1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <map> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 201 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 202 cl::desc("The maximum allowed number of runtime memory checks with a " 203 "vectorize(enable) pragma.")); 204 205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 206 // that predication is preferred, and this lists all options. I.e., the 207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 208 // and predicate the instructions accordingly. If tail-folding fails, there are 209 // different fallback strategies depending on these values: 210 namespace PreferPredicateTy { 211 enum Option { 212 ScalarEpilogue = 0, 213 PredicateElseScalarEpilogue, 214 PredicateOrDontVectorize 215 }; 216 } // namespace PreferPredicateTy 217 218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 219 "prefer-predicate-over-epilogue", 220 cl::init(PreferPredicateTy::ScalarEpilogue), 221 cl::Hidden, 222 cl::desc("Tail-folding and predication preferences over creating a scalar " 223 "epilogue loop."), 224 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 225 "scalar-epilogue", 226 "Don't tail-predicate loops, create scalar epilogue"), 227 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 228 "predicate-else-scalar-epilogue", 229 "prefer tail-folding, create scalar epilogue if tail " 230 "folding fails."), 231 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 232 "predicate-dont-vectorize", 233 "prefers tail-folding, don't attempt vectorization if " 234 "tail-folding fails."))); 235 236 static cl::opt<bool> MaximizeBandwidth( 237 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 238 cl::desc("Maximize bandwidth when selecting vectorization factor which " 239 "will be determined by the smallest type in loop.")); 240 241 static cl::opt<bool> EnableInterleavedMemAccesses( 242 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 243 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 244 245 /// An interleave-group may need masking if it resides in a block that needs 246 /// predication, or in order to mask away gaps. 247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 248 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 249 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 250 251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 252 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 253 cl::desc("We don't interleave loops with a estimated constant trip count " 254 "below this number")); 255 256 static cl::opt<unsigned> ForceTargetNumScalarRegs( 257 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of scalar registers.")); 259 260 static cl::opt<unsigned> ForceTargetNumVectorRegs( 261 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's number of vector registers.")); 263 264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 265 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "scalar loops.")); 268 269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 270 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's max interleave factor for " 272 "vectorized loops.")); 273 274 static cl::opt<unsigned> ForceTargetInstructionCost( 275 "force-target-instruction-cost", cl::init(0), cl::Hidden, 276 cl::desc("A flag that overrides the target's expected cost for " 277 "an instruction to a single constant value. Mostly " 278 "useful for getting consistent testing.")); 279 280 static cl::opt<bool> ForceTargetSupportsScalableVectors( 281 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 282 cl::desc( 283 "Pretend that scalable vectors are supported, even if the target does " 284 "not support them. This flag should only be used for testing.")); 285 286 static cl::opt<unsigned> SmallLoopCost( 287 "small-loop-cost", cl::init(20), cl::Hidden, 288 cl::desc( 289 "The cost of a loop that is considered 'small' by the interleaver.")); 290 291 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 292 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 293 cl::desc("Enable the use of the block frequency analysis to access PGO " 294 "heuristics minimizing code growth in cold regions and being more " 295 "aggressive in hot regions.")); 296 297 // Runtime interleave loops for load/store throughput. 298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 299 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 300 cl::desc( 301 "Enable runtime interleaving until load/store ports are saturated")); 302 303 /// Interleave small loops with scalar reductions. 304 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 305 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 306 cl::desc("Enable interleaving for loops with small iteration counts that " 307 "contain scalar reductions to expose ILP.")); 308 309 /// The number of stores in a loop that are allowed to need predication. 310 static cl::opt<unsigned> NumberOfStoresToPredicate( 311 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 312 cl::desc("Max number of stores to be predicated behind an if.")); 313 314 static cl::opt<bool> EnableIndVarRegisterHeur( 315 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 316 cl::desc("Count the induction variable only once when interleaving")); 317 318 static cl::opt<bool> EnableCondStoresVectorization( 319 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 320 cl::desc("Enable if predication of stores during vectorization.")); 321 322 static cl::opt<unsigned> MaxNestedScalarReductionIC( 323 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 324 cl::desc("The maximum interleave count to use when interleaving a scalar " 325 "reduction in a nested loop.")); 326 327 static cl::opt<bool> 328 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 329 cl::Hidden, 330 cl::desc("Prefer in-loop vector reductions, " 331 "overriding the targets preference.")); 332 333 static cl::opt<bool> ForceOrderedReductions( 334 "force-ordered-reductions", cl::init(false), cl::Hidden, 335 cl::desc("Enable the vectorisation of loops with in-order (strict) " 336 "FP reductions")); 337 338 static cl::opt<bool> PreferPredicatedReductionSelect( 339 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 340 cl::desc( 341 "Prefer predicating a reduction operation over an after loop select.")); 342 343 cl::opt<bool> EnableVPlanNativePath( 344 "enable-vplan-native-path", cl::init(false), cl::Hidden, 345 cl::desc("Enable VPlan-native vectorization path with " 346 "support for outer loop vectorization.")); 347 348 // FIXME: Remove this switch once we have divergence analysis. Currently we 349 // assume divergent non-backedge branches when this switch is true. 350 cl::opt<bool> EnableVPlanPredication( 351 "enable-vplan-predication", cl::init(false), cl::Hidden, 352 cl::desc("Enable VPlan-native vectorization path predicator with " 353 "support for outer loop vectorization.")); 354 355 // This flag enables the stress testing of the VPlan H-CFG construction in the 356 // VPlan-native vectorization path. It must be used in conjuction with 357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 358 // verification of the H-CFGs built. 359 static cl::opt<bool> VPlanBuildStressTest( 360 "vplan-build-stress-test", cl::init(false), cl::Hidden, 361 cl::desc( 362 "Build VPlan for every supported loop nest in the function and bail " 363 "out right after the build (stress test the VPlan H-CFG construction " 364 "in the VPlan-native vectorization path).")); 365 366 cl::opt<bool> llvm::EnableLoopInterleaving( 367 "interleave-loops", cl::init(true), cl::Hidden, 368 cl::desc("Enable loop interleaving in Loop vectorization passes")); 369 cl::opt<bool> llvm::EnableLoopVectorization( 370 "vectorize-loops", cl::init(true), cl::Hidden, 371 cl::desc("Run the Loop vectorization passes")); 372 373 cl::opt<bool> PrintVPlansInDotFormat( 374 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 375 cl::desc("Use dot format instead of plain text when dumping VPlans")); 376 377 /// A helper function that returns true if the given type is irregular. The 378 /// type is irregular if its allocated size doesn't equal the store size of an 379 /// element of the corresponding vector type. 380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 381 // Determine if an array of N elements of type Ty is "bitcast compatible" 382 // with a <N x Ty> vector. 383 // This is only true if there is no padding between the array elements. 384 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 385 } 386 387 /// A helper function that returns the reciprocal of the block probability of 388 /// predicated blocks. If we return X, we are assuming the predicated block 389 /// will execute once for every X iterations of the loop header. 390 /// 391 /// TODO: We should use actual block probability here, if available. Currently, 392 /// we always assume predicated blocks have a 50% chance of executing. 393 static unsigned getReciprocalPredBlockProb() { return 2; } 394 395 /// A helper function that returns an integer or floating-point constant with 396 /// value C. 397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 398 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 399 : ConstantFP::get(Ty, C); 400 } 401 402 /// Returns "best known" trip count for the specified loop \p L as defined by 403 /// the following procedure: 404 /// 1) Returns exact trip count if it is known. 405 /// 2) Returns expected trip count according to profile data if any. 406 /// 3) Returns upper bound estimate if it is known. 407 /// 4) Returns None if all of the above failed. 408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 409 // Check if exact trip count is known. 410 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 411 return ExpectedTC; 412 413 // Check if there is an expected trip count available from profile data. 414 if (LoopVectorizeWithBlockFrequency) 415 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 416 return EstimatedTC; 417 418 // Check if upper bound estimate is known. 419 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 420 return ExpectedTC; 421 422 return None; 423 } 424 425 // Forward declare GeneratedRTChecks. 426 class GeneratedRTChecks; 427 428 namespace llvm { 429 430 AnalysisKey ShouldRunExtraVectorPasses::Key; 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop and the start value for the canonical induction, if it is != 0. The 473 /// latter is the case when vectorizing the epilogue loop. In the case of 474 /// epilogue vectorization, this function is overriden to handle the more 475 /// complex control flow around the loops. 476 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 477 478 /// Widen a single call instruction within the innermost loop. 479 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 480 VPTransformState &State); 481 482 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 483 void fixVectorizedLoop(VPTransformState &State); 484 485 // Return true if any runtime check is added. 486 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 487 488 /// A type for vectorized values in the new loop. Each value from the 489 /// original loop, when vectorized, is represented by UF vector values in the 490 /// new unrolled loop, where UF is the unroll factor. 491 using VectorParts = SmallVector<Value *, 2>; 492 493 /// Vectorize a single vector PHINode in a block in the VPlan-native path 494 /// only. 495 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 496 VPTransformState &State); 497 498 /// A helper function to scalarize a single Instruction in the innermost loop. 499 /// Generates a sequence of scalar instances for each lane between \p MinLane 500 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 501 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 502 /// Instr's operands. 503 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 504 const VPIteration &Instance, bool IfPredicateInstr, 505 VPTransformState &State); 506 507 /// Construct the vector value of a scalarized value \p V one lane at a time. 508 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 509 VPTransformState &State); 510 511 /// Try to vectorize interleaved access group \p Group with the base address 512 /// given in \p Addr, optionally masking the vector operations if \p 513 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 514 /// values in the vectorized loop. 515 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 516 ArrayRef<VPValue *> VPDefs, 517 VPTransformState &State, VPValue *Addr, 518 ArrayRef<VPValue *> StoredValues, 519 VPValue *BlockInMask = nullptr); 520 521 /// Set the debug location in the builder \p Ptr using the debug location in 522 /// \p V. If \p Ptr is None then it uses the class member's Builder. 523 void setDebugLocFromInst(const Value *V, 524 Optional<IRBuilderBase *> CustomBuilder = None); 525 526 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 527 void fixNonInductionPHIs(VPTransformState &State); 528 529 /// Returns true if the reordering of FP operations is not allowed, but we are 530 /// able to vectorize with strict in-order reductions for the given RdxDesc. 531 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 532 533 /// Create a broadcast instruction. This method generates a broadcast 534 /// instruction (shuffle) for loop invariant values and for the induction 535 /// value. If this is the induction variable then we extend it to N, N+1, ... 536 /// this is needed because each iteration in the loop corresponds to a SIMD 537 /// element. 538 virtual Value *getBroadcastInstrs(Value *V); 539 540 /// Add metadata from one instruction to another. 541 /// 542 /// This includes both the original MDs from \p From and additional ones (\see 543 /// addNewMetadata). Use this for *newly created* instructions in the vector 544 /// loop. 545 void addMetadata(Instruction *To, Instruction *From); 546 547 /// Similar to the previous function but it adds the metadata to a 548 /// vector of instructions. 549 void addMetadata(ArrayRef<Value *> To, Instruction *From); 550 551 // Returns the resume value (bc.merge.rdx) for a reduction as 552 // generated by fixReduction. 553 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 554 555 protected: 556 friend class LoopVectorizationPlanner; 557 558 /// A small list of PHINodes. 559 using PhiVector = SmallVector<PHINode *, 4>; 560 561 /// A type for scalarized values in the new loop. Each value from the 562 /// original loop, when scalarized, is represented by UF x VF scalar values 563 /// in the new unrolled loop, where UF is the unroll factor and VF is the 564 /// vectorization factor. 565 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 566 567 /// Set up the values of the IVs correctly when exiting the vector loop. 568 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 569 Value *CountRoundDown, Value *EndValue, 570 BasicBlock *MiddleBlock, BasicBlock *VectorHeader); 571 572 /// Handle all cross-iteration phis in the header. 573 void fixCrossIterationPHIs(VPTransformState &State); 574 575 /// Create the exit value of first order recurrences in the middle block and 576 /// update their users. 577 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 578 VPTransformState &State); 579 580 /// Create code for the loop exit value of the reduction. 581 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 582 583 /// Clear NSW/NUW flags from reduction instructions if necessary. 584 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 585 VPTransformState &State); 586 587 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 588 /// means we need to add the appropriate incoming value from the middle 589 /// block as exiting edges from the scalar epilogue loop (if present) are 590 /// already in place, and we exit the vector loop exclusively to the middle 591 /// block. 592 void fixLCSSAPHIs(VPTransformState &State); 593 594 /// Iteratively sink the scalarized operands of a predicated instruction into 595 /// the block that was created for it. 596 void sinkScalarOperands(Instruction *PredInst); 597 598 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 599 /// represented as. 600 void truncateToMinimalBitwidths(VPTransformState &State); 601 602 /// Returns (and creates if needed) the original loop trip count. 603 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 604 605 /// Returns (and creates if needed) the trip count of the widened loop. 606 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 607 608 /// Returns a bitcasted value to the requested vector type. 609 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 610 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 611 const DataLayout &DL); 612 613 /// Emit a bypass check to see if the vector trip count is zero, including if 614 /// it overflows. 615 void emitMinimumIterationCountCheck(BasicBlock *Bypass); 616 617 /// Emit a bypass check to see if all of the SCEV assumptions we've 618 /// had to make are correct. Returns the block containing the checks or 619 /// nullptr if no checks have been added. 620 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 621 622 /// Emit bypass checks to check any memory assumptions we may have made. 623 /// Returns the block containing the checks or nullptr if no checks have been 624 /// added. 625 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 626 627 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 628 /// vector loop preheader, middle block and scalar preheader. 629 void createVectorLoopSkeleton(StringRef Prefix); 630 631 /// Create new phi nodes for the induction variables to resume iteration count 632 /// in the scalar epilogue, from where the vectorized loop left off. 633 /// In cases where the loop skeleton is more complicated (eg. epilogue 634 /// vectorization) and the resume values can come from an additional bypass 635 /// block, the \p AdditionalBypass pair provides information about the bypass 636 /// block and the end value on the edge from bypass to this loop. 637 void createInductionResumeValues( 638 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 639 640 /// Complete the loop skeleton by adding debug MDs, creating appropriate 641 /// conditional branches in the middle block, preparing the builder and 642 /// running the verifier. Return the preheader of the completed vector loop. 643 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 644 645 /// Add additional metadata to \p To that was not present on \p Orig. 646 /// 647 /// Currently this is used to add the noalias annotations based on the 648 /// inserted memchecks. Use this for instructions that are *cloned* into the 649 /// vector loop. 650 void addNewMetadata(Instruction *To, const Instruction *Orig); 651 652 /// Collect poison-generating recipes that may generate a poison value that is 653 /// used after vectorization, even when their operands are not poison. Those 654 /// recipes meet the following conditions: 655 /// * Contribute to the address computation of a recipe generating a widen 656 /// memory load/store (VPWidenMemoryInstructionRecipe or 657 /// VPInterleaveRecipe). 658 /// * Such a widen memory load/store has at least one underlying Instruction 659 /// that is in a basic block that needs predication and after vectorization 660 /// the generated instruction won't be predicated. 661 void collectPoisonGeneratingRecipes(VPTransformState &State); 662 663 /// Allow subclasses to override and print debug traces before/after vplan 664 /// execution, when trace information is requested. 665 virtual void printDebugTracesAtStart(){}; 666 virtual void printDebugTracesAtEnd(){}; 667 668 /// The original loop. 669 Loop *OrigLoop; 670 671 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 672 /// dynamic knowledge to simplify SCEV expressions and converts them to a 673 /// more usable form. 674 PredicatedScalarEvolution &PSE; 675 676 /// Loop Info. 677 LoopInfo *LI; 678 679 /// Dominator Tree. 680 DominatorTree *DT; 681 682 /// Alias Analysis. 683 AAResults *AA; 684 685 /// Target Library Info. 686 const TargetLibraryInfo *TLI; 687 688 /// Target Transform Info. 689 const TargetTransformInfo *TTI; 690 691 /// Assumption Cache. 692 AssumptionCache *AC; 693 694 /// Interface to emit optimization remarks. 695 OptimizationRemarkEmitter *ORE; 696 697 /// LoopVersioning. It's only set up (non-null) if memchecks were 698 /// used. 699 /// 700 /// This is currently only used to add no-alias metadata based on the 701 /// memchecks. The actually versioning is performed manually. 702 std::unique_ptr<LoopVersioning> LVer; 703 704 /// The vectorization SIMD factor to use. Each vector will have this many 705 /// vector elements. 706 ElementCount VF; 707 708 /// The vectorization unroll factor to use. Each scalar is vectorized to this 709 /// many different vector instructions. 710 unsigned UF; 711 712 /// The builder that we use 713 IRBuilder<> Builder; 714 715 // --- Vectorization state --- 716 717 /// The vector-loop preheader. 718 BasicBlock *LoopVectorPreHeader; 719 720 /// The scalar-loop preheader. 721 BasicBlock *LoopScalarPreHeader; 722 723 /// Middle Block between the vector and the scalar. 724 BasicBlock *LoopMiddleBlock; 725 726 /// The unique ExitBlock of the scalar loop if one exists. Note that 727 /// there can be multiple exiting edges reaching this block. 728 BasicBlock *LoopExitBlock; 729 730 /// The scalar loop body. 731 BasicBlock *LoopScalarBody; 732 733 /// A list of all bypass blocks. The first block is the entry of the loop. 734 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 735 736 /// Store instructions that were predicated. 737 SmallVector<Instruction *, 4> PredicatedInstructions; 738 739 /// Trip count of the original loop. 740 Value *TripCount = nullptr; 741 742 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 743 Value *VectorTripCount = nullptr; 744 745 /// The legality analysis. 746 LoopVectorizationLegality *Legal; 747 748 /// The profitablity analysis. 749 LoopVectorizationCostModel *Cost; 750 751 // Record whether runtime checks are added. 752 bool AddedSafetyChecks = false; 753 754 // Holds the end values for each induction variable. We save the end values 755 // so we can later fix-up the external users of the induction variables. 756 DenseMap<PHINode *, Value *> IVEndValues; 757 758 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 759 // fixed up at the end of vector code generation. 760 SmallVector<PHINode *, 8> OrigPHIsToFix; 761 762 /// BFI and PSI are used to check for profile guided size optimizations. 763 BlockFrequencyInfo *BFI; 764 ProfileSummaryInfo *PSI; 765 766 // Whether this loop should be optimized for size based on profile guided size 767 // optimizatios. 768 bool OptForSizeBasedOnProfile; 769 770 /// Structure to hold information about generated runtime checks, responsible 771 /// for cleaning the checks, if vectorization turns out unprofitable. 772 GeneratedRTChecks &RTChecks; 773 774 // Holds the resume values for reductions in the loops, used to set the 775 // correct start value of reduction PHIs when vectorizing the epilogue. 776 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 777 ReductionResumeValues; 778 }; 779 780 class InnerLoopUnroller : public InnerLoopVectorizer { 781 public: 782 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 783 LoopInfo *LI, DominatorTree *DT, 784 const TargetLibraryInfo *TLI, 785 const TargetTransformInfo *TTI, AssumptionCache *AC, 786 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 787 LoopVectorizationLegality *LVL, 788 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 789 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 790 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 791 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 792 BFI, PSI, Check) {} 793 794 private: 795 Value *getBroadcastInstrs(Value *V) override; 796 }; 797 798 /// Encapsulate information regarding vectorization of a loop and its epilogue. 799 /// This information is meant to be updated and used across two stages of 800 /// epilogue vectorization. 801 struct EpilogueLoopVectorizationInfo { 802 ElementCount MainLoopVF = ElementCount::getFixed(0); 803 unsigned MainLoopUF = 0; 804 ElementCount EpilogueVF = ElementCount::getFixed(0); 805 unsigned EpilogueUF = 0; 806 BasicBlock *MainLoopIterationCountCheck = nullptr; 807 BasicBlock *EpilogueIterationCountCheck = nullptr; 808 BasicBlock *SCEVSafetyCheck = nullptr; 809 BasicBlock *MemSafetyCheck = nullptr; 810 Value *TripCount = nullptr; 811 Value *VectorTripCount = nullptr; 812 813 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 814 ElementCount EVF, unsigned EUF) 815 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 816 assert(EUF == 1 && 817 "A high UF for the epilogue loop is likely not beneficial."); 818 } 819 }; 820 821 /// An extension of the inner loop vectorizer that creates a skeleton for a 822 /// vectorized loop that has its epilogue (residual) also vectorized. 823 /// The idea is to run the vplan on a given loop twice, firstly to setup the 824 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 825 /// from the first step and vectorize the epilogue. This is achieved by 826 /// deriving two concrete strategy classes from this base class and invoking 827 /// them in succession from the loop vectorizer planner. 828 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 829 public: 830 InnerLoopAndEpilogueVectorizer( 831 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 832 DominatorTree *DT, const TargetLibraryInfo *TLI, 833 const TargetTransformInfo *TTI, AssumptionCache *AC, 834 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 835 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 836 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 837 GeneratedRTChecks &Checks) 838 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 839 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 840 Checks), 841 EPI(EPI) {} 842 843 // Override this function to handle the more complex control flow around the 844 // three loops. 845 std::pair<BasicBlock *, Value *> 846 createVectorizedLoopSkeleton() final override { 847 return createEpilogueVectorizedLoopSkeleton(); 848 } 849 850 /// The interface for creating a vectorized skeleton using one of two 851 /// different strategies, each corresponding to one execution of the vplan 852 /// as described above. 853 virtual std::pair<BasicBlock *, Value *> 854 createEpilogueVectorizedLoopSkeleton() = 0; 855 856 /// Holds and updates state information required to vectorize the main loop 857 /// and its epilogue in two separate passes. This setup helps us avoid 858 /// regenerating and recomputing runtime safety checks. It also helps us to 859 /// shorten the iteration-count-check path length for the cases where the 860 /// iteration count of the loop is so small that the main vector loop is 861 /// completely skipped. 862 EpilogueLoopVectorizationInfo &EPI; 863 }; 864 865 /// A specialized derived class of inner loop vectorizer that performs 866 /// vectorization of *main* loops in the process of vectorizing loops and their 867 /// epilogues. 868 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 869 public: 870 EpilogueVectorizerMainLoop( 871 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 872 DominatorTree *DT, const TargetLibraryInfo *TLI, 873 const TargetTransformInfo *TTI, AssumptionCache *AC, 874 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 875 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 876 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 877 GeneratedRTChecks &Check) 878 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 879 EPI, LVL, CM, BFI, PSI, Check) {} 880 /// Implements the interface for creating a vectorized skeleton using the 881 /// *main loop* strategy (ie the first pass of vplan execution). 882 std::pair<BasicBlock *, Value *> 883 createEpilogueVectorizedLoopSkeleton() final override; 884 885 protected: 886 /// Emits an iteration count bypass check once for the main loop (when \p 887 /// ForEpilogue is false) and once for the epilogue loop (when \p 888 /// ForEpilogue is true). 889 BasicBlock *emitMinimumIterationCountCheck(BasicBlock *Bypass, 890 bool ForEpilogue); 891 void printDebugTracesAtStart() override; 892 void printDebugTracesAtEnd() override; 893 }; 894 895 // A specialized derived class of inner loop vectorizer that performs 896 // vectorization of *epilogue* loops in the process of vectorizing loops and 897 // their epilogues. 898 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 899 public: 900 EpilogueVectorizerEpilogueLoop( 901 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 902 DominatorTree *DT, const TargetLibraryInfo *TLI, 903 const TargetTransformInfo *TTI, AssumptionCache *AC, 904 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 905 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 906 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 907 GeneratedRTChecks &Checks) 908 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 909 EPI, LVL, CM, BFI, PSI, Checks) { 910 TripCount = EPI.TripCount; 911 } 912 /// Implements the interface for creating a vectorized skeleton using the 913 /// *epilogue loop* strategy (ie the second pass of vplan execution). 914 std::pair<BasicBlock *, Value *> 915 createEpilogueVectorizedLoopSkeleton() final override; 916 917 protected: 918 /// Emits an iteration count bypass check after the main vector loop has 919 /// finished to see if there are any iterations left to execute by either 920 /// the vector epilogue or the scalar epilogue. 921 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 922 BasicBlock *Bypass, 923 BasicBlock *Insert); 924 void printDebugTracesAtStart() override; 925 void printDebugTracesAtEnd() override; 926 }; 927 } // end namespace llvm 928 929 /// Look for a meaningful debug location on the instruction or it's 930 /// operands. 931 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 932 if (!I) 933 return I; 934 935 DebugLoc Empty; 936 if (I->getDebugLoc() != Empty) 937 return I; 938 939 for (Use &Op : I->operands()) { 940 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 941 if (OpInst->getDebugLoc() != Empty) 942 return OpInst; 943 } 944 945 return I; 946 } 947 948 void InnerLoopVectorizer::setDebugLocFromInst( 949 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 950 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 951 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 952 const DILocation *DIL = Inst->getDebugLoc(); 953 954 // When a FSDiscriminator is enabled, we don't need to add the multiply 955 // factors to the discriminators. 956 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 957 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 958 // FIXME: For scalable vectors, assume vscale=1. 959 auto NewDIL = 960 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 961 if (NewDIL) 962 B->SetCurrentDebugLocation(NewDIL.getValue()); 963 else 964 LLVM_DEBUG(dbgs() 965 << "Failed to create new discriminator: " 966 << DIL->getFilename() << " Line: " << DIL->getLine()); 967 } else 968 B->SetCurrentDebugLocation(DIL); 969 } else 970 B->SetCurrentDebugLocation(DebugLoc()); 971 } 972 973 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 974 /// is passed, the message relates to that particular instruction. 975 #ifndef NDEBUG 976 static void debugVectorizationMessage(const StringRef Prefix, 977 const StringRef DebugMsg, 978 Instruction *I) { 979 dbgs() << "LV: " << Prefix << DebugMsg; 980 if (I != nullptr) 981 dbgs() << " " << *I; 982 else 983 dbgs() << '.'; 984 dbgs() << '\n'; 985 } 986 #endif 987 988 /// Create an analysis remark that explains why vectorization failed 989 /// 990 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 991 /// RemarkName is the identifier for the remark. If \p I is passed it is an 992 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 993 /// the location of the remark. \return the remark object that can be 994 /// streamed to. 995 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 996 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 997 Value *CodeRegion = TheLoop->getHeader(); 998 DebugLoc DL = TheLoop->getStartLoc(); 999 1000 if (I) { 1001 CodeRegion = I->getParent(); 1002 // If there is no debug location attached to the instruction, revert back to 1003 // using the loop's. 1004 if (I->getDebugLoc()) 1005 DL = I->getDebugLoc(); 1006 } 1007 1008 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1009 } 1010 1011 namespace llvm { 1012 1013 /// Return a value for Step multiplied by VF. 1014 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1015 int64_t Step) { 1016 assert(Ty->isIntegerTy() && "Expected an integer step"); 1017 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1018 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1019 } 1020 1021 /// Return the runtime value for VF. 1022 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1023 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1024 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1025 } 1026 1027 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1028 ElementCount VF) { 1029 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1030 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1031 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1032 return B.CreateUIToFP(RuntimeVF, FTy); 1033 } 1034 1035 void reportVectorizationFailure(const StringRef DebugMsg, 1036 const StringRef OREMsg, const StringRef ORETag, 1037 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1038 Instruction *I) { 1039 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1040 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1041 ORE->emit( 1042 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1043 << "loop not vectorized: " << OREMsg); 1044 } 1045 1046 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1047 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1048 Instruction *I) { 1049 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1050 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1051 ORE->emit( 1052 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1053 << Msg); 1054 } 1055 1056 } // end namespace llvm 1057 1058 #ifndef NDEBUG 1059 /// \return string containing a file name and a line # for the given loop. 1060 static std::string getDebugLocString(const Loop *L) { 1061 std::string Result; 1062 if (L) { 1063 raw_string_ostream OS(Result); 1064 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1065 LoopDbgLoc.print(OS); 1066 else 1067 // Just print the module name. 1068 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1069 OS.flush(); 1070 } 1071 return Result; 1072 } 1073 #endif 1074 1075 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1076 const Instruction *Orig) { 1077 // If the loop was versioned with memchecks, add the corresponding no-alias 1078 // metadata. 1079 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1080 LVer->annotateInstWithNoAlias(To, Orig); 1081 } 1082 1083 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1084 VPTransformState &State) { 1085 1086 // Collect recipes in the backward slice of `Root` that may generate a poison 1087 // value that is used after vectorization. 1088 SmallPtrSet<VPRecipeBase *, 16> Visited; 1089 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1090 SmallVector<VPRecipeBase *, 16> Worklist; 1091 Worklist.push_back(Root); 1092 1093 // Traverse the backward slice of Root through its use-def chain. 1094 while (!Worklist.empty()) { 1095 VPRecipeBase *CurRec = Worklist.back(); 1096 Worklist.pop_back(); 1097 1098 if (!Visited.insert(CurRec).second) 1099 continue; 1100 1101 // Prune search if we find another recipe generating a widen memory 1102 // instruction. Widen memory instructions involved in address computation 1103 // will lead to gather/scatter instructions, which don't need to be 1104 // handled. 1105 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1106 isa<VPInterleaveRecipe>(CurRec) || 1107 isa<VPScalarIVStepsRecipe>(CurRec) || 1108 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1109 continue; 1110 1111 // This recipe contributes to the address computation of a widen 1112 // load/store. Collect recipe if its underlying instruction has 1113 // poison-generating flags. 1114 Instruction *Instr = CurRec->getUnderlyingInstr(); 1115 if (Instr && Instr->hasPoisonGeneratingFlags()) 1116 State.MayGeneratePoisonRecipes.insert(CurRec); 1117 1118 // Add new definitions to the worklist. 1119 for (VPValue *operand : CurRec->operands()) 1120 if (VPDef *OpDef = operand->getDef()) 1121 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1122 } 1123 }); 1124 1125 // Traverse all the recipes in the VPlan and collect the poison-generating 1126 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1127 // VPInterleaveRecipe. 1128 auto Iter = depth_first( 1129 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1130 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1131 for (VPRecipeBase &Recipe : *VPBB) { 1132 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1133 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1134 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1135 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1136 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1137 collectPoisonGeneratingInstrsInBackwardSlice( 1138 cast<VPRecipeBase>(AddrDef)); 1139 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1140 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1141 if (AddrDef) { 1142 // Check if any member of the interleave group needs predication. 1143 const InterleaveGroup<Instruction> *InterGroup = 1144 InterleaveRec->getInterleaveGroup(); 1145 bool NeedPredication = false; 1146 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1147 I < NumMembers; ++I) { 1148 Instruction *Member = InterGroup->getMember(I); 1149 if (Member) 1150 NeedPredication |= 1151 Legal->blockNeedsPredication(Member->getParent()); 1152 } 1153 1154 if (NeedPredication) 1155 collectPoisonGeneratingInstrsInBackwardSlice( 1156 cast<VPRecipeBase>(AddrDef)); 1157 } 1158 } 1159 } 1160 } 1161 } 1162 1163 void InnerLoopVectorizer::addMetadata(Instruction *To, 1164 Instruction *From) { 1165 propagateMetadata(To, From); 1166 addNewMetadata(To, From); 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1170 Instruction *From) { 1171 for (Value *V : To) { 1172 if (Instruction *I = dyn_cast<Instruction>(V)) 1173 addMetadata(I, From); 1174 } 1175 } 1176 1177 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1178 const RecurrenceDescriptor &RdxDesc) { 1179 auto It = ReductionResumeValues.find(&RdxDesc); 1180 assert(It != ReductionResumeValues.end() && 1181 "Expected to find a resume value for the reduction."); 1182 return It->second; 1183 } 1184 1185 namespace llvm { 1186 1187 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1188 // lowered. 1189 enum ScalarEpilogueLowering { 1190 1191 // The default: allowing scalar epilogues. 1192 CM_ScalarEpilogueAllowed, 1193 1194 // Vectorization with OptForSize: don't allow epilogues. 1195 CM_ScalarEpilogueNotAllowedOptSize, 1196 1197 // A special case of vectorisation with OptForSize: loops with a very small 1198 // trip count are considered for vectorization under OptForSize, thereby 1199 // making sure the cost of their loop body is dominant, free of runtime 1200 // guards and scalar iteration overheads. 1201 CM_ScalarEpilogueNotAllowedLowTripLoop, 1202 1203 // Loop hint predicate indicating an epilogue is undesired. 1204 CM_ScalarEpilogueNotNeededUsePredicate, 1205 1206 // Directive indicating we must either tail fold or not vectorize 1207 CM_ScalarEpilogueNotAllowedUsePredicate 1208 }; 1209 1210 /// ElementCountComparator creates a total ordering for ElementCount 1211 /// for the purposes of using it in a set structure. 1212 struct ElementCountComparator { 1213 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1214 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1215 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1216 } 1217 }; 1218 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1219 1220 /// LoopVectorizationCostModel - estimates the expected speedups due to 1221 /// vectorization. 1222 /// In many cases vectorization is not profitable. This can happen because of 1223 /// a number of reasons. In this class we mainly attempt to predict the 1224 /// expected speedup/slowdowns due to the supported instruction set. We use the 1225 /// TargetTransformInfo to query the different backends for the cost of 1226 /// different operations. 1227 class LoopVectorizationCostModel { 1228 public: 1229 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1230 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1231 LoopVectorizationLegality *Legal, 1232 const TargetTransformInfo &TTI, 1233 const TargetLibraryInfo *TLI, DemandedBits *DB, 1234 AssumptionCache *AC, 1235 OptimizationRemarkEmitter *ORE, const Function *F, 1236 const LoopVectorizeHints *Hints, 1237 InterleavedAccessInfo &IAI) 1238 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1239 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1240 Hints(Hints), InterleaveInfo(IAI) {} 1241 1242 /// \return An upper bound for the vectorization factors (both fixed and 1243 /// scalable). If the factors are 0, vectorization and interleaving should be 1244 /// avoided up front. 1245 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1246 1247 /// \return True if runtime checks are required for vectorization, and false 1248 /// otherwise. 1249 bool runtimeChecksRequired(); 1250 1251 /// \return The most profitable vectorization factor and the cost of that VF. 1252 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1253 /// then this vectorization factor will be selected if vectorization is 1254 /// possible. 1255 VectorizationFactor 1256 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1257 1258 VectorizationFactor 1259 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1260 const LoopVectorizationPlanner &LVP); 1261 1262 /// Setup cost-based decisions for user vectorization factor. 1263 /// \return true if the UserVF is a feasible VF to be chosen. 1264 bool selectUserVectorizationFactor(ElementCount UserVF) { 1265 collectUniformsAndScalars(UserVF); 1266 collectInstsToScalarize(UserVF); 1267 return expectedCost(UserVF).first.isValid(); 1268 } 1269 1270 /// \return The size (in bits) of the smallest and widest types in the code 1271 /// that needs to be vectorized. We ignore values that remain scalar such as 1272 /// 64 bit loop indices. 1273 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1274 1275 /// \return The desired interleave count. 1276 /// If interleave count has been specified by metadata it will be returned. 1277 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1278 /// are the selected vectorization factor and the cost of the selected VF. 1279 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1280 1281 /// Memory access instruction may be vectorized in more than one way. 1282 /// Form of instruction after vectorization depends on cost. 1283 /// This function takes cost-based decisions for Load/Store instructions 1284 /// and collects them in a map. This decisions map is used for building 1285 /// the lists of loop-uniform and loop-scalar instructions. 1286 /// The calculated cost is saved with widening decision in order to 1287 /// avoid redundant calculations. 1288 void setCostBasedWideningDecision(ElementCount VF); 1289 1290 /// A struct that represents some properties of the register usage 1291 /// of a loop. 1292 struct RegisterUsage { 1293 /// Holds the number of loop invariant values that are used in the loop. 1294 /// The key is ClassID of target-provided register class. 1295 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1296 /// Holds the maximum number of concurrent live intervals in the loop. 1297 /// The key is ClassID of target-provided register class. 1298 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1299 }; 1300 1301 /// \return Returns information about the register usages of the loop for the 1302 /// given vectorization factors. 1303 SmallVector<RegisterUsage, 8> 1304 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1305 1306 /// Collect values we want to ignore in the cost model. 1307 void collectValuesToIgnore(); 1308 1309 /// Collect all element types in the loop for which widening is needed. 1310 void collectElementTypesForWidening(); 1311 1312 /// Split reductions into those that happen in the loop, and those that happen 1313 /// outside. In loop reductions are collected into InLoopReductionChains. 1314 void collectInLoopReductions(); 1315 1316 /// Returns true if we should use strict in-order reductions for the given 1317 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1318 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1319 /// of FP operations. 1320 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1321 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1322 } 1323 1324 /// \returns The smallest bitwidth each instruction can be represented with. 1325 /// The vector equivalents of these instructions should be truncated to this 1326 /// type. 1327 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1328 return MinBWs; 1329 } 1330 1331 /// \returns True if it is more profitable to scalarize instruction \p I for 1332 /// vectorization factor \p VF. 1333 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1334 assert(VF.isVector() && 1335 "Profitable to scalarize relevant only for VF > 1."); 1336 1337 // Cost model is not run in the VPlan-native path - return conservative 1338 // result until this changes. 1339 if (EnableVPlanNativePath) 1340 return false; 1341 1342 auto Scalars = InstsToScalarize.find(VF); 1343 assert(Scalars != InstsToScalarize.end() && 1344 "VF not yet analyzed for scalarization profitability"); 1345 return Scalars->second.find(I) != Scalars->second.end(); 1346 } 1347 1348 /// Returns true if \p I is known to be uniform after vectorization. 1349 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1350 if (VF.isScalar()) 1351 return true; 1352 1353 // Cost model is not run in the VPlan-native path - return conservative 1354 // result until this changes. 1355 if (EnableVPlanNativePath) 1356 return false; 1357 1358 auto UniformsPerVF = Uniforms.find(VF); 1359 assert(UniformsPerVF != Uniforms.end() && 1360 "VF not yet analyzed for uniformity"); 1361 return UniformsPerVF->second.count(I); 1362 } 1363 1364 /// Returns true if \p I is known to be scalar after vectorization. 1365 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1366 if (VF.isScalar()) 1367 return true; 1368 1369 // Cost model is not run in the VPlan-native path - return conservative 1370 // result until this changes. 1371 if (EnableVPlanNativePath) 1372 return false; 1373 1374 auto ScalarsPerVF = Scalars.find(VF); 1375 assert(ScalarsPerVF != Scalars.end() && 1376 "Scalar values are not calculated for VF"); 1377 return ScalarsPerVF->second.count(I); 1378 } 1379 1380 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1381 /// for vectorization factor \p VF. 1382 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1383 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1384 !isProfitableToScalarize(I, VF) && 1385 !isScalarAfterVectorization(I, VF); 1386 } 1387 1388 /// Decision that was taken during cost calculation for memory instruction. 1389 enum InstWidening { 1390 CM_Unknown, 1391 CM_Widen, // For consecutive accesses with stride +1. 1392 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1393 CM_Interleave, 1394 CM_GatherScatter, 1395 CM_Scalarize 1396 }; 1397 1398 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1399 /// instruction \p I and vector width \p VF. 1400 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1401 InstructionCost Cost) { 1402 assert(VF.isVector() && "Expected VF >=2"); 1403 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1404 } 1405 1406 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1407 /// interleaving group \p Grp and vector width \p VF. 1408 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1409 ElementCount VF, InstWidening W, 1410 InstructionCost Cost) { 1411 assert(VF.isVector() && "Expected VF >=2"); 1412 /// Broadcast this decicion to all instructions inside the group. 1413 /// But the cost will be assigned to one instruction only. 1414 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1415 if (auto *I = Grp->getMember(i)) { 1416 if (Grp->getInsertPos() == I) 1417 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1418 else 1419 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1420 } 1421 } 1422 } 1423 1424 /// Return the cost model decision for the given instruction \p I and vector 1425 /// width \p VF. Return CM_Unknown if this instruction did not pass 1426 /// through the cost modeling. 1427 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1428 assert(VF.isVector() && "Expected VF to be a vector VF"); 1429 // Cost model is not run in the VPlan-native path - return conservative 1430 // result until this changes. 1431 if (EnableVPlanNativePath) 1432 return CM_GatherScatter; 1433 1434 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1435 auto Itr = WideningDecisions.find(InstOnVF); 1436 if (Itr == WideningDecisions.end()) 1437 return CM_Unknown; 1438 return Itr->second.first; 1439 } 1440 1441 /// Return the vectorization cost for the given instruction \p I and vector 1442 /// width \p VF. 1443 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1444 assert(VF.isVector() && "Expected VF >=2"); 1445 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1446 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1447 "The cost is not calculated"); 1448 return WideningDecisions[InstOnVF].second; 1449 } 1450 1451 /// Return True if instruction \p I is an optimizable truncate whose operand 1452 /// is an induction variable. Such a truncate will be removed by adding a new 1453 /// induction variable with the destination type. 1454 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1455 // If the instruction is not a truncate, return false. 1456 auto *Trunc = dyn_cast<TruncInst>(I); 1457 if (!Trunc) 1458 return false; 1459 1460 // Get the source and destination types of the truncate. 1461 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1462 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1463 1464 // If the truncate is free for the given types, return false. Replacing a 1465 // free truncate with an induction variable would add an induction variable 1466 // update instruction to each iteration of the loop. We exclude from this 1467 // check the primary induction variable since it will need an update 1468 // instruction regardless. 1469 Value *Op = Trunc->getOperand(0); 1470 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1471 return false; 1472 1473 // If the truncated value is not an induction variable, return false. 1474 return Legal->isInductionPhi(Op); 1475 } 1476 1477 /// Collects the instructions to scalarize for each predicated instruction in 1478 /// the loop. 1479 void collectInstsToScalarize(ElementCount VF); 1480 1481 /// Collect Uniform and Scalar values for the given \p VF. 1482 /// The sets depend on CM decision for Load/Store instructions 1483 /// that may be vectorized as interleave, gather-scatter or scalarized. 1484 void collectUniformsAndScalars(ElementCount VF) { 1485 // Do the analysis once. 1486 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1487 return; 1488 setCostBasedWideningDecision(VF); 1489 collectLoopUniforms(VF); 1490 collectLoopScalars(VF); 1491 } 1492 1493 /// Returns true if the target machine supports masked store operation 1494 /// for the given \p DataType and kind of access to \p Ptr. 1495 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1496 return Legal->isConsecutivePtr(DataType, Ptr) && 1497 TTI.isLegalMaskedStore(DataType, Alignment); 1498 } 1499 1500 /// Returns true if the target machine supports masked load operation 1501 /// for the given \p DataType and kind of access to \p Ptr. 1502 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1503 return Legal->isConsecutivePtr(DataType, Ptr) && 1504 TTI.isLegalMaskedLoad(DataType, Alignment); 1505 } 1506 1507 /// Returns true if the target machine can represent \p V as a masked gather 1508 /// or scatter operation. 1509 bool isLegalGatherOrScatter(Value *V, 1510 ElementCount VF = ElementCount::getFixed(1)) { 1511 bool LI = isa<LoadInst>(V); 1512 bool SI = isa<StoreInst>(V); 1513 if (!LI && !SI) 1514 return false; 1515 auto *Ty = getLoadStoreType(V); 1516 Align Align = getLoadStoreAlignment(V); 1517 if (VF.isVector()) 1518 Ty = VectorType::get(Ty, VF); 1519 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1520 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1521 } 1522 1523 /// Returns true if the target machine supports all of the reduction 1524 /// variables found for the given VF. 1525 bool canVectorizeReductions(ElementCount VF) const { 1526 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1527 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1528 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1529 })); 1530 } 1531 1532 /// Returns true if \p I is an instruction that will be scalarized with 1533 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1534 /// instructions include conditional stores and instructions that may divide 1535 /// by zero. 1536 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1537 1538 // Returns true if \p I is an instruction that will be predicated either 1539 // through scalar predication or masked load/store or masked gather/scatter. 