1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/AssumptionCache.h" 59 #include "llvm/Analysis/BlockFrequencyInfo.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/LoopAccessAnalysis.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolution.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/TargetTransformInfo.h" 69 #include "llvm/Analysis/ValueTracking.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/IR/Verifier.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/BranchProbability.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/VectorUtils.h" 96 #include <algorithm> 97 #include <map> 98 #include <tuple> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define LV_NAME "loop-vectorize" 104 #define DEBUG_TYPE LV_NAME 105 106 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 107 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 108 109 static cl::opt<unsigned> 110 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 111 cl::desc("Sets the SIMD width. Zero is autoselect.")); 112 113 static cl::opt<unsigned> 114 VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden, 115 cl::desc("Sets the vectorization interleave count. " 116 "Zero is autoselect.")); 117 118 static cl::opt<bool> 119 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 120 cl::desc("Enable if-conversion during vectorization.")); 121 122 /// We don't vectorize loops with a known constant trip count below this number. 123 static cl::opt<unsigned> 124 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 125 cl::Hidden, 126 cl::desc("Don't vectorize loops with a constant " 127 "trip count that is smaller than this " 128 "value.")); 129 130 /// This enables versioning on the strides of symbolically striding memory 131 /// accesses in code like the following. 132 /// for (i = 0; i < N; ++i) 133 /// A[i * Stride1] += B[i * Stride2] ... 134 /// 135 /// Will be roughly translated to 136 /// if (Stride1 == 1 && Stride2 == 1) { 137 /// for (i = 0; i < N; i+=4) 138 /// A[i:i+3] += ... 139 /// } else 140 /// ... 141 static cl::opt<bool> EnableMemAccessVersioning( 142 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 143 cl::desc("Enable symblic stride memory access versioning")); 144 145 /// We don't unroll loops with a known constant trip count below this number. 146 static const unsigned TinyTripCountUnrollThreshold = 128; 147 148 /// When performing memory disambiguation checks at runtime do not make more 149 /// than this number of comparisons. 150 static const unsigned RuntimeMemoryCheckThreshold = 8; 151 152 /// Maximum simd width. 153 static const unsigned MaxVectorWidth = 64; 154 155 static cl::opt<unsigned> ForceTargetNumScalarRegs( 156 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's number of scalar registers.")); 158 159 static cl::opt<unsigned> ForceTargetNumVectorRegs( 160 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 161 cl::desc("A flag that overrides the target's number of vector registers.")); 162 163 /// Maximum vectorization interleave count. 164 static const unsigned MaxInterleaveFactor = 16; 165 166 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 167 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 168 cl::desc("A flag that overrides the target's max interleave factor for " 169 "scalar loops.")); 170 171 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 172 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 173 cl::desc("A flag that overrides the target's max interleave factor for " 174 "vectorized loops.")); 175 176 static cl::opt<unsigned> ForceTargetInstructionCost( 177 "force-target-instruction-cost", cl::init(0), cl::Hidden, 178 cl::desc("A flag that overrides the target's expected cost for " 179 "an instruction to a single constant value. Mostly " 180 "useful for getting consistent testing.")); 181 182 static cl::opt<unsigned> SmallLoopCost( 183 "small-loop-cost", cl::init(20), cl::Hidden, 184 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 185 186 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 187 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 188 cl::desc("Enable the use of the block frequency analysis to access PGO " 189 "heuristics minimizing code growth in cold regions and being more " 190 "aggressive in hot regions.")); 191 192 // Runtime unroll loops for load/store throughput. 193 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 194 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 195 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 196 197 /// The number of stores in a loop that are allowed to need predication. 198 static cl::opt<unsigned> NumberOfStoresToPredicate( 199 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 200 cl::desc("Max number of stores to be predicated behind an if.")); 201 202 static cl::opt<bool> EnableIndVarRegisterHeur( 203 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 204 cl::desc("Count the induction variable only once when unrolling")); 205 206 static cl::opt<bool> EnableCondStoresVectorization( 207 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 208 cl::desc("Enable if predication of stores during vectorization.")); 209 210 static cl::opt<unsigned> MaxNestedScalarReductionUF( 211 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 212 cl::desc("The maximum unroll factor to use when unrolling a scalar " 213 "reduction in a nested loop.")); 214 215 namespace { 216 217 // Forward declarations. 218 class LoopVectorizationLegality; 219 class LoopVectorizationCostModel; 220 class LoopVectorizeHints; 221 222 /// InnerLoopVectorizer vectorizes loops which contain only one basic 223 /// block to a specified vectorization factor (VF). 224 /// This class performs the widening of scalars into vectors, or multiple 225 /// scalars. This class also implements the following features: 226 /// * It inserts an epilogue loop for handling loops that don't have iteration 227 /// counts that are known to be a multiple of the vectorization factor. 228 /// * It handles the code generation for reduction variables. 229 /// * Scalarization (implementation using scalars) of un-vectorizable 230 /// instructions. 231 /// InnerLoopVectorizer does not perform any vectorization-legality 232 /// checks, and relies on the caller to check for the different legality 233 /// aspects. The InnerLoopVectorizer relies on the 234 /// LoopVectorizationLegality class to provide information about the induction 235 /// and reduction variables that were found to a given vectorization factor. 236 class InnerLoopVectorizer { 237 public: 238 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 239 DominatorTree *DT, const DataLayout *DL, 240 const TargetLibraryInfo *TLI, unsigned VecWidth, 241 unsigned UnrollFactor) 242 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 243 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 244 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 245 Legal(nullptr) {} 246 247 // Perform the actual loop widening (vectorization). 248 void vectorize(LoopVectorizationLegality *L) { 249 Legal = L; 250 // Create a new empty loop. Unlink the old loop and connect the new one. 251 createEmptyLoop(); 252 // Widen each instruction in the old loop to a new one in the new loop. 253 // Use the Legality module to find the induction and reduction variables. 254 vectorizeLoop(); 255 // Register the new loop and update the analysis passes. 256 updateAnalysis(); 257 } 258 259 virtual ~InnerLoopVectorizer() {} 260 261 protected: 262 /// A small list of PHINodes. 263 typedef SmallVector<PHINode*, 4> PhiVector; 264 /// When we unroll loops we have multiple vector values for each scalar. 265 /// This data structure holds the unrolled and vectorized values that 266 /// originated from one scalar instruction. 267 typedef SmallVector<Value*, 2> VectorParts; 268 269 // When we if-convert we need create edge masks. We have to cache values so 270 // that we don't end up with exponential recursion/IR. 271 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 272 VectorParts> EdgeMaskCache; 273 274 /// \brief Add code that checks at runtime if the accessed arrays overlap. 275 /// 276 /// Returns a pair of instructions where the first element is the first 277 /// instruction generated in possibly a sequence of instructions and the 278 /// second value is the final comparator value or NULL if no check is needed. 279 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 280 281 /// \brief Add checks for strides that where assumed to be 1. 282 /// 283 /// Returns the last check instruction and the first check instruction in the 284 /// pair as (first, last). 285 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 286 287 /// Create an empty loop, based on the loop ranges of the old loop. 288 void createEmptyLoop(); 289 /// Copy and widen the instructions from the old loop. 290 virtual void vectorizeLoop(); 291 292 /// \brief The Loop exit block may have single value PHI nodes where the 293 /// incoming value is 'Undef'. While vectorizing we only handled real values 294 /// that were defined inside the loop. Here we fix the 'undef case'. 295 /// See PR14725. 296 void fixLCSSAPHIs(); 297 298 /// A helper function that computes the predicate of the block BB, assuming 299 /// that the header block of the loop is set to True. It returns the *entry* 300 /// mask for the block BB. 301 VectorParts createBlockInMask(BasicBlock *BB); 302 /// A helper function that computes the predicate of the edge between SRC 303 /// and DST. 304 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 305 306 /// A helper function to vectorize a single BB within the innermost loop. 307 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 308 309 /// Vectorize a single PHINode in a block. This method handles the induction 310 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 311 /// arbitrary length vectors. 312 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 313 unsigned UF, unsigned VF, PhiVector *PV); 314 315 /// Insert the new loop to the loop hierarchy and pass manager 316 /// and update the analysis passes. 317 void updateAnalysis(); 318 319 /// This instruction is un-vectorizable. Implement it as a sequence 320 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 321 /// scalarized instruction behind an if block predicated on the control 322 /// dependence of the instruction. 323 virtual void scalarizeInstruction(Instruction *Instr, 324 bool IfPredicateStore=false); 325 326 /// Vectorize Load and Store instructions, 327 virtual void vectorizeMemoryInstruction(Instruction *Instr); 328 329 /// Create a broadcast instruction. This method generates a broadcast 330 /// instruction (shuffle) for loop invariant values and for the induction 331 /// value. If this is the induction variable then we extend it to N, N+1, ... 332 /// this is needed because each iteration in the loop corresponds to a SIMD 333 /// element. 334 virtual Value *getBroadcastInstrs(Value *V); 335 336 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 337 /// to each vector element of Val. The sequence starts at StartIndex. 338 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 339 340 /// When we go over instructions in the basic block we rely on previous 341 /// values within the current basic block or on loop invariant values. 342 /// When we widen (vectorize) values we place them in the map. If the values 343 /// are not within the map, they have to be loop invariant, so we simply 344 /// broadcast them into a vector. 345 VectorParts &getVectorValue(Value *V); 346 347 /// Generate a shuffle sequence that will reverse the vector Vec. 348 virtual Value *reverseVector(Value *Vec); 349 350 /// This is a helper class that holds the vectorizer state. It maps scalar 351 /// instructions to vector instructions. When the code is 'unrolled' then 352 /// then a single scalar value is mapped to multiple vector parts. The parts 353 /// are stored in the VectorPart type. 354 struct ValueMap { 355 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 356 /// are mapped. 357 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 358 359 /// \return True if 'Key' is saved in the Value Map. 360 bool has(Value *Key) const { return MapStorage.count(Key); } 361 362 /// Initializes a new entry in the map. Sets all of the vector parts to the 363 /// save value in 'Val'. 364 /// \return A reference to a vector with splat values. 365 VectorParts &splat(Value *Key, Value *Val) { 366 VectorParts &Entry = MapStorage[Key]; 367 Entry.assign(UF, Val); 368 return Entry; 369 } 370 371 ///\return A reference to the value that is stored at 'Key'. 372 VectorParts &get(Value *Key) { 373 VectorParts &Entry = MapStorage[Key]; 374 if (Entry.empty()) 375 Entry.resize(UF); 376 assert(Entry.size() == UF); 377 return Entry; 378 } 379 380 private: 381 /// The unroll factor. Each entry in the map stores this number of vector 382 /// elements. 383 unsigned UF; 384 385 /// Map storage. We use std::map and not DenseMap because insertions to a 386 /// dense map invalidates its iterators. 387 std::map<Value *, VectorParts> MapStorage; 388 }; 389 390 /// The original loop. 391 Loop *OrigLoop; 392 /// Scev analysis to use. 393 ScalarEvolution *SE; 394 /// Loop Info. 395 LoopInfo *LI; 396 /// Dominator Tree. 397 DominatorTree *DT; 398 /// Alias Analysis. 399 AliasAnalysis *AA; 400 /// Data Layout. 401 const DataLayout *DL; 402 /// Target Library Info. 403 const TargetLibraryInfo *TLI; 404 405 /// The vectorization SIMD factor to use. Each vector will have this many 406 /// vector elements. 407 unsigned VF; 408 409 protected: 410 /// The vectorization unroll factor to use. Each scalar is vectorized to this 411 /// many different vector instructions. 412 unsigned UF; 413 414 /// The builder that we use 415 IRBuilder<> Builder; 416 417 // --- Vectorization state --- 418 419 /// The vector-loop preheader. 420 BasicBlock *LoopVectorPreHeader; 421 /// The scalar-loop preheader. 422 BasicBlock *LoopScalarPreHeader; 423 /// Middle Block between the vector and the scalar. 424 BasicBlock *LoopMiddleBlock; 425 ///The ExitBlock of the scalar loop. 426 BasicBlock *LoopExitBlock; 427 ///The vector loop body. 428 SmallVector<BasicBlock *, 4> LoopVectorBody; 429 ///The scalar loop body. 430 BasicBlock *LoopScalarBody; 431 /// A list of all bypass blocks. The first block is the entry of the loop. 432 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 433 434 /// The new Induction variable which was added to the new block. 435 PHINode *Induction; 436 /// The induction variable of the old basic block. 437 PHINode *OldInduction; 438 /// Holds the extended (to the widest induction type) start index. 439 Value *ExtendedIdx; 440 /// Maps scalars to widened vectors. 441 ValueMap WidenMap; 442 EdgeMaskCache MaskCache; 443 444 LoopVectorizationLegality *Legal; 445 }; 446 447 class InnerLoopUnroller : public InnerLoopVectorizer { 448 public: 449 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 450 DominatorTree *DT, const DataLayout *DL, 451 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 452 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 453 454 private: 455 void scalarizeInstruction(Instruction *Instr, 456 bool IfPredicateStore = false) override; 457 void vectorizeMemoryInstruction(Instruction *Instr) override; 458 Value *getBroadcastInstrs(Value *V) override; 459 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 460 Value *reverseVector(Value *Vec) override; 461 }; 462 463 /// \brief Look for a meaningful debug location on the instruction or it's 464 /// operands. 465 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 466 if (!I) 467 return I; 468 469 DebugLoc Empty; 470 if (I->getDebugLoc() != Empty) 471 return I; 472 473 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 474 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 475 if (OpInst->getDebugLoc() != Empty) 476 return OpInst; 477 } 478 479 return I; 480 } 481 482 /// \brief Set the debug location in the builder using the debug location in the 483 /// instruction. 484 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 485 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 486 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 487 else 488 B.SetCurrentDebugLocation(DebugLoc()); 489 } 490 491 #ifndef NDEBUG 492 /// \return string containing a file name and a line # for the given loop. 493 static std::string getDebugLocString(const Loop *L) { 494 std::string Result; 495 if (L) { 496 raw_string_ostream OS(Result); 497 const DebugLoc LoopDbgLoc = L->getStartLoc(); 498 if (!LoopDbgLoc.isUnknown()) 499 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 500 else 501 // Just print the module name. 502 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 503 OS.flush(); 504 } 505 return Result; 506 } 507 #endif 508 509 /// \brief Propagate known metadata from one instruction to another. 510 static void propagateMetadata(Instruction *To, const Instruction *From) { 511 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 512 From->getAllMetadataOtherThanDebugLoc(Metadata); 513 514 for (auto M : Metadata) { 515 unsigned Kind = M.first; 516 517 // These are safe to transfer (this is safe for TBAA, even when we 518 // if-convert, because should that metadata have had a control dependency 519 // on the condition, and thus actually aliased with some other 520 // non-speculated memory access when the condition was false, this would be 521 // caught by the runtime overlap checks). 522 if (Kind != LLVMContext::MD_tbaa && 523 Kind != LLVMContext::MD_alias_scope && 524 Kind != LLVMContext::MD_noalias && 525 Kind != LLVMContext::MD_fpmath) 526 continue; 527 528 To->setMetadata(Kind, M.second); 529 } 530 } 531 532 /// \brief Propagate known metadata from one instruction to a vector of others. 533 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 534 for (Value *V : To) 535 if (Instruction *I = dyn_cast<Instruction>(V)) 536 propagateMetadata(I, From); 537 } 538 539 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 540 /// to what vectorization factor. 541 /// This class does not look at the profitability of vectorization, only the 542 /// legality. This class has two main kinds of checks: 543 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 544 /// will change the order of memory accesses in a way that will change the 545 /// correctness of the program. 546 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 547 /// checks for a number of different conditions, such as the availability of a 548 /// single induction variable, that all types are supported and vectorize-able, 549 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 550 /// This class is also used by InnerLoopVectorizer for identifying 551 /// induction variable and the different reduction variables. 552 class LoopVectorizationLegality { 553 public: 554 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 555 DominatorTree *DT, TargetLibraryInfo *TLI, 556 AliasAnalysis *AA, Function *F, 557 const TargetTransformInfo *TTI) 558 : NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 559 TLI(TLI), TheFunction(F), TTI(TTI), Induction(nullptr), 560 WidestIndTy(nullptr), 561 LAA(F, L, SE, DL, TLI, AA, DT, 562 LoopAccessAnalysis::VectorizerParams( 563 MaxVectorWidth, VectorizationFactor, VectorizationInterleave, 564 RuntimeMemoryCheckThreshold)), 565 HasFunNoNaNAttr(false) {} 566 567 /// This enum represents the kinds of reductions that we support. 568 enum ReductionKind { 569 RK_NoReduction, ///< Not a reduction. 570 RK_IntegerAdd, ///< Sum of integers. 571 RK_IntegerMult, ///< Product of integers. 572 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 573 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 574 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 575 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 576 RK_FloatAdd, ///< Sum of floats. 577 RK_FloatMult, ///< Product of floats. 578 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 579 }; 580 581 /// This enum represents the kinds of inductions that we support. 582 enum InductionKind { 583 IK_NoInduction, ///< Not an induction variable. 584 IK_IntInduction, ///< Integer induction variable. Step = C. 585 IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem). 586 }; 587 588 // This enum represents the kind of minmax reduction. 589 enum MinMaxReductionKind { 590 MRK_Invalid, 591 MRK_UIntMin, 592 MRK_UIntMax, 593 MRK_SIntMin, 594 MRK_SIntMax, 595 MRK_FloatMin, 596 MRK_FloatMax 597 }; 598 599 /// This struct holds information about reduction variables. 600 struct ReductionDescriptor { 601 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 602 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 603 604 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 605 MinMaxReductionKind MK) 606 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 607 608 // The starting value of the reduction. 609 // It does not have to be zero! 610 TrackingVH<Value> StartValue; 611 // The instruction who's value is used outside the loop. 612 Instruction *LoopExitInstr; 613 // The kind of the reduction. 614 ReductionKind Kind; 615 // If this a min/max reduction the kind of reduction. 616 MinMaxReductionKind MinMaxKind; 617 }; 618 619 /// This POD struct holds information about a potential reduction operation. 620 struct ReductionInstDesc { 621 ReductionInstDesc(bool IsRedux, Instruction *I) : 622 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 623 624 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 625 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 626 627 // Is this instruction a reduction candidate. 628 bool IsReduction; 629 // The last instruction in a min/max pattern (select of the select(icmp()) 630 // pattern), or the current reduction instruction otherwise. 631 Instruction *PatternLastInst; 632 // If this is a min/max pattern the comparison predicate. 633 MinMaxReductionKind MinMaxKind; 634 }; 635 636 /// A struct for saving information about induction variables. 637 struct InductionInfo { 638 InductionInfo(Value *Start, InductionKind K, ConstantInt *Step) 639 : StartValue(Start), IK(K), StepValue(Step) { 640 assert(IK != IK_NoInduction && "Not an induction"); 641 assert(StartValue && "StartValue is null"); 642 assert(StepValue && !StepValue->isZero() && "StepValue is zero"); 643 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 644 "StartValue is not a pointer for pointer induction"); 645 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 646 "StartValue is not an integer for integer induction"); 647 assert(StepValue->getType()->isIntegerTy() && 648 "StepValue is not an integer"); 649 } 650 InductionInfo() 651 : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {} 652 653 /// Get the consecutive direction. Returns: 654 /// 0 - unknown or non-consecutive. 655 /// 1 - consecutive and increasing. 656 /// -1 - consecutive and decreasing. 657 int getConsecutiveDirection() const { 658 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) 659 return StepValue->getSExtValue(); 660 return 0; 661 } 662 663 /// Compute the transformed value of Index at offset StartValue using step 664 /// StepValue. 665 /// For integer induction, returns StartValue + Index * StepValue. 666 /// For pointer induction, returns StartValue[Index * StepValue]. 667 /// FIXME: The newly created binary instructions should contain nsw/nuw 668 /// flags, which can be found from the original scalar operations. 669 Value *transform(IRBuilder<> &B, Value *Index) const { 670 switch (IK) { 671 case IK_IntInduction: 672 assert(Index->getType() == StartValue->getType() && 673 "Index type does not match StartValue type"); 674 if (StepValue->isMinusOne()) 675 return B.CreateSub(StartValue, Index); 676 if (!StepValue->isOne()) 677 Index = B.CreateMul(Index, StepValue); 678 return B.CreateAdd(StartValue, Index); 679 680 case IK_PtrInduction: 681 if (StepValue->isMinusOne()) 682 Index = B.CreateNeg(Index); 683 else if (!StepValue->isOne()) 684 Index = B.CreateMul(Index, StepValue); 685 return B.CreateGEP(StartValue, Index); 686 687 case IK_NoInduction: 688 return nullptr; 689 } 690 llvm_unreachable("invalid enum"); 691 } 692 693 /// Start value. 