1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function that returns the type of loaded or stored value. 299 static Type *getMemInstValueType(Value *I) { 300 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 301 "Expected Load or Store instruction"); 302 if (auto *LI = dyn_cast<LoadInst>(I)) 303 return LI->getType(); 304 return cast<StoreInst>(I)->getValueOperand()->getType(); 305 } 306 307 /// A helper function that returns true if the given type is irregular. The 308 /// type is irregular if its allocated size doesn't equal the store size of an 309 /// element of the corresponding vector type at the given vectorization factor. 310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 311 // Determine if an array of VF elements of type Ty is "bitcast compatible" 312 // with a <VF x Ty> vector. 313 if (VF > 1) { 314 auto *VectorTy = VectorType::get(Ty, VF); 315 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 316 } 317 318 // If the vectorization factor is one, we just check if an array of type Ty 319 // requires padding between elements. 320 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 321 } 322 323 /// A helper function that returns the reciprocal of the block probability of 324 /// predicated blocks. If we return X, we are assuming the predicated block 325 /// will execute once for every X iterations of the loop header. 326 /// 327 /// TODO: We should use actual block probability here, if available. Currently, 328 /// we always assume predicated blocks have a 50% chance of executing. 329 static unsigned getReciprocalPredBlockProb() { return 2; } 330 331 /// A helper function that adds a 'fast' flag to floating-point operations. 332 static Value *addFastMathFlag(Value *V) { 333 if (isa<FPMathOperator>(V)) 334 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 335 return V; 336 } 337 338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 339 if (isa<FPMathOperator>(V)) 340 cast<Instruction>(V)->setFastMathFlags(FMF); 341 return V; 342 } 343 344 /// A helper function that returns an integer or floating-point constant with 345 /// value C. 346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 347 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 348 : ConstantFP::get(Ty, C); 349 } 350 351 /// Returns "best known" trip count for the specified loop \p L as defined by 352 /// the following procedure: 353 /// 1) Returns exact trip count if it is known. 354 /// 2) Returns expected trip count according to profile data if any. 355 /// 3) Returns upper bound estimate if it is known. 356 /// 4) Returns None if all of the above failed. 357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 358 // Check if exact trip count is known. 359 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 360 return ExpectedTC; 361 362 // Check if there is an expected trip count available from profile data. 363 if (LoopVectorizeWithBlockFrequency) 364 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 365 return EstimatedTC; 366 367 // Check if upper bound estimate is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 369 return ExpectedTC; 370 371 return None; 372 } 373 374 namespace llvm { 375 376 /// InnerLoopVectorizer vectorizes loops which contain only one basic 377 /// block to a specified vectorization factor (VF). 378 /// This class performs the widening of scalars into vectors, or multiple 379 /// scalars. This class also implements the following features: 380 /// * It inserts an epilogue loop for handling loops that don't have iteration 381 /// counts that are known to be a multiple of the vectorization factor. 382 /// * It handles the code generation for reduction variables. 383 /// * Scalarization (implementation using scalars) of un-vectorizable 384 /// instructions. 385 /// InnerLoopVectorizer does not perform any vectorization-legality 386 /// checks, and relies on the caller to check for the different legality 387 /// aspects. The InnerLoopVectorizer relies on the 388 /// LoopVectorizationLegality class to provide information about the induction 389 /// and reduction variables that were found to a given vectorization factor. 390 class InnerLoopVectorizer { 391 public: 392 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 393 LoopInfo *LI, DominatorTree *DT, 394 const TargetLibraryInfo *TLI, 395 const TargetTransformInfo *TTI, AssumptionCache *AC, 396 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 397 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 398 LoopVectorizationCostModel *CM) 399 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 400 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 401 Builder(PSE.getSE()->getContext()), 402 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 403 virtual ~InnerLoopVectorizer() = default; 404 405 /// Create a new empty loop. Unlink the old loop and connect the new one. 406 /// Return the pre-header block of the new loop. 407 BasicBlock *createVectorizedLoopSkeleton(); 408 409 /// Widen a single instruction within the innermost loop. 410 void widenInstruction(Instruction &I); 411 412 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 413 void fixVectorizedLoop(); 414 415 // Return true if any runtime check is added. 416 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 417 418 /// A type for vectorized values in the new loop. Each value from the 419 /// original loop, when vectorized, is represented by UF vector values in the 420 /// new unrolled loop, where UF is the unroll factor. 421 using VectorParts = SmallVector<Value *, 2>; 422 423 /// Vectorize a single GetElementPtrInst based on information gathered and 424 /// decisions taken during planning. 425 void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF, 426 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant); 427 428 /// Vectorize a single PHINode in a block. This method handles the induction 429 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 430 /// arbitrary length vectors. 431 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 432 433 /// A helper function to scalarize a single Instruction in the innermost loop. 434 /// Generates a sequence of scalar instances for each lane between \p MinLane 435 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 436 /// inclusive.. 437 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 438 bool IfPredicateInstr); 439 440 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 441 /// is provided, the integer induction variable will first be truncated to 442 /// the corresponding type. 443 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 444 445 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 446 /// vector or scalar value on-demand if one is not yet available. When 447 /// vectorizing a loop, we visit the definition of an instruction before its 448 /// uses. When visiting the definition, we either vectorize or scalarize the 449 /// instruction, creating an entry for it in the corresponding map. (In some 450 /// cases, such as induction variables, we will create both vector and scalar 451 /// entries.) Then, as we encounter uses of the definition, we derive values 452 /// for each scalar or vector use unless such a value is already available. 453 /// For example, if we scalarize a definition and one of its uses is vector, 454 /// we build the required vector on-demand with an insertelement sequence 455 /// when visiting the use. Otherwise, if the use is scalar, we can use the 456 /// existing scalar definition. 457 /// 458 /// Return a value in the new loop corresponding to \p V from the original 459 /// loop at unroll index \p Part. If the value has already been vectorized, 460 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 461 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 462 /// a new vector value on-demand by inserting the scalar values into a vector 463 /// with an insertelement sequence. If the value has been neither vectorized 464 /// nor scalarized, it must be loop invariant, so we simply broadcast the 465 /// value into a vector. 466 Value *getOrCreateVectorValue(Value *V, unsigned Part); 467 468 /// Return a value in the new loop corresponding to \p V from the original 469 /// loop at unroll and vector indices \p Instance. If the value has been 470 /// vectorized but not scalarized, the necessary extractelement instruction 471 /// will be generated. 472 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 473 474 /// Construct the vector value of a scalarized value \p V one lane at a time. 475 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 476 477 /// Try to vectorize the interleaved access group that \p Instr belongs to 478 /// with the base address given in \p Addr, optionally masking the vector 479 /// operations if \p BlockInMask is non-null. Use \p State to translate given 480 /// VPValues to IR values in the vectorized loop. 481 void vectorizeInterleaveGroup(Instruction *Instr, VPTransformState &State, 482 VPValue *Addr, VPValue *BlockInMask = nullptr); 483 484 /// Vectorize Load and Store instructions with the base address given in \p 485 /// Addr, optionally masking the vector operations if \p BlockInMask is 486 /// non-null. Use \p State to translate given VPValues to IR values in the 487 /// vectorized loop. 488 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 489 VPValue *Addr, 490 VPValue *BlockInMask = nullptr); 491 492 /// Set the debug location in the builder using the debug location in 493 /// the instruction. 494 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 495 496 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 497 void fixNonInductionPHIs(void); 498 499 protected: 500 friend class LoopVectorizationPlanner; 501 502 /// A small list of PHINodes. 503 using PhiVector = SmallVector<PHINode *, 4>; 504 505 /// A type for scalarized values in the new loop. Each value from the 506 /// original loop, when scalarized, is represented by UF x VF scalar values 507 /// in the new unrolled loop, where UF is the unroll factor and VF is the 508 /// vectorization factor. 509 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 510 511 /// Set up the values of the IVs correctly when exiting the vector loop. 512 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 513 Value *CountRoundDown, Value *EndValue, 514 BasicBlock *MiddleBlock); 515 516 /// Create a new induction variable inside L. 517 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 518 Value *Step, Instruction *DL); 519 520 /// Handle all cross-iteration phis in the header. 521 void fixCrossIterationPHIs(); 522 523 /// Fix a first-order recurrence. This is the second phase of vectorizing 524 /// this phi node. 525 void fixFirstOrderRecurrence(PHINode *Phi); 526 527 /// Fix a reduction cross-iteration phi. This is the second phase of 528 /// vectorizing this phi node. 529 void fixReduction(PHINode *Phi); 530 531 /// Clear NSW/NUW flags from reduction instructions if necessary. 532 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 533 534 /// The Loop exit block may have single value PHI nodes with some 535 /// incoming value. While vectorizing we only handled real values 536 /// that were defined inside the loop and we should have one value for 537 /// each predecessor of its parent basic block. See PR14725. 538 void fixLCSSAPHIs(); 539 540 /// Iteratively sink the scalarized operands of a predicated instruction into 541 /// the block that was created for it. 542 void sinkScalarOperands(Instruction *PredInst); 543 544 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 545 /// represented as. 546 void truncateToMinimalBitwidths(); 547 548 /// Create a broadcast instruction. This method generates a broadcast 549 /// instruction (shuffle) for loop invariant values and for the induction 550 /// value. If this is the induction variable then we extend it to N, N+1, ... 551 /// this is needed because each iteration in the loop corresponds to a SIMD 552 /// element. 553 virtual Value *getBroadcastInstrs(Value *V); 554 555 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 556 /// to each vector element of Val. The sequence starts at StartIndex. 557 /// \p Opcode is relevant for FP induction variable. 558 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 559 Instruction::BinaryOps Opcode = 560 Instruction::BinaryOpsEnd); 561 562 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 563 /// variable on which to base the steps, \p Step is the size of the step, and 564 /// \p EntryVal is the value from the original loop that maps to the steps. 565 /// Note that \p EntryVal doesn't have to be an induction variable - it 566 /// can also be a truncate instruction. 567 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 568 const InductionDescriptor &ID); 569 570 /// Create a vector induction phi node based on an existing scalar one. \p 571 /// EntryVal is the value from the original loop that maps to the vector phi 572 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 573 /// truncate instruction, instead of widening the original IV, we widen a 574 /// version of the IV truncated to \p EntryVal's type. 575 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 576 Value *Step, Instruction *EntryVal); 577 578 /// Returns true if an instruction \p I should be scalarized instead of 579 /// vectorized for the chosen vectorization factor. 580 bool shouldScalarizeInstruction(Instruction *I) const; 581 582 /// Returns true if we should generate a scalar version of \p IV. 583 bool needsScalarInduction(Instruction *IV) const; 584 585 /// If there is a cast involved in the induction variable \p ID, which should 586 /// be ignored in the vectorized loop body, this function records the 587 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 588 /// cast. We had already proved that the casted Phi is equal to the uncasted 589 /// Phi in the vectorized loop (under a runtime guard), and therefore 590 /// there is no need to vectorize the cast - the same value can be used in the 591 /// vector loop for both the Phi and the cast. 592 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 593 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 594 /// 595 /// \p EntryVal is the value from the original loop that maps to the vector 596 /// phi node and is used to distinguish what is the IV currently being 597 /// processed - original one (if \p EntryVal is a phi corresponding to the 598 /// original IV) or the "newly-created" one based on the proof mentioned above 599 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 600 /// latter case \p EntryVal is a TruncInst and we must not record anything for 601 /// that IV, but it's error-prone to expect callers of this routine to care 602 /// about that, hence this explicit parameter. 603 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 604 const Instruction *EntryVal, 605 Value *VectorLoopValue, 606 unsigned Part, 607 unsigned Lane = UINT_MAX); 608 609 /// Generate a shuffle sequence that will reverse the vector Vec. 610 virtual Value *reverseVector(Value *Vec); 611 612 /// Returns (and creates if needed) the original loop trip count. 613 Value *getOrCreateTripCount(Loop *NewLoop); 614 615 /// Returns (and creates if needed) the trip count of the widened loop. 616 Value *getOrCreateVectorTripCount(Loop *NewLoop); 617 618 /// Returns a bitcasted value to the requested vector type. 619 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 620 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 621 const DataLayout &DL); 622 623 /// Emit a bypass check to see if the vector trip count is zero, including if 624 /// it overflows. 625 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 626 627 /// Emit a bypass check to see if all of the SCEV assumptions we've 628 /// had to make are correct. 629 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 630 631 /// Emit bypass checks to check any memory assumptions we may have made. 632 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 633 634 /// Compute the transformed value of Index at offset StartValue using step 635 /// StepValue. 636 /// For integer induction, returns StartValue + Index * StepValue. 637 /// For pointer induction, returns StartValue[Index * StepValue]. 638 /// FIXME: The newly created binary instructions should contain nsw/nuw 639 /// flags, which can be found from the original scalar operations. 640 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 641 const DataLayout &DL, 642 const InductionDescriptor &ID) const; 643 644 /// Add additional metadata to \p To that was not present on \p Orig. 645 /// 646 /// Currently this is used to add the noalias annotations based on the 647 /// inserted memchecks. Use this for instructions that are *cloned* into the 648 /// vector loop. 649 void addNewMetadata(Instruction *To, const Instruction *Orig); 650 651 /// Add metadata from one instruction to another. 652 /// 653 /// This includes both the original MDs from \p From and additional ones (\see 654 /// addNewMetadata). Use this for *newly created* instructions in the vector 655 /// loop. 656 void addMetadata(Instruction *To, Instruction *From); 657 658 /// Similar to the previous function but it adds the metadata to a 659 /// vector of instructions. 660 void addMetadata(ArrayRef<Value *> To, Instruction *From); 661 662 /// The original loop. 663 Loop *OrigLoop; 664 665 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 666 /// dynamic knowledge to simplify SCEV expressions and converts them to a 667 /// more usable form. 668 PredicatedScalarEvolution &PSE; 669 670 /// Loop Info. 671 LoopInfo *LI; 672 673 /// Dominator Tree. 674 DominatorTree *DT; 675 676 /// Alias Analysis. 677 AliasAnalysis *AA; 678 679 /// Target Library Info. 680 const TargetLibraryInfo *TLI; 681 682 /// Target Transform Info. 683 const TargetTransformInfo *TTI; 684 685 /// Assumption Cache. 686 AssumptionCache *AC; 687 688 /// Interface to emit optimization remarks. 689 OptimizationRemarkEmitter *ORE; 690 691 /// LoopVersioning. It's only set up (non-null) if memchecks were 692 /// used. 693 /// 694 /// This is currently only used to add no-alias metadata based on the 695 /// memchecks. The actually versioning is performed manually. 696 std::unique_ptr<LoopVersioning> LVer; 697 698 /// The vectorization SIMD factor to use. Each vector will have this many 699 /// vector elements. 700 unsigned VF; 701 702 /// The vectorization unroll factor to use. Each scalar is vectorized to this 703 /// many different vector instructions. 704 unsigned UF; 705 706 /// The builder that we use 707 IRBuilder<> Builder; 708 709 // --- Vectorization state --- 710 711 /// The vector-loop preheader. 712 BasicBlock *LoopVectorPreHeader; 713 714 /// The scalar-loop preheader. 715 BasicBlock *LoopScalarPreHeader; 716 717 /// Middle Block between the vector and the scalar. 718 BasicBlock *LoopMiddleBlock; 719 720 /// The ExitBlock of the scalar loop. 721 BasicBlock *LoopExitBlock; 722 723 /// The vector loop body. 724 BasicBlock *LoopVectorBody; 725 726 /// The scalar loop body. 727 BasicBlock *LoopScalarBody; 728 729 /// A list of all bypass blocks. The first block is the entry of the loop. 730 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 731 732 /// The new Induction variable which was added to the new block. 733 PHINode *Induction = nullptr; 734 735 /// The induction variable of the old basic block. 736 PHINode *OldInduction = nullptr; 737 738 /// Maps values from the original loop to their corresponding values in the 739 /// vectorized loop. A key value can map to either vector values, scalar 740 /// values or both kinds of values, depending on whether the key was 741 /// vectorized and scalarized. 742 VectorizerValueMap VectorLoopValueMap; 743 744 /// Store instructions that were predicated. 745 SmallVector<Instruction *, 4> PredicatedInstructions; 746 747 /// Trip count of the original loop. 748 Value *TripCount = nullptr; 749 750 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 751 Value *VectorTripCount = nullptr; 752 753 /// The legality analysis. 754 LoopVectorizationLegality *Legal; 755 756 /// The profitablity analysis. 757 LoopVectorizationCostModel *Cost; 758 759 // Record whether runtime checks are added. 760 bool AddedSafetyChecks = false; 761 762 // Holds the end values for each induction variable. We save the end values 763 // so we can later fix-up the external users of the induction variables. 764 DenseMap<PHINode *, Value *> IVEndValues; 765 766 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 767 // fixed up at the end of vector code generation. 768 SmallVector<PHINode *, 8> OrigPHIsToFix; 769 }; 770 771 class InnerLoopUnroller : public InnerLoopVectorizer { 772 public: 773 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 774 LoopInfo *LI, DominatorTree *DT, 775 const TargetLibraryInfo *TLI, 776 const TargetTransformInfo *TTI, AssumptionCache *AC, 777 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 778 LoopVectorizationLegality *LVL, 779 LoopVectorizationCostModel *CM) 780 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 781 UnrollFactor, LVL, CM) {} 782 783 private: 784 Value *getBroadcastInstrs(Value *V) override; 785 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 786 Instruction::BinaryOps Opcode = 787 Instruction::BinaryOpsEnd) override; 788 Value *reverseVector(Value *Vec) override; 789 }; 790 791 } // end namespace llvm 792 793 /// Look for a meaningful debug location on the instruction or it's 794 /// operands. 795 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 796 if (!I) 797 return I; 798 799 DebugLoc Empty; 800 if (I->getDebugLoc() != Empty) 801 return I; 802 803 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 804 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 805 if (OpInst->getDebugLoc() != Empty) 806 return OpInst; 807 } 808 809 return I; 810 } 811 812 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 813 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 814 const DILocation *DIL = Inst->getDebugLoc(); 815 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 816 !isa<DbgInfoIntrinsic>(Inst)) { 817 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 818 if (NewDIL) 819 B.SetCurrentDebugLocation(NewDIL.getValue()); 820 else 821 LLVM_DEBUG(dbgs() 822 << "Failed to create new discriminator: " 823 << DIL->getFilename() << " Line: " << DIL->getLine()); 824 } 825 else 826 B.SetCurrentDebugLocation(DIL); 827 } else 828 B.SetCurrentDebugLocation(DebugLoc()); 829 } 830 831 /// Write a record \p DebugMsg about vectorization failure to the debug 832 /// output stream. If \p I is passed, it is an instruction that prevents 833 /// vectorization. 834 #ifndef NDEBUG 835 static void debugVectorizationFailure(const StringRef DebugMsg, 836 Instruction *I) { 837 dbgs() << "LV: Not vectorizing: " << DebugMsg; 838 if (I != nullptr) 839 dbgs() << " " << *I; 840 else 841 dbgs() << '.'; 842 dbgs() << '\n'; 843 } 844 #endif 845 846 /// Create an analysis remark that explains why vectorization failed 847 /// 848 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 849 /// RemarkName is the identifier for the remark. If \p I is passed it is an 850 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 851 /// the location of the remark. \return the remark object that can be 852 /// streamed to. 853 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 854 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 855 Value *CodeRegion = TheLoop->getHeader(); 856 DebugLoc DL = TheLoop->getStartLoc(); 857 858 if (I) { 859 CodeRegion = I->getParent(); 860 // If there is no debug location attached to the instruction, revert back to 861 // using the loop's. 862 if (I->getDebugLoc()) 863 DL = I->getDebugLoc(); 864 } 865 866 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 867 R << "loop not vectorized: "; 868 return R; 869 } 870 871 namespace llvm { 872 873 void reportVectorizationFailure(const StringRef DebugMsg, 874 const StringRef OREMsg, const StringRef ORETag, 875 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 876 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 877 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 878 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 879 ORETag, TheLoop, I) << OREMsg); 880 } 881 882 } // end namespace llvm 883 884 #ifndef NDEBUG 885 /// \return string containing a file name and a line # for the given loop. 886 static std::string getDebugLocString(const Loop *L) { 887 std::string Result; 888 if (L) { 889 raw_string_ostream OS(Result); 890 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 891 LoopDbgLoc.print(OS); 892 else 893 // Just print the module name. 894 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 895 OS.flush(); 896 } 897 return Result; 898 } 899 #endif 900 901 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 902 const Instruction *Orig) { 903 // If the loop was versioned with memchecks, add the corresponding no-alias 904 // metadata. 905 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 906 LVer->annotateInstWithNoAlias(To, Orig); 907 } 908 909 void InnerLoopVectorizer::addMetadata(Instruction *To, 910 Instruction *From) { 911 propagateMetadata(To, From); 912 addNewMetadata(To, From); 913 } 914 915 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 916 Instruction *From) { 917 for (Value *V : To) { 918 if (Instruction *I = dyn_cast<Instruction>(V)) 919 addMetadata(I, From); 920 } 921 } 922 923 namespace llvm { 924 925 // Loop vectorization cost-model hints how the scalar epilogue loop should be 926 // lowered. 927 enum ScalarEpilogueLowering { 928 929 // The default: allowing scalar epilogues. 930 CM_ScalarEpilogueAllowed, 931 932 // Vectorization with OptForSize: don't allow epilogues. 933 CM_ScalarEpilogueNotAllowedOptSize, 934 935 // A special case of vectorisation with OptForSize: loops with a very small 936 // trip count are considered for vectorization under OptForSize, thereby 937 // making sure the cost of their loop body is dominant, free of runtime 938 // guards and scalar iteration overheads. 939 CM_ScalarEpilogueNotAllowedLowTripLoop, 940 941 // Loop hint predicate indicating an epilogue is undesired. 942 CM_ScalarEpilogueNotNeededUsePredicate 943 }; 944 945 /// LoopVectorizationCostModel - estimates the expected speedups due to 946 /// vectorization. 947 /// In many cases vectorization is not profitable. This can happen because of 948 /// a number of reasons. In this class we mainly attempt to predict the 949 /// expected speedup/slowdowns due to the supported instruction set. We use the 950 /// TargetTransformInfo to query the different backends for the cost of 951 /// different operations. 952 class LoopVectorizationCostModel { 953 public: 954 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 955 PredicatedScalarEvolution &PSE, LoopInfo *LI, 956 LoopVectorizationLegality *Legal, 957 const TargetTransformInfo &TTI, 958 const TargetLibraryInfo *TLI, DemandedBits *DB, 959 AssumptionCache *AC, 960 OptimizationRemarkEmitter *ORE, const Function *F, 961 const LoopVectorizeHints *Hints, 962 InterleavedAccessInfo &IAI) 963 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 964 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 965 Hints(Hints), InterleaveInfo(IAI) {} 966 967 /// \return An upper bound for the vectorization factor, or None if 968 /// vectorization and interleaving should be avoided up front. 969 Optional<unsigned> computeMaxVF(); 970 971 /// \return True if runtime checks are required for vectorization, and false 972 /// otherwise. 973 bool runtimeChecksRequired(); 974 975 /// \return The most profitable vectorization factor and the cost of that VF. 976 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 977 /// then this vectorization factor will be selected if vectorization is 978 /// possible. 979 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 980 981 /// Setup cost-based decisions for user vectorization factor. 982 void selectUserVectorizationFactor(unsigned UserVF) { 983 collectUniformsAndScalars(UserVF); 984 collectInstsToScalarize(UserVF); 985 } 986 987 /// \return The size (in bits) of the smallest and widest types in the code 988 /// that needs to be vectorized. We ignore values that remain scalar such as 989 /// 64 bit loop indices. 990 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 991 992 /// \return The desired interleave count. 993 /// If interleave count has been specified by metadata it will be returned. 994 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 995 /// are the selected vectorization factor and the cost of the selected VF. 996 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 997 998 /// Memory access instruction may be vectorized in more than one way. 999 /// Form of instruction after vectorization depends on cost. 1000 /// This function takes cost-based decisions for Load/Store instructions 1001 /// and collects them in a map. This decisions map is used for building 1002 /// the lists of loop-uniform and loop-scalar instructions. 1003 /// The calculated cost is saved with widening decision in order to 1004 /// avoid redundant calculations. 1005 void setCostBasedWideningDecision(unsigned VF); 1006 1007 /// A struct that represents some properties of the register usage 1008 /// of a loop. 1009 struct RegisterUsage { 1010 /// Holds the number of loop invariant values that are used in the loop. 1011 /// The key is ClassID of target-provided register class. 1012 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1013 /// Holds the maximum number of concurrent live intervals in the loop. 1014 /// The key is ClassID of target-provided register class. 1015 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1016 }; 1017 1018 /// \return Returns information about the register usages of the loop for the 1019 /// given vectorization factors. 1020 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1021 1022 /// Collect values we want to ignore in the cost model. 1023 void collectValuesToIgnore(); 1024 1025 /// \returns The smallest bitwidth each instruction can be represented with. 1026 /// The vector equivalents of these instructions should be truncated to this 1027 /// type. 1028 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1029 return MinBWs; 1030 } 1031 1032 /// \returns True if it is more profitable to scalarize instruction \p I for 1033 /// vectorization factor \p VF. 1034 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1035 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1036 1037 // Cost model is not run in the VPlan-native path - return conservative 1038 // result until this changes. 1039 if (EnableVPlanNativePath) 1040 return false; 1041 1042 auto Scalars = InstsToScalarize.find(VF); 1043 assert(Scalars != InstsToScalarize.end() && 1044 "VF not yet analyzed for scalarization profitability"); 1045 return Scalars->second.find(I) != Scalars->second.end(); 1046 } 1047 1048 /// Returns true if \p I is known to be uniform after vectorization. 1049 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1050 if (VF == 1) 1051 return true; 1052 1053 // Cost model is not run in the VPlan-native path - return conservative 1054 // result until this changes. 