1540 // \p VF is the vectorization factor that will be used to vectorize \p I. 1541 // Superset of instructions that return true for isScalarWithPredication. 1542 bool isPredicatedInst(Instruction *I, ElementCount VF, 1543 bool IsKnownUniform = false) { 1544 // When we know the load is uniform and the original scalar loop was not 1545 // predicated we don't need to mark it as a predicated instruction. Any 1546 // vectorised blocks created when tail-folding are something artificial we 1547 // have introduced and we know there is always at least one active lane. 1548 // That's why we call Legal->blockNeedsPredication here because it doesn't 1549 // query tail-folding. 1550 if (IsKnownUniform && isa<LoadInst>(I) && 1551 !Legal->blockNeedsPredication(I->getParent())) 1552 return false; 1553 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1554 return false; 1555 // Loads and stores that need some form of masked operation are predicated 1556 // instructions. 1557 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1558 return Legal->isMaskRequired(I); 1559 return isScalarWithPredication(I, VF); 1560 } 1561 1562 /// Returns true if \p I is a memory instruction with consecutive memory 1563 /// access that can be widened. 1564 bool 1565 memoryInstructionCanBeWidened(Instruction *I, 1566 ElementCount VF = ElementCount::getFixed(1)); 1567 1568 /// Returns true if \p I is a memory instruction in an interleaved-group 1569 /// of memory accesses that can be vectorized with wide vector loads/stores 1570 /// and shuffles. 1571 bool 1572 interleavedAccessCanBeWidened(Instruction *I, 1573 ElementCount VF = ElementCount::getFixed(1)); 1574 1575 /// Check if \p Instr belongs to any interleaved access group. 1576 bool isAccessInterleaved(Instruction *Instr) { 1577 return InterleaveInfo.isInterleaved(Instr); 1578 } 1579 1580 /// Get the interleaved access group that \p Instr belongs to. 1581 const InterleaveGroup<Instruction> * 1582 getInterleavedAccessGroup(Instruction *Instr) { 1583 return InterleaveInfo.getInterleaveGroup(Instr); 1584 } 1585 1586 /// Returns true if we're required to use a scalar epilogue for at least 1587 /// the final iteration of the original loop. 1588 bool requiresScalarEpilogue(ElementCount VF) const { 1589 if (!isScalarEpilogueAllowed()) 1590 return false; 1591 // If we might exit from anywhere but the latch, must run the exiting 1592 // iteration in scalar form. 1593 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1594 return true; 1595 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1596 } 1597 1598 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1599 /// loop hint annotation. 1600 bool isScalarEpilogueAllowed() const { 1601 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1602 } 1603 1604 /// Returns true if all loop blocks should be masked to fold tail loop. 1605 bool foldTailByMasking() const { return FoldTailByMasking; } 1606 1607 /// Returns true if the instructions in this block requires predication 1608 /// for any reason, e.g. because tail folding now requires a predicate 1609 /// or because the block in the original loop was predicated. 1610 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1611 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1612 } 1613 1614 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1615 /// nodes to the chain of instructions representing the reductions. Uses a 1616 /// MapVector to ensure deterministic iteration order. 1617 using ReductionChainMap = 1618 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1619 1620 /// Return the chain of instructions representing an inloop reduction. 1621 const ReductionChainMap &getInLoopReductionChains() const { 1622 return InLoopReductionChains; 1623 } 1624 1625 /// Returns true if the Phi is part of an inloop reduction. 1626 bool isInLoopReduction(PHINode *Phi) const { 1627 return InLoopReductionChains.count(Phi); 1628 } 1629 1630 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1631 /// with factor VF. Return the cost of the instruction, including 1632 /// scalarization overhead if it's needed. 1633 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1634 1635 /// Estimate cost of a call instruction CI if it were vectorized with factor 1636 /// VF. Return the cost of the instruction, including scalarization overhead 1637 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1638 /// scalarized - 1639 /// i.e. either vector version isn't available, or is too expensive. 1640 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1641 bool &NeedToScalarize) const; 1642 1643 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1644 /// that of B. 1645 bool isMoreProfitable(const VectorizationFactor &A, 1646 const VectorizationFactor &B) const; 1647 1648 /// Invalidates decisions already taken by the cost model. 1649 void invalidateCostModelingDecisions() { 1650 WideningDecisions.clear(); 1651 Uniforms.clear(); 1652 Scalars.clear(); 1653 } 1654 1655 private: 1656 unsigned NumPredStores = 0; 1657 1658 /// Convenience function that returns the value of vscale_range iff 1659 /// vscale_range.min == vscale_range.max or otherwise returns the value 1660 /// returned by the corresponding TLI method. 1661 Optional<unsigned> getVScaleForTuning() const; 1662 1663 /// \return An upper bound for the vectorization factors for both 1664 /// fixed and scalable vectorization, where the minimum-known number of 1665 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1666 /// disabled or unsupported, then the scalable part will be equal to 1667 /// ElementCount::getScalable(0). 1668 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1669 ElementCount UserVF, 1670 bool FoldTailByMasking); 1671 1672 /// \return the maximized element count based on the targets vector 1673 /// registers and the loop trip-count, but limited to a maximum safe VF. 1674 /// This is a helper function of computeFeasibleMaxVF. 1675 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1676 /// issue that occurred on one of the buildbots which cannot be reproduced 1677 /// without having access to the properietary compiler (see comments on 1678 /// D98509). The issue is currently under investigation and this workaround 1679 /// will be removed as soon as possible. 1680 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1681 unsigned SmallestType, 1682 unsigned WidestType, 1683 const ElementCount &MaxSafeVF, 1684 bool FoldTailByMasking); 1685 1686 /// \return the maximum legal scalable VF, based on the safe max number 1687 /// of elements. 1688 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1689 1690 /// The vectorization cost is a combination of the cost itself and a boolean 1691 /// indicating whether any of the contributing operations will actually 1692 /// operate on vector values after type legalization in the backend. If this 1693 /// latter value is false, then all operations will be scalarized (i.e. no 1694 /// vectorization has actually taken place). 1695 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1696 1697 /// Returns the expected execution cost. The unit of the cost does 1698 /// not matter because we use the 'cost' units to compare different 1699 /// vector widths. The cost that is returned is *not* normalized by 1700 /// the factor width. If \p Invalid is not nullptr, this function 1701 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1702 /// each instruction that has an Invalid cost for the given VF. 1703 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1704 VectorizationCostTy 1705 expectedCost(ElementCount VF, 1706 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1707 1708 /// Returns the execution time cost of an instruction for a given vector 1709 /// width. Vector width of one means scalar. 1710 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1711 1712 /// The cost-computation logic from getInstructionCost which provides 1713 /// the vector type as an output parameter. 1714 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1715 Type *&VectorTy); 1716 1717 /// Return the cost of instructions in an inloop reduction pattern, if I is 1718 /// part of that pattern. 1719 Optional<InstructionCost> 1720 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1721 TTI::TargetCostKind CostKind); 1722 1723 /// Calculate vectorization cost of memory instruction \p I. 1724 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1725 1726 /// The cost computation for scalarized memory instruction. 1727 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1728 1729 /// The cost computation for interleaving group of memory instructions. 1730 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1731 1732 /// The cost computation for Gather/Scatter instruction. 1733 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1734 1735 /// The cost computation for widening instruction \p I with consecutive 1736 /// memory access. 1737 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1738 1739 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1740 /// Load: scalar load + broadcast. 1741 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1742 /// element) 1743 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1744 1745 /// Estimate the overhead of scalarizing an instruction. This is a 1746 /// convenience wrapper for the type-based getScalarizationOverhead API. 1747 InstructionCost getScalarizationOverhead(Instruction *I, 1748 ElementCount VF) const; 1749 1750 /// Returns whether the instruction is a load or store and will be a emitted 1751 /// as a vector operation. 1752 bool isConsecutiveLoadOrStore(Instruction *I); 1753 1754 /// Returns true if an artificially high cost for emulated masked memrefs 1755 /// should be used. 1756 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1757 1758 /// Map of scalar integer values to the smallest bitwidth they can be legally 1759 /// represented as. The vector equivalents of these values should be truncated 1760 /// to this type. 1761 MapVector<Instruction *, uint64_t> MinBWs; 1762 1763 /// A type representing the costs for instructions if they were to be 1764 /// scalarized rather than vectorized. The entries are Instruction-Cost 1765 /// pairs. 1766 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1767 1768 /// A set containing all BasicBlocks that are known to present after 1769 /// vectorization as a predicated block. 1770 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1771 1772 /// Records whether it is allowed to have the original scalar loop execute at 1773 /// least once. This may be needed as a fallback loop in case runtime 1774 /// aliasing/dependence checks fail, or to handle the tail/remainder 1775 /// iterations when the trip count is unknown or doesn't divide by the VF, 1776 /// or as a peel-loop to handle gaps in interleave-groups. 1777 /// Under optsize and when the trip count is very small we don't allow any 1778 /// iterations to execute in the scalar loop. 1779 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1780 1781 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1782 bool FoldTailByMasking = false; 1783 1784 /// A map holding scalar costs for different vectorization factors. The 1785 /// presence of a cost for an instruction in the mapping indicates that the 1786 /// instruction will be scalarized when vectorizing with the associated 1787 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1788 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1789 1790 /// Holds the instructions known to be uniform after vectorization. 1791 /// The data is collected per VF. 1792 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1793 1794 /// Holds the instructions known to be scalar after vectorization. 1795 /// The data is collected per VF. 1796 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1797 1798 /// Holds the instructions (address computations) that are forced to be 1799 /// scalarized. 1800 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1801 1802 /// PHINodes of the reductions that should be expanded in-loop along with 1803 /// their associated chains of reduction operations, in program order from top 1804 /// (PHI) to bottom 1805 ReductionChainMap InLoopReductionChains; 1806 1807 /// A Map of inloop reduction operations and their immediate chain operand. 1808 /// FIXME: This can be removed once reductions can be costed correctly in 1809 /// vplan. This was added to allow quick lookup to the inloop operations, 1810 /// without having to loop through InLoopReductionChains. 1811 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1812 1813 /// Returns the expected difference in cost from scalarizing the expression 1814 /// feeding a predicated instruction \p PredInst. The instructions to 1815 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1816 /// non-negative return value implies the expression will be scalarized. 1817 /// Currently, only single-use chains are considered for scalarization. 1818 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1819 ElementCount VF); 1820 1821 /// Collect the instructions that are uniform after vectorization. An 1822 /// instruction is uniform if we represent it with a single scalar value in 1823 /// the vectorized loop corresponding to each vector iteration. Examples of 1824 /// uniform instructions include pointer operands of consecutive or 1825 /// interleaved memory accesses. Note that although uniformity implies an 1826 /// instruction will be scalar, the reverse is not true. In general, a 1827 /// scalarized instruction will be represented by VF scalar values in the 1828 /// vectorized loop, each corresponding to an iteration of the original 1829 /// scalar loop. 1830 void collectLoopUniforms(ElementCount VF); 1831 1832 /// Collect the instructions that are scalar after vectorization. An 1833 /// instruction is scalar if it is known to be uniform or will be scalarized 1834 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1835 /// to the list if they are used by a load/store instruction that is marked as 1836 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1837 /// VF values in the vectorized loop, each corresponding to an iteration of 1838 /// the original scalar loop. 1839 void collectLoopScalars(ElementCount VF); 1840 1841 /// Keeps cost model vectorization decision and cost for instructions. 1842 /// Right now it is used for memory instructions only. 1843 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1844 std::pair<InstWidening, InstructionCost>>; 1845 1846 DecisionList WideningDecisions; 1847 1848 /// Returns true if \p V is expected to be vectorized and it needs to be 1849 /// extracted. 1850 bool needsExtract(Value *V, ElementCount VF) const { 1851 Instruction *I = dyn_cast<Instruction>(V); 1852 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1853 TheLoop->isLoopInvariant(I)) 1854 return false; 1855 1856 // Assume we can vectorize V (and hence we need extraction) if the 1857 // scalars are not computed yet. This can happen, because it is called 1858 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1859 // the scalars are collected. That should be a safe assumption in most 1860 // cases, because we check if the operands have vectorizable types 1861 // beforehand in LoopVectorizationLegality. 1862 return Scalars.find(VF) == Scalars.end() || 1863 !isScalarAfterVectorization(I, VF); 1864 }; 1865 1866 /// Returns a range containing only operands needing to be extracted. 1867 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1868 ElementCount VF) const { 1869 return SmallVector<Value *, 4>(make_filter_range( 1870 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1871 } 1872 1873 /// Determines if we have the infrastructure to vectorize loop \p L and its 1874 /// epilogue, assuming the main loop is vectorized by \p VF. 1875 bool isCandidateForEpilogueVectorization(const Loop &L, 1876 const ElementCount VF) const; 1877 1878 /// Returns true if epilogue vectorization is considered profitable, and 1879 /// false otherwise. 1880 /// \p VF is the vectorization factor chosen for the original loop. 1881 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1882 1883 public: 1884 /// The loop that we evaluate. 1885 Loop *TheLoop; 1886 1887 /// Predicated scalar evolution analysis. 1888 PredicatedScalarEvolution &PSE; 1889 1890 /// Loop Info analysis. 1891 LoopInfo *LI; 1892 1893 /// Vectorization legality. 1894 LoopVectorizationLegality *Legal; 1895 1896 /// Vector target information. 1897 const TargetTransformInfo &TTI; 1898 1899 /// Target Library Info. 1900 const TargetLibraryInfo *TLI; 1901 1902 /// Demanded bits analysis. 1903 DemandedBits *DB; 1904 1905 /// Assumption cache. 1906 AssumptionCache *AC; 1907 1908 /// Interface to emit optimization remarks. 1909 OptimizationRemarkEmitter *ORE; 1910 1911 const Function *TheFunction; 1912 1913 /// Loop Vectorize Hint. 1914 const LoopVectorizeHints *Hints; 1915 1916 /// The interleave access information contains groups of interleaved accesses 1917 /// with the same stride and close to each other. 1918 InterleavedAccessInfo &InterleaveInfo; 1919 1920 /// Values to ignore in the cost model. 1921 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1922 1923 /// Values to ignore in the cost model when VF > 1. 1924 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1925 1926 /// All element types found in the loop. 1927 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1928 1929 /// Profitable vector factors. 1930 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1931 }; 1932 } // end namespace llvm 1933 1934 /// Helper struct to manage generating runtime checks for vectorization. 1935 /// 1936 /// The runtime checks are created up-front in temporary blocks to allow better 1937 /// estimating the cost and un-linked from the existing IR. After deciding to 1938 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1939 /// temporary blocks are completely removed. 1940 class GeneratedRTChecks { 1941 /// Basic block which contains the generated SCEV checks, if any. 1942 BasicBlock *SCEVCheckBlock = nullptr; 1943 1944 /// The value representing the result of the generated SCEV checks. If it is 1945 /// nullptr, either no SCEV checks have been generated or they have been used. 1946 Value *SCEVCheckCond = nullptr; 1947 1948 /// Basic block which contains the generated memory runtime checks, if any. 1949 BasicBlock *MemCheckBlock = nullptr; 1950 1951 /// The value representing the result of the generated memory runtime checks. 1952 /// If it is nullptr, either no memory runtime checks have been generated or 1953 /// they have been used. 1954 Value *MemRuntimeCheckCond = nullptr; 1955 1956 DominatorTree *DT; 1957 LoopInfo *LI; 1958 1959 SCEVExpander SCEVExp; 1960 SCEVExpander MemCheckExp; 1961 1962 public: 1963 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1964 const DataLayout &DL) 1965 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1966 MemCheckExp(SE, DL, "scev.check") {} 1967 1968 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1969 /// accurately estimate the cost of the runtime checks. The blocks are 1970 /// un-linked from the IR and is added back during vector code generation. If 1971 /// there is no vector code generation, the check blocks are removed 1972 /// completely. 1973 void Create(Loop *L, const LoopAccessInfo &LAI, 1974 const SCEVPredicate &Pred) { 1975 1976 BasicBlock *LoopHeader = L->getHeader(); 1977 BasicBlock *Preheader = L->getLoopPreheader(); 1978 1979 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1980 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1981 // may be used by SCEVExpander. The blocks will be un-linked from their 1982 // predecessors and removed from LI & DT at the end of the function. 1983 if (!Pred.isAlwaysTrue()) { 1984 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1985 nullptr, "vector.scevcheck"); 1986 1987 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1988 &Pred, SCEVCheckBlock->getTerminator()); 1989 } 1990 1991 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1992 if (RtPtrChecking.Need) { 1993 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1994 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1995 "vector.memcheck"); 1996 1997 MemRuntimeCheckCond = 1998 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1999 RtPtrChecking.getChecks(), MemCheckExp); 2000 assert(MemRuntimeCheckCond && 2001 "no RT checks generated although RtPtrChecking " 2002 "claimed checks are required"); 2003 } 2004 2005 if (!MemCheckBlock && !SCEVCheckBlock) 2006 return; 2007 2008 // Unhook the temporary block with the checks, update various places 2009 // accordingly. 2010 if (SCEVCheckBlock) 2011 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2012 if (MemCheckBlock) 2013 MemCheckBlock->replaceAllUsesWith(Preheader); 2014 2015 if (SCEVCheckBlock) { 2016 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2017 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2018 Preheader->getTerminator()->eraseFromParent(); 2019 } 2020 if (MemCheckBlock) { 2021 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2022 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2023 Preheader->getTerminator()->eraseFromParent(); 2024 } 2025 2026 DT->changeImmediateDominator(LoopHeader, Preheader); 2027 if (MemCheckBlock) { 2028 DT->eraseNode(MemCheckBlock); 2029 LI->removeBlock(MemCheckBlock); 2030 } 2031 if (SCEVCheckBlock) { 2032 DT->eraseNode(SCEVCheckBlock); 2033 LI->removeBlock(SCEVCheckBlock); 2034 } 2035 } 2036 2037 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2038 /// unused. 2039 ~GeneratedRTChecks() { 2040 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2041 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2042 if (!SCEVCheckCond) 2043 SCEVCleaner.markResultUsed(); 2044 2045 if (!MemRuntimeCheckCond) 2046 MemCheckCleaner.markResultUsed(); 2047 2048 if (MemRuntimeCheckCond) { 2049 auto &SE = *MemCheckExp.getSE(); 2050 // Memory runtime check generation creates compares that use expanded 2051 // values. Remove them before running the SCEVExpanderCleaners. 2052 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2053 if (MemCheckExp.isInsertedInstruction(&I)) 2054 continue; 2055 SE.forgetValue(&I); 2056 I.eraseFromParent(); 2057 } 2058 } 2059 MemCheckCleaner.cleanup(); 2060 SCEVCleaner.cleanup(); 2061 2062 if (SCEVCheckCond) 2063 SCEVCheckBlock->eraseFromParent(); 2064 if (MemRuntimeCheckCond) 2065 MemCheckBlock->eraseFromParent(); 2066 } 2067 2068 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2069 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2070 /// depending on the generated condition. 2071 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2072 BasicBlock *LoopVectorPreHeader, 2073 BasicBlock *LoopExitBlock) { 2074 if (!SCEVCheckCond) 2075 return nullptr; 2076 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2077 if (C->isZero()) 2078 return nullptr; 2079 2080 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2081 2082 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2083 // Create new preheader for vector loop. 2084 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2085 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2086 2087 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2088 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2089 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2090 SCEVCheckBlock); 2091 2092 DT->addNewBlock(SCEVCheckBlock, Pred); 2093 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2094 2095 ReplaceInstWithInst( 2096 SCEVCheckBlock->getTerminator(), 2097 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2098 // Mark the check as used, to prevent it from being removed during cleanup. 2099 SCEVCheckCond = nullptr; 2100 return SCEVCheckBlock; 2101 } 2102 2103 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2104 /// the branches to branch to the vector preheader or \p Bypass, depending on 2105 /// the generated condition. 2106 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2107 BasicBlock *LoopVectorPreHeader) { 2108 // Check if we generated code that checks in runtime if arrays overlap. 2109 if (!MemRuntimeCheckCond) 2110 return nullptr; 2111 2112 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2113 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2114 MemCheckBlock); 2115 2116 DT->addNewBlock(MemCheckBlock, Pred); 2117 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2118 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2119 2120 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2121 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2122 2123 ReplaceInstWithInst( 2124 MemCheckBlock->getTerminator(), 2125 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2126 MemCheckBlock->getTerminator()->setDebugLoc( 2127 Pred->getTerminator()->getDebugLoc()); 2128 2129 // Mark the check as used, to prevent it from being removed during cleanup. 2130 MemRuntimeCheckCond = nullptr; 2131 return MemCheckBlock; 2132 } 2133 }; 2134 2135 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2136 // vectorization. The loop needs to be annotated with #pragma omp simd 2137 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2138 // vector length information is not provided, vectorization is not considered 2139 // explicit. Interleave hints are not allowed either. These limitations will be 2140 // relaxed in the future. 2141 // Please, note that we are currently forced to abuse the pragma 'clang 2142 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2143 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2144 // provides *explicit vectorization hints* (LV can bypass legal checks and 2145 // assume that vectorization is legal). However, both hints are implemented 2146 // using the same metadata (llvm.loop.vectorize, processed by 2147 // LoopVectorizeHints). This will be fixed in the future when the native IR 2148 // representation for pragma 'omp simd' is introduced. 2149 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2150 OptimizationRemarkEmitter *ORE) { 2151 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2152 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2153 2154 // Only outer loops with an explicit vectorization hint are supported. 2155 // Unannotated outer loops are ignored. 2156 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2157 return false; 2158 2159 Function *Fn = OuterLp->getHeader()->getParent(); 2160 if (!Hints.allowVectorization(Fn, OuterLp, 2161 true /*VectorizeOnlyWhenForced*/)) { 2162 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2163 return false; 2164 } 2165 2166 if (Hints.getInterleave() > 1) { 2167 // TODO: Interleave support is future work. 2168 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2169 "outer loops.\n"); 2170 Hints.emitRemarkWithHints(); 2171 return false; 2172 } 2173 2174 return true; 2175 } 2176 2177 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2178 OptimizationRemarkEmitter *ORE, 2179 SmallVectorImpl<Loop *> &V) { 2180 // Collect inner loops and outer loops without irreducible control flow. For 2181 // now, only collect outer loops that have explicit vectorization hints. If we 2182 // are stress testing the VPlan H-CFG construction, we collect the outermost 2183 // loop of every loop nest. 2184 if (L.isInnermost() || VPlanBuildStressTest || 2185 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2186 LoopBlocksRPO RPOT(&L); 2187 RPOT.perform(LI); 2188 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2189 V.push_back(&L); 2190 // TODO: Collect inner loops inside marked outer loops in case 2191 // vectorization fails for the outer loop. Do not invoke 2192 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2193 // already known to be reducible. We can use an inherited attribute for 2194 // that. 2195 return; 2196 } 2197 } 2198 for (Loop *InnerL : L) 2199 collectSupportedLoops(*InnerL, LI, ORE, V); 2200 } 2201 2202 namespace { 2203 2204 /// The LoopVectorize Pass. 2205 struct LoopVectorize : public FunctionPass { 2206 /// Pass identification, replacement for typeid 2207 static char ID; 2208 2209 LoopVectorizePass Impl; 2210 2211 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2212 bool VectorizeOnlyWhenForced = false) 2213 : FunctionPass(ID), 2214 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2215 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2216 } 2217 2218 bool runOnFunction(Function &F) override { 2219 if (skipFunction(F)) 2220 return false; 2221 2222 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2223 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2224 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2225 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2226 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2227 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2228 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2229 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2230 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2231 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2232 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2233 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2234 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2235 2236 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2237 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2238 2239 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2240 GetLAA, *ORE, PSI).MadeAnyChange; 2241 } 2242 2243 void getAnalysisUsage(AnalysisUsage &AU) const override { 2244 AU.addRequired<AssumptionCacheTracker>(); 2245 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2246 AU.addRequired<DominatorTreeWrapperPass>(); 2247 AU.addRequired<LoopInfoWrapperPass>(); 2248 AU.addRequired<ScalarEvolutionWrapperPass>(); 2249 AU.addRequired<TargetTransformInfoWrapperPass>(); 2250 AU.addRequired<AAResultsWrapperPass>(); 2251 AU.addRequired<LoopAccessLegacyAnalysis>(); 2252 AU.addRequired<DemandedBitsWrapperPass>(); 2253 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2254 AU.addRequired<InjectTLIMappingsLegacy>(); 2255 2256 // We currently do not preserve loopinfo/dominator analyses with outer loop 2257 // vectorization. Until this is addressed, mark these analyses as preserved 2258 // only for non-VPlan-native path. 2259 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2260 if (!EnableVPlanNativePath) { 2261 AU.addPreserved<LoopInfoWrapperPass>(); 2262 AU.addPreserved<DominatorTreeWrapperPass>(); 2263 } 2264 2265 AU.addPreserved<BasicAAWrapperPass>(); 2266 AU.addPreserved<GlobalsAAWrapperPass>(); 2267 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2268 } 2269 }; 2270 2271 } // end anonymous namespace 2272 2273 //===----------------------------------------------------------------------===// 2274 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2275 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2276 //===----------------------------------------------------------------------===// 2277 2278 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2279 // We need to place the broadcast of invariant variables outside the loop, 2280 // but only if it's proven safe to do so. Else, broadcast will be inside 2281 // vector loop body. 2282 Instruction *Instr = dyn_cast<Instruction>(V); 2283 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2284 (!Instr || 2285 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2286 // Place the code for broadcasting invariant variables in the new preheader. 2287 IRBuilder<>::InsertPointGuard Guard(Builder); 2288 if (SafeToHoist) 2289 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2290 2291 // Broadcast the scalar into all locations in the vector. 2292 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2293 2294 return Shuf; 2295 } 2296 2297 /// This function adds 2298 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2299 /// to each vector element of Val. The sequence starts at StartIndex. 2300 /// \p Opcode is relevant for FP induction variable. 2301 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2302 Instruction::BinaryOps BinOp, ElementCount VF, 2303 IRBuilderBase &Builder) { 2304 assert(VF.isVector() && "only vector VFs are supported"); 2305 2306 // Create and check the types. 2307 auto *ValVTy = cast<VectorType>(Val->getType()); 2308 ElementCount VLen = ValVTy->getElementCount(); 2309 2310 Type *STy = Val->getType()->getScalarType(); 2311 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2312 "Induction Step must be an integer or FP"); 2313 assert(Step->getType() == STy && "Step has wrong type"); 2314 2315 SmallVector<Constant *, 8> Indices; 2316 2317 // Create a vector of consecutive numbers from zero to VF. 2318 VectorType *InitVecValVTy = ValVTy; 2319 if (STy->isFloatingPointTy()) { 2320 Type *InitVecValSTy = 2321 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2322 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2323 } 2324 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2325 2326 // Splat the StartIdx 2327 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2328 2329 if (STy->isIntegerTy()) { 2330 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2331 Step = Builder.CreateVectorSplat(VLen, Step); 2332 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2333 // FIXME: The newly created binary instructions should contain nsw/nuw 2334 // flags, which can be found from the original scalar operations. 2335 Step = Builder.CreateMul(InitVec, Step); 2336 return Builder.CreateAdd(Val, Step, "induction"); 2337 } 2338 2339 // Floating point induction. 2340 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2341 "Binary Opcode should be specified for FP induction"); 2342 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2343 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2344 2345 Step = Builder.CreateVectorSplat(VLen, Step); 2346 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2347 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2348 } 2349 2350 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2351 /// variable on which to base the steps, \p Step is the size of the step. 2352 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2353 const InductionDescriptor &ID, VPValue *Def, 2354 VPTransformState &State) { 2355 IRBuilderBase &Builder = State.Builder; 2356 // We shouldn't have to build scalar steps if we aren't vectorizing. 2357 assert(State.VF.isVector() && "VF should be greater than one"); 2358 // Get the value type and ensure it and the step have the same integer type. 2359 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2360 assert(ScalarIVTy == Step->getType() && 2361 "Val and Step should have the same type"); 2362 2363 // We build scalar steps for both integer and floating-point induction 2364 // variables. Here, we determine the kind of arithmetic we will perform. 2365 Instruction::BinaryOps AddOp; 2366 Instruction::BinaryOps MulOp; 2367 if (ScalarIVTy->isIntegerTy()) { 2368 AddOp = Instruction::Add; 2369 MulOp = Instruction::Mul; 2370 } else { 2371 AddOp = ID.getInductionOpcode(); 2372 MulOp = Instruction::FMul; 2373 } 2374 2375 // Determine the number of scalars we need to generate for each unroll 2376 // iteration. 2377 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2378 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2379 // Compute the scalar steps and save the results in State. 2380 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2381 ScalarIVTy->getScalarSizeInBits()); 2382 Type *VecIVTy = nullptr; 2383 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2384 if (!FirstLaneOnly && State.VF.isScalable()) { 2385 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2386 UnitStepVec = 2387 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2388 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2389 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2390 } 2391 2392 for (unsigned Part = 0; Part < State.UF; ++Part) { 2393 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2394 2395 if (!FirstLaneOnly && State.VF.isScalable()) { 2396 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2397 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2398 if (ScalarIVTy->isFloatingPointTy()) 2399 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2400 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2401 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2402 State.set(Def, Add, Part); 2403 // It's useful to record the lane values too for the known minimum number 2404 // of elements so we do those below. This improves the code quality when 2405 // trying to extract the first element, for example. 2406 } 2407 2408 if (ScalarIVTy->isFloatingPointTy()) 2409 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2410 2411 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2412 Value *StartIdx = Builder.CreateBinOp( 2413 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2414 // The step returned by `createStepForVF` is a runtime-evaluated value 2415 // when VF is scalable. Otherwise, it should be folded into a Constant. 2416 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2417 "Expected StartIdx to be folded to a constant when VF is not " 2418 "scalable"); 2419 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2420 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2421 State.set(Def, Add, VPIteration(Part, Lane)); 2422 } 2423 } 2424 } 2425 2426 // Generate code for the induction step. Note that induction steps are 2427 // required to be loop-invariant 2428 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2429 Instruction *InsertBefore, 2430 Loop *OrigLoop = nullptr) { 2431 const DataLayout &DL = SE.getDataLayout(); 2432 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2433 "Induction step should be loop invariant"); 2434 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2435 return E->getValue(); 2436 2437 SCEVExpander Exp(SE, DL, "induction"); 2438 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2439 } 2440 2441 /// Compute the transformed value of Index at offset StartValue using step 2442 /// StepValue. 2443 /// For integer induction, returns StartValue + Index * StepValue. 2444 /// For pointer induction, returns StartValue[Index * StepValue]. 2445 /// FIXME: The newly created binary instructions should contain nsw/nuw 2446 /// flags, which can be found from the original scalar operations. 2447 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2448 Value *StartValue, Value *Step, 2449 const InductionDescriptor &ID) { 2450 assert(Index->getType()->getScalarType() == Step->getType() && 2451 "Index scalar type does not match StepValue type"); 2452 2453 // Note: the IR at this point is broken. We cannot use SE to create any new 2454 // SCEV and then expand it, hoping that SCEV's simplification will give us 2455 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2456 // lead to various SCEV crashes. So all we can do is to use builder and rely 2457 // on InstCombine for future simplifications. Here we handle some trivial 2458 // cases only. 2459 auto CreateAdd = [&B](Value *X, Value *Y) { 2460 assert(X->getType() == Y->getType() && "Types don't match!"); 2461 if (auto *CX = dyn_cast<ConstantInt>(X)) 2462 if (CX->isZero()) 2463 return Y; 2464 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2465 if (CY->isZero()) 2466 return X; 2467 return B.CreateAdd(X, Y); 2468 }; 2469 2470 // We allow X to be a vector type, in which case Y will potentially be 2471 // splatted into a vector with the same element count. 2472 auto CreateMul = [&B](Value *X, Value *Y) { 2473 assert(X->getType()->getScalarType() == Y->getType() && 2474 "Types don't match!"); 2475 if (auto *CX = dyn_cast<ConstantInt>(X)) 2476 if (CX->isOne()) 2477 return Y; 2478 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2479 if (CY->isOne()) 2480 return X; 2481 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2482 if (XVTy && !isa<VectorType>(Y->getType())) 2483 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2484 return B.CreateMul(X, Y); 2485 }; 2486 2487 switch (ID.getKind()) { 2488 case InductionDescriptor::IK_IntInduction: { 2489 assert(!isa<VectorType>(Index->getType()) && 2490 "Vector indices not supported for integer inductions yet"); 2491 assert(Index->getType() == StartValue->getType() && 2492 "Index type does not match StartValue type"); 2493 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2494 return B.CreateSub(StartValue, Index); 2495 auto *Offset = CreateMul(Index, Step); 2496 return CreateAdd(StartValue, Offset); 2497 } 2498 case InductionDescriptor::IK_PtrInduction: { 2499 assert(isa<Constant>(Step) && 2500 "Expected constant step for pointer induction"); 2501 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2502 } 2503 case InductionDescriptor::IK_FpInduction: { 2504 assert(!isa<VectorType>(Index->getType()) && 2505 "Vector indices not supported for FP inductions yet"); 2506 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2507 auto InductionBinOp = ID.getInductionBinOp(); 2508 assert(InductionBinOp && 2509 (InductionBinOp->getOpcode() == Instruction::FAdd || 2510 InductionBinOp->getOpcode() == Instruction::FSub) && 2511 "Original bin op should be defined for FP induction"); 2512 2513 Value *MulExp = B.CreateFMul(Step, Index); 2514 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2515 "induction"); 2516 } 2517 case InductionDescriptor::IK_NoInduction: 2518 return nullptr; 2519 } 2520 llvm_unreachable("invalid enum"); 2521 } 2522 2523 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2524 const VPIteration &Instance, 2525 VPTransformState &State) { 2526 Value *ScalarInst = State.get(Def, Instance); 2527 Value *VectorValue = State.get(Def, Instance.Part); 2528 VectorValue = Builder.CreateInsertElement( 2529 VectorValue, ScalarInst, 2530 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2531 State.set(Def, VectorValue, Instance.Part); 2532 } 2533 2534 // Return whether we allow using masked interleave-groups (for dealing with 2535 // strided loads/stores that reside in predicated blocks, or for dealing 2536 // with gaps). 2537 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2538 // If an override option has been passed in for interleaved accesses, use it. 2539 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2540 return EnableMaskedInterleavedMemAccesses; 2541 2542 return TTI.enableMaskedInterleavedAccessVectorization(); 2543 } 2544 2545 // Try to vectorize the interleave group that \p Instr belongs to. 2546 // 2547 // E.g. Translate following interleaved load group (factor = 3): 2548 // for (i = 0; i < N; i+=3) { 2549 // R = Pic[i]; // Member of index 0 2550 // G = Pic[i+1]; // Member of index 1 2551 // B = Pic[i+2]; // Member of index 2 2552 // ... // do something to R, G, B 2553 // } 2554 // To: 2555 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2556 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2557 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2558 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2559 // 2560 // Or translate following interleaved store group (factor = 3): 2561 // for (i = 0; i < N; i+=3) { 2562 // ... do something to R, G, B 2563 // Pic[i] = R; // Member of index 0 2564 // Pic[i+1] = G; // Member of index 1 2565 // Pic[i+2] = B; // Member of index 2 2566 // } 2567 // To: 2568 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2569 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2570 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2571 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2572 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2573 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2574 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2575 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2576 VPValue *BlockInMask) { 2577 Instruction *Instr = Group->getInsertPos(); 2578 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2579 2580 // Prepare for the vector type of the interleaved load/store. 2581 Type *ScalarTy = getLoadStoreType(Instr); 2582 unsigned InterleaveFactor = Group->getFactor(); 2583 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2584 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2585 2586 // Prepare for the new pointers. 2587 SmallVector<Value *, 2> AddrParts; 2588 unsigned Index = Group->getIndex(Instr); 2589 2590 // TODO: extend the masked interleaved-group support to reversed access. 2591 assert((!BlockInMask || !Group->isReverse()) && 2592 "Reversed masked interleave-group not supported."); 2593 2594 // If the group is reverse, adjust the index to refer to the last vector lane 2595 // instead of the first. We adjust the index from the first vector lane, 2596 // rather than directly getting the pointer for lane VF - 1, because the 2597 // pointer operand of the interleaved access is supposed to be uniform. For 2598 // uniform instructions, we're only required to generate a value for the 2599 // first vector lane in each unroll iteration. 2600 if (Group->isReverse()) 2601 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2602 2603 for (unsigned Part = 0; Part < UF; Part++) { 2604 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2605 setDebugLocFromInst(AddrPart); 2606 2607 // Notice current instruction could be any index. Need to adjust the address 2608 // to the member of index 0. 2609 // 2610 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2611 // b = A[i]; // Member of index 0 2612 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2613 // 2614 // E.g. A[i+1] = a; // Member of index 1 2615 // A[i] = b; // Member of index 0 2616 // A[i+2] = c; // Member of index 2 (Current instruction) 2617 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2618 2619 bool InBounds = false; 2620 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2621 InBounds = gep->isInBounds(); 2622 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2623 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2624 2625 // Cast to the vector pointer type. 2626 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2627 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2628 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2629 } 2630 2631 setDebugLocFromInst(Instr); 2632 Value *PoisonVec = PoisonValue::get(VecTy); 2633 2634 Value *MaskForGaps = nullptr; 2635 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2636 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2637 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2638 } 2639 2640 // Vectorize the interleaved load group. 2641 if (isa<LoadInst>(Instr)) { 2642 // For each unroll part, create a wide load for the group. 2643 SmallVector<Value *, 2> NewLoads; 2644 for (unsigned Part = 0; Part < UF; Part++) { 2645 Instruction *NewLoad; 2646 if (BlockInMask || MaskForGaps) { 2647 assert(useMaskedInterleavedAccesses(*TTI) && 2648 "masked interleaved groups are not allowed."); 2649 Value *GroupMask = MaskForGaps; 2650 if (BlockInMask) { 2651 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2652 Value *ShuffledMask = Builder.CreateShuffleVector( 2653 BlockInMaskPart, 2654 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2655 "interleaved.mask"); 2656 GroupMask = MaskForGaps 2657 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2658 MaskForGaps) 2659 : ShuffledMask; 2660 } 2661 NewLoad = 2662 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2663 GroupMask, PoisonVec, "wide.masked.vec"); 2664 } 2665 else 2666 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2667 Group->getAlign(), "wide.vec"); 2668 Group->addMetadata(NewLoad); 2669 NewLoads.push_back(NewLoad); 2670 } 2671 2672 // For each member in the group, shuffle out the appropriate data from the 2673 // wide loads. 2674 unsigned J = 0; 2675 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2676 Instruction *Member = Group->getMember(I); 2677 2678 // Skip the gaps in the group. 2679 if (!Member) 2680 continue; 2681 2682 auto StrideMask = 2683 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2684 for (unsigned Part = 0; Part < UF; Part++) { 2685 Value *StridedVec = Builder.CreateShuffleVector( 2686 NewLoads[Part], StrideMask, "strided.vec"); 2687 2688 // If this member has different type, cast the result type. 2689 if (Member->getType() != ScalarTy) { 2690 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2691 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2692 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2693 } 2694 2695 if (Group->isReverse()) 2696 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2697 2698 State.set(VPDefs[J], StridedVec, Part); 2699 } 2700 ++J; 2701 } 2702 return; 2703 } 2704 2705 // The sub vector type for current instruction. 2706 auto *SubVT = VectorType::get(ScalarTy, VF); 2707 2708 // Vectorize the interleaved store group. 2709 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2710 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2711 "masked interleaved groups are not allowed."); 2712 assert((!MaskForGaps || !VF.isScalable()) && 2713 "masking gaps for scalable vectors is not yet supported."); 2714 for (unsigned Part = 0; Part < UF; Part++) { 2715 // Collect the stored vector from each member. 2716 SmallVector<Value *, 4> StoredVecs; 2717 for (unsigned i = 0; i < InterleaveFactor; i++) { 2718 assert((Group->getMember(i) || MaskForGaps) && 2719 "Fail to get a member from an interleaved store group"); 2720 Instruction *Member = Group->getMember(i); 2721 2722 // Skip the gaps in the group. 2723 if (!Member) { 2724 Value *Undef = PoisonValue::get(SubVT); 2725 StoredVecs.push_back(Undef); 2726 continue; 2727 } 2728 2729 Value *StoredVec = State.get(StoredValues[i], Part); 2730 2731 if (Group->isReverse()) 2732 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2733 2734 // If this member has different type, cast it to a unified type. 2735 2736 if (StoredVec->getType() != SubVT) 2737 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2738 2739 StoredVecs.push_back(StoredVec); 2740 } 2741 2742 // Concatenate all vectors into a wide vector. 2743 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2744 2745 // Interleave the elements in the wide vector. 2746 Value *IVec = Builder.CreateShuffleVector( 2747 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2748 "interleaved.vec"); 2749 2750 Instruction *NewStoreInstr; 2751 if (BlockInMask || MaskForGaps) { 2752 Value *GroupMask = MaskForGaps; 2753 if (BlockInMask) { 2754 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2755 Value *ShuffledMask = Builder.CreateShuffleVector( 2756 BlockInMaskPart, 2757 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2758 "interleaved.mask"); 2759 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2760 ShuffledMask, MaskForGaps) 2761 : ShuffledMask; 2762 } 2763 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2764 Group->getAlign(), GroupMask); 2765 } else 2766 NewStoreInstr = 2767 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2768 2769 Group->addMetadata(NewStoreInstr); 2770 } 2771 } 2772 2773 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2774 VPReplicateRecipe *RepRecipe, 2775 const VPIteration &Instance, 2776 bool IfPredicateInstr, 2777 VPTransformState &State) { 2778 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2779 2780 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2781 // the first lane and part. 2782 if (isa<NoAliasScopeDeclInst>(Instr)) 2783 if (!Instance.isFirstIteration()) 2784 return; 2785 2786 setDebugLocFromInst(Instr); 2787 2788 // Does this instruction return a value ? 2789 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2790 2791 Instruction *Cloned = Instr->clone(); 2792 if (!IsVoidRetTy) 2793 Cloned->setName(Instr->getName() + ".cloned"); 2794 2795 // If the scalarized instruction contributes to the address computation of a 2796 // widen masked load/store which was in a basic block that needed predication 2797 // and is not predicated after vectorization, we can't propagate 2798 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2799 // instruction could feed a poison value to the base address of the widen 2800 // load/store. 2801 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2802 Cloned->dropPoisonGeneratingFlags(); 2803 2804 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2805 Builder.GetInsertPoint()); 2806 // Replace the operands of the cloned instructions with their scalar 2807 // equivalents in the new loop. 2808 for (auto &I : enumerate(RepRecipe->operands())) { 2809 auto InputInstance = Instance; 2810 VPValue *Operand = I.value(); 2811 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2812 if (OperandR && OperandR->isUniform()) 2813 InputInstance.Lane = VPLane::getFirstLane(); 2814 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2815 } 2816 addNewMetadata(Cloned, Instr); 2817 2818 // Place the cloned scalar in the new loop. 2819 Builder.Insert(Cloned); 2820 2821 State.set(RepRecipe, Cloned, Instance); 2822 2823 // If we just cloned a new assumption, add it the assumption cache. 