694 TrackingVH<Value> StartValue; 695 /// Induction kind. 696 InductionKind IK; 697 /// Step value. 698 ConstantInt *StepValue; 699 }; 700 701 /// ReductionList contains the reduction descriptors for all 702 /// of the reductions that were found in the loop. 703 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 704 705 /// InductionList saves induction variables and maps them to the 706 /// induction descriptor. 707 typedef MapVector<PHINode*, InductionInfo> InductionList; 708 709 /// Returns true if it is legal to vectorize this loop. 710 /// This does not mean that it is profitable to vectorize this 711 /// loop, only that it is legal to do so. 712 bool canVectorize(); 713 714 /// Returns the Induction variable. 715 PHINode *getInduction() { return Induction; } 716 717 /// Returns the reduction variables found in the loop. 718 ReductionList *getReductionVars() { return &Reductions; } 719 720 /// Returns the induction variables found in the loop. 721 InductionList *getInductionVars() { return &Inductions; } 722 723 /// Returns the widest induction type. 724 Type *getWidestInductionType() { return WidestIndTy; } 725 726 /// Returns True if V is an induction variable in this loop. 727 bool isInductionVariable(const Value *V); 728 729 /// Return true if the block BB needs to be predicated in order for the loop 730 /// to be vectorized. 731 bool blockNeedsPredication(BasicBlock *BB); 732 733 /// Check if this pointer is consecutive when vectorizing. This happens 734 /// when the last index of the GEP is the induction variable, or that the 735 /// pointer itself is an induction variable. 736 /// This check allows us to vectorize A[idx] into a wide load/store. 737 /// Returns: 738 /// 0 - Stride is unknown or non-consecutive. 739 /// 1 - Address is consecutive. 740 /// -1 - Address is consecutive, and decreasing. 741 int isConsecutivePtr(Value *Ptr); 742 743 /// Returns true if the value V is uniform within the loop. 744 bool isUniform(Value *V); 745 746 /// Returns true if this instruction will remain scalar after vectorization. 747 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 748 749 /// Returns the information that we collected about runtime memory check. 750 LoopAccessAnalysis::RuntimePointerCheck *getRuntimePointerCheck() { 751 return LAA.getRuntimePointerCheck(); 752 } 753 754 /// This function returns the identity element (or neutral element) for 755 /// the operation K. 756 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 757 758 unsigned getMaxSafeDepDistBytes() { return LAA.getMaxSafeDepDistBytes(); } 759 760 bool hasStride(Value *V) { return StrideSet.count(V); } 761 bool mustCheckStrides() { return !StrideSet.empty(); } 762 SmallPtrSet<Value *, 8>::iterator strides_begin() { 763 return StrideSet.begin(); 764 } 765 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 766 767 /// Returns true if the target machine supports masked store operation 768 /// for the given \p DataType and kind of access to \p Ptr. 769 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 770 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 771 } 772 /// Returns true if the target machine supports masked load operation 773 /// for the given \p DataType and kind of access to \p Ptr. 774 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 775 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 776 } 777 /// Returns true if vector representation of the instruction \p I 778 /// requires mask. 779 bool isMaskRequired(const Instruction* I) { 780 return (MaskedOp.count(I) != 0); 781 } 782 unsigned getNumStores() const { 783 return LAA.getNumStores(); 784 } 785 unsigned getNumLoads() const { 786 return LAA.getNumLoads(); 787 } 788 unsigned getNumPredStores() const { 789 return NumPredStores; 790 } 791 private: 792 /// Check if a single basic block loop is vectorizable. 793 /// At this point we know that this is a loop with a constant trip count 794 /// and we only need to check individual instructions. 795 bool canVectorizeInstrs(); 796 797 /// When we vectorize loops we may change the order in which 798 /// we read and write from memory. This method checks if it is 799 /// legal to vectorize the code, considering only memory constrains. 800 /// Returns true if the loop is vectorizable 801 bool canVectorizeMemory(); 802 803 /// Return true if we can vectorize this loop using the IF-conversion 804 /// transformation. 805 bool canVectorizeWithIfConvert(); 806 807 /// Collect the variables that need to stay uniform after vectorization. 808 void collectLoopUniforms(); 809 810 /// Return true if all of the instructions in the block can be speculatively 811 /// executed. \p SafePtrs is a list of addresses that are known to be legal 812 /// and we know that we can read from them without segfault. 813 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 814 815 /// Returns True, if 'Phi' is the kind of reduction variable for type 816 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 817 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 818 /// Returns a struct describing if the instruction 'I' can be a reduction 819 /// variable of type 'Kind'. If the reduction is a min/max pattern of 820 /// select(icmp()) this function advances the instruction pointer 'I' from the 821 /// compare instruction to the select instruction and stores this pointer in 822 /// 'PatternLastInst' member of the returned struct. 823 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 824 ReductionInstDesc &Desc); 825 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 826 /// pattern corresponding to a min(X, Y) or max(X, Y). 827 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 828 ReductionInstDesc &Prev); 829 /// Returns the induction kind of Phi and record the step. This function may 830 /// return NoInduction if the PHI is not an induction variable. 831 InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue); 832 833 /// \brief Collect memory access with loop invariant strides. 834 /// 835 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 836 /// invariant. 837 void collectStridedAccess(Value *LoadOrStoreInst); 838 839 /// Report an analysis message to assist the user in diagnosing loops that are 840 /// not vectorized. 841 void emitAnalysis(VectorizationReport &Message) { 842 VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop); 843 } 844 845 unsigned NumPredStores; 846 847 /// The loop that we evaluate. 848 Loop *TheLoop; 849 /// Scev analysis. 850 ScalarEvolution *SE; 851 /// DataLayout analysis. 852 const DataLayout *DL; 853 /// Target Library Info. 854 TargetLibraryInfo *TLI; 855 /// Parent function 856 Function *TheFunction; 857 /// Target Transform Info 858 const TargetTransformInfo *TTI; 859 860 // --- vectorization state --- // 861 862 /// Holds the integer induction variable. This is the counter of the 863 /// loop. 864 PHINode *Induction; 865 /// Holds the reduction variables. 866 ReductionList Reductions; 867 /// Holds all of the induction variables that we found in the loop. 868 /// Notice that inductions don't need to start at zero and that induction 869 /// variables can be pointers. 870 InductionList Inductions; 871 /// Holds the widest induction type encountered. 872 Type *WidestIndTy; 873 874 /// Allowed outside users. This holds the reduction 875 /// vars which can be accessed from outside the loop. 876 SmallPtrSet<Value*, 4> AllowedExit; 877 /// This set holds the variables which are known to be uniform after 878 /// vectorization. 879 SmallPtrSet<Instruction*, 4> Uniforms; 880 LoopAccessAnalysis LAA; 881 /// Can we assume the absence of NaNs. 882 bool HasFunNoNaNAttr; 883 884 ValueToValueMap Strides; 885 SmallPtrSet<Value *, 8> StrideSet; 886 887 /// While vectorizing these instructions we have to generate a 888 /// call to the appropriate masked intrinsic 889 SmallPtrSet<const Instruction*, 8> MaskedOp; 890 }; 891 892 /// LoopVectorizationCostModel - estimates the expected speedups due to 893 /// vectorization. 894 /// In many cases vectorization is not profitable. This can happen because of 895 /// a number of reasons. In this class we mainly attempt to predict the 896 /// expected speedup/slowdowns due to the supported instruction set. We use the 897 /// TargetTransformInfo to query the different backends for the cost of 898 /// different operations. 899 class LoopVectorizationCostModel { 900 public: 901 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 902 LoopVectorizationLegality *Legal, 903 const TargetTransformInfo &TTI, 904 const DataLayout *DL, const TargetLibraryInfo *TLI, 905 AssumptionCache *AC, const Function *F, 906 const LoopVectorizeHints *Hints) 907 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI), 908 TheFunction(F), Hints(Hints) { 909 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 910 } 911 912 /// Information about vectorization costs 913 struct VectorizationFactor { 914 unsigned Width; // Vector width with best cost 915 unsigned Cost; // Cost of the loop with that width 916 }; 917 /// \return The most profitable vectorization factor and the cost of that VF. 918 /// This method checks every power of two up to VF. If UserVF is not ZERO 919 /// then this vectorization factor will be selected if vectorization is 920 /// possible. 921 VectorizationFactor selectVectorizationFactor(bool OptForSize); 922 923 /// \return The size (in bits) of the widest type in the code that 924 /// needs to be vectorized. We ignore values that remain scalar such as 925 /// 64 bit loop indices. 926 unsigned getWidestType(); 927 928 /// \return The most profitable unroll factor. 929 /// If UserUF is non-zero then this method finds the best unroll-factor 930 /// based on register pressure and other parameters. 931 /// VF and LoopCost are the selected vectorization factor and the cost of the 932 /// selected VF. 933 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 934 935 /// \brief A struct that represents some properties of the register usage 936 /// of a loop. 937 struct RegisterUsage { 938 /// Holds the number of loop invariant values that are used in the loop. 939 unsigned LoopInvariantRegs; 940 /// Holds the maximum number of concurrent live intervals in the loop. 941 unsigned MaxLocalUsers; 942 /// Holds the number of instructions in the loop. 943 unsigned NumInstructions; 944 }; 945 946 /// \return information about the register usage of the loop. 947 RegisterUsage calculateRegisterUsage(); 948 949 private: 950 /// Returns the expected execution cost. The unit of the cost does 951 /// not matter because we use the 'cost' units to compare different 952 /// vector widths. The cost that is returned is *not* normalized by 953 /// the factor width. 954 unsigned expectedCost(unsigned VF); 955 956 /// Returns the execution time cost of an instruction for a given vector 957 /// width. Vector width of one means scalar. 958 unsigned getInstructionCost(Instruction *I, unsigned VF); 959 960 /// A helper function for converting Scalar types to vector types. 961 /// If the incoming type is void, we return void. If the VF is 1, we return 962 /// the scalar type. 963 static Type* ToVectorTy(Type *Scalar, unsigned VF); 964 965 /// Returns whether the instruction is a load or store and will be a emitted 966 /// as a vector operation. 967 bool isConsecutiveLoadOrStore(Instruction *I); 968 969 /// Report an analysis message to assist the user in diagnosing loops that are 970 /// not vectorized. 971 void emitAnalysis(VectorizationReport &Message) { 972 VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop); 973 } 974 975 /// Values used only by @llvm.assume calls. 976 SmallPtrSet<const Value *, 32> EphValues; 977 978 /// The loop that we evaluate. 979 Loop *TheLoop; 980 /// Scev analysis. 981 ScalarEvolution *SE; 982 /// Loop Info analysis. 983 LoopInfo *LI; 984 /// Vectorization legality. 985 LoopVectorizationLegality *Legal; 986 /// Vector target information. 987 const TargetTransformInfo &TTI; 988 /// Target data layout information. 989 const DataLayout *DL; 990 /// Target Library Info. 991 const TargetLibraryInfo *TLI; 992 const Function *TheFunction; 993 // Loop Vectorize Hint. 994 const LoopVectorizeHints *Hints; 995 }; 996 997 /// Utility class for getting and setting loop vectorizer hints in the form 998 /// of loop metadata. 999 /// This class keeps a number of loop annotations locally (as member variables) 1000 /// and can, upon request, write them back as metadata on the loop. It will 1001 /// initially scan the loop for existing metadata, and will update the local 1002 /// values based on information in the loop. 1003 /// We cannot write all values to metadata, as the mere presence of some info, 1004 /// for example 'force', means a decision has been made. So, we need to be 1005 /// careful NOT to add them if the user hasn't specifically asked so. 1006 class LoopVectorizeHints { 1007 enum HintKind { 1008 HK_WIDTH, 1009 HK_UNROLL, 1010 HK_FORCE 1011 }; 1012 1013 /// Hint - associates name and validation with the hint value. 1014 struct Hint { 1015 const char * Name; 1016 unsigned Value; // This may have to change for non-numeric values. 1017 HintKind Kind; 1018 1019 Hint(const char * Name, unsigned Value, HintKind Kind) 1020 : Name(Name), Value(Value), Kind(Kind) { } 1021 1022 bool validate(unsigned Val) { 1023 switch (Kind) { 1024 case HK_WIDTH: 1025 return isPowerOf2_32(Val) && Val <= MaxVectorWidth; 1026 case HK_UNROLL: 1027 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1028 case HK_FORCE: 1029 return (Val <= 1); 1030 } 1031 return false; 1032 } 1033 }; 1034 1035 /// Vectorization width. 1036 Hint Width; 1037 /// Vectorization interleave factor. 1038 Hint Interleave; 1039 /// Vectorization forced 1040 Hint Force; 1041 1042 /// Return the loop metadata prefix. 1043 static StringRef Prefix() { return "llvm.loop."; } 1044 1045 public: 1046 enum ForceKind { 1047 FK_Undefined = -1, ///< Not selected. 1048 FK_Disabled = 0, ///< Forcing disabled. 1049 FK_Enabled = 1, ///< Forcing enabled. 1050 }; 1051 1052 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1053 : Width("vectorize.width", VectorizationFactor, HK_WIDTH), 1054 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1055 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1056 TheLoop(L) { 1057 // Populate values with existing loop metadata. 1058 getHintsFromMetadata(); 1059 1060 // force-vector-interleave overrides DisableInterleaving. 1061 if (VectorizationInterleave.getNumOccurrences() > 0) 1062 Interleave.Value = VectorizationInterleave; 1063 1064 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1065 << "LV: Interleaving disabled by the pass manager\n"); 1066 } 1067 1068 /// Mark the loop L as already vectorized by setting the width to 1. 1069 void setAlreadyVectorized() { 1070 Width.Value = Interleave.Value = 1; 1071 Hint Hints[] = {Width, Interleave}; 1072 writeHintsToMetadata(Hints); 1073 } 1074 1075 /// Dumps all the hint information. 1076 std::string emitRemark() const { 1077 VectorizationReport R; 1078 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1079 R << "vectorization is explicitly disabled"; 1080 else { 1081 R << "use -Rpass-analysis=loop-vectorize for more info"; 1082 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1083 R << " (Force=true"; 1084 if (Width.Value != 0) 1085 R << ", Vector Width=" << Width.Value; 1086 if (Interleave.Value != 0) 1087 R << ", Interleave Count=" << Interleave.Value; 1088 R << ")"; 1089 } 1090 } 1091 1092 return R.str(); 1093 } 1094 1095 unsigned getWidth() const { return Width.Value; } 1096 unsigned getInterleave() const { return Interleave.Value; } 1097 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1098 1099 private: 1100 /// Find hints specified in the loop metadata and update local values. 1101 void getHintsFromMetadata() { 1102 MDNode *LoopID = TheLoop->getLoopID(); 1103 if (!LoopID) 1104 return; 1105 1106 // First operand should refer to the loop id itself. 1107 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1108 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1109 1110 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1111 const MDString *S = nullptr; 1112 SmallVector<Metadata *, 4> Args; 1113 1114 // The expected hint is either a MDString or a MDNode with the first 1115 // operand a MDString. 1116 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1117 if (!MD || MD->getNumOperands() == 0) 1118 continue; 1119 S = dyn_cast<MDString>(MD->getOperand(0)); 1120 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1121 Args.push_back(MD->getOperand(i)); 1122 } else { 1123 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1124 assert(Args.size() == 0 && "too many arguments for MDString"); 1125 } 1126 1127 if (!S) 1128 continue; 1129 1130 // Check if the hint starts with the loop metadata prefix. 1131 StringRef Name = S->getString(); 1132 if (Args.size() == 1) 1133 setHint(Name, Args[0]); 1134 } 1135 } 1136 1137 /// Checks string hint with one operand and set value if valid. 1138 void setHint(StringRef Name, Metadata *Arg) { 1139 if (!Name.startswith(Prefix())) 1140 return; 1141 Name = Name.substr(Prefix().size(), StringRef::npos); 1142 1143 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1144 if (!C) return; 1145 unsigned Val = C->getZExtValue(); 1146 1147 Hint *Hints[] = {&Width, &Interleave, &Force}; 1148 for (auto H : Hints) { 1149 if (Name == H->Name) { 1150 if (H->validate(Val)) 1151 H->Value = Val; 1152 else 1153 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1154 break; 1155 } 1156 } 1157 } 1158 1159 /// Create a new hint from name / value pair. 1160 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1161 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1162 Metadata *MDs[] = {MDString::get(Context, Name), 1163 ConstantAsMetadata::get( 1164 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1165 return MDNode::get(Context, MDs); 1166 } 1167 1168 /// Matches metadata with hint name. 1169 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1170 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1171 if (!Name) 1172 return false; 1173 1174 for (auto H : HintTypes) 1175 if (Name->getString().endswith(H.Name)) 1176 return true; 1177 return false; 1178 } 1179 1180 /// Sets current hints into loop metadata, keeping other values intact. 1181 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1182 if (HintTypes.size() == 0) 1183 return; 1184 1185 // Reserve the first element to LoopID (see below). 1186 SmallVector<Metadata *, 4> MDs(1); 1187 // If the loop already has metadata, then ignore the existing operands. 1188 MDNode *LoopID = TheLoop->getLoopID(); 1189 if (LoopID) { 1190 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1191 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1192 // If node in update list, ignore old value. 1193 if (!matchesHintMetadataName(Node, HintTypes)) 1194 MDs.push_back(Node); 1195 } 1196 } 1197 1198 // Now, add the missing hints. 1199 for (auto H : HintTypes) 1200 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1201 1202 // Replace current metadata node with new one. 1203 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1204 MDNode *NewLoopID = MDNode::get(Context, MDs); 1205 // Set operand 0 to refer to the loop id itself. 1206 NewLoopID->replaceOperandWith(0, NewLoopID); 1207 1208 TheLoop->setLoopID(NewLoopID); 1209 } 1210 1211 /// The loop these hints belong to. 1212 const Loop *TheLoop; 1213 }; 1214 1215 static void emitMissedWarning(Function *F, Loop *L, 1216 const LoopVectorizeHints &LH) { 1217 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1218 L->getStartLoc(), LH.emitRemark()); 1219 1220 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1221 if (LH.getWidth() != 1) 1222 emitLoopVectorizeWarning( 1223 F->getContext(), *F, L->getStartLoc(), 1224 "failed explicitly specified loop vectorization"); 1225 else if (LH.getInterleave() != 1) 1226 emitLoopInterleaveWarning( 1227 F->getContext(), *F, L->getStartLoc(), 1228 "failed explicitly specified loop interleaving"); 1229 } 1230 } 1231 1232 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1233 if (L.empty()) 1234 return V.push_back(&L); 1235 1236 for (Loop *InnerL : L) 1237 addInnerLoop(*InnerL, V); 1238 } 1239 1240 /// The LoopVectorize Pass. 1241 struct LoopVectorize : public FunctionPass { 1242 /// Pass identification, replacement for typeid 1243 static char ID; 1244 1245 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1246 : FunctionPass(ID), 1247 DisableUnrolling(NoUnrolling), 1248 AlwaysVectorize(AlwaysVectorize) { 1249 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1250 } 1251 1252 ScalarEvolution *SE; 1253 const DataLayout *DL; 1254 LoopInfo *LI; 1255 TargetTransformInfo *TTI; 1256 DominatorTree *DT; 1257 BlockFrequencyInfo *BFI; 1258 TargetLibraryInfo *TLI; 1259 AliasAnalysis *AA; 1260 AssumptionCache *AC; 1261 bool DisableUnrolling; 1262 bool AlwaysVectorize; 1263 1264 BlockFrequency ColdEntryFreq; 1265 1266 bool runOnFunction(Function &F) override { 1267 SE = &getAnalysis<ScalarEvolution>(); 1268 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1269 DL = DLP ? &DLP->getDataLayout() : nullptr; 1270 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1271 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1272 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1273 BFI = &getAnalysis<BlockFrequencyInfo>(); 1274 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1275 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1276 AA = &getAnalysis<AliasAnalysis>(); 1277 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1278 1279 // Compute some weights outside of the loop over the loops. Compute this 1280 // using a BranchProbability to re-use its scaling math. 1281 const BranchProbability ColdProb(1, 5); // 20% 1282 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1283 1284 // If the target claims to have no vector registers don't attempt 1285 // vectorization. 1286 if (!TTI->getNumberOfRegisters(true)) 1287 return false; 1288 1289 if (!DL) { 1290 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1291 << ": Missing data layout\n"); 1292 return false; 1293 } 1294 1295 // Build up a worklist of inner-loops to vectorize. This is necessary as 1296 // the act of vectorizing or partially unrolling a loop creates new loops 1297 // and can invalidate iterators across the loops. 1298 SmallVector<Loop *, 8> Worklist; 1299 1300 for (Loop *L : *LI) 1301 addInnerLoop(*L, Worklist); 1302 1303 LoopsAnalyzed += Worklist.size(); 1304 1305 // Now walk the identified inner loops. 1306 bool Changed = false; 1307 while (!Worklist.empty()) 1308 Changed |= processLoop(Worklist.pop_back_val()); 1309 1310 // Process each loop nest in the function. 1311 return Changed; 1312 } 1313 1314 bool processLoop(Loop *L) { 1315 assert(L->empty() && "Only process inner loops."); 1316 1317 #ifndef NDEBUG 1318 const std::string DebugLocStr = getDebugLocString(L); 1319 #endif /* NDEBUG */ 1320 1321 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1322 << L->getHeader()->getParent()->getName() << "\" from " 1323 << DebugLocStr << "\n"); 1324 1325 LoopVectorizeHints Hints(L, DisableUnrolling); 1326 1327 DEBUG(dbgs() << "LV: Loop hints:" 1328 << " force=" 1329 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1330 ? "disabled" 1331 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1332 ? "enabled" 1333 : "?")) << " width=" << Hints.getWidth() 1334 << " unroll=" << Hints.getInterleave() << "\n"); 1335 1336 // Function containing loop 1337 Function *F = L->getHeader()->getParent(); 1338 1339 // Looking at the diagnostic output is the only way to determine if a loop 1340 // was vectorized (other than looking at the IR or machine code), so it 1341 // is important to generate an optimization remark for each loop. Most of 1342 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1343 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1344 // less verbose reporting vectorized loops and unvectorized loops that may 1345 // benefit from vectorization, respectively. 