1055 if (EnableVPlanNativePath) 1056 return false; 1057 1058 auto UniformsPerVF = Uniforms.find(VF); 1059 assert(UniformsPerVF != Uniforms.end() && 1060 "VF not yet analyzed for uniformity"); 1061 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 1062 } 1063 1064 /// Returns true if \p I is known to be scalar after vectorization. 1065 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1066 if (VF == 1) 1067 return true; 1068 1069 // Cost model is not run in the VPlan-native path - return conservative 1070 // result until this changes. 1071 if (EnableVPlanNativePath) 1072 return false; 1073 1074 auto ScalarsPerVF = Scalars.find(VF); 1075 assert(ScalarsPerVF != Scalars.end() && 1076 "Scalar values are not calculated for VF"); 1077 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 1078 } 1079 1080 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1081 /// for vectorization factor \p VF. 1082 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1083 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1084 !isProfitableToScalarize(I, VF) && 1085 !isScalarAfterVectorization(I, VF); 1086 } 1087 1088 /// Decision that was taken during cost calculation for memory instruction. 1089 enum InstWidening { 1090 CM_Unknown, 1091 CM_Widen, // For consecutive accesses with stride +1. 1092 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1093 CM_Interleave, 1094 CM_GatherScatter, 1095 CM_Scalarize 1096 }; 1097 1098 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1099 /// instruction \p I and vector width \p VF. 1100 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1101 unsigned Cost) { 1102 assert(VF >= 2 && "Expected VF >=2"); 1103 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1104 } 1105 1106 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1107 /// interleaving group \p Grp and vector width \p VF. 1108 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1109 InstWidening W, unsigned Cost) { 1110 assert(VF >= 2 && "Expected VF >=2"); 1111 /// Broadcast this decicion to all instructions inside the group. 1112 /// But the cost will be assigned to one instruction only. 1113 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1114 if (auto *I = Grp->getMember(i)) { 1115 if (Grp->getInsertPos() == I) 1116 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1117 else 1118 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1119 } 1120 } 1121 } 1122 1123 /// Return the cost model decision for the given instruction \p I and vector 1124 /// width \p VF. Return CM_Unknown if this instruction did not pass 1125 /// through the cost modeling. 1126 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1127 assert(VF >= 2 && "Expected VF >=2"); 1128 1129 // Cost model is not run in the VPlan-native path - return conservative 1130 // result until this changes. 1131 if (EnableVPlanNativePath) 1132 return CM_GatherScatter; 1133 1134 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1135 auto Itr = WideningDecisions.find(InstOnVF); 1136 if (Itr == WideningDecisions.end()) 1137 return CM_Unknown; 1138 return Itr->second.first; 1139 } 1140 1141 /// Return the vectorization cost for the given instruction \p I and vector 1142 /// width \p VF. 1143 unsigned getWideningCost(Instruction *I, unsigned VF) { 1144 assert(VF >= 2 && "Expected VF >=2"); 1145 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1146 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1147 "The cost is not calculated"); 1148 return WideningDecisions[InstOnVF].second; 1149 } 1150 1151 /// Return True if instruction \p I is an optimizable truncate whose operand 1152 /// is an induction variable. Such a truncate will be removed by adding a new 1153 /// induction variable with the destination type. 1154 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1155 // If the instruction is not a truncate, return false. 1156 auto *Trunc = dyn_cast<TruncInst>(I); 1157 if (!Trunc) 1158 return false; 1159 1160 // Get the source and destination types of the truncate. 1161 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1162 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1163 1164 // If the truncate is free for the given types, return false. Replacing a 1165 // free truncate with an induction variable would add an induction variable 1166 // update instruction to each iteration of the loop. We exclude from this 1167 // check the primary induction variable since it will need an update 1168 // instruction regardless. 1169 Value *Op = Trunc->getOperand(0); 1170 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1171 return false; 1172 1173 // If the truncated value is not an induction variable, return false. 1174 return Legal->isInductionPhi(Op); 1175 } 1176 1177 /// Collects the instructions to scalarize for each predicated instruction in 1178 /// the loop. 1179 void collectInstsToScalarize(unsigned VF); 1180 1181 /// Collect Uniform and Scalar values for the given \p VF. 1182 /// The sets depend on CM decision for Load/Store instructions 1183 /// that may be vectorized as interleave, gather-scatter or scalarized. 1184 void collectUniformsAndScalars(unsigned VF) { 1185 // Do the analysis once. 1186 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1187 return; 1188 setCostBasedWideningDecision(VF); 1189 collectLoopUniforms(VF); 1190 collectLoopScalars(VF); 1191 } 1192 1193 /// Returns true if the target machine supports masked store operation 1194 /// for the given \p DataType and kind of access to \p Ptr. 1195 bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1196 return Legal->isConsecutivePtr(Ptr) && 1197 TTI.isLegalMaskedStore(DataType, Alignment); 1198 } 1199 1200 /// Returns true if the target machine supports masked load operation 1201 /// for the given \p DataType and kind of access to \p Ptr. 1202 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1203 return Legal->isConsecutivePtr(Ptr) && 1204 TTI.isLegalMaskedLoad(DataType, Alignment); 1205 } 1206 1207 /// Returns true if the target machine supports masked scatter operation 1208 /// for the given \p DataType. 1209 bool isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) { 1210 return TTI.isLegalMaskedScatter(DataType, Alignment); 1211 } 1212 1213 /// Returns true if the target machine supports masked gather operation 1214 /// for the given \p DataType. 1215 bool isLegalMaskedGather(Type *DataType, MaybeAlign Alignment) { 1216 return TTI.isLegalMaskedGather(DataType, Alignment); 1217 } 1218 1219 /// Returns true if the target machine can represent \p V as a masked gather 1220 /// or scatter operation. 1221 bool isLegalGatherOrScatter(Value *V) { 1222 bool LI = isa<LoadInst>(V); 1223 bool SI = isa<StoreInst>(V); 1224 if (!LI && !SI) 1225 return false; 1226 auto *Ty = getMemInstValueType(V); 1227 MaybeAlign Align = getLoadStoreAlignment(V); 1228 return (LI && isLegalMaskedGather(Ty, Align)) || 1229 (SI && isLegalMaskedScatter(Ty, Align)); 1230 } 1231 1232 /// Returns true if \p I is an instruction that will be scalarized with 1233 /// predication. Such instructions include conditional stores and 1234 /// instructions that may divide by zero. 1235 /// If a non-zero VF has been calculated, we check if I will be scalarized 1236 /// predication for that VF. 1237 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1238 1239 // Returns true if \p I is an instruction that will be predicated either 1240 // through scalar predication or masked load/store or masked gather/scatter. 1241 // Superset of instructions that return true for isScalarWithPredication. 1242 bool isPredicatedInst(Instruction *I) { 1243 if (!blockNeedsPredication(I->getParent())) 1244 return false; 1245 // Loads and stores that need some form of masked operation are predicated 1246 // instructions. 1247 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1248 return Legal->isMaskRequired(I); 1249 return isScalarWithPredication(I); 1250 } 1251 1252 /// Returns true if \p I is a memory instruction with consecutive memory 1253 /// access that can be widened. 1254 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1255 1256 /// Returns true if \p I is a memory instruction in an interleaved-group 1257 /// of memory accesses that can be vectorized with wide vector loads/stores 1258 /// and shuffles. 1259 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1260 1261 /// Check if \p Instr belongs to any interleaved access group. 1262 bool isAccessInterleaved(Instruction *Instr) { 1263 return InterleaveInfo.isInterleaved(Instr); 1264 } 1265 1266 /// Get the interleaved access group that \p Instr belongs to. 1267 const InterleaveGroup<Instruction> * 1268 getInterleavedAccessGroup(Instruction *Instr) { 1269 return InterleaveInfo.getInterleaveGroup(Instr); 1270 } 1271 1272 /// Returns true if an interleaved group requires a scalar iteration 1273 /// to handle accesses with gaps, and there is nothing preventing us from 1274 /// creating a scalar epilogue. 1275 bool requiresScalarEpilogue() const { 1276 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1277 } 1278 1279 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1280 /// loop hint annotation. 1281 bool isScalarEpilogueAllowed() const { 1282 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1283 } 1284 1285 /// Returns true if all loop blocks should be masked to fold tail loop. 1286 bool foldTailByMasking() const { return FoldTailByMasking; } 1287 1288 bool blockNeedsPredication(BasicBlock *BB) { 1289 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1290 } 1291 1292 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1293 /// with factor VF. Return the cost of the instruction, including 1294 /// scalarization overhead if it's needed. 1295 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1296 1297 /// Estimate cost of a call instruction CI if it were vectorized with factor 1298 /// VF. Return the cost of the instruction, including scalarization overhead 1299 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1300 /// scalarized - 1301 /// i.e. either vector version isn't available, or is too expensive. 1302 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1303 1304 private: 1305 unsigned NumPredStores = 0; 1306 1307 /// \return An upper bound for the vectorization factor, larger than zero. 1308 /// One is returned if vectorization should best be avoided due to cost. 1309 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1310 1311 /// The vectorization cost is a combination of the cost itself and a boolean 1312 /// indicating whether any of the contributing operations will actually 1313 /// operate on 1314 /// vector values after type legalization in the backend. If this latter value 1315 /// is 1316 /// false, then all operations will be scalarized (i.e. no vectorization has 1317 /// actually taken place). 1318 using VectorizationCostTy = std::pair<unsigned, bool>; 1319 1320 /// Returns the expected execution cost. The unit of the cost does 1321 /// not matter because we use the 'cost' units to compare different 1322 /// vector widths. The cost that is returned is *not* normalized by 1323 /// the factor width. 1324 VectorizationCostTy expectedCost(unsigned VF); 1325 1326 /// Returns the execution time cost of an instruction for a given vector 1327 /// width. Vector width of one means scalar. 1328 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1329 1330 /// The cost-computation logic from getInstructionCost which provides 1331 /// the vector type as an output parameter. 1332 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1333 1334 /// Calculate vectorization cost of memory instruction \p I. 1335 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1336 1337 /// The cost computation for scalarized memory instruction. 1338 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1339 1340 /// The cost computation for interleaving group of memory instructions. 1341 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1342 1343 /// The cost computation for Gather/Scatter instruction. 1344 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1345 1346 /// The cost computation for widening instruction \p I with consecutive 1347 /// memory access. 1348 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1349 1350 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1351 /// Load: scalar load + broadcast. 1352 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1353 /// element) 1354 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1355 1356 /// Estimate the overhead of scalarizing an instruction. This is a 1357 /// convenience wrapper for the type-based getScalarizationOverhead API. 1358 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1359 1360 /// Returns whether the instruction is a load or store and will be a emitted 1361 /// as a vector operation. 1362 bool isConsecutiveLoadOrStore(Instruction *I); 1363 1364 /// Returns true if an artificially high cost for emulated masked memrefs 1365 /// should be used. 1366 bool useEmulatedMaskMemRefHack(Instruction *I); 1367 1368 /// Map of scalar integer values to the smallest bitwidth they can be legally 1369 /// represented as. The vector equivalents of these values should be truncated 1370 /// to this type. 1371 MapVector<Instruction *, uint64_t> MinBWs; 1372 1373 /// A type representing the costs for instructions if they were to be 1374 /// scalarized rather than vectorized. The entries are Instruction-Cost 1375 /// pairs. 1376 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1377 1378 /// A set containing all BasicBlocks that are known to present after 1379 /// vectorization as a predicated block. 1380 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1381 1382 /// Records whether it is allowed to have the original scalar loop execute at 1383 /// least once. This may be needed as a fallback loop in case runtime 1384 /// aliasing/dependence checks fail, or to handle the tail/remainder 1385 /// iterations when the trip count is unknown or doesn't divide by the VF, 1386 /// or as a peel-loop to handle gaps in interleave-groups. 1387 /// Under optsize and when the trip count is very small we don't allow any 1388 /// iterations to execute in the scalar loop. 1389 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1390 1391 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1392 bool FoldTailByMasking = false; 1393 1394 /// A map holding scalar costs for different vectorization factors. The 1395 /// presence of a cost for an instruction in the mapping indicates that the 1396 /// instruction will be scalarized when vectorizing with the associated 1397 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1398 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1399 1400 /// Holds the instructions known to be uniform after vectorization. 1401 /// The data is collected per VF. 1402 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1403 1404 /// Holds the instructions known to be scalar after vectorization. 1405 /// The data is collected per VF. 1406 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1407 1408 /// Holds the instructions (address computations) that are forced to be 1409 /// scalarized. 1410 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1411 1412 /// Returns the expected difference in cost from scalarizing the expression 1413 /// feeding a predicated instruction \p PredInst. The instructions to 1414 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1415 /// non-negative return value implies the expression will be scalarized. 1416 /// Currently, only single-use chains are considered for scalarization. 1417 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1418 unsigned VF); 1419 1420 /// Collect the instructions that are uniform after vectorization. An 1421 /// instruction is uniform if we represent it with a single scalar value in 1422 /// the vectorized loop corresponding to each vector iteration. Examples of 1423 /// uniform instructions include pointer operands of consecutive or 1424 /// interleaved memory accesses. Note that although uniformity implies an 1425 /// instruction will be scalar, the reverse is not true. In general, a 1426 /// scalarized instruction will be represented by VF scalar values in the 1427 /// vectorized loop, each corresponding to an iteration of the original 1428 /// scalar loop. 1429 void collectLoopUniforms(unsigned VF); 1430 1431 /// Collect the instructions that are scalar after vectorization. An 1432 /// instruction is scalar if it is known to be uniform or will be scalarized 1433 /// during vectorization. Non-uniform scalarized instructions will be 1434 /// represented by VF values in the vectorized loop, each corresponding to an 1435 /// iteration of the original scalar loop. 1436 void collectLoopScalars(unsigned VF); 1437 1438 /// Keeps cost model vectorization decision and cost for instructions. 1439 /// Right now it is used for memory instructions only. 1440 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1441 std::pair<InstWidening, unsigned>>; 1442 1443 DecisionList WideningDecisions; 1444 1445 /// Returns true if \p V is expected to be vectorized and it needs to be 1446 /// extracted. 1447 bool needsExtract(Value *V, unsigned VF) const { 1448 Instruction *I = dyn_cast<Instruction>(V); 1449 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1450 return false; 1451 1452 // Assume we can vectorize V (and hence we need extraction) if the 1453 // scalars are not computed yet. This can happen, because it is called 1454 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1455 // the scalars are collected. That should be a safe assumption in most 1456 // cases, because we check if the operands have vectorizable types 1457 // beforehand in LoopVectorizationLegality. 1458 return Scalars.find(VF) == Scalars.end() || 1459 !isScalarAfterVectorization(I, VF); 1460 }; 1461 1462 /// Returns a range containing only operands needing to be extracted. 1463 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1464 unsigned VF) { 1465 return SmallVector<Value *, 4>(make_filter_range( 1466 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1467 } 1468 1469 public: 1470 /// The loop that we evaluate. 1471 Loop *TheLoop; 1472 1473 /// Predicated scalar evolution analysis. 1474 PredicatedScalarEvolution &PSE; 1475 1476 /// Loop Info analysis. 1477 LoopInfo *LI; 1478 1479 /// Vectorization legality. 1480 LoopVectorizationLegality *Legal; 1481 1482 /// Vector target information. 1483 const TargetTransformInfo &TTI; 1484 1485 /// Target Library Info. 1486 const TargetLibraryInfo *TLI; 1487 1488 /// Demanded bits analysis. 1489 DemandedBits *DB; 1490 1491 /// Assumption cache. 1492 AssumptionCache *AC; 1493 1494 /// Interface to emit optimization remarks. 1495 OptimizationRemarkEmitter *ORE; 1496 1497 const Function *TheFunction; 1498 1499 /// Loop Vectorize Hint. 1500 const LoopVectorizeHints *Hints; 1501 1502 /// The interleave access information contains groups of interleaved accesses 1503 /// with the same stride and close to each other. 1504 InterleavedAccessInfo &InterleaveInfo; 1505 1506 /// Values to ignore in the cost model. 1507 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1508 1509 /// Values to ignore in the cost model when VF > 1. 1510 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1511 }; 1512 1513 } // end namespace llvm 1514 1515 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1516 // vectorization. The loop needs to be annotated with #pragma omp simd 1517 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1518 // vector length information is not provided, vectorization is not considered 1519 // explicit. Interleave hints are not allowed either. These limitations will be 1520 // relaxed in the future. 1521 // Please, note that we are currently forced to abuse the pragma 'clang 1522 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1523 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1524 // provides *explicit vectorization hints* (LV can bypass legal checks and 1525 // assume that vectorization is legal). However, both hints are implemented 1526 // using the same metadata (llvm.loop.vectorize, processed by 1527 // LoopVectorizeHints). This will be fixed in the future when the native IR 1528 // representation for pragma 'omp simd' is introduced. 1529 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1530 OptimizationRemarkEmitter *ORE) { 1531 assert(!OuterLp->empty() && "This is not an outer loop"); 1532 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1533 1534 // Only outer loops with an explicit vectorization hint are supported. 1535 // Unannotated outer loops are ignored. 1536 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1537 return false; 1538 1539 Function *Fn = OuterLp->getHeader()->getParent(); 1540 if (!Hints.allowVectorization(Fn, OuterLp, 1541 true /*VectorizeOnlyWhenForced*/)) { 1542 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1543 return false; 1544 } 1545 1546 if (Hints.getInterleave() > 1) { 1547 // TODO: Interleave support is future work. 1548 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1549 "outer loops.\n"); 1550 Hints.emitRemarkWithHints(); 1551 return false; 1552 } 1553 1554 return true; 1555 } 1556 1557 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1558 OptimizationRemarkEmitter *ORE, 1559 SmallVectorImpl<Loop *> &V) { 1560 // Collect inner loops and outer loops without irreducible control flow. For 1561 // now, only collect outer loops that have explicit vectorization hints. If we 1562 // are stress testing the VPlan H-CFG construction, we collect the outermost 1563 // loop of every loop nest. 1564 if (L.empty() || VPlanBuildStressTest || 1565 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1566 LoopBlocksRPO RPOT(&L); 1567 RPOT.perform(LI); 1568 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1569 V.push_back(&L); 1570 // TODO: Collect inner loops inside marked outer loops in case 1571 // vectorization fails for the outer loop. Do not invoke 1572 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1573 // already known to be reducible. We can use an inherited attribute for 1574 // that. 1575 return; 1576 } 1577 } 1578 for (Loop *InnerL : L) 1579 collectSupportedLoops(*InnerL, LI, ORE, V); 1580 } 1581 1582 namespace { 1583 1584 /// The LoopVectorize Pass. 1585 struct LoopVectorize : public FunctionPass { 1586 /// Pass identification, replacement for typeid 1587 static char ID; 1588 1589 LoopVectorizePass Impl; 1590 1591 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1592 bool VectorizeOnlyWhenForced = false) 1593 : FunctionPass(ID) { 1594 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1595 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1596 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1597 } 1598 1599 bool runOnFunction(Function &F) override { 1600 if (skipFunction(F)) 1601 return false; 1602 1603 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1604 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1605 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1606 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1607 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1608 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1609 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1610 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1611 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1612 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1613 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1614 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1615 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1616 1617 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1618 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1619 1620 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1621 GetLAA, *ORE, PSI); 1622 } 1623 1624 void getAnalysisUsage(AnalysisUsage &AU) const override { 1625 AU.addRequired<AssumptionCacheTracker>(); 1626 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1627 AU.addRequired<DominatorTreeWrapperPass>(); 1628 AU.addRequired<LoopInfoWrapperPass>(); 1629 AU.addRequired<ScalarEvolutionWrapperPass>(); 1630 AU.addRequired<TargetTransformInfoWrapperPass>(); 1631 AU.addRequired<AAResultsWrapperPass>(); 1632 AU.addRequired<LoopAccessLegacyAnalysis>(); 1633 AU.addRequired<DemandedBitsWrapperPass>(); 1634 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1635 AU.addRequired<InjectTLIMappingsLegacy>(); 1636 1637 // We currently do not preserve loopinfo/dominator analyses with outer loop 1638 // vectorization. Until this is addressed, mark these analyses as preserved 1639 // only for non-VPlan-native path. 1640 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1641 if (!EnableVPlanNativePath) { 1642 AU.addPreserved<LoopInfoWrapperPass>(); 1643 AU.addPreserved<DominatorTreeWrapperPass>(); 1644 } 1645 1646 AU.addPreserved<BasicAAWrapperPass>(); 1647 AU.addPreserved<GlobalsAAWrapperPass>(); 1648 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1649 } 1650 }; 1651 1652 } // end anonymous namespace 1653 1654 //===----------------------------------------------------------------------===// 1655 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1656 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1657 //===----------------------------------------------------------------------===// 1658 1659 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1660 // We need to place the broadcast of invariant variables outside the loop, 1661 // but only if it's proven safe to do so. Else, broadcast will be inside 1662 // vector loop body. 1663 Instruction *Instr = dyn_cast<Instruction>(V); 1664 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1665 (!Instr || 1666 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1667 // Place the code for broadcasting invariant variables in the new preheader. 1668 IRBuilder<>::InsertPointGuard Guard(Builder); 1669 if (SafeToHoist) 1670 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1671 1672 // Broadcast the scalar into all locations in the vector. 1673 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1674 1675 return Shuf; 1676 } 1677 1678 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1679 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1680 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1681 "Expected either an induction phi-node or a truncate of it!"); 1682 Value *Start = II.getStartValue(); 1683 1684 // Construct the initial value of the vector IV in the vector loop preheader 1685 auto CurrIP = Builder.saveIP(); 1686 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1687 if (isa<TruncInst>(EntryVal)) { 1688 assert(Start->getType()->isIntegerTy() && 1689 "Truncation requires an integer type"); 1690 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1691 Step = Builder.CreateTrunc(Step, TruncType); 1692 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1693 } 1694 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1695 Value *SteppedStart = 1696 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1697 1698 // We create vector phi nodes for both integer and floating-point induction 1699 // variables. Here, we determine the kind of arithmetic we will perform. 1700 Instruction::BinaryOps AddOp; 1701 Instruction::BinaryOps MulOp; 1702 if (Step->getType()->isIntegerTy()) { 1703 AddOp = Instruction::Add; 1704 MulOp = Instruction::Mul; 1705 } else { 1706 AddOp = II.getInductionOpcode(); 1707 MulOp = Instruction::FMul; 1708 } 1709 1710 // Multiply the vectorization factor by the step using integer or 1711 // floating-point arithmetic as appropriate. 1712 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1713 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1714 1715 // Create a vector splat to use in the induction update. 1716 // 1717 // FIXME: If the step is non-constant, we create the vector splat with 1718 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1719 // handle a constant vector splat. 1720 Value *SplatVF = isa<Constant>(Mul) 1721 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1722 : Builder.CreateVectorSplat(VF, Mul); 1723 Builder.restoreIP(CurrIP); 1724 1725 // We may need to add the step a number of times, depending on the unroll 1726 // factor. The last of those goes into the PHI. 1727 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1728 &*LoopVectorBody->getFirstInsertionPt()); 1729 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1730 Instruction *LastInduction = VecInd; 1731 for (unsigned Part = 0; Part < UF; ++Part) { 1732 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1733 1734 if (isa<TruncInst>(EntryVal)) 1735 addMetadata(LastInduction, EntryVal); 1736 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1737 1738 LastInduction = cast<Instruction>(addFastMathFlag( 1739 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1740 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1741 } 1742 1743 // Move the last step to the end of the latch block. This ensures consistent 1744 // placement of all induction updates. 1745 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1746 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1747 auto *ICmp = cast<Instruction>(Br->getCondition()); 1748 LastInduction->moveBefore(ICmp); 1749 LastInduction->setName("vec.ind.next"); 1750 1751 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1752 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1753 } 1754 1755 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1756 return Cost->isScalarAfterVectorization(I, VF) || 1757 Cost->isProfitableToScalarize(I, VF); 1758 } 1759 1760 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1761 if (shouldScalarizeInstruction(IV)) 1762 return true; 1763 auto isScalarInst = [&](User *U) -> bool { 1764 auto *I = cast<Instruction>(U); 1765 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1766 }; 1767 return llvm::any_of(IV->users(), isScalarInst); 1768 } 1769 1770 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1771 const InductionDescriptor &ID, const Instruction *EntryVal, 1772 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1773 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1774 "Expected either an induction phi-node or a truncate of it!"); 1775 1776 // This induction variable is not the phi from the original loop but the 1777 // newly-created IV based on the proof that casted Phi is equal to the 1778 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1779 // re-uses the same InductionDescriptor that original IV uses but we don't 1780 // have to do any recording in this case - that is done when original IV is 1781 // processed. 1782 if (isa<TruncInst>(EntryVal)) 1783 return; 1784 1785 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1786 if (Casts.empty()) 1787 return; 1788 // Only the first Cast instruction in the Casts vector is of interest. 1789 // The rest of the Casts (if exist) have no uses outside the 1790 // induction update chain itself. 1791 Instruction *CastInst = *Casts.begin(); 1792 if (Lane < UINT_MAX) 1793 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1794 else 1795 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1796 } 1797 1798 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1799 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1800 "Primary induction variable must have an integer type"); 1801 1802 auto II = Legal->getInductionVars()->find(IV); 1803 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1804 1805 auto ID = II->second; 1806 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1807 1808 // The scalar value to broadcast. This will be derived from the canonical 1809 // induction variable. 