2824 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2825 AC->registerAssumption(II); 2826 2827 // End if-block. 2828 if (IfPredicateInstr) 2829 PredicatedInstructions.push_back(Cloned); 2830 } 2831 2832 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2833 if (TripCount) 2834 return TripCount; 2835 2836 assert(InsertBlock); 2837 IRBuilder<> Builder(InsertBlock->getTerminator()); 2838 // Find the loop boundaries. 2839 ScalarEvolution *SE = PSE.getSE(); 2840 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2841 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2842 "Invalid loop count"); 2843 2844 Type *IdxTy = Legal->getWidestInductionType(); 2845 assert(IdxTy && "No type for induction"); 2846 2847 // The exit count might have the type of i64 while the phi is i32. This can 2848 // happen if we have an induction variable that is sign extended before the 2849 // compare. The only way that we get a backedge taken count is that the 2850 // induction variable was signed and as such will not overflow. In such a case 2851 // truncation is legal. 2852 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2853 IdxTy->getPrimitiveSizeInBits()) 2854 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2855 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2856 2857 // Get the total trip count from the count by adding 1. 2858 const SCEV *ExitCount = SE->getAddExpr( 2859 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2860 2861 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2862 2863 // Expand the trip count and place the new instructions in the preheader. 2864 // Notice that the pre-header does not change, only the loop body. 2865 SCEVExpander Exp(*SE, DL, "induction"); 2866 2867 // Count holds the overall loop count (N). 2868 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2869 InsertBlock->getTerminator()); 2870 2871 if (TripCount->getType()->isPointerTy()) 2872 TripCount = 2873 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2874 InsertBlock->getTerminator()); 2875 2876 return TripCount; 2877 } 2878 2879 Value * 2880 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2881 if (VectorTripCount) 2882 return VectorTripCount; 2883 2884 Value *TC = getOrCreateTripCount(InsertBlock); 2885 IRBuilder<> Builder(InsertBlock->getTerminator()); 2886 2887 Type *Ty = TC->getType(); 2888 // This is where we can make the step a runtime constant. 2889 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2890 2891 // If the tail is to be folded by masking, round the number of iterations N 2892 // up to a multiple of Step instead of rounding down. This is done by first 2893 // adding Step-1 and then rounding down. Note that it's ok if this addition 2894 // overflows: the vector induction variable will eventually wrap to zero given 2895 // that it starts at zero and its Step is a power of two; the loop will then 2896 // exit, with the last early-exit vector comparison also producing all-true. 2897 if (Cost->foldTailByMasking()) { 2898 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2899 "VF*UF must be a power of 2 when folding tail by masking"); 2900 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2901 TC = Builder.CreateAdd( 2902 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2903 } 2904 2905 // Now we need to generate the expression for the part of the loop that the 2906 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2907 // iterations are not required for correctness, or N - Step, otherwise. Step 2908 // is equal to the vectorization factor (number of SIMD elements) times the 2909 // unroll factor (number of SIMD instructions). 2910 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2911 2912 // There are cases where we *must* run at least one iteration in the remainder 2913 // loop. See the cost model for when this can happen. If the step evenly 2914 // divides the trip count, we set the remainder to be equal to the step. If 2915 // the step does not evenly divide the trip count, no adjustment is necessary 2916 // since there will already be scalar iterations. Note that the minimum 2917 // iterations check ensures that N >= Step. 2918 if (Cost->requiresScalarEpilogue(VF)) { 2919 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2920 R = Builder.CreateSelect(IsZero, Step, R); 2921 } 2922 2923 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2924 2925 return VectorTripCount; 2926 } 2927 2928 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2929 const DataLayout &DL) { 2930 // Verify that V is a vector type with same number of elements as DstVTy. 2931 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2932 unsigned VF = DstFVTy->getNumElements(); 2933 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2934 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2935 Type *SrcElemTy = SrcVecTy->getElementType(); 2936 Type *DstElemTy = DstFVTy->getElementType(); 2937 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2938 "Vector elements must have same size"); 2939 2940 // Do a direct cast if element types are castable. 2941 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2942 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2943 } 2944 // V cannot be directly casted to desired vector type. 2945 // May happen when V is a floating point vector but DstVTy is a vector of 2946 // pointers or vice-versa. Handle this using a two-step bitcast using an 2947 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2948 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2949 "Only one type should be a pointer type"); 2950 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2951 "Only one type should be a floating point type"); 2952 Type *IntTy = 2953 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2954 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2955 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2956 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2957 } 2958 2959 void InnerLoopVectorizer::emitMinimumIterationCountCheck(BasicBlock *Bypass) { 2960 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2961 // Reuse existing vector loop preheader for TC checks. 2962 // Note that new preheader block is generated for vector loop. 2963 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2964 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2965 2966 // Generate code to check if the loop's trip count is less than VF * UF, or 2967 // equal to it in case a scalar epilogue is required; this implies that the 2968 // vector trip count is zero. This check also covers the case where adding one 2969 // to the backedge-taken count overflowed leading to an incorrect trip count 2970 // of zero. In this case we will also jump to the scalar loop. 2971 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2972 : ICmpInst::ICMP_ULT; 2973 2974 // If tail is to be folded, vector loop takes care of all iterations. 2975 Value *CheckMinIters = Builder.getFalse(); 2976 if (!Cost->foldTailByMasking()) { 2977 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 2978 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2979 } 2980 // Create new preheader for vector loop. 2981 LoopVectorPreHeader = 2982 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2983 "vector.ph"); 2984 2985 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2986 DT->getNode(Bypass)->getIDom()) && 2987 "TC check is expected to dominate Bypass"); 2988 2989 // Update dominator for Bypass & LoopExit (if needed). 2990 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2991 if (!Cost->requiresScalarEpilogue(VF)) 2992 // If there is an epilogue which must run, there's no edge from the 2993 // middle block to exit blocks and thus no need to update the immediate 2994 // dominator of the exit blocks. 2995 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2996 2997 ReplaceInstWithInst( 2998 TCCheckBlock->getTerminator(), 2999 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3000 LoopBypassBlocks.push_back(TCCheckBlock); 3001 } 3002 3003 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3004 3005 BasicBlock *const SCEVCheckBlock = 3006 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3007 if (!SCEVCheckBlock) 3008 return nullptr; 3009 3010 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3011 (OptForSizeBasedOnProfile && 3012 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3013 "Cannot SCEV check stride or overflow when optimizing for size"); 3014 3015 3016 // Update dominator only if this is first RT check. 3017 if (LoopBypassBlocks.empty()) { 3018 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3019 if (!Cost->requiresScalarEpilogue(VF)) 3020 // If there is an epilogue which must run, there's no edge from the 3021 // middle block to exit blocks and thus no need to update the immediate 3022 // dominator of the exit blocks. 3023 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3024 } 3025 3026 LoopBypassBlocks.push_back(SCEVCheckBlock); 3027 AddedSafetyChecks = true; 3028 return SCEVCheckBlock; 3029 } 3030 3031 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3032 // VPlan-native path does not do any analysis for runtime checks currently. 3033 if (EnableVPlanNativePath) 3034 return nullptr; 3035 3036 BasicBlock *const MemCheckBlock = 3037 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3038 3039 // Check if we generated code that checks in runtime if arrays overlap. We put 3040 // the checks into a separate block to make the more common case of few 3041 // elements faster. 3042 if (!MemCheckBlock) 3043 return nullptr; 3044 3045 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3046 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3047 "Cannot emit memory checks when optimizing for size, unless forced " 3048 "to vectorize."); 3049 ORE->emit([&]() { 3050 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3051 OrigLoop->getStartLoc(), 3052 OrigLoop->getHeader()) 3053 << "Code-size may be reduced by not forcing " 3054 "vectorization, or by source-code modifications " 3055 "eliminating the need for runtime checks " 3056 "(e.g., adding 'restrict')."; 3057 }); 3058 } 3059 3060 LoopBypassBlocks.push_back(MemCheckBlock); 3061 3062 AddedSafetyChecks = true; 3063 3064 // We currently don't use LoopVersioning for the actual loop cloning but we 3065 // still use it to add the noalias metadata. 3066 LVer = std::make_unique<LoopVersioning>( 3067 *Legal->getLAI(), 3068 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3069 DT, PSE.getSE()); 3070 LVer->prepareNoAliasMetadata(); 3071 return MemCheckBlock; 3072 } 3073 3074 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3075 LoopScalarBody = OrigLoop->getHeader(); 3076 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3077 assert(LoopVectorPreHeader && "Invalid loop structure"); 3078 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3079 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3080 "multiple exit loop without required epilogue?"); 3081 3082 LoopMiddleBlock = 3083 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3084 LI, nullptr, Twine(Prefix) + "middle.block"); 3085 LoopScalarPreHeader = 3086 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3087 nullptr, Twine(Prefix) + "scalar.ph"); 3088 3089 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3090 3091 // Set up the middle block terminator. Two cases: 3092 // 1) If we know that we must execute the scalar epilogue, emit an 3093 // unconditional branch. 3094 // 2) Otherwise, we must have a single unique exit block (due to how we 3095 // implement the multiple exit case). In this case, set up a conditonal 3096 // branch from the middle block to the loop scalar preheader, and the 3097 // exit block. completeLoopSkeleton will update the condition to use an 3098 // iteration check, if required to decide whether to execute the remainder. 3099 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3100 BranchInst::Create(LoopScalarPreHeader) : 3101 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3102 Builder.getTrue()); 3103 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3104 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3105 3106 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3107 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3108 3109 // Update dominator for loop exit. 3110 if (!Cost->requiresScalarEpilogue(VF)) 3111 // If there is an epilogue which must run, there's no edge from the 3112 // middle block to exit blocks and thus no need to update the immediate 3113 // dominator of the exit blocks. 3114 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3115 } 3116 3117 void InnerLoopVectorizer::createInductionResumeValues( 3118 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3119 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3120 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3121 "Inconsistent information about additional bypass."); 3122 3123 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3124 assert(VectorTripCount && "Expected valid arguments"); 3125 // We are going to resume the execution of the scalar loop. 3126 // Go over all of the induction variables that we found and fix the 3127 // PHIs that are left in the scalar version of the loop. 3128 // The starting values of PHI nodes depend on the counter of the last 3129 // iteration in the vectorized loop. 3130 // If we come from a bypass edge then we need to start from the original 3131 // start value. 3132 Instruction *OldInduction = Legal->getPrimaryInduction(); 3133 for (auto &InductionEntry : Legal->getInductionVars()) { 3134 PHINode *OrigPhi = InductionEntry.first; 3135 InductionDescriptor II = InductionEntry.second; 3136 3137 // Create phi nodes to merge from the backedge-taken check block. 3138 PHINode *BCResumeVal = 3139 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3140 LoopScalarPreHeader->getTerminator()); 3141 // Copy original phi DL over to the new one. 3142 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3143 Value *&EndValue = IVEndValues[OrigPhi]; 3144 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3145 if (OrigPhi == OldInduction) { 3146 // We know what the end value is. 3147 EndValue = VectorTripCount; 3148 } else { 3149 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3150 3151 // Fast-math-flags propagate from the original induction instruction. 3152 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3153 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3154 3155 Type *StepType = II.getStep()->getType(); 3156 Instruction::CastOps CastOp = 3157 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3158 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3159 Value *Step = 3160 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3161 EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3162 EndValue->setName("ind.end"); 3163 3164 // Compute the end value for the additional bypass (if applicable). 3165 if (AdditionalBypass.first) { 3166 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3167 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3168 StepType, true); 3169 Value *Step = 3170 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3171 CRD = 3172 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3173 EndValueFromAdditionalBypass = 3174 emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3175 EndValueFromAdditionalBypass->setName("ind.end"); 3176 } 3177 } 3178 // The new PHI merges the original incoming value, in case of a bypass, 3179 // or the value at the end of the vectorized loop. 3180 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3181 3182 // Fix the scalar body counter (PHI node). 3183 // The old induction's phi node in the scalar body needs the truncated 3184 // value. 3185 for (BasicBlock *BB : LoopBypassBlocks) 3186 BCResumeVal->addIncoming(II.getStartValue(), BB); 3187 3188 if (AdditionalBypass.first) 3189 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3190 EndValueFromAdditionalBypass); 3191 3192 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3193 } 3194 } 3195 3196 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3197 // The trip counts should be cached by now. 3198 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3199 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3200 3201 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3202 3203 // Add a check in the middle block to see if we have completed 3204 // all of the iterations in the first vector loop. Three cases: 3205 // 1) If we require a scalar epilogue, there is no conditional branch as 3206 // we unconditionally branch to the scalar preheader. Do nothing. 3207 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3208 // Thus if tail is to be folded, we know we don't need to run the 3209 // remainder and we can use the previous value for the condition (true). 3210 // 3) Otherwise, construct a runtime check. 3211 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3212 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3213 Count, VectorTripCount, "cmp.n", 3214 LoopMiddleBlock->getTerminator()); 3215 3216 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3217 // of the corresponding compare because they may have ended up with 3218 // different line numbers and we want to avoid awkward line stepping while 3219 // debugging. Eg. if the compare has got a line number inside the loop. 3220 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3221 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3222 } 3223 3224 #ifdef EXPENSIVE_CHECKS 3225 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3226 #endif 3227 3228 return LoopVectorPreHeader; 3229 } 3230 3231 std::pair<BasicBlock *, Value *> 3232 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3233 /* 3234 In this function we generate a new loop. The new loop will contain 3235 the vectorized instructions while the old loop will continue to run the 3236 scalar remainder. 3237 3238 [ ] <-- loop iteration number check. 3239 / | 3240 / v 3241 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3242 | / | 3243 | / v 3244 || [ ] <-- vector pre header. 3245 |/ | 3246 | v 3247 | [ ] \ 3248 | [ ]_| <-- vector loop. 3249 | | 3250 | v 3251 \ -[ ] <--- middle-block. 3252 \/ | 3253 /\ v 3254 | ->[ ] <--- new preheader. 3255 | | 3256 (opt) v <-- edge from middle to exit iff epilogue is not required. 3257 | [ ] \ 3258 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3259 \ | 3260 \ v 3261 >[ ] <-- exit block(s). 3262 ... 3263 */ 3264 3265 // Get the metadata of the original loop before it gets modified. 3266 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3267 3268 // Workaround! Compute the trip count of the original loop and cache it 3269 // before we start modifying the CFG. This code has a systemic problem 3270 // wherein it tries to run analysis over partially constructed IR; this is 3271 // wrong, and not simply for SCEV. The trip count of the original loop 3272 // simply happens to be prone to hitting this in practice. In theory, we 3273 // can hit the same issue for any SCEV, or ValueTracking query done during 3274 // mutation. See PR49900. 3275 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3276 3277 // Create an empty vector loop, and prepare basic blocks for the runtime 3278 // checks. 3279 createVectorLoopSkeleton(""); 3280 3281 // Now, compare the new count to zero. If it is zero skip the vector loop and 3282 // jump to the scalar loop. This check also covers the case where the 3283 // backedge-taken count is uint##_max: adding one to it will overflow leading 3284 // to an incorrect trip count of zero. In this (rare) case we will also jump 3285 // to the scalar loop. 3286 emitMinimumIterationCountCheck(LoopScalarPreHeader); 3287 3288 // Generate the code to check any assumptions that we've made for SCEV 3289 // expressions. 3290 emitSCEVChecks(LoopScalarPreHeader); 3291 3292 // Generate the code that checks in runtime if arrays overlap. We put the 3293 // checks into a separate block to make the more common case of few elements 3294 // faster. 3295 emitMemRuntimeChecks(LoopScalarPreHeader); 3296 3297 // Emit phis for the new starting index of the scalar loop. 3298 createInductionResumeValues(); 3299 3300 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3301 } 3302 3303 // Fix up external users of the induction variable. At this point, we are 3304 // in LCSSA form, with all external PHIs that use the IV having one input value, 3305 // coming from the remainder loop. We need those PHIs to also have a correct 3306 // value for the IV when arriving directly from the middle block. 3307 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3308 const InductionDescriptor &II, 3309 Value *CountRoundDown, Value *EndValue, 3310 BasicBlock *MiddleBlock, 3311 BasicBlock *VectorHeader) { 3312 // There are two kinds of external IV usages - those that use the value 3313 // computed in the last iteration (the PHI) and those that use the penultimate 3314 // value (the value that feeds into the phi from the loop latch). 3315 // We allow both, but they, obviously, have different values. 3316 3317 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3318 3319 DenseMap<Value *, Value *> MissingVals; 3320 3321 // An external user of the last iteration's value should see the value that 3322 // the remainder loop uses to initialize its own IV. 3323 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3324 for (User *U : PostInc->users()) { 3325 Instruction *UI = cast<Instruction>(U); 3326 if (!OrigLoop->contains(UI)) { 3327 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3328 MissingVals[UI] = EndValue; 3329 } 3330 } 3331 3332 // An external user of the penultimate value need to see EndValue - Step. 3333 // The simplest way to get this is to recompute it from the constituent SCEVs, 3334 // that is Start + (Step * (CRD - 1)). 3335 for (User *U : OrigPhi->users()) { 3336 auto *UI = cast<Instruction>(U); 3337 if (!OrigLoop->contains(UI)) { 3338 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3339 3340 IRBuilder<> B(MiddleBlock->getTerminator()); 3341 3342 // Fast-math-flags propagate from the original induction instruction. 3343 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3344 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3345 3346 Value *CountMinusOne = B.CreateSub( 3347 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3348 Value *CMO = 3349 !II.getStep()->getType()->isIntegerTy() 3350 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3351 II.getStep()->getType()) 3352 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3353 CMO->setName("cast.cmo"); 3354 3355 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3356 VectorHeader->getTerminator()); 3357 Value *Escape = 3358 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3359 Escape->setName("ind.escape"); 3360 MissingVals[UI] = Escape; 3361 } 3362 } 3363 3364 for (auto &I : MissingVals) { 3365 PHINode *PHI = cast<PHINode>(I.first); 3366 // One corner case we have to handle is two IVs "chasing" each-other, 3367 // that is %IV2 = phi [...], [ %IV1, %latch ] 3368 // In this case, if IV1 has an external use, we need to avoid adding both 3369 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3370 // don't already have an incoming value for the middle block. 3371 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3372 PHI->addIncoming(I.second, MiddleBlock); 3373 } 3374 } 3375 3376 namespace { 3377 3378 struct CSEDenseMapInfo { 3379 static bool canHandle(const Instruction *I) { 3380 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3381 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3382 } 3383 3384 static inline Instruction *getEmptyKey() { 3385 return DenseMapInfo<Instruction *>::getEmptyKey(); 3386 } 3387 3388 static inline Instruction *getTombstoneKey() { 3389 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3390 } 3391 3392 static unsigned getHashValue(const Instruction *I) { 3393 assert(canHandle(I) && "Unknown instruction!"); 3394 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3395 I->value_op_end())); 3396 } 3397 3398 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3399 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3400 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3401 return LHS == RHS; 3402 return LHS->isIdenticalTo(RHS); 3403 } 3404 }; 3405 3406 } // end anonymous namespace 3407 3408 ///Perform cse of induction variable instructions. 3409 static void cse(BasicBlock *BB) { 3410 // Perform simple cse. 3411 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3412 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3413 if (!CSEDenseMapInfo::canHandle(&In)) 3414 continue; 3415 3416 // Check if we can replace this instruction with any of the 3417 // visited instructions. 3418 if (Instruction *V = CSEMap.lookup(&In)) { 3419 In.replaceAllUsesWith(V); 3420 In.eraseFromParent(); 3421 continue; 3422 } 3423 3424 CSEMap[&In] = &In; 3425 } 3426 } 3427 3428 InstructionCost 3429 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3430 bool &NeedToScalarize) const { 3431 Function *F = CI->getCalledFunction(); 3432 Type *ScalarRetTy = CI->getType(); 3433 SmallVector<Type *, 4> Tys, ScalarTys; 3434 for (auto &ArgOp : CI->args()) 3435 ScalarTys.push_back(ArgOp->getType()); 3436 3437 // Estimate cost of scalarized vector call. The source operands are assumed 3438 // to be vectors, so we need to extract individual elements from there, 3439 // execute VF scalar calls, and then gather the result into the vector return 3440 // value. 3441 InstructionCost ScalarCallCost = 3442 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3443 if (VF.isScalar()) 3444 return ScalarCallCost; 3445 3446 // Compute corresponding vector type for return value and arguments. 3447 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3448 for (Type *ScalarTy : ScalarTys) 3449 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3450 3451 // Compute costs of unpacking argument values for the scalar calls and 3452 // packing the return values to a vector. 3453 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3454 3455 InstructionCost Cost = 3456 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3457 3458 // If we can't emit a vector call for this function, then the currently found 3459 // cost is the cost we need to return. 3460 NeedToScalarize = true; 3461 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3462 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3463 3464 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3465 return Cost; 3466 3467 // If the corresponding vector cost is cheaper, return its cost. 3468 InstructionCost VectorCallCost = 3469 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3470 if (VectorCallCost < Cost) { 3471 NeedToScalarize = false; 3472 Cost = VectorCallCost; 3473 } 3474 return Cost; 3475 } 3476 3477 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3478 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3479 return Elt; 3480 return VectorType::get(Elt, VF); 3481 } 3482 3483 InstructionCost 3484 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3485 ElementCount VF) const { 3486 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3487 assert(ID && "Expected intrinsic call!"); 3488 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3489 FastMathFlags FMF; 3490 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3491 FMF = FPMO->getFastMathFlags(); 3492 3493 SmallVector<const Value *> Arguments(CI->args()); 3494 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3495 SmallVector<Type *> ParamTys; 3496 std::transform(FTy->param_begin(), FTy->param_end(), 3497 std::back_inserter(ParamTys), 3498 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3499 3500 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3501 dyn_cast<IntrinsicInst>(CI)); 3502 return TTI.getIntrinsicInstrCost(CostAttrs, 3503 TargetTransformInfo::TCK_RecipThroughput); 3504 } 3505 3506 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3507 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3508 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3509 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3510 } 3511 3512 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3513 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3514 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3515 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3516 } 3517 3518 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3519 // For every instruction `I` in MinBWs, truncate the operands, create a 3520 // truncated version of `I` and reextend its result. InstCombine runs 3521 // later and will remove any ext/trunc pairs. 3522 SmallPtrSet<Value *, 4> Erased; 3523 for (const auto &KV : Cost->getMinimalBitwidths()) { 3524 // If the value wasn't vectorized, we must maintain the original scalar 3525 // type. The absence of the value from State indicates that it 3526 // wasn't vectorized. 3527 // FIXME: Should not rely on getVPValue at this point. 3528 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3529 if (!State.hasAnyVectorValue(Def)) 3530 continue; 3531 for (unsigned Part = 0; Part < UF; ++Part) { 3532 Value *I = State.get(Def, Part); 3533 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3534 continue; 3535 Type *OriginalTy = I->getType(); 3536 Type *ScalarTruncatedTy = 3537 IntegerType::get(OriginalTy->getContext(), KV.second); 3538 auto *TruncatedTy = VectorType::get( 3539 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3540 if (TruncatedTy == OriginalTy) 3541 continue; 3542 3543 IRBuilder<> B(cast<Instruction>(I)); 3544 auto ShrinkOperand = [&](Value *V) -> Value * { 3545 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3546 if (ZI->getSrcTy() == TruncatedTy) 3547 return ZI->getOperand(0); 3548 return B.CreateZExtOrTrunc(V, TruncatedTy); 3549 }; 3550 3551 // The actual instruction modification depends on the instruction type, 3552 // unfortunately. 3553 Value *NewI = nullptr; 3554 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3555 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3556 ShrinkOperand(BO->getOperand(1))); 3557 3558 // Any wrapping introduced by shrinking this operation shouldn't be 3559 // considered undefined behavior. So, we can't unconditionally copy 3560 // arithmetic wrapping flags to NewI. 3561 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3562 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3563 NewI = 3564 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3565 ShrinkOperand(CI->getOperand(1))); 3566 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3567 NewI = B.CreateSelect(SI->getCondition(), 3568 ShrinkOperand(SI->getTrueValue()), 3569 ShrinkOperand(SI->getFalseValue())); 3570 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3571 switch (CI->getOpcode()) { 3572 default: 3573 llvm_unreachable("Unhandled cast!"); 3574 case Instruction::Trunc: 3575 NewI = ShrinkOperand(CI->getOperand(0)); 3576 break; 3577 case Instruction::SExt: 3578 NewI = B.CreateSExtOrTrunc( 3579 CI->getOperand(0), 3580 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3581 break; 3582 case Instruction::ZExt: 3583 NewI = B.CreateZExtOrTrunc( 3584 CI->getOperand(0), 3585 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3586 break; 3587 } 3588 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3589 auto Elements0 = 3590 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3591 auto *O0 = B.CreateZExtOrTrunc( 3592 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3593 auto Elements1 = 3594 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3595 auto *O1 = B.CreateZExtOrTrunc( 3596 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3597 3598 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3599 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3600 // Don't do anything with the operands, just extend the result. 3601 continue; 3602 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3603 auto Elements = 3604 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3605 auto *O0 = B.CreateZExtOrTrunc( 3606 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3607 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3608 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3609 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3610 auto Elements = 3611 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3612 auto *O0 = B.CreateZExtOrTrunc( 3613 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3614 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3615 } else { 3616 // If we don't know what to do, be conservative and don't do anything. 3617 continue; 3618 } 3619 3620 // Lastly, extend the result. 3621 NewI->takeName(cast<Instruction>(I)); 3622 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3623 I->replaceAllUsesWith(Res); 3624 cast<Instruction>(I)->eraseFromParent(); 3625 Erased.insert(I); 3626 State.reset(Def, Res, Part); 3627 } 3628 } 3629 3630 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3631 for (const auto &KV : Cost->getMinimalBitwidths()) { 3632 // If the value wasn't vectorized, we must maintain the original scalar 3633 // type. The absence of the value from State indicates that it 3634 // wasn't vectorized. 3635 // FIXME: Should not rely on getVPValue at this point. 3636 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3637 if (!State.hasAnyVectorValue(Def)) 3638 continue; 3639 for (unsigned Part = 0; Part < UF; ++Part) { 3640 Value *I = State.get(Def, Part); 3641 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3642 if (Inst && Inst->use_empty()) { 3643 Value *NewI = Inst->getOperand(0); 3644 Inst->eraseFromParent(); 3645 State.reset(Def, NewI, Part); 3646 } 3647 } 3648 } 3649 } 3650 3651 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3652 // Insert truncates and extends for any truncated instructions as hints to 3653 // InstCombine. 3654 if (VF.isVector()) 3655 truncateToMinimalBitwidths(State); 3656 3657 // Fix widened non-induction PHIs by setting up the PHI operands. 3658 if (OrigPHIsToFix.size()) { 3659 assert(EnableVPlanNativePath && 3660 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3661 fixNonInductionPHIs(State); 3662 } 3663 3664 // At this point every instruction in the original loop is widened to a 3665 // vector form. Now we need to fix the recurrences in the loop. These PHI 3666 // nodes are currently empty because we did not want to introduce cycles. 3667 // This is the second stage of vectorizing recurrences. 3668 fixCrossIterationPHIs(State); 3669 3670 // Forget the original basic block. 3671 PSE.getSE()->forgetLoop(OrigLoop); 3672 3673 Loop *VectorLoop = LI->getLoopFor(State.CFG.PrevBB); 3674 // If we inserted an edge from the middle block to the unique exit block, 3675 // update uses outside the loop (phis) to account for the newly inserted 3676 // edge. 3677 if (!Cost->requiresScalarEpilogue(VF)) { 3678 // Fix-up external users of the induction variables. 3679 for (auto &Entry : Legal->getInductionVars()) 3680 fixupIVUsers(Entry.first, Entry.second, 3681 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3682 IVEndValues[Entry.first], LoopMiddleBlock, 3683 VectorLoop->getHeader()); 3684 3685 fixLCSSAPHIs(State); 3686 } 3687 3688 for (Instruction *PI : PredicatedInstructions) 3689 sinkScalarOperands(&*PI); 3690 3691 // Remove redundant induction instructions. 3692 cse(VectorLoop->getHeader()); 3693 3694 // Set/update profile weights for the vector and remainder loops as original 3695 // loop iterations are now distributed among them. Note that original loop 3696 // represented by LoopScalarBody becomes remainder loop after vectorization. 3697 // 3698 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3699 // end up getting slightly roughened result but that should be OK since 3700 // profile is not inherently precise anyway. Note also possible bypass of 3701 // vector code caused by legality checks is ignored, assigning all the weight 3702 // to the vector loop, optimistically. 3703 // 3704 // For scalable vectorization we can't know at compile time how many iterations 3705 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3706 // vscale of '1'. 3707 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3708 LI->getLoopFor(LoopScalarBody), 3709 VF.getKnownMinValue() * UF); 3710 } 3711 3712 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3713 // In order to support recurrences we need to be able to vectorize Phi nodes. 3714 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3715 // stage #2: We now need to fix the recurrences by adding incoming edges to 3716 // the currently empty PHI nodes. At this point every instruction in the 3717 // original loop is widened to a vector form so we can use them to construct 3718 // the incoming edges. 3719 VPBasicBlock *Header = 3720 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3721 for (VPRecipeBase &R : Header->phis()) { 3722 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3723 fixReduction(ReductionPhi, State); 3724 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3725 fixFirstOrderRecurrence(FOR, State); 3726 } 3727 } 3728 3729 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3730 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3731 // This is the second phase of vectorizing first-order recurrences. An 3732 // overview of the transformation is described below. Suppose we have the 3733 // following loop. 3734 // 3735 // for (int i = 0; i < n; ++i) 3736 // b[i] = a[i] - a[i - 1]; 3737 // 3738 // There is a first-order recurrence on "a". For this loop, the shorthand 3739 // scalar IR looks like: 3740 // 3741 // scalar.ph: 3742 // s_init = a[-1] 3743 // br scalar.body 3744 // 3745 // scalar.body: 3746 // i = phi [0, scalar.ph], [i+1, scalar.body] 3747 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3748 // s2 = a[i] 3749 // b[i] = s2 - s1 3750 // br cond, scalar.body, ... 3751 // 3752 // In this example, s1 is a recurrence because it's value depends on the 3753 // previous iteration. In the first phase of vectorization, we created a 3754 // vector phi v1 for s1. We now complete the vectorization and produce the 3755 // shorthand vector IR shown below (for VF = 4, UF = 1). 3756 // 3757 // vector.ph: 3758 // v_init = vector(..., ..., ..., a[-1]) 3759 // br vector.body 3760 // 3761 // vector.body 3762 // i = phi [0, vector.ph], [i+4, vector.body] 3763 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3764 // v2 = a[i, i+1, i+2, i+3]; 3765 // v3 = vector(v1(3), v2(0, 1, 2)) 3766 // b[i, i+1, i+2, i+3] = v2 - v3 3767 // br cond, vector.body, middle.block 3768 // 3769 // middle.block: 3770 // x = v2(3) 3771 // br scalar.ph 3772 // 3773 // scalar.ph: 3774 // s_init = phi [x, middle.block], [a[-1], otherwise] 3775 // br scalar.body 3776 // 3777 // After execution completes the vector loop, we extract the next value of 3778 // the recurrence (x) to use as the initial value in the scalar loop. 3779 3780 // Extract the last vector element in the middle block. This will be the 3781 // initial value for the recurrence when jumping to the scalar loop. 3782 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3783 Value *Incoming = State.get(PreviousDef, UF - 1); 3784 auto *ExtractForScalar = Incoming; 3785 auto *IdxTy = Builder.getInt32Ty(); 3786 if (VF.isVector()) { 3787 auto *One = ConstantInt::get(IdxTy, 1); 3788 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3789 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3790 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3791 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3792 "vector.recur.extract"); 3793 } 3794 // Extract the second last element in the middle block if the 3795 // Phi is used outside the loop. We need to extract the phi itself 3796 // and not the last element (the phi update in the current iteration). This 3797 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3798 // when the scalar loop is not run at all. 3799 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3800 if (VF.isVector()) { 3801 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3802 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3803 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3804 Incoming, Idx, "vector.recur.extract.for.phi"); 3805 } else if (UF > 1) 3806 // When loop is unrolled without vectorizing, initialize 3807 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3808 // of `Incoming`. This is analogous to the vectorized case above: extracting 3809 // the second last element when VF > 1. 3810 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3811 3812 // Fix the initial value of the original recurrence in the scalar loop. 3813 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3814 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3815 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3816 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3817 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3818 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3819 Start->addIncoming(Incoming, BB); 3820 } 3821 3822 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3823 Phi->setName("scalar.recur"); 3824 3825 // Finally, fix users of the recurrence outside the loop. The users will need 3826 // either the last value of the scalar recurrence or the last value of the 3827 // vector recurrence we extracted in the middle block. Since the loop is in 3828 // LCSSA form, we just need to find all the phi nodes for the original scalar 3829 // recurrence in the exit block, and then add an edge for the middle block. 3830 // Note that LCSSA does not imply single entry when the original scalar loop 3831 // had multiple exiting edges (as we always run the last iteration in the 3832 // scalar epilogue); in that case, there is no edge from middle to exit and 3833 // and thus no phis which needed updated. 3834 if (!Cost->requiresScalarEpilogue(VF)) 3835 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3836 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 3837 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3838 } 3839 3840 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3841 VPTransformState &State) { 3842 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3843 // Get it's reduction variable descriptor. 3844 assert(Legal->isReductionVariable(OrigPhi) && 3845 "Unable to find the reduction variable"); 3846 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3847 3848 RecurKind RK = RdxDesc.getRecurrenceKind(); 3849 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3850 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3851 setDebugLocFromInst(ReductionStartValue); 3852 3853 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3854 // This is the vector-clone of the value that leaves the loop. 3855 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3856 3857 // Wrap flags are in general invalid after vectorization, clear them. 3858 clearReductionWrapFlags(RdxDesc, State); 3859 3860 // Before each round, move the insertion point right between 3861 // the PHIs and the values we are going to write. 3862 // This allows us to write both PHINodes and the extractelement 3863 // instructions. 3864 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3865 3866 setDebugLocFromInst(LoopExitInst); 3867 3868 Type *PhiTy = OrigPhi->getType(); 3869 BasicBlock *VectorLoopLatch = 3870 LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 3871 // If tail is folded by masking, the vector value to leave the loop should be 3872 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3873 // instead of the former. For an inloop reduction the reduction will already 3874 // be predicated, and does not need to be handled here. 3875 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3876 for (unsigned Part = 0; Part < UF; ++Part) { 3877 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3878 Value *Sel = nullptr; 3879 for (User *U : VecLoopExitInst->users()) { 3880 if (isa<SelectInst>(U)) { 3881 assert(!Sel && "Reduction exit feeding two selects"); 3882 Sel = U; 3883 } else 3884 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3885 } 3886 assert(Sel && "Reduction exit feeds no select"); 3887 State.reset(LoopExitInstDef, Sel, Part); 3888 3889 // If the target can create a predicated operator for the reduction at no 3890 // extra cost in the loop (for example a predicated vadd), it can be 3891 // cheaper for the select to remain in the loop than be sunk out of it, 3892 // and so use the select value for the phi instead of the old 3893 // LoopExitValue. 3894 if (PreferPredicatedReductionSelect || 3895 TTI->preferPredicatedReductionSelect( 3896 RdxDesc.getOpcode(), PhiTy, 3897 TargetTransformInfo::ReductionFlags())) { 3898 auto *VecRdxPhi = 3899 cast<PHINode>(State.get(PhiR, Part)); 3900 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3901 } 3902 } 3903 } 3904 3905 // If the vector reduction can be performed in a smaller type, we truncate 3906 // then extend the loop exit value to enable InstCombine to evaluate the 3907 // entire expression in the smaller type. 3908 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3909 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3910 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3911 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3912 VectorParts RdxParts(UF); 3913 for (unsigned Part = 0; Part < UF; ++Part) { 3914 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3915 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3916 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3917 : Builder.CreateZExt(Trunc, VecTy); 3918 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3919 if (U != Trunc) { 3920 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3921 RdxParts[Part] = Extnd; 3922 } 3923 } 3924 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3925 for (unsigned Part = 0; Part < UF; ++Part) { 3926 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3927 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3928 } 3929 } 3930 3931 // Reduce all of the unrolled parts into a single vector. 3932 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3933 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3934 3935 // The middle block terminator has already been assigned a DebugLoc here (the 3936 // OrigLoop's single latch terminator). We want the whole middle block to 3937 // appear to execute on this line because: (a) it is all compiler generated, 3938 // (b) these instructions are always executed after evaluating the latch 3939 // conditional branch, and (c) other passes may add new predecessors which 3940 // terminate on this line. This is the easiest way to ensure we don't 3941 // accidentally cause an extra step back into the loop while debugging. 3942 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3943 if (PhiR->isOrdered()) 3944 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3945 else { 3946 // Floating-point operations should have some FMF to enable the reduction. 3947 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3948 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3949 for (unsigned Part = 1; Part < UF; ++Part) { 3950 Value *RdxPart = State.get(LoopExitInstDef, Part); 3951 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3952 ReducedPartRdx = Builder.CreateBinOp( 3953 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3954 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3955 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3956 ReducedPartRdx, RdxPart); 3957 else 3958 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3959 } 3960 } 3961 3962 // Create the reduction after the loop. Note that inloop reductions create the 3963 // target reduction in the loop using a Reduction recipe. 3964 if (VF.isVector() && !PhiR->isInLoop()) { 3965 ReducedPartRdx = 3966 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3967 // If the reduction can be performed in a smaller type, we need to extend 3968 // the reduction to the wider type before we branch to the original loop. 3969 if (PhiTy != RdxDesc.getRecurrenceType()) 3970 ReducedPartRdx = RdxDesc.isSigned() 3971 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3972 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3973 } 3974 3975 PHINode *ResumePhi = 3976 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3977 3978 // Create a phi node that merges control-flow from the backedge-taken check 3979 // block and the middle block. 3980 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 3981 LoopScalarPreHeader->getTerminator()); 3982 3983 // If we are fixing reductions in the epilogue loop then we should already 3984 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 3985 // we carry over the incoming values correctly. 3986 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 3987 if (Incoming == LoopMiddleBlock) 3988 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 3989 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 3990 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 3991 Incoming); 3992 else 3993 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 3994 } 3995 3996 // Set the resume value for this reduction 3997 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 3998 3999 // Now, we need to fix the users of the reduction variable 4000 // inside and outside of the scalar remainder loop. 4001 4002 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4003 // in the exit blocks. See comment on analogous loop in 4004 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4005 if (!Cost->requiresScalarEpilogue(VF)) 4006 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4007 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4008 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4009 4010 // Fix the scalar loop reduction variable with the incoming reduction sum 4011 // from the vector body and from the backedge value. 4012 int IncomingEdgeBlockIdx = 4013 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4014 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4015 // Pick the other block. 4016 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4017 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4018 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4019 } 4020 4021 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4022 VPTransformState &State) { 4023 RecurKind RK = RdxDesc.getRecurrenceKind(); 4024 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4025 return; 4026 4027 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4028 assert(LoopExitInstr && "null loop exit instruction"); 4029 SmallVector<Instruction *, 8> Worklist; 4030 SmallPtrSet<Instruction *, 8> Visited; 4031 Worklist.push_back(LoopExitInstr); 4032 Visited.insert(LoopExitInstr); 4033 4034 while (!Worklist.empty()) { 4035 Instruction *Cur = Worklist.pop_back_val(); 4036 if (isa<OverflowingBinaryOperator>(Cur)) 4037 for (unsigned Part = 0; Part < UF; ++Part) { 4038 // FIXME: Should not rely on getVPValue at this point. 4039 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4040 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4041 } 4042 4043 for (User *U : Cur->users()) { 4044 Instruction *UI = cast<Instruction>(U); 4045 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4046 Visited.insert(UI).second) 4047 Worklist.push_back(UI); 4048 } 4049 } 4050 } 4051 4052 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4053 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4054 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4055 // Some phis were already hand updated by the reduction and recurrence 4056 // code above, leave them alone. 4057 continue; 4058 4059 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4060 // Non-instruction incoming values will have only one value. 4061 4062 VPLane Lane = VPLane::getFirstLane(); 4063 if (isa<Instruction>(IncomingValue) && 4064 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4065 VF)) 4066 Lane = VPLane::getLastLaneForVF(VF); 4067 4068 // Can be a loop invariant incoming value or the last scalar value to be 4069 // extracted from the vectorized loop. 4070 // FIXME: Should not rely on getVPValue at this point. 4071 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4072 Value *lastIncomingValue = 4073 OrigLoop->isLoopInvariant(IncomingValue) 4074 ? IncomingValue 4075 : State.get(State.Plan->getVPValue(IncomingValue, true), 4076 VPIteration(UF - 1, Lane)); 4077 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4078 } 4079 } 4080 4081 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4082 // The basic block and loop containing the predicated instruction. 4083 auto *PredBB = PredInst->getParent(); 4084 auto *VectorLoop = LI->getLoopFor(PredBB); 4085 4086 // Initialize a worklist with the operands of the predicated instruction. 