1346 1347 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1348 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1349 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1350 L->getStartLoc(), Hints.emitRemark()); 1351 return false; 1352 } 1353 1354 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1355 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1356 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1357 L->getStartLoc(), Hints.emitRemark()); 1358 return false; 1359 } 1360 1361 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1362 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1363 emitOptimizationRemarkAnalysis( 1364 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1365 "loop not vectorized: vector width and interleave count are " 1366 "explicitly set to 1"); 1367 return false; 1368 } 1369 1370 // Check the loop for a trip count threshold: 1371 // do not vectorize loops with a tiny trip count. 1372 const unsigned TC = SE->getSmallConstantTripCount(L); 1373 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1374 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1375 << "This loop is not worth vectorizing."); 1376 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1377 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1378 else { 1379 DEBUG(dbgs() << "\n"); 1380 emitOptimizationRemarkAnalysis( 1381 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1382 "vectorization is not beneficial and is not explicitly forced"); 1383 return false; 1384 } 1385 } 1386 1387 // Check if it is legal to vectorize the loop. 1388 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI); 1389 if (!LVL.canVectorize()) { 1390 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1391 emitMissedWarning(F, L, Hints); 1392 return false; 1393 } 1394 1395 // Use the cost model. 1396 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AC, F, 1397 &Hints); 1398 1399 // Check the function attributes to find out if this function should be 1400 // optimized for size. 1401 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1402 F->hasFnAttribute(Attribute::OptimizeForSize); 1403 1404 // Compute the weighted frequency of this loop being executed and see if it 1405 // is less than 20% of the function entry baseline frequency. Note that we 1406 // always have a canonical loop here because we think we *can* vectoriez. 1407 // FIXME: This is hidden behind a flag due to pervasive problems with 1408 // exactly what block frequency models. 1409 if (LoopVectorizeWithBlockFrequency) { 1410 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1411 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1412 LoopEntryFreq < ColdEntryFreq) 1413 OptForSize = true; 1414 } 1415 1416 // Check the function attributes to see if implicit floats are allowed.a 1417 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1418 // an integer loop and the vector instructions selected are purely integer 1419 // vector instructions? 1420 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1421 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1422 "attribute is used.\n"); 1423 emitOptimizationRemarkAnalysis( 1424 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1425 "loop not vectorized due to NoImplicitFloat attribute"); 1426 emitMissedWarning(F, L, Hints); 1427 return false; 1428 } 1429 1430 // Select the optimal vectorization factor. 1431 const LoopVectorizationCostModel::VectorizationFactor VF = 1432 CM.selectVectorizationFactor(OptForSize); 1433 1434 // Select the unroll factor. 1435 const unsigned UF = 1436 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1437 1438 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1439 << DebugLocStr << '\n'); 1440 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1441 1442 if (VF.Width == 1) { 1443 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1444 1445 if (UF == 1) { 1446 emitOptimizationRemarkAnalysis( 1447 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1448 "not beneficial to vectorize and user disabled interleaving"); 1449 return false; 1450 } 1451 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1452 1453 // Report the unrolling decision. 1454 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1455 Twine("unrolled with interleaving factor " + 1456 Twine(UF) + 1457 " (vectorization not beneficial)")); 1458 1459 // We decided not to vectorize, but we may want to unroll. 1460 1461 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1462 Unroller.vectorize(&LVL); 1463 } else { 1464 // If we decided that it is *legal* to vectorize the loop then do it. 1465 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1466 LB.vectorize(&LVL); 1467 ++LoopsVectorized; 1468 1469 // Report the vectorization decision. 1470 emitOptimizationRemark( 1471 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1472 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1473 ", unrolling interleave factor: " + Twine(UF) + ")"); 1474 } 1475 1476 // Mark the loop as already vectorized to avoid vectorizing again. 1477 Hints.setAlreadyVectorized(); 1478 1479 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1480 return true; 1481 } 1482 1483 void getAnalysisUsage(AnalysisUsage &AU) const override { 1484 AU.addRequired<AssumptionCacheTracker>(); 1485 AU.addRequiredID(LoopSimplifyID); 1486 AU.addRequiredID(LCSSAID); 1487 AU.addRequired<BlockFrequencyInfo>(); 1488 AU.addRequired<DominatorTreeWrapperPass>(); 1489 AU.addRequired<LoopInfoWrapperPass>(); 1490 AU.addRequired<ScalarEvolution>(); 1491 AU.addRequired<TargetTransformInfoWrapperPass>(); 1492 AU.addRequired<AliasAnalysis>(); 1493 AU.addPreserved<LoopInfoWrapperPass>(); 1494 AU.addPreserved<DominatorTreeWrapperPass>(); 1495 AU.addPreserved<AliasAnalysis>(); 1496 } 1497 1498 }; 1499 1500 } // end anonymous namespace 1501 1502 //===----------------------------------------------------------------------===// 1503 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1504 // LoopVectorizationCostModel. 1505 //===----------------------------------------------------------------------===// 1506 1507 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1508 // We need to place the broadcast of invariant variables outside the loop. 1509 Instruction *Instr = dyn_cast<Instruction>(V); 1510 bool NewInstr = 1511 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1512 Instr->getParent()) != LoopVectorBody.end()); 1513 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1514 1515 // Place the code for broadcasting invariant variables in the new preheader. 1516 IRBuilder<>::InsertPointGuard Guard(Builder); 1517 if (Invariant) 1518 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1519 1520 // Broadcast the scalar into all locations in the vector. 1521 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1522 1523 return Shuf; 1524 } 1525 1526 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1527 Value *Step) { 1528 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1529 assert(Val->getType()->getScalarType()->isIntegerTy() && 1530 "Elem must be an integer"); 1531 assert(Step->getType() == Val->getType()->getScalarType() && 1532 "Step has wrong type"); 1533 // Create the types. 1534 Type *ITy = Val->getType()->getScalarType(); 1535 VectorType *Ty = cast<VectorType>(Val->getType()); 1536 int VLen = Ty->getNumElements(); 1537 SmallVector<Constant*, 8> Indices; 1538 1539 // Create a vector of consecutive numbers from zero to VF. 1540 for (int i = 0; i < VLen; ++i) 1541 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1542 1543 // Add the consecutive indices to the vector value. 1544 Constant *Cv = ConstantVector::get(Indices); 1545 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1546 Step = Builder.CreateVectorSplat(VLen, Step); 1547 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1548 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1549 // which can be found from the original scalar operations. 1550 Step = Builder.CreateMul(Cv, Step); 1551 return Builder.CreateAdd(Val, Step, "induction"); 1552 } 1553 1554 /// \brief Find the operand of the GEP that should be checked for consecutive 1555 /// stores. This ignores trailing indices that have no effect on the final 1556 /// pointer. 1557 static unsigned getGEPInductionOperand(const DataLayout *DL, 1558 const GetElementPtrInst *Gep) { 1559 unsigned LastOperand = Gep->getNumOperands() - 1; 1560 unsigned GEPAllocSize = DL->getTypeAllocSize( 1561 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1562 1563 // Walk backwards and try to peel off zeros. 1564 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1565 // Find the type we're currently indexing into. 1566 gep_type_iterator GEPTI = gep_type_begin(Gep); 1567 std::advance(GEPTI, LastOperand - 1); 1568 1569 // If it's a type with the same allocation size as the result of the GEP we 1570 // can peel off the zero index. 1571 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1572 break; 1573 --LastOperand; 1574 } 1575 1576 return LastOperand; 1577 } 1578 1579 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1580 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1581 // Make sure that the pointer does not point to structs. 1582 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1583 return 0; 1584 1585 // If this value is a pointer induction variable we know it is consecutive. 1586 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1587 if (Phi && Inductions.count(Phi)) { 1588 InductionInfo II = Inductions[Phi]; 1589 return II.getConsecutiveDirection(); 1590 } 1591 1592 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1593 if (!Gep) 1594 return 0; 1595 1596 unsigned NumOperands = Gep->getNumOperands(); 1597 Value *GpPtr = Gep->getPointerOperand(); 1598 // If this GEP value is a consecutive pointer induction variable and all of 1599 // the indices are constant then we know it is consecutive. We can 1600 Phi = dyn_cast<PHINode>(GpPtr); 1601 if (Phi && Inductions.count(Phi)) { 1602 1603 // Make sure that the pointer does not point to structs. 1604 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1605 if (GepPtrType->getElementType()->isAggregateType()) 1606 return 0; 1607 1608 // Make sure that all of the index operands are loop invariant. 1609 for (unsigned i = 1; i < NumOperands; ++i) 1610 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1611 return 0; 1612 1613 InductionInfo II = Inductions[Phi]; 1614 return II.getConsecutiveDirection(); 1615 } 1616 1617 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1618 1619 // Check that all of the gep indices are uniform except for our induction 1620 // operand. 1621 for (unsigned i = 0; i != NumOperands; ++i) 1622 if (i != InductionOperand && 1623 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1624 return 0; 1625 1626 // We can emit wide load/stores only if the last non-zero index is the 1627 // induction variable. 1628 const SCEV *Last = nullptr; 1629 if (!Strides.count(Gep)) 1630 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1631 else { 1632 // Because of the multiplication by a stride we can have a s/zext cast. 1633 // We are going to replace this stride by 1 so the cast is safe to ignore. 1634 // 1635 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1636 // %0 = trunc i64 %indvars.iv to i32 1637 // %mul = mul i32 %0, %Stride1 1638 // %idxprom = zext i32 %mul to i64 << Safe cast. 1639 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1640 // 1641 Last = replaceSymbolicStrideSCEV(SE, Strides, 1642 Gep->getOperand(InductionOperand), Gep); 1643 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1644 Last = 1645 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1646 ? C->getOperand() 1647 : Last; 1648 } 1649 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1650 const SCEV *Step = AR->getStepRecurrence(*SE); 1651 1652 // The memory is consecutive because the last index is consecutive 1653 // and all other indices are loop invariant. 1654 if (Step->isOne()) 1655 return 1; 1656 if (Step->isAllOnesValue()) 1657 return -1; 1658 } 1659 1660 return 0; 1661 } 1662 1663 bool LoopVectorizationLegality::isUniform(Value *V) { 1664 return LAA.isUniform(V); 1665 } 1666 1667 InnerLoopVectorizer::VectorParts& 1668 InnerLoopVectorizer::getVectorValue(Value *V) { 1669 assert(V != Induction && "The new induction variable should not be used."); 1670 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1671 1672 // If we have a stride that is replaced by one, do it here. 1673 if (Legal->hasStride(V)) 1674 V = ConstantInt::get(V->getType(), 1); 1675 1676 // If we have this scalar in the map, return it. 1677 if (WidenMap.has(V)) 1678 return WidenMap.get(V); 1679 1680 // If this scalar is unknown, assume that it is a constant or that it is 1681 // loop invariant. Broadcast V and save the value for future uses. 1682 Value *B = getBroadcastInstrs(V); 1683 return WidenMap.splat(V, B); 1684 } 1685 1686 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1687 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1688 SmallVector<Constant*, 8> ShuffleMask; 1689 for (unsigned i = 0; i < VF; ++i) 1690 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1691 1692 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1693 ConstantVector::get(ShuffleMask), 1694 "reverse"); 1695 } 1696 1697 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1698 // Attempt to issue a wide load. 1699 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1700 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1701 1702 assert((LI || SI) && "Invalid Load/Store instruction"); 1703 1704 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1705 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1706 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1707 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1708 // An alignment of 0 means target abi alignment. We need to use the scalar's 1709 // target abi alignment in such a case. 1710 if (!Alignment) 1711 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1712 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1713 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1714 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1715 1716 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 1717 !Legal->isMaskRequired(SI)) 1718 return scalarizeInstruction(Instr, true); 1719 1720 if (ScalarAllocatedSize != VectorElementSize) 1721 return scalarizeInstruction(Instr); 1722 1723 // If the pointer is loop invariant or if it is non-consecutive, 1724 // scalarize the load. 1725 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1726 bool Reverse = ConsecutiveStride < 0; 1727 bool UniformLoad = LI && Legal->isUniform(Ptr); 1728 if (!ConsecutiveStride || UniformLoad) 1729 return scalarizeInstruction(Instr); 1730 1731 Constant *Zero = Builder.getInt32(0); 1732 VectorParts &Entry = WidenMap.get(Instr); 1733 1734 // Handle consecutive loads/stores. 1735 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1736 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1737 setDebugLocFromInst(Builder, Gep); 1738 Value *PtrOperand = Gep->getPointerOperand(); 1739 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1740 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1741 1742 // Create the new GEP with the new induction variable. 1743 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1744 Gep2->setOperand(0, FirstBasePtr); 1745 Gep2->setName("gep.indvar.base"); 1746 Ptr = Builder.Insert(Gep2); 1747 } else if (Gep) { 1748 setDebugLocFromInst(Builder, Gep); 1749 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1750 OrigLoop) && "Base ptr must be invariant"); 1751 1752 // The last index does not have to be the induction. It can be 1753 // consecutive and be a function of the index. For example A[I+1]; 1754 unsigned NumOperands = Gep->getNumOperands(); 1755 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1756 // Create the new GEP with the new induction variable. 1757 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1758 1759 for (unsigned i = 0; i < NumOperands; ++i) { 1760 Value *GepOperand = Gep->getOperand(i); 1761 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1762 1763 // Update last index or loop invariant instruction anchored in loop. 1764 if (i == InductionOperand || 1765 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1766 assert((i == InductionOperand || 1767 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1768 "Must be last index or loop invariant"); 1769 1770 VectorParts &GEPParts = getVectorValue(GepOperand); 1771 Value *Index = GEPParts[0]; 1772 Index = Builder.CreateExtractElement(Index, Zero); 1773 Gep2->setOperand(i, Index); 1774 Gep2->setName("gep.indvar.idx"); 1775 } 1776 } 1777 Ptr = Builder.Insert(Gep2); 1778 } else { 1779 // Use the induction element ptr. 1780 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1781 setDebugLocFromInst(Builder, Ptr); 1782 VectorParts &PtrVal = getVectorValue(Ptr); 1783 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1784 } 1785 1786 VectorParts Mask = createBlockInMask(Instr->getParent()); 1787 // Handle Stores: 1788 if (SI) { 1789 assert(!Legal->isUniform(SI->getPointerOperand()) && 1790 "We do not allow storing to uniform addresses"); 1791 setDebugLocFromInst(Builder, SI); 1792 // We don't want to update the value in the map as it might be used in 1793 // another expression. So don't use a reference type for "StoredVal". 1794 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1795 1796 for (unsigned Part = 0; Part < UF; ++Part) { 1797 // Calculate the pointer for the specific unroll-part. 1798 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1799 1800 if (Reverse) { 1801 // If we store to reverse consecutive memory locations then we need 1802 // to reverse the order of elements in the stored value. 1803 StoredVal[Part] = reverseVector(StoredVal[Part]); 1804 // If the address is consecutive but reversed, then the 1805 // wide store needs to start at the last vector element. 1806 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1807 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1808 Mask[Part] = reverseVector(Mask[Part]); 1809 } 1810 1811 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1812 DataTy->getPointerTo(AddressSpace)); 1813 1814 Instruction *NewSI; 1815 if (Legal->isMaskRequired(SI)) 1816 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 1817 Mask[Part]); 1818 else 1819 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1820 propagateMetadata(NewSI, SI); 1821 } 1822 return; 1823 } 1824 1825 // Handle loads. 1826 assert(LI && "Must have a load instruction"); 1827 setDebugLocFromInst(Builder, LI); 1828 for (unsigned Part = 0; Part < UF; ++Part) { 1829 // Calculate the pointer for the specific unroll-part. 1830 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1831 1832 if (Reverse) { 1833 // If the address is consecutive but reversed, then the 1834 // wide load needs to start at the last vector element. 1835 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1836 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1837 Mask[Part] = reverseVector(Mask[Part]); 1838 } 1839 1840 Instruction* NewLI; 1841 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1842 DataTy->getPointerTo(AddressSpace)); 1843 if (Legal->isMaskRequired(LI)) 1844 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 1845 UndefValue::get(DataTy), 1846 "wide.masked.load"); 1847 else 1848 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1849 propagateMetadata(NewLI, LI); 1850 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1851 } 1852 } 1853 1854 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1855 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1856 // Holds vector parameters or scalars, in case of uniform vals. 1857 SmallVector<VectorParts, 4> Params; 1858 1859 setDebugLocFromInst(Builder, Instr); 1860 1861 // Find all of the vectorized parameters. 1862 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1863 Value *SrcOp = Instr->getOperand(op); 1864 1865 // If we are accessing the old induction variable, use the new one. 1866 if (SrcOp == OldInduction) { 1867 Params.push_back(getVectorValue(SrcOp)); 1868 continue; 1869 } 1870 1871 // Try using previously calculated values. 1872 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1873 1874 // If the src is an instruction that appeared earlier in the basic block 1875 // then it should already be vectorized. 1876 if (SrcInst && OrigLoop->contains(SrcInst)) { 1877 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1878 // The parameter is a vector value from earlier. 1879 Params.push_back(WidenMap.get(SrcInst)); 1880 } else { 1881 // The parameter is a scalar from outside the loop. Maybe even a constant. 1882 VectorParts Scalars; 1883 Scalars.append(UF, SrcOp); 1884 Params.push_back(Scalars); 1885 } 1886 } 1887 1888 assert(Params.size() == Instr->getNumOperands() && 1889 "Invalid number of operands"); 1890 1891 // Does this instruction return a value ? 1892 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1893 1894 Value *UndefVec = IsVoidRetTy ? nullptr : 1895 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1896 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1897 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1898 1899 Instruction *InsertPt = Builder.GetInsertPoint(); 1900 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1901 BasicBlock *CondBlock = nullptr; 1902 1903 VectorParts Cond; 1904 Loop *VectorLp = nullptr; 1905 if (IfPredicateStore) { 1906 assert(Instr->getParent()->getSinglePredecessor() && 1907 "Only support single predecessor blocks"); 1908 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1909 Instr->getParent()); 1910 VectorLp = LI->getLoopFor(IfBlock); 1911 assert(VectorLp && "Must have a loop for this block"); 1912 } 1913 1914 // For each vector unroll 'part': 1915 for (unsigned Part = 0; Part < UF; ++Part) { 1916 // For each scalar that we create: 1917 for (unsigned Width = 0; Width < VF; ++Width) { 1918 1919 // Start if-block. 1920 Value *Cmp = nullptr; 1921 if (IfPredicateStore) { 1922 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1923 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1924 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1925 LoopVectorBody.push_back(CondBlock); 1926 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 1927 // Update Builder with newly created basic block. 1928 Builder.SetInsertPoint(InsertPt); 1929 } 1930 1931 Instruction *Cloned = Instr->clone(); 1932 if (!IsVoidRetTy) 1933 Cloned->setName(Instr->getName() + ".cloned"); 1934 // Replace the operands of the cloned instructions with extracted scalars. 1935 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1936 Value *Op = Params[op][Part]; 1937 // Param is a vector. Need to extract the right lane. 1938 if (Op->getType()->isVectorTy()) 1939 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1940 Cloned->setOperand(op, Op); 1941 } 1942 1943 // Place the cloned scalar in the new loop. 1944 Builder.Insert(Cloned); 1945 1946 // If the original scalar returns a value we need to place it in a vector 1947 // so that future users will be able to use it. 1948 if (!IsVoidRetTy) 1949 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1950 Builder.getInt32(Width)); 1951 // End if-block. 1952 if (IfPredicateStore) { 1953 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1954 LoopVectorBody.push_back(NewIfBlock); 1955 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 1956 Builder.SetInsertPoint(InsertPt); 1957 Instruction *OldBr = IfBlock->getTerminator(); 1958 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1959 OldBr->eraseFromParent(); 1960 IfBlock = NewIfBlock; 1961 } 1962 } 1963 } 1964 } 1965 1966 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1967 Instruction *Loc) { 1968 if (FirstInst) 1969 return FirstInst; 1970 if (Instruction *I = dyn_cast<Instruction>(V)) 1971 return I->getParent() == Loc->getParent() ? I : nullptr; 1972 return nullptr; 1973 } 1974 1975 std::pair<Instruction *, Instruction *> 1976 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1977 Instruction *tnullptr = nullptr; 1978 if (!Legal->mustCheckStrides()) 1979 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1980 1981 IRBuilder<> ChkBuilder(Loc); 1982 1983 // Emit checks. 