   if (PHIRecipe) {
8485     Plan->removeVPValueFor(Instr);
8486     Plan->addVPValue(Instr, PHIRecipe);
8487   }
8488   auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8489   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8490   VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
8491 
8492   // Note: first set Entry as region entry and then connect successors starting
8493   // from it in order, to propagate the "parent" of each VPBasicBlock.
8494   VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
8495   VPBlockUtils::connectBlocks(Pred, Exiting);
8496 
8497   return Region;
8498 }
8499 
8500 VPRecipeOrVPValueTy
8501 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8502                                         ArrayRef<VPValue *> Operands,
8503                                         VFRange &Range, VPlanPtr &Plan) {
8504   // First, check for specific widening recipes that deal with inductions, Phi
8505   // nodes, calls and memory operations.
8506   VPRecipeBase *Recipe;
8507   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8508     if (Phi->getParent() != OrigLoop->getHeader())
8509       return tryToBlend(Phi, Operands, Plan);
8510     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range)))
8511       return toVPRecipeResult(Recipe);
8512 
8513     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8514     assert((Legal->isReductionVariable(Phi) ||
8515             Legal->isFirstOrderRecurrence(Phi)) &&
8516            "can only widen reductions and first-order recurrences here");
8517     VPValue *StartV = Operands[0];
8518     if (Legal->isReductionVariable(Phi)) {
8519       const RecurrenceDescriptor &RdxDesc =
8520           Legal->getReductionVars().find(Phi)->second;
8521       assert(RdxDesc.getRecurrenceStartValue() ==
8522              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8523       PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8524                                            CM.isInLoopReduction(Phi),
8525                                            CM.useOrderedReductions(RdxDesc));
8526     } else {
8527       PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8528     }
8529 
8530     // Record the incoming value from the backedge, so we can add the incoming
8531     // value from the backedge after all recipes have been created.
8532     recordRecipeOf(cast<Instruction>(
8533         Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8534     PhisToFix.push_back(PhiRecipe);
8535     return toVPRecipeResult(PhiRecipe);
8536   }
8537 
8538   if (isa<TruncInst>(Instr) &&
8539       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8540                                                Range, *Plan)))
8541     return toVPRecipeResult(Recipe);
8542 
8543   // All widen recipes below deal only with VF > 1.
8544   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8545           [&](ElementCount VF) { return VF.isScalar(); }, Range))
8546     return nullptr;
8547 
8548   if (auto *CI = dyn_cast<CallInst>(Instr))
8549     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8550 
8551   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8552     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8553 
8554   if (!shouldWiden(Instr, Range))
8555     return nullptr;
8556 
8557   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8558     return toVPRecipeResult(new VPWidenGEPRecipe(
8559         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8560 
8561   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8562     bool InvariantCond =
8563         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8564     return toVPRecipeResult(new VPWidenSelectRecipe(
8565         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8566   }
8567 
8568   return toVPRecipeResult(tryToWiden(Instr, Operands));
8569 }
8570 
8571 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8572                                                         ElementCount MaxVF) {
8573   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8574 
8575   // Collect instructions from the original loop that will become trivially dead
8576   // in the vectorized loop. We don't need to vectorize these instructions. For
8577   // example, original induction update instructions can become dead because we
8578   // separately emit induction "steps" when generating code for the new loop.
8579   // Similarly, we create a new latch condition when setting up the structure
8580   // of the new loop, so the old one can become dead.
8581   SmallPtrSet<Instruction *, 4> DeadInstructions;
8582   collectTriviallyDeadInstructions(DeadInstructions);
8583 
8584   // Add assume instructions we need to drop to DeadInstructions, to prevent
8585   // them from being added to the VPlan.
8586   // TODO: We only need to drop assumes in blocks that get flattend. If the
8587   // control flow is preserved, we should keep them.
8588   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8589   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8590 
8591   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8592   // Dead instructions do not need sinking. Remove them from SinkAfter.
8593   for (Instruction *I : DeadInstructions)
8594     SinkAfter.erase(I);
8595 
8596   // Cannot sink instructions after dead instructions (there won't be any
8597   // recipes for them). Instead, find the first non-dead previous instruction.
8598   for (auto &P : Legal->getSinkAfter()) {
8599     Instruction *SinkTarget = P.second;
8600     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8601     (void)FirstInst;
8602     while (DeadInstructions.contains(SinkTarget)) {
8603       assert(
8604           SinkTarget != FirstInst &&
8605           "Must find a live instruction (at least the one feeding the "
8606           "first-order recurrence PHI) before reaching beginning of the block");
8607       SinkTarget = SinkTarget->getPrevNode();
8608       assert(SinkTarget != P.first &&
8609              "sink source equals target, no sinking required");
8610     }
8611     P.second = SinkTarget;
8612   }
8613 
8614   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8615   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8616     VFRange SubRange = {VF, MaxVFPlusOne};
8617     VPlans.push_back(
8618         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8619     VF = SubRange.End;
8620   }
8621 }
8622 
8623 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8624 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8625 // BranchOnCount VPInstruction to the latch.
8626 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8627                                   bool HasNUW) {
8628   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8629   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8630 
8631   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8632   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8633   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8634   Header->insert(CanonicalIVPHI, Header->begin());
8635 
8636   auto *CanonicalIVIncrement =
8637       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8638                                : VPInstruction::CanonicalIVIncrement,
8639                         {CanonicalIVPHI}, DL);
8640   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8641 
8642   VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
8643   EB->appendRecipe(CanonicalIVIncrement);
8644 
8645   auto *BranchOnCount =
8646       new VPInstruction(VPInstruction::BranchOnCount,
8647                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8648   EB->appendRecipe(BranchOnCount);
8649 }
8650 
8651 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the
8652 // original exit block.
8653 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB,
8654                                 VPBasicBlock *MiddleVPBB, Loop *OrigLoop,
8655                                 VPlan &Plan) {
8656   BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock();
8657   BasicBlock *ExitingBB = OrigLoop->getExitingBlock();
8658   // Only handle single-exit loops with unique exit blocks for now.
8659   if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB)
8660     return;
8661 
8662   // Introduce VPUsers modeling the exit values.
8663   for (PHINode &ExitPhi : ExitBB->phis()) {
8664     Value *IncomingValue =
8665         ExitPhi.getIncomingValueForBlock(ExitingBB);
8666     VPValue *V = Plan.getOrAddVPValue(IncomingValue, true);
8667     Plan.addLiveOut(&ExitPhi, V);
8668   }
8669 }
8670 
8671 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8672     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8673     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8674 
8675   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8676 
8677   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8678 
8679   // ---------------------------------------------------------------------------
8680   // Pre-construction: record ingredients whose recipes we'll need to further
8681   // process after constructing the initial VPlan.
8682   // ---------------------------------------------------------------------------
8683 
8684   // Mark instructions we'll need to sink later and their targets as
8685   // ingredients whose recipe we'll need to record.
8686   for (auto &Entry : SinkAfter) {
8687     RecipeBuilder.recordRecipeOf(Entry.first);
8688     RecipeBuilder.recordRecipeOf(Entry.second);
8689   }
8690   for (auto &Reduction : CM.getInLoopReductionChains()) {
8691     PHINode *Phi = Reduction.first;
8692     RecurKind Kind =
8693         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8694     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8695 
8696     RecipeBuilder.recordRecipeOf(Phi);
8697     for (auto &R : ReductionOperations) {
8698       RecipeBuilder.recordRecipeOf(R);
8699       // For min/max reductions, where we have a pair of icmp/select, we also
8700       // need to record the ICmp recipe, so it can be removed later.
8701       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8702              "Only min/max recurrences allowed for inloop reductions");
8703       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8704         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8705     }
8706   }
8707 
8708   // For each interleave group which is relevant for this (possibly trimmed)
8709   // Range, add it to the set of groups to be later applied to the VPlan and add
8710   // placeholders for its members' Recipes which we'll be replacing with a
8711   // single VPInterleaveRecipe.
8712   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8713     auto applyIG = [IG, this](ElementCount VF) -> bool {
8714       return (VF.isVector() && // Query is illegal for VF == 1
8715               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8716                   LoopVectorizationCostModel::CM_Interleave);
8717     };
8718     if (!getDecisionAndClampRange(applyIG, Range))
8719       continue;
8720     InterleaveGroups.insert(IG);
8721     for (unsigned i = 0; i < IG->getFactor(); i++)
8722       if (Instruction *Member = IG->getMember(i))
8723         RecipeBuilder.recordRecipeOf(Member);
8724   };
8725 
8726   // ---------------------------------------------------------------------------
8727   // Build initial VPlan: Scan the body of the loop in a topological order to
8728   // visit each basic block after having visited its predecessor basic blocks.
8729   // ---------------------------------------------------------------------------
8730 
8731   // Create initial VPlan skeleton, starting with a block for the pre-header,
8732   // followed by a region for the vector loop, followed by the middle block. The
8733   // skeleton vector loop region contains a header and latch block.
8734   VPBasicBlock *Preheader = new VPBasicBlock("vector.ph");
8735   auto Plan = std::make_unique<VPlan>(Preheader);
8736 
8737   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
8738   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8739   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8740   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8741   VPBlockUtils::insertBlockAfter(TopRegion, Preheader);
8742   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
8743   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
8744 
8745   Instruction *DLInst =
8746       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8747   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8748                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8749                         !CM.foldTailByMasking());
8750 
8751   // Scan the body of the loop in a topological order to visit each basic block
8752   // after having visited its predecessor basic blocks.
8753   LoopBlocksDFS DFS(OrigLoop);
8754   DFS.perform(LI);
8755 
8756   VPBasicBlock *VPBB = HeaderVPBB;
8757   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8758   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8759     // Relevant instructions from basic block BB will be grouped into VPRecipe
8760     // ingredients and fill a new VPBasicBlock.