4087 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4088 4089 // Holds instructions that we need to analyze again. An instruction may be 4090 // reanalyzed if we don't yet know if we can sink it or not. 4091 SmallVector<Instruction *, 8> InstsToReanalyze; 4092 4093 // Returns true if a given use occurs in the predicated block. Phi nodes use 4094 // their operands in their corresponding predecessor blocks. 4095 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4096 auto *I = cast<Instruction>(U.getUser()); 4097 BasicBlock *BB = I->getParent(); 4098 if (auto *Phi = dyn_cast<PHINode>(I)) 4099 BB = Phi->getIncomingBlock( 4100 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4101 return BB == PredBB; 4102 }; 4103 4104 // Iteratively sink the scalarized operands of the predicated instruction 4105 // into the block we created for it. When an instruction is sunk, it's 4106 // operands are then added to the worklist. The algorithm ends after one pass 4107 // through the worklist doesn't sink a single instruction. 4108 bool Changed; 4109 do { 4110 // Add the instructions that need to be reanalyzed to the worklist, and 4111 // reset the changed indicator. 4112 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4113 InstsToReanalyze.clear(); 4114 Changed = false; 4115 4116 while (!Worklist.empty()) { 4117 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4118 4119 // We can't sink an instruction if it is a phi node, is not in the loop, 4120 // or may have side effects. 4121 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4122 I->mayHaveSideEffects()) 4123 continue; 4124 4125 // If the instruction is already in PredBB, check if we can sink its 4126 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4127 // sinking the scalar instruction I, hence it appears in PredBB; but it 4128 // may have failed to sink I's operands (recursively), which we try 4129 // (again) here. 4130 if (I->getParent() == PredBB) { 4131 Worklist.insert(I->op_begin(), I->op_end()); 4132 continue; 4133 } 4134 4135 // It's legal to sink the instruction if all its uses occur in the 4136 // predicated block. Otherwise, there's nothing to do yet, and we may 4137 // need to reanalyze the instruction. 4138 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4139 InstsToReanalyze.push_back(I); 4140 continue; 4141 } 4142 4143 // Move the instruction to the beginning of the predicated block, and add 4144 // it's operands to the worklist. 4145 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4146 Worklist.insert(I->op_begin(), I->op_end()); 4147 4148 // The sinking may have enabled other instructions to be sunk, so we will 4149 // need to iterate. 4150 Changed = true; 4151 } 4152 } while (Changed); 4153 } 4154 4155 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4156 for (PHINode *OrigPhi : OrigPHIsToFix) { 4157 VPWidenPHIRecipe *VPPhi = 4158 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4159 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4160 // Make sure the builder has a valid insert point. 4161 Builder.SetInsertPoint(NewPhi); 4162 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4163 VPValue *Inc = VPPhi->getIncomingValue(i); 4164 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4165 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4166 } 4167 } 4168 } 4169 4170 bool InnerLoopVectorizer::useOrderedReductions( 4171 const RecurrenceDescriptor &RdxDesc) { 4172 return Cost->useOrderedReductions(RdxDesc); 4173 } 4174 4175 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4176 VPWidenPHIRecipe *PhiR, 4177 VPTransformState &State) { 4178 assert(EnableVPlanNativePath && 4179 "Non-native vplans are not expected to have VPWidenPHIRecipes."); 4180 // Currently we enter here in the VPlan-native path for non-induction 4181 // PHIs where all control flow is uniform. We simply widen these PHIs. 4182 // Create a vector phi with no operands - the vector phi operands will be 4183 // set at the end of vector code generation. 4184 Type *VecTy = (State.VF.isScalar()) 4185 ? PN->getType() 4186 : VectorType::get(PN->getType(), State.VF); 4187 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4188 State.set(PhiR, VecPhi, 0); 4189 OrigPHIsToFix.push_back(cast<PHINode>(PN)); 4190 } 4191 4192 /// A helper function for checking whether an integer division-related 4193 /// instruction may divide by zero (in which case it must be predicated if 4194 /// executed conditionally in the scalar code). 4195 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4196 /// Non-zero divisors that are non compile-time constants will not be 4197 /// converted into multiplication, so we will still end up scalarizing 4198 /// the division, but can do so w/o predication. 4199 static bool mayDivideByZero(Instruction &I) { 4200 assert((I.getOpcode() == Instruction::UDiv || 4201 I.getOpcode() == Instruction::SDiv || 4202 I.getOpcode() == Instruction::URem || 4203 I.getOpcode() == Instruction::SRem) && 4204 "Unexpected instruction"); 4205 Value *Divisor = I.getOperand(1); 4206 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4207 return !CInt || CInt->isZero(); 4208 } 4209 4210 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4211 VPUser &ArgOperands, 4212 VPTransformState &State) { 4213 assert(!isa<DbgInfoIntrinsic>(I) && 4214 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4215 setDebugLocFromInst(&I); 4216 4217 Module *M = I.getParent()->getParent()->getParent(); 4218 auto *CI = cast<CallInst>(&I); 4219 4220 SmallVector<Type *, 4> Tys; 4221 for (Value *ArgOperand : CI->args()) 4222 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4223 4224 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4225 4226 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4227 // version of the instruction. 4228 // Is it beneficial to perform intrinsic call compared to lib call? 4229 bool NeedToScalarize = false; 4230 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4231 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4232 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4233 assert((UseVectorIntrinsic || !NeedToScalarize) && 4234 "Instruction should be scalarized elsewhere."); 4235 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4236 "Either the intrinsic cost or vector call cost must be valid"); 4237 4238 for (unsigned Part = 0; Part < UF; ++Part) { 4239 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4240 SmallVector<Value *, 4> Args; 4241 for (auto &I : enumerate(ArgOperands.operands())) { 4242 // Some intrinsics have a scalar argument - don't replace it with a 4243 // vector. 4244 Value *Arg; 4245 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4246 Arg = State.get(I.value(), Part); 4247 else { 4248 Arg = State.get(I.value(), VPIteration(0, 0)); 4249 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4250 TysForDecl.push_back(Arg->getType()); 4251 } 4252 Args.push_back(Arg); 4253 } 4254 4255 Function *VectorF; 4256 if (UseVectorIntrinsic) { 4257 // Use vector version of the intrinsic. 4258 if (VF.isVector()) 4259 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4260 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4261 assert(VectorF && "Can't retrieve vector intrinsic."); 4262 } else { 4263 // Use vector version of the function call. 4264 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4265 #ifndef NDEBUG 4266 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4267 "Can't create vector function."); 4268 #endif 4269 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4270 } 4271 SmallVector<OperandBundleDef, 1> OpBundles; 4272 CI->getOperandBundlesAsDefs(OpBundles); 4273 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4274 4275 if (isa<FPMathOperator>(V)) 4276 V->copyFastMathFlags(CI); 4277 4278 State.set(Def, V, Part); 4279 addMetadata(V, &I); 4280 } 4281 } 4282 4283 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4284 // We should not collect Scalars more than once per VF. Right now, this 4285 // function is called from collectUniformsAndScalars(), which already does 4286 // this check. Collecting Scalars for VF=1 does not make any sense. 4287 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4288 "This function should not be visited twice for the same VF"); 4289 4290 // This avoids any chances of creating a REPLICATE recipe during planning 4291 // since that would result in generation of scalarized code during execution, 4292 // which is not supported for scalable vectors. 4293 if (VF.isScalable()) { 4294 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4295 return; 4296 } 4297 4298 SmallSetVector<Instruction *, 8> Worklist; 4299 4300 // These sets are used to seed the analysis with pointers used by memory 4301 // accesses that will remain scalar. 4302 SmallSetVector<Instruction *, 8> ScalarPtrs; 4303 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4304 auto *Latch = TheLoop->getLoopLatch(); 4305 4306 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4307 // The pointer operands of loads and stores will be scalar as long as the 4308 // memory access is not a gather or scatter operation. The value operand of a 4309 // store will remain scalar if the store is scalarized. 4310 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4311 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4312 assert(WideningDecision != CM_Unknown && 4313 "Widening decision should be ready at this moment"); 4314 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4315 if (Ptr == Store->getValueOperand()) 4316 return WideningDecision == CM_Scalarize; 4317 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4318 "Ptr is neither a value or pointer operand"); 4319 return WideningDecision != CM_GatherScatter; 4320 }; 4321 4322 // A helper that returns true if the given value is a bitcast or 4323 // getelementptr instruction contained in the loop. 4324 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4325 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4326 isa<GetElementPtrInst>(V)) && 4327 !TheLoop->isLoopInvariant(V); 4328 }; 4329 4330 // A helper that evaluates a memory access's use of a pointer. If the use will 4331 // be a scalar use and the pointer is only used by memory accesses, we place 4332 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4333 // PossibleNonScalarPtrs. 4334 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4335 // We only care about bitcast and getelementptr instructions contained in 4336 // the loop. 4337 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4338 return; 4339 4340 // If the pointer has already been identified as scalar (e.g., if it was 4341 // also identified as uniform), there's nothing to do. 4342 auto *I = cast<Instruction>(Ptr); 4343 if (Worklist.count(I)) 4344 return; 4345 4346 // If the use of the pointer will be a scalar use, and all users of the 4347 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4348 // place the pointer in PossibleNonScalarPtrs. 4349 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4350 return isa<LoadInst>(U) || isa<StoreInst>(U); 4351 })) 4352 ScalarPtrs.insert(I); 4353 else 4354 PossibleNonScalarPtrs.insert(I); 4355 }; 4356 4357 // We seed the scalars analysis with three classes of instructions: (1) 4358 // instructions marked uniform-after-vectorization and (2) bitcast, 4359 // getelementptr and (pointer) phi instructions used by memory accesses 4360 // requiring a scalar use. 4361 // 4362 // (1) Add to the worklist all instructions that have been identified as 4363 // uniform-after-vectorization. 4364 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4365 4366 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4367 // memory accesses requiring a scalar use. The pointer operands of loads and 4368 // stores will be scalar as long as the memory accesses is not a gather or 4369 // scatter operation. The value operand of a store will remain scalar if the 4370 // store is scalarized. 4371 for (auto *BB : TheLoop->blocks()) 4372 for (auto &I : *BB) { 4373 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4374 evaluatePtrUse(Load, Load->getPointerOperand()); 4375 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4376 evaluatePtrUse(Store, Store->getPointerOperand()); 4377 evaluatePtrUse(Store, Store->getValueOperand()); 4378 } 4379 } 4380 for (auto *I : ScalarPtrs) 4381 if (!PossibleNonScalarPtrs.count(I)) { 4382 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4383 Worklist.insert(I); 4384 } 4385 4386 // Insert the forced scalars. 4387 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4388 // induction variable when the PHI user is scalarized. 4389 auto ForcedScalar = ForcedScalars.find(VF); 4390 if (ForcedScalar != ForcedScalars.end()) 4391 for (auto *I : ForcedScalar->second) 4392 Worklist.insert(I); 4393 4394 // Expand the worklist by looking through any bitcasts and getelementptr 4395 // instructions we've already identified as scalar. This is similar to the 4396 // expansion step in collectLoopUniforms(); however, here we're only 4397 // expanding to include additional bitcasts and getelementptr instructions. 4398 unsigned Idx = 0; 4399 while (Idx != Worklist.size()) { 4400 Instruction *Dst = Worklist[Idx++]; 4401 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4402 continue; 4403 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4404 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4405 auto *J = cast<Instruction>(U); 4406 return !TheLoop->contains(J) || Worklist.count(J) || 4407 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4408 isScalarUse(J, Src)); 4409 })) { 4410 Worklist.insert(Src); 4411 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4412 } 4413 } 4414 4415 // An induction variable will remain scalar if all users of the induction 4416 // variable and induction variable update remain scalar. 4417 for (auto &Induction : Legal->getInductionVars()) { 4418 auto *Ind = Induction.first; 4419 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4420 4421 // If tail-folding is applied, the primary induction variable will be used 4422 // to feed a vector compare. 4423 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4424 continue; 4425 4426 // Returns true if \p Indvar is a pointer induction that is used directly by 4427 // load/store instruction \p I. 4428 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4429 Instruction *I) { 4430 return Induction.second.getKind() == 4431 InductionDescriptor::IK_PtrInduction && 4432 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4433 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4434 }; 4435 4436 // Determine if all users of the induction variable are scalar after 4437 // vectorization. 4438 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4439 auto *I = cast<Instruction>(U); 4440 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4441 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4442 }); 4443 if (!ScalarInd) 4444 continue; 4445 4446 // Determine if all users of the induction variable update instruction are 4447 // scalar after vectorization. 4448 auto ScalarIndUpdate = 4449 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4450 auto *I = cast<Instruction>(U); 4451 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4452 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4453 }); 4454 if (!ScalarIndUpdate) 4455 continue; 4456 4457 // The induction variable and its update instruction will remain scalar. 4458 Worklist.insert(Ind); 4459 Worklist.insert(IndUpdate); 4460 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4461 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4462 << "\n"); 4463 } 4464 4465 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4466 } 4467 4468 bool LoopVectorizationCostModel::isScalarWithPredication( 4469 Instruction *I, ElementCount VF) const { 4470 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4471 return false; 4472 switch(I->getOpcode()) { 4473 default: 4474 break; 4475 case Instruction::Load: 4476 case Instruction::Store: { 4477 if (!Legal->isMaskRequired(I)) 4478 return false; 4479 auto *Ptr = getLoadStorePointerOperand(I); 4480 auto *Ty = getLoadStoreType(I); 4481 Type *VTy = Ty; 4482 if (VF.isVector()) 4483 VTy = VectorType::get(Ty, VF); 4484 const Align Alignment = getLoadStoreAlignment(I); 4485 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4486 TTI.isLegalMaskedGather(VTy, Alignment)) 4487 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4488 TTI.isLegalMaskedScatter(VTy, Alignment)); 4489 } 4490 case Instruction::UDiv: 4491 case Instruction::SDiv: 4492 case Instruction::SRem: 4493 case Instruction::URem: 4494 return mayDivideByZero(*I); 4495 } 4496 return false; 4497 } 4498 4499 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4500 Instruction *I, ElementCount VF) { 4501 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4502 assert(getWideningDecision(I, VF) == CM_Unknown && 4503 "Decision should not be set yet."); 4504 auto *Group = getInterleavedAccessGroup(I); 4505 assert(Group && "Must have a group."); 4506 4507 // If the instruction's allocated size doesn't equal it's type size, it 4508 // requires padding and will be scalarized. 4509 auto &DL = I->getModule()->getDataLayout(); 4510 auto *ScalarTy = getLoadStoreType(I); 4511 if (hasIrregularType(ScalarTy, DL)) 4512 return false; 4513 4514 // Check if masking is required. 4515 // A Group may need masking for one of two reasons: it resides in a block that 4516 // needs predication, or it was decided to use masking to deal with gaps 4517 // (either a gap at the end of a load-access that may result in a speculative 4518 // load, or any gaps in a store-access). 4519 bool PredicatedAccessRequiresMasking = 4520 blockNeedsPredicationForAnyReason(I->getParent()) && 4521 Legal->isMaskRequired(I); 4522 bool LoadAccessWithGapsRequiresEpilogMasking = 4523 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4524 !isScalarEpilogueAllowed(); 4525 bool StoreAccessWithGapsRequiresMasking = 4526 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4527 if (!PredicatedAccessRequiresMasking && 4528 !LoadAccessWithGapsRequiresEpilogMasking && 4529 !StoreAccessWithGapsRequiresMasking) 4530 return true; 4531 4532 // If masked interleaving is required, we expect that the user/target had 4533 // enabled it, because otherwise it either wouldn't have been created or 4534 // it should have been invalidated by the CostModel. 4535 assert(useMaskedInterleavedAccesses(TTI) && 4536 "Masked interleave-groups for predicated accesses are not enabled."); 4537 4538 if (Group->isReverse()) 4539 return false; 4540 4541 auto *Ty = getLoadStoreType(I); 4542 const Align Alignment = getLoadStoreAlignment(I); 4543 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4544 : TTI.isLegalMaskedStore(Ty, Alignment); 4545 } 4546 4547 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4548 Instruction *I, ElementCount VF) { 4549 // Get and ensure we have a valid memory instruction. 4550 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4551 4552 auto *Ptr = getLoadStorePointerOperand(I); 4553 auto *ScalarTy = getLoadStoreType(I); 4554 4555 // In order to be widened, the pointer should be consecutive, first of all. 4556 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4557 return false; 4558 4559 // If the instruction is a store located in a predicated block, it will be 4560 // scalarized. 4561 if (isScalarWithPredication(I, VF)) 4562 return false; 4563 4564 // If the instruction's allocated size doesn't equal it's type size, it 4565 // requires padding and will be scalarized. 4566 auto &DL = I->getModule()->getDataLayout(); 4567 if (hasIrregularType(ScalarTy, DL)) 4568 return false; 4569 4570 return true; 4571 } 4572 4573 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4574 // We should not collect Uniforms more than once per VF. Right now, 4575 // this function is called from collectUniformsAndScalars(), which 4576 // already does this check. Collecting Uniforms for VF=1 does not make any 4577 // sense. 4578 4579 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4580 "This function should not be visited twice for the same VF"); 4581 4582 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4583 // not analyze again. Uniforms.count(VF) will return 1. 4584 Uniforms[VF].clear(); 4585 4586 // We now know that the loop is vectorizable! 4587 // Collect instructions inside the loop that will remain uniform after 4588 // vectorization. 4589 4590 // Global values, params and instructions outside of current loop are out of 4591 // scope. 4592 auto isOutOfScope = [&](Value *V) -> bool { 4593 Instruction *I = dyn_cast<Instruction>(V); 4594 return (!I || !TheLoop->contains(I)); 4595 }; 4596 4597 // Worklist containing uniform instructions demanding lane 0. 4598 SetVector<Instruction *> Worklist; 4599 BasicBlock *Latch = TheLoop->getLoopLatch(); 4600 4601 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4602 // that are scalar with predication must not be considered uniform after 4603 // vectorization, because that would create an erroneous replicating region 4604 // where only a single instance out of VF should be formed. 4605 // TODO: optimize such seldom cases if found important, see PR40816. 4606 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4607 if (isOutOfScope(I)) { 4608 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4609 << *I << "\n"); 4610 return; 4611 } 4612 if (isScalarWithPredication(I, VF)) { 4613 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4614 << *I << "\n"); 4615 return; 4616 } 4617 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4618 Worklist.insert(I); 4619 }; 4620 4621 // Start with the conditional branch. If the branch condition is an 4622 // instruction contained in the loop that is only used by the branch, it is 4623 // uniform. 4624 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4625 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4626 addToWorklistIfAllowed(Cmp); 4627 4628 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4629 InstWidening WideningDecision = getWideningDecision(I, VF); 4630 assert(WideningDecision != CM_Unknown && 4631 "Widening decision should be ready at this moment"); 4632 4633 // A uniform memory op is itself uniform. We exclude uniform stores 4634 // here as they demand the last lane, not the first one. 4635 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4636 assert(WideningDecision == CM_Scalarize); 4637 return true; 4638 } 4639 4640 return (WideningDecision == CM_Widen || 4641 WideningDecision == CM_Widen_Reverse || 4642 WideningDecision == CM_Interleave); 4643 }; 4644 4645 4646 // Returns true if Ptr is the pointer operand of a memory access instruction 4647 // I, and I is known to not require scalarization. 4648 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4649 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4650 }; 4651 4652 // Holds a list of values which are known to have at least one uniform use. 4653 // Note that there may be other uses which aren't uniform. A "uniform use" 4654 // here is something which only demands lane 0 of the unrolled iterations; 4655 // it does not imply that all lanes produce the same value (e.g. this is not 4656 // the usual meaning of uniform) 4657 SetVector<Value *> HasUniformUse; 4658 4659 // Scan the loop for instructions which are either a) known to have only 4660 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4661 for (auto *BB : TheLoop->blocks()) 4662 for (auto &I : *BB) { 4663 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4664 switch (II->getIntrinsicID()) { 4665 case Intrinsic::sideeffect: 4666 case Intrinsic::experimental_noalias_scope_decl: 4667 case Intrinsic::assume: 4668 case Intrinsic::lifetime_start: 4669 case Intrinsic::lifetime_end: 4670 if (TheLoop->hasLoopInvariantOperands(&I)) 4671 addToWorklistIfAllowed(&I); 4672 break; 4673 default: 4674 break; 4675 } 4676 } 4677 4678 // ExtractValue instructions must be uniform, because the operands are 4679 // known to be loop-invariant. 4680 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4681 assert(isOutOfScope(EVI->getAggregateOperand()) && 4682 "Expected aggregate value to be loop invariant"); 4683 addToWorklistIfAllowed(EVI); 4684 continue; 4685 } 4686 4687 // If there's no pointer operand, there's nothing to do. 4688 auto *Ptr = getLoadStorePointerOperand(&I); 4689 if (!Ptr) 4690 continue; 4691 4692 // A uniform memory op is itself uniform. We exclude uniform stores 4693 // here as they demand the last lane, not the first one. 4694 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4695 addToWorklistIfAllowed(&I); 4696 4697 if (isUniformDecision(&I, VF)) { 4698 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4699 HasUniformUse.insert(Ptr); 4700 } 4701 } 4702 4703 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4704 // demanding) users. Since loops are assumed to be in LCSSA form, this 4705 // disallows uses outside the loop as well. 4706 for (auto *V : HasUniformUse) { 4707 if (isOutOfScope(V)) 4708 continue; 4709 auto *I = cast<Instruction>(V); 4710 auto UsersAreMemAccesses = 4711 llvm::all_of(I->users(), [&](User *U) -> bool { 4712 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4713 }); 4714 if (UsersAreMemAccesses) 4715 addToWorklistIfAllowed(I); 4716 } 4717 4718 // Expand Worklist in topological order: whenever a new instruction 4719 // is added , its users should be already inside Worklist. It ensures 4720 // a uniform instruction will only be used by uniform instructions. 4721 unsigned idx = 0; 4722 while (idx != Worklist.size()) { 4723 Instruction *I = Worklist[idx++]; 4724 4725 for (auto OV : I->operand_values()) { 4726 // isOutOfScope operands cannot be uniform instructions. 4727 if (isOutOfScope(OV)) 4728 continue; 4729 // First order recurrence Phi's should typically be considered 4730 // non-uniform. 4731 auto *OP = dyn_cast<PHINode>(OV); 4732 if (OP && Legal->isFirstOrderRecurrence(OP)) 4733 continue; 4734 // If all the users of the operand are uniform, then add the 4735 // operand into the uniform worklist. 4736 auto *OI = cast<Instruction>(OV); 4737 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4738 auto *J = cast<Instruction>(U); 4739 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4740 })) 4741 addToWorklistIfAllowed(OI); 4742 } 4743 } 4744 4745 // For an instruction to be added into Worklist above, all its users inside 4746 // the loop should also be in Worklist. However, this condition cannot be 4747 // true for phi nodes that form a cyclic dependence. We must process phi 4748 // nodes separately. An induction variable will remain uniform if all users 4749 // of the induction variable and induction variable update remain uniform. 4750 // The code below handles both pointer and non-pointer induction variables. 4751 for (auto &Induction : Legal->getInductionVars()) { 4752 auto *Ind = Induction.first; 4753 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4754 4755 // Determine if all users of the induction variable are uniform after 4756 // vectorization. 4757 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4758 auto *I = cast<Instruction>(U); 4759 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4760 isVectorizedMemAccessUse(I, Ind); 4761 }); 4762 if (!UniformInd) 4763 continue; 4764 4765 // Determine if all users of the induction variable update instruction are 4766 // uniform after vectorization. 4767 auto UniformIndUpdate = 4768 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4769 auto *I = cast<Instruction>(U); 4770 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4771 isVectorizedMemAccessUse(I, IndUpdate); 4772 }); 4773 if (!UniformIndUpdate) 4774 continue; 4775 4776 // The induction variable and its update instruction will remain uniform. 4777 addToWorklistIfAllowed(Ind); 4778 addToWorklistIfAllowed(IndUpdate); 4779 } 4780 4781 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4782 } 4783 4784 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4785 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4786 4787 if (Legal->getRuntimePointerChecking()->Need) { 4788 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4789 "runtime pointer checks needed. Enable vectorization of this " 4790 "loop with '#pragma clang loop vectorize(enable)' when " 4791 "compiling with -Os/-Oz", 4792 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4793 return true; 4794 } 4795 4796 if (!PSE.getPredicate().isAlwaysTrue()) { 4797 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4798 "runtime SCEV checks needed. Enable vectorization of this " 4799 "loop with '#pragma clang loop vectorize(enable)' when " 4800 "compiling with -Os/-Oz", 4801 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4802 return true; 4803 } 4804 4805 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4806 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4807 reportVectorizationFailure("Runtime stride check for small trip count", 4808 "runtime stride == 1 checks needed. Enable vectorization of " 4809 "this loop without such check by compiling with -Os/-Oz", 4810 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4811 return true; 4812 } 4813 4814 return false; 4815 } 4816 4817 ElementCount 4818 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4819 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4820 return ElementCount::getScalable(0); 4821 4822 if (Hints->isScalableVectorizationDisabled()) { 4823 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4824 "ScalableVectorizationDisabled", ORE, TheLoop); 4825 return ElementCount::getScalable(0); 4826 } 4827 4828 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4829 4830 auto MaxScalableVF = ElementCount::getScalable( 4831 std::numeric_limits<ElementCount::ScalarTy>::max()); 4832 4833 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4834 // FIXME: While for scalable vectors this is currently sufficient, this should 4835 // be replaced by a more detailed mechanism that filters out specific VFs, 4836 // instead of invalidating vectorization for a whole set of VFs based on the 4837 // MaxVF. 4838 4839 // Disable scalable vectorization if the loop contains unsupported reductions. 4840 if (!canVectorizeReductions(MaxScalableVF)) { 4841 reportVectorizationInfo( 4842 "Scalable vectorization not supported for the reduction " 4843 "operations found in this loop.", 4844 "ScalableVFUnfeasible", ORE, TheLoop); 4845 return ElementCount::getScalable(0); 4846 } 4847 4848 // Disable scalable vectorization if the loop contains any instructions 4849 // with element types not supported for scalable vectors. 4850 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4851 return !Ty->isVoidTy() && 4852 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4853 })) { 4854 reportVectorizationInfo("Scalable vectorization is not supported " 4855 "for all element types found in this loop.", 4856 "ScalableVFUnfeasible", ORE, TheLoop); 4857 return ElementCount::getScalable(0); 4858 } 4859 4860 if (Legal->isSafeForAnyVectorWidth()) 4861 return MaxScalableVF; 4862 4863 // Limit MaxScalableVF by the maximum safe dependence distance. 4864 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4865 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4866 MaxVScale = 4867 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4868 MaxScalableVF = ElementCount::getScalable( 4869 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 4870 if (!MaxScalableVF) 4871 reportVectorizationInfo( 4872 "Max legal vector width too small, scalable vectorization " 4873 "unfeasible.", 4874 "ScalableVFUnfeasible", ORE, TheLoop); 4875 4876 return MaxScalableVF; 4877 } 4878 4879 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4880 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4881 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4882 unsigned SmallestType, WidestType; 4883 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4884 4885 // Get the maximum safe dependence distance in bits computed by LAA. 4886 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4887 // the memory accesses that is most restrictive (involved in the smallest 4888 // dependence distance). 4889 unsigned MaxSafeElements = 4890 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4891 4892 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4893 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4894 4895 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4896 << ".\n"); 4897 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4898 << ".\n"); 4899 4900 // First analyze the UserVF, fall back if the UserVF should be ignored. 4901 if (UserVF) { 4902 auto MaxSafeUserVF = 4903 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4904 4905 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4906 // If `VF=vscale x N` is safe, then so is `VF=N` 4907 if (UserVF.isScalable()) 4908 return FixedScalableVFPair( 4909 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4910 else 4911 return UserVF; 4912 } 4913 4914 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4915 4916 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4917 // is better to ignore the hint and let the compiler choose a suitable VF. 4918 if (!UserVF.isScalable()) { 4919 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4920 << " is unsafe, clamping to max safe VF=" 4921 << MaxSafeFixedVF << ".\n"); 4922 ORE->emit([&]() { 4923 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4924 TheLoop->getStartLoc(), 4925 TheLoop->getHeader()) 4926 << "User-specified vectorization factor " 4927 << ore::NV("UserVectorizationFactor", UserVF) 4928 << " is unsafe, clamping to maximum safe vectorization factor " 4929 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4930 }); 4931 return MaxSafeFixedVF; 4932 } 4933 4934 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4935 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4936 << " is ignored because scalable vectors are not " 4937 "available.\n"); 4938 ORE->emit([&]() { 4939 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4940 TheLoop->getStartLoc(), 4941 TheLoop->getHeader()) 4942 << "User-specified vectorization factor " 4943 << ore::NV("UserVectorizationFactor", UserVF) 4944 << " is ignored because the target does not support scalable " 4945 "vectors. The compiler will pick a more suitable value."; 4946 }); 4947 } else { 4948 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4949 << " is unsafe. Ignoring scalable UserVF.\n"); 4950 ORE->emit([&]() { 4951 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4952 TheLoop->getStartLoc(), 4953 TheLoop->getHeader()) 4954 << "User-specified vectorization factor " 4955 << ore::NV("UserVectorizationFactor", UserVF) 4956 << " is unsafe. Ignoring the hint to let the compiler pick a " 4957 "more suitable value."; 4958 }); 4959 } 4960 } 4961 4962 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4963 << " / " << WidestType << " bits.\n"); 4964 4965 FixedScalableVFPair Result(ElementCount::getFixed(1), 4966 ElementCount::getScalable(0)); 4967 if (auto MaxVF = 4968 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4969 MaxSafeFixedVF, FoldTailByMasking)) 4970 Result.FixedVF = MaxVF; 4971 4972 if (auto MaxVF = 4973 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4974 MaxSafeScalableVF, FoldTailByMasking)) 4975 if (MaxVF.isScalable()) { 4976 Result.ScalableVF = MaxVF; 4977 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 4978 << "\n"); 4979 } 4980 4981 return Result; 4982 } 4983 4984 FixedScalableVFPair 4985 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 4986 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4987 // TODO: It may by useful to do since it's still likely to be dynamically 4988 // uniform if the target can skip. 4989 reportVectorizationFailure( 4990 "Not inserting runtime ptr check for divergent target", 4991 "runtime pointer checks needed. Not enabled for divergent target", 4992 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4993 return FixedScalableVFPair::getNone(); 4994 } 4995 4996 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4997 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4998 if (TC == 1) { 4999 reportVectorizationFailure("Single iteration (non) loop", 5000 "loop trip count is one, irrelevant for vectorization", 5001 "SingleIterationLoop", ORE, TheLoop); 5002 return FixedScalableVFPair::getNone(); 5003 } 5004 5005 switch (ScalarEpilogueStatus) { 5006 case CM_ScalarEpilogueAllowed: 5007 return computeFeasibleMaxVF(TC, UserVF, false); 5008 case CM_ScalarEpilogueNotAllowedUsePredicate: 5009 LLVM_FALLTHROUGH; 5010 case CM_ScalarEpilogueNotNeededUsePredicate: 5011 LLVM_DEBUG( 5012 dbgs() << "LV: vector predicate hint/switch found.\n" 5013 << "LV: Not allowing scalar epilogue, creating predicated " 5014 << "vector loop.\n"); 5015 break; 5016 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5017 // fallthrough as a special case of OptForSize 5018 case CM_ScalarEpilogueNotAllowedOptSize: 5019 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5020 LLVM_DEBUG( 5021 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5022 else 5023 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5024 << "count.\n"); 5025 5026 // Bail if runtime checks are required, which are not good when optimising 5027 // for size. 5028 if (runtimeChecksRequired()) 5029 return FixedScalableVFPair::getNone(); 5030 5031 break; 5032 } 5033 5034 // The only loops we can vectorize without a scalar epilogue, are loops with 5035 // a bottom-test and a single exiting block. We'd have to handle the fact 5036 // that not every instruction executes on the last iteration. This will 5037 // require a lane mask which varies through the vector loop body. (TODO) 5038 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5039 // If there was a tail-folding hint/switch, but we can't fold the tail by 5040 // masking, fallback to a vectorization with a scalar epilogue. 5041 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5042 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5043 "scalar epilogue instead.\n"); 5044 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5045 return computeFeasibleMaxVF(TC, UserVF, false); 5046 } 5047 return FixedScalableVFPair::getNone(); 5048 } 5049 5050 // Now try the tail folding 5051 5052 // Invalidate interleave groups that require an epilogue if we can't mask 5053 // the interleave-group. 5054 if (!useMaskedInterleavedAccesses(TTI)) { 5055 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5056 "No decisions should have been taken at this point"); 5057 // Note: There is no need to invalidate any cost modeling decisions here, as 5058 // non where taken so far. 5059 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5060 } 5061 5062 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5063 // Avoid tail folding if the trip count is known to be a multiple of any VF 5064 // we chose. 5065 // FIXME: The condition below pessimises the case for fixed-width vectors, 5066 // when scalable VFs are also candidates for vectorization. 5067 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5068 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5069 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5070 "MaxFixedVF must be a power of 2"); 5071 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5072 : MaxFixedVF.getFixedValue(); 5073 ScalarEvolution *SE = PSE.getSE(); 5074 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5075 const SCEV *ExitCount = SE->getAddExpr( 5076 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5077 const SCEV *Rem = SE->getURemExpr( 5078 SE->applyLoopGuards(ExitCount, TheLoop), 5079 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5080 if (Rem->isZero()) { 5081 // Accept MaxFixedVF if we do not have a tail. 5082 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5083 return MaxFactors; 5084 } 5085 } 5086 5087 // For scalable vectors don't use tail folding for low trip counts or 5088 // optimizing for code size. We only permit this if the user has explicitly 5089 // requested it. 5090 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5091 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5092 MaxFactors.ScalableVF.isVector()) 5093 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5094 5095 // If we don't know the precise trip count, or if the trip count that we 5096 // found modulo the vectorization factor is not zero, try to fold the tail 5097 // by masking. 5098 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5099 if (Legal->prepareToFoldTailByMasking()) { 5100 FoldTailByMasking = true; 5101 return MaxFactors; 5102 } 5103 5104 // If there was a tail-folding hint/switch, but we can't fold the tail by 5105 // masking, fallback to a vectorization with a scalar epilogue. 5106 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5107 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5108 "scalar epilogue instead.\n"); 5109 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5110 return MaxFactors; 5111 } 5112 5113 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5114 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5115 return FixedScalableVFPair::getNone(); 5116 } 5117 5118 if (TC == 0) { 5119 reportVectorizationFailure( 5120 "Unable to calculate the loop count due to complex control flow", 5121 "unable to calculate the loop count due to complex control flow", 5122 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5123 return FixedScalableVFPair::getNone(); 5124 } 5125 5126 reportVectorizationFailure( 5127 "Cannot optimize for size and vectorize at the same time.", 5128 "cannot optimize for size and vectorize at the same time. " 5129 "Enable vectorization of this loop with '#pragma clang loop " 5130 "vectorize(enable)' when compiling with -Os/-Oz", 5131 "NoTailLoopWithOptForSize", ORE, TheLoop); 5132 return FixedScalableVFPair::getNone(); 5133 } 5134 5135 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5136 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5137 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5138 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5139 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5140 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5141 : TargetTransformInfo::RGK_FixedWidthVector); 5142 5143 // Convenience function to return the minimum of two ElementCounts. 5144 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5145 assert((LHS.isScalable() == RHS.isScalable()) && 5146 "Scalable flags must match"); 5147 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5148 }; 5149 5150 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5151 // Note that both WidestRegister and WidestType may not be a powers of 2. 5152 auto MaxVectorElementCount = ElementCount::get( 5153 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5154 ComputeScalableMaxVF); 5155 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5156 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5157 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5158 5159 if (!MaxVectorElementCount) { 5160 LLVM_DEBUG(dbgs() << "LV: The target has no " 5161 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5162 << " vector registers.\n"); 5163 return ElementCount::getFixed(1); 5164 } 5165 5166 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5167 if (ConstTripCount && 5168 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5169 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5170 // If loop trip count (TC) is known at compile time there is no point in 5171 // choosing VF greater than TC (as done in the loop below). Select maximum 5172 // power of two which doesn't exceed TC. 5173 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5174 // when the TC is less than or equal to the known number of lanes. 5175 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5176 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5177 "exceeding the constant trip count: " 5178 << ClampedConstTripCount << "\n"); 5179 return ElementCount::getFixed(ClampedConstTripCount); 5180 } 5181 5182 ElementCount MaxVF = MaxVectorElementCount; 5183 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5184 TTI.shouldMaximizeVectorBandwidth())) { 5185 auto MaxVectorElementCountMaxBW = ElementCount::get( 5186 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5187 ComputeScalableMaxVF); 5188 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5189 5190 // Collect all viable vectorization factors larger than the default MaxVF 5191 // (i.e. MaxVectorElementCount). 5192 SmallVector<ElementCount, 8> VFs; 5193 for (ElementCount VS = MaxVectorElementCount * 2; 5194 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5195 VFs.push_back(VS); 5196 5197 // For each VF calculate its register usage. 5198 auto RUs = calculateRegisterUsage(VFs); 5199 5200 // Select the largest VF which doesn't require more registers than existing 5201 // ones. 5202 for (int i = RUs.size() - 1; i >= 0; --i) { 5203 bool Selected = true; 5204 for (auto &pair : RUs[i].MaxLocalUsers) { 5205 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5206 if (pair.second > TargetNumRegisters) 5207 Selected = false; 5208 } 5209 if (Selected) { 5210 MaxVF = VFs[i]; 5211 break; 5212 } 5213 } 5214 if (ElementCount MinVF = 5215 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5216 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5217 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5218 << ") with target's minimum: " << MinVF << '\n'); 5219 MaxVF = MinVF; 5220 } 5221 } 5222 5223 // Invalidate any widening decisions we might have made, in case the loop 5224 // requires prediction (decided later), but we have already made some 5225 // load/store widening decisions. 5226 invalidateCostModelingDecisions(); 5227 } 5228 return MaxVF; 5229 } 5230 5231 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5232 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5233 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5234 auto Min = Attr.getVScaleRangeMin(); 5235 auto Max = Attr.getVScaleRangeMax(); 5236 if (Max && Min == Max) 5237 return Max; 5238 } 5239 5240 return TTI.getVScaleForTuning(); 5241 } 5242 5243 bool LoopVectorizationCostModel::isMoreProfitable( 5244 const VectorizationFactor &A, const VectorizationFactor &B) const { 5245 InstructionCost CostA = A.Cost; 5246 InstructionCost CostB = B.Cost; 5247 5248 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5249 5250 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5251 MaxTripCount) { 5252 // If we are folding the tail and the trip count is a known (possibly small) 5253 // constant, the trip count will be rounded up to an integer number of 5254 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5255 // which we compare directly. When not folding the tail, the total cost will 5256 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5257 // approximated with the per-lane cost below instead of using the tripcount 5258 // as here. 5259 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5260 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5261 return RTCostA < RTCostB; 5262 } 5263 5264 // Improve estimate for the vector width if it is scalable. 5265 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5266 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5267 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5268 if (A.Width.isScalable()) 5269 EstimatedWidthA *= VScale.getValue(); 5270 if (B.Width.isScalable()) 5271 EstimatedWidthB *= VScale.getValue(); 5272 } 5273 5274 // Assume vscale may be larger than 1 (or the value being tuned for), 5275 // so that scalable vectorization is slightly favorable over fixed-width 5276 // vectorization. 5277 if (A.Width.isScalable() && !B.Width.isScalable()) 5278 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5279 5280 // To avoid the need for FP division: 5281 // (CostA / A.Width) < (CostB / B.Width) 5282 // <=> (CostA * B.Width) < (CostB * A.Width) 5283 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5284 } 5285 5286 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5287 const ElementCountSet &VFCandidates) { 5288 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5289 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5290 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5291 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5292 "Expected Scalar VF to be a candidate"); 5293 5294 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5295 VectorizationFactor ChosenFactor = ScalarCost; 5296 5297 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5298 if (ForceVectorization && VFCandidates.size() > 1) { 5299 // Ignore scalar width, because the user explicitly wants vectorization. 5300 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5301 // evaluation. 5302 ChosenFactor.Cost = InstructionCost::getMax(); 5303 } 5304 5305 SmallVector<InstructionVFPair> InvalidCosts; 5306 for (const auto &i : VFCandidates) { 5307 // The cost for scalar VF=1 is already calculated, so ignore it. 5308 if (i.isScalar()) 5309 continue; 5310 5311 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5312 VectorizationFactor Candidate(i, C.first); 5313 5314 #ifndef NDEBUG 5315 unsigned AssumedMinimumVscale = 1; 5316 if (Optional<unsigned> VScale = getVScaleForTuning()) 5317 AssumedMinimumVscale = VScale.getValue(); 5318 unsigned Width = 5319 Candidate.Width.isScalable() 5320 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5321 : Candidate.Width.getFixedValue(); 5322 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5323 << " costs: " << (Candidate.Cost / Width)); 5324 if (i.isScalable()) 5325 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5326 << AssumedMinimumVscale << ")"); 5327 LLVM_DEBUG(dbgs() << ".\n"); 5328 #endif 5329 5330 if (!C.second && !ForceVectorization) { 5331 LLVM_DEBUG( 5332 dbgs() << "LV: Not considering vector loop of width " << i 5333 << " because it will not generate any vector instructions.\n"); 5334 continue; 5335 } 5336 5337 // If profitable add it to ProfitableVF list. 5338 if (isMoreProfitable(Candidate, ScalarCost)) 5339 ProfitableVFs.push_back(Candidate); 5340 5341 if (isMoreProfitable(Candidate, ChosenFactor)) 5342 ChosenFactor = Candidate; 5343 } 5344 5345 // Emit a report of VFs with invalid costs in the loop. 5346 if (!InvalidCosts.empty()) { 5347 // Group the remarks per instruction, keeping the instruction order from 5348 // InvalidCosts. 5349 std::map<Instruction *, unsigned> Numbering; 5350 unsigned I = 0; 5351 for (auto &Pair : InvalidCosts) 5352 if (!Numbering.count(Pair.first)) 5353 Numbering[Pair.first] = I++; 5354 5355 // Sort the list, first on instruction(number) then on VF. 5356 llvm::sort(InvalidCosts, 5357 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5358 if (Numbering[A.first] != Numbering[B.first]) 5359 return Numbering[A.first] < Numbering[B.first]; 5360 ElementCountComparator ECC; 5361 return ECC(A.second, B.second); 5362 }); 5363 5364 // For a list of ordered instruction-vf pairs: 5365 // [(load, vf1), (load, vf2), (store, vf1)] 5366 // Group the instructions together to emit separate remarks for: 5367 // load (vf1, vf2) 5368 // store (vf1) 5369 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5370 auto Subset = ArrayRef<InstructionVFPair>(); 5371 do { 5372 if (Subset.empty()) 5373 Subset = Tail.take_front(1); 5374 5375 Instruction *I = Subset.front().first; 5376 5377 // If the next instruction is different, or if there are no other pairs, 5378 // emit a remark for the collated subset. e.g. 5379 // [(load, vf1), (load, vf2))] 5380 // to emit: 5381 // remark: invalid costs for 'load' at VF=(vf, vf2) 5382 if (Subset == Tail || Tail[Subset.size()].first != I) { 5383 std::string OutString; 5384 raw_string_ostream OS(OutString); 5385 assert(!Subset.empty() && "Unexpected empty range"); 5386 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5387 for (auto &Pair : Subset) 5388 OS << (Pair.second == Subset.front().second ? "" : ", ") 5389 << Pair.second; 5390 OS << "):"; 5391 if (auto *CI = dyn_cast<CallInst>(I)) 5392 OS << " call to " << CI->getCalledFunction()->getName(); 5393 else 5394 OS << " " << I->getOpcodeName(); 5395 OS.flush(); 5396 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5397 Tail = Tail.drop_front(Subset.size()); 5398 Subset = {}; 5399 } else 5400 // Grow the subset by one element 5401 Subset = Tail.take_front(Subset.size() + 1); 5402 } while (!Tail.empty()); 5403 } 5404 5405 if (!EnableCondStoresVectorization && NumPredStores) { 5406 reportVectorizationFailure("There are conditional stores.", 5407 "store that is conditionally executed prevents vectorization", 5408 "ConditionalStore", ORE, TheLoop); 5409 ChosenFactor = ScalarCost; 5410 } 5411 5412 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5413 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5414 << "LV: Vectorization seems to be not beneficial, " 5415 << "but was forced by a user.\n"); 5416 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5417 return ChosenFactor; 5418 } 5419 5420 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5421 const Loop &L, ElementCount VF) const { 5422 // Cross iteration phis such as reductions need special handling and are 5423 // currently unsupported. 