1810 Value *ScalarIV = nullptr; 1811 1812 // The value from the original loop to which we are mapping the new induction 1813 // variable. 1814 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1815 1816 // True if we have vectorized the induction variable. 1817 auto VectorizedIV = false; 1818 1819 // Determine if we want a scalar version of the induction variable. This is 1820 // true if the induction variable itself is not widened, or if it has at 1821 // least one user in the loop that is not widened. 1822 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1823 1824 // Generate code for the induction step. Note that induction steps are 1825 // required to be loop-invariant 1826 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1827 "Induction step should be loop invariant"); 1828 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1829 Value *Step = nullptr; 1830 if (PSE.getSE()->isSCEVable(IV->getType())) { 1831 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1832 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1833 LoopVectorPreHeader->getTerminator()); 1834 } else { 1835 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1836 } 1837 1838 // Try to create a new independent vector induction variable. If we can't 1839 // create the phi node, we will splat the scalar induction variable in each 1840 // loop iteration. 1841 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1842 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1843 VectorizedIV = true; 1844 } 1845 1846 // If we haven't yet vectorized the induction variable, or if we will create 1847 // a scalar one, we need to define the scalar induction variable and step 1848 // values. If we were given a truncation type, truncate the canonical 1849 // induction variable and step. Otherwise, derive these values from the 1850 // induction descriptor. 1851 if (!VectorizedIV || NeedsScalarIV) { 1852 ScalarIV = Induction; 1853 if (IV != OldInduction) { 1854 ScalarIV = IV->getType()->isIntegerTy() 1855 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1856 : Builder.CreateCast(Instruction::SIToFP, Induction, 1857 IV->getType()); 1858 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1859 ScalarIV->setName("offset.idx"); 1860 } 1861 if (Trunc) { 1862 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1863 assert(Step->getType()->isIntegerTy() && 1864 "Truncation requires an integer step"); 1865 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1866 Step = Builder.CreateTrunc(Step, TruncType); 1867 } 1868 } 1869 1870 // If we haven't yet vectorized the induction variable, splat the scalar 1871 // induction variable, and build the necessary step vectors. 1872 // TODO: Don't do it unless the vectorized IV is really required. 1873 if (!VectorizedIV) { 1874 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1875 for (unsigned Part = 0; Part < UF; ++Part) { 1876 Value *EntryPart = 1877 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1878 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1879 if (Trunc) 1880 addMetadata(EntryPart, Trunc); 1881 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1882 } 1883 } 1884 1885 // If an induction variable is only used for counting loop iterations or 1886 // calculating addresses, it doesn't need to be widened. Create scalar steps 1887 // that can be used by instructions we will later scalarize. Note that the 1888 // addition of the scalar steps will not increase the number of instructions 1889 // in the loop in the common case prior to InstCombine. We will be trading 1890 // one vector extract for each scalar step. 1891 if (NeedsScalarIV) 1892 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1893 } 1894 1895 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1896 Instruction::BinaryOps BinOp) { 1897 // Create and check the types. 1898 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1899 int VLen = Val->getType()->getVectorNumElements(); 1900 1901 Type *STy = Val->getType()->getScalarType(); 1902 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1903 "Induction Step must be an integer or FP"); 1904 assert(Step->getType() == STy && "Step has wrong type"); 1905 1906 SmallVector<Constant *, 8> Indices; 1907 1908 if (STy->isIntegerTy()) { 1909 // Create a vector of consecutive numbers from zero to VF. 1910 for (int i = 0; i < VLen; ++i) 1911 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1912 1913 // Add the consecutive indices to the vector value. 1914 Constant *Cv = ConstantVector::get(Indices); 1915 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1916 Step = Builder.CreateVectorSplat(VLen, Step); 1917 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1918 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1919 // which can be found from the original scalar operations. 1920 Step = Builder.CreateMul(Cv, Step); 1921 return Builder.CreateAdd(Val, Step, "induction"); 1922 } 1923 1924 // Floating point induction. 1925 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1926 "Binary Opcode should be specified for FP induction"); 1927 // Create a vector of consecutive numbers from zero to VF. 1928 for (int i = 0; i < VLen; ++i) 1929 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1930 1931 // Add the consecutive indices to the vector value. 1932 Constant *Cv = ConstantVector::get(Indices); 1933 1934 Step = Builder.CreateVectorSplat(VLen, Step); 1935 1936 // Floating point operations had to be 'fast' to enable the induction. 1937 FastMathFlags Flags; 1938 Flags.setFast(); 1939 1940 Value *MulOp = Builder.CreateFMul(Cv, Step); 1941 if (isa<Instruction>(MulOp)) 1942 // Have to check, MulOp may be a constant 1943 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1944 1945 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1946 if (isa<Instruction>(BOp)) 1947 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1948 return BOp; 1949 } 1950 1951 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1952 Instruction *EntryVal, 1953 const InductionDescriptor &ID) { 1954 // We shouldn't have to build scalar steps if we aren't vectorizing. 1955 assert(VF > 1 && "VF should be greater than one"); 1956 1957 // Get the value type and ensure it and the step have the same integer type. 1958 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1959 assert(ScalarIVTy == Step->getType() && 1960 "Val and Step should have the same type"); 1961 1962 // We build scalar steps for both integer and floating-point induction 1963 // variables. Here, we determine the kind of arithmetic we will perform. 1964 Instruction::BinaryOps AddOp; 1965 Instruction::BinaryOps MulOp; 1966 if (ScalarIVTy->isIntegerTy()) { 1967 AddOp = Instruction::Add; 1968 MulOp = Instruction::Mul; 1969 } else { 1970 AddOp = ID.getInductionOpcode(); 1971 MulOp = Instruction::FMul; 1972 } 1973 1974 // Determine the number of scalars we need to generate for each unroll 1975 // iteration. If EntryVal is uniform, we only need to generate the first 1976 // lane. Otherwise, we generate all VF values. 1977 unsigned Lanes = 1978 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1979 : VF; 1980 // Compute the scalar steps and save the results in VectorLoopValueMap. 1981 for (unsigned Part = 0; Part < UF; ++Part) { 1982 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1983 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1984 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1985 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1986 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1987 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1988 } 1989 } 1990 } 1991 1992 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1993 assert(V != Induction && "The new induction variable should not be used."); 1994 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1995 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1996 1997 // If we have a stride that is replaced by one, do it here. Defer this for 1998 // the VPlan-native path until we start running Legal checks in that path. 1999 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2000 V = ConstantInt::get(V->getType(), 1); 2001 2002 // If we have a vector mapped to this value, return it. 2003 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2004 return VectorLoopValueMap.getVectorValue(V, Part); 2005 2006 // If the value has not been vectorized, check if it has been scalarized 2007 // instead. If it has been scalarized, and we actually need the value in 2008 // vector form, we will construct the vector values on demand. 2009 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2010 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2011 2012 // If we've scalarized a value, that value should be an instruction. 2013 auto *I = cast<Instruction>(V); 2014 2015 // If we aren't vectorizing, we can just copy the scalar map values over to 2016 // the vector map. 2017 if (VF == 1) { 2018 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2019 return ScalarValue; 2020 } 2021 2022 // Get the last scalar instruction we generated for V and Part. If the value 2023 // is known to be uniform after vectorization, this corresponds to lane zero 2024 // of the Part unroll iteration. Otherwise, the last instruction is the one 2025 // we created for the last vector lane of the Part unroll iteration. 2026 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2027 auto *LastInst = cast<Instruction>( 2028 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2029 2030 // Set the insert point after the last scalarized instruction. This ensures 2031 // the insertelement sequence will directly follow the scalar definitions. 2032 auto OldIP = Builder.saveIP(); 2033 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2034 Builder.SetInsertPoint(&*NewIP); 2035 2036 // However, if we are vectorizing, we need to construct the vector values. 2037 // If the value is known to be uniform after vectorization, we can just 2038 // broadcast the scalar value corresponding to lane zero for each unroll 2039 // iteration. Otherwise, we construct the vector values using insertelement 2040 // instructions. Since the resulting vectors are stored in 2041 // VectorLoopValueMap, we will only generate the insertelements once. 2042 Value *VectorValue = nullptr; 2043 if (Cost->isUniformAfterVectorization(I, VF)) { 2044 VectorValue = getBroadcastInstrs(ScalarValue); 2045 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2046 } else { 2047 // Initialize packing with insertelements to start from undef. 2048 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2049 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2050 for (unsigned Lane = 0; Lane < VF; ++Lane) 2051 packScalarIntoVectorValue(V, {Part, Lane}); 2052 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2053 } 2054 Builder.restoreIP(OldIP); 2055 return VectorValue; 2056 } 2057 2058 // If this scalar is unknown, assume that it is a constant or that it is 2059 // loop invariant. Broadcast V and save the value for future uses. 2060 Value *B = getBroadcastInstrs(V); 2061 VectorLoopValueMap.setVectorValue(V, Part, B); 2062 return B; 2063 } 2064 2065 Value * 2066 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2067 const VPIteration &Instance) { 2068 // If the value is not an instruction contained in the loop, it should 2069 // already be scalar. 2070 if (OrigLoop->isLoopInvariant(V)) 2071 return V; 2072 2073 assert(Instance.Lane > 0 2074 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2075 : true && "Uniform values only have lane zero"); 2076 2077 // If the value from the original loop has not been vectorized, it is 2078 // represented by UF x VF scalar values in the new loop. Return the requested 2079 // scalar value. 2080 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2081 return VectorLoopValueMap.getScalarValue(V, Instance); 2082 2083 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2084 // for the given unroll part. If this entry is not a vector type (i.e., the 2085 // vectorization factor is one), there is no need to generate an 2086 // extractelement instruction. 2087 auto *U = getOrCreateVectorValue(V, Instance.Part); 2088 if (!U->getType()->isVectorTy()) { 2089 assert(VF == 1 && "Value not scalarized has non-vector type"); 2090 return U; 2091 } 2092 2093 // Otherwise, the value from the original loop has been vectorized and is 2094 // represented by UF vector values. Extract and return the requested scalar 2095 // value from the appropriate vector lane. 2096 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2097 } 2098 2099 void InnerLoopVectorizer::packScalarIntoVectorValue( 2100 Value *V, const VPIteration &Instance) { 2101 assert(V != Induction && "The new induction variable should not be used."); 2102 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2103 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2104 2105 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2106 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2107 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2108 Builder.getInt32(Instance.Lane)); 2109 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2110 } 2111 2112 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2113 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2114 SmallVector<Constant *, 8> ShuffleMask; 2115 for (unsigned i = 0; i < VF; ++i) 2116 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2117 2118 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2119 ConstantVector::get(ShuffleMask), 2120 "reverse"); 2121 } 2122 2123 // Return whether we allow using masked interleave-groups (for dealing with 2124 // strided loads/stores that reside in predicated blocks, or for dealing 2125 // with gaps). 2126 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2127 // If an override option has been passed in for interleaved accesses, use it. 2128 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2129 return EnableMaskedInterleavedMemAccesses; 2130 2131 return TTI.enableMaskedInterleavedAccessVectorization(); 2132 } 2133 2134 // Try to vectorize the interleave group that \p Instr belongs to. 2135 // 2136 // E.g. Translate following interleaved load group (factor = 3): 2137 // for (i = 0; i < N; i+=3) { 2138 // R = Pic[i]; // Member of index 0 2139 // G = Pic[i+1]; // Member of index 1 2140 // B = Pic[i+2]; // Member of index 2 2141 // ... // do something to R, G, B 2142 // } 2143 // To: 2144 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2145 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2146 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2147 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2148 // 2149 // Or translate following interleaved store group (factor = 3): 2150 // for (i = 0; i < N; i+=3) { 2151 // ... do something to R, G, B 2152 // Pic[i] = R; // Member of index 0 2153 // Pic[i+1] = G; // Member of index 1 2154 // Pic[i+2] = B; // Member of index 2 2155 // } 2156 // To: 2157 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2158 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2159 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2160 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2161 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2162 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2163 VPTransformState &State, 2164 VPValue *Addr, 2165 VPValue *BlockInMask) { 2166 const InterleaveGroup<Instruction> *Group = 2167 Cost->getInterleavedAccessGroup(Instr); 2168 assert(Group && "Fail to get an interleaved access group."); 2169 2170 // Skip if current instruction is not the insert position. 2171 if (Instr != Group->getInsertPos()) 2172 return; 2173 2174 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2175 2176 // Prepare for the vector type of the interleaved load/store. 2177 Type *ScalarTy = getMemInstValueType(Instr); 2178 unsigned InterleaveFactor = Group->getFactor(); 2179 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2180 2181 // Prepare for the new pointers. 2182 SmallVector<Value *, 2> AddrParts; 2183 unsigned Index = Group->getIndex(Instr); 2184 2185 // TODO: extend the masked interleaved-group support to reversed access. 2186 assert((!BlockInMask || !Group->isReverse()) && 2187 "Reversed masked interleave-group not supported."); 2188 2189 // If the group is reverse, adjust the index to refer to the last vector lane 2190 // instead of the first. We adjust the index from the first vector lane, 2191 // rather than directly getting the pointer for lane VF - 1, because the 2192 // pointer operand of the interleaved access is supposed to be uniform. For 2193 // uniform instructions, we're only required to generate a value for the 2194 // first vector lane in each unroll iteration. 2195 if (Group->isReverse()) 2196 Index += (VF - 1) * Group->getFactor(); 2197 2198 for (unsigned Part = 0; Part < UF; Part++) { 2199 Value *AddrPart = State.get(Addr, {Part, 0}); 2200 setDebugLocFromInst(Builder, AddrPart); 2201 2202 // Notice current instruction could be any index. Need to adjust the address 2203 // to the member of index 0. 2204 // 2205 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2206 // b = A[i]; // Member of index 0 2207 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2208 // 2209 // E.g. A[i+1] = a; // Member of index 1 2210 // A[i] = b; // Member of index 0 2211 // A[i+2] = c; // Member of index 2 (Current instruction) 2212 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2213 2214 bool InBounds = false; 2215 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2216 InBounds = gep->isInBounds(); 2217 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2218 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2219 2220 // Cast to the vector pointer type. 2221 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2222 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2223 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2224 } 2225 2226 setDebugLocFromInst(Builder, Instr); 2227 Value *UndefVec = UndefValue::get(VecTy); 2228 2229 Value *MaskForGaps = nullptr; 2230 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2231 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2232 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2233 } 2234 2235 // Vectorize the interleaved load group. 2236 if (isa<LoadInst>(Instr)) { 2237 // For each unroll part, create a wide load for the group. 2238 SmallVector<Value *, 2> NewLoads; 2239 for (unsigned Part = 0; Part < UF; Part++) { 2240 Instruction *NewLoad; 2241 if (BlockInMask || MaskForGaps) { 2242 assert(useMaskedInterleavedAccesses(*TTI) && 2243 "masked interleaved groups are not allowed."); 2244 Value *GroupMask = MaskForGaps; 2245 if (BlockInMask) { 2246 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2247 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2248 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2249 Value *ShuffledMask = Builder.CreateShuffleVector( 2250 BlockInMaskPart, Undefs, RepMask, "interleaved.mask"); 2251 GroupMask = MaskForGaps 2252 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2253 MaskForGaps) 2254 : ShuffledMask; 2255 } 2256 NewLoad = 2257 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2258 GroupMask, UndefVec, "wide.masked.vec"); 2259 } 2260 else 2261 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2262 Group->getAlign(), "wide.vec"); 2263 Group->addMetadata(NewLoad); 2264 NewLoads.push_back(NewLoad); 2265 } 2266 2267 // For each member in the group, shuffle out the appropriate data from the 2268 // wide loads. 2269 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2270 Instruction *Member = Group->getMember(I); 2271 2272 // Skip the gaps in the group. 2273 if (!Member) 2274 continue; 2275 2276 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2277 for (unsigned Part = 0; Part < UF; Part++) { 2278 Value *StridedVec = Builder.CreateShuffleVector( 2279 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2280 2281 // If this member has different type, cast the result type. 2282 if (Member->getType() != ScalarTy) { 2283 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2284 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2285 } 2286 2287 if (Group->isReverse()) 2288 StridedVec = reverseVector(StridedVec); 2289 2290 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2291 } 2292 } 2293 return; 2294 } 2295 2296 // The sub vector type for current instruction. 2297 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2298 2299 // Vectorize the interleaved store group. 2300 for (unsigned Part = 0; Part < UF; Part++) { 2301 // Collect the stored vector from each member. 2302 SmallVector<Value *, 4> StoredVecs; 2303 for (unsigned i = 0; i < InterleaveFactor; i++) { 2304 // Interleaved store group doesn't allow a gap, so each index has a member 2305 Instruction *Member = Group->getMember(i); 2306 assert(Member && "Fail to get a member from an interleaved store group"); 2307 2308 Value *StoredVec = getOrCreateVectorValue( 2309 cast<StoreInst>(Member)->getValueOperand(), Part); 2310 if (Group->isReverse()) 2311 StoredVec = reverseVector(StoredVec); 2312 2313 // If this member has different type, cast it to a unified type. 2314 2315 if (StoredVec->getType() != SubVT) 2316 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2317 2318 StoredVecs.push_back(StoredVec); 2319 } 2320 2321 // Concatenate all vectors into a wide vector. 2322 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2323 2324 // Interleave the elements in the wide vector. 2325 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2326 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2327 "interleaved.vec"); 2328 2329 Instruction *NewStoreInstr; 2330 if (BlockInMask) { 2331 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2332 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2333 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2334 Value *ShuffledMask = Builder.CreateShuffleVector( 2335 BlockInMaskPart, Undefs, RepMask, "interleaved.mask"); 2336 NewStoreInstr = Builder.CreateMaskedStore( 2337 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2338 } 2339 else 2340 NewStoreInstr = 2341 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2342 2343 Group->addMetadata(NewStoreInstr); 2344 } 2345 } 2346 2347 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2348 VPTransformState &State, 2349 VPValue *Addr, 2350 VPValue *BlockInMask) { 2351 // Attempt to issue a wide load. 2352 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2353 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2354 2355 assert((LI || SI) && "Invalid Load/Store instruction"); 2356 2357 LoopVectorizationCostModel::InstWidening Decision = 2358 Cost->getWideningDecision(Instr, VF); 2359 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2360 "CM decision should be taken at this point"); 2361 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2362 return vectorizeInterleaveGroup(Instr, State, Addr, BlockInMask); 2363 2364 Type *ScalarDataTy = getMemInstValueType(Instr); 2365 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2366 // An alignment of 0 means target abi alignment. We need to use the scalar's 2367 // target abi alignment in such a case. 2368 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2369 const Align Alignment = 2370 DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy); 2371 2372 // Determine if the pointer operand of the access is either consecutive or 2373 // reverse consecutive. 2374 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2375 bool ConsecutiveStride = 2376 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2377 bool CreateGatherScatter = 2378 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2379 2380 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2381 // gather/scatter. Otherwise Decision should have been to Scalarize. 2382 assert((ConsecutiveStride || CreateGatherScatter) && 2383 "The instruction should be scalarized"); 2384 (void)ConsecutiveStride; 2385 2386 VectorParts BlockInMaskParts(UF); 2387 bool isMaskRequired = BlockInMask; 2388 if (isMaskRequired) 2389 for (unsigned Part = 0; Part < UF; ++Part) 2390 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2391 2392 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2393 // Calculate the pointer for the specific unroll-part. 2394 GetElementPtrInst *PartPtr = nullptr; 2395 2396 bool InBounds = false; 2397 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2398 InBounds = gep->isInBounds(); 2399 2400 if (Reverse) { 2401 // If the address is consecutive but reversed, then the 2402 // wide store needs to start at the last vector element. 2403 PartPtr = cast<GetElementPtrInst>( 2404 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2405 PartPtr->setIsInBounds(InBounds); 2406 PartPtr = cast<GetElementPtrInst>( 2407 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2408 PartPtr->setIsInBounds(InBounds); 2409 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2410 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2411 } else { 2412 PartPtr = cast<GetElementPtrInst>( 2413 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2414 PartPtr->setIsInBounds(InBounds); 2415 } 2416 2417 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2418 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2419 }; 2420 2421 // Handle Stores: 2422 if (SI) { 2423 setDebugLocFromInst(Builder, SI); 2424 2425 for (unsigned Part = 0; Part < UF; ++Part) { 2426 Instruction *NewSI = nullptr; 2427 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2428 if (CreateGatherScatter) { 2429 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2430 Value *VectorGep = State.get(Addr, Part); 2431 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2432 MaskPart); 2433 } else { 2434 if (Reverse) { 2435 // If we store to reverse consecutive memory locations, then we need 2436 // to reverse the order of elements in the stored value. 2437 StoredVal = reverseVector(StoredVal); 2438 // We don't want to update the value in the map as it might be used in 2439 // another expression. So don't call resetVectorValue(StoredVal). 2440 } 2441 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2442 if (isMaskRequired) 2443 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2444 BlockInMaskParts[Part]); 2445 else 2446 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2447 } 2448 addMetadata(NewSI, SI); 2449 } 2450 return; 2451 } 2452 2453 // Handle loads. 2454 assert(LI && "Must have a load instruction"); 2455 setDebugLocFromInst(Builder, LI); 2456 for (unsigned Part = 0; Part < UF; ++Part) { 2457 Value *NewLI; 2458 if (CreateGatherScatter) { 2459 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2460 Value *VectorGep = State.get(Addr, Part); 2461 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2462 nullptr, "wide.masked.gather"); 2463 addMetadata(NewLI, LI); 2464 } else { 2465 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2466 if (isMaskRequired) 2467 NewLI = Builder.CreateMaskedLoad( 2468 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2469 "wide.masked.load"); 2470 else 2471 NewLI = 2472 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2473 2474 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2475 addMetadata(NewLI, LI); 2476 if (Reverse) 2477 NewLI = reverseVector(NewLI); 2478 } 2479 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2480 } 2481 } 2482 2483 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2484 const VPIteration &Instance, 2485 bool IfPredicateInstr) { 2486 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2487 2488 setDebugLocFromInst(Builder, Instr); 2489 2490 // Does this instruction return a value ? 2491 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2492 2493 Instruction *Cloned = Instr->clone(); 2494 if (!IsVoidRetTy) 2495 Cloned->setName(Instr->getName() + ".cloned"); 2496 2497 // Replace the operands of the cloned instructions with their scalar 2498 // equivalents in the new loop. 2499 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2500 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2501 Cloned->setOperand(op, NewOp); 2502 } 2503 addNewMetadata(Cloned, Instr); 2504 2505 // Place the cloned scalar in the new loop. 2506 Builder.Insert(Cloned); 2507 2508 // Add the cloned scalar to the scalar map entry. 2509 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2510 2511 // If we just cloned a new assumption, add it the assumption cache. 2512 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2513 if (II->getIntrinsicID() == Intrinsic::assume) 2514 AC->registerAssumption(II); 2515 2516 // End if-block. 2517 if (IfPredicateInstr) 2518 PredicatedInstructions.push_back(Cloned); 2519 } 2520 2521 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2522 Value *End, Value *Step, 2523 Instruction *DL) { 2524 BasicBlock *Header = L->getHeader(); 2525 BasicBlock *Latch = L->getLoopLatch(); 2526 // As we're just creating this loop, it's possible no latch exists 2527 // yet. If so, use the header as this will be a single block loop. 2528 if (!Latch) 2529 Latch = Header; 2530 2531 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2532 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2533 setDebugLocFromInst(Builder, OldInst); 2534 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2535 2536 Builder.SetInsertPoint(Latch->getTerminator()); 2537 setDebugLocFromInst(Builder, OldInst); 2538 2539 // Create i+1 and fill the PHINode. 2540 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2541 Induction->addIncoming(Start, L->getLoopPreheader()); 2542 Induction->addIncoming(Next, Latch); 2543 // Create the compare. 2544 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2545 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2546 2547 // Now we have two terminators. Remove the old one from the block. 2548 Latch->getTerminator()->eraseFromParent(); 2549 2550 return Induction; 2551 } 2552 2553 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2554 if (TripCount) 2555 return TripCount; 2556 2557 assert(L && "Create Trip Count for null loop."); 2558 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2559 // Find the loop boundaries. 2560 ScalarEvolution *SE = PSE.getSE(); 2561 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2562 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2563 "Invalid loop count"); 2564 2565 Type *IdxTy = Legal->getWidestInductionType(); 2566 assert(IdxTy && "No type for induction"); 2567 2568 // The exit count might have the type of i64 while the phi is i32. This can 2569 // happen if we have an induction variable that is sign extended before the 2570 // compare. The only way that we get a backedge taken count is that the 2571 // induction variable was signed and as such will not overflow. In such a case 2572 // truncation is legal. 2573 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2574 IdxTy->getPrimitiveSizeInBits()) 2575 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2576 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2577 2578 // Get the total trip count from the count by adding 1. 