8761     unsigned VPBBsForBB = 0;
8762     if (VPBB != HeaderVPBB)
8763       VPBB->setName(BB->getName());
8764     Builder.setInsertPoint(VPBB);
8765 
8766     // Introduce each ingredient into VPlan.
8767     // TODO: Model and preserve debug intrinsics in VPlan.
8768     for (Instruction &I : BB->instructionsWithoutDebug()) {
8769       Instruction *Instr = &I;
8770 
8771       // First filter out irrelevant instructions, to ensure no recipes are
8772       // built for them.
8773       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8774         continue;
8775 
8776       SmallVector<VPValue *, 4> Operands;
8777       auto *Phi = dyn_cast<PHINode>(Instr);
8778       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8779         Operands.push_back(Plan->getOrAddVPValue(
8780             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8781       } else {
8782         auto OpRange = Plan->mapToVPValues(Instr->operands());
8783         Operands = {OpRange.begin(), OpRange.end()};
8784       }
8785 
8786       // Invariant stores inside loop will be deleted and a single store
8787       // with the final reduction value will be added to the exit block
8788       StoreInst *SI;
8789       if ((SI = dyn_cast<StoreInst>(&I)) &&
8790           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
8791         continue;
8792 
8793       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8794               Instr, Operands, Range, Plan)) {
8795         // If Instr can be simplified to an existing VPValue, use it.
8796         if (RecipeOrValue.is<VPValue *>()) {
8797           auto *VPV = RecipeOrValue.get<VPValue *>();
8798           Plan->addVPValue(Instr, VPV);
8799           // If the re-used value is a recipe, register the recipe for the
8800           // instruction, in case the recipe for Instr needs to be recorded.
8801           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8802             RecipeBuilder.setRecipe(Instr, R);
8803           continue;
8804         }
8805         // Otherwise, add the new recipe.
8806         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8807         for (auto *Def : Recipe->definedValues()) {
8808           auto *UV = Def->getUnderlyingValue();
8809           Plan->addVPValue(UV, Def);
8810         }
8811 
8812         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8813             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8814           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8815           // of the header block. That can happen for truncates of induction
8816           // variables. Those recipes are moved to the phi section of the header
8817           // block after applying SinkAfter, which relies on the original
8818           // position of the trunc.
8819           assert(isa<TruncInst>(Instr));
8820           InductionsToMove.push_back(
8821               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8822         }
8823         RecipeBuilder.setRecipe(Instr, Recipe);
8824         VPBB->appendRecipe(Recipe);
8825         continue;
8826       }
8827 
8828       // Otherwise, if all widening options failed, Instruction is to be
8829       // replicated. This may create a successor for VPBB.
8830       VPBasicBlock *NextVPBB =
8831           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8832       if (NextVPBB != VPBB) {
8833         VPBB = NextVPBB;
8834         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8835                                     : "");
8836       }
8837     }
8838 
8839     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8840     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8841   }
8842 
8843   HeaderVPBB->setName("vector.body");
8844 
8845   // Fold the last, empty block into its predecessor.
8846   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8847   assert(VPBB && "expected to fold last (empty) block");
8848   // After here, VPBB should not be used.
8849   VPBB = nullptr;
8850 
8851   addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan);
8852 
8853   assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8854          !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8855          "entry block must be set to a VPRegionBlock having a non-empty entry "
8856          "VPBasicBlock");
8857   RecipeBuilder.fixHeaderPhis();
8858 
8859   // ---------------------------------------------------------------------------
8860   // Transform initial VPlan: Apply previously taken decisions, in order, to
8861   // bring the VPlan to its final state.
8862   // ---------------------------------------------------------------------------
8863 
8864   // Apply Sink-After legal constraints.
8865   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8866     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8867     if (Region && Region->isReplicator()) {
8868       assert(Region->getNumSuccessors() == 1 &&
8869              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8870       assert(R->getParent()->size() == 1 &&
8871              "A recipe in an original replicator region must be the only "
8872              "recipe in its block");
8873       return Region;
8874     }
8875     return nullptr;
8876   };
8877   for (auto &Entry : SinkAfter) {
8878     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8879     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8880 
8881     auto *TargetRegion = GetReplicateRegion(Target);
8882     auto *SinkRegion = GetReplicateRegion(Sink);
8883     if (!SinkRegion) {
8884       // If the sink source is not a replicate region, sink the recipe directly.
8885       if (TargetRegion) {
8886         // The target is in a replication region, make sure to move Sink to
8887         // the block after it, not into the replication region itself.
8888         VPBasicBlock *NextBlock =
8889             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
8890         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8891       } else
8892         Sink->moveAfter(Target);
8893       continue;
8894     }
8895 
8896     // The sink source is in a replicate region. Unhook the region from the CFG.
8897     auto *SinkPred = SinkRegion->getSinglePredecessor();
8898     auto *SinkSucc = SinkRegion->getSingleSuccessor();
8899     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
8900     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
8901     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
8902 
8903     if (TargetRegion) {
8904       // The target recipe is also in a replicate region, move the sink region
8905       // after the target region.
8906       auto *TargetSucc = TargetRegion->getSingleSuccessor();
8907       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
8908       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
8909       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
8910     } else {
8911       // The sink source is in a replicate region, we need to move the whole
8912       // replicate region, which should only contain a single recipe in the
8913       // main block.
8914       auto *SplitBlock =
8915           Target->getParent()->splitAt(std::next(Target->getIterator()));
8916 
8917       auto *SplitPred = SplitBlock->getSinglePredecessor();
8918 
8919       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
8920       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
8921       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
8922     }
8923   }
8924 
8925   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
8926   VPlanTransforms::removeRedundantInductionCasts(*Plan);
8927 
8928   // Now that sink-after is done, move induction recipes for optimized truncates
8929   // to the phi section of the header block.
8930   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
8931     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8932 
8933   // Adjust the recipes for any inloop reductions.
8934   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan,
8935                              RecipeBuilder, Range.Start);
8936 
8937   // Introduce a recipe to combine the incoming and previous values of a
8938   // first-order recurrence.
8939   for (VPRecipeBase &R :
8940        Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8941     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
8942     if (!RecurPhi)
8943       continue;
8944 
8945     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
8946     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
8947     auto *Region = GetReplicateRegion(PrevRecipe);
8948     if (Region)
8949       InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor());
8950     if (!InsertBlock) {
8951       InsertBlock = new VPBasicBlock(Region->getName() + ".succ");
8952       VPBlockUtils::insertBlockAfter(InsertBlock, Region);
8953     }
8954     if (Region || PrevRecipe->isPhi())
8955       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
8956     else
8957       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
8958 
8959     auto *RecurSplice = cast<VPInstruction>(
8960         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
8961                              {RecurPhi, RecurPhi->getBackedgeValue()}));
8962 
8963     RecurPhi->replaceAllUsesWith(RecurSplice);
8964     // Set the first operand of RecurSplice to RecurPhi again, after replacing
8965     // all users.
8966     RecurSplice->setOperand(0, RecurPhi);
8967   }
8968 
8969   // Interleave memory: for each Interleave Group we marked earlier as relevant
8970   // for this VPlan, replace the Recipes widening its memory instructions with a
8971   // single VPInterleaveRecipe at its insertion point.
8972   for (auto IG : InterleaveGroups) {
8973     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8974         RecipeBuilder.getRecipe(IG->getInsertPos()));
8975     SmallVector<VPValue *, 4> StoredValues;
8976     for (unsigned i = 0; i < IG->getFactor(); ++i)
8977       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
8978         auto *StoreR =
8979             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
8980         StoredValues.push_back(StoreR->getStoredValue());
8981       }
8982 
8983     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8984                                         Recipe->getMask());
8985     VPIG->insertBefore(Recipe);
8986     unsigned J = 0;
8987     for (unsigned i = 0; i < IG->getFactor(); ++i)
8988       if (Instruction *Member = IG->getMember(i)) {
8989         if (!Member->getType()->isVoidTy()) {
8990           VPValue *OriginalV = Plan->getVPValue(Member);
8991           Plan->removeVPValueFor(Member);
8992           Plan->addVPValue(Member, VPIG->getVPValue(J));
8993           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
8994           J++;
8995         }
8996         RecipeBuilder.getRecipe(Member)->eraseFromParent();
8997       }
8998   }
8999 
9000   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9001   // in ways that accessing values using original IR values is incorrect.
9002   Plan->disableValue2VPValue();
9003 
9004   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9005   VPlanTransforms::sinkScalarOperands(*Plan);
9006   VPlanTransforms::mergeReplicateRegions(*Plan);
9007   VPlanTransforms::removeDeadRecipes(*Plan);
9008   VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan);
9009 
9010   std::string PlanName;
9011   raw_string_ostream RSO(PlanName);
9012   ElementCount VF = Range.Start;
9013   Plan->addVF(VF);
9014   RSO << "Initial VPlan for VF={" << VF;
9015   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9016     Plan->addVF(VF);
9017     RSO << "," << VF;
9018   }
9019   RSO << "},UF>=1";
9020   RSO.flush();
9021   Plan->setName(PlanName);
9022 
9023   // Fold Exit block into its predecessor if possible.
9024   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9025   // VPBasicBlock as exit.
9026   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting());
9027 
9028   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9029   return Plan;
9030 }
9031 
9032 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9033   // Outer loop handling: They may require CFG and instruction level
9034   // transformations before even evaluating whether vectorization is profitable.
9035   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9036   // the vectorization pipeline.