5424 if (any_of(L.getHeader()->phis(), 5425 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5426 return false; 5427 5428 // Phis with uses outside of the loop require special handling and are 5429 // currently unsupported. 5430 for (auto &Entry : Legal->getInductionVars()) { 5431 // Look for uses of the value of the induction at the last iteration. 5432 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5433 for (User *U : PostInc->users()) 5434 if (!L.contains(cast<Instruction>(U))) 5435 return false; 5436 // Look for uses of penultimate value of the induction. 5437 for (User *U : Entry.first->users()) 5438 if (!L.contains(cast<Instruction>(U))) 5439 return false; 5440 } 5441 5442 // Induction variables that are widened require special handling that is 5443 // currently not supported. 5444 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5445 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5446 this->isProfitableToScalarize(Entry.first, VF)); 5447 })) 5448 return false; 5449 5450 // Epilogue vectorization code has not been auditted to ensure it handles 5451 // non-latch exits properly. It may be fine, but it needs auditted and 5452 // tested. 5453 if (L.getExitingBlock() != L.getLoopLatch()) 5454 return false; 5455 5456 return true; 5457 } 5458 5459 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5460 const ElementCount VF) const { 5461 // FIXME: We need a much better cost-model to take different parameters such 5462 // as register pressure, code size increase and cost of extra branches into 5463 // account. For now we apply a very crude heuristic and only consider loops 5464 // with vectorization factors larger than a certain value. 5465 // We also consider epilogue vectorization unprofitable for targets that don't 5466 // consider interleaving beneficial (eg. MVE). 5467 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5468 return false; 5469 // FIXME: We should consider changing the threshold for scalable 5470 // vectors to take VScaleForTuning into account. 5471 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5472 return true; 5473 return false; 5474 } 5475 5476 VectorizationFactor 5477 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5478 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5479 VectorizationFactor Result = VectorizationFactor::Disabled(); 5480 if (!EnableEpilogueVectorization) { 5481 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5482 return Result; 5483 } 5484 5485 if (!isScalarEpilogueAllowed()) { 5486 LLVM_DEBUG( 5487 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5488 "allowed.\n";); 5489 return Result; 5490 } 5491 5492 // Not really a cost consideration, but check for unsupported cases here to 5493 // simplify the logic. 5494 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5495 LLVM_DEBUG( 5496 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5497 "not a supported candidate.\n";); 5498 return Result; 5499 } 5500 5501 if (EpilogueVectorizationForceVF > 1) { 5502 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5503 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5504 if (LVP.hasPlanWithVF(ForcedEC)) 5505 return {ForcedEC, 0}; 5506 else { 5507 LLVM_DEBUG( 5508 dbgs() 5509 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5510 return Result; 5511 } 5512 } 5513 5514 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5515 TheLoop->getHeader()->getParent()->hasMinSize()) { 5516 LLVM_DEBUG( 5517 dbgs() 5518 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5519 return Result; 5520 } 5521 5522 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5523 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5524 "this loop\n"); 5525 return Result; 5526 } 5527 5528 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5529 // the main loop handles 8 lanes per iteration. We could still benefit from 5530 // vectorizing the epilogue loop with VF=4. 5531 ElementCount EstimatedRuntimeVF = MainLoopVF; 5532 if (MainLoopVF.isScalable()) { 5533 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5534 if (Optional<unsigned> VScale = getVScaleForTuning()) 5535 EstimatedRuntimeVF *= VScale.getValue(); 5536 } 5537 5538 for (auto &NextVF : ProfitableVFs) 5539 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5540 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5541 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5542 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5543 LVP.hasPlanWithVF(NextVF.Width)) 5544 Result = NextVF; 5545 5546 if (Result != VectorizationFactor::Disabled()) 5547 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5548 << Result.Width << "\n";); 5549 return Result; 5550 } 5551 5552 std::pair<unsigned, unsigned> 5553 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5554 unsigned MinWidth = -1U; 5555 unsigned MaxWidth = 8; 5556 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5557 // For in-loop reductions, no element types are added to ElementTypesInLoop 5558 // if there are no loads/stores in the loop. In this case, check through the 5559 // reduction variables to determine the maximum width. 5560 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5561 // Reset MaxWidth so that we can find the smallest type used by recurrences 5562 // in the loop. 5563 MaxWidth = -1U; 5564 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5565 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5566 // When finding the min width used by the recurrence we need to account 5567 // for casts on the input operands of the recurrence. 5568 MaxWidth = std::min<unsigned>( 5569 MaxWidth, std::min<unsigned>( 5570 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5571 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5572 } 5573 } else { 5574 for (Type *T : ElementTypesInLoop) { 5575 MinWidth = std::min<unsigned>( 5576 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5577 MaxWidth = std::max<unsigned>( 5578 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5579 } 5580 } 5581 return {MinWidth, MaxWidth}; 5582 } 5583 5584 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5585 ElementTypesInLoop.clear(); 5586 // For each block. 5587 for (BasicBlock *BB : TheLoop->blocks()) { 5588 // For each instruction in the loop. 5589 for (Instruction &I : BB->instructionsWithoutDebug()) { 5590 Type *T = I.getType(); 5591 5592 // Skip ignored values. 5593 if (ValuesToIgnore.count(&I)) 5594 continue; 5595 5596 // Only examine Loads, Stores and PHINodes. 5597 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5598 continue; 5599 5600 // Examine PHI nodes that are reduction variables. Update the type to 5601 // account for the recurrence type. 5602 if (auto *PN = dyn_cast<PHINode>(&I)) { 5603 if (!Legal->isReductionVariable(PN)) 5604 continue; 5605 const RecurrenceDescriptor &RdxDesc = 5606 Legal->getReductionVars().find(PN)->second; 5607 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5608 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5609 RdxDesc.getRecurrenceType(), 5610 TargetTransformInfo::ReductionFlags())) 5611 continue; 5612 T = RdxDesc.getRecurrenceType(); 5613 } 5614 5615 // Examine the stored values. 5616 if (auto *ST = dyn_cast<StoreInst>(&I)) 5617 T = ST->getValueOperand()->getType(); 5618 5619 assert(T->isSized() && 5620 "Expected the load/store/recurrence type to be sized"); 5621 5622 ElementTypesInLoop.insert(T); 5623 } 5624 } 5625 } 5626 5627 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5628 unsigned LoopCost) { 5629 // -- The interleave heuristics -- 5630 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5631 // There are many micro-architectural considerations that we can't predict 5632 // at this level. For example, frontend pressure (on decode or fetch) due to 5633 // code size, or the number and capabilities of the execution ports. 5634 // 5635 // We use the following heuristics to select the interleave count: 5636 // 1. If the code has reductions, then we interleave to break the cross 5637 // iteration dependency. 5638 // 2. If the loop is really small, then we interleave to reduce the loop 5639 // overhead. 5640 // 3. We don't interleave if we think that we will spill registers to memory 5641 // due to the increased register pressure. 5642 5643 if (!isScalarEpilogueAllowed()) 5644 return 1; 5645 5646 // We used the distance for the interleave count. 5647 if (Legal->getMaxSafeDepDistBytes() != -1U) 5648 return 1; 5649 5650 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5651 const bool HasReductions = !Legal->getReductionVars().empty(); 5652 // Do not interleave loops with a relatively small known or estimated trip 5653 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5654 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5655 // because with the above conditions interleaving can expose ILP and break 5656 // cross iteration dependences for reductions. 5657 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5658 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5659 return 1; 5660 5661 // If we did not calculate the cost for VF (because the user selected the VF) 5662 // then we calculate the cost of VF here. 5663 if (LoopCost == 0) { 5664 InstructionCost C = expectedCost(VF).first; 5665 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5666 LoopCost = *C.getValue(); 5667 5668 // Loop body is free and there is no need for interleaving. 5669 if (LoopCost == 0) 5670 return 1; 5671 } 5672 5673 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5674 // We divide by these constants so assume that we have at least one 5675 // instruction that uses at least one register. 5676 for (auto& pair : R.MaxLocalUsers) { 5677 pair.second = std::max(pair.second, 1U); 5678 } 5679 5680 // We calculate the interleave count using the following formula. 5681 // Subtract the number of loop invariants from the number of available 5682 // registers. These registers are used by all of the interleaved instances. 5683 // Next, divide the remaining registers by the number of registers that is 5684 // required by the loop, in order to estimate how many parallel instances 5685 // fit without causing spills. All of this is rounded down if necessary to be 5686 // a power of two. We want power of two interleave count to simplify any 5687 // addressing operations or alignment considerations. 5688 // We also want power of two interleave counts to ensure that the induction 5689 // variable of the vector loop wraps to zero, when tail is folded by masking; 5690 // this currently happens when OptForSize, in which case IC is set to 1 above. 5691 unsigned IC = UINT_MAX; 5692 5693 for (auto& pair : R.MaxLocalUsers) { 5694 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5695 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5696 << " registers of " 5697 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5698 if (VF.isScalar()) { 5699 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5700 TargetNumRegisters = ForceTargetNumScalarRegs; 5701 } else { 5702 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5703 TargetNumRegisters = ForceTargetNumVectorRegs; 5704 } 5705 unsigned MaxLocalUsers = pair.second; 5706 unsigned LoopInvariantRegs = 0; 5707 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5708 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5709 5710 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5711 // Don't count the induction variable as interleaved. 5712 if (EnableIndVarRegisterHeur) { 5713 TmpIC = 5714 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5715 std::max(1U, (MaxLocalUsers - 1))); 5716 } 5717 5718 IC = std::min(IC, TmpIC); 5719 } 5720 5721 // Clamp the interleave ranges to reasonable counts. 5722 unsigned MaxInterleaveCount = 5723 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5724 5725 // Check if the user has overridden the max. 5726 if (VF.isScalar()) { 5727 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5728 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5729 } else { 5730 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5731 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5732 } 5733 5734 // If trip count is known or estimated compile time constant, limit the 5735 // interleave count to be less than the trip count divided by VF, provided it 5736 // is at least 1. 5737 // 5738 // For scalable vectors we can't know if interleaving is beneficial. It may 5739 // not be beneficial for small loops if none of the lanes in the second vector 5740 // iterations is enabled. However, for larger loops, there is likely to be a 5741 // similar benefit as for fixed-width vectors. For now, we choose to leave 5742 // the InterleaveCount as if vscale is '1', although if some information about 5743 // the vector is known (e.g. min vector size), we can make a better decision. 5744 if (BestKnownTC) { 5745 MaxInterleaveCount = 5746 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5747 // Make sure MaxInterleaveCount is greater than 0. 5748 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5749 } 5750 5751 assert(MaxInterleaveCount > 0 && 5752 "Maximum interleave count must be greater than 0"); 5753 5754 // Clamp the calculated IC to be between the 1 and the max interleave count 5755 // that the target and trip count allows. 5756 if (IC > MaxInterleaveCount) 5757 IC = MaxInterleaveCount; 5758 else 5759 // Make sure IC is greater than 0. 5760 IC = std::max(1u, IC); 5761 5762 assert(IC > 0 && "Interleave count must be greater than 0."); 5763 5764 // Interleave if we vectorized this loop and there is a reduction that could 5765 // benefit from interleaving. 5766 if (VF.isVector() && HasReductions) { 5767 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5768 return IC; 5769 } 5770 5771 // For any scalar loop that either requires runtime checks or predication we 5772 // are better off leaving this to the unroller. Note that if we've already 5773 // vectorized the loop we will have done the runtime check and so interleaving 5774 // won't require further checks. 5775 bool ScalarInterleavingRequiresPredication = 5776 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5777 return Legal->blockNeedsPredication(BB); 5778 })); 5779 bool ScalarInterleavingRequiresRuntimePointerCheck = 5780 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5781 5782 // We want to interleave small loops in order to reduce the loop overhead and 5783 // potentially expose ILP opportunities. 5784 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5785 << "LV: IC is " << IC << '\n' 5786 << "LV: VF is " << VF << '\n'); 5787 const bool AggressivelyInterleaveReductions = 5788 TTI.enableAggressiveInterleaving(HasReductions); 5789 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5790 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5791 // We assume that the cost overhead is 1 and we use the cost model 5792 // to estimate the cost of the loop and interleave until the cost of the 5793 // loop overhead is about 5% of the cost of the loop. 5794 unsigned SmallIC = 5795 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5796 5797 // Interleave until store/load ports (estimated by max interleave count) are 5798 // saturated. 5799 unsigned NumStores = Legal->getNumStores(); 5800 unsigned NumLoads = Legal->getNumLoads(); 5801 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5802 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5803 5804 // There is little point in interleaving for reductions containing selects 5805 // and compares when VF=1 since it may just create more overhead than it's 5806 // worth for loops with small trip counts. This is because we still have to 5807 // do the final reduction after the loop. 5808 bool HasSelectCmpReductions = 5809 HasReductions && 5810 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5811 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5812 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5813 RdxDesc.getRecurrenceKind()); 5814 }); 5815 if (HasSelectCmpReductions) { 5816 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5817 return 1; 5818 } 5819 5820 // If we have a scalar reduction (vector reductions are already dealt with 5821 // by this point), we can increase the critical path length if the loop 5822 // we're interleaving is inside another loop. For tree-wise reductions 5823 // set the limit to 2, and for ordered reductions it's best to disable 5824 // interleaving entirely. 5825 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5826 bool HasOrderedReductions = 5827 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5828 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5829 return RdxDesc.isOrdered(); 5830 }); 5831 if (HasOrderedReductions) { 5832 LLVM_DEBUG( 5833 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5834 return 1; 5835 } 5836 5837 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5838 SmallIC = std::min(SmallIC, F); 5839 StoresIC = std::min(StoresIC, F); 5840 LoadsIC = std::min(LoadsIC, F); 5841 } 5842 5843 if (EnableLoadStoreRuntimeInterleave && 5844 std::max(StoresIC, LoadsIC) > SmallIC) { 5845 LLVM_DEBUG( 5846 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5847 return std::max(StoresIC, LoadsIC); 5848 } 5849 5850 // If there are scalar reductions and TTI has enabled aggressive 5851 // interleaving for reductions, we will interleave to expose ILP. 5852 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5853 AggressivelyInterleaveReductions) { 5854 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5855 // Interleave no less than SmallIC but not as aggressive as the normal IC 5856 // to satisfy the rare situation when resources are too limited. 5857 return std::max(IC / 2, SmallIC); 5858 } else { 5859 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5860 return SmallIC; 5861 } 5862 } 5863 5864 // Interleave if this is a large loop (small loops are already dealt with by 5865 // this point) that could benefit from interleaving. 5866 if (AggressivelyInterleaveReductions) { 5867 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5868 return IC; 5869 } 5870 5871 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5872 return 1; 5873 } 5874 5875 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5876 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5877 // This function calculates the register usage by measuring the highest number 5878 // of values that are alive at a single location. Obviously, this is a very 5879 // rough estimation. We scan the loop in a topological order in order and 5880 // assign a number to each instruction. We use RPO to ensure that defs are 5881 // met before their users. We assume that each instruction that has in-loop 5882 // users starts an interval. We record every time that an in-loop value is 5883 // used, so we have a list of the first and last occurrences of each 5884 // instruction. Next, we transpose this data structure into a multi map that 5885 // holds the list of intervals that *end* at a specific location. This multi 5886 // map allows us to perform a linear search. We scan the instructions linearly 5887 // and record each time that a new interval starts, by placing it in a set. 5888 // If we find this value in the multi-map then we remove it from the set. 5889 // The max register usage is the maximum size of the set. 5890 // We also search for instructions that are defined outside the loop, but are 5891 // used inside the loop. We need this number separately from the max-interval 5892 // usage number because when we unroll, loop-invariant values do not take 5893 // more register. 5894 LoopBlocksDFS DFS(TheLoop); 5895 DFS.perform(LI); 5896 5897 RegisterUsage RU; 5898 5899 // Each 'key' in the map opens a new interval. The values 5900 // of the map are the index of the 'last seen' usage of the 5901 // instruction that is the key. 5902 using IntervalMap = DenseMap<Instruction *, unsigned>; 5903 5904 // Maps instruction to its index. 5905 SmallVector<Instruction *, 64> IdxToInstr; 5906 // Marks the end of each interval. 5907 IntervalMap EndPoint; 5908 // Saves the list of instruction indices that are used in the loop. 5909 SmallPtrSet<Instruction *, 8> Ends; 5910 // Saves the list of values that are used in the loop but are 5911 // defined outside the loop, such as arguments and constants. 5912 SmallPtrSet<Value *, 8> LoopInvariants; 5913 5914 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5915 for (Instruction &I : BB->instructionsWithoutDebug()) { 5916 IdxToInstr.push_back(&I); 5917 5918 // Save the end location of each USE. 5919 for (Value *U : I.operands()) { 5920 auto *Instr = dyn_cast<Instruction>(U); 5921 5922 // Ignore non-instruction values such as arguments, constants, etc. 5923 if (!Instr) 5924 continue; 5925 5926 // If this instruction is outside the loop then record it and continue. 5927 if (!TheLoop->contains(Instr)) { 5928 LoopInvariants.insert(Instr); 5929 continue; 5930 } 5931 5932 // Overwrite previous end points. 5933 EndPoint[Instr] = IdxToInstr.size(); 5934 Ends.insert(Instr); 5935 } 5936 } 5937 } 5938 5939 // Saves the list of intervals that end with the index in 'key'. 5940 using InstrList = SmallVector<Instruction *, 2>; 5941 DenseMap<unsigned, InstrList> TransposeEnds; 5942 5943 // Transpose the EndPoints to a list of values that end at each index. 5944 for (auto &Interval : EndPoint) 5945 TransposeEnds[Interval.second].push_back(Interval.first); 5946 5947 SmallPtrSet<Instruction *, 8> OpenIntervals; 5948 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5949 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5950 5951 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5952 5953 // A lambda that gets the register usage for the given type and VF. 5954 const auto &TTICapture = TTI; 5955 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 5956 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5957 return 0; 5958 InstructionCost::CostType RegUsage = 5959 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 5960 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 5961 "Nonsensical values for register usage."); 5962 return RegUsage; 5963 }; 5964 5965 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5966 Instruction *I = IdxToInstr[i]; 5967 5968 // Remove all of the instructions that end at this location. 5969 InstrList &List = TransposeEnds[i]; 5970 for (Instruction *ToRemove : List) 5971 OpenIntervals.erase(ToRemove); 5972 5973 // Ignore instructions that are never used within the loop. 5974 if (!Ends.count(I)) 5975 continue; 5976 5977 // Skip ignored values. 5978 if (ValuesToIgnore.count(I)) 5979 continue; 5980 5981 // For each VF find the maximum usage of registers. 5982 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5983 // Count the number of live intervals. 5984 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5985 5986 if (VFs[j].isScalar()) { 5987 for (auto Inst : OpenIntervals) { 5988 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5989 if (RegUsage.find(ClassID) == RegUsage.end()) 5990 RegUsage[ClassID] = 1; 5991 else 5992 RegUsage[ClassID] += 1; 5993 } 5994 } else { 5995 collectUniformsAndScalars(VFs[j]); 5996 for (auto Inst : OpenIntervals) { 5997 // Skip ignored values for VF > 1. 5998 if (VecValuesToIgnore.count(Inst)) 5999 continue; 6000 if (isScalarAfterVectorization(Inst, VFs[j])) { 6001 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6002 if (RegUsage.find(ClassID) == RegUsage.end()) 6003 RegUsage[ClassID] = 1; 6004 else 6005 RegUsage[ClassID] += 1; 6006 } else { 6007 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6008 if (RegUsage.find(ClassID) == RegUsage.end()) 6009 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6010 else 6011 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6012 } 6013 } 6014 } 6015 6016 for (auto& pair : RegUsage) { 6017 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6018 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6019 else 6020 MaxUsages[j][pair.first] = pair.second; 6021 } 6022 } 6023 6024 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6025 << OpenIntervals.size() << '\n'); 6026 6027 // Add the current instruction to the list of open intervals. 6028 OpenIntervals.insert(I); 6029 } 6030 6031 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6032 SmallMapVector<unsigned, unsigned, 4> Invariant; 6033 6034 for (auto Inst : LoopInvariants) { 6035 unsigned Usage = 6036 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6037 unsigned ClassID = 6038 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6039 if (Invariant.find(ClassID) == Invariant.end()) 6040 Invariant[ClassID] = Usage; 6041 else 6042 Invariant[ClassID] += Usage; 6043 } 6044 6045 LLVM_DEBUG({ 6046 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6047 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6048 << " item\n"; 6049 for (const auto &pair : MaxUsages[i]) { 6050 dbgs() << "LV(REG): RegisterClass: " 6051 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6052 << " registers\n"; 6053 } 6054 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6055 << " item\n"; 6056 for (const auto &pair : Invariant) { 6057 dbgs() << "LV(REG): RegisterClass: " 6058 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6059 << " registers\n"; 6060 } 6061 }); 6062 6063 RU.LoopInvariantRegs = Invariant; 6064 RU.MaxLocalUsers = MaxUsages[i]; 6065 RUs[i] = RU; 6066 } 6067 6068 return RUs; 6069 } 6070 6071 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6072 ElementCount VF) { 6073 // TODO: Cost model for emulated masked load/store is completely 6074 // broken. This hack guides the cost model to use an artificially 6075 // high enough value to practically disable vectorization with such 6076 // operations, except where previously deployed legality hack allowed 6077 // using very low cost values. This is to avoid regressions coming simply 6078 // from moving "masked load/store" check from legality to cost model. 6079 // Masked Load/Gather emulation was previously never allowed. 6080 // Limited number of Masked Store/Scatter emulation was allowed. 6081 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6082 return isa<LoadInst>(I) || 6083 (isa<StoreInst>(I) && 6084 NumPredStores > NumberOfStoresToPredicate); 6085 } 6086 6087 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6088 // If we aren't vectorizing the loop, or if we've already collected the 6089 // instructions to scalarize, there's nothing to do. Collection may already 6090 // have occurred if we have a user-selected VF and are now computing the 6091 // expected cost for interleaving. 6092 if (VF.isScalar() || VF.isZero() || 6093 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6094 return; 6095 6096 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6097 // not profitable to scalarize any instructions, the presence of VF in the 6098 // map will indicate that we've analyzed it already. 6099 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6100 6101 // Find all the instructions that are scalar with predication in the loop and 6102 // determine if it would be better to not if-convert the blocks they are in. 6103 // If so, we also record the instructions to scalarize. 6104 for (BasicBlock *BB : TheLoop->blocks()) { 6105 if (!blockNeedsPredicationForAnyReason(BB)) 6106 continue; 6107 for (Instruction &I : *BB) 6108 if (isScalarWithPredication(&I, VF)) { 6109 ScalarCostsTy ScalarCosts; 6110 // Do not apply discount if scalable, because that would lead to 6111 // invalid scalarization costs. 6112 // Do not apply discount logic if hacked cost is needed 6113 // for emulated masked memrefs. 6114 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6115 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6116 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6117 // Remember that BB will remain after vectorization. 6118 PredicatedBBsAfterVectorization.insert(BB); 6119 } 6120 } 6121 } 6122 6123 int LoopVectorizationCostModel::computePredInstDiscount( 6124 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6125 assert(!isUniformAfterVectorization(PredInst, VF) && 6126 "Instruction marked uniform-after-vectorization will be predicated"); 6127 6128 // Initialize the discount to zero, meaning that the scalar version and the 6129 // vector version cost the same. 6130 InstructionCost Discount = 0; 6131 6132 // Holds instructions to analyze. The instructions we visit are mapped in 6133 // ScalarCosts. Those instructions are the ones that would be scalarized if 6134 // we find that the scalar version costs less. 6135 SmallVector<Instruction *, 8> Worklist; 6136 6137 // Returns true if the given instruction can be scalarized. 6138 auto canBeScalarized = [&](Instruction *I) -> bool { 6139 // We only attempt to scalarize instructions forming a single-use chain 6140 // from the original predicated block that would otherwise be vectorized. 6141 // Although not strictly necessary, we give up on instructions we know will 6142 // already be scalar to avoid traversing chains that are unlikely to be 6143 // beneficial. 6144 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6145 isScalarAfterVectorization(I, VF)) 6146 return false; 6147 6148 // If the instruction is scalar with predication, it will be analyzed 6149 // separately. We ignore it within the context of PredInst. 6150 if (isScalarWithPredication(I, VF)) 6151 return false; 6152 6153 // If any of the instruction's operands are uniform after vectorization, 6154 // the instruction cannot be scalarized. This prevents, for example, a 6155 // masked load from being scalarized. 6156 // 6157 // We assume we will only emit a value for lane zero of an instruction 6158 // marked uniform after vectorization, rather than VF identical values. 6159 // Thus, if we scalarize an instruction that uses a uniform, we would 6160 // create uses of values corresponding to the lanes we aren't emitting code 6161 // for. This behavior can be changed by allowing getScalarValue to clone 6162 // the lane zero values for uniforms rather than asserting. 6163 for (Use &U : I->operands()) 6164 if (auto *J = dyn_cast<Instruction>(U.get())) 6165 if (isUniformAfterVectorization(J, VF)) 6166 return false; 6167 6168 // Otherwise, we can scalarize the instruction. 6169 return true; 6170 }; 6171 6172 // Compute the expected cost discount from scalarizing the entire expression 6173 // feeding the predicated instruction. We currently only consider expressions 6174 // that are single-use instruction chains. 6175 Worklist.push_back(PredInst); 6176 while (!Worklist.empty()) { 6177 Instruction *I = Worklist.pop_back_val(); 6178 6179 // If we've already analyzed the instruction, there's nothing to do. 6180 if (ScalarCosts.find(I) != ScalarCosts.end()) 6181 continue; 6182 6183 // Compute the cost of the vector instruction. Note that this cost already 6184 // includes the scalarization overhead of the predicated instruction. 6185 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6186 6187 // Compute the cost of the scalarized instruction. This cost is the cost of 6188 // the instruction as if it wasn't if-converted and instead remained in the 6189 // predicated block. We will scale this cost by block probability after 6190 // computing the scalarization overhead. 6191 InstructionCost ScalarCost = 6192 VF.getFixedValue() * 6193 getInstructionCost(I, ElementCount::getFixed(1)).first; 6194 6195 // Compute the scalarization overhead of needed insertelement instructions 6196 // and phi nodes. 6197 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6198 ScalarCost += TTI.getScalarizationOverhead( 6199 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6200 APInt::getAllOnes(VF.getFixedValue()), true, false); 6201 ScalarCost += 6202 VF.getFixedValue() * 6203 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6204 } 6205 6206 // Compute the scalarization overhead of needed extractelement 6207 // instructions. For each of the instruction's operands, if the operand can 6208 // be scalarized, add it to the worklist; otherwise, account for the 6209 // overhead. 6210 for (Use &U : I->operands()) 6211 if (auto *J = dyn_cast<Instruction>(U.get())) { 6212 assert(VectorType::isValidElementType(J->getType()) && 6213 "Instruction has non-scalar type"); 6214 if (canBeScalarized(J)) 6215 Worklist.push_back(J); 6216 else if (needsExtract(J, VF)) { 6217 ScalarCost += TTI.getScalarizationOverhead( 6218 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6219 APInt::getAllOnes(VF.getFixedValue()), false, true); 6220 } 6221 } 6222 6223 // Scale the total scalar cost by block probability. 6224 ScalarCost /= getReciprocalPredBlockProb(); 6225 6226 // Compute the discount. A non-negative discount means the vector version 6227 // of the instruction costs more, and scalarizing would be beneficial. 6228 Discount += VectorCost - ScalarCost; 6229 ScalarCosts[I] = ScalarCost; 6230 } 6231 6232 return *Discount.getValue(); 6233 } 6234 6235 LoopVectorizationCostModel::VectorizationCostTy 6236 LoopVectorizationCostModel::expectedCost( 6237 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6238 VectorizationCostTy Cost; 6239 6240 // For each block. 6241 for (BasicBlock *BB : TheLoop->blocks()) { 6242 VectorizationCostTy BlockCost; 6243 6244 // For each instruction in the old loop. 6245 for (Instruction &I : BB->instructionsWithoutDebug()) { 6246 // Skip ignored values. 6247 if (ValuesToIgnore.count(&I) || 6248 (VF.isVector() && VecValuesToIgnore.count(&I))) 6249 continue; 6250 6251 VectorizationCostTy C = getInstructionCost(&I, VF); 6252 6253 // Check if we should override the cost. 6254 if (C.first.isValid() && 6255 ForceTargetInstructionCost.getNumOccurrences() > 0) 6256 C.first = InstructionCost(ForceTargetInstructionCost); 6257 6258 // Keep a list of instructions with invalid costs. 6259 if (Invalid && !C.first.isValid()) 6260 Invalid->emplace_back(&I, VF); 6261 6262 BlockCost.first += C.first; 6263 BlockCost.second |= C.second; 6264 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6265 << " for VF " << VF << " For instruction: " << I 6266 << '\n'); 6267 } 6268 6269 // If we are vectorizing a predicated block, it will have been 6270 // if-converted. This means that the block's instructions (aside from 6271 // stores and instructions that may divide by zero) will now be 6272 // unconditionally executed. For the scalar case, we may not always execute 6273 // the predicated block, if it is an if-else block. Thus, scale the block's 6274 // cost by the probability of executing it. blockNeedsPredication from 6275 // Legal is used so as to not include all blocks in tail folded loops. 6276 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6277 BlockCost.first /= getReciprocalPredBlockProb(); 6278 6279 Cost.first += BlockCost.first; 6280 Cost.second |= BlockCost.second; 6281 } 6282 6283 return Cost; 6284 } 6285 6286 /// Gets Address Access SCEV after verifying that the access pattern 6287 /// is loop invariant except the induction variable dependence. 6288 /// 6289 /// This SCEV can be sent to the Target in order to estimate the address 6290 /// calculation cost. 6291 static const SCEV *getAddressAccessSCEV( 6292 Value *Ptr, 6293 LoopVectorizationLegality *Legal, 6294 PredicatedScalarEvolution &PSE, 6295 const Loop *TheLoop) { 6296 6297 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6298 if (!Gep) 6299 return nullptr; 6300 6301 // We are looking for a gep with all loop invariant indices except for one 6302 // which should be an induction variable. 6303 auto SE = PSE.getSE(); 6304 unsigned NumOperands = Gep->getNumOperands(); 6305 for (unsigned i = 1; i < NumOperands; ++i) { 6306 Value *Opd = Gep->getOperand(i); 6307 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6308 !Legal->isInductionVariable(Opd)) 6309 return nullptr; 6310 } 6311 6312 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6313 return PSE.getSCEV(Ptr); 6314 } 6315 6316 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6317 return Legal->hasStride(I->getOperand(0)) || 6318 Legal->hasStride(I->getOperand(1)); 6319 } 6320 6321 InstructionCost 6322 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6323 ElementCount VF) { 6324 assert(VF.isVector() && 6325 "Scalarization cost of instruction implies vectorization."); 6326 if (VF.isScalable()) 6327 return InstructionCost::getInvalid(); 6328 6329 Type *ValTy = getLoadStoreType(I); 6330 auto SE = PSE.getSE(); 6331 6332 unsigned AS = getLoadStoreAddressSpace(I); 6333 Value *Ptr = getLoadStorePointerOperand(I); 6334 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6335 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6336 // that it is being called from this specific place. 6337 6338 // Figure out whether the access is strided and get the stride value 6339 // if it's known in compile time 6340 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6341 6342 // Get the cost of the scalar memory instruction and address computation. 6343 InstructionCost Cost = 6344 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6345 6346 // Don't pass *I here, since it is scalar but will actually be part of a 6347 // vectorized loop where the user of it is a vectorized instruction. 6348 const Align Alignment = getLoadStoreAlignment(I); 6349 Cost += VF.getKnownMinValue() * 6350 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6351 AS, TTI::TCK_RecipThroughput); 6352 6353 // Get the overhead of the extractelement and insertelement instructions 6354 // we might create due to scalarization. 6355 Cost += getScalarizationOverhead(I, VF); 6356 6357 // If we have a predicated load/store, it will need extra i1 extracts and 6358 // conditional branches, but may not be executed for each vector lane. Scale 6359 // the cost by the probability of executing the predicated block. 6360 if (isPredicatedInst(I, VF)) { 6361 Cost /= getReciprocalPredBlockProb(); 6362 6363 // Add the cost of an i1 extract and a branch 6364 auto *Vec_i1Ty = 6365 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6366 Cost += TTI.getScalarizationOverhead( 6367 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6368 /*Insert=*/false, /*Extract=*/true); 6369 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6370 6371 if (useEmulatedMaskMemRefHack(I, VF)) 6372 // Artificially setting to a high enough value to practically disable 6373 // vectorization with such operations. 6374 Cost = 3000000; 6375 } 6376 6377 return Cost; 6378 } 6379 6380 InstructionCost 6381 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6382 ElementCount VF) { 6383 Type *ValTy = getLoadStoreType(I); 6384 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6385 Value *Ptr = getLoadStorePointerOperand(I); 6386 unsigned AS = getLoadStoreAddressSpace(I); 6387 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6388 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6389 6390 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6391 "Stride should be 1 or -1 for consecutive memory access"); 6392 const Align Alignment = getLoadStoreAlignment(I); 6393 InstructionCost Cost = 0; 6394 if (Legal->isMaskRequired(I)) 6395 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6396 CostKind); 6397 else 6398 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6399 CostKind, I); 6400 6401 bool Reverse = ConsecutiveStride < 0; 6402 if (Reverse) 6403 Cost += 6404 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6405 return Cost; 6406 } 6407 6408 InstructionCost 6409 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6410 ElementCount VF) { 6411 assert(Legal->isUniformMemOp(*I)); 6412 6413 Type *ValTy = getLoadStoreType(I); 6414 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6415 const Align Alignment = getLoadStoreAlignment(I); 6416 unsigned AS = getLoadStoreAddressSpace(I); 6417 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6418 if (isa<LoadInst>(I)) { 6419 return TTI.getAddressComputationCost(ValTy) + 6420 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6421 CostKind) + 6422 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6423 } 6424 StoreInst *SI = cast<StoreInst>(I); 6425 6426 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6427 return TTI.getAddressComputationCost(ValTy) + 6428 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6429 CostKind) + 6430 (isLoopInvariantStoreValue 6431 ? 0 6432 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6433 VF.getKnownMinValue() - 1)); 6434 } 6435 6436 InstructionCost 6437 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6438 ElementCount VF) { 6439 Type *ValTy = getLoadStoreType(I); 6440 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6441 const Align Alignment = getLoadStoreAlignment(I); 6442 const Value *Ptr = getLoadStorePointerOperand(I); 6443 6444 return TTI.getAddressComputationCost(VectorTy) + 6445 TTI.getGatherScatterOpCost( 6446 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6447 TargetTransformInfo::TCK_RecipThroughput, I); 6448 } 6449 6450 InstructionCost 6451 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6452 ElementCount VF) { 6453 // TODO: Once we have support for interleaving with scalable vectors 6454 // we can calculate the cost properly here. 6455 if (VF.isScalable()) 6456 return InstructionCost::getInvalid(); 6457 6458 Type *ValTy = getLoadStoreType(I); 6459 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6460 unsigned AS = getLoadStoreAddressSpace(I); 6461 6462 auto Group = getInterleavedAccessGroup(I); 6463 assert(Group && "Fail to get an interleaved access group."); 6464 6465 unsigned InterleaveFactor = Group->getFactor(); 6466 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6467 6468 // Holds the indices of existing members in the interleaved group. 6469 SmallVector<unsigned, 4> Indices; 6470 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6471 if (Group->getMember(IF)) 6472 Indices.push_back(IF); 6473 6474 // Calculate the cost of the whole interleaved group. 6475 bool UseMaskForGaps = 6476 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6477 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6478 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6479 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6480 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6481 6482 if (Group->isReverse()) { 6483 // TODO: Add support for reversed masked interleaved access. 6484 assert(!Legal->isMaskRequired(I) && 6485 "Reverse masked interleaved access not supported."); 6486 Cost += 6487 Group->getNumMembers() * 6488 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6489 } 6490 return Cost; 6491 } 6492 6493 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6494 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6495 using namespace llvm::PatternMatch; 6496 // Early exit for no inloop reductions 6497 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6498 return None; 6499 auto *VectorTy = cast<VectorType>(Ty); 6500 6501 // We are looking for a pattern of, and finding the minimal acceptable cost: 6502 // reduce(mul(ext(A), ext(B))) or 6503 // reduce(mul(A, B)) or 6504 // reduce(ext(A)) or 6505 // reduce(A). 6506 // The basic idea is that we walk down the tree to do that, finding the root 6507 // reduction instruction in InLoopReductionImmediateChains. From there we find 6508 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6509 // of the components. If the reduction cost is lower then we return it for the 6510 // reduction instruction and 0 for the other instructions in the pattern. If 6511 // it is not we return an invalid cost specifying the orignal cost method 6512 // should be used. 6513 Instruction *RetI = I; 6514 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6515 if (!RetI->hasOneUser()) 6516 return None; 6517 RetI = RetI->user_back(); 6518 } 6519 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6520 RetI->user_back()->getOpcode() == Instruction::Add) { 6521 if (!RetI->hasOneUser()) 6522 return None; 6523 RetI = RetI->user_back(); 6524 } 6525 6526 // Test if the found instruction is a reduction, and if not return an invalid 6527 // cost specifying the parent to use the original cost modelling. 6528 if (!InLoopReductionImmediateChains.count(RetI)) 6529 return None; 6530 6531 // Find the reduction this chain is a part of and calculate the basic cost of 6532 // the reduction on its own. 6533 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6534 Instruction *ReductionPhi = LastChain; 6535 while (!isa<PHINode>(ReductionPhi)) 6536 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6537 6538 const RecurrenceDescriptor &RdxDesc = 6539 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6540 6541 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6542 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6543 6544 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6545 // normal fmul instruction to the cost of the fadd reduction. 6546 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6547 BaseCost += 6548 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6549 6550 // If we're using ordered reductions then we can just return the base cost 6551 // here, since getArithmeticReductionCost calculates the full ordered 6552 // reduction cost when FP reassociation is not allowed. 6553 if (useOrderedReductions(RdxDesc)) 6554 return BaseCost; 6555 6556 // Get the operand that was not the reduction chain and match it to one of the 6557 // patterns, returning the better cost if it is found. 6558 Instruction *RedOp = RetI->getOperand(1) == LastChain 6559 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6560 : dyn_cast<Instruction>(RetI->getOperand(1)); 6561 6562 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6563 6564 Instruction *Op0, *Op1; 6565 if (RedOp && 6566 match(RedOp, 6567 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6568 match(Op0, m_ZExtOrSExt(m_Value())) && 6569 Op0->getOpcode() == Op1->getOpcode() && 6570 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6571 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6572 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6573 6574 // Matched reduce(ext(mul(ext(A), ext(B))) 6575 // Note that the extend opcodes need to all match, or if A==B they will have 6576 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6577 // which is equally fine. 6578 bool IsUnsigned = isa<ZExtInst>(Op0); 6579 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6580 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6581 6582 InstructionCost ExtCost = 6583 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6584 TTI::CastContextHint::None, CostKind, Op0); 6585 InstructionCost MulCost = 6586 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6587 InstructionCost Ext2Cost = 6588 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6589 TTI::CastContextHint::None, CostKind, RedOp); 6590 6591 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6592 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6593 CostKind); 6594 6595 if (RedCost.isValid() && 6596 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6597 return I == RetI ? RedCost : 0; 6598 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6599 !TheLoop->isLoopInvariant(RedOp)) { 6600 // Matched reduce(ext(A)) 6601 bool IsUnsigned = isa<ZExtInst>(RedOp); 6602 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6603 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6604 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6605 CostKind); 6606 6607 InstructionCost ExtCost = 6608 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6609 TTI::CastContextHint::None, CostKind, RedOp); 6610 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6611 return I == RetI ? RedCost : 0; 6612 } else if (RedOp && 6613 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6614 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6615 Op0->getOpcode() == Op1->getOpcode() && 6616 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6617 bool IsUnsigned = isa<ZExtInst>(Op0); 6618 Type *Op0Ty = Op0->getOperand(0)->getType(); 6619 Type *Op1Ty = Op1->getOperand(0)->getType(); 6620 Type *LargestOpTy = 6621 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6622 : Op0Ty; 6623 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6624 6625 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6626 // different sizes. We take the largest type as the ext to reduce, and add 6627 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6628 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6629 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6630 TTI::CastContextHint::None, CostKind, Op0); 6631 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6632 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6633 TTI::CastContextHint::None, CostKind, Op1); 6634 InstructionCost MulCost = 6635 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6636 6637 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6638 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6639 CostKind); 6640 InstructionCost ExtraExtCost = 0; 6641 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6642 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6643 ExtraExtCost = TTI.getCastInstrCost( 6644 ExtraExtOp->getOpcode(), ExtType, 6645 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6646 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6647 } 6648 6649 if (RedCost.isValid() && 6650 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6651 return I == RetI ? RedCost : 0; 6652 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6653 // Matched reduce(mul()) 6654 InstructionCost MulCost = 6655 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6656 6657 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6658 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6659 CostKind); 6660 6661 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6662 return I == RetI ? RedCost : 0; 6663 } 6664 } 6665 6666 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6667 } 6668 6669 InstructionCost 6670 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6671 ElementCount VF) { 6672 // Calculate scalar cost only. Vectorization cost should be ready at this 6673 // moment. 6674 if (VF.isScalar()) { 6675 Type *ValTy = getLoadStoreType(I); 6676 const Align Alignment = getLoadStoreAlignment(I); 6677 unsigned AS = getLoadStoreAddressSpace(I); 6678 6679 return TTI.getAddressComputationCost(ValTy) + 6680 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6681 TTI::TCK_RecipThroughput, I); 6682 } 6683 return getWideningCost(I, VF); 6684 } 6685 6686 LoopVectorizationCostModel::VectorizationCostTy 6687 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6688 ElementCount VF) { 6689 // If we know that this instruction will remain uniform, check the cost of 6690 // the scalar version. 6691 if (isUniformAfterVectorization(I, VF)) 6692 VF = ElementCount::getFixed(1); 6693 6694 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6695 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6696 6697 // Forced scalars do not have any scalarization overhead. 6698 auto ForcedScalar = ForcedScalars.find(VF); 6699 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6700 auto InstSet = ForcedScalar->second; 6701 if (InstSet.count(I)) 6702 return VectorizationCostTy( 6703 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6704 VF.getKnownMinValue()), 6705 false); 6706 } 6707 6708 Type *VectorTy; 6709 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6710 6711 bool TypeNotScalarized = false; 6712 if (VF.isVector() && VectorTy->isVectorTy()) { 6713 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6714 if (NumParts) 6715 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6716 else 6717 C = InstructionCost::getInvalid(); 6718 } 6719 return VectorizationCostTy(C, TypeNotScalarized); 6720 } 6721 6722 InstructionCost 6723 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6724 ElementCount VF) const { 6725 6726 // There is no mechanism yet to create a scalable scalarization loop, 6727 // so this is currently Invalid. 6728 if (VF.isScalable()) 6729 return InstructionCost::getInvalid(); 6730 6731 if (VF.isScalar()) 6732 return 0; 6733 6734 InstructionCost Cost = 0; 6735 Type *RetTy = ToVectorTy(I->getType(), VF); 6736 if (!RetTy->isVoidTy() && 6737 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6738 Cost += TTI.getScalarizationOverhead( 6739 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6740 false); 6741 6742 // Some targets keep addresses scalar. 6743 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6744 return Cost; 6745 6746 // Some targets support efficient element stores. 6747 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6748 return Cost; 6749 6750 // Collect operands to consider. 6751 CallInst *CI = dyn_cast<CallInst>(I); 6752 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6753 6754 // Skip operands that do not require extraction/scalarization and do not incur 6755 // any overhead. 