2579 const SCEV *ExitCount = SE->getAddExpr( 2580 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2581 2582 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2583 2584 // Expand the trip count and place the new instructions in the preheader. 2585 // Notice that the pre-header does not change, only the loop body. 2586 SCEVExpander Exp(*SE, DL, "induction"); 2587 2588 // Count holds the overall loop count (N). 2589 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2590 L->getLoopPreheader()->getTerminator()); 2591 2592 if (TripCount->getType()->isPointerTy()) 2593 TripCount = 2594 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2595 L->getLoopPreheader()->getTerminator()); 2596 2597 return TripCount; 2598 } 2599 2600 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2601 if (VectorTripCount) 2602 return VectorTripCount; 2603 2604 Value *TC = getOrCreateTripCount(L); 2605 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2606 2607 Type *Ty = TC->getType(); 2608 Constant *Step = ConstantInt::get(Ty, VF * UF); 2609 2610 // If the tail is to be folded by masking, round the number of iterations N 2611 // up to a multiple of Step instead of rounding down. This is done by first 2612 // adding Step-1 and then rounding down. Note that it's ok if this addition 2613 // overflows: the vector induction variable will eventually wrap to zero given 2614 // that it starts at zero and its Step is a power of two; the loop will then 2615 // exit, with the last early-exit vector comparison also producing all-true. 2616 if (Cost->foldTailByMasking()) { 2617 assert(isPowerOf2_32(VF * UF) && 2618 "VF*UF must be a power of 2 when folding tail by masking"); 2619 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2620 } 2621 2622 // Now we need to generate the expression for the part of the loop that the 2623 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2624 // iterations are not required for correctness, or N - Step, otherwise. Step 2625 // is equal to the vectorization factor (number of SIMD elements) times the 2626 // unroll factor (number of SIMD instructions). 2627 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2628 2629 // If there is a non-reversed interleaved group that may speculatively access 2630 // memory out-of-bounds, we need to ensure that there will be at least one 2631 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2632 // the trip count, we set the remainder to be equal to the step. If the step 2633 // does not evenly divide the trip count, no adjustment is necessary since 2634 // there will already be scalar iterations. Note that the minimum iterations 2635 // check ensures that N >= Step. 2636 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2637 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2638 R = Builder.CreateSelect(IsZero, Step, R); 2639 } 2640 2641 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2642 2643 return VectorTripCount; 2644 } 2645 2646 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2647 const DataLayout &DL) { 2648 // Verify that V is a vector type with same number of elements as DstVTy. 2649 unsigned VF = DstVTy->getNumElements(); 2650 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2651 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2652 Type *SrcElemTy = SrcVecTy->getElementType(); 2653 Type *DstElemTy = DstVTy->getElementType(); 2654 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2655 "Vector elements must have same size"); 2656 2657 // Do a direct cast if element types are castable. 2658 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2659 return Builder.CreateBitOrPointerCast(V, DstVTy); 2660 } 2661 // V cannot be directly casted to desired vector type. 2662 // May happen when V is a floating point vector but DstVTy is a vector of 2663 // pointers or vice-versa. Handle this using a two-step bitcast using an 2664 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2665 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2666 "Only one type should be a pointer type"); 2667 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2668 "Only one type should be a floating point type"); 2669 Type *IntTy = 2670 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2671 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2672 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2673 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2674 } 2675 2676 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2677 BasicBlock *Bypass) { 2678 Value *Count = getOrCreateTripCount(L); 2679 // Reuse existing vector loop preheader for TC checks. 2680 // Note that new preheader block is generated for vector loop. 2681 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2682 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2683 2684 // Generate code to check if the loop's trip count is less than VF * UF, or 2685 // equal to it in case a scalar epilogue is required; this implies that the 2686 // vector trip count is zero. This check also covers the case where adding one 2687 // to the backedge-taken count overflowed leading to an incorrect trip count 2688 // of zero. In this case we will also jump to the scalar loop. 2689 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2690 : ICmpInst::ICMP_ULT; 2691 2692 // If tail is to be folded, vector loop takes care of all iterations. 2693 Value *CheckMinIters = Builder.getFalse(); 2694 if (!Cost->foldTailByMasking()) 2695 CheckMinIters = Builder.CreateICmp( 2696 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2697 "min.iters.check"); 2698 2699 // Create new preheader for vector loop. 2700 LoopVectorPreHeader = 2701 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2702 "vector.ph"); 2703 2704 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2705 DT->getNode(Bypass)->getIDom()) && 2706 "TC check is expected to dominate Bypass"); 2707 2708 // Update dominator for Bypass & LoopExit. 2709 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2710 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2711 2712 ReplaceInstWithInst( 2713 TCCheckBlock->getTerminator(), 2714 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2715 LoopBypassBlocks.push_back(TCCheckBlock); 2716 } 2717 2718 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2719 // Reuse existing vector loop preheader for SCEV checks. 2720 // Note that new preheader block is generated for vector loop. 2721 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2722 2723 // Generate the code to check that the SCEV assumptions that we made. 2724 // We want the new basic block to start at the first instruction in a 2725 // sequence of instructions that form a check. 2726 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2727 "scev.check"); 2728 Value *SCEVCheck = Exp.expandCodeForPredicate( 2729 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2730 2731 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2732 if (C->isZero()) 2733 return; 2734 2735 assert(!SCEVCheckBlock->getParent()->hasOptSize() && 2736 "Cannot SCEV check stride or overflow when optimizing for size"); 2737 2738 SCEVCheckBlock->setName("vector.scevcheck"); 2739 // Create new preheader for vector loop. 2740 LoopVectorPreHeader = 2741 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2742 nullptr, "vector.ph"); 2743 2744 // Update dominator only if this is first RT check. 2745 if (LoopBypassBlocks.empty()) { 2746 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2747 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2748 } 2749 2750 ReplaceInstWithInst( 2751 SCEVCheckBlock->getTerminator(), 2752 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2753 LoopBypassBlocks.push_back(SCEVCheckBlock); 2754 AddedSafetyChecks = true; 2755 } 2756 2757 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2758 // VPlan-native path does not do any analysis for runtime checks currently. 2759 if (EnableVPlanNativePath) 2760 return; 2761 2762 // Reuse existing vector loop preheader for runtime memory checks. 2763 // Note that new preheader block is generated for vector loop. 2764 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2765 2766 // Generate the code that checks in runtime if arrays overlap. We put the 2767 // checks into a separate block to make the more common case of few elements 2768 // faster. 2769 Instruction *FirstCheckInst; 2770 Instruction *MemRuntimeCheck; 2771 std::tie(FirstCheckInst, MemRuntimeCheck) = 2772 Legal->getLAI()->addRuntimeChecks(MemCheckBlock->getTerminator()); 2773 if (!MemRuntimeCheck) 2774 return; 2775 2776 if (MemCheckBlock->getParent()->hasOptSize()) { 2777 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2778 "Cannot emit memory checks when optimizing for size, unless forced " 2779 "to vectorize."); 2780 ORE->emit([&]() { 2781 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2782 L->getStartLoc(), L->getHeader()) 2783 << "Code-size may be reduced by not forcing " 2784 "vectorization, or by source-code modifications " 2785 "eliminating the need for runtime checks " 2786 "(e.g., adding 'restrict')."; 2787 }); 2788 } 2789 2790 MemCheckBlock->setName("vector.memcheck"); 2791 // Create new preheader for vector loop. 2792 LoopVectorPreHeader = 2793 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2794 "vector.ph"); 2795 2796 // Update dominator only if this is first RT check. 2797 if (LoopBypassBlocks.empty()) { 2798 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2799 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2800 } 2801 2802 ReplaceInstWithInst( 2803 MemCheckBlock->getTerminator(), 2804 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck)); 2805 LoopBypassBlocks.push_back(MemCheckBlock); 2806 AddedSafetyChecks = true; 2807 2808 // We currently don't use LoopVersioning for the actual loop cloning but we 2809 // still use it to add the noalias metadata. 2810 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2811 PSE.getSE()); 2812 LVer->prepareNoAliasMetadata(); 2813 } 2814 2815 Value *InnerLoopVectorizer::emitTransformedIndex( 2816 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2817 const InductionDescriptor &ID) const { 2818 2819 SCEVExpander Exp(*SE, DL, "induction"); 2820 auto Step = ID.getStep(); 2821 auto StartValue = ID.getStartValue(); 2822 assert(Index->getType() == Step->getType() && 2823 "Index type does not match StepValue type"); 2824 2825 // Note: the IR at this point is broken. We cannot use SE to create any new 2826 // SCEV and then expand it, hoping that SCEV's simplification will give us 2827 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2828 // lead to various SCEV crashes. So all we can do is to use builder and rely 2829 // on InstCombine for future simplifications. Here we handle some trivial 2830 // cases only. 2831 auto CreateAdd = [&B](Value *X, Value *Y) { 2832 assert(X->getType() == Y->getType() && "Types don't match!"); 2833 if (auto *CX = dyn_cast<ConstantInt>(X)) 2834 if (CX->isZero()) 2835 return Y; 2836 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2837 if (CY->isZero()) 2838 return X; 2839 return B.CreateAdd(X, Y); 2840 }; 2841 2842 auto CreateMul = [&B](Value *X, Value *Y) { 2843 assert(X->getType() == Y->getType() && "Types don't match!"); 2844 if (auto *CX = dyn_cast<ConstantInt>(X)) 2845 if (CX->isOne()) 2846 return Y; 2847 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2848 if (CY->isOne()) 2849 return X; 2850 return B.CreateMul(X, Y); 2851 }; 2852 2853 switch (ID.getKind()) { 2854 case InductionDescriptor::IK_IntInduction: { 2855 assert(Index->getType() == StartValue->getType() && 2856 "Index type does not match StartValue type"); 2857 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2858 return B.CreateSub(StartValue, Index); 2859 auto *Offset = CreateMul( 2860 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2861 return CreateAdd(StartValue, Offset); 2862 } 2863 case InductionDescriptor::IK_PtrInduction: { 2864 assert(isa<SCEVConstant>(Step) && 2865 "Expected constant step for pointer induction"); 2866 return B.CreateGEP( 2867 StartValue->getType()->getPointerElementType(), StartValue, 2868 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2869 &*B.GetInsertPoint()))); 2870 } 2871 case InductionDescriptor::IK_FpInduction: { 2872 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2873 auto InductionBinOp = ID.getInductionBinOp(); 2874 assert(InductionBinOp && 2875 (InductionBinOp->getOpcode() == Instruction::FAdd || 2876 InductionBinOp->getOpcode() == Instruction::FSub) && 2877 "Original bin op should be defined for FP induction"); 2878 2879 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2880 2881 // Floating point operations had to be 'fast' to enable the induction. 2882 FastMathFlags Flags; 2883 Flags.setFast(); 2884 2885 Value *MulExp = B.CreateFMul(StepValue, Index); 2886 if (isa<Instruction>(MulExp)) 2887 // We have to check, the MulExp may be a constant. 2888 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2889 2890 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2891 "induction"); 2892 if (isa<Instruction>(BOp)) 2893 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2894 2895 return BOp; 2896 } 2897 case InductionDescriptor::IK_NoInduction: 2898 return nullptr; 2899 } 2900 llvm_unreachable("invalid enum"); 2901 } 2902 2903 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2904 /* 2905 In this function we generate a new loop. The new loop will contain 2906 the vectorized instructions while the old loop will continue to run the 2907 scalar remainder. 2908 2909 [ ] <-- loop iteration number check. 2910 / | 2911 / v 2912 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2913 | / | 2914 | / v 2915 || [ ] <-- vector pre header. 2916 |/ | 2917 | v 2918 | [ ] \ 2919 | [ ]_| <-- vector loop. 2920 | | 2921 | v 2922 | -[ ] <--- middle-block. 2923 | / | 2924 | / v 2925 -|- >[ ] <--- new preheader. 2926 | | 2927 | v 2928 | [ ] \ 2929 | [ ]_| <-- old scalar loop to handle remainder. 2930 \ | 2931 \ v 2932 >[ ] <-- exit block. 2933 ... 2934 */ 2935 2936 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2937 2938 // Some loops have a single integer induction variable, while other loops 2939 // don't. One example is c++ iterators that often have multiple pointer 2940 // induction variables. In the code below we also support a case where we 2941 // don't have a single induction variable. 2942 // 2943 // We try to obtain an induction variable from the original loop as hard 2944 // as possible. However if we don't find one that: 2945 // - is an integer 2946 // - counts from zero, stepping by one 2947 // - is the size of the widest induction variable type 2948 // then we create a new one. 2949 OldInduction = Legal->getPrimaryInduction(); 2950 Type *IdxTy = Legal->getWidestInductionType(); 2951 2952 // Split the single block loop into the two loop structure described above. 2953 LoopScalarBody = OrigLoop->getHeader(); 2954 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 2955 LoopExitBlock = OrigLoop->getExitBlock(); 2956 assert(LoopExitBlock && "Must have an exit block"); 2957 assert(LoopVectorPreHeader && "Invalid loop structure"); 2958 2959 LoopMiddleBlock = 2960 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2961 LI, nullptr, "middle.block"); 2962 LoopScalarPreHeader = 2963 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 2964 nullptr, "scalar.ph"); 2965 // We intentionally don't let SplitBlock to update LoopInfo since 2966 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 2967 // LoopVectorBody is explicitly added to the correct place few lines later. 2968 LoopVectorBody = 2969 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2970 nullptr, nullptr, "vector.body"); 2971 2972 // Update dominator for loop exit. 2973 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 2974 2975 // Create and register the new vector loop. 2976 Loop *Lp = LI->AllocateLoop(); 2977 Loop *ParentLoop = OrigLoop->getParentLoop(); 2978 2979 // Insert the new loop into the loop nest and register the new basic blocks 2980 // before calling any utilities such as SCEV that require valid LoopInfo. 2981 if (ParentLoop) { 2982 ParentLoop->addChildLoop(Lp); 2983 } else { 2984 LI->addTopLevelLoop(Lp); 2985 } 2986 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 2987 2988 // Find the loop boundaries. 2989 Value *Count = getOrCreateTripCount(Lp); 2990 2991 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2992 2993 // Now, compare the new count to zero. If it is zero skip the vector loop and 2994 // jump to the scalar loop. This check also covers the case where the 2995 // backedge-taken count is uint##_max: adding one to it will overflow leading 2996 // to an incorrect trip count of zero. In this (rare) case we will also jump 2997 // to the scalar loop. 2998 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 2999 3000 // Generate the code to check any assumptions that we've made for SCEV 3001 // expressions. 3002 emitSCEVChecks(Lp, LoopScalarPreHeader); 3003 3004 // Generate the code that checks in runtime if arrays overlap. We put the 3005 // checks into a separate block to make the more common case of few elements 3006 // faster. 3007 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3008 3009 // Generate the induction variable. 3010 // The loop step is equal to the vectorization factor (num of SIMD elements) 3011 // times the unroll factor (num of SIMD instructions). 3012 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3013 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3014 Induction = 3015 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3016 getDebugLocFromInstOrOperands(OldInduction)); 3017 3018 // We are going to resume the execution of the scalar loop. 3019 // Go over all of the induction variables that we found and fix the 3020 // PHIs that are left in the scalar version of the loop. 3021 // The starting values of PHI nodes depend on the counter of the last 3022 // iteration in the vectorized loop. 3023 // If we come from a bypass edge then we need to start from the original 3024 // start value. 3025 3026 // This variable saves the new starting index for the scalar loop. It is used 3027 // to test if there are any tail iterations left once the vector loop has 3028 // completed. 3029 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3030 for (auto &InductionEntry : *List) { 3031 PHINode *OrigPhi = InductionEntry.first; 3032 InductionDescriptor II = InductionEntry.second; 3033 3034 // Create phi nodes to merge from the backedge-taken check block. 3035 PHINode *BCResumeVal = 3036 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3037 LoopScalarPreHeader->getTerminator()); 3038 // Copy original phi DL over to the new one. 3039 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3040 Value *&EndValue = IVEndValues[OrigPhi]; 3041 if (OrigPhi == OldInduction) { 3042 // We know what the end value is. 3043 EndValue = CountRoundDown; 3044 } else { 3045 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3046 Type *StepType = II.getStep()->getType(); 3047 Instruction::CastOps CastOp = 3048 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3049 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3050 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3051 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3052 EndValue->setName("ind.end"); 3053 } 3054 3055 // The new PHI merges the original incoming value, in case of a bypass, 3056 // or the value at the end of the vectorized loop. 3057 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3058 3059 // Fix the scalar body counter (PHI node). 3060 // The old induction's phi node in the scalar body needs the truncated 3061 // value. 3062 for (BasicBlock *BB : LoopBypassBlocks) 3063 BCResumeVal->addIncoming(II.getStartValue(), BB); 3064 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3065 } 3066 3067 // We need the OrigLoop (scalar loop part) latch terminator to help 3068 // produce correct debug info for the middle block BB instructions. 3069 // The legality check stage guarantees that the loop will have a single 3070 // latch. 3071 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3072 "Scalar loop latch terminator isn't a branch"); 3073 BranchInst *ScalarLatchBr = 3074 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3075 3076 // Add a check in the middle block to see if we have completed 3077 // all of the iterations in the first vector loop. 3078 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3079 // If tail is to be folded, we know we don't need to run the remainder. 3080 Value *CmpN = Builder.getTrue(); 3081 if (!Cost->foldTailByMasking()) { 3082 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3083 CountRoundDown, "cmp.n", 3084 LoopMiddleBlock->getTerminator()); 3085 3086 // Here we use the same DebugLoc as the scalar loop latch branch instead 3087 // of the corresponding compare because they may have ended up with 3088 // different line numbers and we want to avoid awkward line stepping while 3089 // debugging. Eg. if the compare has got a line number inside the loop. 3090 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3091 } 3092 3093 BranchInst *BrInst = 3094 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3095 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3096 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3097 3098 // Get ready to start creating new instructions into the vectorized body. 3099 assert(LoopVectorPreHeader == Lp->getLoopPreheader() && 3100 "Inconsistent vector loop preheader"); 3101 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3102 3103 Optional<MDNode *> VectorizedLoopID = 3104 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3105 LLVMLoopVectorizeFollowupVectorized}); 3106 if (VectorizedLoopID.hasValue()) { 3107 Lp->setLoopID(VectorizedLoopID.getValue()); 3108 3109 // Do not setAlreadyVectorized if loop attributes have been defined 3110 // explicitly. 3111 return LoopVectorPreHeader; 3112 } 3113 3114 // Keep all loop hints from the original loop on the vector loop (we'll 3115 // replace the vectorizer-specific hints below). 3116 if (MDNode *LID = OrigLoop->getLoopID()) 3117 Lp->setLoopID(LID); 3118 3119 LoopVectorizeHints Hints(Lp, true, *ORE); 3120 Hints.setAlreadyVectorized(); 3121 3122 #ifdef EXPENSIVE_CHECKS 3123 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3124 LI->verify(*DT); 3125 #endif 3126 3127 return LoopVectorPreHeader; 3128 } 3129 3130 // Fix up external users of the induction variable. At this point, we are 3131 // in LCSSA form, with all external PHIs that use the IV having one input value, 3132 // coming from the remainder loop. We need those PHIs to also have a correct 3133 // value for the IV when arriving directly from the middle block. 3134 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3135 const InductionDescriptor &II, 3136 Value *CountRoundDown, Value *EndValue, 3137 BasicBlock *MiddleBlock) { 3138 // There are two kinds of external IV usages - those that use the value 3139 // computed in the last iteration (the PHI) and those that use the penultimate 3140 // value (the value that feeds into the phi from the loop latch). 3141 // We allow both, but they, obviously, have different values. 3142 3143 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3144 3145 DenseMap<Value *, Value *> MissingVals; 3146 3147 // An external user of the last iteration's value should see the value that 3148 // the remainder loop uses to initialize its own IV. 3149 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3150 for (User *U : PostInc->users()) { 3151 Instruction *UI = cast<Instruction>(U); 3152 if (!OrigLoop->contains(UI)) { 3153 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3154 MissingVals[UI] = EndValue; 3155 } 3156 } 3157 3158 // An external user of the penultimate value need to see EndValue - Step. 3159 // The simplest way to get this is to recompute it from the constituent SCEVs, 3160 // that is Start + (Step * (CRD - 1)). 3161 for (User *U : OrigPhi->users()) { 3162 auto *UI = cast<Instruction>(U); 3163 if (!OrigLoop->contains(UI)) { 3164 const DataLayout &DL = 3165 OrigLoop->getHeader()->getModule()->getDataLayout(); 3166 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3167 3168 IRBuilder<> B(MiddleBlock->getTerminator()); 3169 Value *CountMinusOne = B.CreateSub( 3170 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3171 Value *CMO = 3172 !II.getStep()->getType()->isIntegerTy() 3173 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3174 II.getStep()->getType()) 3175 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3176 CMO->setName("cast.cmo"); 3177 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3178 Escape->setName("ind.escape"); 3179 MissingVals[UI] = Escape; 3180 } 3181 } 3182 3183 for (auto &I : MissingVals) { 3184 PHINode *PHI = cast<PHINode>(I.first); 3185 // One corner case we have to handle is two IVs "chasing" each-other, 3186 // that is %IV2 = phi [...], [ %IV1, %latch ] 3187 // In this case, if IV1 has an external use, we need to avoid adding both 3188 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3189 // don't already have an incoming value for the middle block. 3190 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3191 PHI->addIncoming(I.second, MiddleBlock); 3192 } 3193 } 3194 3195 namespace { 3196 3197 struct CSEDenseMapInfo { 3198 static bool canHandle(const Instruction *I) { 3199 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3200 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3201 } 3202 3203 static inline Instruction *getEmptyKey() { 3204 return DenseMapInfo<Instruction *>::getEmptyKey(); 3205 } 3206 3207 static inline Instruction *getTombstoneKey() { 3208 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3209 } 3210 3211 static unsigned getHashValue(const Instruction *I) { 3212 assert(canHandle(I) && "Unknown instruction!"); 3213 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3214 I->value_op_end())); 3215 } 3216 3217 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3218 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3219 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3220 return LHS == RHS; 3221 return LHS->isIdenticalTo(RHS); 3222 } 3223 }; 3224 3225 } // end anonymous namespace 3226 3227 ///Perform cse of induction variable instructions. 3228 static void cse(BasicBlock *BB) { 3229 // Perform simple cse. 3230 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3231 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3232 Instruction *In = &*I++; 3233 3234 if (!CSEDenseMapInfo::canHandle(In)) 3235 continue; 3236 3237 // Check if we can replace this instruction with any of the 3238 // visited instructions. 3239 if (Instruction *V = CSEMap.lookup(In)) { 3240 In->replaceAllUsesWith(V); 3241 In->eraseFromParent(); 3242 continue; 3243 } 3244 3245 CSEMap[In] = In; 3246 } 3247 } 3248 3249 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3250 unsigned VF, 3251 bool &NeedToScalarize) { 3252 Function *F = CI->getCalledFunction(); 3253 Type *ScalarRetTy = CI->getType(); 3254 SmallVector<Type *, 4> Tys, ScalarTys; 3255 for (auto &ArgOp : CI->arg_operands()) 3256 ScalarTys.push_back(ArgOp->getType()); 3257 3258 // Estimate cost of scalarized vector call. The source operands are assumed 3259 // to be vectors, so we need to extract individual elements from there, 3260 // execute VF scalar calls, and then gather the result into the vector return 3261 // value. 3262 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3263 if (VF == 1) 3264 return ScalarCallCost; 3265 3266 // Compute corresponding vector type for return value and arguments. 3267 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3268 for (Type *ScalarTy : ScalarTys) 3269 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3270 3271 // Compute costs of unpacking argument values for the scalar calls and 3272 // packing the return values to a vector. 3273 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3274 3275 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3276 3277 // If we can't emit a vector call for this function, then the currently found 3278 // cost is the cost we need to return. 3279 NeedToScalarize = true; 3280 if (!TLI || CI->isNoBuiltin() || VFDatabase::getMappings(*CI).empty()) 3281 return Cost; 3282 3283 // If the corresponding vector cost is cheaper, return its cost. 3284 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3285 if (VectorCallCost < Cost) { 3286 NeedToScalarize = false; 3287 return VectorCallCost; 3288 } 3289 return Cost; 3290 } 3291 3292 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3293 unsigned VF) { 3294 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3295 assert(ID && "Expected intrinsic call!"); 3296 3297 FastMathFlags FMF; 3298 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3299 FMF = FPMO->getFastMathFlags(); 3300 3301 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3302 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3303 } 3304 3305 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3306 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3307 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3308 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3309 } 3310 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3311 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3312 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3313 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3314 } 3315 3316 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3317 // For every instruction `I` in MinBWs, truncate the operands, create a 3318 // truncated version of `I` and reextend its result. InstCombine runs 3319 // later and will remove any ext/trunc pairs. 3320 SmallPtrSet<Value *, 4> Erased; 3321 for (const auto &KV : Cost->getMinimalBitwidths()) { 3322 // If the value wasn't vectorized, we must maintain the original scalar 3323 // type. The absence of the value from VectorLoopValueMap indicates that it 3324 // wasn't vectorized. 3325 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3326 continue; 3327 for (unsigned Part = 0; Part < UF; ++Part) { 3328 Value *I = getOrCreateVectorValue(KV.first, Part); 3329 if (Erased.find(I) != Erased.end() || I->use_empty() || 3330 !isa<Instruction>(I)) 3331 continue; 3332 Type *OriginalTy = I->getType(); 3333 Type *ScalarTruncatedTy = 3334 IntegerType::get(OriginalTy->getContext(), KV.second); 3335 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3336 OriginalTy->getVectorNumElements()); 3337 if (TruncatedTy == OriginalTy) 3338 continue; 3339 3340 IRBuilder<> B(cast<Instruction>(I)); 3341 auto ShrinkOperand = [&](Value *V) -> Value * { 3342 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3343 if (ZI->getSrcTy() == TruncatedTy) 3344 return ZI->getOperand(0); 3345 return B.CreateZExtOrTrunc(V, TruncatedTy); 3346 }; 3347 3348 // The actual instruction modification depends on the instruction type, 3349 // unfortunately. 