9037   assert(!OrigLoop->isInnermost());
9038   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9039 
9040   // Create new empty VPlan
9041   auto Plan = std::make_unique<VPlan>();
9042 
9043   // Build hierarchical CFG
9044   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9045   HCFGBuilder.buildHierarchicalCFG();
9046 
9047   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9048        VF *= 2)
9049     Plan->addVF(VF);
9050 
9051   SmallPtrSet<Instruction *, 1> DeadInstructions;
9052   VPlanTransforms::VPInstructionsToVPRecipes(
9053       OrigLoop, Plan,
9054       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9055       DeadInstructions, *PSE.getSE());
9056 
9057   // Remove the existing terminator of the exiting block of the top-most region.
9058   // A BranchOnCount will be added instead when adding the canonical IV recipes.
9059   auto *Term =
9060       Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
9061   Term->eraseFromParent();
9062 
9063   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9064                         true);
9065   return Plan;
9066 }
9067 
9068 // Adjust the recipes for reductions. For in-loop reductions the chain of
9069 // instructions leading from the loop exit instr to the phi need to be converted
9070 // to reductions, with one operand being vector and the other being the scalar
9071 // reduction chain. For other reductions, a select is introduced between the phi
9072 // and live-out recipes when folding the tail.
9073 void LoopVectorizationPlanner::adjustRecipesForReductions(
9074     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9075     ElementCount MinVF) {
9076   for (auto &Reduction : CM.getInLoopReductionChains()) {
9077     PHINode *Phi = Reduction.first;
9078     const RecurrenceDescriptor &RdxDesc =
9079         Legal->getReductionVars().find(Phi)->second;
9080     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9081 
9082     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9083       continue;
9084 
9085     // ReductionOperations are orders top-down from the phi's use to the
9086     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9087     // which of the two operands will remain scalar and which will be reduced.
9088     // For minmax the chain will be the select instructions.
9089     Instruction *Chain = Phi;
9090     for (Instruction *R : ReductionOperations) {
9091       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9092       RecurKind Kind = RdxDesc.getRecurrenceKind();
9093 
9094       VPValue *ChainOp = Plan->getVPValue(Chain);
9095       unsigned FirstOpId;
9096       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9097              "Only min/max recurrences allowed for inloop reductions");
9098       // Recognize a call to the llvm.fmuladd intrinsic.
9099       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9100       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9101              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9102       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9103         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9104                "Expected to replace a VPWidenSelectSC");
9105         FirstOpId = 1;
9106       } else {
9107         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9108                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9109                "Expected to replace a VPWidenSC");
9110         FirstOpId = 0;
9111       }
9112       unsigned VecOpId =
9113           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9114       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9115 
9116       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9117                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9118                          : nullptr;
9119 
9120       if (IsFMulAdd) {
9121         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9122         // need to create an fmul recipe to use as the vector operand for the
9123         // fadd reduction.
9124         VPInstruction *FMulRecipe = new VPInstruction(
9125             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9126         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9127         WidenRecipe->getParent()->insert(FMulRecipe,
9128                                          WidenRecipe->getIterator());
9129         VecOp = FMulRecipe;
9130       }
9131       VPReductionRecipe *RedRecipe =
9132           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9133       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9134       Plan->removeVPValueFor(R);
9135       Plan->addVPValue(R, RedRecipe);
9136       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9137       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9138       WidenRecipe->eraseFromParent();
9139 
9140       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9141         VPRecipeBase *CompareRecipe =
9142             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9143         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9144                "Expected to replace a VPWidenSC");
9145         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9146                "Expected no remaining users");
9147         CompareRecipe->eraseFromParent();
9148       }
9149       Chain = R;
9150     }
9151   }
9152 
9153   // If tail is folded by masking, introduce selects between the phi
9154   // and the live-out instruction of each reduction, at the beginning of the
9155   // dedicated latch block.
9156   if (CM.foldTailByMasking()) {
9157     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9158     for (VPRecipeBase &R :
9159          Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9160       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9161       if (!PhiR || PhiR->isInLoop())
9162         continue;
9163       VPValue *Cond =
9164           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9165       VPValue *Red = PhiR->getBackedgeValue();
9166       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9167              "reduction recipe must be defined before latch");
9168       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9169     }
9170   }
9171 }
9172 
9173 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9174 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9175                                VPSlotTracker &SlotTracker) const {
9176   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9177   IG->getInsertPos()->printAsOperand(O, false);
9178   O << ", ";
9179   getAddr()->printAsOperand(O, SlotTracker);
9180   VPValue *Mask = getMask();
9181   if (Mask) {
9182     O << ", ";
9183     Mask->printAsOperand(O, SlotTracker);
9184   }
9185 
9186   unsigned OpIdx = 0;
9187   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9188     if (!IG->getMember(i))
9189       continue;
9190     if (getNumStoreOperands() > 0) {
9191       O << "\n" << Indent << "  store ";
9192       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9193       O << " to index " << i;
9194     } else {
9195       O << "\n" << Indent << "  ";
9196       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9197       O << " = load from index " << i;
9198     }
9199     ++OpIdx;
9200   }
9201 }
9202 #endif
9203 
9204 void VPWidenCallRecipe::execute(VPTransformState &State) {
9205   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9206                                   *this, State);
9207 }
9208 
9209 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9210   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9211   State.ILV->setDebugLocFromInst(&I);
9212 
9213   // The condition can be loop invariant  but still defined inside the
9214   // loop. This means that we can't just use the original 'cond' value.
9215   // We have to take the 'vectorized' value and pick the first lane.
9216   // Instcombine will make this a no-op.
9217   auto *InvarCond =
9218       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9219 
9220   for (unsigned Part = 0; Part < State.UF; ++Part) {
9221     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9222     Value *Op0 = State.get(getOperand(1), Part);
9223     Value *Op1 = State.get(getOperand(2), Part);
9224     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9225     State.set(this, Sel, Part);
9226     State.ILV->addMetadata(Sel, &I);
9227   }
9228 }
9229 
9230 void VPWidenRecipe::execute(VPTransformState &State) {
9231   auto &I = *cast<Instruction>(getUnderlyingValue());
9232   auto &Builder = State.Builder;
9233   switch (I.getOpcode()) {
9234   case Instruction::Call:
9235   case Instruction::Br:
9236   case Instruction::PHI:
9237   case Instruction::GetElementPtr:
9238   case Instruction::Select:
9239     llvm_unreachable("This instruction is handled by a different recipe.");
9240   case Instruction::UDiv:
9241   case Instruction::SDiv:
9242   case Instruction::SRem:
9243   case Instruction::URem:
9244   case Instruction::Add:
9245   case Instruction::FAdd:
9246   case Instruction::Sub:
9247   case Instruction::FSub:
9248   case Instruction::FNeg:
9249   case Instruction::Mul:
9250   case Instruction::FMul:
9251   case Instruction::FDiv:
9252   case Instruction::FRem:
9253   case Instruction::Shl:
9254   case Instruction::LShr:
9255   case Instruction::AShr:
9256   case Instruction::And:
9257   case Instruction::Or:
9258   case Instruction::Xor: {
9259     // Just widen unops and binops.
9260     State.ILV->setDebugLocFromInst(&I);
9261 
9262     for (unsigned Part = 0; Part < State.UF; ++Part) {
9263       SmallVector<Value *, 2> Ops;
9264       for (VPValue *VPOp : operands())
9265         Ops.push_back(State.get(VPOp, Part));
9266 
9267       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9268 
9269       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9270         VecOp->copyIRFlags(&I);
9271 
9272         // If the instruction is vectorized and was in a basic block that needed
9273         // predication, we can't propagate poison-generating flags (nuw/nsw,
9274         // exact, etc.). The control flow has been linearized and the
9275         // instruction is no longer guarded by the predicate, which could make
9276         // the flag properties to no longer hold.
9277         if (State.MayGeneratePoisonRecipes.contains(this))
9278           VecOp->dropPoisonGeneratingFlags();
9279       }
9280 
9281       // Use this vector value for all users of the original instruction.
9282       State.set(this, V, Part);
9283       State.ILV->addMetadata(V, &I);
9284     }
9285 
9286     break;
9287   }
9288   case Instruction::Freeze: {
9289     State.ILV->setDebugLocFromInst(&I);
9290 
9291     for (unsigned Part = 0; Part < State.UF; ++Part) {
9292       Value *Op = State.get(getOperand(0), Part);
9293 
9294       Value *Freeze = Builder.CreateFreeze(Op);
9295       State.set(this, Freeze, Part);
9296     }
9297     break;
9298   }
9299   case Instruction::ICmp:
9300   case Instruction::FCmp: {
9301     // Widen compares. Generate vector compares.
9302     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9303     auto *Cmp = cast<CmpInst>(&I);
9304     State.ILV->setDebugLocFromInst(Cmp);
9305     for (unsigned Part = 0; Part < State.UF; ++Part) {
9306       Value *A = State.get(getOperand(0), Part);
9307       Value *B = State.get(getOperand(1), Part);
9308       Value *C = nullptr;
9309       if (FCmp) {
9310         // Propagate fast math flags.
9311         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9312         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9313         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9314       } else {
9315         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9316       }
9317       State.set(this, C, Part);
9318       State.ILV->addMetadata(C, &I);
9319     }
9320 
9321     break;
9322   }
9323 
9324   case Instruction::ZExt:
9325   case Instruction::SExt:
9326   case Instruction::FPToUI:
9327   case Instruction::FPToSI:
9328   case Instruction::FPExt:
9329   case Instruction::PtrToInt:
9330   case Instruction::IntToPtr:
9331   case Instruction::SIToFP:
9332   case Instruction::UIToFP:
9333   case Instruction::Trunc:
9334   case Instruction::FPTrunc:
9335   case Instruction::BitCast: {
9336     auto *CI = cast<CastInst>(&I);
9337     State.ILV->setDebugLocFromInst(CI);
9338 
9339     /// Vectorize casts.