6756 SmallVector<Type *> Tys; 6757 for (auto *V : filterExtractingOperands(Ops, VF)) 6758 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6759 return Cost + TTI.getOperandsScalarizationOverhead( 6760 filterExtractingOperands(Ops, VF), Tys); 6761 } 6762 6763 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6764 if (VF.isScalar()) 6765 return; 6766 NumPredStores = 0; 6767 for (BasicBlock *BB : TheLoop->blocks()) { 6768 // For each instruction in the old loop. 6769 for (Instruction &I : *BB) { 6770 Value *Ptr = getLoadStorePointerOperand(&I); 6771 if (!Ptr) 6772 continue; 6773 6774 // TODO: We should generate better code and update the cost model for 6775 // predicated uniform stores. Today they are treated as any other 6776 // predicated store (see added test cases in 6777 // invariant-store-vectorization.ll). 6778 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6779 NumPredStores++; 6780 6781 if (Legal->isUniformMemOp(I)) { 6782 // TODO: Avoid replicating loads and stores instead of 6783 // relying on instcombine to remove them. 6784 // Load: Scalar load + broadcast 6785 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6786 InstructionCost Cost; 6787 if (isa<StoreInst>(&I) && VF.isScalable() && 6788 isLegalGatherOrScatter(&I, VF)) { 6789 Cost = getGatherScatterCost(&I, VF); 6790 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6791 } else { 6792 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 6793 "Cannot yet scalarize uniform stores"); 6794 Cost = getUniformMemOpCost(&I, VF); 6795 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6796 } 6797 continue; 6798 } 6799 6800 // We assume that widening is the best solution when possible. 6801 if (memoryInstructionCanBeWidened(&I, VF)) { 6802 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6803 int ConsecutiveStride = Legal->isConsecutivePtr( 6804 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6805 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6806 "Expected consecutive stride."); 6807 InstWidening Decision = 6808 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6809 setWideningDecision(&I, VF, Decision, Cost); 6810 continue; 6811 } 6812 6813 // Choose between Interleaving, Gather/Scatter or Scalarization. 6814 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6815 unsigned NumAccesses = 1; 6816 if (isAccessInterleaved(&I)) { 6817 auto Group = getInterleavedAccessGroup(&I); 6818 assert(Group && "Fail to get an interleaved access group."); 6819 6820 // Make one decision for the whole group. 6821 if (getWideningDecision(&I, VF) != CM_Unknown) 6822 continue; 6823 6824 NumAccesses = Group->getNumMembers(); 6825 if (interleavedAccessCanBeWidened(&I, VF)) 6826 InterleaveCost = getInterleaveGroupCost(&I, VF); 6827 } 6828 6829 InstructionCost GatherScatterCost = 6830 isLegalGatherOrScatter(&I, VF) 6831 ? getGatherScatterCost(&I, VF) * NumAccesses 6832 : InstructionCost::getInvalid(); 6833 6834 InstructionCost ScalarizationCost = 6835 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6836 6837 // Choose better solution for the current VF, 6838 // write down this decision and use it during vectorization. 6839 InstructionCost Cost; 6840 InstWidening Decision; 6841 if (InterleaveCost <= GatherScatterCost && 6842 InterleaveCost < ScalarizationCost) { 6843 Decision = CM_Interleave; 6844 Cost = InterleaveCost; 6845 } else if (GatherScatterCost < ScalarizationCost) { 6846 Decision = CM_GatherScatter; 6847 Cost = GatherScatterCost; 6848 } else { 6849 Decision = CM_Scalarize; 6850 Cost = ScalarizationCost; 6851 } 6852 // If the instructions belongs to an interleave group, the whole group 6853 // receives the same decision. The whole group receives the cost, but 6854 // the cost will actually be assigned to one instruction. 6855 if (auto Group = getInterleavedAccessGroup(&I)) 6856 setWideningDecision(Group, VF, Decision, Cost); 6857 else 6858 setWideningDecision(&I, VF, Decision, Cost); 6859 } 6860 } 6861 6862 // Make sure that any load of address and any other address computation 6863 // remains scalar unless there is gather/scatter support. This avoids 6864 // inevitable extracts into address registers, and also has the benefit of 6865 // activating LSR more, since that pass can't optimize vectorized 6866 // addresses. 6867 if (TTI.prefersVectorizedAddressing()) 6868 return; 6869 6870 // Start with all scalar pointer uses. 6871 SmallPtrSet<Instruction *, 8> AddrDefs; 6872 for (BasicBlock *BB : TheLoop->blocks()) 6873 for (Instruction &I : *BB) { 6874 Instruction *PtrDef = 6875 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6876 if (PtrDef && TheLoop->contains(PtrDef) && 6877 getWideningDecision(&I, VF) != CM_GatherScatter) 6878 AddrDefs.insert(PtrDef); 6879 } 6880 6881 // Add all instructions used to generate the addresses. 6882 SmallVector<Instruction *, 4> Worklist; 6883 append_range(Worklist, AddrDefs); 6884 while (!Worklist.empty()) { 6885 Instruction *I = Worklist.pop_back_val(); 6886 for (auto &Op : I->operands()) 6887 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6888 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6889 AddrDefs.insert(InstOp).second) 6890 Worklist.push_back(InstOp); 6891 } 6892 6893 for (auto *I : AddrDefs) { 6894 if (isa<LoadInst>(I)) { 6895 // Setting the desired widening decision should ideally be handled in 6896 // by cost functions, but since this involves the task of finding out 6897 // if the loaded register is involved in an address computation, it is 6898 // instead changed here when we know this is the case. 6899 InstWidening Decision = getWideningDecision(I, VF); 6900 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6901 // Scalarize a widened load of address. 6902 setWideningDecision( 6903 I, VF, CM_Scalarize, 6904 (VF.getKnownMinValue() * 6905 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6906 else if (auto Group = getInterleavedAccessGroup(I)) { 6907 // Scalarize an interleave group of address loads. 6908 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6909 if (Instruction *Member = Group->getMember(I)) 6910 setWideningDecision( 6911 Member, VF, CM_Scalarize, 6912 (VF.getKnownMinValue() * 6913 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6914 } 6915 } 6916 } else 6917 // Make sure I gets scalarized and a cost estimate without 6918 // scalarization overhead. 6919 ForcedScalars[VF].insert(I); 6920 } 6921 } 6922 6923 InstructionCost 6924 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6925 Type *&VectorTy) { 6926 Type *RetTy = I->getType(); 6927 if (canTruncateToMinimalBitwidth(I, VF)) 6928 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6929 auto SE = PSE.getSE(); 6930 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6931 6932 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6933 ElementCount VF) -> bool { 6934 if (VF.isScalar()) 6935 return true; 6936 6937 auto Scalarized = InstsToScalarize.find(VF); 6938 assert(Scalarized != InstsToScalarize.end() && 6939 "VF not yet analyzed for scalarization profitability"); 6940 return !Scalarized->second.count(I) && 6941 llvm::all_of(I->users(), [&](User *U) { 6942 auto *UI = cast<Instruction>(U); 6943 return !Scalarized->second.count(UI); 6944 }); 6945 }; 6946 (void) hasSingleCopyAfterVectorization; 6947 6948 if (isScalarAfterVectorization(I, VF)) { 6949 // With the exception of GEPs and PHIs, after scalarization there should 6950 // only be one copy of the instruction generated in the loop. This is 6951 // because the VF is either 1, or any instructions that need scalarizing 6952 // have already been dealt with by the the time we get here. As a result, 6953 // it means we don't have to multiply the instruction cost by VF. 6954 assert(I->getOpcode() == Instruction::GetElementPtr || 6955 I->getOpcode() == Instruction::PHI || 6956 (I->getOpcode() == Instruction::BitCast && 6957 I->getType()->isPointerTy()) || 6958 hasSingleCopyAfterVectorization(I, VF)); 6959 VectorTy = RetTy; 6960 } else 6961 VectorTy = ToVectorTy(RetTy, VF); 6962 6963 // TODO: We need to estimate the cost of intrinsic calls. 6964 switch (I->getOpcode()) { 6965 case Instruction::GetElementPtr: 6966 // We mark this instruction as zero-cost because the cost of GEPs in 6967 // vectorized code depends on whether the corresponding memory instruction 6968 // is scalarized or not. Therefore, we handle GEPs with the memory 6969 // instruction cost. 6970 return 0; 6971 case Instruction::Br: { 6972 // In cases of scalarized and predicated instructions, there will be VF 6973 // predicated blocks in the vectorized loop. Each branch around these 6974 // blocks requires also an extract of its vector compare i1 element. 6975 bool ScalarPredicatedBB = false; 6976 BranchInst *BI = cast<BranchInst>(I); 6977 if (VF.isVector() && BI->isConditional() && 6978 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6979 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6980 ScalarPredicatedBB = true; 6981 6982 if (ScalarPredicatedBB) { 6983 // Not possible to scalarize scalable vector with predicated instructions. 6984 if (VF.isScalable()) 6985 return InstructionCost::getInvalid(); 6986 // Return cost for branches around scalarized and predicated blocks. 6987 auto *Vec_i1Ty = 6988 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6989 return ( 6990 TTI.getScalarizationOverhead( 6991 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 6992 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 6993 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6994 // The back-edge branch will remain, as will all scalar branches. 6995 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6996 else 6997 // This branch will be eliminated by if-conversion. 6998 return 0; 6999 // Note: We currently assume zero cost for an unconditional branch inside 7000 // a predicated block since it will become a fall-through, although we 7001 // may decide in the future to call TTI for all branches. 7002 } 7003 case Instruction::PHI: { 7004 auto *Phi = cast<PHINode>(I); 7005 7006 // First-order recurrences are replaced by vector shuffles inside the loop. 7007 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7008 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7009 return TTI.getShuffleCost( 7010 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7011 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7012 7013 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7014 // converted into select instructions. We require N - 1 selects per phi 7015 // node, where N is the number of incoming values. 7016 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7017 return (Phi->getNumIncomingValues() - 1) * 7018 TTI.getCmpSelInstrCost( 7019 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7020 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7021 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7022 7023 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7024 } 7025 case Instruction::UDiv: 7026 case Instruction::SDiv: 7027 case Instruction::URem: 7028 case Instruction::SRem: 7029 // If we have a predicated instruction, it may not be executed for each 7030 // vector lane. Get the scalarization cost and scale this amount by the 7031 // probability of executing the predicated block. If the instruction is not 7032 // predicated, we fall through to the next case. 7033 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7034 InstructionCost Cost = 0; 7035 7036 // These instructions have a non-void type, so account for the phi nodes 7037 // that we will create. This cost is likely to be zero. The phi node 7038 // cost, if any, should be scaled by the block probability because it 7039 // models a copy at the end of each predicated block. 7040 Cost += VF.getKnownMinValue() * 7041 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7042 7043 // The cost of the non-predicated instruction. 7044 Cost += VF.getKnownMinValue() * 7045 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7046 7047 // The cost of insertelement and extractelement instructions needed for 7048 // scalarization. 7049 Cost += getScalarizationOverhead(I, VF); 7050 7051 // Scale the cost by the probability of executing the predicated blocks. 7052 // This assumes the predicated block for each vector lane is equally 7053 // likely. 7054 return Cost / getReciprocalPredBlockProb(); 7055 } 7056 LLVM_FALLTHROUGH; 7057 case Instruction::Add: 7058 case Instruction::FAdd: 7059 case Instruction::Sub: 7060 case Instruction::FSub: 7061 case Instruction::Mul: 7062 case Instruction::FMul: 7063 case Instruction::FDiv: 7064 case Instruction::FRem: 7065 case Instruction::Shl: 7066 case Instruction::LShr: 7067 case Instruction::AShr: 7068 case Instruction::And: 7069 case Instruction::Or: 7070 case Instruction::Xor: { 7071 // Since we will replace the stride by 1 the multiplication should go away. 7072 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7073 return 0; 7074 7075 // Detect reduction patterns 7076 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7077 return *RedCost; 7078 7079 // Certain instructions can be cheaper to vectorize if they have a constant 7080 // second vector operand. One example of this are shifts on x86. 7081 Value *Op2 = I->getOperand(1); 7082 TargetTransformInfo::OperandValueProperties Op2VP; 7083 TargetTransformInfo::OperandValueKind Op2VK = 7084 TTI.getOperandInfo(Op2, Op2VP); 7085 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7086 Op2VK = TargetTransformInfo::OK_UniformValue; 7087 7088 SmallVector<const Value *, 4> Operands(I->operand_values()); 7089 return TTI.getArithmeticInstrCost( 7090 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7091 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7092 } 7093 case Instruction::FNeg: { 7094 return TTI.getArithmeticInstrCost( 7095 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7096 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7097 TargetTransformInfo::OP_None, I->getOperand(0), I); 7098 } 7099 case Instruction::Select: { 7100 SelectInst *SI = cast<SelectInst>(I); 7101 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7102 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7103 7104 const Value *Op0, *Op1; 7105 using namespace llvm::PatternMatch; 7106 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7107 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7108 // select x, y, false --> x & y 7109 // select x, true, y --> x | y 7110 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7111 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7112 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7113 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7114 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7115 Op1->getType()->getScalarSizeInBits() == 1); 7116 7117 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7118 return TTI.getArithmeticInstrCost( 7119 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7120 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7121 } 7122 7123 Type *CondTy = SI->getCondition()->getType(); 7124 if (!ScalarCond) 7125 CondTy = VectorType::get(CondTy, VF); 7126 7127 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7128 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7129 Pred = Cmp->getPredicate(); 7130 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7131 CostKind, I); 7132 } 7133 case Instruction::ICmp: 7134 case Instruction::FCmp: { 7135 Type *ValTy = I->getOperand(0)->getType(); 7136 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7137 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7138 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7139 VectorTy = ToVectorTy(ValTy, VF); 7140 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7141 cast<CmpInst>(I)->getPredicate(), CostKind, 7142 I); 7143 } 7144 case Instruction::Store: 7145 case Instruction::Load: { 7146 ElementCount Width = VF; 7147 if (Width.isVector()) { 7148 InstWidening Decision = getWideningDecision(I, Width); 7149 assert(Decision != CM_Unknown && 7150 "CM decision should be taken at this point"); 7151 if (Decision == CM_Scalarize) 7152 Width = ElementCount::getFixed(1); 7153 } 7154 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7155 return getMemoryInstructionCost(I, VF); 7156 } 7157 case Instruction::BitCast: 7158 if (I->getType()->isPointerTy()) 7159 return 0; 7160 LLVM_FALLTHROUGH; 7161 case Instruction::ZExt: 7162 case Instruction::SExt: 7163 case Instruction::FPToUI: 7164 case Instruction::FPToSI: 7165 case Instruction::FPExt: 7166 case Instruction::PtrToInt: 7167 case Instruction::IntToPtr: 7168 case Instruction::SIToFP: 7169 case Instruction::UIToFP: 7170 case Instruction::Trunc: 7171 case Instruction::FPTrunc: { 7172 // Computes the CastContextHint from a Load/Store instruction. 7173 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7174 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7175 "Expected a load or a store!"); 7176 7177 if (VF.isScalar() || !TheLoop->contains(I)) 7178 return TTI::CastContextHint::Normal; 7179 7180 switch (getWideningDecision(I, VF)) { 7181 case LoopVectorizationCostModel::CM_GatherScatter: 7182 return TTI::CastContextHint::GatherScatter; 7183 case LoopVectorizationCostModel::CM_Interleave: 7184 return TTI::CastContextHint::Interleave; 7185 case LoopVectorizationCostModel::CM_Scalarize: 7186 case LoopVectorizationCostModel::CM_Widen: 7187 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7188 : TTI::CastContextHint::Normal; 7189 case LoopVectorizationCostModel::CM_Widen_Reverse: 7190 return TTI::CastContextHint::Reversed; 7191 case LoopVectorizationCostModel::CM_Unknown: 7192 llvm_unreachable("Instr did not go through cost modelling?"); 7193 } 7194 7195 llvm_unreachable("Unhandled case!"); 7196 }; 7197 7198 unsigned Opcode = I->getOpcode(); 7199 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7200 // For Trunc, the context is the only user, which must be a StoreInst. 7201 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7202 if (I->hasOneUse()) 7203 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7204 CCH = ComputeCCH(Store); 7205 } 7206 // For Z/Sext, the context is the operand, which must be a LoadInst. 7207 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7208 Opcode == Instruction::FPExt) { 7209 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7210 CCH = ComputeCCH(Load); 7211 } 7212 7213 // We optimize the truncation of induction variables having constant 7214 // integer steps. The cost of these truncations is the same as the scalar 7215 // operation. 7216 if (isOptimizableIVTruncate(I, VF)) { 7217 auto *Trunc = cast<TruncInst>(I); 7218 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7219 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7220 } 7221 7222 // Detect reduction patterns 7223 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7224 return *RedCost; 7225 7226 Type *SrcScalarTy = I->getOperand(0)->getType(); 7227 Type *SrcVecTy = 7228 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7229 if (canTruncateToMinimalBitwidth(I, VF)) { 7230 // This cast is going to be shrunk. This may remove the cast or it might 7231 // turn it into slightly different cast. For example, if MinBW == 16, 7232 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7233 // 7234 // Calculate the modified src and dest types. 7235 Type *MinVecTy = VectorTy; 7236 if (Opcode == Instruction::Trunc) { 7237 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7238 VectorTy = 7239 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7240 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7241 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7242 VectorTy = 7243 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7244 } 7245 } 7246 7247 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7248 } 7249 case Instruction::Call: { 7250 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7251 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7252 return *RedCost; 7253 bool NeedToScalarize; 7254 CallInst *CI = cast<CallInst>(I); 7255 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7256 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7257 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7258 return std::min(CallCost, IntrinsicCost); 7259 } 7260 return CallCost; 7261 } 7262 case Instruction::ExtractValue: 7263 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7264 case Instruction::Alloca: 7265 // We cannot easily widen alloca to a scalable alloca, as 7266 // the result would need to be a vector of pointers. 7267 if (VF.isScalable()) 7268 return InstructionCost::getInvalid(); 7269 LLVM_FALLTHROUGH; 7270 default: 7271 // This opcode is unknown. Assume that it is the same as 'mul'. 7272 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7273 } // end of switch. 7274 } 7275 7276 char LoopVectorize::ID = 0; 7277 7278 static const char lv_name[] = "Loop Vectorization"; 7279 7280 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7281 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7282 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7283 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7284 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7285 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7286 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7287 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7288 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7289 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7290 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7291 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7292 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7293 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7294 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7295 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7296 7297 namespace llvm { 7298 7299 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7300 7301 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7302 bool VectorizeOnlyWhenForced) { 7303 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7304 } 7305 7306 } // end namespace llvm 7307 7308 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7309 // Check if the pointer operand of a load or store instruction is 7310 // consecutive. 7311 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7312 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7313 return false; 7314 } 7315 7316 void LoopVectorizationCostModel::collectValuesToIgnore() { 7317 // Ignore ephemeral values. 7318 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7319 7320 // Ignore type-promoting instructions we identified during reduction 7321 // detection. 7322 for (auto &Reduction : Legal->getReductionVars()) { 7323 const RecurrenceDescriptor &RedDes = Reduction.second; 7324 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7325 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7326 } 7327 // Ignore type-casting instructions we identified during induction 7328 // detection. 7329 for (auto &Induction : Legal->getInductionVars()) { 7330 const InductionDescriptor &IndDes = Induction.second; 7331 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7332 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7333 } 7334 } 7335 7336 void LoopVectorizationCostModel::collectInLoopReductions() { 7337 for (auto &Reduction : Legal->getReductionVars()) { 7338 PHINode *Phi = Reduction.first; 7339 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7340 7341 // We don't collect reductions that are type promoted (yet). 7342 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7343 continue; 7344 7345 // If the target would prefer this reduction to happen "in-loop", then we 7346 // want to record it as such. 7347 unsigned Opcode = RdxDesc.getOpcode(); 7348 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7349 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7350 TargetTransformInfo::ReductionFlags())) 7351 continue; 7352 7353 // Check that we can correctly put the reductions into the loop, by 7354 // finding the chain of operations that leads from the phi to the loop 7355 // exit value. 7356 SmallVector<Instruction *, 4> ReductionOperations = 7357 RdxDesc.getReductionOpChain(Phi, TheLoop); 7358 bool InLoop = !ReductionOperations.empty(); 7359 if (InLoop) { 7360 InLoopReductionChains[Phi] = ReductionOperations; 7361 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7362 Instruction *LastChain = Phi; 7363 for (auto *I : ReductionOperations) { 7364 InLoopReductionImmediateChains[I] = LastChain; 7365 LastChain = I; 7366 } 7367 } 7368 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7369 << " reduction for phi: " << *Phi << "\n"); 7370 } 7371 } 7372 7373 // TODO: we could return a pair of values that specify the max VF and 7374 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7375 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7376 // doesn't have a cost model that can choose which plan to execute if 7377 // more than one is generated. 7378 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7379 LoopVectorizationCostModel &CM) { 7380 unsigned WidestType; 7381 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7382 return WidestVectorRegBits / WidestType; 7383 } 7384 7385 VectorizationFactor 7386 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7387 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7388 ElementCount VF = UserVF; 7389 // Outer loop handling: They may require CFG and instruction level 7390 // transformations before even evaluating whether vectorization is profitable. 7391 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7392 // the vectorization pipeline. 7393 if (!OrigLoop->isInnermost()) { 7394 // If the user doesn't provide a vectorization factor, determine a 7395 // reasonable one. 7396 if (UserVF.isZero()) { 7397 VF = ElementCount::getFixed(determineVPlanVF( 7398 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7399 .getFixedSize(), 7400 CM)); 7401 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7402 7403 // Make sure we have a VF > 1 for stress testing. 7404 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7405 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7406 << "overriding computed VF.\n"); 7407 VF = ElementCount::getFixed(4); 7408 } 7409 } 7410 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7411 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7412 "VF needs to be a power of two"); 7413 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7414 << "VF " << VF << " to build VPlans.\n"); 7415 buildVPlans(VF, VF); 7416 7417 // For VPlan build stress testing, we bail out after VPlan construction. 7418 if (VPlanBuildStressTest) 7419 return VectorizationFactor::Disabled(); 7420 7421 return {VF, 0 /*Cost*/}; 7422 } 7423 7424 LLVM_DEBUG( 7425 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7426 "VPlan-native path.\n"); 7427 return VectorizationFactor::Disabled(); 7428 } 7429 7430 Optional<VectorizationFactor> 7431 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7432 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7433 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7434 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7435 return None; 7436 7437 // Invalidate interleave groups if all blocks of loop will be predicated. 7438 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7439 !useMaskedInterleavedAccesses(*TTI)) { 7440 LLVM_DEBUG( 7441 dbgs() 7442 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7443 "which requires masked-interleaved support.\n"); 7444 if (CM.InterleaveInfo.invalidateGroups()) 7445 // Invalidating interleave groups also requires invalidating all decisions 7446 // based on them, which includes widening decisions and uniform and scalar 7447 // values. 7448 CM.invalidateCostModelingDecisions(); 7449 } 7450 7451 ElementCount MaxUserVF = 7452 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7453 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7454 if (!UserVF.isZero() && UserVFIsLegal) { 7455 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7456 "VF needs to be a power of two"); 7457 // Collect the instructions (and their associated costs) that will be more 7458 // profitable to scalarize. 7459 if (CM.selectUserVectorizationFactor(UserVF)) { 7460 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7461 CM.collectInLoopReductions(); 7462 buildVPlansWithVPRecipes(UserVF, UserVF); 7463 LLVM_DEBUG(printPlans(dbgs())); 7464 return {{UserVF, 0}}; 7465 } else 7466 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7467 "InvalidCost", ORE, OrigLoop); 7468 } 7469 7470 // Populate the set of Vectorization Factor Candidates. 7471 ElementCountSet VFCandidates; 7472 for (auto VF = ElementCount::getFixed(1); 7473 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7474 VFCandidates.insert(VF); 7475 for (auto VF = ElementCount::getScalable(1); 7476 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7477 VFCandidates.insert(VF); 7478 7479 for (const auto &VF : VFCandidates) { 7480 // Collect Uniform and Scalar instructions after vectorization with VF. 7481 CM.collectUniformsAndScalars(VF); 7482 7483 // Collect the instructions (and their associated costs) that will be more 7484 // profitable to scalarize. 7485 if (VF.isVector()) 7486 CM.collectInstsToScalarize(VF); 7487 } 7488 7489 CM.collectInLoopReductions(); 7490 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7491 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7492 7493 LLVM_DEBUG(printPlans(dbgs())); 7494 if (!MaxFactors.hasVector()) 7495 return VectorizationFactor::Disabled(); 7496 7497 // Select the optimal vectorization factor. 7498 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7499 7500 // Check if it is profitable to vectorize with runtime checks. 7501 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7502 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7503 bool PragmaThresholdReached = 7504 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7505 bool ThresholdReached = 7506 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7507 if ((ThresholdReached && !Hints.allowReordering()) || 7508 PragmaThresholdReached) { 7509 ORE->emit([&]() { 7510 return OptimizationRemarkAnalysisAliasing( 7511 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7512 OrigLoop->getHeader()) 7513 << "loop not vectorized: cannot prove it is safe to reorder " 7514 "memory operations"; 7515 }); 7516 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7517 Hints.emitRemarkWithHints(); 7518 return VectorizationFactor::Disabled(); 7519 } 7520 } 7521 return SelectedVF; 7522 } 7523 7524 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7525 assert(count_if(VPlans, 7526 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7527 1 && 7528 "Best VF has not a single VPlan."); 7529 7530 for (const VPlanPtr &Plan : VPlans) { 7531 if (Plan->hasVF(VF)) 7532 return *Plan.get(); 7533 } 7534 llvm_unreachable("No plan found!"); 7535 } 7536 7537 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7538 SmallVector<Metadata *, 4> MDs; 7539 // Reserve first location for self reference to the LoopID metadata node. 7540 MDs.push_back(nullptr); 7541 bool IsUnrollMetadata = false; 7542 MDNode *LoopID = L->getLoopID(); 7543 if (LoopID) { 7544 // First find existing loop unrolling disable metadata. 7545 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7546 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7547 if (MD) { 7548 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7549 IsUnrollMetadata = 7550 S && S->getString().startswith("llvm.loop.unroll.disable"); 7551 } 7552 MDs.push_back(LoopID->getOperand(i)); 7553 } 7554 } 7555 7556 if (!IsUnrollMetadata) { 7557 // Add runtime unroll disable metadata. 7558 LLVMContext &Context = L->getHeader()->getContext(); 7559 SmallVector<Metadata *, 1> DisableOperands; 7560 DisableOperands.push_back( 7561 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7562 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7563 MDs.push_back(DisableNode); 7564 MDNode *NewLoopID = MDNode::get(Context, MDs); 7565 // Set operand 0 to refer to the loop id itself. 7566 NewLoopID->replaceOperandWith(0, NewLoopID); 7567 L->setLoopID(NewLoopID); 7568 } 7569 } 7570 7571 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7572 VPlan &BestVPlan, 7573 InnerLoopVectorizer &ILV, 7574 DominatorTree *DT) { 7575 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7576 << '\n'); 7577 7578 // Perform the actual loop transformation. 7579 7580 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7581 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7582 Value *CanonicalIVStartValue; 7583 std::tie(State.CFG.VectorPreHeader, CanonicalIVStartValue) = 7584 ILV.createVectorizedLoopSkeleton(); 7585 ILV.collectPoisonGeneratingRecipes(State); 7586 7587 ILV.printDebugTracesAtStart(); 7588 7589 //===------------------------------------------------===// 7590 // 7591 // Notice: any optimization or new instruction that go 7592 // into the code below should also be implemented in 7593 // the cost-model. 7594 // 7595 //===------------------------------------------------===// 7596 7597 // 2. Copy and widen instructions from the old loop into the new loop. 7598 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7599 ILV.getOrCreateVectorTripCount(nullptr), 7600 CanonicalIVStartValue, State); 7601 BestVPlan.execute(&State); 7602 7603 // Keep all loop hints from the original loop on the vector loop (we'll 7604 // replace the vectorizer-specific hints below). 7605 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7606 7607 Optional<MDNode *> VectorizedLoopID = 7608 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7609 LLVMLoopVectorizeFollowupVectorized}); 7610 7611 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7612 if (VectorizedLoopID.hasValue()) 7613 L->setLoopID(VectorizedLoopID.getValue()); 7614 else { 7615 // Keep all loop hints from the original loop on the vector loop (we'll 7616 // replace the vectorizer-specific hints below). 7617 if (MDNode *LID = OrigLoop->getLoopID()) 7618 L->setLoopID(LID); 7619 7620 LoopVectorizeHints Hints(L, true, *ORE); 7621 Hints.setAlreadyVectorized(); 7622 } 7623 // Disable runtime unrolling when vectorizing the epilogue loop. 7624 if (CanonicalIVStartValue) 7625 AddRuntimeUnrollDisableMetaData(L); 7626 7627 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7628 // predication, updating analyses. 7629 ILV.fixVectorizedLoop(State); 7630 7631 ILV.printDebugTracesAtEnd(); 7632 } 7633 7634 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7635 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7636 for (const auto &Plan : VPlans) 7637 if (PrintVPlansInDotFormat) 7638 Plan->printDOT(O); 7639 else 7640 Plan->print(O); 7641 } 7642 #endif 7643 7644 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7645 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7646 7647 // We create new control-flow for the vectorized loop, so the original exit 7648 // conditions will be dead after vectorization if it's only used by the 7649 // terminator 7650 SmallVector<BasicBlock*> ExitingBlocks; 7651 OrigLoop->getExitingBlocks(ExitingBlocks); 7652 for (auto *BB : ExitingBlocks) { 7653 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7654 if (!Cmp || !Cmp->hasOneUse()) 7655 continue; 7656 7657 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7658 if (!DeadInstructions.insert(Cmp).second) 7659 continue; 7660 7661 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7662 // TODO: can recurse through operands in general 7663 for (Value *Op : Cmp->operands()) { 7664 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7665 DeadInstructions.insert(cast<Instruction>(Op)); 7666 } 7667 } 7668 7669 // We create new "steps" for induction variable updates to which the original 7670 // induction variables map. An original update instruction will be dead if 7671 // all its users except the induction variable are dead. 7672 auto *Latch = OrigLoop->getLoopLatch(); 7673 for (auto &Induction : Legal->getInductionVars()) { 7674 PHINode *Ind = Induction.first; 7675 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7676 7677 // If the tail is to be folded by masking, the primary induction variable, 7678 // if exists, isn't dead: it will be used for masking. Don't kill it. 7679 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7680 continue; 7681 7682 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7683 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7684 })) 7685 DeadInstructions.insert(IndUpdate); 7686 } 7687 } 7688 7689 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7690 7691 //===--------------------------------------------------------------------===// 7692 // EpilogueVectorizerMainLoop 7693 //===--------------------------------------------------------------------===// 7694 7695 /// This function is partially responsible for generating the control flow 7696 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7697 std::pair<BasicBlock *, Value *> 7698 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7699 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7700 7701 // Workaround! Compute the trip count of the original loop and cache it 7702 // before we start modifying the CFG. This code has a systemic problem 7703 // wherein it tries to run analysis over partially constructed IR; this is 7704 // wrong, and not simply for SCEV. The trip count of the original loop 7705 // simply happens to be prone to hitting this in practice. In theory, we 7706 // can hit the same issue for any SCEV, or ValueTracking query done during 7707 // mutation. See PR49900. 7708 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7709 createVectorLoopSkeleton(""); 7710 7711 // Generate the code to check the minimum iteration count of the vector 7712 // epilogue (see below). 7713 EPI.EpilogueIterationCountCheck = 7714 emitMinimumIterationCountCheck(LoopScalarPreHeader, true); 7715 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7716 7717 // Generate the code to check any assumptions that we've made for SCEV 7718 // expressions. 7719 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7720 7721 // Generate the code that checks at runtime if arrays overlap. We put the 7722 // checks into a separate block to make the more common case of few elements 7723 // faster. 7724 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7725 7726 // Generate the iteration count check for the main loop, *after* the check 7727 // for the epilogue loop, so that the path-length is shorter for the case 7728 // that goes directly through the vector epilogue. The longer-path length for 7729 // the main loop is compensated for, by the gain from vectorizing the larger 7730 // trip count. Note: the branch will get updated later on when we vectorize 7731 // the epilogue. 7732 EPI.MainLoopIterationCountCheck = 7733 emitMinimumIterationCountCheck(LoopScalarPreHeader, false); 7734 7735 // Generate the induction variable. 7736 Value *CountRoundDown = getOrCreateVectorTripCount(LoopVectorPreHeader); 7737 EPI.VectorTripCount = CountRoundDown; 7738 7739 // Skip induction resume value creation here because they will be created in 7740 // the second pass. If we created them here, they wouldn't be used anyway, 7741 // because the vplan in the second pass still contains the inductions from the 7742 // original loop. 7743 7744 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7745 } 7746 7747 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7748 LLVM_DEBUG({ 7749 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7750 << "Main Loop VF:" << EPI.MainLoopVF 7751 << ", Main Loop UF:" << EPI.MainLoopUF 7752 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7753 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7754 }); 7755 } 7756 7757 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7758 DEBUG_WITH_TYPE(VerboseDebug, { 7759 dbgs() << "intermediate fn:\n" 7760 << *OrigLoop->getHeader()->getParent() << "\n"; 7761 }); 7762 } 7763 7764 BasicBlock * 7765 EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(BasicBlock *Bypass, 7766 bool ForEpilogue) { 7767 assert(Bypass && "Expected valid bypass basic block."); 7768 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7769 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7770 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7771 // Reuse existing vector loop preheader for TC checks. 7772 // Note that new preheader block is generated for vector loop. 7773 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7774 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7775 7776 // Generate code to check if the loop's trip count is less than VF * UF of the 7777 // main vector loop. 7778 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7779 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7780 7781 Value *CheckMinIters = Builder.CreateICmp( 7782 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7783 "min.iters.check"); 7784 7785 if (!ForEpilogue) 7786 TCCheckBlock->setName("vector.main.loop.iter.check"); 7787 7788 // Create new preheader for vector loop. 7789 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7790 DT, LI, nullptr, "vector.ph"); 7791 7792 if (ForEpilogue) { 7793 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7794 DT->getNode(Bypass)->getIDom()) && 7795 "TC check is expected to dominate Bypass"); 7796 7797 // Update dominator for Bypass & LoopExit. 7798 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7799 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7800 // For loops with multiple exits, there's no edge from the middle block 7801 // to exit blocks (as the epilogue must run) and thus no need to update 7802 // the immediate dominator of the exit blocks. 7803 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7804 7805 LoopBypassBlocks.push_back(TCCheckBlock); 7806 7807 // Save the trip count so we don't have to regenerate it in the 7808 // vec.epilog.iter.check. This is safe to do because the trip count 7809 // generated here dominates the vector epilog iter check. 7810 EPI.TripCount = Count; 7811 } 7812 7813 ReplaceInstWithInst( 7814 TCCheckBlock->getTerminator(), 7815 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7816 7817 return TCCheckBlock; 7818 } 7819 7820 //===--------------------------------------------------------------------===// 7821 // EpilogueVectorizerEpilogueLoop 7822 //===--------------------------------------------------------------------===// 7823 7824 /// This function is partially responsible for generating the control flow 7825 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7826 std::pair<BasicBlock *, Value *> 7827 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7828 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7829 createVectorLoopSkeleton("vec.epilog."); 7830 7831 // Now, compare the remaining count and if there aren't enough iterations to 7832 // execute the vectorized epilogue skip to the scalar part. 7833 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7834 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7835 LoopVectorPreHeader = 7836 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7837 LI, nullptr, "vec.epilog.ph"); 7838 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7839 VecEpilogueIterationCountCheck); 7840 7841 // Adjust the control flow taking the state info from the main loop 7842 // vectorization into account. 7843 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7844 "expected this to be saved from the previous pass."); 7845 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7846 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7847 7848 DT->changeImmediateDominator(LoopVectorPreHeader, 7849 EPI.MainLoopIterationCountCheck); 7850 7851 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7852 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7853 7854 if (EPI.SCEVSafetyCheck) 7855 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7856 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7857 if (EPI.MemSafetyCheck) 7858 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7859 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7860 7861 DT->changeImmediateDominator( 7862 VecEpilogueIterationCountCheck, 7863 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7864 7865 DT->changeImmediateDominator(LoopScalarPreHeader, 7866 EPI.EpilogueIterationCountCheck); 7867 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7868 // If there is an epilogue which must run, there's no edge from the 7869 // middle block to exit blocks and thus no need to update the immediate 7870 // dominator of the exit blocks. 7871 DT->changeImmediateDominator(LoopExitBlock, 7872 EPI.EpilogueIterationCountCheck); 7873 7874 // Keep track of bypass blocks, as they feed start values to the induction 7875 // phis in the scalar loop preheader. 7876 if (EPI.SCEVSafetyCheck) 7877 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7878 if (EPI.MemSafetyCheck) 7879 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7880 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7881 7882 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7883 // merge control-flow from the latch block and the middle block. Update the 7884 // incoming values here and move the Phi into the preheader. 7885 SmallVector<PHINode *, 4> PhisInBlock; 7886 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7887 PhisInBlock.push_back(&Phi); 7888 7889 for (PHINode *Phi : PhisInBlock) { 7890 Phi->replaceIncomingBlockWith( 7891 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7892 VecEpilogueIterationCountCheck); 7893 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7894 if (EPI.SCEVSafetyCheck) 7895 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7896 if (EPI.MemSafetyCheck) 7897 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7898 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7899 } 7900 7901 // Generate a resume induction for the vector epilogue and put it in the 7902 // vector epilogue preheader 7903 Type *IdxTy = Legal->getWidestInductionType(); 7904 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7905 LoopVectorPreHeader->getFirstNonPHI()); 7906 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7907 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7908 EPI.MainLoopIterationCountCheck); 7909 7910 // Generate induction resume values. These variables save the new starting 7911 // indexes for the scalar loop. They are used to test if there are any tail 7912 // iterations left once the vector loop has completed. 7913 // Note that when the vectorized epilogue is skipped due to iteration count 7914 // check, then the resume value for the induction variable comes from 7915 // the trip count of the main vector loop, hence passing the AdditionalBypass 7916 // argument. 7917 createInductionResumeValues({VecEpilogueIterationCountCheck, 7918 EPI.VectorTripCount} /* AdditionalBypass */); 7919 7920 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7921 } 7922 7923 BasicBlock * 7924 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7925 BasicBlock *Bypass, BasicBlock *Insert) { 7926 7927 assert(EPI.TripCount && 7928 "Expected trip count to have been safed in the first pass."); 7929 assert( 7930 (!isa<Instruction>(EPI.TripCount) || 7931 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7932 "saved trip count does not dominate insertion point."); 7933 Value *TC = EPI.TripCount; 7934 IRBuilder<> Builder(Insert->getTerminator()); 7935 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7936 7937 // Generate code to check if the loop's trip count is less than VF * UF of the 7938 // vector epilogue loop. 7939 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7940 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7941 7942 Value *CheckMinIters = 7943 Builder.CreateICmp(P, Count, 7944 createStepForVF(Builder, Count->getType(), 7945 EPI.EpilogueVF, EPI.EpilogueUF), 7946 "min.epilog.iters.check"); 7947 7948 ReplaceInstWithInst( 7949 Insert->getTerminator(), 7950 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7951 7952 LoopBypassBlocks.push_back(Insert); 7953 return Insert; 7954 } 7955 7956 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7957 LLVM_DEBUG({ 7958 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7959 << "Epilogue Loop VF:" << EPI.EpilogueVF 7960 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7961 }); 7962 } 7963 7964 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7965 DEBUG_WITH_TYPE(VerboseDebug, { 7966 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 7967 }); 7968 } 7969 7970 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7971 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7972 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7973 bool PredicateAtRangeStart = Predicate(Range.Start); 7974 7975 for (ElementCount TmpVF = Range.Start * 2; 7976 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7977 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7978 Range.End = TmpVF; 7979 break; 7980 } 7981 7982 return PredicateAtRangeStart; 7983 } 7984 7985 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7986 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7987 /// of VF's starting at a given VF and extending it as much as possible. Each 7988 /// vectorization decision can potentially shorten this sub-range during 7989 /// buildVPlan(). 7990 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7991 ElementCount MaxVF) { 7992 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7993 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7994 VFRange SubRange = {VF, MaxVFPlusOne}; 7995 VPlans.push_back(buildVPlan(SubRange)); 7996 VF = SubRange.End; 7997 } 7998 } 7999 8000 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8001 VPlanPtr &Plan) { 8002 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8003 8004 // Look for cached value. 8005 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8006 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8007 if (ECEntryIt != EdgeMaskCache.end()) 8008 return ECEntryIt->second; 8009 8010 VPValue *SrcMask = createBlockInMask(Src, Plan); 8011 8012 // The terminator has to be a branch inst! 8013 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8014 assert(BI && "Unexpected terminator found"); 8015 8016 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8017 return EdgeMaskCache[Edge] = SrcMask; 8018 8019 // If source is an exiting block, we know the exit edge is dynamically dead 8020 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8021 // adding uses of an otherwise potentially dead instruction. 8022 if (OrigLoop->isLoopExiting(Src)) 8023 return EdgeMaskCache[Edge] = SrcMask; 8024 8025 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8026 assert(EdgeMask && "No Edge Mask found for condition"); 8027 8028 if (BI->getSuccessor(0) != Dst) 8029 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8030 8031 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8032 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8033 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8034 // The select version does not introduce new UB if SrcMask is false and 8035 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8036 VPValue *False = Plan->getOrAddVPValue( 8037 ConstantInt::getFalse(BI->getCondition()->getType())); 8038 EdgeMask = 8039 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8040 } 8041 8042 return EdgeMaskCache[Edge] = EdgeMask; 8043 } 8044 8045 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8046 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8047 8048 // Look for cached value. 8049 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8050 if (BCEntryIt != BlockMaskCache.end()) 8051 return BCEntryIt->second; 8052 8053 // All-one mask is modelled as no-mask following the convention for masked 8054 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8055 VPValue *BlockMask = nullptr; 8056 8057 if (OrigLoop->getHeader() == BB) { 8058 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8059 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8060 8061 // Introduce the early-exit compare IV <= BTC to form header block mask. 8062 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8063 // constructing the desired canonical IV in the header block as its first 8064 // non-phi instructions. 8065 assert(CM.foldTailByMasking() && "must fold the tail"); 8066 VPBasicBlock *HeaderVPBB = 8067 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8068 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8069 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8070 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8071 8072 VPBuilder::InsertPointGuard Guard(Builder); 8073 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8074 if (CM.TTI.emitGetActiveLaneMask()) { 8075 VPValue *TC = Plan->getOrCreateTripCount(); 8076 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8077 } else { 8078 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8079 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8080 } 8081 return BlockMaskCache[BB] = BlockMask; 8082 } 8083 8084 // This is the block mask. We OR all incoming edges. 