1984 Value *Check = nullptr; 1985 Instruction *FirstInst = nullptr; 1986 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1987 SE = Legal->strides_end(); 1988 SI != SE; ++SI) { 1989 Value *Ptr = stripIntegerCast(*SI); 1990 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 1991 "stride.chk"); 1992 // Store the first instruction we create. 1993 FirstInst = getFirstInst(FirstInst, C, Loc); 1994 if (Check) 1995 Check = ChkBuilder.CreateOr(Check, C); 1996 else 1997 Check = C; 1998 } 1999 2000 // We have to do this trickery because the IRBuilder might fold the check to a 2001 // constant expression in which case there is no Instruction anchored in a 2002 // the block. 2003 LLVMContext &Ctx = Loc->getContext(); 2004 Instruction *TheCheck = 2005 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2006 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2007 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2008 2009 return std::make_pair(FirstInst, TheCheck); 2010 } 2011 2012 std::pair<Instruction *, Instruction *> 2013 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 2014 LoopAccessAnalysis::RuntimePointerCheck *PtrRtCheck = 2015 Legal->getRuntimePointerCheck(); 2016 2017 Instruction *tnullptr = nullptr; 2018 if (!PtrRtCheck->Need) 2019 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2020 2021 unsigned NumPointers = PtrRtCheck->Pointers.size(); 2022 SmallVector<TrackingVH<Value> , 2> Starts; 2023 SmallVector<TrackingVH<Value> , 2> Ends; 2024 2025 LLVMContext &Ctx = Loc->getContext(); 2026 SCEVExpander Exp(*SE, "induction"); 2027 Instruction *FirstInst = nullptr; 2028 2029 for (unsigned i = 0; i < NumPointers; ++i) { 2030 Value *Ptr = PtrRtCheck->Pointers[i]; 2031 const SCEV *Sc = SE->getSCEV(Ptr); 2032 2033 if (SE->isLoopInvariant(Sc, OrigLoop)) { 2034 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 2035 *Ptr <<"\n"); 2036 Starts.push_back(Ptr); 2037 Ends.push_back(Ptr); 2038 } else { 2039 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 2040 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2041 2042 // Use this type for pointer arithmetic. 2043 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2044 2045 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 2046 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 2047 Starts.push_back(Start); 2048 Ends.push_back(End); 2049 } 2050 } 2051 2052 IRBuilder<> ChkBuilder(Loc); 2053 // Our instructions might fold to a constant. 2054 Value *MemoryRuntimeCheck = nullptr; 2055 for (unsigned i = 0; i < NumPointers; ++i) { 2056 for (unsigned j = i+1; j < NumPointers; ++j) { 2057 // No need to check if two readonly pointers intersect. 2058 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 2059 continue; 2060 2061 // Only need to check pointers between two different dependency sets. 2062 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 2063 continue; 2064 // Only need to check pointers in the same alias set. 2065 if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j]) 2066 continue; 2067 2068 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 2069 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 2070 2071 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 2072 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 2073 "Trying to bounds check pointers with different address spaces"); 2074 2075 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2076 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2077 2078 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 2079 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 2080 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 2081 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 2082 2083 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 2084 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2085 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 2086 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2087 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2088 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2089 if (MemoryRuntimeCheck) { 2090 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 2091 "conflict.rdx"); 2092 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2093 } 2094 MemoryRuntimeCheck = IsConflict; 2095 } 2096 } 2097 2098 // We have to do this trickery because the IRBuilder might fold the check to a 2099 // constant expression in which case there is no Instruction anchored in a 2100 // the block. 2101 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2102 ConstantInt::getTrue(Ctx)); 2103 ChkBuilder.Insert(Check, "memcheck.conflict"); 2104 FirstInst = getFirstInst(FirstInst, Check, Loc); 2105 return std::make_pair(FirstInst, Check); 2106 } 2107 2108 void InnerLoopVectorizer::createEmptyLoop() { 2109 /* 2110 In this function we generate a new loop. The new loop will contain 2111 the vectorized instructions while the old loop will continue to run the 2112 scalar remainder. 2113 2114 [ ] <-- Back-edge taken count overflow check. 2115 / | 2116 / v 2117 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2118 | / | 2119 | / v 2120 || [ ] <-- vector pre header. 2121 || | 2122 || v 2123 || [ ] \ 2124 || [ ]_| <-- vector loop. 2125 || | 2126 | \ v 2127 | >[ ] <--- middle-block. 2128 | / | 2129 | / v 2130 -|- >[ ] <--- new preheader. 2131 | | 2132 | v 2133 | [ ] \ 2134 | [ ]_| <-- old scalar loop to handle remainder. 2135 \ | 2136 \ v 2137 >[ ] <-- exit block. 2138 ... 2139 */ 2140 2141 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2142 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2143 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2144 assert(BypassBlock && "Invalid loop structure"); 2145 assert(ExitBlock && "Must have an exit block"); 2146 2147 // Some loops have a single integer induction variable, while other loops 2148 // don't. One example is c++ iterators that often have multiple pointer 2149 // induction variables. In the code below we also support a case where we 2150 // don't have a single induction variable. 2151 OldInduction = Legal->getInduction(); 2152 Type *IdxTy = Legal->getWidestInductionType(); 2153 2154 // Find the loop boundaries. 2155 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2156 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2157 2158 // The exit count might have the type of i64 while the phi is i32. This can 2159 // happen if we have an induction variable that is sign extended before the 2160 // compare. The only way that we get a backedge taken count is that the 2161 // induction variable was signed and as such will not overflow. In such a case 2162 // truncation is legal. 2163 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2164 IdxTy->getPrimitiveSizeInBits()) 2165 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2166 2167 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2168 // Get the total trip count from the count by adding 1. 2169 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2170 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2171 2172 // Expand the trip count and place the new instructions in the preheader. 2173 // Notice that the pre-header does not change, only the loop body. 2174 SCEVExpander Exp(*SE, "induction"); 2175 2176 // We need to test whether the backedge-taken count is uint##_max. Adding one 2177 // to it will cause overflow and an incorrect loop trip count in the vector 2178 // body. In case of overflow we want to directly jump to the scalar remainder 2179 // loop. 2180 Value *BackedgeCount = 2181 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2182 BypassBlock->getTerminator()); 2183 if (BackedgeCount->getType()->isPointerTy()) 2184 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2185 "backedge.ptrcnt.to.int", 2186 BypassBlock->getTerminator()); 2187 Instruction *CheckBCOverflow = 2188 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2189 Constant::getAllOnesValue(BackedgeCount->getType()), 2190 "backedge.overflow", BypassBlock->getTerminator()); 2191 2192 // The loop index does not have to start at Zero. Find the original start 2193 // value from the induction PHI node. If we don't have an induction variable 2194 // then we know that it starts at zero. 2195 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2196 Value *StartIdx = ExtendedIdx = OldInduction ? 2197 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2198 IdxTy): 2199 ConstantInt::get(IdxTy, 0); 2200 2201 // We need an instruction to anchor the overflow check on. StartIdx needs to 2202 // be defined before the overflow check branch. Because the scalar preheader 2203 // is going to merge the start index and so the overflow branch block needs to 2204 // contain a definition of the start index. 2205 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2206 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2207 BypassBlock->getTerminator()); 2208 2209 // Count holds the overall loop count (N). 2210 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2211 BypassBlock->getTerminator()); 2212 2213 LoopBypassBlocks.push_back(BypassBlock); 2214 2215 // Split the single block loop into the two loop structure described above. 2216 BasicBlock *VectorPH = 2217 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2218 BasicBlock *VecBody = 2219 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2220 BasicBlock *MiddleBlock = 2221 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2222 BasicBlock *ScalarPH = 2223 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2224 2225 // Create and register the new vector loop. 2226 Loop* Lp = new Loop(); 2227 Loop *ParentLoop = OrigLoop->getParentLoop(); 2228 2229 // Insert the new loop into the loop nest and register the new basic blocks 2230 // before calling any utilities such as SCEV that require valid LoopInfo. 2231 if (ParentLoop) { 2232 ParentLoop->addChildLoop(Lp); 2233 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2234 ParentLoop->addBasicBlockToLoop(VectorPH, *LI); 2235 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2236 } else { 2237 LI->addTopLevelLoop(Lp); 2238 } 2239 Lp->addBasicBlockToLoop(VecBody, *LI); 2240 2241 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2242 // inside the loop. 2243 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2244 2245 // Generate the induction variable. 2246 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2247 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2248 // The loop step is equal to the vectorization factor (num of SIMD elements) 2249 // times the unroll factor (num of SIMD instructions). 2250 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2251 2252 // This is the IR builder that we use to add all of the logic for bypassing 2253 // the new vector loop. 2254 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2255 setDebugLocFromInst(BypassBuilder, 2256 getDebugLocFromInstOrOperands(OldInduction)); 2257 2258 // We may need to extend the index in case there is a type mismatch. 2259 // We know that the count starts at zero and does not overflow. 2260 if (Count->getType() != IdxTy) { 2261 // The exit count can be of pointer type. Convert it to the correct 2262 // integer type. 2263 if (ExitCount->getType()->isPointerTy()) 2264 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2265 else 2266 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2267 } 2268 2269 // Add the start index to the loop count to get the new end index. 2270 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2271 2272 // Now we need to generate the expression for N - (N % VF), which is 2273 // the part that the vectorized body will execute. 2274 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2275 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2276 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2277 "end.idx.rnd.down"); 2278 2279 // Now, compare the new count to zero. If it is zero skip the vector loop and 2280 // jump to the scalar loop. 2281 Value *Cmp = 2282 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2283 2284 BasicBlock *LastBypassBlock = BypassBlock; 2285 2286 // Generate code to check that the loops trip count that we computed by adding 2287 // one to the backedge-taken count will not overflow. 2288 { 2289 auto PastOverflowCheck = 2290 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2291 BasicBlock *CheckBlock = 2292 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2293 if (ParentLoop) 2294 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2295 LoopBypassBlocks.push_back(CheckBlock); 2296 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2297 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2298 OldTerm->eraseFromParent(); 2299 LastBypassBlock = CheckBlock; 2300 } 2301 2302 // Generate the code to check that the strides we assumed to be one are really 2303 // one. We want the new basic block to start at the first instruction in a 2304 // sequence of instructions that form a check. 2305 Instruction *StrideCheck; 2306 Instruction *FirstCheckInst; 2307 std::tie(FirstCheckInst, StrideCheck) = 2308 addStrideCheck(LastBypassBlock->getTerminator()); 2309 if (StrideCheck) { 2310 // Create a new block containing the stride check. 2311 BasicBlock *CheckBlock = 2312 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2313 if (ParentLoop) 2314 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2315 LoopBypassBlocks.push_back(CheckBlock); 2316 2317 // Replace the branch into the memory check block with a conditional branch 2318 // for the "few elements case". 2319 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2320 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2321 OldTerm->eraseFromParent(); 2322 2323 Cmp = StrideCheck; 2324 LastBypassBlock = CheckBlock; 2325 } 2326 2327 // Generate the code that checks in runtime if arrays overlap. We put the 2328 // checks into a separate block to make the more common case of few elements 2329 // faster. 2330 Instruction *MemRuntimeCheck; 2331 std::tie(FirstCheckInst, MemRuntimeCheck) = 2332 addRuntimeCheck(LastBypassBlock->getTerminator()); 2333 if (MemRuntimeCheck) { 2334 // Create a new block containing the memory check. 2335 BasicBlock *CheckBlock = 2336 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.memcheck"); 2337 if (ParentLoop) 2338 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2339 LoopBypassBlocks.push_back(CheckBlock); 2340 2341 // Replace the branch into the memory check block with a conditional branch 2342 // for the "few elements case". 2343 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2344 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2345 OldTerm->eraseFromParent(); 2346 2347 Cmp = MemRuntimeCheck; 2348 LastBypassBlock = CheckBlock; 2349 } 2350 2351 LastBypassBlock->getTerminator()->eraseFromParent(); 2352 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2353 LastBypassBlock); 2354 2355 // We are going to resume the execution of the scalar loop. 2356 // Go over all of the induction variables that we found and fix the 2357 // PHIs that are left in the scalar version of the loop. 2358 // The starting values of PHI nodes depend on the counter of the last 2359 // iteration in the vectorized loop. 2360 // If we come from a bypass edge then we need to start from the original 2361 // start value. 2362 2363 // This variable saves the new starting index for the scalar loop. 2364 PHINode *ResumeIndex = nullptr; 2365 LoopVectorizationLegality::InductionList::iterator I, E; 2366 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2367 // Set builder to point to last bypass block. 2368 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2369 for (I = List->begin(), E = List->end(); I != E; ++I) { 2370 PHINode *OrigPhi = I->first; 2371 LoopVectorizationLegality::InductionInfo II = I->second; 2372 2373 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2374 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2375 MiddleBlock->getTerminator()); 2376 // We might have extended the type of the induction variable but we need a 2377 // truncated version for the scalar loop. 2378 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2379 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2380 MiddleBlock->getTerminator()) : nullptr; 2381 2382 // Create phi nodes to merge from the backedge-taken check block. 2383 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2384 ScalarPH->getTerminator()); 2385 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2386 2387 PHINode *BCTruncResumeVal = nullptr; 2388 if (OrigPhi == OldInduction) { 2389 BCTruncResumeVal = 2390 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2391 ScalarPH->getTerminator()); 2392 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2393 } 2394 2395 Value *EndValue = nullptr; 2396 switch (II.IK) { 2397 case LoopVectorizationLegality::IK_NoInduction: 2398 llvm_unreachable("Unknown induction"); 2399 case LoopVectorizationLegality::IK_IntInduction: { 2400 // Handle the integer induction counter. 2401 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2402 2403 // We have the canonical induction variable. 2404 if (OrigPhi == OldInduction) { 2405 // Create a truncated version of the resume value for the scalar loop, 2406 // we might have promoted the type to a larger width. 2407 EndValue = 2408 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2409 // The new PHI merges the original incoming value, in case of a bypass, 2410 // or the value at the end of the vectorized loop. 2411 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2412 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2413 TruncResumeVal->addIncoming(EndValue, VecBody); 2414 2415 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2416 2417 // We know what the end value is. 2418 EndValue = IdxEndRoundDown; 2419 // We also know which PHI node holds it. 2420 ResumeIndex = ResumeVal; 2421 break; 2422 } 2423 2424 // Not the canonical induction variable - add the vector loop count to the 2425 // start value. 2426 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2427 II.StartValue->getType(), 2428 "cast.crd"); 2429 EndValue = II.transform(BypassBuilder, CRD); 2430 EndValue->setName("ind.end"); 2431 break; 2432 } 2433 case LoopVectorizationLegality::IK_PtrInduction: { 2434 EndValue = II.transform(BypassBuilder, CountRoundDown); 2435 EndValue->setName("ptr.ind.end"); 2436 break; 2437 } 2438 }// end of case 2439 2440 // The new PHI merges the original incoming value, in case of a bypass, 2441 // or the value at the end of the vectorized loop. 2442 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2443 if (OrigPhi == OldInduction) 2444 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2445 else 2446 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2447 } 2448 ResumeVal->addIncoming(EndValue, VecBody); 2449 2450 // Fix the scalar body counter (PHI node). 2451 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2452 2453 // The old induction's phi node in the scalar body needs the truncated 2454 // value. 2455 if (OrigPhi == OldInduction) { 2456 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2457 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2458 } else { 2459 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2460 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2461 } 2462 } 2463 2464 // If we are generating a new induction variable then we also need to 2465 // generate the code that calculates the exit value. This value is not 2466 // simply the end of the counter because we may skip the vectorized body 2467 // in case of a runtime check. 2468 if (!OldInduction){ 2469 assert(!ResumeIndex && "Unexpected resume value found"); 2470 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2471 MiddleBlock->getTerminator()); 2472 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2473 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2474 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2475 } 2476 2477 // Make sure that we found the index where scalar loop needs to continue. 2478 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2479 "Invalid resume Index"); 2480 2481 // Add a check in the middle block to see if we have completed 2482 // all of the iterations in the first vector loop. 2483 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2484 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2485 ResumeIndex, "cmp.n", 2486 MiddleBlock->getTerminator()); 2487 2488 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2489 // Remove the old terminator. 2490 MiddleBlock->getTerminator()->eraseFromParent(); 2491 2492 // Create i+1 and fill the PHINode. 2493 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2494 Induction->addIncoming(StartIdx, VectorPH); 2495 Induction->addIncoming(NextIdx, VecBody); 2496 // Create the compare. 2497 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2498 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2499 2500 // Now we have two terminators. Remove the old one from the block. 2501 VecBody->getTerminator()->eraseFromParent(); 2502 2503 // Get ready to start creating new instructions into the vectorized body. 2504 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2505 2506 // Save the state. 2507 LoopVectorPreHeader = VectorPH; 2508 LoopScalarPreHeader = ScalarPH; 2509 LoopMiddleBlock = MiddleBlock; 2510 LoopExitBlock = ExitBlock; 2511 LoopVectorBody.push_back(VecBody); 2512 LoopScalarBody = OldBasicBlock; 2513 2514 LoopVectorizeHints Hints(Lp, true); 2515 Hints.setAlreadyVectorized(); 2516 } 2517 2518 /// This function returns the identity element (or neutral element) for 2519 /// the operation K. 2520 Constant* 2521 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2522 switch (K) { 2523 case RK_IntegerXor: 2524 case RK_IntegerAdd: 2525 case RK_IntegerOr: 2526 // Adding, Xoring, Oring zero to a number does not change it. 2527 return ConstantInt::get(Tp, 0); 2528 case RK_IntegerMult: 2529 // Multiplying a number by 1 does not change it. 2530 return ConstantInt::get(Tp, 1); 2531 case RK_IntegerAnd: 2532 // AND-ing a number with an all-1 value does not change it. 2533 return ConstantInt::get(Tp, -1, true); 2534 case RK_FloatMult: 2535 // Multiplying a number by 1 does not change it. 2536 return ConstantFP::get(Tp, 1.0L); 2537 case RK_FloatAdd: 2538 // Adding zero to a number does not change it. 2539 return ConstantFP::get(Tp, 0.0L); 2540 default: 2541 llvm_unreachable("Unknown reduction kind"); 2542 } 2543 } 2544 2545 /// This function translates the reduction kind to an LLVM binary operator. 2546 static unsigned 2547 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2548 switch (Kind) { 2549 case LoopVectorizationLegality::RK_IntegerAdd: 2550 return Instruction::Add; 2551 case LoopVectorizationLegality::RK_IntegerMult: 2552 return Instruction::Mul; 2553 case LoopVectorizationLegality::RK_IntegerOr: 2554 return Instruction::Or; 2555 case LoopVectorizationLegality::RK_IntegerAnd: 2556 return Instruction::And; 2557 case LoopVectorizationLegality::RK_IntegerXor: 2558 return Instruction::Xor; 2559 case LoopVectorizationLegality::RK_FloatMult: 2560 return Instruction::FMul; 2561 case LoopVectorizationLegality::RK_FloatAdd: 2562 return Instruction::FAdd; 2563 case LoopVectorizationLegality::RK_IntegerMinMax: 2564 return Instruction::ICmp; 2565 case LoopVectorizationLegality::RK_FloatMinMax: 2566 return Instruction::FCmp; 2567 default: 2568 llvm_unreachable("Unknown reduction operation"); 2569 } 2570 } 2571 2572 Value *createMinMaxOp(IRBuilder<> &Builder, 2573 LoopVectorizationLegality::MinMaxReductionKind RK, 2574 Value *Left, 2575 Value *Right) { 2576 CmpInst::Predicate P = CmpInst::ICMP_NE; 2577 switch (RK) { 2578 default: 2579 llvm_unreachable("Unknown min/max reduction kind"); 2580 case LoopVectorizationLegality::MRK_UIntMin: 2581 P = CmpInst::ICMP_ULT; 2582 break; 2583 case LoopVectorizationLegality::MRK_UIntMax: 2584 P = CmpInst::ICMP_UGT; 2585 break; 2586 case LoopVectorizationLegality::MRK_SIntMin: 2587 P = CmpInst::ICMP_SLT; 2588 break; 2589 case LoopVectorizationLegality::MRK_SIntMax: 2590 P = CmpInst::ICMP_SGT; 2591 break; 2592 case LoopVectorizationLegality::MRK_FloatMin: 2593 P = CmpInst::FCMP_OLT; 2594 break; 2595 case LoopVectorizationLegality::MRK_FloatMax: 2596 P = CmpInst::FCMP_OGT; 2597 break; 2598 } 2599 2600 Value *Cmp; 2601 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2602 RK == LoopVectorizationLegality::MRK_FloatMax) 2603 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2604 else 2605 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2606 2607 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2608 return Select; 2609 } 2610 2611 namespace { 2612 struct CSEDenseMapInfo { 2613 static bool canHandle(Instruction *I) { 2614 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2615 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2616 } 2617 static inline Instruction *getEmptyKey() { 2618 return DenseMapInfo<Instruction *>::getEmptyKey(); 2619 } 2620 static inline Instruction *getTombstoneKey() { 2621 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2622 } 2623 static unsigned getHashValue(Instruction *I) { 2624 assert(canHandle(I) && "Unknown instruction!"); 2625 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2626 I->value_op_end())); 2627 } 2628 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2629 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2630 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2631 return LHS == RHS; 2632 return LHS->isIdenticalTo(RHS); 2633 } 2634 }; 2635 } 2636 2637 /// \brief Check whether this block is a predicated block. 