9340     Type *DestTy = (State.VF.isScalar())
9341                        ? CI->getType()
9342                        : VectorType::get(CI->getType(), State.VF);
9343 
9344     for (unsigned Part = 0; Part < State.UF; ++Part) {
9345       Value *A = State.get(getOperand(0), Part);
9346       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9347       State.set(this, Cast, Part);
9348       State.ILV->addMetadata(Cast, &I);
9349     }
9350     break;
9351   }
9352   default:
9353     // This instruction is not vectorized by simple widening.
9354     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9355     llvm_unreachable("Unhandled instruction!");
9356   } // end of switch.
9357 }
9358 
9359 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9360   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9361   // Construct a vector GEP by widening the operands of the scalar GEP as
9362   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9363   // results in a vector of pointers when at least one operand of the GEP
9364   // is vector-typed. Thus, to keep the representation compact, we only use
9365   // vector-typed operands for loop-varying values.
9366 
9367   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9368     // If we are vectorizing, but the GEP has only loop-invariant operands,
9369     // the GEP we build (by only using vector-typed operands for
9370     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9371     // produce a vector of pointers, we need to either arbitrarily pick an
9372     // operand to broadcast, or broadcast a clone of the original GEP.
9373     // Here, we broadcast a clone of the original.
9374     //
9375     // TODO: If at some point we decide to scalarize instructions having
9376     //       loop-invariant operands, this special case will no longer be
9377     //       required. We would add the scalarization decision to
9378     //       collectLoopScalars() and teach getVectorValue() to broadcast
9379     //       the lane-zero scalar value.
9380     auto *Clone = State.Builder.Insert(GEP->clone());
9381     for (unsigned Part = 0; Part < State.UF; ++Part) {
9382       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9383       State.set(this, EntryPart, Part);
9384       State.ILV->addMetadata(EntryPart, GEP);
9385     }
9386   } else {
9387     // If the GEP has at least one loop-varying operand, we are sure to
9388     // produce a vector of pointers. But if we are only unrolling, we want
9389     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9390     // produce with the code below will be scalar (if VF == 1) or vector
9391     // (otherwise). Note that for the unroll-only case, we still maintain
9392     // values in the vector mapping with initVector, as we do for other
9393     // instructions.
9394     for (unsigned Part = 0; Part < State.UF; ++Part) {
9395       // The pointer operand of the new GEP. If it's loop-invariant, we
9396       // won't broadcast it.
9397       auto *Ptr = IsPtrLoopInvariant
9398                       ? State.get(getOperand(0), VPIteration(0, 0))
9399                       : State.get(getOperand(0), Part);
9400 
9401       // Collect all the indices for the new GEP. If any index is
9402       // loop-invariant, we won't broadcast it.
9403       SmallVector<Value *, 4> Indices;
9404       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9405         VPValue *Operand = getOperand(I);
9406         if (IsIndexLoopInvariant[I - 1])
9407           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9408         else
9409           Indices.push_back(State.get(Operand, Part));
9410       }
9411 
9412       // If the GEP instruction is vectorized and was in a basic block that
9413       // needed predication, we can't propagate the poison-generating 'inbounds'
9414       // flag. The control flow has been linearized and the GEP is no longer
9415       // guarded by the predicate, which could make the 'inbounds' properties to
9416       // no longer hold.
9417       bool IsInBounds =
9418           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9419 
9420       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9421       // but it should be a vector, otherwise.
9422       auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr,
9423                                              Indices, "", IsInBounds);
9424       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9425              "NewGEP is not a pointer vector");
9426       State.set(this, NewGEP, Part);
9427       State.ILV->addMetadata(NewGEP, GEP);
9428     }
9429   }
9430 }
9431 
9432 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9433   assert(!State.Instance && "Int or FP induction being replicated.");
9434 
9435   Value *Start = getStartValue()->getLiveInIRValue();
9436   const InductionDescriptor &ID = getInductionDescriptor();
9437   TruncInst *Trunc = getTruncInst();
9438   IRBuilderBase &Builder = State.Builder;
9439   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9440   assert(State.VF.isVector() && "must have vector VF");
9441 
9442   // The value from the original loop to which we are mapping the new induction
9443   // variable.
9444   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9445 
9446   // Fast-math-flags propagate from the original induction instruction.
9447   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9448   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9449     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9450 
9451   // Now do the actual transformations, and start with fetching the step value.
9452   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9453 
9454   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9455          "Expected either an induction phi-node or a truncate of it!");
9456 
9457   // Construct the initial value of the vector IV in the vector loop preheader
9458   auto CurrIP = Builder.saveIP();
9459   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9460   Builder.SetInsertPoint(VectorPH->getTerminator());
9461   if (isa<TruncInst>(EntryVal)) {
9462     assert(Start->getType()->isIntegerTy() &&
9463            "Truncation requires an integer type");
9464     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9465     Step = Builder.CreateTrunc(Step, TruncType);
9466     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9467   }
9468 
9469   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9470   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9471   Value *SteppedStart = getStepVector(
9472       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9473 
9474   // We create vector phi nodes for both integer and floating-point induction
9475   // variables. Here, we determine the kind of arithmetic we will perform.
9476   Instruction::BinaryOps AddOp;
9477   Instruction::BinaryOps MulOp;
9478   if (Step->getType()->isIntegerTy()) {
9479     AddOp = Instruction::Add;
9480     MulOp = Instruction::Mul;
9481   } else {
9482     AddOp = ID.getInductionOpcode();
9483     MulOp = Instruction::FMul;
9484   }
9485 
9486   // Multiply the vectorization factor by the step using integer or
9487   // floating-point arithmetic as appropriate.
9488   Type *StepType = Step->getType();
9489   Value *RuntimeVF;
9490   if (Step->getType()->isFloatingPointTy())
9491     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9492   else
9493     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9494   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9495 
9496   // Create a vector splat to use in the induction update.
9497   //
9498   // FIXME: If the step is non-constant, we create the vector splat with
9499   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9500   //        handle a constant vector splat.
9501   Value *SplatVF = isa<Constant>(Mul)
9502                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9503                        : Builder.CreateVectorSplat(State.VF, Mul);
9504   Builder.restoreIP(CurrIP);
9505 
9506   // We may need to add the step a number of times, depending on the unroll
9507   // factor. The last of those goes into the PHI.
9508   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9509                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9510   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9511   Instruction *LastInduction = VecInd;
9512   for (unsigned Part = 0; Part < State.UF; ++Part) {
9513     State.set(this, LastInduction, Part);
9514 
9515     if (isa<TruncInst>(EntryVal))
9516       State.ILV->addMetadata(LastInduction, EntryVal);
9517 
9518     LastInduction = cast<Instruction>(
9519         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9520     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9521   }
9522 
9523   LastInduction->setName("vec.ind.next");
9524   VecInd->addIncoming(SteppedStart, VectorPH);
9525   // Add induction update using an incorrect block temporarily. The phi node
9526   // will be fixed after VPlan execution. Note that at this point the latch
9527   // block cannot be used, as it does not exist yet.
9528   // TODO: Model increment value in VPlan, by turning the recipe into a
9529   // multi-def and a subclass of VPHeaderPHIRecipe.
9530   VecInd->addIncoming(LastInduction, VectorPH);
9531 }
9532 
9533 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
9534   assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
9535          "Not a pointer induction according to InductionDescriptor!");
9536   assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
9537          "Unexpected type.");
9538 
9539   auto *IVR = getParent()->getPlan()->getCanonicalIV();
9540   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
9541 
9542   if (onlyScalarsGenerated(State.VF)) {
9543     // This is the normalized GEP that starts counting at zero.
9544     Value *PtrInd = State.Builder.CreateSExtOrTrunc(
9545         CanonicalIV, IndDesc.getStep()->getType());
9546     // Determine the number of scalars we need to generate for each unroll
9547     // iteration. If the instruction is uniform, we only need to generate the
9548     // first lane. Otherwise, we generate all VF values.
9549     bool IsUniform = vputils::onlyFirstLaneUsed(this);
9550     assert((IsUniform || !State.VF.isScalable()) &&
9551            "Cannot scalarize a scalable VF");
9552     unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
9553 
9554     for (unsigned Part = 0; Part < State.UF; ++Part) {
9555       Value *PartStart =
9556           createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
9557 
9558       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
9559         Value *Idx = State.Builder.CreateAdd(
9560             PartStart, ConstantInt::get(PtrInd->getType(), Lane));
9561         Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
9562 
9563         Value *Step = CreateStepValue(IndDesc.getStep(), SE,
9564                                       State.CFG.PrevBB->getTerminator());
9565         Value *SclrGep = emitTransformedIndex(
9566             State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
9567         SclrGep->setName("next.gep");
9568         State.set(this, SclrGep, VPIteration(Part, Lane));
9569       }
9570     }
9571     return;
9572   }
9573 
9574   assert(isa<SCEVConstant>(IndDesc.getStep()) &&
9575          "Induction step not a SCEV constant!");
9576   Type *PhiType = IndDesc.getStep()->getType();
9577 
9578   // Build a pointer phi
9579   Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
9580   Type *ScStValueType = ScalarStartValue->getType();
9581   PHINode *NewPointerPhi =
9582       PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
9583 
9584   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9585   NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
9586 
9587   // A pointer induction, performed by using a gep
9588   const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout();
9589   Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
9590 
9591   const SCEV *ScalarStep = IndDesc.getStep();
9592   SCEVExpander Exp(SE, DL, "induction");
9593   Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
9594   Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
9595   Value *NumUnrolledElems =
9596       State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
9597   Value *InductionGEP = GetElementPtrInst::Create(
9598       IndDesc.getElementType(), NewPointerPhi,
9599       State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
9600       InductionLoc);
9601   // Add induction update using an incorrect block temporarily. The phi node
9602   // will be fixed after VPlan execution. Note that at this point the latch
9603   // block cannot be used, as it does not exist yet.