8085 for (auto *Predecessor : predecessors(BB)) { 8086 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8087 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8088 return BlockMaskCache[BB] = EdgeMask; 8089 8090 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8091 BlockMask = EdgeMask; 8092 continue; 8093 } 8094 8095 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8096 } 8097 8098 return BlockMaskCache[BB] = BlockMask; 8099 } 8100 8101 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8102 ArrayRef<VPValue *> Operands, 8103 VFRange &Range, 8104 VPlanPtr &Plan) { 8105 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8106 "Must be called with either a load or store"); 8107 8108 auto willWiden = [&](ElementCount VF) -> bool { 8109 if (VF.isScalar()) 8110 return false; 8111 LoopVectorizationCostModel::InstWidening Decision = 8112 CM.getWideningDecision(I, VF); 8113 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8114 "CM decision should be taken at this point."); 8115 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8116 return true; 8117 if (CM.isScalarAfterVectorization(I, VF) || 8118 CM.isProfitableToScalarize(I, VF)) 8119 return false; 8120 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8121 }; 8122 8123 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8124 return nullptr; 8125 8126 VPValue *Mask = nullptr; 8127 if (Legal->isMaskRequired(I)) 8128 Mask = createBlockInMask(I->getParent(), Plan); 8129 8130 // Determine if the pointer operand of the access is either consecutive or 8131 // reverse consecutive. 8132 LoopVectorizationCostModel::InstWidening Decision = 8133 CM.getWideningDecision(I, Range.Start); 8134 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8135 bool Consecutive = 8136 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8137 8138 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8139 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8140 Consecutive, Reverse); 8141 8142 StoreInst *Store = cast<StoreInst>(I); 8143 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8144 Mask, Consecutive, Reverse); 8145 } 8146 8147 static VPWidenIntOrFpInductionRecipe * 8148 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8149 VPValue *Start, const InductionDescriptor &IndDesc, 8150 LoopVectorizationCostModel &CM, ScalarEvolution &SE, 8151 Loop &OrigLoop, VFRange &Range) { 8152 // Returns true if an instruction \p I should be scalarized instead of 8153 // vectorized for the chosen vectorization factor. 8154 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8155 return CM.isScalarAfterVectorization(I, VF) || 8156 CM.isProfitableToScalarize(I, VF); 8157 }; 8158 8159 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8160 [&](ElementCount VF) { 8161 // Returns true if we should generate a scalar version of \p IV. 8162 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8163 return true; 8164 auto isScalarInst = [&](User *U) -> bool { 8165 auto *I = cast<Instruction>(U); 8166 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8167 }; 8168 return any_of(PhiOrTrunc->users(), isScalarInst); 8169 }, 8170 Range); 8171 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8172 [&](ElementCount VF) { 8173 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8174 }, 8175 Range); 8176 assert(IndDesc.getStartValue() == 8177 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8178 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8179 "step must be loop invariant"); 8180 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8181 return new VPWidenIntOrFpInductionRecipe( 8182 Phi, Start, IndDesc, TruncI, NeedsScalarIV, !NeedsScalarIVOnly, SE); 8183 } 8184 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8185 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8186 !NeedsScalarIVOnly, SE); 8187 } 8188 8189 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8190 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8191 8192 // Check if this is an integer or fp induction. If so, build the recipe that 8193 // produces its scalar and vector values. 8194 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8195 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, 8196 *PSE.getSE(), *OrigLoop, Range); 8197 8198 // Check if this is pointer induction. If so, build the recipe for it. 8199 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8200 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8201 *PSE.getSE()); 8202 return nullptr; 8203 } 8204 8205 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8206 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8207 VPlan &Plan) const { 8208 // Optimize the special case where the source is a constant integer 8209 // induction variable. Notice that we can only optimize the 'trunc' case 8210 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8211 // (c) other casts depend on pointer size. 8212 8213 // Determine whether \p K is a truncation based on an induction variable that 8214 // can be optimized. 8215 auto isOptimizableIVTruncate = 8216 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8217 return [=](ElementCount VF) -> bool { 8218 return CM.isOptimizableIVTruncate(K, VF); 8219 }; 8220 }; 8221 8222 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8223 isOptimizableIVTruncate(I), Range)) { 8224 8225 auto *Phi = cast<PHINode>(I->getOperand(0)); 8226 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8227 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8228 return createWidenInductionRecipe(Phi, I, Start, II, CM, *PSE.getSE(), 8229 *OrigLoop, Range); 8230 } 8231 return nullptr; 8232 } 8233 8234 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8235 ArrayRef<VPValue *> Operands, 8236 VPlanPtr &Plan) { 8237 // If all incoming values are equal, the incoming VPValue can be used directly 8238 // instead of creating a new VPBlendRecipe. 8239 VPValue *FirstIncoming = Operands[0]; 8240 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8241 return FirstIncoming == Inc; 8242 })) { 8243 return Operands[0]; 8244 } 8245 8246 unsigned NumIncoming = Phi->getNumIncomingValues(); 8247 // For in-loop reductions, we do not need to create an additional select. 8248 VPValue *InLoopVal = nullptr; 8249 for (unsigned In = 0; In < NumIncoming; In++) { 8250 PHINode *PhiOp = 8251 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8252 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8253 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8254 InLoopVal = Operands[In]; 8255 } 8256 } 8257 8258 assert((!InLoopVal || NumIncoming == 2) && 8259 "Found an in-loop reduction for PHI with unexpected number of " 8260 "incoming values"); 8261 if (InLoopVal) 8262 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8263 8264 // We know that all PHIs in non-header blocks are converted into selects, so 8265 // we don't have to worry about the insertion order and we can just use the 8266 // builder. At this point we generate the predication tree. There may be 8267 // duplications since this is a simple recursive scan, but future 8268 // optimizations will clean it up. 8269 SmallVector<VPValue *, 2> OperandsWithMask; 8270 8271 for (unsigned In = 0; In < NumIncoming; In++) { 8272 VPValue *EdgeMask = 8273 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8274 assert((EdgeMask || NumIncoming == 1) && 8275 "Multiple predecessors with one having a full mask"); 8276 OperandsWithMask.push_back(Operands[In]); 8277 if (EdgeMask) 8278 OperandsWithMask.push_back(EdgeMask); 8279 } 8280 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8281 } 8282 8283 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8284 ArrayRef<VPValue *> Operands, 8285 VFRange &Range) const { 8286 8287 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8288 [this, CI](ElementCount VF) { 8289 return CM.isScalarWithPredication(CI, VF); 8290 }, 8291 Range); 8292 8293 if (IsPredicated) 8294 return nullptr; 8295 8296 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8297 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8298 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8299 ID == Intrinsic::pseudoprobe || 8300 ID == Intrinsic::experimental_noalias_scope_decl)) 8301 return nullptr; 8302 8303 auto willWiden = [&](ElementCount VF) -> bool { 8304 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8305 // The following case may be scalarized depending on the VF. 8306 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8307 // version of the instruction. 8308 // Is it beneficial to perform intrinsic call compared to lib call? 8309 bool NeedToScalarize = false; 8310 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8311 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8312 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8313 return UseVectorIntrinsic || !NeedToScalarize; 8314 }; 8315 8316 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8317 return nullptr; 8318 8319 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8320 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8321 } 8322 8323 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8324 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8325 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8326 // Instruction should be widened, unless it is scalar after vectorization, 8327 // scalarization is profitable or it is predicated. 8328 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8329 return CM.isScalarAfterVectorization(I, VF) || 8330 CM.isProfitableToScalarize(I, VF) || 8331 CM.isScalarWithPredication(I, VF); 8332 }; 8333 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8334 Range); 8335 } 8336 8337 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8338 ArrayRef<VPValue *> Operands) const { 8339 auto IsVectorizableOpcode = [](unsigned Opcode) { 8340 switch (Opcode) { 8341 case Instruction::Add: 8342 case Instruction::And: 8343 case Instruction::AShr: 8344 case Instruction::BitCast: 8345 case Instruction::FAdd: 8346 case Instruction::FCmp: 8347 case Instruction::FDiv: 8348 case Instruction::FMul: 8349 case Instruction::FNeg: 8350 case Instruction::FPExt: 8351 case Instruction::FPToSI: 8352 case Instruction::FPToUI: 8353 case Instruction::FPTrunc: 8354 case Instruction::FRem: 8355 case Instruction::FSub: 8356 case Instruction::ICmp: 8357 case Instruction::IntToPtr: 8358 case Instruction::LShr: 8359 case Instruction::Mul: 8360 case Instruction::Or: 8361 case Instruction::PtrToInt: 8362 case Instruction::SDiv: 8363 case Instruction::Select: 8364 case Instruction::SExt: 8365 case Instruction::Shl: 8366 case Instruction::SIToFP: 8367 case Instruction::SRem: 8368 case Instruction::Sub: 8369 case Instruction::Trunc: 8370 case Instruction::UDiv: 8371 case Instruction::UIToFP: 8372 case Instruction::URem: 8373 case Instruction::Xor: 8374 case Instruction::ZExt: 8375 return true; 8376 } 8377 return false; 8378 }; 8379 8380 if (!IsVectorizableOpcode(I->getOpcode())) 8381 return nullptr; 8382 8383 // Success: widen this instruction. 8384 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8385 } 8386 8387 void VPRecipeBuilder::fixHeaderPhis() { 8388 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8389 for (VPHeaderPHIRecipe *R : PhisToFix) { 8390 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8391 VPRecipeBase *IncR = 8392 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8393 R->addOperand(IncR->getVPSingleValue()); 8394 } 8395 } 8396 8397 VPBasicBlock *VPRecipeBuilder::handleReplication( 8398 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8399 VPlanPtr &Plan) { 8400 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8401 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8402 Range); 8403 8404 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8405 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8406 Range); 8407 8408 // Even if the instruction is not marked as uniform, there are certain 8409 // intrinsic calls that can be effectively treated as such, so we check for 8410 // them here. Conservatively, we only do this for scalable vectors, since 8411 // for fixed-width VFs we can always fall back on full scalarization. 8412 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8413 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8414 case Intrinsic::assume: 8415 case Intrinsic::lifetime_start: 8416 case Intrinsic::lifetime_end: 8417 // For scalable vectors if one of the operands is variant then we still 8418 // want to mark as uniform, which will generate one instruction for just 8419 // the first lane of the vector. We can't scalarize the call in the same 8420 // way as for fixed-width vectors because we don't know how many lanes 8421 // there are. 8422 // 8423 // The reasons for doing it this way for scalable vectors are: 8424 // 1. For the assume intrinsic generating the instruction for the first 8425 // lane is still be better than not generating any at all. For 8426 // example, the input may be a splat across all lanes. 8427 // 2. For the lifetime start/end intrinsics the pointer operand only 8428 // does anything useful when the input comes from a stack object, 8429 // which suggests it should always be uniform. For non-stack objects 8430 // the effect is to poison the object, which still allows us to 8431 // remove the call. 8432 IsUniform = true; 8433 break; 8434 default: 8435 break; 8436 } 8437 } 8438 8439 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8440 IsUniform, IsPredicated); 8441 setRecipe(I, Recipe); 8442 Plan->addVPValue(I, Recipe); 8443 8444 // Find if I uses a predicated instruction. If so, it will use its scalar 8445 // value. Avoid hoisting the insert-element which packs the scalar value into 8446 // a vector value, as that happens iff all users use the vector value. 8447 for (VPValue *Op : Recipe->operands()) { 8448 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8449 if (!PredR) 8450 continue; 8451 auto *RepR = 8452 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8453 assert(RepR->isPredicated() && 8454 "expected Replicate recipe to be predicated"); 8455 RepR->setAlsoPack(false); 8456 } 8457 8458 // Finalize the recipe for Instr, first if it is not predicated. 8459 if (!IsPredicated) { 8460 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8461 VPBB->appendRecipe(Recipe); 8462 return VPBB; 8463 } 8464 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8465 8466 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8467 assert(SingleSucc && "VPBB must have a single successor when handling " 8468 "predicated replication."); 8469 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8470 // Record predicated instructions for above packing optimizations. 8471 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8472 VPBlockUtils::insertBlockAfter(Region, VPBB); 8473 auto *RegSucc = new VPBasicBlock(); 8474 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8475 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8476 return RegSucc; 8477 } 8478 8479 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8480 VPRecipeBase *PredRecipe, 8481 VPlanPtr &Plan) { 8482 // Instructions marked for predication are replicated and placed under an 8483 // if-then construct to prevent side-effects. 8484 8485 // Generate recipes to compute the block mask for this region. 8486 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8487 8488 // Build the triangular if-then region. 8489 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8490 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8491 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8492 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8493 auto *PHIRecipe = Instr->getType()->isVoidTy() 8494 ? nullptr 8495 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8496 if (PHIRecipe) { 8497 Plan->removeVPValueFor(Instr); 8498 Plan->addVPValue(Instr, PHIRecipe); 8499 } 8500 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8501 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8502 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8503 8504 // Note: first set Entry as region entry and then connect successors starting 8505 // from it in order, to propagate the "parent" of each VPBasicBlock. 8506 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8507 VPBlockUtils::connectBlocks(Pred, Exit); 8508 8509 return Region; 8510 } 8511 8512 VPRecipeOrVPValueTy 8513 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8514 ArrayRef<VPValue *> Operands, 8515 VFRange &Range, VPlanPtr &Plan) { 8516 // First, check for specific widening recipes that deal with calls, memory 8517 // operations, inductions and Phi nodes. 8518 if (auto *CI = dyn_cast<CallInst>(Instr)) 8519 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8520 8521 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8522 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8523 8524 VPRecipeBase *Recipe; 8525 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8526 if (Phi->getParent() != OrigLoop->getHeader()) 8527 return tryToBlend(Phi, Operands, Plan); 8528 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8529 return toVPRecipeResult(Recipe); 8530 8531 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8532 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8533 VPValue *StartV = Operands[0]; 8534 if (Legal->isReductionVariable(Phi)) { 8535 const RecurrenceDescriptor &RdxDesc = 8536 Legal->getReductionVars().find(Phi)->second; 8537 assert(RdxDesc.getRecurrenceStartValue() == 8538 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8539 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8540 CM.isInLoopReduction(Phi), 8541 CM.useOrderedReductions(RdxDesc)); 8542 } else { 8543 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8544 } 8545 8546 // Record the incoming value from the backedge, so we can add the incoming 8547 // value from the backedge after all recipes have been created. 8548 recordRecipeOf(cast<Instruction>( 8549 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8550 PhisToFix.push_back(PhiRecipe); 8551 } else { 8552 // TODO: record backedge value for remaining pointer induction phis. 8553 assert(Phi->getType()->isPointerTy() && 8554 "only pointer phis should be handled here"); 8555 assert(Legal->getInductionVars().count(Phi) && 8556 "Not an induction variable"); 8557 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8558 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8559 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8560 } 8561 8562 return toVPRecipeResult(PhiRecipe); 8563 } 8564 8565 if (isa<TruncInst>(Instr) && 8566 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8567 Range, *Plan))) 8568 return toVPRecipeResult(Recipe); 8569 8570 if (!shouldWiden(Instr, Range)) 8571 return nullptr; 8572 8573 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8574 return toVPRecipeResult(new VPWidenGEPRecipe( 8575 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8576 8577 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8578 bool InvariantCond = 8579 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8580 return toVPRecipeResult(new VPWidenSelectRecipe( 8581 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8582 } 8583 8584 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8585 } 8586 8587 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8588 ElementCount MaxVF) { 8589 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8590 8591 // Collect instructions from the original loop that will become trivially dead 8592 // in the vectorized loop. We don't need to vectorize these instructions. For 8593 // example, original induction update instructions can become dead because we 8594 // separately emit induction "steps" when generating code for the new loop. 8595 // Similarly, we create a new latch condition when setting up the structure 8596 // of the new loop, so the old one can become dead. 8597 SmallPtrSet<Instruction *, 4> DeadInstructions; 8598 collectTriviallyDeadInstructions(DeadInstructions); 8599 8600 // Add assume instructions we need to drop to DeadInstructions, to prevent 8601 // them from being added to the VPlan. 8602 // TODO: We only need to drop assumes in blocks that get flattend. If the 8603 // control flow is preserved, we should keep them. 8604 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8605 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8606 8607 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8608 // Dead instructions do not need sinking. Remove them from SinkAfter. 8609 for (Instruction *I : DeadInstructions) 8610 SinkAfter.erase(I); 8611 8612 // Cannot sink instructions after dead instructions (there won't be any 8613 // recipes for them). Instead, find the first non-dead previous instruction. 8614 for (auto &P : Legal->getSinkAfter()) { 8615 Instruction *SinkTarget = P.second; 8616 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8617 (void)FirstInst; 8618 while (DeadInstructions.contains(SinkTarget)) { 8619 assert( 8620 SinkTarget != FirstInst && 8621 "Must find a live instruction (at least the one feeding the " 8622 "first-order recurrence PHI) before reaching beginning of the block"); 8623 SinkTarget = SinkTarget->getPrevNode(); 8624 assert(SinkTarget != P.first && 8625 "sink source equals target, no sinking required"); 8626 } 8627 P.second = SinkTarget; 8628 } 8629 8630 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8631 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8632 VFRange SubRange = {VF, MaxVFPlusOne}; 8633 VPlans.push_back( 8634 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8635 VF = SubRange.End; 8636 } 8637 } 8638 8639 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8640 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8641 // BranchOnCount VPInstruction to the latch. 8642 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8643 bool HasNUW, bool IsVPlanNative) { 8644 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8645 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8646 8647 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8648 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8649 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8650 if (IsVPlanNative) 8651 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8652 Header->insert(CanonicalIVPHI, Header->begin()); 8653 8654 auto *CanonicalIVIncrement = 8655 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8656 : VPInstruction::CanonicalIVIncrement, 8657 {CanonicalIVPHI}, DL); 8658 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8659 8660 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8661 if (IsVPlanNative) { 8662 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8663 EB->setCondBit(nullptr); 8664 } 8665 EB->appendRecipe(CanonicalIVIncrement); 8666 8667 auto *BranchOnCount = 8668 new VPInstruction(VPInstruction::BranchOnCount, 8669 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8670 EB->appendRecipe(BranchOnCount); 8671 } 8672 8673 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8674 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8675 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8676 8677 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8678 8679 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8680 8681 // --------------------------------------------------------------------------- 8682 // Pre-construction: record ingredients whose recipes we'll need to further 8683 // process after constructing the initial VPlan. 8684 // --------------------------------------------------------------------------- 8685 8686 // Mark instructions we'll need to sink later and their targets as 8687 // ingredients whose recipe we'll need to record. 8688 for (auto &Entry : SinkAfter) { 8689 RecipeBuilder.recordRecipeOf(Entry.first); 8690 RecipeBuilder.recordRecipeOf(Entry.second); 8691 } 8692 for (auto &Reduction : CM.getInLoopReductionChains()) { 8693 PHINode *Phi = Reduction.first; 8694 RecurKind Kind = 8695 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8696 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8697 8698 RecipeBuilder.recordRecipeOf(Phi); 8699 for (auto &R : ReductionOperations) { 8700 RecipeBuilder.recordRecipeOf(R); 8701 // For min/max reductions, where we have a pair of icmp/select, we also 8702 // need to record the ICmp recipe, so it can be removed later. 8703 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8704 "Only min/max recurrences allowed for inloop reductions"); 8705 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8706 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8707 } 8708 } 8709 8710 // For each interleave group which is relevant for this (possibly trimmed) 8711 // Range, add it to the set of groups to be later applied to the VPlan and add 8712 // placeholders for its members' Recipes which we'll be replacing with a 8713 // single VPInterleaveRecipe. 8714 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8715 auto applyIG = [IG, this](ElementCount VF) -> bool { 8716 return (VF.isVector() && // Query is illegal for VF == 1 8717 CM.getWideningDecision(IG->getInsertPos(), VF) == 8718 LoopVectorizationCostModel::CM_Interleave); 8719 }; 8720 if (!getDecisionAndClampRange(applyIG, Range)) 8721 continue; 8722 InterleaveGroups.insert(IG); 8723 for (unsigned i = 0; i < IG->getFactor(); i++) 8724 if (Instruction *Member = IG->getMember(i)) 8725 RecipeBuilder.recordRecipeOf(Member); 8726 }; 8727 8728 // --------------------------------------------------------------------------- 8729 // Build initial VPlan: Scan the body of the loop in a topological order to 8730 // visit each basic block after having visited its predecessor basic blocks. 8731 // --------------------------------------------------------------------------- 8732 8733 // Create initial VPlan skeleton, with separate header and latch blocks. 8734 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 8735 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8736 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8737 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8738 auto Plan = std::make_unique<VPlan>(TopRegion); 8739 8740 Instruction *DLInst = 8741 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8742 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8743 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8744 !CM.foldTailByMasking(), false); 8745 8746 // Scan the body of the loop in a topological order to visit each basic block 8747 // after having visited its predecessor basic blocks. 8748 LoopBlocksDFS DFS(OrigLoop); 8749 DFS.perform(LI); 8750 8751 VPBasicBlock *VPBB = HeaderVPBB; 8752 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8753 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8754 // Relevant instructions from basic block BB will be grouped into VPRecipe 8755 // ingredients and fill a new VPBasicBlock. 8756 unsigned VPBBsForBB = 0; 8757 VPBB->setName(BB->getName()); 8758 Builder.setInsertPoint(VPBB); 8759 8760 // Introduce each ingredient into VPlan. 8761 // TODO: Model and preserve debug instrinsics in VPlan. 8762 for (Instruction &I : BB->instructionsWithoutDebug()) { 8763 Instruction *Instr = &I; 8764 8765 // First filter out irrelevant instructions, to ensure no recipes are 8766 // built for them. 8767 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8768 continue; 8769 8770 SmallVector<VPValue *, 4> Operands; 8771 auto *Phi = dyn_cast<PHINode>(Instr); 8772 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8773 Operands.push_back(Plan->getOrAddVPValue( 8774 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8775 } else { 8776 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8777 Operands = {OpRange.begin(), OpRange.end()}; 8778 } 8779 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8780 Instr, Operands, Range, Plan)) { 8781 // If Instr can be simplified to an existing VPValue, use it. 8782 if (RecipeOrValue.is<VPValue *>()) { 8783 auto *VPV = RecipeOrValue.get<VPValue *>(); 8784 Plan->addVPValue(Instr, VPV); 8785 // If the re-used value is a recipe, register the recipe for the 8786 // instruction, in case the recipe for Instr needs to be recorded. 8787 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8788 RecipeBuilder.setRecipe(Instr, R); 8789 continue; 8790 } 8791 // Otherwise, add the new recipe. 8792 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8793 for (auto *Def : Recipe->definedValues()) { 8794 auto *UV = Def->getUnderlyingValue(); 8795 Plan->addVPValue(UV, Def); 8796 } 8797 8798 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8799 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8800 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8801 // of the header block. That can happen for truncates of induction 8802 // variables. Those recipes are moved to the phi section of the header 8803 // block after applying SinkAfter, which relies on the original 8804 // position of the trunc. 8805 assert(isa<TruncInst>(Instr)); 8806 InductionsToMove.push_back( 8807 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8808 } 8809 RecipeBuilder.setRecipe(Instr, Recipe); 8810 VPBB->appendRecipe(Recipe); 8811 continue; 8812 } 8813 8814 // Otherwise, if all widening options failed, Instruction is to be 8815 // replicated. This may create a successor for VPBB. 8816 VPBasicBlock *NextVPBB = 8817 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8818 if (NextVPBB != VPBB) { 8819 VPBB = NextVPBB; 8820 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8821 : ""); 8822 } 8823 } 8824 8825 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8826 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8827 } 8828 8829 // Fold the last, empty block into its predecessor. 8830 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8831 assert(VPBB && "expected to fold last (empty) block"); 8832 // After here, VPBB should not be used. 8833 VPBB = nullptr; 8834 8835 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8836 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8837 "entry block must be set to a VPRegionBlock having a non-empty entry " 8838 "VPBasicBlock"); 8839 RecipeBuilder.fixHeaderPhis(); 8840 8841 // --------------------------------------------------------------------------- 8842 // Transform initial VPlan: Apply previously taken decisions, in order, to 8843 // bring the VPlan to its final state. 8844 // --------------------------------------------------------------------------- 8845 8846 // Apply Sink-After legal constraints. 8847 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8848 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8849 if (Region && Region->isReplicator()) { 8850 assert(Region->getNumSuccessors() == 1 && 8851 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8852 assert(R->getParent()->size() == 1 && 8853 "A recipe in an original replicator region must be the only " 8854 "recipe in its block"); 8855 return Region; 8856 } 8857 return nullptr; 8858 }; 8859 for (auto &Entry : SinkAfter) { 8860 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8861 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8862 8863 auto *TargetRegion = GetReplicateRegion(Target); 8864 auto *SinkRegion = GetReplicateRegion(Sink); 8865 if (!SinkRegion) { 8866 // If the sink source is not a replicate region, sink the recipe directly. 8867 if (TargetRegion) { 8868 // The target is in a replication region, make sure to move Sink to 8869 // the block after it, not into the replication region itself. 8870 VPBasicBlock *NextBlock = 8871 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8872 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8873 } else 8874 Sink->moveAfter(Target); 8875 continue; 8876 } 8877 8878 // The sink source is in a replicate region. Unhook the region from the CFG. 8879 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8880 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8881 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8882 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8883 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8884 8885 if (TargetRegion) { 8886 // The target recipe is also in a replicate region, move the sink region 8887 // after the target region. 8888 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8889 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8890 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8891 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8892 } else { 8893 // The sink source is in a replicate region, we need to move the whole 8894 // replicate region, which should only contain a single recipe in the 8895 // main block. 8896 auto *SplitBlock = 8897 Target->getParent()->splitAt(std::next(Target->getIterator())); 8898 8899 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8900 8901 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8902 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8903 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8904 } 8905 } 8906 8907 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8908 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8909 8910 // Now that sink-after is done, move induction recipes for optimized truncates 8911 // to the phi section of the header block. 8912 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8913 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8914 8915 // Adjust the recipes for any inloop reductions. 8916 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 8917 RecipeBuilder, Range.Start); 8918 8919 // Introduce a recipe to combine the incoming and previous values of a 8920 // first-order recurrence. 8921 for (VPRecipeBase &R : 8922 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8923 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8924 if (!RecurPhi) 8925 continue; 8926 8927 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8928 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8929 auto *Region = GetReplicateRegion(PrevRecipe); 8930 if (Region) 8931 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 8932 if (Region || PrevRecipe->isPhi()) 8933 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8934 else 8935 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8936 8937 auto *RecurSplice = cast<VPInstruction>( 8938 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 8939 {RecurPhi, RecurPhi->getBackedgeValue()})); 8940 8941 RecurPhi->replaceAllUsesWith(RecurSplice); 8942 // Set the first operand of RecurSplice to RecurPhi again, after replacing 8943 // all users. 8944 RecurSplice->setOperand(0, RecurPhi); 8945 } 8946 8947 // Interleave memory: for each Interleave Group we marked earlier as relevant 8948 // for this VPlan, replace the Recipes widening its memory instructions with a 8949 // single VPInterleaveRecipe at its insertion point. 8950 for (auto IG : InterleaveGroups) { 8951 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8952 RecipeBuilder.getRecipe(IG->getInsertPos())); 8953 SmallVector<VPValue *, 4> StoredValues; 8954 for (unsigned i = 0; i < IG->getFactor(); ++i) 8955 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 8956 auto *StoreR = 8957 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 8958 StoredValues.push_back(StoreR->getStoredValue()); 8959 } 8960 8961 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8962 Recipe->getMask()); 8963 VPIG->insertBefore(Recipe); 8964 unsigned J = 0; 8965 for (unsigned i = 0; i < IG->getFactor(); ++i) 8966 if (Instruction *Member = IG->getMember(i)) { 8967 if (!Member->getType()->isVoidTy()) { 8968 VPValue *OriginalV = Plan->getVPValue(Member); 8969 Plan->removeVPValueFor(Member); 8970 Plan->addVPValue(Member, VPIG->getVPValue(J)); 8971 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 8972 J++; 8973 } 8974 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 8975 } 8976 } 8977 8978 // From this point onwards, VPlan-to-VPlan transformations may change the plan 8979 // in ways that accessing values using original IR values is incorrect. 8980 Plan->disableValue2VPValue(); 8981 8982 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 8983 VPlanTransforms::sinkScalarOperands(*Plan); 8984 VPlanTransforms::mergeReplicateRegions(*Plan); 8985 VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop); 8986 8987 std::string PlanName; 8988 raw_string_ostream RSO(PlanName); 8989 ElementCount VF = Range.Start; 8990 Plan->addVF(VF); 8991 RSO << "Initial VPlan for VF={" << VF; 8992 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 8993 Plan->addVF(VF); 8994 RSO << "," << VF; 8995 } 8996 RSO << "},UF>=1"; 8997 RSO.flush(); 8998 Plan->setName(PlanName); 8999 9000 // Fold Exit block into its predecessor if possible. 9001 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9002 // VPBasicBlock as exit. 9003 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9004 9005 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9006 return Plan; 9007 } 9008 9009 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9010 // Outer loop handling: They may require CFG and instruction level 9011 // transformations before even evaluating whether vectorization is profitable. 9012 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9013 // the vectorization pipeline. 9014 assert(!OrigLoop->isInnermost()); 9015 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9016 9017 // Create new empty VPlan 9018 auto Plan = std::make_unique<VPlan>(); 9019 9020 // Build hierarchical CFG 9021 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9022 HCFGBuilder.buildHierarchicalCFG(); 9023 9024 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9025 VF *= 2) 9026 Plan->addVF(VF); 9027 9028 if (EnableVPlanPredication) { 9029 VPlanPredicator VPP(*Plan); 9030 VPP.predicate(); 9031 9032 // Avoid running transformation to recipes until masked code generation in 9033 // VPlan-native path is in place. 9034 return Plan; 9035 } 9036 9037 SmallPtrSet<Instruction *, 1> DeadInstructions; 9038 VPlanTransforms::VPInstructionsToVPRecipes( 9039 OrigLoop, Plan, 9040 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9041 DeadInstructions, *PSE.getSE()); 9042 9043 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9044 true, true); 9045 return Plan; 9046 } 9047 9048 // Adjust the recipes for reductions. For in-loop reductions the chain of 9049 // instructions leading from the loop exit instr to the phi need to be converted 9050 // to reductions, with one operand being vector and the other being the scalar 9051 // reduction chain. For other reductions, a select is introduced between the phi 9052 // and live-out recipes when folding the tail. 9053 void LoopVectorizationPlanner::adjustRecipesForReductions( 9054 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9055 ElementCount MinVF) { 9056 for (auto &Reduction : CM.getInLoopReductionChains()) { 9057 PHINode *Phi = Reduction.first; 9058 const RecurrenceDescriptor &RdxDesc = 9059 Legal->getReductionVars().find(Phi)->second; 9060 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9061 9062 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9063 continue; 9064 9065 // ReductionOperations are orders top-down from the phi's use to the 9066 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9067 // which of the two operands will remain scalar and which will be reduced. 9068 // For minmax the chain will be the select instructions. 9069 Instruction *Chain = Phi; 9070 for (Instruction *R : ReductionOperations) { 9071 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9072 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9073 9074 VPValue *ChainOp = Plan->getVPValue(Chain); 9075 unsigned FirstOpId; 9076 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9077 "Only min/max recurrences allowed for inloop reductions"); 9078 // Recognize a call to the llvm.fmuladd intrinsic. 9079 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9080 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9081 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9082 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9083 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9084 "Expected to replace a VPWidenSelectSC"); 9085 FirstOpId = 1; 9086 } else { 9087 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9088 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9089 "Expected to replace a VPWidenSC"); 9090 FirstOpId = 0; 9091 } 9092 unsigned VecOpId = 9093 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9094 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9095 9096 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9097 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9098 : nullptr; 9099 9100 if (IsFMulAdd) { 9101 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9102 // need to create an fmul recipe to use as the vector operand for the 9103 // fadd reduction. 9104 VPInstruction *FMulRecipe = new VPInstruction( 9105 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9106 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9107 WidenRecipe->getParent()->insert(FMulRecipe, 9108 WidenRecipe->getIterator()); 9109 VecOp = FMulRecipe; 9110 } 9111 VPReductionRecipe *RedRecipe = 9112 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9113 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9114 Plan->removeVPValueFor(R); 9115 Plan->addVPValue(R, RedRecipe); 9116 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9117 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9118 WidenRecipe->eraseFromParent(); 9119 9120 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9121 VPRecipeBase *CompareRecipe = 9122 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9123 assert(isa<VPWidenRecipe>(CompareRecipe) && 9124 "Expected to replace a VPWidenSC"); 9125 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9126 "Expected no remaining users"); 9127 CompareRecipe->eraseFromParent(); 9128 } 9129 Chain = R; 9130 } 9131 } 9132 9133 // If tail is folded by masking, introduce selects between the phi 9134 // and the live-out instruction of each reduction, at the beginning of the 9135 // dedicated latch block. 9136 if (CM.foldTailByMasking()) { 9137 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9138 for (VPRecipeBase &R : 9139 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9140 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9141 if (!PhiR || PhiR->isInLoop()) 9142 continue; 9143 VPValue *Cond = 9144 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9145 VPValue *Red = PhiR->getBackedgeValue(); 9146 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9147 "reduction recipe must be defined before latch"); 9148 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9149 } 9150 } 9151 } 9152 9153 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9154 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9155 VPSlotTracker &SlotTracker) const { 9156 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9157 IG->getInsertPos()->printAsOperand(O, false); 9158 O << ", "; 9159 getAddr()->printAsOperand(O, SlotTracker); 9160 VPValue *Mask = getMask(); 9161 if (Mask) { 9162 O << ", "; 9163 Mask->printAsOperand(O, SlotTracker); 9164 } 9165 9166 unsigned OpIdx = 0; 9167 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9168 if (!IG->getMember(i)) 9169 continue; 9170 if (getNumStoreOperands() > 0) { 9171 O << "\n" << Indent << " store "; 9172 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9173 O << " to index " << i; 9174 } else { 9175 O << "\n" << Indent << " "; 9176 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9177 O << " = load from index " << i; 9178 } 9179 ++OpIdx; 9180 } 9181 } 9182 #endif 9183 9184 void VPWidenCallRecipe::execute(VPTransformState &State) { 9185 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9186 *this, State); 9187 } 9188 9189 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9190 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9191 State.ILV->setDebugLocFromInst(&I); 9192 9193 // The condition can be loop invariant but still defined inside the 9194 // loop. This means that we can't just use the original 'cond' value. 9195 // We have to take the 'vectorized' value and pick the first lane. 9196 // Instcombine will make this a no-op. 9197 auto *InvarCond = 9198 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9199 9200 for (unsigned Part = 0; Part < State.UF; ++Part) { 9201 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9202 Value *Op0 = State.get(getOperand(1), Part); 9203 Value *Op1 = State.get(getOperand(2), Part); 9204 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9205 State.set(this, Sel, Part); 9206 State.ILV->addMetadata(Sel, &I); 9207 } 9208 } 9209 9210 void VPWidenRecipe::execute(VPTransformState &State) { 9211 auto &I = *cast<Instruction>(getUnderlyingValue()); 9212 auto &Builder = State.Builder; 9213 switch (I.getOpcode()) { 9214 case Instruction::Call: 9215 case Instruction::Br: 9216 case Instruction::PHI: 9217 case Instruction::GetElementPtr: 9218 case Instruction::Select: 9219 llvm_unreachable("This instruction is handled by a different recipe."); 9220 case Instruction::UDiv: 9221 case Instruction::SDiv: 9222 case Instruction::SRem: 9223 case Instruction::URem: 9224 case Instruction::Add: 9225 case Instruction::FAdd: 9226 case Instruction::Sub: 9227 case Instruction::FSub: 9228 case Instruction::FNeg: 9229 case Instruction::Mul: 9230 case Instruction::FMul: 9231 case Instruction::FDiv: 9232 case Instruction::FRem: 9233 case Instruction::Shl: 9234 case Instruction::LShr: 9235 case Instruction::AShr: 9236 case Instruction::And: 9237 case Instruction::Or: 9238 case Instruction::Xor: { 9239 // Just widen unops and binops. 9240 State.ILV->setDebugLocFromInst(&I); 9241 9242 for (unsigned Part = 0; Part < State.UF; ++Part) { 9243 SmallVector<Value *, 2> Ops; 9244 for (VPValue *VPOp : operands()) 9245 Ops.push_back(State.get(VPOp, Part)); 9246 9247 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9248 9249 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9250 VecOp->copyIRFlags(&I); 9251 9252 // If the instruction is vectorized and was in a basic block that needed 9253 // predication, we can't propagate poison-generating flags (nuw/nsw, 9254 // exact, etc.). The control flow has been linearized and the 9255 // instruction is no longer guarded by the predicate, which could make 9256 // the flag properties to no longer hold. 9257 if (State.MayGeneratePoisonRecipes.contains(this)) 9258 VecOp->dropPoisonGeneratingFlags(); 9259 } 9260 9261 // Use this vector value for all users of the original instruction. 9262 State.set(this, V, Part); 9263 State.ILV->addMetadata(V, &I); 9264 } 9265 9266 break; 9267 } 9268 case Instruction::ICmp: 9269 case Instruction::FCmp: { 9270 // Widen compares. Generate vector compares. 9271 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9272 auto *Cmp = cast<CmpInst>(&I); 9273 State.ILV->setDebugLocFromInst(Cmp); 9274 for (unsigned Part = 0; Part < State.UF; ++Part) { 9275 Value *A = State.get(getOperand(0), Part); 9276 Value *B = State.get(getOperand(1), Part); 9277 Value *C = nullptr; 9278 if (FCmp) { 9279 // Propagate fast math flags. 9280 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9281 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9282 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9283 } else { 9284 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9285 } 9286 State.set(this, C, Part); 9287 State.ILV->addMetadata(C, &I); 9288 } 9289 9290 break; 9291 } 9292 9293 case Instruction::ZExt: 9294 case Instruction::SExt: 9295 case Instruction::FPToUI: 9296 case Instruction::FPToSI: 9297 case Instruction::FPExt: 9298 case Instruction::PtrToInt: 9299 case Instruction::IntToPtr: 9300 case Instruction::SIToFP: 9301 case Instruction::UIToFP: 9302 case Instruction::Trunc: 9303 case Instruction::FPTrunc: 9304 case Instruction::BitCast: { 9305 auto *CI = cast<CastInst>(&I); 9306 State.ILV->setDebugLocFromInst(CI); 9307 9308 /// Vectorize casts. 9309 Type *DestTy = (State.VF.isScalar()) 9310 ? CI->getType() 9311 : VectorType::get(CI->getType(), State.VF); 9312 9313 for (unsigned Part = 0; Part < State.UF; ++Part) { 9314 Value *A = State.get(getOperand(0), Part); 9315 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9316 State.set(this, Cast, Part); 9317 State.ILV->addMetadata(Cast, &I); 9318 } 9319 break; 9320 } 9321 default: 9322 // This instruction is not vectorized by simple widening. 9323 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9324 llvm_unreachable("Unhandled instruction!"); 9325 } // end of switch. 9326 } 9327 9328 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9329 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9330 // Construct a vector GEP by widening the operands of the scalar GEP as 9331 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9332 // results in a vector of pointers when at least one operand of the GEP 9333 // is vector-typed. Thus, to keep the representation compact, we only use 9334 // vector-typed operands for loop-varying values. 9335 9336 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9337 // If we are vectorizing, but the GEP has only loop-invariant operands, 9338 // the GEP we build (by only using vector-typed operands for 9339 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9340 // produce a vector of pointers, we need to either arbitrarily pick an 9341 // operand to broadcast, or broadcast a clone of the original GEP. 9342 // Here, we broadcast a clone of the original. 9343 // 9344 // TODO: If at some point we decide to scalarize instructions having 9345 // loop-invariant operands, this special case will no longer be 9346 // required. We would add the scalarization decision to 9347 // collectLoopScalars() and teach getVectorValue() to broadcast 9348 // the lane-zero scalar value. 9349 auto *Clone = State.Builder.Insert(GEP->clone()); 9350 for (unsigned Part = 0; Part < State.UF; ++Part) { 9351 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9352 State.set(this, EntryPart, Part); 9353 State.ILV->addMetadata(EntryPart, GEP); 9354 } 9355 } else { 9356 // If the GEP has at least one loop-varying operand, we are sure to 9357 // produce a vector of pointers. But if we are only unrolling, we want 9358 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9359 // produce with the code below will be scalar (if VF == 1) or vector 9360 // (otherwise). Note that for the unroll-only case, we still maintain 9361 // values in the vector mapping with initVector, as we do for other 9362 // instructions. 9363 for (unsigned Part = 0; Part < State.UF; ++Part) { 9364 // The pointer operand of the new GEP. If it's loop-invariant, we 9365 // won't broadcast it. 9366 auto *Ptr = IsPtrLoopInvariant 9367 ? State.get(getOperand(0), VPIteration(0, 0)) 9368 : State.get(getOperand(0), Part); 9369 9370 // Collect all the indices for the new GEP. If any index is 9371 // loop-invariant, we won't broadcast it. 9372 SmallVector<Value *, 4> Indices; 9373 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9374 VPValue *Operand = getOperand(I); 9375 if (IsIndexLoopInvariant[I - 1]) 9376 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9377 else 9378 Indices.push_back(State.get(Operand, Part)); 9379 } 9380 9381 // If the GEP instruction is vectorized and was in a basic block that 9382 // needed predication, we can't propagate the poison-generating 'inbounds' 9383 // flag. The control flow has been linearized and the GEP is no longer 9384 // guarded by the predicate, which could make the 'inbounds' properties to 9385 // no longer hold. 9386 bool IsInBounds = 9387 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9388 9389 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9390 // but it should be a vector, otherwise. 9391 auto *NewGEP = IsInBounds 9392 ? State.Builder.CreateInBoundsGEP( 9393 GEP->getSourceElementType(), Ptr, Indices) 9394 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9395 Ptr, Indices); 9396 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9397 "NewGEP is not a pointer vector"); 9398 State.set(this, NewGEP, Part); 9399 State.ILV->addMetadata(NewGEP, GEP); 9400 } 9401 } 9402 } 9403 9404 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9405 assert(!State.Instance && "Int or FP induction being replicated."); 9406 9407 Value *Start = getStartValue()->getLiveInIRValue(); 9408 const InductionDescriptor &ID = getInductionDescriptor(); 9409 TruncInst *Trunc = getTruncInst(); 9410 IRBuilderBase &Builder = State.Builder; 9411 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9412 assert(State.VF.isVector() && "must have vector VF"); 9413 9414 // The value from the original loop to which we are mapping the new induction 9415 // variable. 9416 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9417 9418 auto &DL = EntryVal->getModule()->getDataLayout(); 9419 9420 // Generate code for the induction step. Note that induction steps are 9421 // required to be loop-invariant 9422 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 9423 if (SE.isSCEVable(IV->getType())) { 9424 SCEVExpander Exp(SE, DL, "induction"); 9425 return Exp.expandCodeFor(Step, Step->getType(), 9426 State.CFG.VectorPreHeader->getTerminator()); 9427 } 9428 return cast<SCEVUnknown>(Step)->getValue(); 9429 }; 9430 9431 // Fast-math-flags propagate from the original induction instruction. 9432 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9433 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9434 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9435 9436 // Now do the actual transformations, and start with creating the step value. 