2638 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2639 /// = ...; " blocks. We start with one vectorized basic block. For every 2640 /// conditional block we split this vectorized block. Therefore, every second 2641 /// block will be a predicated one. 2642 static bool isPredicatedBlock(unsigned BlockNum) { 2643 return BlockNum % 2; 2644 } 2645 2646 ///\brief Perform cse of induction variable instructions. 2647 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2648 // Perform simple cse. 2649 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2650 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2651 BasicBlock *BB = BBs[i]; 2652 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2653 Instruction *In = I++; 2654 2655 if (!CSEDenseMapInfo::canHandle(In)) 2656 continue; 2657 2658 // Check if we can replace this instruction with any of the 2659 // visited instructions. 2660 if (Instruction *V = CSEMap.lookup(In)) { 2661 In->replaceAllUsesWith(V); 2662 In->eraseFromParent(); 2663 continue; 2664 } 2665 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2666 // ...;" blocks for predicated stores. Every second block is a predicated 2667 // block. 2668 if (isPredicatedBlock(i)) 2669 continue; 2670 2671 CSEMap[In] = In; 2672 } 2673 } 2674 } 2675 2676 /// \brief Adds a 'fast' flag to floating point operations. 2677 static Value *addFastMathFlag(Value *V) { 2678 if (isa<FPMathOperator>(V)){ 2679 FastMathFlags Flags; 2680 Flags.setUnsafeAlgebra(); 2681 cast<Instruction>(V)->setFastMathFlags(Flags); 2682 } 2683 return V; 2684 } 2685 2686 void InnerLoopVectorizer::vectorizeLoop() { 2687 //===------------------------------------------------===// 2688 // 2689 // Notice: any optimization or new instruction that go 2690 // into the code below should be also be implemented in 2691 // the cost-model. 2692 // 2693 //===------------------------------------------------===// 2694 Constant *Zero = Builder.getInt32(0); 2695 2696 // In order to support reduction variables we need to be able to vectorize 2697 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2698 // stages. First, we create a new vector PHI node with no incoming edges. 2699 // We use this value when we vectorize all of the instructions that use the 2700 // PHI. Next, after all of the instructions in the block are complete we 2701 // add the new incoming edges to the PHI. At this point all of the 2702 // instructions in the basic block are vectorized, so we can use them to 2703 // construct the PHI. 2704 PhiVector RdxPHIsToFix; 2705 2706 // Scan the loop in a topological order to ensure that defs are vectorized 2707 // before users. 2708 LoopBlocksDFS DFS(OrigLoop); 2709 DFS.perform(LI); 2710 2711 // Vectorize all of the blocks in the original loop. 2712 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2713 be = DFS.endRPO(); bb != be; ++bb) 2714 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2715 2716 // At this point every instruction in the original loop is widened to 2717 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2718 // that we vectorized. The PHI nodes are currently empty because we did 2719 // not want to introduce cycles. Notice that the remaining PHI nodes 2720 // that we need to fix are reduction variables. 2721 2722 // Create the 'reduced' values for each of the induction vars. 2723 // The reduced values are the vector values that we scalarize and combine 2724 // after the loop is finished. 2725 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2726 it != e; ++it) { 2727 PHINode *RdxPhi = *it; 2728 assert(RdxPhi && "Unable to recover vectorized PHI"); 2729 2730 // Find the reduction variable descriptor. 2731 assert(Legal->getReductionVars()->count(RdxPhi) && 2732 "Unable to find the reduction variable"); 2733 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2734 (*Legal->getReductionVars())[RdxPhi]; 2735 2736 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2737 2738 // We need to generate a reduction vector from the incoming scalar. 2739 // To do so, we need to generate the 'identity' vector and override 2740 // one of the elements with the incoming scalar reduction. We need 2741 // to do it in the vector-loop preheader. 2742 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2743 2744 // This is the vector-clone of the value that leaves the loop. 2745 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2746 Type *VecTy = VectorExit[0]->getType(); 2747 2748 // Find the reduction identity variable. Zero for addition, or, xor, 2749 // one for multiplication, -1 for And. 2750 Value *Identity; 2751 Value *VectorStart; 2752 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2753 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2754 // MinMax reduction have the start value as their identify. 2755 if (VF == 1) { 2756 VectorStart = Identity = RdxDesc.StartValue; 2757 } else { 2758 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2759 RdxDesc.StartValue, 2760 "minmax.ident"); 2761 } 2762 } else { 2763 // Handle other reduction kinds: 2764 Constant *Iden = 2765 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2766 VecTy->getScalarType()); 2767 if (VF == 1) { 2768 Identity = Iden; 2769 // This vector is the Identity vector where the first element is the 2770 // incoming scalar reduction. 2771 VectorStart = RdxDesc.StartValue; 2772 } else { 2773 Identity = ConstantVector::getSplat(VF, Iden); 2774 2775 // This vector is the Identity vector where the first element is the 2776 // incoming scalar reduction. 2777 VectorStart = Builder.CreateInsertElement(Identity, 2778 RdxDesc.StartValue, Zero); 2779 } 2780 } 2781 2782 // Fix the vector-loop phi. 2783 2784 // Reductions do not have to start at zero. They can start with 2785 // any loop invariant values. 2786 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2787 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2788 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2789 VectorParts &Val = getVectorValue(LoopVal); 2790 for (unsigned part = 0; part < UF; ++part) { 2791 // Make sure to add the reduction stat value only to the 2792 // first unroll part. 2793 Value *StartVal = (part == 0) ? VectorStart : Identity; 2794 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 2795 LoopVectorPreHeader); 2796 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2797 LoopVectorBody.back()); 2798 } 2799 2800 // Before each round, move the insertion point right between 2801 // the PHIs and the values we are going to write. 2802 // This allows us to write both PHINodes and the extractelement 2803 // instructions. 2804 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2805 2806 VectorParts RdxParts; 2807 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2808 for (unsigned part = 0; part < UF; ++part) { 2809 // This PHINode contains the vectorized reduction variable, or 2810 // the initial value vector, if we bypass the vector loop. 2811 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2812 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2813 Value *StartVal = (part == 0) ? VectorStart : Identity; 2814 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2815 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2816 NewPhi->addIncoming(RdxExitVal[part], 2817 LoopVectorBody.back()); 2818 RdxParts.push_back(NewPhi); 2819 } 2820 2821 // Reduce all of the unrolled parts into a single vector. 2822 Value *ReducedPartRdx = RdxParts[0]; 2823 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2824 setDebugLocFromInst(Builder, ReducedPartRdx); 2825 for (unsigned part = 1; part < UF; ++part) { 2826 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2827 // Floating point operations had to be 'fast' to enable the reduction. 2828 ReducedPartRdx = addFastMathFlag( 2829 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2830 ReducedPartRdx, "bin.rdx")); 2831 else 2832 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2833 ReducedPartRdx, RdxParts[part]); 2834 } 2835 2836 if (VF > 1) { 2837 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2838 // and vector ops, reducing the set of values being computed by half each 2839 // round. 2840 assert(isPowerOf2_32(VF) && 2841 "Reduction emission only supported for pow2 vectors!"); 2842 Value *TmpVec = ReducedPartRdx; 2843 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2844 for (unsigned i = VF; i != 1; i >>= 1) { 2845 // Move the upper half of the vector to the lower half. 2846 for (unsigned j = 0; j != i/2; ++j) 2847 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2848 2849 // Fill the rest of the mask with undef. 2850 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2851 UndefValue::get(Builder.getInt32Ty())); 2852 2853 Value *Shuf = 2854 Builder.CreateShuffleVector(TmpVec, 2855 UndefValue::get(TmpVec->getType()), 2856 ConstantVector::get(ShuffleMask), 2857 "rdx.shuf"); 2858 2859 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2860 // Floating point operations had to be 'fast' to enable the reduction. 2861 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2862 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2863 else 2864 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2865 } 2866 2867 // The result is in the first element of the vector. 2868 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2869 Builder.getInt32(0)); 2870 } 2871 2872 // Create a phi node that merges control-flow from the backedge-taken check 2873 // block and the middle block. 2874 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2875 LoopScalarPreHeader->getTerminator()); 2876 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2877 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2878 2879 // Now, we need to fix the users of the reduction variable 2880 // inside and outside of the scalar remainder loop. 2881 // We know that the loop is in LCSSA form. We need to update the 2882 // PHI nodes in the exit blocks. 2883 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2884 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2885 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2886 if (!LCSSAPhi) break; 2887 2888 // All PHINodes need to have a single entry edge, or two if 2889 // we already fixed them. 2890 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2891 2892 // We found our reduction value exit-PHI. Update it with the 2893 // incoming bypass edge. 2894 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2895 // Add an edge coming from the bypass. 2896 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2897 break; 2898 } 2899 }// end of the LCSSA phi scan. 2900 2901 // Fix the scalar loop reduction variable with the incoming reduction sum 2902 // from the vector body and from the backedge value. 2903 int IncomingEdgeBlockIdx = 2904 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2905 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2906 // Pick the other block. 2907 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2908 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2909 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2910 }// end of for each redux variable. 2911 2912 fixLCSSAPHIs(); 2913 2914 // Remove redundant induction instructions. 2915 cse(LoopVectorBody); 2916 } 2917 2918 void InnerLoopVectorizer::fixLCSSAPHIs() { 2919 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2920 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2921 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2922 if (!LCSSAPhi) break; 2923 if (LCSSAPhi->getNumIncomingValues() == 1) 2924 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2925 LoopMiddleBlock); 2926 } 2927 } 2928 2929 InnerLoopVectorizer::VectorParts 2930 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2931 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2932 "Invalid edge"); 2933 2934 // Look for cached value. 2935 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2936 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2937 if (ECEntryIt != MaskCache.end()) 2938 return ECEntryIt->second; 2939 2940 VectorParts SrcMask = createBlockInMask(Src); 2941 2942 // The terminator has to be a branch inst! 2943 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2944 assert(BI && "Unexpected terminator found"); 2945 2946 if (BI->isConditional()) { 2947 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2948 2949 if (BI->getSuccessor(0) != Dst) 2950 for (unsigned part = 0; part < UF; ++part) 2951 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2952 2953 for (unsigned part = 0; part < UF; ++part) 2954 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2955 2956 MaskCache[Edge] = EdgeMask; 2957 return EdgeMask; 2958 } 2959 2960 MaskCache[Edge] = SrcMask; 2961 return SrcMask; 2962 } 2963 2964 InnerLoopVectorizer::VectorParts 2965 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2966 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2967 2968 // Loop incoming mask is all-one. 2969 if (OrigLoop->getHeader() == BB) { 2970 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2971 return getVectorValue(C); 2972 } 2973 2974 // This is the block mask. We OR all incoming edges, and with zero. 2975 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2976 VectorParts BlockMask = getVectorValue(Zero); 2977 2978 // For each pred: 2979 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2980 VectorParts EM = createEdgeMask(*it, BB); 2981 for (unsigned part = 0; part < UF; ++part) 2982 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2983 } 2984 2985 return BlockMask; 2986 } 2987 2988 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2989 InnerLoopVectorizer::VectorParts &Entry, 2990 unsigned UF, unsigned VF, PhiVector *PV) { 2991 PHINode* P = cast<PHINode>(PN); 2992 // Handle reduction variables: 2993 if (Legal->getReductionVars()->count(P)) { 2994 for (unsigned part = 0; part < UF; ++part) { 2995 // This is phase one of vectorizing PHIs. 2996 Type *VecTy = (VF == 1) ? PN->getType() : 2997 VectorType::get(PN->getType(), VF); 2998 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2999 LoopVectorBody.back()-> getFirstInsertionPt()); 3000 } 3001 PV->push_back(P); 3002 return; 3003 } 3004 3005 setDebugLocFromInst(Builder, P); 3006 // Check for PHI nodes that are lowered to vector selects. 3007 if (P->getParent() != OrigLoop->getHeader()) { 3008 // We know that all PHIs in non-header blocks are converted into 3009 // selects, so we don't have to worry about the insertion order and we 3010 // can just use the builder. 3011 // At this point we generate the predication tree. There may be 3012 // duplications since this is a simple recursive scan, but future 3013 // optimizations will clean it up. 3014 3015 unsigned NumIncoming = P->getNumIncomingValues(); 3016 3017 // Generate a sequence of selects of the form: 3018 // SELECT(Mask3, In3, 3019 // SELECT(Mask2, In2, 3020 // ( ...))) 3021 for (unsigned In = 0; In < NumIncoming; In++) { 3022 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3023 P->getParent()); 3024 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3025 3026 for (unsigned part = 0; part < UF; ++part) { 3027 // We might have single edge PHIs (blocks) - use an identity 3028 // 'select' for the first PHI operand. 3029 if (In == 0) 3030 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3031 In0[part]); 3032 else 3033 // Select between the current value and the previous incoming edge 3034 // based on the incoming mask. 3035 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3036 Entry[part], "predphi"); 3037 } 3038 } 3039 return; 3040 } 3041 3042 // This PHINode must be an induction variable. 3043 // Make sure that we know about it. 3044 assert(Legal->getInductionVars()->count(P) && 3045 "Not an induction variable"); 3046 3047 LoopVectorizationLegality::InductionInfo II = 3048 Legal->getInductionVars()->lookup(P); 3049 3050 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3051 // which can be found from the original scalar operations. 3052 switch (II.IK) { 3053 case LoopVectorizationLegality::IK_NoInduction: 3054 llvm_unreachable("Unknown induction"); 3055 case LoopVectorizationLegality::IK_IntInduction: { 3056 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3057 Type *PhiTy = P->getType(); 3058 Value *Broadcasted; 3059 if (P == OldInduction) { 3060 // Handle the canonical induction variable. We might have had to 3061 // extend the type. 3062 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3063 } else { 3064 // Handle other induction variables that are now based on the 3065 // canonical one. 3066 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3067 "normalized.idx"); 3068 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3069 Broadcasted = II.transform(Builder, NormalizedIdx); 3070 Broadcasted->setName("offset.idx"); 3071 } 3072 Broadcasted = getBroadcastInstrs(Broadcasted); 3073 // After broadcasting the induction variable we need to make the vector 3074 // consecutive by adding 0, 1, 2, etc. 3075 for (unsigned part = 0; part < UF; ++part) 3076 Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue); 3077 return; 3078 } 3079 case LoopVectorizationLegality::IK_PtrInduction: 3080 // Handle the pointer induction variable case. 3081 assert(P->getType()->isPointerTy() && "Unexpected type."); 3082 // This is the normalized GEP that starts counting at zero. 3083 Value *NormalizedIdx = 3084 Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx"); 3085 // This is the vector of results. Notice that we don't generate 3086 // vector geps because scalar geps result in better code. 3087 for (unsigned part = 0; part < UF; ++part) { 3088 if (VF == 1) { 3089 int EltIndex = part; 3090 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3091 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3092 Value *SclrGep = II.transform(Builder, GlobalIdx); 3093 SclrGep->setName("next.gep"); 3094 Entry[part] = SclrGep; 3095 continue; 3096 } 3097 3098 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3099 for (unsigned int i = 0; i < VF; ++i) { 3100 int EltIndex = i + part * VF; 3101 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3102 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3103 Value *SclrGep = II.transform(Builder, GlobalIdx); 3104 SclrGep->setName("next.gep"); 3105 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3106 Builder.getInt32(i), 3107 "insert.gep"); 3108 } 3109 Entry[part] = VecVal; 3110 } 3111 return; 3112 } 3113 } 3114 3115 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3116 // For each instruction in the old loop. 3117 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3118 VectorParts &Entry = WidenMap.get(it); 3119 switch (it->getOpcode()) { 3120 case Instruction::Br: 3121 // Nothing to do for PHIs and BR, since we already took care of the 3122 // loop control flow instructions. 3123 continue; 3124 case Instruction::PHI: { 3125 // Vectorize PHINodes. 3126 widenPHIInstruction(it, Entry, UF, VF, PV); 3127 continue; 3128 }// End of PHI. 3129 3130 case Instruction::Add: 3131 case Instruction::FAdd: 3132 case Instruction::Sub: 3133 case Instruction::FSub: 3134 case Instruction::Mul: 3135 case Instruction::FMul: 3136 case Instruction::UDiv: 3137 case Instruction::SDiv: 3138 case Instruction::FDiv: 3139 case Instruction::URem: 3140 case Instruction::SRem: 3141 case Instruction::FRem: 3142 case Instruction::Shl: 3143 case Instruction::LShr: 3144 case Instruction::AShr: 3145 case Instruction::And: 3146 case Instruction::Or: 3147 case Instruction::Xor: { 3148 // Just widen binops. 3149 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3150 setDebugLocFromInst(Builder, BinOp); 3151 VectorParts &A = getVectorValue(it->getOperand(0)); 3152 VectorParts &B = getVectorValue(it->getOperand(1)); 3153 3154 // Use this vector value for all users of the original instruction. 3155 for (unsigned Part = 0; Part < UF; ++Part) { 3156 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3157 3158 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3159 VecOp->copyIRFlags(BinOp); 3160 3161 Entry[Part] = V; 3162 } 3163 3164 propagateMetadata(Entry, it); 3165 break; 3166 } 3167 case Instruction::Select: { 3168 // Widen selects. 3169 // If the selector is loop invariant we can create a select 3170 // instruction with a scalar condition. Otherwise, use vector-select. 3171 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3172 OrigLoop); 3173 setDebugLocFromInst(Builder, it); 3174 3175 // The condition can be loop invariant but still defined inside the 3176 // loop. This means that we can't just use the original 'cond' value. 3177 // We have to take the 'vectorized' value and pick the first lane. 3178 // Instcombine will make this a no-op. 3179 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3180 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3181 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3182 3183 Value *ScalarCond = (VF == 1) ? Cond[0] : 3184 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3185 3186 for (unsigned Part = 0; Part < UF; ++Part) { 3187 Entry[Part] = Builder.CreateSelect( 3188 InvariantCond ? ScalarCond : Cond[Part], 3189 Op0[Part], 3190 Op1[Part]); 3191 } 3192 3193 propagateMetadata(Entry, it); 3194 break; 3195 } 3196 3197 case Instruction::ICmp: 3198 case Instruction::FCmp: { 3199 // Widen compares. Generate vector compares. 3200 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3201 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3202 setDebugLocFromInst(Builder, it); 3203 VectorParts &A = getVectorValue(it->getOperand(0)); 3204 VectorParts &B = getVectorValue(it->getOperand(1)); 3205 for (unsigned Part = 0; Part < UF; ++Part) { 3206 Value *C = nullptr; 3207 if (FCmp) 3208 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3209 else 3210 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3211 Entry[Part] = C; 3212 } 3213 3214 propagateMetadata(Entry, it); 3215 break; 3216 } 3217 3218 case Instruction::Store: 3219 case Instruction::Load: 3220 vectorizeMemoryInstruction(it); 3221 break; 3222 case Instruction::ZExt: 3223 case Instruction::SExt: 3224 case Instruction::FPToUI: 3225 case Instruction::FPToSI: 3226 case Instruction::FPExt: 3227 case Instruction::PtrToInt: 3228 case Instruction::IntToPtr: 3229 case Instruction::SIToFP: 3230 case Instruction::UIToFP: 3231 case Instruction::Trunc: 3232 case Instruction::FPTrunc: 3233 case Instruction::BitCast: { 3234 CastInst *CI = dyn_cast<CastInst>(it); 3235 setDebugLocFromInst(Builder, it); 3236 /// Optimize the special case where the source is the induction 3237 /// variable. Notice that we can only optimize the 'trunc' case 3238 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3239 /// c. other casts depend on pointer size. 3240 if (CI->getOperand(0) == OldInduction && 3241 it->getOpcode() == Instruction::Trunc) { 3242 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3243 CI->getType()); 3244 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3245 LoopVectorizationLegality::InductionInfo II = 3246 Legal->getInductionVars()->lookup(OldInduction); 3247 Constant *Step = 3248 ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue()); 3249 for (unsigned Part = 0; Part < UF; ++Part) 3250 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3251 propagateMetadata(Entry, it); 3252 break; 3253 } 3254 /// Vectorize casts. 