9604   // TODO: Model increment value in VPlan, by turning the recipe into a
9605   // multi-def and a subclass of VPHeaderPHIRecipe.
9606   NewPointerPhi->addIncoming(InductionGEP, VectorPH);
9607 
9608   // Create UF many actual address geps that use the pointer
9609   // phi as base and a vectorized version of the step value
9610   // (<step*0, ..., step*N>) as offset.
9611   for (unsigned Part = 0; Part < State.UF; ++Part) {
9612     Type *VecPhiType = VectorType::get(PhiType, State.VF);
9613     Value *StartOffsetScalar =
9614         State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
9615     Value *StartOffset =
9616         State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
9617     // Create a vector of consecutive numbers from zero to VF.
9618     StartOffset = State.Builder.CreateAdd(
9619         StartOffset, State.Builder.CreateStepVector(VecPhiType));
9620 
9621     Value *GEP = State.Builder.CreateGEP(
9622         IndDesc.getElementType(), NewPointerPhi,
9623         State.Builder.CreateMul(
9624             StartOffset,
9625             State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
9626             "vector.gep"));
9627     State.set(this, GEP, Part);
9628   }
9629 }
9630 
9631 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9632   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9633 
9634   // Fast-math-flags propagate from the original induction instruction.
9635   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9636   if (IndDesc.getInductionBinOp() &&
9637       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9638     State.Builder.setFastMathFlags(
9639         IndDesc.getInductionBinOp()->getFastMathFlags());
9640 
9641   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9642   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9643     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9644     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9645     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9646       ScalarIV =
9647           Ty->isIntegerTy()
9648               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9649               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9650       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9651                                       getStartValue()->getLiveInIRValue(), Step,
9652                                       IndDesc);
9653       ScalarIV->setName("offset.idx");
9654     }
9655     if (TruncToTy) {
9656       assert(Step->getType()->isIntegerTy() &&
9657              "Truncation requires an integer step");
9658       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9659       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9660     }
9661     return ScalarIV;
9662   };
9663 
9664   Value *ScalarIV = CreateScalarIV(Step);
9665   if (State.VF.isVector()) {
9666     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9667     return;
9668   }
9669 
9670   for (unsigned Part = 0; Part < State.UF; ++Part) {
9671     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9672     Value *EntryPart;
9673     if (Step->getType()->isFloatingPointTy()) {
9674       Value *StartIdx =
9675           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9676       // Floating-point operations inherit FMF via the builder's flags.
9677       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9678       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9679                                             ScalarIV, MulOp);
9680     } else {
9681       Value *StartIdx =
9682           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9683       EntryPart = State.Builder.CreateAdd(
9684           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9685     }
9686     State.set(this, EntryPart, Part);
9687   }
9688 }
9689 
9690 void VPBlendRecipe::execute(VPTransformState &State) {
9691   State.ILV->setDebugLocFromInst(Phi);
9692   // We know that all PHIs in non-header blocks are converted into
9693   // selects, so we don't have to worry about the insertion order and we
9694   // can just use the builder.
9695   // At this point we generate the predication tree. There may be
9696   // duplications since this is a simple recursive scan, but future
9697   // optimizations will clean it up.
9698 
9699   unsigned NumIncoming = getNumIncomingValues();
9700 
9701   // Generate a sequence of selects of the form:
9702   // SELECT(Mask3, In3,
9703   //        SELECT(Mask2, In2,
9704   //               SELECT(Mask1, In1,
9705   //                      In0)))
9706   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9707   // are essentially undef are taken from In0.
9708   InnerLoopVectorizer::VectorParts Entry(State.UF);
9709   for (unsigned In = 0; In < NumIncoming; ++In) {
9710     for (unsigned Part = 0; Part < State.UF; ++Part) {
9711       // We might have single edge PHIs (blocks) - use an identity
9712       // 'select' for the first PHI operand.
9713       Value *In0 = State.get(getIncomingValue(In), Part);
9714       if (In == 0)
9715         Entry[Part] = In0; // Initialize with the first incoming value.
9716       else {
9717         // Select between the current value and the previous incoming edge
9718         // based on the incoming mask.
9719         Value *Cond = State.get(getMask(In), Part);
9720         Entry[Part] =
9721             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9722       }
9723     }
9724   }
9725   for (unsigned Part = 0; Part < State.UF; ++Part)
9726     State.set(this, Entry[Part], Part);
9727 }
9728 
9729 void VPInterleaveRecipe::execute(VPTransformState &State) {
9730   assert(!State.Instance && "Interleave group being replicated.");
9731   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9732                                       getStoredValues(), getMask());
9733 }
9734 
9735 void VPReductionRecipe::execute(VPTransformState &State) {
9736   assert(!State.Instance && "Reduction being replicated.");
9737   Value *PrevInChain = State.get(getChainOp(), 0);
9738   RecurKind Kind = RdxDesc->getRecurrenceKind();
9739   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9740   // Propagate the fast-math flags carried by the underlying instruction.
9741   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9742   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9743   for (unsigned Part = 0; Part < State.UF; ++Part) {
9744     Value *NewVecOp = State.get(getVecOp(), Part);
9745     if (VPValue *Cond = getCondOp()) {
9746       Value *NewCond = State.get(Cond, Part);
9747       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9748       Value *Iden = RdxDesc->getRecurrenceIdentity(
9749           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9750       Value *IdenVec =
9751           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9752       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9753       NewVecOp = Select;
9754     }
9755     Value *NewRed;
9756     Value *NextInChain;
9757     if (IsOrdered) {
9758       if (State.VF.isVector())
9759         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9760                                         PrevInChain);
9761       else
9762         NewRed = State.Builder.CreateBinOp(
9763             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9764             NewVecOp);
9765       PrevInChain = NewRed;
9766     } else {
9767       PrevInChain = State.get(getChainOp(), Part);
9768       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9769     }
9770     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9771       NextInChain =
9772           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9773                          NewRed, PrevInChain);
9774     } else if (IsOrdered)
9775       NextInChain = NewRed;
9776     else
9777       NextInChain = State.Builder.CreateBinOp(
9778           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9779           PrevInChain);
9780     State.set(this, NextInChain, Part);
9781   }
9782 }
9783 
9784 void VPReplicateRecipe::execute(VPTransformState &State) {
9785   if (State.Instance) { // Generate a single instance.
9786     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9787     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9788                                     IsPredicated, State);
9789     // Insert scalar instance packing it into a vector.
9790     if (AlsoPack && State.VF.isVector()) {
9791       // If we're constructing lane 0, initialize to start from poison.
9792       if (State.Instance->Lane.isFirstLane()) {
9793         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9794         Value *Poison = PoisonValue::get(
9795             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9796         State.set(this, Poison, State.Instance->Part);
9797       }
9798       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9799     }
9800     return;
9801   }
9802 
9803   // Generate scalar instances for all VF lanes of all UF parts, unless the
9804   // instruction is uniform inwhich case generate only the first lane for each
9805   // of the UF parts.
9806   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9807   assert((!State.VF.isScalable() || IsUniform) &&
9808          "Can't scalarize a scalable vector");
9809   for (unsigned Part = 0; Part < State.UF; ++Part)
9810     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9811       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9812                                       VPIteration(Part, Lane), IsPredicated,
9813                                       State);
9814 }
9815 
9816 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9817   assert(State.Instance && "Branch on Mask works only on single instance.");
9818 
9819   unsigned Part = State.Instance->Part;
9820   unsigned Lane = State.Instance->Lane.getKnownLane();
9821 
9822   Value *ConditionBit = nullptr;
9823   VPValue *BlockInMask = getMask();
9824   if (BlockInMask) {
9825     ConditionBit = State.get(BlockInMask, Part);
9826     if (ConditionBit->getType()->isVectorTy())
9827       ConditionBit = State.Builder.CreateExtractElement(
9828           ConditionBit, State.Builder.getInt32(Lane));
9829   } else // Block in mask is all-one.
9830     ConditionBit = State.Builder.getTrue();
9831 
9832   // Replace the temporary unreachable terminator with a new conditional branch,
9833   // whose two destinations will be set later when they are created.
9834   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9835   assert(isa<UnreachableInst>(CurrentTerminator) &&
9836          "Expected to replace unreachable terminator with conditional branch.");
9837   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9838   CondBr->setSuccessor(0, nullptr);
9839   ReplaceInstWithInst(CurrentTerminator, CondBr);
9840 }
9841 
9842 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9843   assert(State.Instance && "Predicated instruction PHI works per instance.");
9844   Instruction *ScalarPredInst =
9845       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9846   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9847   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9848   assert(PredicatingBB && "Predicated block has no single predecessor.");
9849   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9850          "operand must be VPReplicateRecipe");
9851 
9852   // By current pack/unpack logic we need to generate only a single phi node: if
9853   // a vector value for the predicated instruction exists at this point it means
9854   // the instruction has vector users only, and a phi for the vector value is
9855   // needed. In this case the recipe of the predicated instruction is marked to
9856   // also do that packing, thereby "hoisting" the insert-element sequence.
9857   // Otherwise, a phi node for the scalar value is needed.
9858   unsigned Part = State.Instance->Part;
9859   if (State.hasVectorValue(getOperand(0), Part)) {
9860     Value *VectorValue = State.get(getOperand(0), Part);
9861     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9862     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9863     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9864     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9865     if (State.hasVectorValue(this, Part))
9866       State.reset(this, VPhi, Part);
9867     else
9868       State.set(this, VPhi, Part);
9869     // NOTE: Currently we need to update the value of the operand, so the next
9870     // predicated iteration inserts its generated value in the correct vector.