3350 Value *NewI = nullptr; 3351 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3352 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3353 ShrinkOperand(BO->getOperand(1))); 3354 3355 // Any wrapping introduced by shrinking this operation shouldn't be 3356 // considered undefined behavior. So, we can't unconditionally copy 3357 // arithmetic wrapping flags to NewI. 3358 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3359 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3360 NewI = 3361 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3362 ShrinkOperand(CI->getOperand(1))); 3363 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3364 NewI = B.CreateSelect(SI->getCondition(), 3365 ShrinkOperand(SI->getTrueValue()), 3366 ShrinkOperand(SI->getFalseValue())); 3367 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3368 switch (CI->getOpcode()) { 3369 default: 3370 llvm_unreachable("Unhandled cast!"); 3371 case Instruction::Trunc: 3372 NewI = ShrinkOperand(CI->getOperand(0)); 3373 break; 3374 case Instruction::SExt: 3375 NewI = B.CreateSExtOrTrunc( 3376 CI->getOperand(0), 3377 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3378 break; 3379 case Instruction::ZExt: 3380 NewI = B.CreateZExtOrTrunc( 3381 CI->getOperand(0), 3382 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3383 break; 3384 } 3385 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3386 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3387 auto *O0 = B.CreateZExtOrTrunc( 3388 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3389 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3390 auto *O1 = B.CreateZExtOrTrunc( 3391 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3392 3393 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3394 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3395 // Don't do anything with the operands, just extend the result. 3396 continue; 3397 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3398 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3399 auto *O0 = B.CreateZExtOrTrunc( 3400 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3401 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3402 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3403 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3404 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3405 auto *O0 = B.CreateZExtOrTrunc( 3406 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3407 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3408 } else { 3409 // If we don't know what to do, be conservative and don't do anything. 3410 continue; 3411 } 3412 3413 // Lastly, extend the result. 3414 NewI->takeName(cast<Instruction>(I)); 3415 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3416 I->replaceAllUsesWith(Res); 3417 cast<Instruction>(I)->eraseFromParent(); 3418 Erased.insert(I); 3419 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3420 } 3421 } 3422 3423 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3424 for (const auto &KV : Cost->getMinimalBitwidths()) { 3425 // If the value wasn't vectorized, we must maintain the original scalar 3426 // type. The absence of the value from VectorLoopValueMap indicates that it 3427 // wasn't vectorized. 3428 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3429 continue; 3430 for (unsigned Part = 0; Part < UF; ++Part) { 3431 Value *I = getOrCreateVectorValue(KV.first, Part); 3432 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3433 if (Inst && Inst->use_empty()) { 3434 Value *NewI = Inst->getOperand(0); 3435 Inst->eraseFromParent(); 3436 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3437 } 3438 } 3439 } 3440 } 3441 3442 void InnerLoopVectorizer::fixVectorizedLoop() { 3443 // Insert truncates and extends for any truncated instructions as hints to 3444 // InstCombine. 3445 if (VF > 1) 3446 truncateToMinimalBitwidths(); 3447 3448 // Fix widened non-induction PHIs by setting up the PHI operands. 3449 if (OrigPHIsToFix.size()) { 3450 assert(EnableVPlanNativePath && 3451 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3452 fixNonInductionPHIs(); 3453 } 3454 3455 // At this point every instruction in the original loop is widened to a 3456 // vector form. Now we need to fix the recurrences in the loop. These PHI 3457 // nodes are currently empty because we did not want to introduce cycles. 3458 // This is the second stage of vectorizing recurrences. 3459 fixCrossIterationPHIs(); 3460 3461 // Forget the original basic block. 3462 PSE.getSE()->forgetLoop(OrigLoop); 3463 3464 // Fix-up external users of the induction variables. 3465 for (auto &Entry : *Legal->getInductionVars()) 3466 fixupIVUsers(Entry.first, Entry.second, 3467 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3468 IVEndValues[Entry.first], LoopMiddleBlock); 3469 3470 fixLCSSAPHIs(); 3471 for (Instruction *PI : PredicatedInstructions) 3472 sinkScalarOperands(&*PI); 3473 3474 // Remove redundant induction instructions. 3475 cse(LoopVectorBody); 3476 3477 // Set/update profile weights for the vector and remainder loops as original 3478 // loop iterations are now distributed among them. Note that original loop 3479 // represented by LoopScalarBody becomes remainder loop after vectorization. 3480 // 3481 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3482 // end up getting slightly roughened result but that should be OK since 3483 // profile is not inherently precise anyway. Note also possible bypass of 3484 // vector code caused by legality checks is ignored, assigning all the weight 3485 // to the vector loop, optimistically. 3486 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), 3487 LI->getLoopFor(LoopVectorBody), 3488 LI->getLoopFor(LoopScalarBody), VF * UF); 3489 } 3490 3491 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3492 // In order to support recurrences we need to be able to vectorize Phi nodes. 3493 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3494 // stage #2: We now need to fix the recurrences by adding incoming edges to 3495 // the currently empty PHI nodes. At this point every instruction in the 3496 // original loop is widened to a vector form so we can use them to construct 3497 // the incoming edges. 3498 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3499 // Handle first-order recurrences and reductions that need to be fixed. 3500 if (Legal->isFirstOrderRecurrence(&Phi)) 3501 fixFirstOrderRecurrence(&Phi); 3502 else if (Legal->isReductionVariable(&Phi)) 3503 fixReduction(&Phi); 3504 } 3505 } 3506 3507 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3508 // This is the second phase of vectorizing first-order recurrences. An 3509 // overview of the transformation is described below. Suppose we have the 3510 // following loop. 3511 // 3512 // for (int i = 0; i < n; ++i) 3513 // b[i] = a[i] - a[i - 1]; 3514 // 3515 // There is a first-order recurrence on "a". For this loop, the shorthand 3516 // scalar IR looks like: 3517 // 3518 // scalar.ph: 3519 // s_init = a[-1] 3520 // br scalar.body 3521 // 3522 // scalar.body: 3523 // i = phi [0, scalar.ph], [i+1, scalar.body] 3524 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3525 // s2 = a[i] 3526 // b[i] = s2 - s1 3527 // br cond, scalar.body, ... 3528 // 3529 // In this example, s1 is a recurrence because it's value depends on the 3530 // previous iteration. In the first phase of vectorization, we created a 3531 // temporary value for s1. We now complete the vectorization and produce the 3532 // shorthand vector IR shown below (for VF = 4, UF = 1). 3533 // 3534 // vector.ph: 3535 // v_init = vector(..., ..., ..., a[-1]) 3536 // br vector.body 3537 // 3538 // vector.body 3539 // i = phi [0, vector.ph], [i+4, vector.body] 3540 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3541 // v2 = a[i, i+1, i+2, i+3]; 3542 // v3 = vector(v1(3), v2(0, 1, 2)) 3543 // b[i, i+1, i+2, i+3] = v2 - v3 3544 // br cond, vector.body, middle.block 3545 // 3546 // middle.block: 3547 // x = v2(3) 3548 // br scalar.ph 3549 // 3550 // scalar.ph: 3551 // s_init = phi [x, middle.block], [a[-1], otherwise] 3552 // br scalar.body 3553 // 3554 // After execution completes the vector loop, we extract the next value of 3555 // the recurrence (x) to use as the initial value in the scalar loop. 3556 3557 // Get the original loop preheader and single loop latch. 3558 auto *Preheader = OrigLoop->getLoopPreheader(); 3559 auto *Latch = OrigLoop->getLoopLatch(); 3560 3561 // Get the initial and previous values of the scalar recurrence. 3562 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3563 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3564 3565 // Create a vector from the initial value. 3566 auto *VectorInit = ScalarInit; 3567 if (VF > 1) { 3568 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3569 VectorInit = Builder.CreateInsertElement( 3570 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3571 Builder.getInt32(VF - 1), "vector.recur.init"); 3572 } 3573 3574 // We constructed a temporary phi node in the first phase of vectorization. 3575 // This phi node will eventually be deleted. 3576 Builder.SetInsertPoint( 3577 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3578 3579 // Create a phi node for the new recurrence. The current value will either be 3580 // the initial value inserted into a vector or loop-varying vector value. 3581 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3582 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3583 3584 // Get the vectorized previous value of the last part UF - 1. It appears last 3585 // among all unrolled iterations, due to the order of their construction. 3586 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3587 3588 // Find and set the insertion point after the previous value if it is an 3589 // instruction. 3590 BasicBlock::iterator InsertPt; 3591 // Note that the previous value may have been constant-folded so it is not 3592 // guaranteed to be an instruction in the vector loop. 3593 // FIXME: Loop invariant values do not form recurrences. We should deal with 3594 // them earlier. 3595 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3596 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3597 else { 3598 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3599 if (isa<PHINode>(PreviousLastPart)) 3600 // If the previous value is a phi node, we should insert after all the phi 3601 // nodes in the block containing the PHI to avoid breaking basic block 3602 // verification. Note that the basic block may be different to 3603 // LoopVectorBody, in case we predicate the loop. 3604 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3605 else 3606 InsertPt = ++PreviousInst->getIterator(); 3607 } 3608 Builder.SetInsertPoint(&*InsertPt); 3609 3610 // We will construct a vector for the recurrence by combining the values for 3611 // the current and previous iterations. This is the required shuffle mask. 3612 SmallVector<Constant *, 8> ShuffleMask(VF); 3613 ShuffleMask[0] = Builder.getInt32(VF - 1); 3614 for (unsigned I = 1; I < VF; ++I) 3615 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3616 3617 // The vector from which to take the initial value for the current iteration 3618 // (actual or unrolled). Initially, this is the vector phi node. 3619 Value *Incoming = VecPhi; 3620 3621 // Shuffle the current and previous vector and update the vector parts. 3622 for (unsigned Part = 0; Part < UF; ++Part) { 3623 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3624 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3625 auto *Shuffle = 3626 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3627 ConstantVector::get(ShuffleMask)) 3628 : Incoming; 3629 PhiPart->replaceAllUsesWith(Shuffle); 3630 cast<Instruction>(PhiPart)->eraseFromParent(); 3631 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3632 Incoming = PreviousPart; 3633 } 3634 3635 // Fix the latch value of the new recurrence in the vector loop. 3636 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3637 3638 // Extract the last vector element in the middle block. This will be the 3639 // initial value for the recurrence when jumping to the scalar loop. 3640 auto *ExtractForScalar = Incoming; 3641 if (VF > 1) { 3642 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3643 ExtractForScalar = Builder.CreateExtractElement( 3644 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3645 } 3646 // Extract the second last element in the middle block if the 3647 // Phi is used outside the loop. We need to extract the phi itself 3648 // and not the last element (the phi update in the current iteration). This 3649 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3650 // when the scalar loop is not run at all. 3651 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3652 if (VF > 1) 3653 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3654 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3655 // When loop is unrolled without vectorizing, initialize 3656 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3657 // `Incoming`. This is analogous to the vectorized case above: extracting the 3658 // second last element when VF > 1. 3659 else if (UF > 1) 3660 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3661 3662 // Fix the initial value of the original recurrence in the scalar loop. 3663 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3664 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3665 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3666 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3667 Start->addIncoming(Incoming, BB); 3668 } 3669 3670 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3671 Phi->setName("scalar.recur"); 3672 3673 // Finally, fix users of the recurrence outside the loop. The users will need 3674 // either the last value of the scalar recurrence or the last value of the 3675 // vector recurrence we extracted in the middle block. Since the loop is in 3676 // LCSSA form, we just need to find all the phi nodes for the original scalar 3677 // recurrence in the exit block, and then add an edge for the middle block. 3678 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3679 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3680 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3681 } 3682 } 3683 } 3684 3685 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3686 Constant *Zero = Builder.getInt32(0); 3687 3688 // Get it's reduction variable descriptor. 3689 assert(Legal->isReductionVariable(Phi) && 3690 "Unable to find the reduction variable"); 3691 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3692 3693 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3694 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3695 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3696 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3697 RdxDesc.getMinMaxRecurrenceKind(); 3698 setDebugLocFromInst(Builder, ReductionStartValue); 3699 3700 // We need to generate a reduction vector from the incoming scalar. 3701 // To do so, we need to generate the 'identity' vector and override 3702 // one of the elements with the incoming scalar reduction. We need 3703 // to do it in the vector-loop preheader. 3704 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3705 3706 // This is the vector-clone of the value that leaves the loop. 3707 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3708 3709 // Find the reduction identity variable. Zero for addition, or, xor, 3710 // one for multiplication, -1 for And. 3711 Value *Identity; 3712 Value *VectorStart; 3713 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3714 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3715 // MinMax reduction have the start value as their identify. 3716 if (VF == 1) { 3717 VectorStart = Identity = ReductionStartValue; 3718 } else { 3719 VectorStart = Identity = 3720 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3721 } 3722 } else { 3723 // Handle other reduction kinds: 3724 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3725 RK, VecTy->getScalarType()); 3726 if (VF == 1) { 3727 Identity = Iden; 3728 // This vector is the Identity vector where the first element is the 3729 // incoming scalar reduction. 3730 VectorStart = ReductionStartValue; 3731 } else { 3732 Identity = ConstantVector::getSplat(VF, Iden); 3733 3734 // This vector is the Identity vector where the first element is the 3735 // incoming scalar reduction. 3736 VectorStart = 3737 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3738 } 3739 } 3740 3741 // Wrap flags are in general invalid after vectorization, clear them. 3742 clearReductionWrapFlags(RdxDesc); 3743 3744 // Fix the vector-loop phi. 3745 3746 // Reductions do not have to start at zero. They can start with 3747 // any loop invariant values. 3748 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3749 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3750 3751 for (unsigned Part = 0; Part < UF; ++Part) { 3752 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3753 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3754 // Make sure to add the reduction start value only to the 3755 // first unroll part. 3756 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3757 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3758 cast<PHINode>(VecRdxPhi) 3759 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3760 } 3761 3762 // Before each round, move the insertion point right between 3763 // the PHIs and the values we are going to write. 3764 // This allows us to write both PHINodes and the extractelement 3765 // instructions. 3766 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3767 3768 setDebugLocFromInst(Builder, LoopExitInst); 3769 3770 // If tail is folded by masking, the vector value to leave the loop should be 3771 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3772 // instead of the former. 3773 if (Cost->foldTailByMasking()) { 3774 for (unsigned Part = 0; Part < UF; ++Part) { 3775 Value *VecLoopExitInst = 3776 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3777 Value *Sel = nullptr; 3778 for (User *U : VecLoopExitInst->users()) { 3779 if (isa<SelectInst>(U)) { 3780 assert(!Sel && "Reduction exit feeding two selects"); 3781 Sel = U; 3782 } else 3783 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3784 } 3785 assert(Sel && "Reduction exit feeds no select"); 3786 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3787 } 3788 } 3789 3790 // If the vector reduction can be performed in a smaller type, we truncate 3791 // then extend the loop exit value to enable InstCombine to evaluate the 3792 // entire expression in the smaller type. 3793 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3794 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3795 Builder.SetInsertPoint( 3796 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3797 VectorParts RdxParts(UF); 3798 for (unsigned Part = 0; Part < UF; ++Part) { 3799 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3800 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3801 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3802 : Builder.CreateZExt(Trunc, VecTy); 3803 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3804 UI != RdxParts[Part]->user_end();) 3805 if (*UI != Trunc) { 3806 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3807 RdxParts[Part] = Extnd; 3808 } else { 3809 ++UI; 3810 } 3811 } 3812 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3813 for (unsigned Part = 0; Part < UF; ++Part) { 3814 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3815 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3816 } 3817 } 3818 3819 // Reduce all of the unrolled parts into a single vector. 3820 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3821 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3822 3823 // The middle block terminator has already been assigned a DebugLoc here (the 3824 // OrigLoop's single latch terminator). We want the whole middle block to 3825 // appear to execute on this line because: (a) it is all compiler generated, 3826 // (b) these instructions are always executed after evaluating the latch 3827 // conditional branch, and (c) other passes may add new predecessors which 3828 // terminate on this line. This is the easiest way to ensure we don't 3829 // accidentally cause an extra step back into the loop while debugging. 3830 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3831 for (unsigned Part = 1; Part < UF; ++Part) { 3832 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3833 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3834 // Floating point operations had to be 'fast' to enable the reduction. 3835 ReducedPartRdx = addFastMathFlag( 3836 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3837 ReducedPartRdx, "bin.rdx"), 3838 RdxDesc.getFastMathFlags()); 3839 else 3840 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3841 RdxPart); 3842 } 3843 3844 if (VF > 1) { 3845 bool NoNaN = Legal->hasFunNoNaNAttr(); 3846 ReducedPartRdx = 3847 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3848 // If the reduction can be performed in a smaller type, we need to extend 3849 // the reduction to the wider type before we branch to the original loop. 3850 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3851 ReducedPartRdx = 3852 RdxDesc.isSigned() 3853 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3854 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3855 } 3856 3857 // Create a phi node that merges control-flow from the backedge-taken check 3858 // block and the middle block. 3859 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3860 LoopScalarPreHeader->getTerminator()); 3861 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3862 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3863 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3864 3865 // Now, we need to fix the users of the reduction variable 3866 // inside and outside of the scalar remainder loop. 3867 // We know that the loop is in LCSSA form. We need to update the 3868 // PHI nodes in the exit blocks. 3869 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3870 // All PHINodes need to have a single entry edge, or two if 3871 // we already fixed them. 3872 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3873 3874 // We found a reduction value exit-PHI. Update it with the 3875 // incoming bypass edge. 3876 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3877 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3878 } // end of the LCSSA phi scan. 3879 3880 // Fix the scalar loop reduction variable with the incoming reduction sum 3881 // from the vector body and from the backedge value. 3882 int IncomingEdgeBlockIdx = 3883 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3884 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3885 // Pick the other block. 3886 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3887 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3888 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3889 } 3890 3891 void InnerLoopVectorizer::clearReductionWrapFlags( 3892 RecurrenceDescriptor &RdxDesc) { 3893 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3894 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3895 RK != RecurrenceDescriptor::RK_IntegerMult) 3896 return; 3897 3898 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3899 assert(LoopExitInstr && "null loop exit instruction"); 3900 SmallVector<Instruction *, 8> Worklist; 3901 SmallPtrSet<Instruction *, 8> Visited; 3902 Worklist.push_back(LoopExitInstr); 3903 Visited.insert(LoopExitInstr); 3904 3905 while (!Worklist.empty()) { 3906 Instruction *Cur = Worklist.pop_back_val(); 3907 if (isa<OverflowingBinaryOperator>(Cur)) 3908 for (unsigned Part = 0; Part < UF; ++Part) { 3909 Value *V = getOrCreateVectorValue(Cur, Part); 3910 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3911 } 3912 3913 for (User *U : Cur->users()) { 3914 Instruction *UI = cast<Instruction>(U); 3915 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3916 Visited.insert(UI).second) 3917 Worklist.push_back(UI); 3918 } 3919 } 3920 } 3921 3922 void InnerLoopVectorizer::fixLCSSAPHIs() { 3923 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3924 if (LCSSAPhi.getNumIncomingValues() == 1) { 3925 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3926 // Non-instruction incoming values will have only one value. 3927 unsigned LastLane = 0; 3928 if (isa<Instruction>(IncomingValue)) 3929 LastLane = Cost->isUniformAfterVectorization( 3930 cast<Instruction>(IncomingValue), VF) 3931 ? 0 3932 : VF - 1; 3933 // Can be a loop invariant incoming value or the last scalar value to be 3934 // extracted from the vectorized loop. 3935 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3936 Value *lastIncomingValue = 3937 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3938 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3939 } 3940 } 3941 } 3942 3943 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3944 // The basic block and loop containing the predicated instruction. 3945 auto *PredBB = PredInst->getParent(); 3946 auto *VectorLoop = LI->getLoopFor(PredBB); 3947 3948 // Initialize a worklist with the operands of the predicated instruction. 3949 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3950 3951 // Holds instructions that we need to analyze again. An instruction may be 3952 // reanalyzed if we don't yet know if we can sink it or not. 3953 SmallVector<Instruction *, 8> InstsToReanalyze; 3954 3955 // Returns true if a given use occurs in the predicated block. Phi nodes use 3956 // their operands in their corresponding predecessor blocks. 3957 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3958 auto *I = cast<Instruction>(U.getUser()); 3959 BasicBlock *BB = I->getParent(); 3960 if (auto *Phi = dyn_cast<PHINode>(I)) 3961 BB = Phi->getIncomingBlock( 3962 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3963 return BB == PredBB; 3964 }; 3965 3966 // Iteratively sink the scalarized operands of the predicated instruction 3967 // into the block we created for it. When an instruction is sunk, it's 3968 // operands are then added to the worklist. The algorithm ends after one pass 3969 // through the worklist doesn't sink a single instruction. 3970 bool Changed; 3971 do { 3972 // Add the instructions that need to be reanalyzed to the worklist, and 3973 // reset the changed indicator. 3974 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3975 InstsToReanalyze.clear(); 3976 Changed = false; 3977 3978 while (!Worklist.empty()) { 3979 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3980 3981 // We can't sink an instruction if it is a phi node, is already in the 3982 // predicated block, is not in the loop, or may have side effects. 3983 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3984 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3985 continue; 3986 3987 // It's legal to sink the instruction if all its uses occur in the 3988 // predicated block. Otherwise, there's nothing to do yet, and we may 3989 // need to reanalyze the instruction. 3990 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3991 InstsToReanalyze.push_back(I); 3992 continue; 3993 } 3994 3995 // Move the instruction to the beginning of the predicated block, and add 3996 // it's operands to the worklist. 3997 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3998 Worklist.insert(I->op_begin(), I->op_end()); 3999 4000 // The sinking may have enabled other instructions to be sunk, so we will 4001 // need to iterate. 4002 Changed = true; 4003 } 4004 } while (Changed); 4005 } 4006 4007 void InnerLoopVectorizer::fixNonInductionPHIs() { 4008 for (PHINode *OrigPhi : OrigPHIsToFix) { 4009 PHINode *NewPhi = 4010 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4011 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4012 4013 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4014 predecessors(OrigPhi->getParent())); 4015 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4016 predecessors(NewPhi->getParent())); 4017 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4018 "Scalar and Vector BB should have the same number of predecessors"); 4019 4020 // The insertion point in Builder may be invalidated by the time we get 4021 // here. Force the Builder insertion point to something valid so that we do 4022 // not run into issues during insertion point restore in 4023 // getOrCreateVectorValue calls below. 4024 Builder.SetInsertPoint(NewPhi); 4025 4026 // The predecessor order is preserved and we can rely on mapping between 4027 // scalar and vector block predecessors. 4028 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4029 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4030 4031 // When looking up the new scalar/vector values to fix up, use incoming 4032 // values from original phi. 4033 Value *ScIncV = 4034 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4035 4036 // Scalar incoming value may need a broadcast 4037 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4038 NewPhi->addIncoming(NewIncV, NewPredBB); 4039 } 4040 } 4041 } 4042 4043 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF, 4044 unsigned VF, bool IsPtrLoopInvariant, 4045 SmallBitVector &IsIndexLoopInvariant) { 4046 // Construct a vector GEP by widening the operands of the scalar GEP as 4047 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4048 // results in a vector of pointers when at least one operand of the GEP 4049 // is vector-typed. Thus, to keep the representation compact, we only use 4050 // vector-typed operands for loop-varying values. 4051 4052 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4053 // If we are vectorizing, but the GEP has only loop-invariant operands, 4054 // the GEP we build (by only using vector-typed operands for 4055 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4056 // produce a vector of pointers, we need to either arbitrarily pick an 4057 // operand to broadcast, or broadcast a clone of the original GEP. 4058 // Here, we broadcast a clone of the original. 4059 // 4060 // TODO: If at some point we decide to scalarize instructions having 4061 // loop-invariant operands, this special case will no longer be 4062 // required. We would add the scalarization decision to 4063 // collectLoopScalars() and teach getVectorValue() to broadcast 4064 // the lane-zero scalar value. 4065 auto *Clone = Builder.Insert(GEP->clone()); 4066 for (unsigned Part = 0; Part < UF; ++Part) { 4067 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4068 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4069 addMetadata(EntryPart, GEP); 4070 } 4071 } else { 4072 // If the GEP has at least one loop-varying operand, we are sure to 4073 // produce a vector of pointers. But if we are only unrolling, we want 4074 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4075 // produce with the code below will be scalar (if VF == 1) or vector 4076 // (otherwise). Note that for the unroll-only case, we still maintain 4077 // values in the vector mapping with initVector, as we do for other 4078 // instructions. 4079 for (unsigned Part = 0; Part < UF; ++Part) { 4080 // The pointer operand of the new GEP. If it's loop-invariant, we 4081 // won't broadcast it. 4082 auto *Ptr = IsPtrLoopInvariant 4083 ? GEP->getPointerOperand() 4084 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4085 4086 // Collect all the indices for the new GEP. If any index is 4087 // loop-invariant, we won't broadcast it. 4088 SmallVector<Value *, 4> Indices; 4089 for (auto Index : enumerate(GEP->indices())) { 4090 Value *User = Index.value().get(); 4091 if (IsIndexLoopInvariant[Index.index()]) 4092 Indices.push_back(User); 4093 else 4094 Indices.push_back(getOrCreateVectorValue(User, Part)); 4095 } 4096 4097 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4098 // but it should be a vector, otherwise. 