9437 Value *Step = CreateStepValue(ID.getStep()); 9438 9439 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9440 "Expected either an induction phi-node or a truncate of it!"); 9441 9442 // Construct the initial value of the vector IV in the vector loop preheader 9443 auto CurrIP = Builder.saveIP(); 9444 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 9445 if (isa<TruncInst>(EntryVal)) { 9446 assert(Start->getType()->isIntegerTy() && 9447 "Truncation requires an integer type"); 9448 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9449 Step = Builder.CreateTrunc(Step, TruncType); 9450 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9451 } 9452 9453 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9454 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9455 Value *SteppedStart = getStepVector( 9456 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9457 9458 // We create vector phi nodes for both integer and floating-point induction 9459 // variables. Here, we determine the kind of arithmetic we will perform. 9460 Instruction::BinaryOps AddOp; 9461 Instruction::BinaryOps MulOp; 9462 if (Step->getType()->isIntegerTy()) { 9463 AddOp = Instruction::Add; 9464 MulOp = Instruction::Mul; 9465 } else { 9466 AddOp = ID.getInductionOpcode(); 9467 MulOp = Instruction::FMul; 9468 } 9469 9470 // Multiply the vectorization factor by the step using integer or 9471 // floating-point arithmetic as appropriate. 9472 Type *StepType = Step->getType(); 9473 Value *RuntimeVF; 9474 if (Step->getType()->isFloatingPointTy()) 9475 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9476 else 9477 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9478 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9479 9480 // Create a vector splat to use in the induction update. 9481 // 9482 // FIXME: If the step is non-constant, we create the vector splat with 9483 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9484 // handle a constant vector splat. 9485 Value *SplatVF = isa<Constant>(Mul) 9486 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9487 : Builder.CreateVectorSplat(State.VF, Mul); 9488 Builder.restoreIP(CurrIP); 9489 9490 // We may need to add the step a number of times, depending on the unroll 9491 // factor. The last of those goes into the PHI. 9492 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9493 &*State.CFG.PrevBB->getFirstInsertionPt()); 9494 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9495 Instruction *LastInduction = VecInd; 9496 for (unsigned Part = 0; Part < State.UF; ++Part) { 9497 State.set(this, LastInduction, Part); 9498 9499 if (isa<TruncInst>(EntryVal)) 9500 State.ILV->addMetadata(LastInduction, EntryVal); 9501 9502 LastInduction = cast<Instruction>( 9503 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9504 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9505 } 9506 9507 LastInduction->setName("vec.ind.next"); 9508 VecInd->addIncoming(SteppedStart, State.CFG.VectorPreHeader); 9509 // Add induction update using an incorrect block temporarily. The phi node 9510 // will be fixed after VPlan execution. Note that at this point the latch 9511 // block cannot be used, as it does not exist yet. 9512 // TODO: Model increment value in VPlan, by turning the recipe into a 9513 // multi-def and a subclass of VPHeaderPHIRecipe. 9514 VecInd->addIncoming(LastInduction, State.CFG.VectorPreHeader); 9515 } 9516 9517 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9518 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9519 "Not a pointer induction according to InductionDescriptor!"); 9520 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9521 "Unexpected type."); 9522 9523 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9524 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9525 9526 if (all_of(users(), [this](const VPUser *U) { 9527 return cast<VPRecipeBase>(U)->usesScalars(this); 9528 })) { 9529 // This is the normalized GEP that starts counting at zero. 9530 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9531 CanonicalIV, IndDesc.getStep()->getType()); 9532 // Determine the number of scalars we need to generate for each unroll 9533 // iteration. If the instruction is uniform, we only need to generate the 9534 // first lane. Otherwise, we generate all VF values. 9535 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9536 assert((IsUniform || !State.VF.isScalable()) && 9537 "Cannot scalarize a scalable VF"); 9538 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9539 9540 for (unsigned Part = 0; Part < State.UF; ++Part) { 9541 Value *PartStart = 9542 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9543 9544 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9545 Value *Idx = State.Builder.CreateAdd( 9546 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9547 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9548 9549 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9550 State.CFG.PrevBB->getTerminator()); 9551 Value *SclrGep = emitTransformedIndex( 9552 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9553 SclrGep->setName("next.gep"); 9554 State.set(this, SclrGep, VPIteration(Part, Lane)); 9555 } 9556 } 9557 return; 9558 } 9559 9560 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9561 "Induction step not a SCEV constant!"); 9562 Type *PhiType = IndDesc.getStep()->getType(); 9563 9564 // Build a pointer phi 9565 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9566 Type *ScStValueType = ScalarStartValue->getType(); 9567 PHINode *NewPointerPhi = 9568 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9569 NewPointerPhi->addIncoming(ScalarStartValue, State.CFG.VectorPreHeader); 9570 9571 // A pointer induction, performed by using a gep 9572 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9573 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9574 9575 const SCEV *ScalarStep = IndDesc.getStep(); 9576 SCEVExpander Exp(SE, DL, "induction"); 9577 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9578 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9579 Value *NumUnrolledElems = 9580 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9581 Value *InductionGEP = GetElementPtrInst::Create( 9582 IndDesc.getElementType(), NewPointerPhi, 9583 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9584 InductionLoc); 9585 // Add induction update using an incorrect block temporarily. The phi node 9586 // will be fixed after VPlan execution. Note that at this point the latch 9587 // block cannot be used, as it does not exist yet. 9588 // TODO: Model increment value in VPlan, by turning the recipe into a 9589 // multi-def and a subclass of VPHeaderPHIRecipe. 9590 NewPointerPhi->addIncoming(InductionGEP, State.CFG.VectorPreHeader); 9591 9592 // Create UF many actual address geps that use the pointer 9593 // phi as base and a vectorized version of the step value 9594 // (<step*0, ..., step*N>) as offset. 9595 for (unsigned Part = 0; Part < State.UF; ++Part) { 9596 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9597 Value *StartOffsetScalar = 9598 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9599 Value *StartOffset = 9600 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9601 // Create a vector of consecutive numbers from zero to VF. 9602 StartOffset = State.Builder.CreateAdd( 9603 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9604 9605 Value *GEP = State.Builder.CreateGEP( 9606 IndDesc.getElementType(), NewPointerPhi, 9607 State.Builder.CreateMul( 9608 StartOffset, 9609 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9610 "vector.gep")); 9611 State.set(this, GEP, Part); 9612 } 9613 } 9614 9615 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9616 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9617 9618 // Fast-math-flags propagate from the original induction instruction. 9619 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9620 if (IndDesc.getInductionBinOp() && 9621 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9622 State.Builder.setFastMathFlags( 9623 IndDesc.getInductionBinOp()->getFastMathFlags()); 9624 9625 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9626 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9627 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9628 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9629 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9630 ScalarIV = 9631 Ty->isIntegerTy() 9632 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9633 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9634 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9635 getStartValue()->getLiveInIRValue(), Step, 9636 IndDesc); 9637 ScalarIV->setName("offset.idx"); 9638 } 9639 if (TruncToTy) { 9640 assert(Step->getType()->isIntegerTy() && 9641 "Truncation requires an integer step"); 9642 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9643 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9644 } 9645 return ScalarIV; 9646 }; 9647 9648 Value *ScalarIV = CreateScalarIV(Step); 9649 if (State.VF.isVector()) { 9650 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9651 return; 9652 } 9653 9654 for (unsigned Part = 0; Part < State.UF; ++Part) { 9655 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9656 Value *EntryPart; 9657 if (Step->getType()->isFloatingPointTy()) { 9658 Value *StartIdx = 9659 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9660 // Floating-point operations inherit FMF via the builder's flags. 9661 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9662 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9663 ScalarIV, MulOp); 9664 } else { 9665 Value *StartIdx = 9666 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9667 EntryPart = State.Builder.CreateAdd( 9668 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9669 } 9670 State.set(this, EntryPart, Part); 9671 } 9672 } 9673 9674 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9675 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9676 State); 9677 } 9678 9679 void VPBlendRecipe::execute(VPTransformState &State) { 9680 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9681 // We know that all PHIs in non-header blocks are converted into 9682 // selects, so we don't have to worry about the insertion order and we 9683 // can just use the builder. 9684 // At this point we generate the predication tree. There may be 9685 // duplications since this is a simple recursive scan, but future 9686 // optimizations will clean it up. 9687 9688 unsigned NumIncoming = getNumIncomingValues(); 9689 9690 // Generate a sequence of selects of the form: 9691 // SELECT(Mask3, In3, 9692 // SELECT(Mask2, In2, 9693 // SELECT(Mask1, In1, 9694 // In0))) 9695 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9696 // are essentially undef are taken from In0. 9697 InnerLoopVectorizer::VectorParts Entry(State.UF); 9698 for (unsigned In = 0; In < NumIncoming; ++In) { 9699 for (unsigned Part = 0; Part < State.UF; ++Part) { 9700 // We might have single edge PHIs (blocks) - use an identity 9701 // 'select' for the first PHI operand. 9702 Value *In0 = State.get(getIncomingValue(In), Part); 9703 if (In == 0) 9704 Entry[Part] = In0; // Initialize with the first incoming value. 9705 else { 9706 // Select between the current value and the previous incoming edge 9707 // based on the incoming mask. 9708 Value *Cond = State.get(getMask(In), Part); 9709 Entry[Part] = 9710 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9711 } 9712 } 9713 } 9714 for (unsigned Part = 0; Part < State.UF; ++Part) 9715 State.set(this, Entry[Part], Part); 9716 } 9717 9718 void VPInterleaveRecipe::execute(VPTransformState &State) { 9719 assert(!State.Instance && "Interleave group being replicated."); 9720 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9721 getStoredValues(), getMask()); 9722 } 9723 9724 void VPReductionRecipe::execute(VPTransformState &State) { 9725 assert(!State.Instance && "Reduction being replicated."); 9726 Value *PrevInChain = State.get(getChainOp(), 0); 9727 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9728 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9729 // Propagate the fast-math flags carried by the underlying instruction. 9730 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9731 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9732 for (unsigned Part = 0; Part < State.UF; ++Part) { 9733 Value *NewVecOp = State.get(getVecOp(), Part); 9734 if (VPValue *Cond = getCondOp()) { 9735 Value *NewCond = State.get(Cond, Part); 9736 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9737 Value *Iden = RdxDesc->getRecurrenceIdentity( 9738 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9739 Value *IdenVec = 9740 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9741 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9742 NewVecOp = Select; 9743 } 9744 Value *NewRed; 9745 Value *NextInChain; 9746 if (IsOrdered) { 9747 if (State.VF.isVector()) 9748 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9749 PrevInChain); 9750 else 9751 NewRed = State.Builder.CreateBinOp( 9752 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9753 NewVecOp); 9754 PrevInChain = NewRed; 9755 } else { 9756 PrevInChain = State.get(getChainOp(), Part); 9757 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9758 } 9759 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9760 NextInChain = 9761 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9762 NewRed, PrevInChain); 9763 } else if (IsOrdered) 9764 NextInChain = NewRed; 9765 else 9766 NextInChain = State.Builder.CreateBinOp( 9767 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9768 PrevInChain); 9769 State.set(this, NextInChain, Part); 9770 } 9771 } 9772 9773 void VPReplicateRecipe::execute(VPTransformState &State) { 9774 if (State.Instance) { // Generate a single instance. 9775 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9776 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9777 IsPredicated, State); 9778 // Insert scalar instance packing it into a vector. 9779 if (AlsoPack && State.VF.isVector()) { 9780 // If we're constructing lane 0, initialize to start from poison. 9781 if (State.Instance->Lane.isFirstLane()) { 9782 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9783 Value *Poison = PoisonValue::get( 9784 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9785 State.set(this, Poison, State.Instance->Part); 9786 } 9787 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9788 } 9789 return; 9790 } 9791 9792 // Generate scalar instances for all VF lanes of all UF parts, unless the 9793 // instruction is uniform inwhich case generate only the first lane for each 9794 // of the UF parts. 9795 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9796 assert((!State.VF.isScalable() || IsUniform) && 9797 "Can't scalarize a scalable vector"); 9798 for (unsigned Part = 0; Part < State.UF; ++Part) 9799 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9800 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9801 VPIteration(Part, Lane), IsPredicated, 9802 State); 9803 } 9804 9805 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9806 assert(State.Instance && "Branch on Mask works only on single instance."); 9807 9808 unsigned Part = State.Instance->Part; 9809 unsigned Lane = State.Instance->Lane.getKnownLane(); 9810 9811 Value *ConditionBit = nullptr; 9812 VPValue *BlockInMask = getMask(); 9813 if (BlockInMask) { 9814 ConditionBit = State.get(BlockInMask, Part); 9815 if (ConditionBit->getType()->isVectorTy()) 9816 ConditionBit = State.Builder.CreateExtractElement( 9817 ConditionBit, State.Builder.getInt32(Lane)); 9818 } else // Block in mask is all-one. 9819 ConditionBit = State.Builder.getTrue(); 9820 9821 // Replace the temporary unreachable terminator with a new conditional branch, 9822 // whose two destinations will be set later when they are created. 9823 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9824 assert(isa<UnreachableInst>(CurrentTerminator) && 9825 "Expected to replace unreachable terminator with conditional branch."); 9826 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9827 CondBr->setSuccessor(0, nullptr); 9828 ReplaceInstWithInst(CurrentTerminator, CondBr); 9829 } 9830 9831 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9832 assert(State.Instance && "Predicated instruction PHI works per instance."); 9833 Instruction *ScalarPredInst = 9834 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9835 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9836 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9837 assert(PredicatingBB && "Predicated block has no single predecessor."); 9838 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9839 "operand must be VPReplicateRecipe"); 9840 9841 // By current pack/unpack logic we need to generate only a single phi node: if 9842 // a vector value for the predicated instruction exists at this point it means 9843 // the instruction has vector users only, and a phi for the vector value is 9844 // needed. In this case the recipe of the predicated instruction is marked to 9845 // also do that packing, thereby "hoisting" the insert-element sequence. 9846 // Otherwise, a phi node for the scalar value is needed. 9847 unsigned Part = State.Instance->Part; 9848 if (State.hasVectorValue(getOperand(0), Part)) { 9849 Value *VectorValue = State.get(getOperand(0), Part); 9850 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9851 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9852 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9853 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9854 if (State.hasVectorValue(this, Part)) 9855 State.reset(this, VPhi, Part); 9856 else 9857 State.set(this, VPhi, Part); 9858 // NOTE: Currently we need to update the value of the operand, so the next 9859 // predicated iteration inserts its generated value in the correct vector. 9860 State.reset(getOperand(0), VPhi, Part); 9861 } else { 9862 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9863 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9864 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9865 PredicatingBB); 9866 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9867 if (State.hasScalarValue(this, *State.Instance)) 9868 State.reset(this, Phi, *State.Instance); 9869 else 9870 State.set(this, Phi, *State.Instance); 9871 // NOTE: Currently we need to update the value of the operand, so the next 9872 // predicated iteration inserts its generated value in the correct vector. 9873 State.reset(getOperand(0), Phi, *State.Instance); 9874 } 9875 } 9876 9877 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9878 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9879 9880 // Attempt to issue a wide load. 9881 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9882 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9883 9884 assert((LI || SI) && "Invalid Load/Store instruction"); 9885 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9886 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9887 9888 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9889 9890 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9891 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9892 bool CreateGatherScatter = !Consecutive; 9893 9894 auto &Builder = State.Builder; 9895 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9896 bool isMaskRequired = getMask(); 9897 if (isMaskRequired) 9898 for (unsigned Part = 0; Part < State.UF; ++Part) 9899 BlockInMaskParts[Part] = State.get(getMask(), Part); 9900 9901 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9902 // Calculate the pointer for the specific unroll-part. 9903 GetElementPtrInst *PartPtr = nullptr; 9904 9905 bool InBounds = false; 9906 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9907 InBounds = gep->isInBounds(); 9908 if (Reverse) { 9909 // If the address is consecutive but reversed, then the 9910 // wide store needs to start at the last vector element. 9911 // RunTimeVF = VScale * VF.getKnownMinValue() 9912 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9913 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9914 // NumElt = -Part * RunTimeVF 9915 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9916 // LastLane = 1 - RunTimeVF 9917 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9918 PartPtr = 9919 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9920 PartPtr->setIsInBounds(InBounds); 9921 PartPtr = cast<GetElementPtrInst>( 9922 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9923 PartPtr->setIsInBounds(InBounds); 9924 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9925 BlockInMaskParts[Part] = 9926 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9927 } else { 9928 Value *Increment = 9929 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9930 PartPtr = cast<GetElementPtrInst>( 9931 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9932 PartPtr->setIsInBounds(InBounds); 9933 } 9934 9935 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9936 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9937 }; 9938 9939 // Handle Stores: 9940 if (SI) { 9941 State.ILV->setDebugLocFromInst(SI); 9942 9943 for (unsigned Part = 0; Part < State.UF; ++Part) { 9944 Instruction *NewSI = nullptr; 9945 Value *StoredVal = State.get(StoredValue, Part); 9946 if (CreateGatherScatter) { 9947 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9948 Value *VectorGep = State.get(getAddr(), Part); 9949 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9950 MaskPart); 9951 } else { 9952 if (Reverse) { 9953 // If we store to reverse consecutive memory locations, then we need 9954 // to reverse the order of elements in the stored value. 9955 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9956 // We don't want to update the value in the map as it might be used in 9957 // another expression. So don't call resetVectorValue(StoredVal). 9958 } 9959 auto *VecPtr = 9960 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9961 if (isMaskRequired) 9962 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9963 BlockInMaskParts[Part]); 9964 else 9965 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 9966 } 9967 State.ILV->addMetadata(NewSI, SI); 9968 } 9969 return; 9970 } 9971 9972 // Handle loads. 9973 assert(LI && "Must have a load instruction"); 9974 State.ILV->setDebugLocFromInst(LI); 9975 for (unsigned Part = 0; Part < State.UF; ++Part) { 9976 Value *NewLI; 9977 if (CreateGatherScatter) { 9978 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9979 Value *VectorGep = State.get(getAddr(), Part); 9980 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 9981 nullptr, "wide.masked.gather"); 9982 State.ILV->addMetadata(NewLI, LI); 9983 } else { 9984 auto *VecPtr = 9985 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9986 if (isMaskRequired) 9987 NewLI = Builder.CreateMaskedLoad( 9988 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 9989 PoisonValue::get(DataTy), "wide.masked.load"); 9990 else 9991 NewLI = 9992 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 9993 9994 // Add metadata to the load, but setVectorValue to the reverse shuffle. 9995 State.ILV->addMetadata(NewLI, LI); 9996 if (Reverse) 9997 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 9998 } 9999 10000 State.set(this, NewLI, Part); 10001 } 10002 } 10003 10004 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10005 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10006 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10007 // for predication. 10008 static ScalarEpilogueLowering getScalarEpilogueLowering( 10009 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10010 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10011 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10012 LoopVectorizationLegality &LVL) { 10013 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10014 // don't look at hints or options, and don't request a scalar epilogue. 10015 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10016 // LoopAccessInfo (due to code dependency and not being able to reliably get 10017 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10018 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10019 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10020 // back to the old way and vectorize with versioning when forced. See D81345.) 10021 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10022 PGSOQueryType::IRPass) && 10023 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10024 return CM_ScalarEpilogueNotAllowedOptSize; 10025 10026 // 2) If set, obey the directives 10027 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10028 switch (PreferPredicateOverEpilogue) { 10029 case PreferPredicateTy::ScalarEpilogue: 10030 return CM_ScalarEpilogueAllowed; 10031 case PreferPredicateTy::PredicateElseScalarEpilogue: 10032 return CM_ScalarEpilogueNotNeededUsePredicate; 10033 case PreferPredicateTy::PredicateOrDontVectorize: 10034 return CM_ScalarEpilogueNotAllowedUsePredicate; 10035 }; 10036 } 10037 10038 // 3) If set, obey the hints 10039 switch (Hints.getPredicate()) { 10040 case LoopVectorizeHints::FK_Enabled: 10041 return CM_ScalarEpilogueNotNeededUsePredicate; 10042 case LoopVectorizeHints::FK_Disabled: 10043 return CM_ScalarEpilogueAllowed; 10044 }; 10045 10046 // 4) if the TTI hook indicates this is profitable, request predication. 10047 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10048 LVL.getLAI())) 10049 return CM_ScalarEpilogueNotNeededUsePredicate; 10050 10051 return CM_ScalarEpilogueAllowed; 10052 } 10053 10054 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10055 // If Values have been set for this Def return the one relevant for \p Part. 10056 if (hasVectorValue(Def, Part)) 10057 return Data.PerPartOutput[Def][Part]; 10058 10059 if (!hasScalarValue(Def, {Part, 0})) { 10060 Value *IRV = Def->getLiveInIRValue(); 10061 Value *B = ILV->getBroadcastInstrs(IRV); 10062 set(Def, B, Part); 10063 return B; 10064 } 10065 10066 Value *ScalarValue = get(Def, {Part, 0}); 10067 // If we aren't vectorizing, we can just copy the scalar map values over 10068 // to the vector map. 10069 if (VF.isScalar()) { 10070 set(Def, ScalarValue, Part); 10071 return ScalarValue; 10072 } 10073 10074 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10075 bool IsUniform = RepR && RepR->isUniform(); 10076 10077 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10078 // Check if there is a scalar value for the selected lane. 10079 if (!hasScalarValue(Def, {Part, LastLane})) { 10080 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10081 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10082 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10083 "unexpected recipe found to be invariant"); 10084 IsUniform = true; 10085 LastLane = 0; 10086 } 10087 10088 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10089 // Set the insert point after the last scalarized instruction or after the 10090 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10091 // will directly follow the scalar definitions. 10092 auto OldIP = Builder.saveIP(); 10093 auto NewIP = 10094 isa<PHINode>(LastInst) 10095 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10096 : std::next(BasicBlock::iterator(LastInst)); 10097 Builder.SetInsertPoint(&*NewIP); 10098 10099 // However, if we are vectorizing, we need to construct the vector values. 10100 // If the value is known to be uniform after vectorization, we can just 10101 // broadcast the scalar value corresponding to lane zero for each unroll 10102 // iteration. Otherwise, we construct the vector values using 10103 // insertelement instructions. Since the resulting vectors are stored in 10104 // State, we will only generate the insertelements once. 10105 Value *VectorValue = nullptr; 10106 if (IsUniform) { 10107 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10108 set(Def, VectorValue, Part); 10109 } else { 10110 // Initialize packing with insertelements to start from undef. 10111 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10112 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10113 set(Def, Undef, Part); 10114 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10115 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10116 VectorValue = get(Def, Part); 10117 } 10118 Builder.restoreIP(OldIP); 10119 return VectorValue; 10120 } 10121 10122 // Process the loop in the VPlan-native vectorization path. This path builds 10123 // VPlan upfront in the vectorization pipeline, which allows to apply 10124 // VPlan-to-VPlan transformations from the very beginning without modifying the 10125 // input LLVM IR. 10126 static bool processLoopInVPlanNativePath( 10127 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10128 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10129 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10130 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10131 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10132 LoopVectorizationRequirements &Requirements) { 10133 10134 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10135 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10136 return false; 10137 } 10138 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10139 Function *F = L->getHeader()->getParent(); 10140 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10141 10142 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10143 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10144 10145 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10146 &Hints, IAI); 10147 // Use the planner for outer loop vectorization. 10148 // TODO: CM is not used at this point inside the planner. Turn CM into an 10149 // optional argument if we don't need it in the future. 10150 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10151 Requirements, ORE); 10152 10153 // Get user vectorization factor. 10154 ElementCount UserVF = Hints.getWidth(); 10155 10156 CM.collectElementTypesForWidening(); 10157 10158 // Plan how to best vectorize, return the best VF and its cost. 10159 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10160 10161 // If we are stress testing VPlan builds, do not attempt to generate vector 10162 // code. Masked vector code generation support will follow soon. 10163 // Also, do not attempt to vectorize if no vector code will be produced. 10164 if (VPlanBuildStressTest || EnableVPlanPredication || 10165 VectorizationFactor::Disabled() == VF) 10166 return false; 10167 10168 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10169 10170 { 10171 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10172 F->getParent()->getDataLayout()); 10173 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10174 &CM, BFI, PSI, Checks); 10175 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10176 << L->getHeader()->getParent()->getName() << "\"\n"); 10177 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10178 } 10179 10180 // Mark the loop as already vectorized to avoid vectorizing again. 10181 Hints.setAlreadyVectorized(); 10182 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10183 return true; 10184 } 10185 10186 // Emit a remark if there are stores to floats that required a floating point 10187 // extension. If the vectorized loop was generated with floating point there 10188 // will be a performance penalty from the conversion overhead and the change in 10189 // the vector width. 10190 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10191 SmallVector<Instruction *, 4> Worklist; 10192 for (BasicBlock *BB : L->getBlocks()) { 10193 for (Instruction &Inst : *BB) { 10194 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10195 if (S->getValueOperand()->getType()->isFloatTy()) 10196 Worklist.push_back(S); 10197 } 10198 } 10199 } 10200 10201 // Traverse the floating point stores upwards searching, for floating point 10202 // conversions. 10203 SmallPtrSet<const Instruction *, 4> Visited; 10204 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10205 while (!Worklist.empty()) { 10206 auto *I = Worklist.pop_back_val(); 10207 if (!L->contains(I)) 10208 continue; 10209 if (!Visited.insert(I).second) 10210 continue; 10211 10212 // Emit a remark if the floating point store required a floating 10213 // point conversion. 10214 // TODO: More work could be done to identify the root cause such as a 10215 // constant or a function return type and point the user to it. 10216 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10217 ORE->emit([&]() { 10218 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10219 I->getDebugLoc(), L->getHeader()) 10220 << "floating point conversion changes vector width. " 10221 << "Mixed floating point precision requires an up/down " 10222 << "cast that will negatively impact performance."; 10223 }); 10224 10225 for (Use &Op : I->operands()) 10226 if (auto *OpI = dyn_cast<Instruction>(Op)) 10227 Worklist.push_back(OpI); 10228 } 10229 } 10230 10231 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10232 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10233 !EnableLoopInterleaving), 10234 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10235 !EnableLoopVectorization) {} 10236 10237 bool LoopVectorizePass::processLoop(Loop *L) { 10238 assert((EnableVPlanNativePath || L->isInnermost()) && 10239 "VPlan-native path is not enabled. Only process inner loops."); 10240 10241 #ifndef NDEBUG 10242 const std::string DebugLocStr = getDebugLocString(L); 10243 #endif /* NDEBUG */ 10244 10245 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10246 << L->getHeader()->getParent()->getName() << "' from " 10247 << DebugLocStr << "\n"); 10248 10249 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10250 10251 LLVM_DEBUG( 10252 dbgs() << "LV: Loop hints:" 10253 << " force=" 10254 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10255 ? "disabled" 10256 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10257 ? "enabled" 10258 : "?")) 10259 << " width=" << Hints.getWidth() 10260 << " interleave=" << Hints.getInterleave() << "\n"); 10261 10262 // Function containing loop 10263 Function *F = L->getHeader()->getParent(); 10264 10265 // Looking at the diagnostic output is the only way to determine if a loop 10266 // was vectorized (other than looking at the IR or machine code), so it 10267 // is important to generate an optimization remark for each loop. Most of 10268 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10269 // generated as OptimizationRemark and OptimizationRemarkMissed are 10270 // less verbose reporting vectorized loops and unvectorized loops that may 10271 // benefit from vectorization, respectively. 10272 10273 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10274 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10275 return false; 10276 } 10277 10278 PredicatedScalarEvolution PSE(*SE, *L); 10279 10280 // Check if it is legal to vectorize the loop. 10281 LoopVectorizationRequirements Requirements; 10282 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10283 &Requirements, &Hints, DB, AC, BFI, PSI); 10284 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10285 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10286 Hints.emitRemarkWithHints(); 10287 return false; 10288 } 10289 10290 // Check the function attributes and profiles to find out if this function 10291 // should be optimized for size. 10292 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10293 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10294 10295 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10296 // here. They may require CFG and instruction level transformations before 10297 // even evaluating whether vectorization is profitable. Since we cannot modify 10298 // the incoming IR, we need to build VPlan upfront in the vectorization 10299 // pipeline. 10300 if (!L->isInnermost()) 10301 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10302 ORE, BFI, PSI, Hints, Requirements); 10303 10304 assert(L->isInnermost() && "Inner loop expected."); 10305 10306 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10307 // count by optimizing for size, to minimize overheads. 10308 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10309 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10310 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10311 << "This loop is worth vectorizing only if no scalar " 10312 << "iteration overheads are incurred."); 10313 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10314 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10315 else { 10316 LLVM_DEBUG(dbgs() << "\n"); 10317 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10318 } 10319 } 10320 10321 // Check the function attributes to see if implicit floats are allowed. 10322 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10323 // an integer loop and the vector instructions selected are purely integer 10324 // vector instructions? 10325 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10326 reportVectorizationFailure( 10327 "Can't vectorize when the NoImplicitFloat attribute is used", 10328 "loop not vectorized due to NoImplicitFloat attribute", 10329 "NoImplicitFloat", ORE, L); 10330 Hints.emitRemarkWithHints(); 10331 return false; 10332 } 10333 10334 // Check if the target supports potentially unsafe FP vectorization. 10335 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10336 // for the target we're vectorizing for, to make sure none of the 10337 // additional fp-math flags can help. 10338 if (Hints.isPotentiallyUnsafe() && 10339 TTI->isFPVectorizationPotentiallyUnsafe()) { 10340 reportVectorizationFailure( 10341 "Potentially unsafe FP op prevents vectorization", 10342 "loop not vectorized due to unsafe FP support.", 10343 "UnsafeFP", ORE, L); 10344 Hints.emitRemarkWithHints(); 10345 return false; 10346 } 10347 10348 bool AllowOrderedReductions; 10349 // If the flag is set, use that instead and override the TTI behaviour. 10350 if (ForceOrderedReductions.getNumOccurrences() > 0) 10351 AllowOrderedReductions = ForceOrderedReductions; 10352 else 10353 AllowOrderedReductions = TTI->enableOrderedReductions(); 10354 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10355 ORE->emit([&]() { 10356 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10357 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10358 ExactFPMathInst->getDebugLoc(), 10359 ExactFPMathInst->getParent()) 10360 << "loop not vectorized: cannot prove it is safe to reorder " 10361 "floating-point operations"; 10362 }); 10363 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10364 "reorder floating-point operations\n"); 10365 Hints.emitRemarkWithHints(); 10366 return false; 10367 } 10368 10369 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10370 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10371 10372 // If an override option has been passed in for interleaved accesses, use it. 10373 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10374 UseInterleaved = EnableInterleavedMemAccesses; 10375 10376 // Analyze interleaved memory accesses. 10377 if (UseInterleaved) { 10378 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10379 } 10380 10381 // Use the cost model. 10382 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10383 F, &Hints, IAI); 10384 CM.collectValuesToIgnore(); 10385 CM.collectElementTypesForWidening(); 10386 10387 // Use the planner for vectorization. 10388 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10389 Requirements, ORE); 10390 10391 // Get user vectorization factor and interleave count. 10392 ElementCount UserVF = Hints.getWidth(); 10393 unsigned UserIC = Hints.getInterleave(); 10394 10395 // Plan how to best vectorize, return the best VF and its cost. 10396 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10397 10398 VectorizationFactor VF = VectorizationFactor::Disabled(); 10399 unsigned IC = 1; 10400 10401 if (MaybeVF) { 10402 VF = *MaybeVF; 10403 // Select the interleave count. 10404 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10405 } 10406 10407 // Identify the diagnostic messages that should be produced. 10408 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10409 bool VectorizeLoop = true, InterleaveLoop = true; 10410 if (VF.Width.isScalar()) { 10411 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10412 VecDiagMsg = std::make_pair( 10413 "VectorizationNotBeneficial", 10414 "the cost-model indicates that vectorization is not beneficial"); 10415 VectorizeLoop = false; 10416 } 10417 10418 if (!MaybeVF && UserIC > 1) { 10419 // Tell the user interleaving was avoided up-front, despite being explicitly 10420 // requested. 10421 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10422 "interleaving should be avoided up front\n"); 10423 IntDiagMsg = std::make_pair( 10424 "InterleavingAvoided", 10425 "Ignoring UserIC, because interleaving was avoided up front"); 10426 InterleaveLoop = false; 10427 } else if (IC == 1 && UserIC <= 1) { 10428 // Tell the user interleaving is not beneficial. 10429 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10430 IntDiagMsg = std::make_pair( 10431 "InterleavingNotBeneficial", 10432 "the cost-model indicates that interleaving is not beneficial"); 10433 InterleaveLoop = false; 10434 if (UserIC == 1) { 10435 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10436 IntDiagMsg.second += 10437 " and is explicitly disabled or interleave count is set to 1"; 10438 } 10439 } else if (IC > 1 && UserIC == 1) { 10440 // Tell the user interleaving is beneficial, but it explicitly disabled. 10441 LLVM_DEBUG( 10442 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10443 IntDiagMsg = std::make_pair( 10444 "InterleavingBeneficialButDisabled", 10445 "the cost-model indicates that interleaving is beneficial " 10446 "but is explicitly disabled or interleave count is set to 1"); 10447 InterleaveLoop = false; 10448 } 10449 10450 // Override IC if user provided an interleave count. 10451 IC = UserIC > 0 ? UserIC : IC; 10452 10453 // Emit diagnostic messages, if any. 10454 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10455 if (!VectorizeLoop && !InterleaveLoop) { 10456 // Do not vectorize or interleaving the loop. 10457 ORE->emit([&]() { 10458 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10459 L->getStartLoc(), L->getHeader()) 10460 << VecDiagMsg.second; 10461 }); 10462 ORE->emit([&]() { 10463 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10464 L->getStartLoc(), L->getHeader()) 10465 << IntDiagMsg.second; 10466 }); 10467 return false; 10468 } else if (!VectorizeLoop && InterleaveLoop) { 10469 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10470 ORE->emit([&]() { 10471 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10472 L->getStartLoc(), L->getHeader()) 10473 << VecDiagMsg.second; 10474 }); 10475 } else if (VectorizeLoop && !InterleaveLoop) { 10476 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10477 << ") in " << DebugLocStr << '\n'); 10478 ORE->emit([&]() { 10479 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10480 L->getStartLoc(), L->getHeader()) 10481 << IntDiagMsg.second; 10482 }); 10483 } else if (VectorizeLoop && InterleaveLoop) { 10484 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10485 << ") in " << DebugLocStr << '\n'); 10486 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10487 } 10488 10489 bool DisableRuntimeUnroll = false; 10490 MDNode *OrigLoopID = L->getLoopID(); 10491 { 10492 // Optimistically generate runtime checks. Drop them if they turn out to not 10493 // be profitable. Limit the scope of Checks, so the cleanup happens 10494 // immediately after vector codegeneration is done. 10495 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10496 F->getParent()->getDataLayout()); 10497 if (!VF.Width.isScalar() || IC > 1) 10498 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate()); 10499 10500 using namespace ore; 10501 if (!VectorizeLoop) { 10502 assert(IC > 1 && "interleave count should not be 1 or 0"); 10503 // If we decided that it is not legal to vectorize the loop, then 10504 // interleave it. 10505 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10506 &CM, BFI, PSI, Checks); 10507 10508 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10509 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10510 10511 ORE->emit([&]() { 10512 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10513 L->getHeader()) 10514 << "interleaved loop (interleaved count: " 10515 << NV("InterleaveCount", IC) << ")"; 10516 }); 10517 } else { 10518 // If we decided that it is *legal* to vectorize the loop, then do it. 10519 10520 // Consider vectorizing the epilogue too if it's profitable. 10521 VectorizationFactor EpilogueVF = 10522 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10523 if (EpilogueVF.Width.isVector()) { 10524 10525 // The first pass vectorizes the main loop and creates a scalar epilogue 10526 // to be vectorized by executing the plan (potentially with a different 10527 // factor) again shortly afterwards. 10528 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10529 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10530 EPI, &LVL, &CM, BFI, PSI, Checks); 10531 10532 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10533 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10534 DT); 10535 ++LoopsVectorized; 10536 10537 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10538 formLCSSARecursively(*L, *DT, LI, SE); 10539 10540 // Second pass vectorizes the epilogue and adjusts the control flow 10541 // edges from the first pass. 10542 EPI.MainLoopVF = EPI.EpilogueVF; 10543 EPI.MainLoopUF = EPI.EpilogueUF; 10544 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10545 ORE, EPI, &LVL, &CM, BFI, PSI, 10546 Checks); 10547 10548 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10549 10550 // Ensure that the start values for any VPReductionPHIRecipes are 10551 // updated before vectorising the epilogue loop. 10552 VPBasicBlock *Header = 10553 BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock(); 10554 for (VPRecipeBase &R : Header->phis()) { 10555 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10556 if (auto *Resume = MainILV.getReductionResumeValue( 10557 ReductionPhi->getRecurrenceDescriptor())) { 10558 VPValue *StartVal = new VPValue(Resume); 10559 BestEpiPlan.addExternalDef(StartVal); 10560 ReductionPhi->setOperand(0, StartVal); 10561 } 10562 } 10563 } 10564 10565 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10566 DT); 10567 ++LoopsEpilogueVectorized; 10568 10569 if (!MainILV.areSafetyChecksAdded()) 10570 DisableRuntimeUnroll = true; 10571 } else { 10572 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10573 &LVL, &CM, BFI, PSI, Checks); 10574 10575 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10576 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10577 ++LoopsVectorized; 10578 10579 // Add metadata to disable runtime unrolling a scalar loop when there 10580 // are no runtime checks about strides and memory. A scalar loop that is 10581 // rarely used is not worth unrolling. 10582 if (!LB.areSafetyChecksAdded()) 10583 DisableRuntimeUnroll = true; 10584 } 10585 // Report the vectorization decision. 10586 ORE->emit([&]() { 10587 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10588 L->getHeader()) 10589 << "vectorized loop (vectorization width: " 10590 << NV("VectorizationFactor", VF.Width) 10591 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10592 }); 10593 } 10594 10595 if (ORE->allowExtraAnalysis(LV_NAME)) 10596 checkMixedPrecision(L, ORE); 10597 } 10598 10599 Optional<MDNode *> RemainderLoopID = 10600 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10601 LLVMLoopVectorizeFollowupEpilogue}); 10602 if (RemainderLoopID.hasValue()) { 10603 L->setLoopID(RemainderLoopID.getValue()); 10604 } else { 10605 if (DisableRuntimeUnroll) 10606 AddRuntimeUnrollDisableMetaData(L); 10607 10608 // Mark the loop as already vectorized to avoid vectorizing again. 10609 Hints.setAlreadyVectorized(); 10610 } 10611 10612 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10613 return true; 10614 } 10615 10616 LoopVectorizeResult LoopVectorizePass::runImpl( 10617 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10618 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10619 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10620 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10621 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10622 SE = &SE_; 10623 LI = &LI_; 10624 TTI = &TTI_; 10625 DT = &DT_; 10626 BFI = &BFI_; 10627 TLI = TLI_; 10628 AA = &AA_; 10629 AC = &AC_; 10630 GetLAA = &GetLAA_; 10631 DB = &DB_; 10632 ORE = &ORE_; 10633 PSI = PSI_; 10634 10635 // Don't attempt if 10636 // 1. the target claims to have no vector registers, and 10637 // 2. interleaving won't help ILP. 10638 // 10639 // The second condition is necessary because, even if the target has no 10640 // vector registers, loop vectorization may still enable scalar 10641 // interleaving. 10642 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10643 TTI->getMaxInterleaveFactor(1) < 2) 10644 return LoopVectorizeResult(false, false); 10645 10646 bool Changed = false, CFGChanged = false; 10647 10648 // The vectorizer requires loops to be in simplified form. 10649 // Since simplification may add new inner loops, it has to run before the 10650 // legality and profitability checks. This means running the loop vectorizer 10651 // will simplify all loops, regardless of whether anything end up being 10652 // vectorized. 10653 for (auto &L : *LI) 10654 Changed |= CFGChanged |= 10655 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10656 10657 // Build up a worklist of inner-loops to vectorize. This is necessary as 10658 // the act of vectorizing or partially unrolling a loop creates new loops 10659 // and can invalidate iterators across the loops. 10660 SmallVector<Loop *, 8> Worklist; 10661 10662 for (Loop *L : *LI) 10663 collectSupportedLoops(*L, LI, ORE, Worklist); 10664 10665 LoopsAnalyzed += Worklist.size(); 10666 10667 // Now walk the identified inner loops. 10668 while (!Worklist.empty()) { 10669 Loop *L = Worklist.pop_back_val(); 10670 10671 // For the inner loops we actually process, form LCSSA to simplify the 10672 // transform. 10673 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10674 10675 Changed |= CFGChanged |= processLoop(L); 10676 } 10677 10678 // Process each loop nest in the function. 10679 return LoopVectorizeResult(Changed, CFGChanged); 10680 } 10681 10682 PreservedAnalyses LoopVectorizePass::run(Function &F, 10683 FunctionAnalysisManager &AM) { 10684 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10685 auto &LI = AM.getResult<LoopAnalysis>(F); 10686 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10687 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10688 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10689 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10690 auto &AA = AM.getResult<AAManager>(F); 10691 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10692 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10693 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10694 10695 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10696 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10697 [&](Loop &L) -> const LoopAccessInfo & { 10698 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10699 TLI, TTI, nullptr, nullptr, nullptr}; 10700 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10701 }; 10702 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10703 ProfileSummaryInfo *PSI = 10704 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10705 LoopVectorizeResult Result = 10706 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10707 if (!Result.MadeAnyChange) 10708 return PreservedAnalyses::all(); 10709 PreservedAnalyses PA; 10710 10711 // We currently do not preserve loopinfo/dominator analyses with outer loop 10712 // vectorization. Until this is addressed, mark these analyses as preserved 10713 // only for non-VPlan-native path. 10714 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10715 if (!EnableVPlanNativePath) { 10716 PA.preserve<LoopAnalysis>(); 10717 PA.preserve<DominatorTreeAnalysis>(); 10718 } 10719 10720 if (Result.MadeCFGChange) { 10721 // Making CFG changes likely means a loop got vectorized. Indicate that 10722 // extra simplification passes should be run. 10723 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10724 // be run if runtime checks have been added. 10725 AM.getResult<ShouldRunExtraVectorPasses>(F); 10726 PA.preserve<ShouldRunExtraVectorPasses>(); 10727 } else { 10728 PA.preserveSet<CFGAnalyses>(); 10729 } 10730 return PA; 10731 } 10732 10733 void LoopVectorizePass::printPipeline( 10734 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10735 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10736 OS, MapClassName2PassName); 10737 10738 OS << "<"; 10739 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10740 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10741 OS << ">"; 10742 } 10743