9871     State.reset(getOperand(0), VPhi, Part);
9872   } else {
9873     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9874     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9875     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9876                      PredicatingBB);
9877     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9878     if (State.hasScalarValue(this, *State.Instance))
9879       State.reset(this, Phi, *State.Instance);
9880     else
9881       State.set(this, Phi, *State.Instance);
9882     // NOTE: Currently we need to update the value of the operand, so the next
9883     // predicated iteration inserts its generated value in the correct vector.
9884     State.reset(getOperand(0), Phi, *State.Instance);
9885   }
9886 }
9887 
9888 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9889   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9890 
9891   // Attempt to issue a wide load.
9892   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9893   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9894 
9895   assert((LI || SI) && "Invalid Load/Store instruction");
9896   assert((!SI || StoredValue) && "No stored value provided for widened store");
9897   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9898 
9899   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9900 
9901   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9902   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9903   bool CreateGatherScatter = !Consecutive;
9904 
9905   auto &Builder = State.Builder;
9906   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9907   bool isMaskRequired = getMask();
9908   if (isMaskRequired)
9909     for (unsigned Part = 0; Part < State.UF; ++Part)
9910       BlockInMaskParts[Part] = State.get(getMask(), Part);
9911 
9912   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9913     // Calculate the pointer for the specific unroll-part.
9914     GetElementPtrInst *PartPtr = nullptr;
9915 
9916     bool InBounds = false;
9917     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9918       InBounds = gep->isInBounds();
9919     if (Reverse) {
9920       // If the address is consecutive but reversed, then the
9921       // wide store needs to start at the last vector element.
9922       // RunTimeVF =  VScale * VF.getKnownMinValue()
9923       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9924       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9925       // NumElt = -Part * RunTimeVF
9926       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9927       // LastLane = 1 - RunTimeVF
9928       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9929       PartPtr =
9930           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9931       PartPtr->setIsInBounds(InBounds);
9932       PartPtr = cast<GetElementPtrInst>(
9933           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9934       PartPtr->setIsInBounds(InBounds);
9935       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9936         BlockInMaskParts[Part] =
9937             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9938     } else {
9939       Value *Increment =
9940           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9941       PartPtr = cast<GetElementPtrInst>(
9942           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9943       PartPtr->setIsInBounds(InBounds);
9944     }
9945 
9946     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9947     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9948   };
9949 
9950   // Handle Stores:
9951   if (SI) {
9952     State.ILV->setDebugLocFromInst(SI);
9953 
9954     for (unsigned Part = 0; Part < State.UF; ++Part) {
9955       Instruction *NewSI = nullptr;
9956       Value *StoredVal = State.get(StoredValue, Part);
9957       if (CreateGatherScatter) {
9958         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9959         Value *VectorGep = State.get(getAddr(), Part);
9960         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9961                                             MaskPart);
9962       } else {
9963         if (Reverse) {
9964           // If we store to reverse consecutive memory locations, then we need
9965           // to reverse the order of elements in the stored value.
9966           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
9967           // We don't want to update the value in the map as it might be used in
9968           // another expression. So don't call resetVectorValue(StoredVal).
9969         }
9970         auto *VecPtr =
9971             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9972         if (isMaskRequired)
9973           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
9974                                             BlockInMaskParts[Part]);
9975         else
9976           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
9977       }
9978       State.ILV->addMetadata(NewSI, SI);
9979     }
9980     return;
9981   }
9982 
9983   // Handle loads.
9984   assert(LI && "Must have a load instruction");
9985   State.ILV->setDebugLocFromInst(LI);
9986   for (unsigned Part = 0; Part < State.UF; ++Part) {
9987     Value *NewLI;
9988     if (CreateGatherScatter) {
9989       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9990       Value *VectorGep = State.get(getAddr(), Part);
9991       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
9992                                          nullptr, "wide.masked.gather");
9993       State.ILV->addMetadata(NewLI, LI);
9994     } else {
9995       auto *VecPtr =
9996           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9997       if (isMaskRequired)
9998         NewLI = Builder.CreateMaskedLoad(
9999             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10000             PoisonValue::get(DataTy), "wide.masked.load");
10001       else
10002         NewLI =
10003             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10004 
10005       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10006       State.ILV->addMetadata(NewLI, LI);
10007       if (Reverse)
10008         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10009     }
10010 
10011     State.set(getVPSingleValue(), NewLI, Part);
10012   }
10013 }
10014 
10015 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10016 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10017 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10018 // for predication.
10019 static ScalarEpilogueLowering getScalarEpilogueLowering(
10020     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10021     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10022     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10023     LoopVectorizationLegality &LVL) {
10024   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10025   // don't look at hints or options, and don't request a scalar epilogue.
10026   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10027   // LoopAccessInfo (due to code dependency and not being able to reliably get
10028   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10029   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10030   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10031   // back to the old way and vectorize with versioning when forced. See D81345.)
10032   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10033                                                       PGSOQueryType::IRPass) &&
10034                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10035     return CM_ScalarEpilogueNotAllowedOptSize;
10036 
10037   // 2) If set, obey the directives
10038   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10039     switch (PreferPredicateOverEpilogue) {
10040     case PreferPredicateTy::ScalarEpilogue:
10041       return CM_ScalarEpilogueAllowed;
10042     case PreferPredicateTy::PredicateElseScalarEpilogue:
10043       return CM_ScalarEpilogueNotNeededUsePredicate;
10044     case PreferPredicateTy::PredicateOrDontVectorize:
10045       return CM_ScalarEpilogueNotAllowedUsePredicate;
10046     };
10047   }
10048 
10049   // 3) If set, obey the hints
10050   switch (Hints.getPredicate()) {
10051   case LoopVectorizeHints::FK_Enabled:
10052     return CM_ScalarEpilogueNotNeededUsePredicate;
10053   case LoopVectorizeHints::FK_Disabled:
10054     return CM_ScalarEpilogueAllowed;
10055   };
10056 
10057   // 4) if the TTI hook indicates this is profitable, request predication.
10058   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10059                                        LVL.getLAI()))
10060     return CM_ScalarEpilogueNotNeededUsePredicate;
10061 
10062   return CM_ScalarEpilogueAllowed;
10063 }
10064 
10065 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10066   // If Values have been set for this Def return the one relevant for \p Part.
10067   if (hasVectorValue(Def, Part))
10068     return Data.PerPartOutput[Def][Part];
10069 
10070   if (!hasScalarValue(Def, {Part, 0})) {
10071     Value *IRV = Def->getLiveInIRValue();
10072     Value *B = ILV->getBroadcastInstrs(IRV);
10073     set(Def, B, Part);
10074     return B;
10075   }
10076 
10077   Value *ScalarValue = get(Def, {Part, 0});
10078   // If we aren't vectorizing, we can just copy the scalar map values over
10079   // to the vector map.
10080   if (VF.isScalar()) {
10081     set(Def, ScalarValue, Part);
10082     return ScalarValue;
10083   }
10084 
10085   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10086   bool IsUniform = RepR && RepR->isUniform();
10087 
10088   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10089   // Check if there is a scalar value for the selected lane.
10090   if (!hasScalarValue(Def, {Part, LastLane})) {
10091     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10092     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
10093             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
10094            "unexpected recipe found to be invariant");
10095     IsUniform = true;
10096     LastLane = 0;
10097   }
10098 
10099   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10100   // Set the insert point after the last scalarized instruction or after the
10101   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10102   // will directly follow the scalar definitions.
10103   auto OldIP = Builder.saveIP();
10104   auto NewIP =
10105       isa<PHINode>(LastInst)
10106           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10107           : std::next(BasicBlock::iterator(LastInst));
10108   Builder.SetInsertPoint(&*NewIP);
10109 
10110   // However, if we are vectorizing, we need to construct the vector values.
10111   // If the value is known to be uniform after vectorization, we can just
10112   // broadcast the scalar value corresponding to lane zero for each unroll
10113   // iteration. Otherwise, we construct the vector values using
10114   // insertelement instructions. Since the resulting vectors are stored in
10115   // State, we will only generate the insertelements once.
10116   Value *VectorValue = nullptr;
10117   if (IsUniform) {
10118     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10119     set(Def, VectorValue, Part);
10120   } else {
10121     // Initialize packing with insertelements to start from undef.
10122     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10123     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10124     set(Def, Undef, Part);
10125     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10126       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10127     VectorValue = get(Def, Part);
10128   }
10129   Builder.restoreIP(OldIP);
10130   return VectorValue;
10131 }
10132 
10133 // Process the loop in the VPlan-native vectorization path. This path builds
10134 // VPlan upfront in the vectorization pipeline, which allows to apply
10135 // VPlan-to-VPlan transformations from the very beginning without modifying the
10136 // input LLVM IR.
10137 static bool processLoopInVPlanNativePath(
10138     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10139     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10140     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10141     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10142     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10143     LoopVectorizationRequirements &Requirements) {
10144 
10145   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10146     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10147     return false;
10148   }
10149   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10150   Function *F = L->getHeader()->getParent();
10151   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10152 
10153   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10154       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10155 
10156   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10157                                 &Hints, IAI);
10158   // Use the planner for outer loop vectorization.
10159   // TODO: CM is not used at this point inside the planner. Turn CM into an
10160   // optional argument if we don't need it in the future.
10161   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10162                                Requirements, ORE);
10163 
10164   // Get user vectorization factor.
10165   ElementCount UserVF = Hints.getWidth();
10166 
10167   CM.collectElementTypesForWidening();
10168 
10169   // Plan how to best vectorize, return the best VF and its cost.
10170   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10171 
10172   // If we are stress testing VPlan builds, do not attempt to generate vector
10173   // code. Masked vector code generation support will follow soon.
10174   // Also, do not attempt to vectorize if no vector code will be produced.