4099 auto *NewGEP = 4100 GEP->isInBounds() 4101 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4102 Indices) 4103 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4104 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4105 "NewGEP is not a pointer vector"); 4106 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4107 addMetadata(NewGEP, GEP); 4108 } 4109 } 4110 } 4111 4112 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4113 unsigned VF) { 4114 PHINode *P = cast<PHINode>(PN); 4115 if (EnableVPlanNativePath) { 4116 // Currently we enter here in the VPlan-native path for non-induction 4117 // PHIs where all control flow is uniform. We simply widen these PHIs. 4118 // Create a vector phi with no operands - the vector phi operands will be 4119 // set at the end of vector code generation. 4120 Type *VecTy = 4121 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4122 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4123 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4124 OrigPHIsToFix.push_back(P); 4125 4126 return; 4127 } 4128 4129 assert(PN->getParent() == OrigLoop->getHeader() && 4130 "Non-header phis should have been handled elsewhere"); 4131 4132 // In order to support recurrences we need to be able to vectorize Phi nodes. 4133 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4134 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4135 // this value when we vectorize all of the instructions that use the PHI. 4136 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4137 for (unsigned Part = 0; Part < UF; ++Part) { 4138 // This is phase one of vectorizing PHIs. 4139 Type *VecTy = 4140 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4141 Value *EntryPart = PHINode::Create( 4142 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4143 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4144 } 4145 return; 4146 } 4147 4148 setDebugLocFromInst(Builder, P); 4149 4150 // This PHINode must be an induction variable. 4151 // Make sure that we know about it. 4152 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4153 4154 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4155 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4156 4157 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4158 // which can be found from the original scalar operations. 4159 switch (II.getKind()) { 4160 case InductionDescriptor::IK_NoInduction: 4161 llvm_unreachable("Unknown induction"); 4162 case InductionDescriptor::IK_IntInduction: 4163 case InductionDescriptor::IK_FpInduction: 4164 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4165 case InductionDescriptor::IK_PtrInduction: { 4166 // Handle the pointer induction variable case. 4167 assert(P->getType()->isPointerTy() && "Unexpected type."); 4168 // This is the normalized GEP that starts counting at zero. 4169 Value *PtrInd = Induction; 4170 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4171 // Determine the number of scalars we need to generate for each unroll 4172 // iteration. If the instruction is uniform, we only need to generate the 4173 // first lane. Otherwise, we generate all VF values. 4174 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4175 // These are the scalar results. Notice that we don't generate vector GEPs 4176 // because scalar GEPs result in better code. 4177 for (unsigned Part = 0; Part < UF; ++Part) { 4178 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4179 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4180 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4181 Value *SclrGep = 4182 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4183 SclrGep->setName("next.gep"); 4184 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4185 } 4186 } 4187 return; 4188 } 4189 } 4190 } 4191 4192 /// A helper function for checking whether an integer division-related 4193 /// instruction may divide by zero (in which case it must be predicated if 4194 /// executed conditionally in the scalar code). 4195 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4196 /// Non-zero divisors that are non compile-time constants will not be 4197 /// converted into multiplication, so we will still end up scalarizing 4198 /// the division, but can do so w/o predication. 4199 static bool mayDivideByZero(Instruction &I) { 4200 assert((I.getOpcode() == Instruction::UDiv || 4201 I.getOpcode() == Instruction::SDiv || 4202 I.getOpcode() == Instruction::URem || 4203 I.getOpcode() == Instruction::SRem) && 4204 "Unexpected instruction"); 4205 Value *Divisor = I.getOperand(1); 4206 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4207 return !CInt || CInt->isZero(); 4208 } 4209 4210 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4211 switch (I.getOpcode()) { 4212 case Instruction::Br: 4213 case Instruction::PHI: 4214 case Instruction::GetElementPtr: 4215 llvm_unreachable("This instruction is handled by a different recipe."); 4216 case Instruction::UDiv: 4217 case Instruction::SDiv: 4218 case Instruction::SRem: 4219 case Instruction::URem: 4220 case Instruction::Add: 4221 case Instruction::FAdd: 4222 case Instruction::Sub: 4223 case Instruction::FSub: 4224 case Instruction::FNeg: 4225 case Instruction::Mul: 4226 case Instruction::FMul: 4227 case Instruction::FDiv: 4228 case Instruction::FRem: 4229 case Instruction::Shl: 4230 case Instruction::LShr: 4231 case Instruction::AShr: 4232 case Instruction::And: 4233 case Instruction::Or: 4234 case Instruction::Xor: { 4235 // Just widen unops and binops. 4236 setDebugLocFromInst(Builder, &I); 4237 4238 for (unsigned Part = 0; Part < UF; ++Part) { 4239 SmallVector<Value *, 2> Ops; 4240 for (Value *Op : I.operands()) 4241 Ops.push_back(getOrCreateVectorValue(Op, Part)); 4242 4243 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4244 4245 if (auto *VecOp = dyn_cast<Instruction>(V)) 4246 VecOp->copyIRFlags(&I); 4247 4248 // Use this vector value for all users of the original instruction. 4249 VectorLoopValueMap.setVectorValue(&I, Part, V); 4250 addMetadata(V, &I); 4251 } 4252 4253 break; 4254 } 4255 case Instruction::Select: { 4256 // Widen selects. 4257 // If the selector is loop invariant we can create a select 4258 // instruction with a scalar condition. Otherwise, use vector-select. 4259 auto *SE = PSE.getSE(); 4260 bool InvariantCond = 4261 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4262 setDebugLocFromInst(Builder, &I); 4263 4264 // The condition can be loop invariant but still defined inside the 4265 // loop. This means that we can't just use the original 'cond' value. 4266 // We have to take the 'vectorized' value and pick the first lane. 4267 // Instcombine will make this a no-op. 4268 4269 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4270 4271 for (unsigned Part = 0; Part < UF; ++Part) { 4272 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4273 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4274 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4275 Value *Sel = 4276 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4277 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4278 addMetadata(Sel, &I); 4279 } 4280 4281 break; 4282 } 4283 4284 case Instruction::ICmp: 4285 case Instruction::FCmp: { 4286 // Widen compares. Generate vector compares. 4287 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4288 auto *Cmp = cast<CmpInst>(&I); 4289 setDebugLocFromInst(Builder, Cmp); 4290 for (unsigned Part = 0; Part < UF; ++Part) { 4291 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4292 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4293 Value *C = nullptr; 4294 if (FCmp) { 4295 // Propagate fast math flags. 4296 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4297 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4298 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4299 } else { 4300 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4301 } 4302 VectorLoopValueMap.setVectorValue(&I, Part, C); 4303 addMetadata(C, &I); 4304 } 4305 4306 break; 4307 } 4308 4309 case Instruction::ZExt: 4310 case Instruction::SExt: 4311 case Instruction::FPToUI: 4312 case Instruction::FPToSI: 4313 case Instruction::FPExt: 4314 case Instruction::PtrToInt: 4315 case Instruction::IntToPtr: 4316 case Instruction::SIToFP: 4317 case Instruction::UIToFP: 4318 case Instruction::Trunc: 4319 case Instruction::FPTrunc: 4320 case Instruction::BitCast: { 4321 auto *CI = cast<CastInst>(&I); 4322 setDebugLocFromInst(Builder, CI); 4323 4324 /// Vectorize casts. 4325 Type *DestTy = 4326 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4327 4328 for (unsigned Part = 0; Part < UF; ++Part) { 4329 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4330 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4331 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4332 addMetadata(Cast, &I); 4333 } 4334 break; 4335 } 4336 4337 case Instruction::Call: { 4338 // Ignore dbg intrinsics. 4339 if (isa<DbgInfoIntrinsic>(I)) 4340 break; 4341 setDebugLocFromInst(Builder, &I); 4342 4343 Module *M = I.getParent()->getParent()->getParent(); 4344 auto *CI = cast<CallInst>(&I); 4345 4346 SmallVector<Type *, 4> Tys; 4347 for (Value *ArgOperand : CI->arg_operands()) 4348 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4349 4350 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4351 4352 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4353 // version of the instruction. 4354 // Is it beneficial to perform intrinsic call compared to lib call? 4355 bool NeedToScalarize; 4356 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4357 bool UseVectorIntrinsic = 4358 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4359 assert((UseVectorIntrinsic || !NeedToScalarize) && 4360 "Instruction should be scalarized elsewhere."); 4361 4362 for (unsigned Part = 0; Part < UF; ++Part) { 4363 SmallVector<Value *, 4> Args; 4364 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4365 Value *Arg = CI->getArgOperand(i); 4366 // Some intrinsics have a scalar argument - don't replace it with a 4367 // vector. 4368 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4369 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4370 Args.push_back(Arg); 4371 } 4372 4373 Function *VectorF; 4374 if (UseVectorIntrinsic) { 4375 // Use vector version of the intrinsic. 4376 Type *TysForDecl[] = {CI->getType()}; 4377 if (VF > 1) 4378 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4379 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4380 } else { 4381 // Use vector version of the function call. 4382 const VFShape Shape = 4383 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4384 #ifndef NDEBUG 4385 const SmallVector<VFInfo, 8> Infos = VFDatabase::getMappings(*CI); 4386 assert(std::find_if(Infos.begin(), Infos.end(), 4387 [&Shape](const VFInfo &Info) { 4388 return Info.Shape == Shape; 4389 }) != Infos.end() && 4390 "Vector function shape is missing from the database."); 4391 #endif 4392 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4393 } 4394 assert(VectorF && "Can't create vector function."); 4395 4396 SmallVector<OperandBundleDef, 1> OpBundles; 4397 CI->getOperandBundlesAsDefs(OpBundles); 4398 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4399 4400 if (isa<FPMathOperator>(V)) 4401 V->copyFastMathFlags(CI); 4402 4403 VectorLoopValueMap.setVectorValue(&I, Part, V); 4404 addMetadata(V, &I); 4405 } 4406 4407 break; 4408 } 4409 4410 default: 4411 // This instruction is not vectorized by simple widening. 4412 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4413 llvm_unreachable("Unhandled instruction!"); 4414 } // end of switch. 4415 } 4416 4417 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4418 // We should not collect Scalars more than once per VF. Right now, this 4419 // function is called from collectUniformsAndScalars(), which already does 4420 // this check. Collecting Scalars for VF=1 does not make any sense. 4421 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4422 "This function should not be visited twice for the same VF"); 4423 4424 SmallSetVector<Instruction *, 8> Worklist; 4425 4426 // These sets are used to seed the analysis with pointers used by memory 4427 // accesses that will remain scalar. 4428 SmallSetVector<Instruction *, 8> ScalarPtrs; 4429 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4430 4431 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4432 // The pointer operands of loads and stores will be scalar as long as the 4433 // memory access is not a gather or scatter operation. The value operand of a 4434 // store will remain scalar if the store is scalarized. 4435 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4436 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4437 assert(WideningDecision != CM_Unknown && 4438 "Widening decision should be ready at this moment"); 4439 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4440 if (Ptr == Store->getValueOperand()) 4441 return WideningDecision == CM_Scalarize; 4442 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4443 "Ptr is neither a value or pointer operand"); 4444 return WideningDecision != CM_GatherScatter; 4445 }; 4446 4447 // A helper that returns true if the given value is a bitcast or 4448 // getelementptr instruction contained in the loop. 4449 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4450 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4451 isa<GetElementPtrInst>(V)) && 4452 !TheLoop->isLoopInvariant(V); 4453 }; 4454 4455 // A helper that evaluates a memory access's use of a pointer. If the use 4456 // will be a scalar use, and the pointer is only used by memory accesses, we 4457 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4458 // PossibleNonScalarPtrs. 4459 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4460 // We only care about bitcast and getelementptr instructions contained in 4461 // the loop. 4462 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4463 return; 4464 4465 // If the pointer has already been identified as scalar (e.g., if it was 4466 // also identified as uniform), there's nothing to do. 4467 auto *I = cast<Instruction>(Ptr); 4468 if (Worklist.count(I)) 4469 return; 4470 4471 // If the use of the pointer will be a scalar use, and all users of the 4472 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4473 // place the pointer in PossibleNonScalarPtrs. 4474 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4475 return isa<LoadInst>(U) || isa<StoreInst>(U); 4476 })) 4477 ScalarPtrs.insert(I); 4478 else 4479 PossibleNonScalarPtrs.insert(I); 4480 }; 4481 4482 // We seed the scalars analysis with three classes of instructions: (1) 4483 // instructions marked uniform-after-vectorization, (2) bitcast and 4484 // getelementptr instructions used by memory accesses requiring a scalar use, 4485 // and (3) pointer induction variables and their update instructions (we 4486 // currently only scalarize these). 4487 // 4488 // (1) Add to the worklist all instructions that have been identified as 4489 // uniform-after-vectorization. 4490 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4491 4492 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4493 // memory accesses requiring a scalar use. The pointer operands of loads and 4494 // stores will be scalar as long as the memory accesses is not a gather or 4495 // scatter operation. The value operand of a store will remain scalar if the 4496 // store is scalarized. 4497 for (auto *BB : TheLoop->blocks()) 4498 for (auto &I : *BB) { 4499 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4500 evaluatePtrUse(Load, Load->getPointerOperand()); 4501 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4502 evaluatePtrUse(Store, Store->getPointerOperand()); 4503 evaluatePtrUse(Store, Store->getValueOperand()); 4504 } 4505 } 4506 for (auto *I : ScalarPtrs) 4507 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4508 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4509 Worklist.insert(I); 4510 } 4511 4512 // (3) Add to the worklist all pointer induction variables and their update 4513 // instructions. 4514 // 4515 // TODO: Once we are able to vectorize pointer induction variables we should 4516 // no longer insert them into the worklist here. 4517 auto *Latch = TheLoop->getLoopLatch(); 4518 for (auto &Induction : *Legal->getInductionVars()) { 4519 auto *Ind = Induction.first; 4520 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4521 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4522 continue; 4523 Worklist.insert(Ind); 4524 Worklist.insert(IndUpdate); 4525 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4526 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4527 << "\n"); 4528 } 4529 4530 // Insert the forced scalars. 4531 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4532 // induction variable when the PHI user is scalarized. 4533 auto ForcedScalar = ForcedScalars.find(VF); 4534 if (ForcedScalar != ForcedScalars.end()) 4535 for (auto *I : ForcedScalar->second) 4536 Worklist.insert(I); 4537 4538 // Expand the worklist by looking through any bitcasts and getelementptr 4539 // instructions we've already identified as scalar. This is similar to the 4540 // expansion step in collectLoopUniforms(); however, here we're only 4541 // expanding to include additional bitcasts and getelementptr instructions. 4542 unsigned Idx = 0; 4543 while (Idx != Worklist.size()) { 4544 Instruction *Dst = Worklist[Idx++]; 4545 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4546 continue; 4547 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4548 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4549 auto *J = cast<Instruction>(U); 4550 return !TheLoop->contains(J) || Worklist.count(J) || 4551 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4552 isScalarUse(J, Src)); 4553 })) { 4554 Worklist.insert(Src); 4555 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4556 } 4557 } 4558 4559 // An induction variable will remain scalar if all users of the induction 4560 // variable and induction variable update remain scalar. 4561 for (auto &Induction : *Legal->getInductionVars()) { 4562 auto *Ind = Induction.first; 4563 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4564 4565 // We already considered pointer induction variables, so there's no reason 4566 // to look at their users again. 4567 // 4568 // TODO: Once we are able to vectorize pointer induction variables we 4569 // should no longer skip over them here. 4570 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4571 continue; 4572 4573 // Determine if all users of the induction variable are scalar after 4574 // vectorization. 4575 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4576 auto *I = cast<Instruction>(U); 4577 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4578 }); 4579 if (!ScalarInd) 4580 continue; 4581 4582 // Determine if all users of the induction variable update instruction are 4583 // scalar after vectorization. 4584 auto ScalarIndUpdate = 4585 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4586 auto *I = cast<Instruction>(U); 4587 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4588 }); 4589 if (!ScalarIndUpdate) 4590 continue; 4591 4592 // The induction variable and its update instruction will remain scalar. 4593 Worklist.insert(Ind); 4594 Worklist.insert(IndUpdate); 4595 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4596 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4597 << "\n"); 4598 } 4599 4600 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4601 } 4602 4603 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4604 if (!blockNeedsPredication(I->getParent())) 4605 return false; 4606 switch(I->getOpcode()) { 4607 default: 4608 break; 4609 case Instruction::Load: 4610 case Instruction::Store: { 4611 if (!Legal->isMaskRequired(I)) 4612 return false; 4613 auto *Ptr = getLoadStorePointerOperand(I); 4614 auto *Ty = getMemInstValueType(I); 4615 // We have already decided how to vectorize this instruction, get that 4616 // result. 4617 if (VF > 1) { 4618 InstWidening WideningDecision = getWideningDecision(I, VF); 4619 assert(WideningDecision != CM_Unknown && 4620 "Widening decision should be ready at this moment"); 4621 return WideningDecision == CM_Scalarize; 4622 } 4623 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4624 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4625 isLegalMaskedGather(Ty, Alignment)) 4626 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4627 isLegalMaskedScatter(Ty, Alignment)); 4628 } 4629 case Instruction::UDiv: 4630 case Instruction::SDiv: 4631 case Instruction::SRem: 4632 case Instruction::URem: 4633 return mayDivideByZero(*I); 4634 } 4635 return false; 4636 } 4637 4638 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4639 unsigned VF) { 4640 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4641 assert(getWideningDecision(I, VF) == CM_Unknown && 4642 "Decision should not be set yet."); 4643 auto *Group = getInterleavedAccessGroup(I); 4644 assert(Group && "Must have a group."); 4645 4646 // If the instruction's allocated size doesn't equal it's type size, it 4647 // requires padding and will be scalarized. 4648 auto &DL = I->getModule()->getDataLayout(); 4649 auto *ScalarTy = getMemInstValueType(I); 4650 if (hasIrregularType(ScalarTy, DL, VF)) 4651 return false; 4652 4653 // Check if masking is required. 4654 // A Group may need masking for one of two reasons: it resides in a block that 4655 // needs predication, or it was decided to use masking to deal with gaps. 4656 bool PredicatedAccessRequiresMasking = 4657 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4658 bool AccessWithGapsRequiresMasking = 4659 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4660 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4661 return true; 4662 4663 // If masked interleaving is required, we expect that the user/target had 4664 // enabled it, because otherwise it either wouldn't have been created or 4665 // it should have been invalidated by the CostModel. 4666 assert(useMaskedInterleavedAccesses(TTI) && 4667 "Masked interleave-groups for predicated accesses are not enabled."); 4668 4669 auto *Ty = getMemInstValueType(I); 4670 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4671 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4672 : TTI.isLegalMaskedStore(Ty, Alignment); 4673 } 4674 4675 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4676 unsigned VF) { 4677 // Get and ensure we have a valid memory instruction. 4678 LoadInst *LI = dyn_cast<LoadInst>(I); 4679 StoreInst *SI = dyn_cast<StoreInst>(I); 4680 assert((LI || SI) && "Invalid memory instruction"); 4681 4682 auto *Ptr = getLoadStorePointerOperand(I); 4683 4684 // In order to be widened, the pointer should be consecutive, first of all. 4685 if (!Legal->isConsecutivePtr(Ptr)) 4686 return false; 4687 4688 // If the instruction is a store located in a predicated block, it will be 4689 // scalarized. 4690 if (isScalarWithPredication(I)) 4691 return false; 4692 4693 // If the instruction's allocated size doesn't equal it's type size, it 4694 // requires padding and will be scalarized. 4695 auto &DL = I->getModule()->getDataLayout(); 4696 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4697 if (hasIrregularType(ScalarTy, DL, VF)) 4698 return false; 4699 4700 return true; 4701 } 4702 4703 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4704 // We should not collect Uniforms more than once per VF. Right now, 4705 // this function is called from collectUniformsAndScalars(), which 4706 // already does this check. Collecting Uniforms for VF=1 does not make any 4707 // sense. 4708 4709 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4710 "This function should not be visited twice for the same VF"); 4711 4712 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4713 // not analyze again. Uniforms.count(VF) will return 1. 4714 Uniforms[VF].clear(); 4715 4716 // We now know that the loop is vectorizable! 4717 // Collect instructions inside the loop that will remain uniform after 4718 // vectorization. 4719 4720 // Global values, params and instructions outside of current loop are out of 4721 // scope. 4722 auto isOutOfScope = [&](Value *V) -> bool { 4723 Instruction *I = dyn_cast<Instruction>(V); 4724 return (!I || !TheLoop->contains(I)); 4725 }; 4726 4727 SetVector<Instruction *> Worklist; 4728 BasicBlock *Latch = TheLoop->getLoopLatch(); 4729 4730 // Instructions that are scalar with predication must not be considered 4731 // uniform after vectorization, because that would create an erroneous 4732 // replicating region where only a single instance out of VF should be formed. 4733 // TODO: optimize such seldom cases if found important, see PR40816. 4734 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4735 if (isScalarWithPredication(I, VF)) { 4736 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4737 << *I << "\n"); 4738 return; 4739 } 4740 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4741 Worklist.insert(I); 4742 }; 4743 4744 // Start with the conditional branch. If the branch condition is an 4745 // instruction contained in the loop that is only used by the branch, it is 4746 // uniform. 4747 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4748 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4749 addToWorklistIfAllowed(Cmp); 4750 4751 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4752 // are pointers that are treated like consecutive pointers during 4753 // vectorization. The pointer operands of interleaved accesses are an 4754 // example. 4755 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4756 4757 // Holds pointer operands of instructions that are possibly non-uniform. 4758 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4759 4760 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4761 InstWidening WideningDecision = getWideningDecision(I, VF); 4762 assert(WideningDecision != CM_Unknown && 4763 "Widening decision should be ready at this moment"); 4764 4765 return (WideningDecision == CM_Widen || 4766 WideningDecision == CM_Widen_Reverse || 4767 WideningDecision == CM_Interleave); 4768 }; 4769 // Iterate over the instructions in the loop, and collect all 4770 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4771 // that a consecutive-like pointer operand will be scalarized, we collect it 4772 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4773 // getelementptr instruction can be used by both vectorized and scalarized 4774 // memory instructions. For example, if a loop loads and stores from the same 4775 // location, but the store is conditional, the store will be scalarized, and 4776 // the getelementptr won't remain uniform. 4777 for (auto *BB : TheLoop->blocks()) 4778 for (auto &I : *BB) { 4779 // If there's no pointer operand, there's nothing to do. 4780 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4781 if (!Ptr) 4782 continue; 4783 4784 // True if all users of Ptr are memory accesses that have Ptr as their 4785 // pointer operand. 4786 auto UsersAreMemAccesses = 4787 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4788 return getLoadStorePointerOperand(U) == Ptr; 4789 }); 4790 4791 // Ensure the memory instruction will not be scalarized or used by 4792 // gather/scatter, making its pointer operand non-uniform. If the pointer 4793 // operand is used by any instruction other than a memory access, we 4794 // conservatively assume the pointer operand may be non-uniform. 4795 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4796 PossibleNonUniformPtrs.insert(Ptr); 4797 4798 // If the memory instruction will be vectorized and its pointer operand 4799 // is consecutive-like, or interleaving - the pointer operand should 4800 // remain uniform. 4801 else 4802 ConsecutiveLikePtrs.insert(Ptr); 4803 } 4804 4805 // Add to the Worklist all consecutive and consecutive-like pointers that 4806 // aren't also identified as possibly non-uniform. 4807 for (auto *V : ConsecutiveLikePtrs) 4808 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) 4809 addToWorklistIfAllowed(V); 4810 4811 // Expand Worklist in topological order: whenever a new instruction 4812 // is added , its users should be already inside Worklist. It ensures 4813 // a uniform instruction will only be used by uniform instructions. 4814 unsigned idx = 0; 4815 while (idx != Worklist.size()) { 4816 Instruction *I = Worklist[idx++]; 4817 4818 for (auto OV : I->operand_values()) { 4819 // isOutOfScope operands cannot be uniform instructions. 4820 if (isOutOfScope(OV)) 4821 continue; 4822 // First order recurrence Phi's should typically be considered 4823 // non-uniform. 4824 auto *OP = dyn_cast<PHINode>(OV); 4825 if (OP && Legal->isFirstOrderRecurrence(OP)) 4826 continue; 4827 // If all the users of the operand are uniform, then add the 4828 // operand into the uniform worklist. 4829 auto *OI = cast<Instruction>(OV); 4830 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4831 auto *J = cast<Instruction>(U); 4832 return Worklist.count(J) || 4833 (OI == getLoadStorePointerOperand(J) && 4834 isUniformDecision(J, VF)); 4835 })) 4836 addToWorklistIfAllowed(OI); 4837 } 4838 } 4839 4840 // Returns true if Ptr is the pointer operand of a memory access instruction 4841 // I, and I is known to not require scalarization. 4842 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4843 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4844 }; 4845 4846 // For an instruction to be added into Worklist above, all its users inside 4847 // the loop should also be in Worklist. However, this condition cannot be 4848 // true for phi nodes that form a cyclic dependence. We must process phi 4849 // nodes separately. An induction variable will remain uniform if all users 4850 // of the induction variable and induction variable update remain uniform. 4851 // The code below handles both pointer and non-pointer induction variables. 4852 for (auto &Induction : *Legal->getInductionVars()) { 4853 auto *Ind = Induction.first; 4854 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4855 4856 // Determine if all users of the induction variable are uniform after 4857 // vectorization. 4858 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4859 auto *I = cast<Instruction>(U); 4860 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4861 isVectorizedMemAccessUse(I, Ind); 4862 }); 4863 if (!UniformInd) 4864 continue; 4865 4866 // Determine if all users of the induction variable update instruction are 4867 // uniform after vectorization. 4868 auto UniformIndUpdate = 4869 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4870 auto *I = cast<Instruction>(U); 4871 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4872 isVectorizedMemAccessUse(I, IndUpdate); 4873 }); 4874 if (!UniformIndUpdate) 4875 continue; 4876 4877 // The induction variable and its update instruction will remain uniform. 