3255 Type *DestTy = (VF == 1) ? CI->getType() : 3256 VectorType::get(CI->getType(), VF); 3257 3258 VectorParts &A = getVectorValue(it->getOperand(0)); 3259 for (unsigned Part = 0; Part < UF; ++Part) 3260 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3261 propagateMetadata(Entry, it); 3262 break; 3263 } 3264 3265 case Instruction::Call: { 3266 // Ignore dbg intrinsics. 3267 if (isa<DbgInfoIntrinsic>(it)) 3268 break; 3269 setDebugLocFromInst(Builder, it); 3270 3271 Module *M = BB->getParent()->getParent(); 3272 CallInst *CI = cast<CallInst>(it); 3273 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3274 assert(ID && "Not an intrinsic call!"); 3275 switch (ID) { 3276 case Intrinsic::assume: 3277 case Intrinsic::lifetime_end: 3278 case Intrinsic::lifetime_start: 3279 scalarizeInstruction(it); 3280 break; 3281 default: 3282 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3283 for (unsigned Part = 0; Part < UF; ++Part) { 3284 SmallVector<Value *, 4> Args; 3285 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3286 if (HasScalarOpd && i == 1) { 3287 Args.push_back(CI->getArgOperand(i)); 3288 continue; 3289 } 3290 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3291 Args.push_back(Arg[Part]); 3292 } 3293 Type *Tys[] = {CI->getType()}; 3294 if (VF > 1) 3295 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3296 3297 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3298 Entry[Part] = Builder.CreateCall(F, Args); 3299 } 3300 3301 propagateMetadata(Entry, it); 3302 break; 3303 } 3304 break; 3305 } 3306 3307 default: 3308 // All other instructions are unsupported. Scalarize them. 3309 scalarizeInstruction(it); 3310 break; 3311 }// end of switch. 3312 }// end of for_each instr. 3313 } 3314 3315 void InnerLoopVectorizer::updateAnalysis() { 3316 // Forget the original basic block. 3317 SE->forgetLoop(OrigLoop); 3318 3319 // Update the dominator tree information. 3320 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3321 "Entry does not dominate exit."); 3322 3323 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3324 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3325 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3326 3327 // Due to if predication of stores we might create a sequence of "if(pred) 3328 // a[i] = ...; " blocks. 3329 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3330 if (i == 0) 3331 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3332 else if (isPredicatedBlock(i)) { 3333 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3334 } else { 3335 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3336 } 3337 } 3338 3339 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3340 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3341 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3342 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3343 3344 DEBUG(DT->verifyDomTree()); 3345 } 3346 3347 /// \brief Check whether it is safe to if-convert this phi node. 3348 /// 3349 /// Phi nodes with constant expressions that can trap are not safe to if 3350 /// convert. 3351 static bool canIfConvertPHINodes(BasicBlock *BB) { 3352 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3353 PHINode *Phi = dyn_cast<PHINode>(I); 3354 if (!Phi) 3355 return true; 3356 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3357 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3358 if (C->canTrap()) 3359 return false; 3360 } 3361 return true; 3362 } 3363 3364 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3365 if (!EnableIfConversion) { 3366 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 3367 return false; 3368 } 3369 3370 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3371 3372 // A list of pointers that we can safely read and write to. 3373 SmallPtrSet<Value *, 8> SafePointes; 3374 3375 // Collect safe addresses. 3376 for (Loop::block_iterator BI = TheLoop->block_begin(), 3377 BE = TheLoop->block_end(); BI != BE; ++BI) { 3378 BasicBlock *BB = *BI; 3379 3380 if (blockNeedsPredication(BB)) 3381 continue; 3382 3383 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3384 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3385 SafePointes.insert(LI->getPointerOperand()); 3386 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3387 SafePointes.insert(SI->getPointerOperand()); 3388 } 3389 } 3390 3391 // Collect the blocks that need predication. 3392 BasicBlock *Header = TheLoop->getHeader(); 3393 for (Loop::block_iterator BI = TheLoop->block_begin(), 3394 BE = TheLoop->block_end(); BI != BE; ++BI) { 3395 BasicBlock *BB = *BI; 3396 3397 // We don't support switch statements inside loops. 3398 if (!isa<BranchInst>(BB->getTerminator())) { 3399 emitAnalysis(VectorizationReport(BB->getTerminator()) 3400 << "loop contains a switch statement"); 3401 return false; 3402 } 3403 3404 // We must be able to predicate all blocks that need to be predicated. 3405 if (blockNeedsPredication(BB)) { 3406 if (!blockCanBePredicated(BB, SafePointes)) { 3407 emitAnalysis(VectorizationReport(BB->getTerminator()) 3408 << "control flow cannot be substituted for a select"); 3409 return false; 3410 } 3411 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3412 emitAnalysis(VectorizationReport(BB->getTerminator()) 3413 << "control flow cannot be substituted for a select"); 3414 return false; 3415 } 3416 } 3417 3418 // We can if-convert this loop. 3419 return true; 3420 } 3421 3422 bool LoopVectorizationLegality::canVectorize() { 3423 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3424 // be canonicalized. 3425 if (!TheLoop->getLoopPreheader()) { 3426 emitAnalysis( 3427 VectorizationReport() << 3428 "loop control flow is not understood by vectorizer"); 3429 return false; 3430 } 3431 3432 // We can only vectorize innermost loops. 3433 if (!TheLoop->getSubLoopsVector().empty()) { 3434 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 3435 return false; 3436 } 3437 3438 // We must have a single backedge. 3439 if (TheLoop->getNumBackEdges() != 1) { 3440 emitAnalysis( 3441 VectorizationReport() << 3442 "loop control flow is not understood by vectorizer"); 3443 return false; 3444 } 3445 3446 // We must have a single exiting block. 3447 if (!TheLoop->getExitingBlock()) { 3448 emitAnalysis( 3449 VectorizationReport() << 3450 "loop control flow is not understood by vectorizer"); 3451 return false; 3452 } 3453 3454 // We only handle bottom-tested loops, i.e. loop in which the condition is 3455 // checked at the end of each iteration. With that we can assume that all 3456 // instructions in the loop are executed the same number of times. 3457 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3458 emitAnalysis( 3459 VectorizationReport() << 3460 "loop control flow is not understood by vectorizer"); 3461 return false; 3462 } 3463 3464 // We need to have a loop header. 3465 DEBUG(dbgs() << "LV: Found a loop: " << 3466 TheLoop->getHeader()->getName() << '\n'); 3467 3468 // Check if we can if-convert non-single-bb loops. 3469 unsigned NumBlocks = TheLoop->getNumBlocks(); 3470 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3471 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3472 return false; 3473 } 3474 3475 // ScalarEvolution needs to be able to find the exit count. 3476 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3477 if (ExitCount == SE->getCouldNotCompute()) { 3478 emitAnalysis(VectorizationReport() << 3479 "could not determine number of loop iterations"); 3480 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3481 return false; 3482 } 3483 3484 // Check if we can vectorize the instructions and CFG in this loop. 3485 if (!canVectorizeInstrs()) { 3486 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3487 return false; 3488 } 3489 3490 // Go over each instruction and look at memory deps. 3491 if (!canVectorizeMemory()) { 3492 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3493 return false; 3494 } 3495 3496 // Collect all of the variables that remain uniform after vectorization. 3497 collectLoopUniforms(); 3498 3499 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3500 (LAA.getRuntimePointerCheck()->Need ? " (with a runtime bound check)" : 3501 "") 3502 <<"!\n"); 3503 3504 // Okay! We can vectorize. At this point we don't have any other mem analysis 3505 // which may limit our maximum vectorization factor, so just return true with 3506 // no restrictions. 3507 return true; 3508 } 3509 3510 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3511 if (Ty->isPointerTy()) 3512 return DL.getIntPtrType(Ty); 3513 3514 // It is possible that char's or short's overflow when we ask for the loop's 3515 // trip count, work around this by changing the type size. 3516 if (Ty->getScalarSizeInBits() < 32) 3517 return Type::getInt32Ty(Ty->getContext()); 3518 3519 return Ty; 3520 } 3521 3522 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3523 Ty0 = convertPointerToIntegerType(DL, Ty0); 3524 Ty1 = convertPointerToIntegerType(DL, Ty1); 3525 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3526 return Ty0; 3527 return Ty1; 3528 } 3529 3530 /// \brief Check that the instruction has outside loop users and is not an 3531 /// identified reduction variable. 3532 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3533 SmallPtrSetImpl<Value *> &Reductions) { 3534 // Reduction instructions are allowed to have exit users. All other 3535 // instructions must not have external users. 3536 if (!Reductions.count(Inst)) 3537 //Check that all of the users of the loop are inside the BB. 3538 for (User *U : Inst->users()) { 3539 Instruction *UI = cast<Instruction>(U); 3540 // This user may be a reduction exit value. 3541 if (!TheLoop->contains(UI)) { 3542 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3543 return true; 3544 } 3545 } 3546 return false; 3547 } 3548 3549 bool LoopVectorizationLegality::canVectorizeInstrs() { 3550 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3551 BasicBlock *Header = TheLoop->getHeader(); 3552 3553 // Look for the attribute signaling the absence of NaNs. 3554 Function &F = *Header->getParent(); 3555 if (F.hasFnAttribute("no-nans-fp-math")) 3556 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3557 AttributeSet::FunctionIndex, 3558 "no-nans-fp-math").getValueAsString() == "true"; 3559 3560 // For each block in the loop. 3561 for (Loop::block_iterator bb = TheLoop->block_begin(), 3562 be = TheLoop->block_end(); bb != be; ++bb) { 3563 3564 // Scan the instructions in the block and look for hazards. 3565 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3566 ++it) { 3567 3568 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3569 Type *PhiTy = Phi->getType(); 3570 // Check that this PHI type is allowed. 3571 if (!PhiTy->isIntegerTy() && 3572 !PhiTy->isFloatingPointTy() && 3573 !PhiTy->isPointerTy()) { 3574 emitAnalysis(VectorizationReport(it) 3575 << "loop control flow is not understood by vectorizer"); 3576 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3577 return false; 3578 } 3579 3580 // If this PHINode is not in the header block, then we know that we 3581 // can convert it to select during if-conversion. No need to check if 3582 // the PHIs in this block are induction or reduction variables. 3583 if (*bb != Header) { 3584 // Check that this instruction has no outside users or is an 3585 // identified reduction value with an outside user. 3586 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3587 continue; 3588 emitAnalysis(VectorizationReport(it) << 3589 "value could not be identified as " 3590 "an induction or reduction variable"); 3591 return false; 3592 } 3593 3594 // We only allow if-converted PHIs with exactly two incoming values. 3595 if (Phi->getNumIncomingValues() != 2) { 3596 emitAnalysis(VectorizationReport(it) 3597 << "control flow not understood by vectorizer"); 3598 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3599 return false; 3600 } 3601 3602 // This is the value coming from the preheader. 3603 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3604 ConstantInt *StepValue = nullptr; 3605 // Check if this is an induction variable. 3606 InductionKind IK = isInductionVariable(Phi, StepValue); 3607 3608 if (IK_NoInduction != IK) { 3609 // Get the widest type. 3610 if (!WidestIndTy) 3611 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3612 else 3613 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3614 3615 // Int inductions are special because we only allow one IV. 3616 if (IK == IK_IntInduction && StepValue->isOne()) { 3617 // Use the phi node with the widest type as induction. Use the last 3618 // one if there are multiple (no good reason for doing this other 3619 // than it is expedient). 3620 if (!Induction || PhiTy == WidestIndTy) 3621 Induction = Phi; 3622 } 3623 3624 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3625 Inductions[Phi] = InductionInfo(StartValue, IK, StepValue); 3626 3627 // Until we explicitly handle the case of an induction variable with 3628 // an outside loop user we have to give up vectorizing this loop. 3629 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3630 emitAnalysis(VectorizationReport(it) << 3631 "use of induction value outside of the " 3632 "loop is not handled by vectorizer"); 3633 return false; 3634 } 3635 3636 continue; 3637 } 3638 3639 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3640 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3641 continue; 3642 } 3643 if (AddReductionVar(Phi, RK_IntegerMult)) { 3644 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3645 continue; 3646 } 3647 if (AddReductionVar(Phi, RK_IntegerOr)) { 3648 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3649 continue; 3650 } 3651 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3652 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3653 continue; 3654 } 3655 if (AddReductionVar(Phi, RK_IntegerXor)) { 3656 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3657 continue; 3658 } 3659 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3660 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3661 continue; 3662 } 3663 if (AddReductionVar(Phi, RK_FloatMult)) { 3664 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3665 continue; 3666 } 3667 if (AddReductionVar(Phi, RK_FloatAdd)) { 3668 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3669 continue; 3670 } 3671 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3672 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3673 "\n"); 3674 continue; 3675 } 3676 3677 emitAnalysis(VectorizationReport(it) << 3678 "value that could not be identified as " 3679 "reduction is used outside the loop"); 3680 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3681 return false; 3682 }// end of PHI handling 3683 3684 // We still don't handle functions. However, we can ignore dbg intrinsic 3685 // calls and we do handle certain intrinsic and libm functions. 3686 CallInst *CI = dyn_cast<CallInst>(it); 3687 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3688 emitAnalysis(VectorizationReport(it) << 3689 "call instruction cannot be vectorized"); 3690 DEBUG(dbgs() << "LV: Found a call site.\n"); 3691 return false; 3692 } 3693 3694 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3695 // second argument is the same (i.e. loop invariant) 3696 if (CI && 3697 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3698 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3699 emitAnalysis(VectorizationReport(it) 3700 << "intrinsic instruction cannot be vectorized"); 3701 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3702 return false; 3703 } 3704 } 3705 3706 // Check that the instruction return type is vectorizable. 3707 // Also, we can't vectorize extractelement instructions. 3708 if ((!VectorType::isValidElementType(it->getType()) && 3709 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3710 emitAnalysis(VectorizationReport(it) 3711 << "instruction return type cannot be vectorized"); 3712 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3713 return false; 3714 } 3715 3716 // Check that the stored type is vectorizable. 3717 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3718 Type *T = ST->getValueOperand()->getType(); 3719 if (!VectorType::isValidElementType(T)) { 3720 emitAnalysis(VectorizationReport(ST) << 3721 "store instruction cannot be vectorized"); 3722 return false; 3723 } 3724 if (EnableMemAccessVersioning) 3725 collectStridedAccess(ST); 3726 } 3727 3728 if (EnableMemAccessVersioning) 3729 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3730 collectStridedAccess(LI); 3731 3732 // Reduction instructions are allowed to have exit users. 3733 // All other instructions must not have external users. 3734 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3735 emitAnalysis(VectorizationReport(it) << 3736 "value cannot be used outside the loop"); 3737 return false; 3738 } 3739 3740 } // next instr. 3741 3742 } 3743 3744 if (!Induction) { 3745 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3746 if (Inductions.empty()) { 3747 emitAnalysis(VectorizationReport() 3748 << "loop induction variable could not be identified"); 3749 return false; 3750 } 3751 } 3752 3753 return true; 3754 } 3755 3756 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3757 /// return the induction operand of the gep pointer. 3758 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3759 const DataLayout *DL, Loop *Lp) { 3760 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3761 if (!GEP) 3762 return Ptr; 3763 3764 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3765 3766 // Check that all of the gep indices are uniform except for our induction 3767 // operand. 3768 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3769 if (i != InductionOperand && 3770 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3771 return Ptr; 3772 return GEP->getOperand(InductionOperand); 3773 } 3774 3775 ///\brief Look for a cast use of the passed value. 3776 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3777 Value *UniqueCast = nullptr; 3778 for (User *U : Ptr->users()) { 3779 CastInst *CI = dyn_cast<CastInst>(U); 3780 if (CI && CI->getType() == Ty) { 3781 if (!UniqueCast) 3782 UniqueCast = CI; 3783 else 3784 return nullptr; 3785 } 3786 } 3787 return UniqueCast; 3788 } 3789 3790 ///\brief Get the stride of a pointer access in a loop. 3791 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3792 /// pointer to the Value, or null otherwise. 3793 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3794 const DataLayout *DL, Loop *Lp) { 3795 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3796 if (!PtrTy || PtrTy->isAggregateType()) 3797 return nullptr; 3798 3799 // Try to remove a gep instruction to make the pointer (actually index at this 3800 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3801 // pointer, otherwise, we are analyzing the index. 3802 Value *OrigPtr = Ptr; 3803 3804 // The size of the pointer access. 3805 int64_t PtrAccessSize = 1; 3806 3807 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3808 const SCEV *V = SE->getSCEV(Ptr); 3809 3810 if (Ptr != OrigPtr) 3811 // Strip off casts. 3812 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3813 V = C->getOperand(); 3814 3815 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3816 if (!S) 3817 return nullptr; 3818 3819 V = S->getStepRecurrence(*SE); 3820 if (!V) 3821 return nullptr; 3822 3823 // Strip off the size of access multiplication if we are still analyzing the 3824 // pointer. 3825 if (OrigPtr == Ptr) { 3826 DL->getTypeAllocSize(PtrTy->getElementType()); 3827 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3828 if (M->getOperand(0)->getSCEVType() != scConstant) 3829 return nullptr; 3830 3831 const APInt &APStepVal = 3832 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3833 3834 // Huge step value - give up. 3835 if (APStepVal.getBitWidth() > 64) 3836 return nullptr; 3837 3838 int64_t StepVal = APStepVal.getSExtValue(); 3839 if (PtrAccessSize != StepVal) 3840 return nullptr; 3841 V = M->getOperand(1); 3842 } 3843 } 3844 3845 // Strip off casts. 3846 Type *StripedOffRecurrenceCast = nullptr; 3847 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3848 StripedOffRecurrenceCast = C->getType(); 3849 V = C->getOperand(); 3850 } 3851 3852 // Look for the loop invariant symbolic value. 3853 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3854 if (!U) 3855 return nullptr; 3856 3857 Value *Stride = U->getValue(); 3858 if (!Lp->isLoopInvariant(Stride)) 3859 return nullptr; 3860 3861 // If we have stripped off the recurrence cast we have to make sure that we 3862 // return the value that is used in this loop so that we can replace it later. 3863 if (StripedOffRecurrenceCast) 3864 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3865 3866 return Stride; 3867 } 3868 3869 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 3870 Value *Ptr = nullptr; 3871 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3872 Ptr = LI->getPointerOperand(); 3873 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3874 Ptr = SI->getPointerOperand(); 3875 else 3876 return; 3877 3878 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3879 if (!Stride) 3880 return; 3881 3882 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3883 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3884 Strides[Ptr] = Stride; 3885 StrideSet.insert(Stride); 3886 } 3887 3888 void LoopVectorizationLegality::collectLoopUniforms() { 3889 // We now know that the loop is vectorizable! 3890 // Collect variables that will remain uniform after vectorization. 3891 std::vector<Value*> Worklist; 3892 BasicBlock *Latch = TheLoop->getLoopLatch(); 3893 3894 // Start with the conditional branch and walk up the block. 3895 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3896 3897 // Also add all consecutive pointer values; these values will be uniform 3898 // after vectorization (and subsequent cleanup) and, until revectorization is 3899 // supported, all dependencies must also be uniform. 3900 for (Loop::block_iterator B = TheLoop->block_begin(), 3901 BE = TheLoop->block_end(); B != BE; ++B) 3902 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3903 I != IE; ++I) 3904 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3905 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3906 3907 while (!Worklist.empty()) { 3908 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3909 Worklist.pop_back(); 3910 3911 // Look at instructions inside this loop. 3912 // Stop when reaching PHI nodes. 3913 // TODO: we need to follow values all over the loop, not only in this block. 3914 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3915 continue; 3916 3917 // This is a known uniform. 3918 Uniforms.insert(I); 3919 3920 // Insert all operands. 3921 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3922 } 3923 } 3924 3925 bool LoopVectorizationLegality::canVectorizeMemory() { 3926 return LAA.canVectorizeMemory(Strides); 3927 } 3928 3929 static bool hasMultipleUsesOf(Instruction *I, 3930 SmallPtrSetImpl<Instruction *> &Insts) { 3931 unsigned NumUses = 0; 3932 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 3933 if (Insts.count(dyn_cast<Instruction>(*Use))) 3934 ++NumUses; 3935 if (NumUses > 1) 3936 return true; 3937 } 3938 3939 return false; 3940 } 3941 3942 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { 3943 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 3944 if (!Set.count(dyn_cast<Instruction>(*Use))) 3945 return false; 3946 return true; 3947 } 3948 3949 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 3950 ReductionKind Kind) { 3951 if (Phi->getNumIncomingValues() != 2) 3952 return false; 3953 3954 // Reduction variables are only found in the loop header block. 