10175   if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF)
10176     return false;
10177 
10178   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10179 
10180   {
10181     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10182                              F->getParent()->getDataLayout());
10183     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10184                            &CM, BFI, PSI, Checks);
10185     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10186                       << L->getHeader()->getParent()->getName() << "\"\n");
10187     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10188   }
10189 
10190   // Mark the loop as already vectorized to avoid vectorizing again.
10191   Hints.setAlreadyVectorized();
10192   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10193   return true;
10194 }
10195 
10196 // Emit a remark if there are stores to floats that required a floating point
10197 // extension. If the vectorized loop was generated with floating point there
10198 // will be a performance penalty from the conversion overhead and the change in
10199 // the vector width.
10200 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10201   SmallVector<Instruction *, 4> Worklist;
10202   for (BasicBlock *BB : L->getBlocks()) {
10203     for (Instruction &Inst : *BB) {
10204       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10205         if (S->getValueOperand()->getType()->isFloatTy())
10206           Worklist.push_back(S);
10207       }
10208     }
10209   }
10210 
10211   // Traverse the floating point stores upwards searching, for floating point
10212   // conversions.
10213   SmallPtrSet<const Instruction *, 4> Visited;
10214   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10215   while (!Worklist.empty()) {
10216     auto *I = Worklist.pop_back_val();
10217     if (!L->contains(I))
10218       continue;
10219     if (!Visited.insert(I).second)
10220       continue;
10221 
10222     // Emit a remark if the floating point store required a floating
10223     // point conversion.
10224     // TODO: More work could be done to identify the root cause such as a
10225     // constant or a function return type and point the user to it.
10226     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10227       ORE->emit([&]() {
10228         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10229                                           I->getDebugLoc(), L->getHeader())
10230                << "floating point conversion changes vector width. "
10231                << "Mixed floating point precision requires an up/down "
10232                << "cast that will negatively impact performance.";
10233       });
10234 
10235     for (Use &Op : I->operands())
10236       if (auto *OpI = dyn_cast<Instruction>(Op))
10237         Worklist.push_back(OpI);
10238   }
10239 }
10240 
10241 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10242     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10243                                !EnableLoopInterleaving),
10244       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10245                               !EnableLoopVectorization) {}
10246 
10247 bool LoopVectorizePass::processLoop(Loop *L) {
10248   assert((EnableVPlanNativePath || L->isInnermost()) &&
10249          "VPlan-native path is not enabled. Only process inner loops.");
10250 
10251 #ifndef NDEBUG
10252   const std::string DebugLocStr = getDebugLocString(L);
10253 #endif /* NDEBUG */
10254 
10255   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10256                     << L->getHeader()->getParent()->getName() << "' from "
10257                     << DebugLocStr << "\n");
10258 
10259   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10260 
10261   LLVM_DEBUG(
10262       dbgs() << "LV: Loop hints:"
10263              << " force="
10264              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10265                      ? "disabled"
10266                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10267                             ? "enabled"
10268                             : "?"))
10269              << " width=" << Hints.getWidth()
10270              << " interleave=" << Hints.getInterleave() << "\n");
10271 
10272   // Function containing loop
10273   Function *F = L->getHeader()->getParent();
10274 
10275   // Looking at the diagnostic output is the only way to determine if a loop
10276   // was vectorized (other than looking at the IR or machine code), so it
10277   // is important to generate an optimization remark for each loop. Most of
10278   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10279   // generated as OptimizationRemark and OptimizationRemarkMissed are
10280   // less verbose reporting vectorized loops and unvectorized loops that may
10281   // benefit from vectorization, respectively.
10282 
10283   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10284     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10285     return false;
10286   }
10287 
10288   PredicatedScalarEvolution PSE(*SE, *L);
10289 
10290   // Check if it is legal to vectorize the loop.
10291   LoopVectorizationRequirements Requirements;
10292   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10293                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10294   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10295     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10296     Hints.emitRemarkWithHints();
10297     return false;
10298   }
10299 
10300   // Check the function attributes and profiles to find out if this function
10301   // should be optimized for size.
10302   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10303       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10304 
10305   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10306   // here. They may require CFG and instruction level transformations before
10307   // even evaluating whether vectorization is profitable. Since we cannot modify
10308   // the incoming IR, we need to build VPlan upfront in the vectorization
10309   // pipeline.
10310   if (!L->isInnermost())
10311     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10312                                         ORE, BFI, PSI, Hints, Requirements);
10313 
10314   assert(L->isInnermost() && "Inner loop expected.");
10315 
10316   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10317   // count by optimizing for size, to minimize overheads.
10318   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10319   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10320     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10321                       << "This loop is worth vectorizing only if no scalar "
10322                       << "iteration overheads are incurred.");
10323     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10324       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10325     else {
10326       LLVM_DEBUG(dbgs() << "\n");
10327       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10328     }
10329   }
10330 
10331   // Check the function attributes to see if implicit floats are allowed.
10332   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10333   // an integer loop and the vector instructions selected are purely integer
10334   // vector instructions?
10335   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10336     reportVectorizationFailure(
10337         "Can't vectorize when the NoImplicitFloat attribute is used",
10338         "loop not vectorized due to NoImplicitFloat attribute",
10339         "NoImplicitFloat", ORE, L);
10340     Hints.emitRemarkWithHints();
10341     return false;
10342   }
10343 
10344   // Check if the target supports potentially unsafe FP vectorization.
10345   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10346   // for the target we're vectorizing for, to make sure none of the
10347   // additional fp-math flags can help.
10348   if (Hints.isPotentiallyUnsafe() &&
10349       TTI->isFPVectorizationPotentiallyUnsafe()) {
10350     reportVectorizationFailure(
10351         "Potentially unsafe FP op prevents vectorization",
10352         "loop not vectorized due to unsafe FP support.",
10353         "UnsafeFP", ORE, L);
10354     Hints.emitRemarkWithHints();
10355     return false;
10356   }
10357 
10358   bool AllowOrderedReductions;
10359   // If the flag is set, use that instead and override the TTI behaviour.
10360   if (ForceOrderedReductions.getNumOccurrences() > 0)
10361     AllowOrderedReductions = ForceOrderedReductions;
10362   else
10363     AllowOrderedReductions = TTI->enableOrderedReductions();
10364   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10365     ORE->emit([&]() {
10366       auto *ExactFPMathInst = Requirements.getExactFPInst();
10367       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10368                                                  ExactFPMathInst->getDebugLoc(),
10369                                                  ExactFPMathInst->getParent())
10370              << "loop not vectorized: cannot prove it is safe to reorder "
10371                 "floating-point operations";
10372     });
10373     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10374                          "reorder floating-point operations\n");
10375     Hints.emitRemarkWithHints();
10376     return false;
10377   }
10378 
10379   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10380   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10381 
10382   // If an override option has been passed in for interleaved accesses, use it.
10383   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10384     UseInterleaved = EnableInterleavedMemAccesses;
10385 
10386   // Analyze interleaved memory accesses.
10387   if (UseInterleaved) {
10388     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10389   }
10390 
10391   // Use the cost model.
10392   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10393                                 F, &Hints, IAI);
10394   CM.collectValuesToIgnore();
10395   CM.collectElementTypesForWidening();
10396 
10397   // Use the planner for vectorization.
10398   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10399                                Requirements, ORE);
10400 
10401   // Get user vectorization factor and interleave count.
10402   ElementCount UserVF = Hints.getWidth();
10403   unsigned UserIC = Hints.getInterleave();
10404 
10405   // Plan how to best vectorize, return the best VF and its cost.
10406   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10407 
10408   VectorizationFactor VF = VectorizationFactor::Disabled();
10409   unsigned IC = 1;
10410 
10411   if (MaybeVF) {
10412     if (LVP.requiresTooManyRuntimeChecks()) {
10413       ORE->emit([&]() {
10414         return OptimizationRemarkAnalysisAliasing(
10415                    DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10416                    L->getHeader())
10417                << "loop not vectorized: cannot prove it is safe to reorder "
10418                   "memory operations";
10419       });
10420       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10421       Hints.emitRemarkWithHints();
10422       return false;
10423     }
10424     VF = *MaybeVF;
10425     // Select the interleave count.
10426     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10427   }
10428 
10429   // Identify the diagnostic messages that should be produced.
10430   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10431   bool VectorizeLoop = true, InterleaveLoop = true;
10432   if (VF.Width.isScalar()) {
10433     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10434     VecDiagMsg = std::make_pair(
10435         "VectorizationNotBeneficial",
10436         "the cost-model indicates that vectorization is not beneficial");
10437     VectorizeLoop = false;
10438   }
10439 
10440   if (!MaybeVF && UserIC > 1) {
10441     // Tell the user interleaving was avoided up-front, despite being explicitly
10442     // requested.
10443     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10444                          "interleaving should be avoided up front\n");
10445     IntDiagMsg = std::make_pair(
10446         "InterleavingAvoided",
10447         "Ignoring UserIC, because interleaving was avoided up front");
10448     InterleaveLoop = false;
10449   } else if (IC == 1 && UserIC <= 1) {
10450     // Tell the user interleaving is not beneficial.
10451     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10452     IntDiagMsg = std::make_pair(
10453         "InterleavingNotBeneficial",
10454         "the cost-model indicates that interleaving is not beneficial");
10455     InterleaveLoop = false;
10456     if (UserIC == 1) {
10457       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10458       IntDiagMsg.second +=
10459           " and is explicitly disabled or interleave count is set to 1";
10460     }
10461   } else if (IC > 1 && UserIC == 1) {
10462     // Tell the user interleaving is beneficial, but it explicitly disabled.
10463     LLVM_DEBUG(
10464         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10465     IntDiagMsg = std::make_pair(
10466         "InterleavingBeneficialButDisabled",
10467         "the cost-model indicates that interleaving is beneficial "
10468         "but is explicitly disabled or interleave count is set to 1");
10469     InterleaveLoop = false;
10470   }
10471 
10472   // Override IC if user provided an interleave count.