4878 addToWorklistIfAllowed(Ind); 4879 addToWorklistIfAllowed(IndUpdate); 4880 } 4881 4882 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4883 } 4884 4885 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4886 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4887 4888 if (Legal->getRuntimePointerChecking()->Need) { 4889 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4890 "runtime pointer checks needed. Enable vectorization of this " 4891 "loop with '#pragma clang loop vectorize(enable)' when " 4892 "compiling with -Os/-Oz", 4893 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4894 return true; 4895 } 4896 4897 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4898 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4899 "runtime SCEV checks needed. Enable vectorization of this " 4900 "loop with '#pragma clang loop vectorize(enable)' when " 4901 "compiling with -Os/-Oz", 4902 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4903 return true; 4904 } 4905 4906 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4907 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4908 reportVectorizationFailure("Runtime stride check is required with -Os/-Oz", 4909 "runtime stride == 1 checks needed. Enable vectorization of " 4910 "this loop with '#pragma clang loop vectorize(enable)' when " 4911 "compiling with -Os/-Oz", 4912 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4913 return true; 4914 } 4915 4916 return false; 4917 } 4918 4919 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() { 4920 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4921 // TODO: It may by useful to do since it's still likely to be dynamically 4922 // uniform if the target can skip. 4923 reportVectorizationFailure( 4924 "Not inserting runtime ptr check for divergent target", 4925 "runtime pointer checks needed. Not enabled for divergent target", 4926 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4927 return None; 4928 } 4929 4930 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4931 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4932 if (TC == 1) { 4933 reportVectorizationFailure("Single iteration (non) loop", 4934 "loop trip count is one, irrelevant for vectorization", 4935 "SingleIterationLoop", ORE, TheLoop); 4936 return None; 4937 } 4938 4939 switch (ScalarEpilogueStatus) { 4940 case CM_ScalarEpilogueAllowed: 4941 return computeFeasibleMaxVF(TC); 4942 case CM_ScalarEpilogueNotNeededUsePredicate: 4943 LLVM_DEBUG( 4944 dbgs() << "LV: vector predicate hint/switch found.\n" 4945 << "LV: Not allowing scalar epilogue, creating predicated " 4946 << "vector loop.\n"); 4947 break; 4948 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4949 // fallthrough as a special case of OptForSize 4950 case CM_ScalarEpilogueNotAllowedOptSize: 4951 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4952 LLVM_DEBUG( 4953 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4954 else 4955 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4956 << "count.\n"); 4957 4958 // Bail if runtime checks are required, which are not good when optimising 4959 // for size. 4960 if (runtimeChecksRequired()) 4961 return None; 4962 break; 4963 } 4964 4965 // Now try the tail folding 4966 4967 // Invalidate interleave groups that require an epilogue if we can't mask 4968 // the interleave-group. 4969 if (!useMaskedInterleavedAccesses(TTI)) 4970 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4971 4972 unsigned MaxVF = computeFeasibleMaxVF(TC); 4973 if (TC > 0 && TC % MaxVF == 0) { 4974 // Accept MaxVF if we do not have a tail. 4975 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4976 return MaxVF; 4977 } 4978 4979 // If we don't know the precise trip count, or if the trip count that we 4980 // found modulo the vectorization factor is not zero, try to fold the tail 4981 // by masking. 4982 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4983 if (Legal->prepareToFoldTailByMasking()) { 4984 FoldTailByMasking = true; 4985 return MaxVF; 4986 } 4987 4988 if (TC == 0) { 4989 reportVectorizationFailure( 4990 "Unable to calculate the loop count due to complex control flow", 4991 "unable to calculate the loop count due to complex control flow", 4992 "UnknownLoopCountComplexCFG", ORE, TheLoop); 4993 return None; 4994 } 4995 4996 reportVectorizationFailure( 4997 "Cannot optimize for size and vectorize at the same time.", 4998 "cannot optimize for size and vectorize at the same time. " 4999 "Enable vectorization of this loop with '#pragma clang loop " 5000 "vectorize(enable)' when compiling with -Os/-Oz", 5001 "NoTailLoopWithOptForSize", ORE, TheLoop); 5002 return None; 5003 } 5004 5005 unsigned 5006 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5007 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5008 unsigned SmallestType, WidestType; 5009 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5010 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5011 5012 // Get the maximum safe dependence distance in bits computed by LAA. 5013 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5014 // the memory accesses that is most restrictive (involved in the smallest 5015 // dependence distance). 5016 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5017 5018 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5019 5020 unsigned MaxVectorSize = WidestRegister / WidestType; 5021 5022 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5023 << " / " << WidestType << " bits.\n"); 5024 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5025 << WidestRegister << " bits.\n"); 5026 5027 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5028 " into one vector!"); 5029 if (MaxVectorSize == 0) { 5030 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5031 MaxVectorSize = 1; 5032 return MaxVectorSize; 5033 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5034 isPowerOf2_32(ConstTripCount)) { 5035 // We need to clamp the VF to be the ConstTripCount. There is no point in 5036 // choosing a higher viable VF as done in the loop below. 5037 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5038 << ConstTripCount << "\n"); 5039 MaxVectorSize = ConstTripCount; 5040 return MaxVectorSize; 5041 } 5042 5043 unsigned MaxVF = MaxVectorSize; 5044 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5045 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5046 // Collect all viable vectorization factors larger than the default MaxVF 5047 // (i.e. MaxVectorSize). 5048 SmallVector<unsigned, 8> VFs; 5049 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5050 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5051 VFs.push_back(VS); 5052 5053 // For each VF calculate its register usage. 5054 auto RUs = calculateRegisterUsage(VFs); 5055 5056 // Select the largest VF which doesn't require more registers than existing 5057 // ones. 5058 for (int i = RUs.size() - 1; i >= 0; --i) { 5059 bool Selected = true; 5060 for (auto& pair : RUs[i].MaxLocalUsers) { 5061 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5062 if (pair.second > TargetNumRegisters) 5063 Selected = false; 5064 } 5065 if (Selected) { 5066 MaxVF = VFs[i]; 5067 break; 5068 } 5069 } 5070 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5071 if (MaxVF < MinVF) { 5072 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5073 << ") with target's minimum: " << MinVF << '\n'); 5074 MaxVF = MinVF; 5075 } 5076 } 5077 } 5078 return MaxVF; 5079 } 5080 5081 VectorizationFactor 5082 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5083 float Cost = expectedCost(1).first; 5084 const float ScalarCost = Cost; 5085 unsigned Width = 1; 5086 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5087 5088 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5089 if (ForceVectorization && MaxVF > 1) { 5090 // Ignore scalar width, because the user explicitly wants vectorization. 5091 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5092 // evaluation. 5093 Cost = std::numeric_limits<float>::max(); 5094 } 5095 5096 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5097 // Notice that the vector loop needs to be executed less times, so 5098 // we need to divide the cost of the vector loops by the width of 5099 // the vector elements. 5100 VectorizationCostTy C = expectedCost(i); 5101 float VectorCost = C.first / (float)i; 5102 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5103 << " costs: " << (int)VectorCost << ".\n"); 5104 if (!C.second && !ForceVectorization) { 5105 LLVM_DEBUG( 5106 dbgs() << "LV: Not considering vector loop of width " << i 5107 << " because it will not generate any vector instructions.\n"); 5108 continue; 5109 } 5110 if (VectorCost < Cost) { 5111 Cost = VectorCost; 5112 Width = i; 5113 } 5114 } 5115 5116 if (!EnableCondStoresVectorization && NumPredStores) { 5117 reportVectorizationFailure("There are conditional stores.", 5118 "store that is conditionally executed prevents vectorization", 5119 "ConditionalStore", ORE, TheLoop); 5120 Width = 1; 5121 Cost = ScalarCost; 5122 } 5123 5124 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5125 << "LV: Vectorization seems to be not beneficial, " 5126 << "but was forced by a user.\n"); 5127 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5128 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5129 return Factor; 5130 } 5131 5132 std::pair<unsigned, unsigned> 5133 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5134 unsigned MinWidth = -1U; 5135 unsigned MaxWidth = 8; 5136 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5137 5138 // For each block. 5139 for (BasicBlock *BB : TheLoop->blocks()) { 5140 // For each instruction in the loop. 5141 for (Instruction &I : BB->instructionsWithoutDebug()) { 5142 Type *T = I.getType(); 5143 5144 // Skip ignored values. 5145 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 5146 continue; 5147 5148 // Only examine Loads, Stores and PHINodes. 5149 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5150 continue; 5151 5152 // Examine PHI nodes that are reduction variables. Update the type to 5153 // account for the recurrence type. 5154 if (auto *PN = dyn_cast<PHINode>(&I)) { 5155 if (!Legal->isReductionVariable(PN)) 5156 continue; 5157 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5158 T = RdxDesc.getRecurrenceType(); 5159 } 5160 5161 // Examine the stored values. 5162 if (auto *ST = dyn_cast<StoreInst>(&I)) 5163 T = ST->getValueOperand()->getType(); 5164 5165 // Ignore loaded pointer types and stored pointer types that are not 5166 // vectorizable. 5167 // 5168 // FIXME: The check here attempts to predict whether a load or store will 5169 // be vectorized. We only know this for certain after a VF has 5170 // been selected. Here, we assume that if an access can be 5171 // vectorized, it will be. We should also look at extending this 5172 // optimization to non-pointer types. 5173 // 5174 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5175 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5176 continue; 5177 5178 MinWidth = std::min(MinWidth, 5179 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5180 MaxWidth = std::max(MaxWidth, 5181 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5182 } 5183 } 5184 5185 return {MinWidth, MaxWidth}; 5186 } 5187 5188 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5189 unsigned LoopCost) { 5190 // -- The interleave heuristics -- 5191 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5192 // There are many micro-architectural considerations that we can't predict 5193 // at this level. For example, frontend pressure (on decode or fetch) due to 5194 // code size, or the number and capabilities of the execution ports. 5195 // 5196 // We use the following heuristics to select the interleave count: 5197 // 1. If the code has reductions, then we interleave to break the cross 5198 // iteration dependency. 5199 // 2. If the loop is really small, then we interleave to reduce the loop 5200 // overhead. 5201 // 3. We don't interleave if we think that we will spill registers to memory 5202 // due to the increased register pressure. 5203 5204 if (!isScalarEpilogueAllowed()) 5205 return 1; 5206 5207 // We used the distance for the interleave count. 5208 if (Legal->getMaxSafeDepDistBytes() != -1U) 5209 return 1; 5210 5211 // Do not interleave loops with a relatively small known or estimated trip 5212 // count. 5213 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5214 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5215 return 1; 5216 5217 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5218 // We divide by these constants so assume that we have at least one 5219 // instruction that uses at least one register. 5220 for (auto& pair : R.MaxLocalUsers) { 5221 pair.second = std::max(pair.second, 1U); 5222 } 5223 5224 // We calculate the interleave count using the following formula. 5225 // Subtract the number of loop invariants from the number of available 5226 // registers. These registers are used by all of the interleaved instances. 5227 // Next, divide the remaining registers by the number of registers that is 5228 // required by the loop, in order to estimate how many parallel instances 5229 // fit without causing spills. All of this is rounded down if necessary to be 5230 // a power of two. We want power of two interleave count to simplify any 5231 // addressing operations or alignment considerations. 5232 // We also want power of two interleave counts to ensure that the induction 5233 // variable of the vector loop wraps to zero, when tail is folded by masking; 5234 // this currently happens when OptForSize, in which case IC is set to 1 above. 5235 unsigned IC = UINT_MAX; 5236 5237 for (auto& pair : R.MaxLocalUsers) { 5238 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5239 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5240 << " registers of " 5241 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5242 if (VF == 1) { 5243 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5244 TargetNumRegisters = ForceTargetNumScalarRegs; 5245 } else { 5246 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5247 TargetNumRegisters = ForceTargetNumVectorRegs; 5248 } 5249 unsigned MaxLocalUsers = pair.second; 5250 unsigned LoopInvariantRegs = 0; 5251 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5252 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5253 5254 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5255 // Don't count the induction variable as interleaved. 5256 if (EnableIndVarRegisterHeur) { 5257 TmpIC = 5258 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5259 std::max(1U, (MaxLocalUsers - 1))); 5260 } 5261 5262 IC = std::min(IC, TmpIC); 5263 } 5264 5265 // Clamp the interleave ranges to reasonable counts. 5266 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5267 5268 // Check if the user has overridden the max. 5269 if (VF == 1) { 5270 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5271 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5272 } else { 5273 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5274 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5275 } 5276 5277 // If trip count is known or estimated compile time constant, limit the 5278 // interleave count to be less than the trip count divided by VF. 5279 if (BestKnownTC) { 5280 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5281 } 5282 5283 // If we did not calculate the cost for VF (because the user selected the VF) 5284 // then we calculate the cost of VF here. 5285 if (LoopCost == 0) 5286 LoopCost = expectedCost(VF).first; 5287 5288 assert(LoopCost && "Non-zero loop cost expected"); 5289 5290 // Clamp the calculated IC to be between the 1 and the max interleave count 5291 // that the target and trip count allows. 5292 if (IC > MaxInterleaveCount) 5293 IC = MaxInterleaveCount; 5294 else if (IC < 1) 5295 IC = 1; 5296 5297 // Interleave if we vectorized this loop and there is a reduction that could 5298 // benefit from interleaving. 5299 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5300 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5301 return IC; 5302 } 5303 5304 // Note that if we've already vectorized the loop we will have done the 5305 // runtime check and so interleaving won't require further checks. 5306 bool InterleavingRequiresRuntimePointerCheck = 5307 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5308 5309 // We want to interleave small loops in order to reduce the loop overhead and 5310 // potentially expose ILP opportunities. 5311 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5312 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5313 // We assume that the cost overhead is 1 and we use the cost model 5314 // to estimate the cost of the loop and interleave until the cost of the 5315 // loop overhead is about 5% of the cost of the loop. 5316 unsigned SmallIC = 5317 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5318 5319 // Interleave until store/load ports (estimated by max interleave count) are 5320 // saturated. 5321 unsigned NumStores = Legal->getNumStores(); 5322 unsigned NumLoads = Legal->getNumLoads(); 5323 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5324 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5325 5326 // If we have a scalar reduction (vector reductions are already dealt with 5327 // by this point), we can increase the critical path length if the loop 5328 // we're interleaving is inside another loop. Limit, by default to 2, so the 5329 // critical path only gets increased by one reduction operation. 5330 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5331 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5332 SmallIC = std::min(SmallIC, F); 5333 StoresIC = std::min(StoresIC, F); 5334 LoadsIC = std::min(LoadsIC, F); 5335 } 5336 5337 if (EnableLoadStoreRuntimeInterleave && 5338 std::max(StoresIC, LoadsIC) > SmallIC) { 5339 LLVM_DEBUG( 5340 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5341 return std::max(StoresIC, LoadsIC); 5342 } 5343 5344 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5345 return SmallIC; 5346 } 5347 5348 // Interleave if this is a large loop (small loops are already dealt with by 5349 // this point) that could benefit from interleaving. 5350 bool HasReductions = !Legal->getReductionVars()->empty(); 5351 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5352 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5353 return IC; 5354 } 5355 5356 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5357 return 1; 5358 } 5359 5360 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5361 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5362 // This function calculates the register usage by measuring the highest number 5363 // of values that are alive at a single location. Obviously, this is a very 5364 // rough estimation. We scan the loop in a topological order in order and 5365 // assign a number to each instruction. We use RPO to ensure that defs are 5366 // met before their users. We assume that each instruction that has in-loop 5367 // users starts an interval. We record every time that an in-loop value is 5368 // used, so we have a list of the first and last occurrences of each 5369 // instruction. Next, we transpose this data structure into a multi map that 5370 // holds the list of intervals that *end* at a specific location. This multi 5371 // map allows us to perform a linear search. We scan the instructions linearly 5372 // and record each time that a new interval starts, by placing it in a set. 5373 // If we find this value in the multi-map then we remove it from the set. 5374 // The max register usage is the maximum size of the set. 5375 // We also search for instructions that are defined outside the loop, but are 5376 // used inside the loop. We need this number separately from the max-interval 5377 // usage number because when we unroll, loop-invariant values do not take 5378 // more register. 5379 LoopBlocksDFS DFS(TheLoop); 5380 DFS.perform(LI); 5381 5382 RegisterUsage RU; 5383 5384 // Each 'key' in the map opens a new interval. The values 5385 // of the map are the index of the 'last seen' usage of the 5386 // instruction that is the key. 5387 using IntervalMap = DenseMap<Instruction *, unsigned>; 5388 5389 // Maps instruction to its index. 5390 SmallVector<Instruction *, 64> IdxToInstr; 5391 // Marks the end of each interval. 5392 IntervalMap EndPoint; 5393 // Saves the list of instruction indices that are used in the loop. 5394 SmallPtrSet<Instruction *, 8> Ends; 5395 // Saves the list of values that are used in the loop but are 5396 // defined outside the loop, such as arguments and constants. 5397 SmallPtrSet<Value *, 8> LoopInvariants; 5398 5399 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5400 for (Instruction &I : BB->instructionsWithoutDebug()) { 5401 IdxToInstr.push_back(&I); 5402 5403 // Save the end location of each USE. 5404 for (Value *U : I.operands()) { 5405 auto *Instr = dyn_cast<Instruction>(U); 5406 5407 // Ignore non-instruction values such as arguments, constants, etc. 5408 if (!Instr) 5409 continue; 5410 5411 // If this instruction is outside the loop then record it and continue. 5412 if (!TheLoop->contains(Instr)) { 5413 LoopInvariants.insert(Instr); 5414 continue; 5415 } 5416 5417 // Overwrite previous end points. 5418 EndPoint[Instr] = IdxToInstr.size(); 5419 Ends.insert(Instr); 5420 } 5421 } 5422 } 5423 5424 // Saves the list of intervals that end with the index in 'key'. 5425 using InstrList = SmallVector<Instruction *, 2>; 5426 DenseMap<unsigned, InstrList> TransposeEnds; 5427 5428 // Transpose the EndPoints to a list of values that end at each index. 5429 for (auto &Interval : EndPoint) 5430 TransposeEnds[Interval.second].push_back(Interval.first); 5431 5432 SmallPtrSet<Instruction *, 8> OpenIntervals; 5433 5434 // Get the size of the widest register. 5435 unsigned MaxSafeDepDist = -1U; 5436 if (Legal->getMaxSafeDepDistBytes() != -1U) 5437 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5438 unsigned WidestRegister = 5439 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5440 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5441 5442 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5443 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5444 5445 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5446 5447 // A lambda that gets the register usage for the given type and VF. 5448 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5449 if (Ty->isTokenTy()) 5450 return 0U; 5451 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5452 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5453 }; 5454 5455 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5456 Instruction *I = IdxToInstr[i]; 5457 5458 // Remove all of the instructions that end at this location. 5459 InstrList &List = TransposeEnds[i]; 5460 for (Instruction *ToRemove : List) 5461 OpenIntervals.erase(ToRemove); 5462 5463 // Ignore instructions that are never used within the loop. 5464 if (Ends.find(I) == Ends.end()) 5465 continue; 5466 5467 // Skip ignored values. 5468 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5469 continue; 5470 5471 // For each VF find the maximum usage of registers. 5472 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5473 // Count the number of live intervals. 5474 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5475 5476 if (VFs[j] == 1) { 5477 for (auto Inst : OpenIntervals) { 5478 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5479 if (RegUsage.find(ClassID) == RegUsage.end()) 5480 RegUsage[ClassID] = 1; 5481 else 5482 RegUsage[ClassID] += 1; 5483 } 5484 } else { 5485 collectUniformsAndScalars(VFs[j]); 5486 for (auto Inst : OpenIntervals) { 5487 // Skip ignored values for VF > 1. 5488 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end()) 5489 continue; 5490 if (isScalarAfterVectorization(Inst, VFs[j])) { 5491 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5492 if (RegUsage.find(ClassID) == RegUsage.end()) 5493 RegUsage[ClassID] = 1; 5494 else 5495 RegUsage[ClassID] += 1; 5496 } else { 5497 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5498 if (RegUsage.find(ClassID) == RegUsage.end()) 5499 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5500 else 5501 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5502 } 5503 } 5504 } 5505 5506 for (auto& pair : RegUsage) { 5507 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5508 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5509 else 5510 MaxUsages[j][pair.first] = pair.second; 5511 } 5512 } 5513 5514 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5515 << OpenIntervals.size() << '\n'); 5516 5517 // Add the current instruction to the list of open intervals. 5518 OpenIntervals.insert(I); 5519 } 5520 5521 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5522 SmallMapVector<unsigned, unsigned, 4> Invariant; 5523 5524 for (auto Inst : LoopInvariants) { 5525 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5526 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5527 if (Invariant.find(ClassID) == Invariant.end()) 5528 Invariant[ClassID] = Usage; 5529 else 5530 Invariant[ClassID] += Usage; 5531 } 5532 5533 LLVM_DEBUG({ 5534 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5535 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5536 << " item\n"; 5537 for (const auto &pair : MaxUsages[i]) { 5538 dbgs() << "LV(REG): RegisterClass: " 5539 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5540 << " registers\n"; 5541 } 5542 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5543 << " item\n"; 5544 for (const auto &pair : Invariant) { 5545 dbgs() << "LV(REG): RegisterClass: " 5546 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5547 << " registers\n"; 5548 } 5549 }); 5550 5551 RU.LoopInvariantRegs = Invariant; 5552 RU.MaxLocalUsers = MaxUsages[i]; 5553 RUs[i] = RU; 5554 } 5555 5556 return RUs; 5557 } 5558 5559 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5560 // TODO: Cost model for emulated masked load/store is completely 5561 // broken. This hack guides the cost model to use an artificially 5562 // high enough value to practically disable vectorization with such 5563 // operations, except where previously deployed legality hack allowed 5564 // using very low cost values. This is to avoid regressions coming simply 5565 // from moving "masked load/store" check from legality to cost model. 5566 // Masked Load/Gather emulation was previously never allowed. 5567 // Limited number of Masked Store/Scatter emulation was allowed. 5568 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5569 return isa<LoadInst>(I) || 5570 (isa<StoreInst>(I) && 5571 NumPredStores > NumberOfStoresToPredicate); 5572 } 5573 5574 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5575 // If we aren't vectorizing the loop, or if we've already collected the 5576 // instructions to scalarize, there's nothing to do. Collection may already 5577 // have occurred if we have a user-selected VF and are now computing the 5578 // expected cost for interleaving. 5579 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5580 return; 5581 5582 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5583 // not profitable to scalarize any instructions, the presence of VF in the 5584 // map will indicate that we've analyzed it already. 5585 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5586 5587 // Find all the instructions that are scalar with predication in the loop and 5588 // determine if it would be better to not if-convert the blocks they are in. 5589 // If so, we also record the instructions to scalarize. 5590 for (BasicBlock *BB : TheLoop->blocks()) { 5591 if (!blockNeedsPredication(BB)) 5592 continue; 5593 for (Instruction &I : *BB) 5594 if (isScalarWithPredication(&I)) { 5595 ScalarCostsTy ScalarCosts; 5596 // Do not apply discount logic if hacked cost is needed 5597 // for emulated masked memrefs. 5598 if (!useEmulatedMaskMemRefHack(&I) && 5599 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5600 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5601 // Remember that BB will remain after vectorization. 5602 PredicatedBBsAfterVectorization.insert(BB); 5603 } 5604 } 5605 } 5606 5607 int LoopVectorizationCostModel::computePredInstDiscount( 5608 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5609 unsigned VF) { 5610 assert(!isUniformAfterVectorization(PredInst, VF) && 5611 "Instruction marked uniform-after-vectorization will be predicated"); 5612 5613 // Initialize the discount to zero, meaning that the scalar version and the 5614 // vector version cost the same. 5615 int Discount = 0; 5616 5617 // Holds instructions to analyze. The instructions we visit are mapped in 5618 // ScalarCosts. Those instructions are the ones that would be scalarized if 5619 // we find that the scalar version costs less. 5620 SmallVector<Instruction *, 8> Worklist; 5621 5622 // Returns true if the given instruction can be scalarized. 5623 auto canBeScalarized = [&](Instruction *I) -> bool { 5624 // We only attempt to scalarize instructions forming a single-use chain 5625 // from the original predicated block that would otherwise be vectorized. 5626 // Although not strictly necessary, we give up on instructions we know will 5627 // already be scalar to avoid traversing chains that are unlikely to be 5628 // beneficial. 5629 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5630 isScalarAfterVectorization(I, VF)) 5631 return false; 5632 5633 // If the instruction is scalar with predication, it will be analyzed 5634 // separately. We ignore it within the context of PredInst. 5635 if (isScalarWithPredication(I)) 5636 return false; 5637 5638 // If any of the instruction's operands are uniform after vectorization, 5639 // the instruction cannot be scalarized. This prevents, for example, a 5640 // masked load from being scalarized. 5641 // 5642 // We assume we will only emit a value for lane zero of an instruction 5643 // marked uniform after vectorization, rather than VF identical values. 5644 // Thus, if we scalarize an instruction that uses a uniform, we would 5645 // create uses of values corresponding to the lanes we aren't emitting code 5646 // for. This behavior can be changed by allowing getScalarValue to clone 5647 // the lane zero values for uniforms rather than asserting. 5648 for (Use &U : I->operands()) 5649 if (auto *J = dyn_cast<Instruction>(U.get())) 5650 if (isUniformAfterVectorization(J, VF)) 5651 return false; 5652 5653 // Otherwise, we can scalarize the instruction. 5654 return true; 5655 }; 5656 5657 // Compute the expected cost discount from scalarizing the entire expression 5658 // feeding the predicated instruction. We currently only consider expressions 5659 // that are single-use instruction chains. 5660 Worklist.push_back(PredInst); 5661 while (!Worklist.empty()) { 5662 Instruction *I = Worklist.pop_back_val(); 5663 5664 // If we've already analyzed the instruction, there's nothing to do. 5665 if (ScalarCosts.find(I) != ScalarCosts.end()) 5666 continue; 5667 5668 // Compute the cost of the vector instruction. Note that this cost already 5669 // includes the scalarization overhead of the predicated instruction. 5670 unsigned VectorCost = getInstructionCost(I, VF).first; 5671 5672 // Compute the cost of the scalarized instruction. This cost is the cost of 5673 // the instruction as if it wasn't if-converted and instead remained in the 5674 // predicated block. We will scale this cost by block probability after 5675 // computing the scalarization overhead. 