3955 if (Phi->getParent() != TheLoop->getHeader()) 3956 return false; 3957 3958 // Obtain the reduction start value from the value that comes from the loop 3959 // preheader. 3960 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 3961 3962 // ExitInstruction is the single value which is used outside the loop. 3963 // We only allow for a single reduction value to be used outside the loop. 3964 // This includes users of the reduction, variables (which form a cycle 3965 // which ends in the phi node). 3966 Instruction *ExitInstruction = nullptr; 3967 // Indicates that we found a reduction operation in our scan. 3968 bool FoundReduxOp = false; 3969 3970 // We start with the PHI node and scan for all of the users of this 3971 // instruction. All users must be instructions that can be used as reduction 3972 // variables (such as ADD). We must have a single out-of-block user. The cycle 3973 // must include the original PHI. 3974 bool FoundStartPHI = false; 3975 3976 // To recognize min/max patterns formed by a icmp select sequence, we store 3977 // the number of instruction we saw from the recognized min/max pattern, 3978 // to make sure we only see exactly the two instructions. 3979 unsigned NumCmpSelectPatternInst = 0; 3980 ReductionInstDesc ReduxDesc(false, nullptr); 3981 3982 SmallPtrSet<Instruction *, 8> VisitedInsts; 3983 SmallVector<Instruction *, 8> Worklist; 3984 Worklist.push_back(Phi); 3985 VisitedInsts.insert(Phi); 3986 3987 // A value in the reduction can be used: 3988 // - By the reduction: 3989 // - Reduction operation: 3990 // - One use of reduction value (safe). 3991 // - Multiple use of reduction value (not safe). 3992 // - PHI: 3993 // - All uses of the PHI must be the reduction (safe). 3994 // - Otherwise, not safe. 3995 // - By one instruction outside of the loop (safe). 3996 // - By further instructions outside of the loop (not safe). 3997 // - By an instruction that is not part of the reduction (not safe). 3998 // This is either: 3999 // * An instruction type other than PHI or the reduction operation. 4000 // * A PHI in the header other than the initial PHI. 4001 while (!Worklist.empty()) { 4002 Instruction *Cur = Worklist.back(); 4003 Worklist.pop_back(); 4004 4005 // No Users. 4006 // If the instruction has no users then this is a broken chain and can't be 4007 // a reduction variable. 4008 if (Cur->use_empty()) 4009 return false; 4010 4011 bool IsAPhi = isa<PHINode>(Cur); 4012 4013 // A header PHI use other than the original PHI. 4014 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 4015 return false; 4016 4017 // Reductions of instructions such as Div, and Sub is only possible if the 4018 // LHS is the reduction variable. 4019 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 4020 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 4021 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 4022 return false; 4023 4024 // Any reduction instruction must be of one of the allowed kinds. 4025 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 4026 if (!ReduxDesc.IsReduction) 4027 return false; 4028 4029 // A reduction operation must only have one use of the reduction value. 4030 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 4031 hasMultipleUsesOf(Cur, VisitedInsts)) 4032 return false; 4033 4034 // All inputs to a PHI node must be a reduction value. 4035 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 4036 return false; 4037 4038 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 4039 isa<SelectInst>(Cur))) 4040 ++NumCmpSelectPatternInst; 4041 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 4042 isa<SelectInst>(Cur))) 4043 ++NumCmpSelectPatternInst; 4044 4045 // Check whether we found a reduction operator. 4046 FoundReduxOp |= !IsAPhi; 4047 4048 // Process users of current instruction. Push non-PHI nodes after PHI nodes 4049 // onto the stack. This way we are going to have seen all inputs to PHI 4050 // nodes once we get to them. 4051 SmallVector<Instruction *, 8> NonPHIs; 4052 SmallVector<Instruction *, 8> PHIs; 4053 for (User *U : Cur->users()) { 4054 Instruction *UI = cast<Instruction>(U); 4055 4056 // Check if we found the exit user. 4057 BasicBlock *Parent = UI->getParent(); 4058 if (!TheLoop->contains(Parent)) { 4059 // Exit if you find multiple outside users or if the header phi node is 4060 // being used. In this case the user uses the value of the previous 4061 // iteration, in which case we would loose "VF-1" iterations of the 4062 // reduction operation if we vectorize. 4063 if (ExitInstruction != nullptr || Cur == Phi) 4064 return false; 4065 4066 // The instruction used by an outside user must be the last instruction 4067 // before we feed back to the reduction phi. Otherwise, we loose VF-1 4068 // operations on the value. 4069 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 4070 return false; 4071 4072 ExitInstruction = Cur; 4073 continue; 4074 } 4075 4076 // Process instructions only once (termination). Each reduction cycle 4077 // value must only be used once, except by phi nodes and min/max 4078 // reductions which are represented as a cmp followed by a select. 4079 ReductionInstDesc IgnoredVal(false, nullptr); 4080 if (VisitedInsts.insert(UI).second) { 4081 if (isa<PHINode>(UI)) 4082 PHIs.push_back(UI); 4083 else 4084 NonPHIs.push_back(UI); 4085 } else if (!isa<PHINode>(UI) && 4086 ((!isa<FCmpInst>(UI) && 4087 !isa<ICmpInst>(UI) && 4088 !isa<SelectInst>(UI)) || 4089 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 4090 return false; 4091 4092 // Remember that we completed the cycle. 4093 if (UI == Phi) 4094 FoundStartPHI = true; 4095 } 4096 Worklist.append(PHIs.begin(), PHIs.end()); 4097 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 4098 } 4099 4100 // This means we have seen one but not the other instruction of the 4101 // pattern or more than just a select and cmp. 4102 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 4103 NumCmpSelectPatternInst != 2) 4104 return false; 4105 4106 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 4107 return false; 4108 4109 // We found a reduction var if we have reached the original phi node and we 4110 // only have a single instruction with out-of-loop users. 4111 4112 // This instruction is allowed to have out-of-loop users. 4113 AllowedExit.insert(ExitInstruction); 4114 4115 // Save the description of this reduction variable. 4116 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 4117 ReduxDesc.MinMaxKind); 4118 Reductions[Phi] = RD; 4119 // We've ended the cycle. This is a reduction variable if we have an 4120 // outside user and it has a binary op. 4121 4122 return true; 4123 } 4124 4125 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 4126 /// pattern corresponding to a min(X, Y) or max(X, Y). 4127 LoopVectorizationLegality::ReductionInstDesc 4128 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 4129 ReductionInstDesc &Prev) { 4130 4131 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 4132 "Expect a select instruction"); 4133 Instruction *Cmp = nullptr; 4134 SelectInst *Select = nullptr; 4135 4136 // We must handle the select(cmp()) as a single instruction. Advance to the 4137 // select. 4138 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 4139 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 4140 return ReductionInstDesc(false, I); 4141 return ReductionInstDesc(Select, Prev.MinMaxKind); 4142 } 4143 4144 // Only handle single use cases for now. 4145 if (!(Select = dyn_cast<SelectInst>(I))) 4146 return ReductionInstDesc(false, I); 4147 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 4148 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 4149 return ReductionInstDesc(false, I); 4150 if (!Cmp->hasOneUse()) 4151 return ReductionInstDesc(false, I); 4152 4153 Value *CmpLeft; 4154 Value *CmpRight; 4155 4156 // Look for a min/max pattern. 4157 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4158 return ReductionInstDesc(Select, MRK_UIntMin); 4159 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4160 return ReductionInstDesc(Select, MRK_UIntMax); 4161 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4162 return ReductionInstDesc(Select, MRK_SIntMax); 4163 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4164 return ReductionInstDesc(Select, MRK_SIntMin); 4165 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4166 return ReductionInstDesc(Select, MRK_FloatMin); 4167 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4168 return ReductionInstDesc(Select, MRK_FloatMax); 4169 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4170 return ReductionInstDesc(Select, MRK_FloatMin); 4171 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4172 return ReductionInstDesc(Select, MRK_FloatMax); 4173 4174 return ReductionInstDesc(false, I); 4175 } 4176 4177 LoopVectorizationLegality::ReductionInstDesc 4178 LoopVectorizationLegality::isReductionInstr(Instruction *I, 4179 ReductionKind Kind, 4180 ReductionInstDesc &Prev) { 4181 bool FP = I->getType()->isFloatingPointTy(); 4182 bool FastMath = FP && I->hasUnsafeAlgebra(); 4183 switch (I->getOpcode()) { 4184 default: 4185 return ReductionInstDesc(false, I); 4186 case Instruction::PHI: 4187 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 4188 Kind != RK_FloatMinMax)) 4189 return ReductionInstDesc(false, I); 4190 return ReductionInstDesc(I, Prev.MinMaxKind); 4191 case Instruction::Sub: 4192 case Instruction::Add: 4193 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 4194 case Instruction::Mul: 4195 return ReductionInstDesc(Kind == RK_IntegerMult, I); 4196 case Instruction::And: 4197 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 4198 case Instruction::Or: 4199 return ReductionInstDesc(Kind == RK_IntegerOr, I); 4200 case Instruction::Xor: 4201 return ReductionInstDesc(Kind == RK_IntegerXor, I); 4202 case Instruction::FMul: 4203 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 4204 case Instruction::FSub: 4205 case Instruction::FAdd: 4206 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 4207 case Instruction::FCmp: 4208 case Instruction::ICmp: 4209 case Instruction::Select: 4210 if (Kind != RK_IntegerMinMax && 4211 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 4212 return ReductionInstDesc(false, I); 4213 return isMinMaxSelectCmpPattern(I, Prev); 4214 } 4215 } 4216 4217 LoopVectorizationLegality::InductionKind 4218 LoopVectorizationLegality::isInductionVariable(PHINode *Phi, 4219 ConstantInt *&StepValue) { 4220 Type *PhiTy = Phi->getType(); 4221 // We only handle integer and pointer inductions variables. 4222 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 4223 return IK_NoInduction; 4224 4225 // Check that the PHI is consecutive. 4226 const SCEV *PhiScev = SE->getSCEV(Phi); 4227 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 4228 if (!AR) { 4229 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 4230 return IK_NoInduction; 4231 } 4232 4233 const SCEV *Step = AR->getStepRecurrence(*SE); 4234 // Calculate the pointer stride and check if it is consecutive. 4235 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4236 if (!C) 4237 return IK_NoInduction; 4238 4239 ConstantInt *CV = C->getValue(); 4240 if (PhiTy->isIntegerTy()) { 4241 StepValue = CV; 4242 return IK_IntInduction; 4243 } 4244 4245 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 4246 Type *PointerElementType = PhiTy->getPointerElementType(); 4247 // The pointer stride cannot be determined if the pointer element type is not 4248 // sized. 4249 if (!PointerElementType->isSized()) 4250 return IK_NoInduction; 4251 4252 int64_t Size = static_cast<int64_t>(DL->getTypeAllocSize(PointerElementType)); 4253 int64_t CVSize = CV->getSExtValue(); 4254 if (CVSize % Size) 4255 return IK_NoInduction; 4256 StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size); 4257 return IK_PtrInduction; 4258 } 4259 4260 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4261 Value *In0 = const_cast<Value*>(V); 4262 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4263 if (!PN) 4264 return false; 4265 4266 return Inductions.count(PN); 4267 } 4268 4269 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4270 return LAA.blockNeedsPredication(BB); 4271 } 4272 4273 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4274 SmallPtrSetImpl<Value *> &SafePtrs) { 4275 4276 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4277 // Check that we don't have a constant expression that can trap as operand. 4278 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4279 OI != OE; ++OI) { 4280 if (Constant *C = dyn_cast<Constant>(*OI)) 4281 if (C->canTrap()) 4282 return false; 4283 } 4284 // We might be able to hoist the load. 4285 if (it->mayReadFromMemory()) { 4286 LoadInst *LI = dyn_cast<LoadInst>(it); 4287 if (!LI) 4288 return false; 4289 if (!SafePtrs.count(LI->getPointerOperand())) { 4290 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 4291 MaskedOp.insert(LI); 4292 continue; 4293 } 4294 return false; 4295 } 4296 } 4297 4298 // We don't predicate stores at the moment. 4299 if (it->mayWriteToMemory()) { 4300 StoreInst *SI = dyn_cast<StoreInst>(it); 4301 // We only support predication of stores in basic blocks with one 4302 // predecessor. 4303 if (!SI) 4304 return false; 4305 4306 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4307 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4308 4309 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4310 !isSinglePredecessor) { 4311 // Build a masked store if it is legal for the target, otherwise scalarize 4312 // the block. 4313 bool isLegalMaskedOp = 4314 isLegalMaskedStore(SI->getValueOperand()->getType(), 4315 SI->getPointerOperand()); 4316 if (isLegalMaskedOp) { 4317 --NumPredStores; 4318 MaskedOp.insert(SI); 4319 continue; 4320 } 4321 return false; 4322 } 4323 } 4324 if (it->mayThrow()) 4325 return false; 4326 4327 // The instructions below can trap. 4328 switch (it->getOpcode()) { 4329 default: continue; 4330 case Instruction::UDiv: 4331 case Instruction::SDiv: 4332 case Instruction::URem: 4333 case Instruction::SRem: 4334 return false; 4335 } 4336 } 4337 4338 return true; 4339 } 4340 4341 LoopVectorizationCostModel::VectorizationFactor 4342 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 4343 // Width 1 means no vectorize 4344 VectorizationFactor Factor = { 1U, 0U }; 4345 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4346 emitAnalysis(VectorizationReport() << 4347 "runtime pointer checks needed. Enable vectorization of this " 4348 "loop with '#pragma clang loop vectorize(enable)' when " 4349 "compiling with -Os"); 4350 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4351 return Factor; 4352 } 4353 4354 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 4355 emitAnalysis(VectorizationReport() << 4356 "store that is conditionally executed prevents vectorization"); 4357 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4358 return Factor; 4359 } 4360 4361 // Find the trip count. 4362 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4363 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4364 4365 unsigned WidestType = getWidestType(); 4366 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4367 unsigned MaxSafeDepDist = -1U; 4368 if (Legal->getMaxSafeDepDistBytes() != -1U) 4369 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4370 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4371 WidestRegister : MaxSafeDepDist); 4372 unsigned MaxVectorSize = WidestRegister / WidestType; 4373 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4374 DEBUG(dbgs() << "LV: The Widest register is: " 4375 << WidestRegister << " bits.\n"); 4376 4377 if (MaxVectorSize == 0) { 4378 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4379 MaxVectorSize = 1; 4380 } 4381 4382 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4383 " into one vector!"); 4384 4385 unsigned VF = MaxVectorSize; 4386 4387 // If we optimize the program for size, avoid creating the tail loop. 4388 if (OptForSize) { 4389 // If we are unable to calculate the trip count then don't try to vectorize. 4390 if (TC < 2) { 4391 emitAnalysis 4392 (VectorizationReport() << 4393 "unable to calculate the loop count due to complex control flow"); 4394 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4395 return Factor; 4396 } 4397 4398 // Find the maximum SIMD width that can fit within the trip count. 4399 VF = TC % MaxVectorSize; 4400 4401 if (VF == 0) 4402 VF = MaxVectorSize; 4403 4404 // If the trip count that we found modulo the vectorization factor is not 4405 // zero then we require a tail. 4406 if (VF < 2) { 4407 emitAnalysis(VectorizationReport() << 4408 "cannot optimize for size and vectorize at the " 4409 "same time. Enable vectorization of this loop " 4410 "with '#pragma clang loop vectorize(enable)' " 4411 "when compiling with -Os"); 4412 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4413 return Factor; 4414 } 4415 } 4416 4417 int UserVF = Hints->getWidth(); 4418 if (UserVF != 0) { 4419 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4420 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4421 4422 Factor.Width = UserVF; 4423 return Factor; 4424 } 4425 4426 float Cost = expectedCost(1); 4427 #ifndef NDEBUG 4428 const float ScalarCost = Cost; 4429 #endif /* NDEBUG */ 4430 unsigned Width = 1; 4431 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4432 4433 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4434 // Ignore scalar width, because the user explicitly wants vectorization. 4435 if (ForceVectorization && VF > 1) { 4436 Width = 2; 4437 Cost = expectedCost(Width) / (float)Width; 4438 } 4439 4440 for (unsigned i=2; i <= VF; i*=2) { 4441 // Notice that the vector loop needs to be executed less times, so 4442 // we need to divide the cost of the vector loops by the width of 4443 // the vector elements. 4444 float VectorCost = expectedCost(i) / (float)i; 4445 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4446 (int)VectorCost << ".\n"); 4447 if (VectorCost < Cost) { 4448 Cost = VectorCost; 4449 Width = i; 4450 } 4451 } 4452 4453 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4454 << "LV: Vectorization seems to be not beneficial, " 4455 << "but was forced by a user.\n"); 4456 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4457 Factor.Width = Width; 4458 Factor.Cost = Width * Cost; 4459 return Factor; 4460 } 4461 4462 unsigned LoopVectorizationCostModel::getWidestType() { 4463 unsigned MaxWidth = 8; 4464 4465 // For each block. 4466 for (Loop::block_iterator bb = TheLoop->block_begin(), 4467 be = TheLoop->block_end(); bb != be; ++bb) { 4468 BasicBlock *BB = *bb; 4469 4470 // For each instruction in the loop. 4471 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4472 Type *T = it->getType(); 4473 4474 // Ignore ephemeral values. 4475 if (EphValues.count(it)) 4476 continue; 4477 4478 // Only examine Loads, Stores and PHINodes. 4479 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4480 continue; 4481 4482 // Examine PHI nodes that are reduction variables. 4483 if (PHINode *PN = dyn_cast<PHINode>(it)) 4484 if (!Legal->getReductionVars()->count(PN)) 4485 continue; 4486 4487 // Examine the stored values. 4488 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4489 T = ST->getValueOperand()->getType(); 4490 4491 // Ignore loaded pointer types and stored pointer types that are not 4492 // consecutive. However, we do want to take consecutive stores/loads of 4493 // pointer vectors into account. 4494 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4495 continue; 4496 4497 MaxWidth = std::max(MaxWidth, 4498 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 4499 } 4500 } 4501 4502 return MaxWidth; 4503 } 4504 4505 unsigned 4506 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 4507 unsigned VF, 4508 unsigned LoopCost) { 4509 4510 // -- The unroll heuristics -- 4511 // We unroll the loop in order to expose ILP and reduce the loop overhead. 4512 // There are many micro-architectural considerations that we can't predict 4513 // at this level. For example, frontend pressure (on decode or fetch) due to 4514 // code size, or the number and capabilities of the execution ports. 4515 // 4516 // We use the following heuristics to select the unroll factor: 4517 // 1. If the code has reductions, then we unroll in order to break the cross 4518 // iteration dependency. 4519 // 2. If the loop is really small, then we unroll in order to reduce the loop 4520 // overhead. 4521 // 3. We don't unroll if we think that we will spill registers to memory due 4522 // to the increased register pressure. 4523 4524 // Use the user preference, unless 'auto' is selected. 4525 int UserUF = Hints->getInterleave(); 4526 if (UserUF != 0) 4527 return UserUF; 4528 4529 // When we optimize for size, we don't unroll. 4530 if (OptForSize) 4531 return 1; 4532 4533 // We used the distance for the unroll factor. 4534 if (Legal->getMaxSafeDepDistBytes() != -1U) 4535 return 1; 4536 4537 // Do not unroll loops with a relatively small trip count. 4538 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4539 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 4540 return 1; 4541 4542 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4543 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4544 " registers\n"); 4545 4546 if (VF == 1) { 4547 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4548 TargetNumRegisters = ForceTargetNumScalarRegs; 4549 } else { 4550 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4551 TargetNumRegisters = ForceTargetNumVectorRegs; 4552 } 4553 4554 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4555 // We divide by these constants so assume that we have at least one 4556 // instruction that uses at least one register. 4557 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4558 R.NumInstructions = std::max(R.NumInstructions, 1U); 4559 4560 // We calculate the unroll factor using the following formula. 4561 // Subtract the number of loop invariants from the number of available 4562 // registers. These registers are used by all of the unrolled instances. 4563 // Next, divide the remaining registers by the number of registers that is 4564 // required by the loop, in order to estimate how many parallel instances 4565 // fit without causing spills. All of this is rounded down if necessary to be 4566 // a power of two. We want power of two unroll factors to simplify any 4567 // addressing operations or alignment considerations. 4568 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4569 R.MaxLocalUsers); 4570 4571 // Don't count the induction variable as unrolled. 4572 if (EnableIndVarRegisterHeur) 4573 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4574 std::max(1U, (R.MaxLocalUsers - 1))); 4575 4576 // Clamp the unroll factor ranges to reasonable factors. 4577 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(); 4578 4579 // Check if the user has overridden the unroll max. 4580 if (VF == 1) { 4581 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4582 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 4583 } else { 4584 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4585 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 4586 } 4587 4588 // If we did not calculate the cost for VF (because the user selected the VF) 4589 // then we calculate the cost of VF here. 4590 if (LoopCost == 0) 4591 LoopCost = expectedCost(VF); 4592 4593 // Clamp the calculated UF to be between the 1 and the max unroll factor 4594 // that the target allows. 4595 if (UF > MaxInterleaveSize) 4596 UF = MaxInterleaveSize; 4597 else if (UF < 1) 4598 UF = 1; 4599 4600 // Unroll if we vectorized this loop and there is a reduction that could 4601 // benefit from unrolling. 4602 if (VF > 1 && Legal->getReductionVars()->size()) { 4603 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 4604 return UF; 4605 } 4606 4607 // Note that if we've already vectorized the loop we will have done the 4608 // runtime check and so unrolling won't require further checks. 