10473   IC = UserIC > 0 ? UserIC : IC;
10474 
10475   // Emit diagnostic messages, if any.
10476   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10477   if (!VectorizeLoop && !InterleaveLoop) {
10478     // Do not vectorize or interleaving the loop.
10479     ORE->emit([&]() {
10480       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10481                                       L->getStartLoc(), L->getHeader())
10482              << VecDiagMsg.second;
10483     });
10484     ORE->emit([&]() {
10485       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10486                                       L->getStartLoc(), L->getHeader())
10487              << IntDiagMsg.second;
10488     });
10489     return false;
10490   } else if (!VectorizeLoop && InterleaveLoop) {
10491     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10492     ORE->emit([&]() {
10493       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10494                                         L->getStartLoc(), L->getHeader())
10495              << VecDiagMsg.second;
10496     });
10497   } else if (VectorizeLoop && !InterleaveLoop) {
10498     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10499                       << ") in " << DebugLocStr << '\n');
10500     ORE->emit([&]() {
10501       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10502                                         L->getStartLoc(), L->getHeader())
10503              << IntDiagMsg.second;
10504     });
10505   } else if (VectorizeLoop && InterleaveLoop) {
10506     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10507                       << ") in " << DebugLocStr << '\n');
10508     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10509   }
10510 
10511   bool DisableRuntimeUnroll = false;
10512   MDNode *OrigLoopID = L->getLoopID();
10513   {
10514     // Optimistically generate runtime checks. Drop them if they turn out to not
10515     // be profitable. Limit the scope of Checks, so the cleanup happens
10516     // immediately after vector codegeneration is done.
10517     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10518                              F->getParent()->getDataLayout());
10519     if (!VF.Width.isScalar() || IC > 1)
10520       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, IC);
10521 
10522     using namespace ore;
10523     if (!VectorizeLoop) {
10524       assert(IC > 1 && "interleave count should not be 1 or 0");
10525       // If we decided that it is not legal to vectorize the loop, then
10526       // interleave it.
10527       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10528                                  &CM, BFI, PSI, Checks);
10529 
10530       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10531       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10532 
10533       ORE->emit([&]() {
10534         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10535                                   L->getHeader())
10536                << "interleaved loop (interleaved count: "
10537                << NV("InterleaveCount", IC) << ")";
10538       });
10539     } else {
10540       // If we decided that it is *legal* to vectorize the loop, then do it.
10541 
10542       // Consider vectorizing the epilogue too if it's profitable.
10543       VectorizationFactor EpilogueVF =
10544           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10545       if (EpilogueVF.Width.isVector()) {
10546 
10547         // The first pass vectorizes the main loop and creates a scalar epilogue
10548         // to be vectorized by executing the plan (potentially with a different
10549         // factor) again shortly afterwards.
10550         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10551         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10552                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10553 
10554         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10555         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10556                         DT);
10557         ++LoopsVectorized;
10558 
10559         // Second pass vectorizes the epilogue and adjusts the control flow
10560         // edges from the first pass.
10561         EPI.MainLoopVF = EPI.EpilogueVF;
10562         EPI.MainLoopUF = EPI.EpilogueUF;
10563         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10564                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10565                                                  Checks);
10566 
10567         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10568         VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion();
10569         VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
10570         Header->setName("vec.epilog.vector.body");
10571 
10572         // Ensure that the start values for any VPReductionPHIRecipes are
10573         // updated before vectorising the epilogue loop.
10574         for (VPRecipeBase &R : Header->phis()) {
10575           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10576             if (auto *Resume = MainILV.getReductionResumeValue(
10577                     ReductionPhi->getRecurrenceDescriptor())) {
10578               VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume);
10579               ReductionPhi->setOperand(0, StartVal);
10580             }
10581           }
10582         }
10583 
10584         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10585                         DT);
10586         ++LoopsEpilogueVectorized;
10587 
10588         if (!MainILV.areSafetyChecksAdded())
10589           DisableRuntimeUnroll = true;
10590       } else {
10591         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10592                                &LVL, &CM, BFI, PSI, Checks);
10593 
10594         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10595         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10596         ++LoopsVectorized;
10597 
10598         // Add metadata to disable runtime unrolling a scalar loop when there
10599         // are no runtime checks about strides and memory. A scalar loop that is
10600         // rarely used is not worth unrolling.
10601         if (!LB.areSafetyChecksAdded())
10602           DisableRuntimeUnroll = true;
10603       }
10604       // Report the vectorization decision.
10605       ORE->emit([&]() {
10606         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10607                                   L->getHeader())
10608                << "vectorized loop (vectorization width: "
10609                << NV("VectorizationFactor", VF.Width)
10610                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10611       });
10612     }
10613 
10614     if (ORE->allowExtraAnalysis(LV_NAME))
10615       checkMixedPrecision(L, ORE);
10616   }
10617 
10618   Optional<MDNode *> RemainderLoopID =
10619       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10620                                       LLVMLoopVectorizeFollowupEpilogue});
10621   if (RemainderLoopID.hasValue()) {
10622     L->setLoopID(RemainderLoopID.getValue());
10623   } else {
10624     if (DisableRuntimeUnroll)
10625       AddRuntimeUnrollDisableMetaData(L);
10626 
10627     // Mark the loop as already vectorized to avoid vectorizing again.
10628     Hints.setAlreadyVectorized();
10629   }
10630 
10631   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10632   return true;
10633 }
10634 
10635 LoopVectorizeResult LoopVectorizePass::runImpl(
10636     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10637     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10638     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10639     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10640     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10641   SE = &SE_;
10642   LI = &LI_;
10643   TTI = &TTI_;
10644   DT = &DT_;
10645   BFI = &BFI_;
10646   TLI = TLI_;
10647   AA = &AA_;
10648   AC = &AC_;
10649   GetLAA = &GetLAA_;
10650   DB = &DB_;
10651   ORE = &ORE_;
10652   PSI = PSI_;
10653 
10654   // Don't attempt if
10655   // 1. the target claims to have no vector registers, and
10656   // 2. interleaving won't help ILP.
10657   //
10658   // The second condition is necessary because, even if the target has no
10659   // vector registers, loop vectorization may still enable scalar
10660   // interleaving.
10661   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10662       TTI->getMaxInterleaveFactor(1) < 2)
10663     return LoopVectorizeResult(false, false);
10664 
10665   bool Changed = false, CFGChanged = false;
10666 
10667   // The vectorizer requires loops to be in simplified form.
10668   // Since simplification may add new inner loops, it has to run before the
10669   // legality and profitability checks. This means running the loop vectorizer
10670   // will simplify all loops, regardless of whether anything end up being
10671   // vectorized.
10672   for (auto &L : *LI)
10673     Changed |= CFGChanged |=
10674         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10675 
10676   // Build up a worklist of inner-loops to vectorize. This is necessary as
10677   // the act of vectorizing or partially unrolling a loop creates new loops
10678   // and can invalidate iterators across the loops.
10679   SmallVector<Loop *, 8> Worklist;
10680 
10681   for (Loop *L : *LI)
10682     collectSupportedLoops(*L, LI, ORE, Worklist);
10683 
10684   LoopsAnalyzed += Worklist.size();
10685 
10686   // Now walk the identified inner loops.
10687   while (!Worklist.empty()) {
10688     Loop *L = Worklist.pop_back_val();
10689 
10690     // For the inner loops we actually process, form LCSSA to simplify the
10691     // transform.
10692     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10693 
10694     Changed |= CFGChanged |= processLoop(L);
10695   }
10696 
10697   // Process each loop nest in the function.
10698   return LoopVectorizeResult(Changed, CFGChanged);
10699 }
10700 
10701 PreservedAnalyses LoopVectorizePass::run(Function &F,
10702                                          FunctionAnalysisManager &AM) {
10703     auto &LI = AM.getResult<LoopAnalysis>(F);
10704     // There are no loops in the function. Return before computing other expensive
10705     // analyses.
10706     if (LI.empty())
10707       return PreservedAnalyses::all();
10708     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10709     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10710     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10711     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10712     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10713     auto &AA = AM.getResult<AAManager>(F);
10714     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10715     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10716     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10717 
10718     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10719     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10720         [&](Loop &L) -> const LoopAccessInfo & {
10721       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10722                                         TLI, TTI, nullptr, nullptr, nullptr};
10723       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10724     };
10725     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10726     ProfileSummaryInfo *PSI =
10727         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10728     LoopVectorizeResult Result =
10729         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10730     if (!Result.MadeAnyChange)
10731       return PreservedAnalyses::all();
10732     PreservedAnalyses PA;
10733 
10734     // We currently do not preserve loopinfo/dominator analyses with outer loop
10735     // vectorization. Until this is addressed, mark these analyses as preserved
10736     // only for non-VPlan-native path.
10737     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10738     if (!EnableVPlanNativePath) {
10739       PA.preserve<LoopAnalysis>();
10740       PA.preserve<DominatorTreeAnalysis>();
10741     }
10742 
10743     if (Result.MadeCFGChange) {
10744       // Making CFG changes likely means a loop got vectorized. Indicate that
10745       // extra simplification passes should be run.
10746       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10747       // be run if runtime checks have been added.
10748       AM.getResult<ShouldRunExtraVectorPasses>(F);
10749       PA.preserve<ShouldRunExtraVectorPasses>();
10750     } else {
10751       PA.preserveSet<CFGAnalyses>();
10752     }
10753     return PA;
10754 }
10755 
10756 void LoopVectorizePass::printPipeline(
10757     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10758   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10759       OS, MapClassName2PassName);
10760 
10761   OS << "<";
10762   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10763   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10764   OS << ">";
10765 }
10766