4609 bool UnrollingRequiresRuntimePointerCheck = 4610 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 4611 4612 // We want to unroll small loops in order to reduce the loop overhead and 4613 // potentially expose ILP opportunities. 4614 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4615 if (!UnrollingRequiresRuntimePointerCheck && 4616 LoopCost < SmallLoopCost) { 4617 // We assume that the cost overhead is 1 and we use the cost model 4618 // to estimate the cost of the loop and unroll until the cost of the 4619 // loop overhead is about 5% of the cost of the loop. 4620 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 4621 4622 // Unroll until store/load ports (estimated by max unroll factor) are 4623 // saturated. 4624 unsigned NumStores = Legal->getNumStores(); 4625 unsigned NumLoads = Legal->getNumLoads(); 4626 unsigned StoresUF = UF / (NumStores ? NumStores : 1); 4627 unsigned LoadsUF = UF / (NumLoads ? NumLoads : 1); 4628 4629 // If we have a scalar reduction (vector reductions are already dealt with 4630 // by this point), we can increase the critical path length if the loop 4631 // we're unrolling is inside another loop. Limit, by default to 2, so the 4632 // critical path only gets increased by one reduction operation. 4633 if (Legal->getReductionVars()->size() && 4634 TheLoop->getLoopDepth() > 1) { 4635 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 4636 SmallUF = std::min(SmallUF, F); 4637 StoresUF = std::min(StoresUF, F); 4638 LoadsUF = std::min(LoadsUF, F); 4639 } 4640 4641 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 4642 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 4643 return std::max(StoresUF, LoadsUF); 4644 } 4645 4646 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 4647 return SmallUF; 4648 } 4649 4650 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 4651 return 1; 4652 } 4653 4654 LoopVectorizationCostModel::RegisterUsage 4655 LoopVectorizationCostModel::calculateRegisterUsage() { 4656 // This function calculates the register usage by measuring the highest number 4657 // of values that are alive at a single location. Obviously, this is a very 4658 // rough estimation. We scan the loop in a topological order in order and 4659 // assign a number to each instruction. We use RPO to ensure that defs are 4660 // met before their users. We assume that each instruction that has in-loop 4661 // users starts an interval. We record every time that an in-loop value is 4662 // used, so we have a list of the first and last occurrences of each 4663 // instruction. Next, we transpose this data structure into a multi map that 4664 // holds the list of intervals that *end* at a specific location. This multi 4665 // map allows us to perform a linear search. We scan the instructions linearly 4666 // and record each time that a new interval starts, by placing it in a set. 4667 // If we find this value in the multi-map then we remove it from the set. 4668 // The max register usage is the maximum size of the set. 4669 // We also search for instructions that are defined outside the loop, but are 4670 // used inside the loop. We need this number separately from the max-interval 4671 // usage number because when we unroll, loop-invariant values do not take 4672 // more register. 4673 LoopBlocksDFS DFS(TheLoop); 4674 DFS.perform(LI); 4675 4676 RegisterUsage R; 4677 R.NumInstructions = 0; 4678 4679 // Each 'key' in the map opens a new interval. The values 4680 // of the map are the index of the 'last seen' usage of the 4681 // instruction that is the key. 4682 typedef DenseMap<Instruction*, unsigned> IntervalMap; 4683 // Maps instruction to its index. 4684 DenseMap<unsigned, Instruction*> IdxToInstr; 4685 // Marks the end of each interval. 4686 IntervalMap EndPoint; 4687 // Saves the list of instruction indices that are used in the loop. 4688 SmallSet<Instruction*, 8> Ends; 4689 // Saves the list of values that are used in the loop but are 4690 // defined outside the loop, such as arguments and constants. 4691 SmallPtrSet<Value*, 8> LoopInvariants; 4692 4693 unsigned Index = 0; 4694 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 4695 be = DFS.endRPO(); bb != be; ++bb) { 4696 R.NumInstructions += (*bb)->size(); 4697 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4698 ++it) { 4699 Instruction *I = it; 4700 IdxToInstr[Index++] = I; 4701 4702 // Save the end location of each USE. 4703 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 4704 Value *U = I->getOperand(i); 4705 Instruction *Instr = dyn_cast<Instruction>(U); 4706 4707 // Ignore non-instruction values such as arguments, constants, etc. 4708 if (!Instr) continue; 4709 4710 // If this instruction is outside the loop then record it and continue. 4711 if (!TheLoop->contains(Instr)) { 4712 LoopInvariants.insert(Instr); 4713 continue; 4714 } 4715 4716 // Overwrite previous end points. 4717 EndPoint[Instr] = Index; 4718 Ends.insert(Instr); 4719 } 4720 } 4721 } 4722 4723 // Saves the list of intervals that end with the index in 'key'. 4724 typedef SmallVector<Instruction*, 2> InstrList; 4725 DenseMap<unsigned, InstrList> TransposeEnds; 4726 4727 // Transpose the EndPoints to a list of values that end at each index. 4728 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 4729 it != e; ++it) 4730 TransposeEnds[it->second].push_back(it->first); 4731 4732 SmallSet<Instruction*, 8> OpenIntervals; 4733 unsigned MaxUsage = 0; 4734 4735 4736 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4737 for (unsigned int i = 0; i < Index; ++i) { 4738 Instruction *I = IdxToInstr[i]; 4739 // Ignore instructions that are never used within the loop. 4740 if (!Ends.count(I)) continue; 4741 4742 // Ignore ephemeral values. 4743 if (EphValues.count(I)) 4744 continue; 4745 4746 // Remove all of the instructions that end at this location. 4747 InstrList &List = TransposeEnds[i]; 4748 for (unsigned int j=0, e = List.size(); j < e; ++j) 4749 OpenIntervals.erase(List[j]); 4750 4751 // Count the number of live interals. 4752 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 4753 4754 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 4755 OpenIntervals.size() << '\n'); 4756 4757 // Add the current instruction to the list of open intervals. 4758 OpenIntervals.insert(I); 4759 } 4760 4761 unsigned Invariant = LoopInvariants.size(); 4762 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 4763 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 4764 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 4765 4766 R.LoopInvariantRegs = Invariant; 4767 R.MaxLocalUsers = MaxUsage; 4768 return R; 4769 } 4770 4771 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 4772 unsigned Cost = 0; 4773 4774 // For each block. 4775 for (Loop::block_iterator bb = TheLoop->block_begin(), 4776 be = TheLoop->block_end(); bb != be; ++bb) { 4777 unsigned BlockCost = 0; 4778 BasicBlock *BB = *bb; 4779 4780 // For each instruction in the old loop. 4781 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4782 // Skip dbg intrinsics. 4783 if (isa<DbgInfoIntrinsic>(it)) 4784 continue; 4785 4786 // Ignore ephemeral values. 4787 if (EphValues.count(it)) 4788 continue; 4789 4790 unsigned C = getInstructionCost(it, VF); 4791 4792 // Check if we should override the cost. 4793 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 4794 C = ForceTargetInstructionCost; 4795 4796 BlockCost += C; 4797 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 4798 VF << " For instruction: " << *it << '\n'); 4799 } 4800 4801 // We assume that if-converted blocks have a 50% chance of being executed. 4802 // When the code is scalar then some of the blocks are avoided due to CF. 4803 // When the code is vectorized we execute all code paths. 4804 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 4805 BlockCost /= 2; 4806 4807 Cost += BlockCost; 4808 } 4809 4810 return Cost; 4811 } 4812 4813 /// \brief Check whether the address computation for a non-consecutive memory 4814 /// access looks like an unlikely candidate for being merged into the indexing 4815 /// mode. 4816 /// 4817 /// We look for a GEP which has one index that is an induction variable and all 4818 /// other indices are loop invariant. If the stride of this access is also 4819 /// within a small bound we decide that this address computation can likely be 4820 /// merged into the addressing mode. 4821 /// In all other cases, we identify the address computation as complex. 4822 static bool isLikelyComplexAddressComputation(Value *Ptr, 4823 LoopVectorizationLegality *Legal, 4824 ScalarEvolution *SE, 4825 const Loop *TheLoop) { 4826 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 4827 if (!Gep) 4828 return true; 4829 4830 // We are looking for a gep with all loop invariant indices except for one 4831 // which should be an induction variable. 4832 unsigned NumOperands = Gep->getNumOperands(); 4833 for (unsigned i = 1; i < NumOperands; ++i) { 4834 Value *Opd = Gep->getOperand(i); 4835 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 4836 !Legal->isInductionVariable(Opd)) 4837 return true; 4838 } 4839 4840 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 4841 // can likely be merged into the address computation. 4842 unsigned MaxMergeDistance = 64; 4843 4844 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 4845 if (!AddRec) 4846 return true; 4847 4848 // Check the step is constant. 4849 const SCEV *Step = AddRec->getStepRecurrence(*SE); 4850 // Calculate the pointer stride and check if it is consecutive. 4851 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4852 if (!C) 4853 return true; 4854 4855 const APInt &APStepVal = C->getValue()->getValue(); 4856 4857 // Huge step value - give up. 4858 if (APStepVal.getBitWidth() > 64) 4859 return true; 4860 4861 int64_t StepVal = APStepVal.getSExtValue(); 4862 4863 return StepVal > MaxMergeDistance; 4864 } 4865 4866 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 4867 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 4868 return true; 4869 return false; 4870 } 4871 4872 unsigned 4873 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 4874 // If we know that this instruction will remain uniform, check the cost of 4875 // the scalar version. 4876 if (Legal->isUniformAfterVectorization(I)) 4877 VF = 1; 4878 4879 Type *RetTy = I->getType(); 4880 Type *VectorTy = ToVectorTy(RetTy, VF); 4881 4882 // TODO: We need to estimate the cost of intrinsic calls. 4883 switch (I->getOpcode()) { 4884 case Instruction::GetElementPtr: 4885 // We mark this instruction as zero-cost because the cost of GEPs in 4886 // vectorized code depends on whether the corresponding memory instruction 4887 // is scalarized or not. Therefore, we handle GEPs with the memory 4888 // instruction cost. 4889 return 0; 4890 case Instruction::Br: { 4891 return TTI.getCFInstrCost(I->getOpcode()); 4892 } 4893 case Instruction::PHI: 4894 //TODO: IF-converted IFs become selects. 4895 return 0; 4896 case Instruction::Add: 4897 case Instruction::FAdd: 4898 case Instruction::Sub: 4899 case Instruction::FSub: 4900 case Instruction::Mul: 4901 case Instruction::FMul: 4902 case Instruction::UDiv: 4903 case Instruction::SDiv: 4904 case Instruction::FDiv: 4905 case Instruction::URem: 4906 case Instruction::SRem: 4907 case Instruction::FRem: 4908 case Instruction::Shl: 4909 case Instruction::LShr: 4910 case Instruction::AShr: 4911 case Instruction::And: 4912 case Instruction::Or: 4913 case Instruction::Xor: { 4914 // Since we will replace the stride by 1 the multiplication should go away. 4915 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 4916 return 0; 4917 // Certain instructions can be cheaper to vectorize if they have a constant 4918 // second vector operand. One example of this are shifts on x86. 4919 TargetTransformInfo::OperandValueKind Op1VK = 4920 TargetTransformInfo::OK_AnyValue; 4921 TargetTransformInfo::OperandValueKind Op2VK = 4922 TargetTransformInfo::OK_AnyValue; 4923 TargetTransformInfo::OperandValueProperties Op1VP = 4924 TargetTransformInfo::OP_None; 4925 TargetTransformInfo::OperandValueProperties Op2VP = 4926 TargetTransformInfo::OP_None; 4927 Value *Op2 = I->getOperand(1); 4928 4929 // Check for a splat of a constant or for a non uniform vector of constants. 4930 if (isa<ConstantInt>(Op2)) { 4931 ConstantInt *CInt = cast<ConstantInt>(Op2); 4932 if (CInt && CInt->getValue().isPowerOf2()) 4933 Op2VP = TargetTransformInfo::OP_PowerOf2; 4934 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 4935 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 4936 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4937 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 4938 if (SplatValue) { 4939 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 4940 if (CInt && CInt->getValue().isPowerOf2()) 4941 Op2VP = TargetTransformInfo::OP_PowerOf2; 4942 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 4943 } 4944 } 4945 4946 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 4947 Op1VP, Op2VP); 4948 } 4949 case Instruction::Select: { 4950 SelectInst *SI = cast<SelectInst>(I); 4951 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 4952 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 4953 Type *CondTy = SI->getCondition()->getType(); 4954 if (!ScalarCond) 4955 CondTy = VectorType::get(CondTy, VF); 4956 4957 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 4958 } 4959 case Instruction::ICmp: 4960 case Instruction::FCmp: { 4961 Type *ValTy = I->getOperand(0)->getType(); 4962 VectorTy = ToVectorTy(ValTy, VF); 4963 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 4964 } 4965 case Instruction::Store: 4966 case Instruction::Load: { 4967 StoreInst *SI = dyn_cast<StoreInst>(I); 4968 LoadInst *LI = dyn_cast<LoadInst>(I); 4969 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 4970 LI->getType()); 4971 VectorTy = ToVectorTy(ValTy, VF); 4972 4973 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 4974 unsigned AS = SI ? SI->getPointerAddressSpace() : 4975 LI->getPointerAddressSpace(); 4976 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 4977 // We add the cost of address computation here instead of with the gep 4978 // instruction because only here we know whether the operation is 4979 // scalarized. 4980 if (VF == 1) 4981 return TTI.getAddressComputationCost(VectorTy) + 4982 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4983 4984 // Scalarized loads/stores. 4985 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 4986 bool Reverse = ConsecutiveStride < 0; 4987 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 4988 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 4989 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 4990 bool IsComplexComputation = 4991 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 4992 unsigned Cost = 0; 4993 // The cost of extracting from the value vector and pointer vector. 4994 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 4995 for (unsigned i = 0; i < VF; ++i) { 4996 // The cost of extracting the pointer operand. 4997 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 4998 // In case of STORE, the cost of ExtractElement from the vector. 4999 // In case of LOAD, the cost of InsertElement into the returned 5000 // vector. 5001 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5002 Instruction::InsertElement, 5003 VectorTy, i); 5004 } 5005 5006 // The cost of the scalar loads/stores. 5007 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5008 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5009 Alignment, AS); 5010 return Cost; 5011 } 5012 5013 // Wide load/stores. 5014 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5015 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5016 5017 if (Reverse) 5018 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5019 VectorTy, 0); 5020 return Cost; 5021 } 5022 case Instruction::ZExt: 5023 case Instruction::SExt: 5024 case Instruction::FPToUI: 5025 case Instruction::FPToSI: 5026 case Instruction::FPExt: 5027 case Instruction::PtrToInt: 5028 case Instruction::IntToPtr: 5029 case Instruction::SIToFP: 5030 case Instruction::UIToFP: 5031 case Instruction::Trunc: 5032 case Instruction::FPTrunc: 5033 case Instruction::BitCast: { 5034 // We optimize the truncation of induction variable. 5035 // The cost of these is the same as the scalar operation. 5036 if (I->getOpcode() == Instruction::Trunc && 5037 Legal->isInductionVariable(I->getOperand(0))) 5038 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5039 I->getOperand(0)->getType()); 5040 5041 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5042 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5043 } 5044 case Instruction::Call: { 5045 CallInst *CI = cast<CallInst>(I); 5046 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 5047 assert(ID && "Not an intrinsic call!"); 5048 Type *RetTy = ToVectorTy(CI->getType(), VF); 5049 SmallVector<Type*, 4> Tys; 5050 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 5051 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 5052 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 5053 } 5054 default: { 5055 // We are scalarizing the instruction. Return the cost of the scalar 5056 // instruction, plus the cost of insert and extract into vector 5057 // elements, times the vector width. 5058 unsigned Cost = 0; 5059 5060 if (!RetTy->isVoidTy() && VF != 1) { 5061 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5062 VectorTy); 5063 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5064 VectorTy); 5065 5066 // The cost of inserting the results plus extracting each one of the 5067 // operands. 5068 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5069 } 5070 5071 // The cost of executing VF copies of the scalar instruction. This opcode 5072 // is unknown. Assume that it is the same as 'mul'. 5073 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5074 return Cost; 5075 } 5076 }// end of switch. 5077 } 5078 5079 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 5080 if (Scalar->isVoidTy() || VF == 1) 5081 return Scalar; 5082 return VectorType::get(Scalar, VF); 5083 } 5084 5085 char LoopVectorize::ID = 0; 5086 static const char lv_name[] = "Loop Vectorization"; 5087 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5088 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5089 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 5090 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5091 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5092 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5093 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5094 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5095 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5096 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5097 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5098 5099 namespace llvm { 5100 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5101 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5102 } 5103 } 5104 5105 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5106 // Check for a store. 5107 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5108 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5109 5110 // Check for a load. 5111 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5112 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5113 5114 return false; 5115 } 5116 5117 5118 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5119 bool IfPredicateStore) { 5120 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5121 // Holds vector parameters or scalars, in case of uniform vals. 5122 SmallVector<VectorParts, 4> Params; 5123 5124 setDebugLocFromInst(Builder, Instr); 5125 5126 // Find all of the vectorized parameters. 5127 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5128 Value *SrcOp = Instr->getOperand(op); 5129 5130 // If we are accessing the old induction variable, use the new one. 5131 if (SrcOp == OldInduction) { 5132 Params.push_back(getVectorValue(SrcOp)); 5133 continue; 5134 } 5135 5136 // Try using previously calculated values. 5137 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5138 5139 // If the src is an instruction that appeared earlier in the basic block 5140 // then it should already be vectorized. 5141 if (SrcInst && OrigLoop->contains(SrcInst)) { 5142 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5143 // The parameter is a vector value from earlier. 5144 Params.push_back(WidenMap.get(SrcInst)); 5145 } else { 5146 // The parameter is a scalar from outside the loop. Maybe even a constant. 5147 VectorParts Scalars; 5148 Scalars.append(UF, SrcOp); 5149 Params.push_back(Scalars); 5150 } 5151 } 5152 5153 assert(Params.size() == Instr->getNumOperands() && 5154 "Invalid number of operands"); 5155 5156 // Does this instruction return a value ? 5157 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5158 5159 Value *UndefVec = IsVoidRetTy ? nullptr : 5160 UndefValue::get(Instr->getType()); 5161 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5162 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5163 5164 Instruction *InsertPt = Builder.GetInsertPoint(); 5165 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5166 BasicBlock *CondBlock = nullptr; 5167 5168 VectorParts Cond; 5169 Loop *VectorLp = nullptr; 5170 if (IfPredicateStore) { 5171 assert(Instr->getParent()->getSinglePredecessor() && 5172 "Only support single predecessor blocks"); 5173 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5174 Instr->getParent()); 5175 VectorLp = LI->getLoopFor(IfBlock); 5176 assert(VectorLp && "Must have a loop for this block"); 5177 } 5178 5179 // For each vector unroll 'part': 5180 for (unsigned Part = 0; Part < UF; ++Part) { 5181 // For each scalar that we create: 5182 5183 // Start an "if (pred) a[i] = ..." block. 5184 Value *Cmp = nullptr; 5185 if (IfPredicateStore) { 5186 if (Cond[Part]->getType()->isVectorTy()) 5187 Cond[Part] = 5188 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5189 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5190 ConstantInt::get(Cond[Part]->getType(), 1)); 5191 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5192 LoopVectorBody.push_back(CondBlock); 5193 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 5194 // Update Builder with newly created basic block. 5195 Builder.SetInsertPoint(InsertPt); 5196 } 5197 5198 Instruction *Cloned = Instr->clone(); 5199 if (!IsVoidRetTy) 5200 Cloned->setName(Instr->getName() + ".cloned"); 5201 // Replace the operands of the cloned instructions with extracted scalars. 5202 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5203 Value *Op = Params[op][Part]; 5204 Cloned->setOperand(op, Op); 5205 } 5206 5207 // Place the cloned scalar in the new loop. 5208 Builder.Insert(Cloned); 5209 5210 // If the original scalar returns a value we need to place it in a vector 5211 // so that future users will be able to use it. 5212 if (!IsVoidRetTy) 5213 VecResults[Part] = Cloned; 5214 5215 // End if-block. 5216 if (IfPredicateStore) { 5217 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5218 LoopVectorBody.push_back(NewIfBlock); 5219 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 5220 Builder.SetInsertPoint(InsertPt); 5221 Instruction *OldBr = IfBlock->getTerminator(); 5222 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 5223 OldBr->eraseFromParent(); 5224 IfBlock = NewIfBlock; 5225 } 5226 } 5227 } 5228 5229 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5230 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5231 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5232 5233 return scalarizeInstruction(Instr, IfPredicateStore); 5234 } 5235 5236 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5237 return Vec; 5238 } 5239 5240 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5241 return V; 5242 } 5243 5244 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 5245 // When unrolling and the VF is 1, we only need to add a simple scalar. 5246 Type *ITy = Val->getType(); 5247 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5248 Constant *C = ConstantInt::get(ITy, StartIdx); 5249 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 5250 } 5251