5676 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5677 5678 // Compute the scalarization overhead of needed insertelement instructions 5679 // and phi nodes. 5680 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5681 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5682 true, false); 5683 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5684 } 5685 5686 // Compute the scalarization overhead of needed extractelement 5687 // instructions. For each of the instruction's operands, if the operand can 5688 // be scalarized, add it to the worklist; otherwise, account for the 5689 // overhead. 5690 for (Use &U : I->operands()) 5691 if (auto *J = dyn_cast<Instruction>(U.get())) { 5692 assert(VectorType::isValidElementType(J->getType()) && 5693 "Instruction has non-scalar type"); 5694 if (canBeScalarized(J)) 5695 Worklist.push_back(J); 5696 else if (needsExtract(J, VF)) 5697 ScalarCost += TTI.getScalarizationOverhead( 5698 ToVectorTy(J->getType(),VF), false, true); 5699 } 5700 5701 // Scale the total scalar cost by block probability. 5702 ScalarCost /= getReciprocalPredBlockProb(); 5703 5704 // Compute the discount. A non-negative discount means the vector version 5705 // of the instruction costs more, and scalarizing would be beneficial. 5706 Discount += VectorCost - ScalarCost; 5707 ScalarCosts[I] = ScalarCost; 5708 } 5709 5710 return Discount; 5711 } 5712 5713 LoopVectorizationCostModel::VectorizationCostTy 5714 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5715 VectorizationCostTy Cost; 5716 5717 // For each block. 5718 for (BasicBlock *BB : TheLoop->blocks()) { 5719 VectorizationCostTy BlockCost; 5720 5721 // For each instruction in the old loop. 5722 for (Instruction &I : BB->instructionsWithoutDebug()) { 5723 // Skip ignored values. 5724 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5725 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5726 continue; 5727 5728 VectorizationCostTy C = getInstructionCost(&I, VF); 5729 5730 // Check if we should override the cost. 5731 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5732 C.first = ForceTargetInstructionCost; 5733 5734 BlockCost.first += C.first; 5735 BlockCost.second |= C.second; 5736 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5737 << " for VF " << VF << " For instruction: " << I 5738 << '\n'); 5739 } 5740 5741 // If we are vectorizing a predicated block, it will have been 5742 // if-converted. This means that the block's instructions (aside from 5743 // stores and instructions that may divide by zero) will now be 5744 // unconditionally executed. For the scalar case, we may not always execute 5745 // the predicated block. Thus, scale the block's cost by the probability of 5746 // executing it. 5747 if (VF == 1 && blockNeedsPredication(BB)) 5748 BlockCost.first /= getReciprocalPredBlockProb(); 5749 5750 Cost.first += BlockCost.first; 5751 Cost.second |= BlockCost.second; 5752 } 5753 5754 return Cost; 5755 } 5756 5757 /// Gets Address Access SCEV after verifying that the access pattern 5758 /// is loop invariant except the induction variable dependence. 5759 /// 5760 /// This SCEV can be sent to the Target in order to estimate the address 5761 /// calculation cost. 5762 static const SCEV *getAddressAccessSCEV( 5763 Value *Ptr, 5764 LoopVectorizationLegality *Legal, 5765 PredicatedScalarEvolution &PSE, 5766 const Loop *TheLoop) { 5767 5768 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5769 if (!Gep) 5770 return nullptr; 5771 5772 // We are looking for a gep with all loop invariant indices except for one 5773 // which should be an induction variable. 5774 auto SE = PSE.getSE(); 5775 unsigned NumOperands = Gep->getNumOperands(); 5776 for (unsigned i = 1; i < NumOperands; ++i) { 5777 Value *Opd = Gep->getOperand(i); 5778 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5779 !Legal->isInductionVariable(Opd)) 5780 return nullptr; 5781 } 5782 5783 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5784 return PSE.getSCEV(Ptr); 5785 } 5786 5787 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5788 return Legal->hasStride(I->getOperand(0)) || 5789 Legal->hasStride(I->getOperand(1)); 5790 } 5791 5792 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5793 unsigned VF) { 5794 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5795 Type *ValTy = getMemInstValueType(I); 5796 auto SE = PSE.getSE(); 5797 5798 unsigned AS = getLoadStoreAddressSpace(I); 5799 Value *Ptr = getLoadStorePointerOperand(I); 5800 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5801 5802 // Figure out whether the access is strided and get the stride value 5803 // if it's known in compile time 5804 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5805 5806 // Get the cost of the scalar memory instruction and address computation. 5807 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5808 5809 // Don't pass *I here, since it is scalar but will actually be part of a 5810 // vectorized loop where the user of it is a vectorized instruction. 5811 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5812 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5813 Alignment, AS); 5814 5815 // Get the overhead of the extractelement and insertelement instructions 5816 // we might create due to scalarization. 5817 Cost += getScalarizationOverhead(I, VF); 5818 5819 // If we have a predicated store, it may not be executed for each vector 5820 // lane. Scale the cost by the probability of executing the predicated 5821 // block. 5822 if (isPredicatedInst(I)) { 5823 Cost /= getReciprocalPredBlockProb(); 5824 5825 if (useEmulatedMaskMemRefHack(I)) 5826 // Artificially setting to a high enough value to practically disable 5827 // vectorization with such operations. 5828 Cost = 3000000; 5829 } 5830 5831 return Cost; 5832 } 5833 5834 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5835 unsigned VF) { 5836 Type *ValTy = getMemInstValueType(I); 5837 Type *VectorTy = ToVectorTy(ValTy, VF); 5838 Value *Ptr = getLoadStorePointerOperand(I); 5839 unsigned AS = getLoadStoreAddressSpace(I); 5840 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5841 5842 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5843 "Stride should be 1 or -1 for consecutive memory access"); 5844 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5845 unsigned Cost = 0; 5846 if (Legal->isMaskRequired(I)) 5847 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, 5848 Alignment ? Alignment->value() : 0, AS); 5849 else 5850 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5851 5852 bool Reverse = ConsecutiveStride < 0; 5853 if (Reverse) 5854 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5855 return Cost; 5856 } 5857 5858 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5859 unsigned VF) { 5860 Type *ValTy = getMemInstValueType(I); 5861 Type *VectorTy = ToVectorTy(ValTy, VF); 5862 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5863 unsigned AS = getLoadStoreAddressSpace(I); 5864 if (isa<LoadInst>(I)) { 5865 return TTI.getAddressComputationCost(ValTy) + 5866 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5867 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5868 } 5869 StoreInst *SI = cast<StoreInst>(I); 5870 5871 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5872 return TTI.getAddressComputationCost(ValTy) + 5873 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5874 (isLoopInvariantStoreValue 5875 ? 0 5876 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5877 VF - 1)); 5878 } 5879 5880 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5881 unsigned VF) { 5882 Type *ValTy = getMemInstValueType(I); 5883 Type *VectorTy = ToVectorTy(ValTy, VF); 5884 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5885 Value *Ptr = getLoadStorePointerOperand(I); 5886 5887 return TTI.getAddressComputationCost(VectorTy) + 5888 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5889 Legal->isMaskRequired(I), 5890 Alignment ? Alignment->value() : 0); 5891 } 5892 5893 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5894 unsigned VF) { 5895 Type *ValTy = getMemInstValueType(I); 5896 Type *VectorTy = ToVectorTy(ValTy, VF); 5897 unsigned AS = getLoadStoreAddressSpace(I); 5898 5899 auto Group = getInterleavedAccessGroup(I); 5900 assert(Group && "Fail to get an interleaved access group."); 5901 5902 unsigned InterleaveFactor = Group->getFactor(); 5903 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5904 5905 // Holds the indices of existing members in an interleaved load group. 5906 // An interleaved store group doesn't need this as it doesn't allow gaps. 5907 SmallVector<unsigned, 4> Indices; 5908 if (isa<LoadInst>(I)) { 5909 for (unsigned i = 0; i < InterleaveFactor; i++) 5910 if (Group->getMember(i)) 5911 Indices.push_back(i); 5912 } 5913 5914 // Calculate the cost of the whole interleaved group. 5915 bool UseMaskForGaps = 5916 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5917 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5918 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5919 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5920 5921 if (Group->isReverse()) { 5922 // TODO: Add support for reversed masked interleaved access. 5923 assert(!Legal->isMaskRequired(I) && 5924 "Reverse masked interleaved access not supported."); 5925 Cost += Group->getNumMembers() * 5926 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5927 } 5928 return Cost; 5929 } 5930 5931 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5932 unsigned VF) { 5933 // Calculate scalar cost only. Vectorization cost should be ready at this 5934 // moment. 5935 if (VF == 1) { 5936 Type *ValTy = getMemInstValueType(I); 5937 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5938 unsigned AS = getLoadStoreAddressSpace(I); 5939 5940 return TTI.getAddressComputationCost(ValTy) + 5941 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5942 } 5943 return getWideningCost(I, VF); 5944 } 5945 5946 LoopVectorizationCostModel::VectorizationCostTy 5947 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5948 // If we know that this instruction will remain uniform, check the cost of 5949 // the scalar version. 5950 if (isUniformAfterVectorization(I, VF)) 5951 VF = 1; 5952 5953 if (VF > 1 && isProfitableToScalarize(I, VF)) 5954 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5955 5956 // Forced scalars do not have any scalarization overhead. 5957 auto ForcedScalar = ForcedScalars.find(VF); 5958 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5959 auto InstSet = ForcedScalar->second; 5960 if (InstSet.find(I) != InstSet.end()) 5961 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5962 } 5963 5964 Type *VectorTy; 5965 unsigned C = getInstructionCost(I, VF, VectorTy); 5966 5967 bool TypeNotScalarized = 5968 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5969 return VectorizationCostTy(C, TypeNotScalarized); 5970 } 5971 5972 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5973 unsigned VF) { 5974 5975 if (VF == 1) 5976 return 0; 5977 5978 unsigned Cost = 0; 5979 Type *RetTy = ToVectorTy(I->getType(), VF); 5980 if (!RetTy->isVoidTy() && 5981 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5982 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 5983 5984 // Some targets keep addresses scalar. 5985 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 5986 return Cost; 5987 5988 // Some targets support efficient element stores. 5989 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 5990 return Cost; 5991 5992 // Collect operands to consider. 5993 CallInst *CI = dyn_cast<CallInst>(I); 5994 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 5995 5996 // Skip operands that do not require extraction/scalarization and do not incur 5997 // any overhead. 5998 return Cost + TTI.getOperandsScalarizationOverhead( 5999 filterExtractingOperands(Ops, VF), VF); 6000 } 6001 6002 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6003 if (VF == 1) 6004 return; 6005 NumPredStores = 0; 6006 for (BasicBlock *BB : TheLoop->blocks()) { 6007 // For each instruction in the old loop. 6008 for (Instruction &I : *BB) { 6009 Value *Ptr = getLoadStorePointerOperand(&I); 6010 if (!Ptr) 6011 continue; 6012 6013 // TODO: We should generate better code and update the cost model for 6014 // predicated uniform stores. Today they are treated as any other 6015 // predicated store (see added test cases in 6016 // invariant-store-vectorization.ll). 6017 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6018 NumPredStores++; 6019 6020 if (Legal->isUniform(Ptr) && 6021 // Conditional loads and stores should be scalarized and predicated. 6022 // isScalarWithPredication cannot be used here since masked 6023 // gather/scatters are not considered scalar with predication. 6024 !Legal->blockNeedsPredication(I.getParent())) { 6025 // TODO: Avoid replicating loads and stores instead of 6026 // relying on instcombine to remove them. 6027 // Load: Scalar load + broadcast 6028 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6029 unsigned Cost = getUniformMemOpCost(&I, VF); 6030 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6031 continue; 6032 } 6033 6034 // We assume that widening is the best solution when possible. 6035 if (memoryInstructionCanBeWidened(&I, VF)) { 6036 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6037 int ConsecutiveStride = 6038 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6039 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6040 "Expected consecutive stride."); 6041 InstWidening Decision = 6042 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6043 setWideningDecision(&I, VF, Decision, Cost); 6044 continue; 6045 } 6046 6047 // Choose between Interleaving, Gather/Scatter or Scalarization. 6048 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6049 unsigned NumAccesses = 1; 6050 if (isAccessInterleaved(&I)) { 6051 auto Group = getInterleavedAccessGroup(&I); 6052 assert(Group && "Fail to get an interleaved access group."); 6053 6054 // Make one decision for the whole group. 6055 if (getWideningDecision(&I, VF) != CM_Unknown) 6056 continue; 6057 6058 NumAccesses = Group->getNumMembers(); 6059 if (interleavedAccessCanBeWidened(&I, VF)) 6060 InterleaveCost = getInterleaveGroupCost(&I, VF); 6061 } 6062 6063 unsigned GatherScatterCost = 6064 isLegalGatherOrScatter(&I) 6065 ? getGatherScatterCost(&I, VF) * NumAccesses 6066 : std::numeric_limits<unsigned>::max(); 6067 6068 unsigned ScalarizationCost = 6069 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6070 6071 // Choose better solution for the current VF, 6072 // write down this decision and use it during vectorization. 6073 unsigned Cost; 6074 InstWidening Decision; 6075 if (InterleaveCost <= GatherScatterCost && 6076 InterleaveCost < ScalarizationCost) { 6077 Decision = CM_Interleave; 6078 Cost = InterleaveCost; 6079 } else if (GatherScatterCost < ScalarizationCost) { 6080 Decision = CM_GatherScatter; 6081 Cost = GatherScatterCost; 6082 } else { 6083 Decision = CM_Scalarize; 6084 Cost = ScalarizationCost; 6085 } 6086 // If the instructions belongs to an interleave group, the whole group 6087 // receives the same decision. The whole group receives the cost, but 6088 // the cost will actually be assigned to one instruction. 6089 if (auto Group = getInterleavedAccessGroup(&I)) 6090 setWideningDecision(Group, VF, Decision, Cost); 6091 else 6092 setWideningDecision(&I, VF, Decision, Cost); 6093 } 6094 } 6095 6096 // Make sure that any load of address and any other address computation 6097 // remains scalar unless there is gather/scatter support. This avoids 6098 // inevitable extracts into address registers, and also has the benefit of 6099 // activating LSR more, since that pass can't optimize vectorized 6100 // addresses. 6101 if (TTI.prefersVectorizedAddressing()) 6102 return; 6103 6104 // Start with all scalar pointer uses. 6105 SmallPtrSet<Instruction *, 8> AddrDefs; 6106 for (BasicBlock *BB : TheLoop->blocks()) 6107 for (Instruction &I : *BB) { 6108 Instruction *PtrDef = 6109 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6110 if (PtrDef && TheLoop->contains(PtrDef) && 6111 getWideningDecision(&I, VF) != CM_GatherScatter) 6112 AddrDefs.insert(PtrDef); 6113 } 6114 6115 // Add all instructions used to generate the addresses. 6116 SmallVector<Instruction *, 4> Worklist; 6117 for (auto *I : AddrDefs) 6118 Worklist.push_back(I); 6119 while (!Worklist.empty()) { 6120 Instruction *I = Worklist.pop_back_val(); 6121 for (auto &Op : I->operands()) 6122 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6123 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6124 AddrDefs.insert(InstOp).second) 6125 Worklist.push_back(InstOp); 6126 } 6127 6128 for (auto *I : AddrDefs) { 6129 if (isa<LoadInst>(I)) { 6130 // Setting the desired widening decision should ideally be handled in 6131 // by cost functions, but since this involves the task of finding out 6132 // if the loaded register is involved in an address computation, it is 6133 // instead changed here when we know this is the case. 6134 InstWidening Decision = getWideningDecision(I, VF); 6135 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6136 // Scalarize a widened load of address. 6137 setWideningDecision(I, VF, CM_Scalarize, 6138 (VF * getMemoryInstructionCost(I, 1))); 6139 else if (auto Group = getInterleavedAccessGroup(I)) { 6140 // Scalarize an interleave group of address loads. 6141 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6142 if (Instruction *Member = Group->getMember(I)) 6143 setWideningDecision(Member, VF, CM_Scalarize, 6144 (VF * getMemoryInstructionCost(Member, 1))); 6145 } 6146 } 6147 } else 6148 // Make sure I gets scalarized and a cost estimate without 6149 // scalarization overhead. 6150 ForcedScalars[VF].insert(I); 6151 } 6152 } 6153 6154 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6155 unsigned VF, 6156 Type *&VectorTy) { 6157 Type *RetTy = I->getType(); 6158 if (canTruncateToMinimalBitwidth(I, VF)) 6159 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6160 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6161 auto SE = PSE.getSE(); 6162 6163 // TODO: We need to estimate the cost of intrinsic calls. 6164 switch (I->getOpcode()) { 6165 case Instruction::GetElementPtr: 6166 // We mark this instruction as zero-cost because the cost of GEPs in 6167 // vectorized code depends on whether the corresponding memory instruction 6168 // is scalarized or not. Therefore, we handle GEPs with the memory 6169 // instruction cost. 6170 return 0; 6171 case Instruction::Br: { 6172 // In cases of scalarized and predicated instructions, there will be VF 6173 // predicated blocks in the vectorized loop. Each branch around these 6174 // blocks requires also an extract of its vector compare i1 element. 6175 bool ScalarPredicatedBB = false; 6176 BranchInst *BI = cast<BranchInst>(I); 6177 if (VF > 1 && BI->isConditional() && 6178 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 6179 PredicatedBBsAfterVectorization.end() || 6180 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 6181 PredicatedBBsAfterVectorization.end())) 6182 ScalarPredicatedBB = true; 6183 6184 if (ScalarPredicatedBB) { 6185 // Return cost for branches around scalarized and predicated blocks. 6186 Type *Vec_i1Ty = 6187 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6188 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 6189 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6190 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6191 // The back-edge branch will remain, as will all scalar branches. 6192 return TTI.getCFInstrCost(Instruction::Br); 6193 else 6194 // This branch will be eliminated by if-conversion. 6195 return 0; 6196 // Note: We currently assume zero cost for an unconditional branch inside 6197 // a predicated block since it will become a fall-through, although we 6198 // may decide in the future to call TTI for all branches. 6199 } 6200 case Instruction::PHI: { 6201 auto *Phi = cast<PHINode>(I); 6202 6203 // First-order recurrences are replaced by vector shuffles inside the loop. 6204 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6205 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6206 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6207 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 6208 6209 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6210 // converted into select instructions. We require N - 1 selects per phi 6211 // node, where N is the number of incoming values. 6212 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6213 return (Phi->getNumIncomingValues() - 1) * 6214 TTI.getCmpSelInstrCost( 6215 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6216 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 6217 6218 return TTI.getCFInstrCost(Instruction::PHI); 6219 } 6220 case Instruction::UDiv: 6221 case Instruction::SDiv: 6222 case Instruction::URem: 6223 case Instruction::SRem: 6224 // If we have a predicated instruction, it may not be executed for each 6225 // vector lane. Get the scalarization cost and scale this amount by the 6226 // probability of executing the predicated block. If the instruction is not 6227 // predicated, we fall through to the next case. 6228 if (VF > 1 && isScalarWithPredication(I)) { 6229 unsigned Cost = 0; 6230 6231 // These instructions have a non-void type, so account for the phi nodes 6232 // that we will create. This cost is likely to be zero. The phi node 6233 // cost, if any, should be scaled by the block probability because it 6234 // models a copy at the end of each predicated block. 6235 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6236 6237 // The cost of the non-predicated instruction. 6238 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6239 6240 // The cost of insertelement and extractelement instructions needed for 6241 // scalarization. 6242 Cost += getScalarizationOverhead(I, VF); 6243 6244 // Scale the cost by the probability of executing the predicated blocks. 6245 // This assumes the predicated block for each vector lane is equally 6246 // likely. 6247 return Cost / getReciprocalPredBlockProb(); 6248 } 6249 LLVM_FALLTHROUGH; 6250 case Instruction::Add: 6251 case Instruction::FAdd: 6252 case Instruction::Sub: 6253 case Instruction::FSub: 6254 case Instruction::Mul: 6255 case Instruction::FMul: 6256 case Instruction::FDiv: 6257 case Instruction::FRem: 6258 case Instruction::Shl: 6259 case Instruction::LShr: 6260 case Instruction::AShr: 6261 case Instruction::And: 6262 case Instruction::Or: 6263 case Instruction::Xor: { 6264 // Since we will replace the stride by 1 the multiplication should go away. 6265 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6266 return 0; 6267 // Certain instructions can be cheaper to vectorize if they have a constant 6268 // second vector operand. One example of this are shifts on x86. 6269 Value *Op2 = I->getOperand(1); 6270 TargetTransformInfo::OperandValueProperties Op2VP; 6271 TargetTransformInfo::OperandValueKind Op2VK = 6272 TTI.getOperandInfo(Op2, Op2VP); 6273 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6274 Op2VK = TargetTransformInfo::OK_UniformValue; 6275 6276 SmallVector<const Value *, 4> Operands(I->operand_values()); 6277 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6278 return N * TTI.getArithmeticInstrCost( 6279 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6280 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6281 } 6282 case Instruction::FNeg: { 6283 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6284 return N * TTI.getArithmeticInstrCost( 6285 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6286 TargetTransformInfo::OK_AnyValue, 6287 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6288 I->getOperand(0), I); 6289 } 6290 case Instruction::Select: { 6291 SelectInst *SI = cast<SelectInst>(I); 6292 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6293 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6294 Type *CondTy = SI->getCondition()->getType(); 6295 if (!ScalarCond) 6296 CondTy = VectorType::get(CondTy, VF); 6297 6298 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6299 } 6300 case Instruction::ICmp: 6301 case Instruction::FCmp: { 6302 Type *ValTy = I->getOperand(0)->getType(); 6303 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6304 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6305 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6306 VectorTy = ToVectorTy(ValTy, VF); 6307 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6308 } 6309 case Instruction::Store: 6310 case Instruction::Load: { 6311 unsigned Width = VF; 6312 if (Width > 1) { 6313 InstWidening Decision = getWideningDecision(I, Width); 6314 assert(Decision != CM_Unknown && 6315 "CM decision should be taken at this point"); 6316 if (Decision == CM_Scalarize) 6317 Width = 1; 6318 } 6319 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6320 return getMemoryInstructionCost(I, VF); 6321 } 6322 case Instruction::ZExt: 6323 case Instruction::SExt: 6324 case Instruction::FPToUI: 6325 case Instruction::FPToSI: 6326 case Instruction::FPExt: 6327 case Instruction::PtrToInt: 6328 case Instruction::IntToPtr: 6329 case Instruction::SIToFP: 6330 case Instruction::UIToFP: 6331 case Instruction::Trunc: 6332 case Instruction::FPTrunc: 6333 case Instruction::BitCast: { 6334 // We optimize the truncation of induction variables having constant 6335 // integer steps. The cost of these truncations is the same as the scalar 6336 // operation. 6337 if (isOptimizableIVTruncate(I, VF)) { 6338 auto *Trunc = cast<TruncInst>(I); 6339 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6340 Trunc->getSrcTy(), Trunc); 6341 } 6342 6343 Type *SrcScalarTy = I->getOperand(0)->getType(); 6344 Type *SrcVecTy = 6345 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6346 if (canTruncateToMinimalBitwidth(I, VF)) { 6347 // This cast is going to be shrunk. This may remove the cast or it might 6348 // turn it into slightly different cast. For example, if MinBW == 16, 6349 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6350 // 6351 // Calculate the modified src and dest types. 6352 Type *MinVecTy = VectorTy; 6353 if (I->getOpcode() == Instruction::Trunc) { 6354 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6355 VectorTy = 6356 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6357 } else if (I->getOpcode() == Instruction::ZExt || 6358 I->getOpcode() == Instruction::SExt) { 6359 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6360 VectorTy = 6361 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6362 } 6363 } 6364 6365 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6366 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6367 } 6368 case Instruction::Call: { 6369 bool NeedToScalarize; 6370 CallInst *CI = cast<CallInst>(I); 6371 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6372 if (getVectorIntrinsicIDForCall(CI, TLI)) 6373 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6374 return CallCost; 6375 } 6376 default: 6377 // The cost of executing VF copies of the scalar instruction. This opcode 6378 // is unknown. Assume that it is the same as 'mul'. 6379 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6380 getScalarizationOverhead(I, VF); 6381 } // end of switch. 6382 } 6383 6384 char LoopVectorize::ID = 0; 6385 6386 static const char lv_name[] = "Loop Vectorization"; 6387 6388 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6389 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6390 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6391 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6392 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6393 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6394 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6395 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6396 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6397 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6398 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6399 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6400 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6401 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6402 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6403 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6404 6405 namespace llvm { 6406 6407 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6408 6409 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6410 bool VectorizeOnlyWhenForced) { 6411 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6412 } 6413 6414 } // end namespace llvm 6415 6416 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6417 // Check if the pointer operand of a load or store instruction is 6418 // consecutive. 6419 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6420 return Legal->isConsecutivePtr(Ptr); 6421 return false; 6422 } 6423 6424 void LoopVectorizationCostModel::collectValuesToIgnore() { 6425 // Ignore ephemeral values. 6426 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6427 6428 // Ignore type-promoting instructions we identified during reduction 6429 // detection. 6430 for (auto &Reduction : *Legal->getReductionVars()) { 6431 RecurrenceDescriptor &RedDes = Reduction.second; 6432 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6433 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6434 } 6435 // Ignore type-casting instructions we identified during induction 6436 // detection. 6437 for (auto &Induction : *Legal->getInductionVars()) { 6438 InductionDescriptor &IndDes = Induction.second; 6439 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6440 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6441 } 6442 } 6443 6444 // TODO: we could return a pair of values that specify the max VF and 6445 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6446 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6447 // doesn't have a cost model that can choose which plan to execute if 6448 // more than one is generated. 6449 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6450 LoopVectorizationCostModel &CM) { 6451 unsigned WidestType; 6452 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6453 return WidestVectorRegBits / WidestType; 6454 } 6455 6456 VectorizationFactor 6457 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6458 unsigned VF = UserVF; 6459 // Outer loop handling: They may require CFG and instruction level 6460 // transformations before even evaluating whether vectorization is profitable. 6461 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6462 // the vectorization pipeline. 6463 if (!OrigLoop->empty()) { 6464 // If the user doesn't provide a vectorization factor, determine a 6465 // reasonable one. 6466 if (!UserVF) { 6467 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6468 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6469 6470 // Make sure we have a VF > 1 for stress testing. 6471 if (VPlanBuildStressTest && VF < 2) { 6472 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6473 << "overriding computed VF.\n"); 6474 VF = 4; 6475 } 6476 } 6477 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6478 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6479 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6480 << " to build VPlans.\n"); 6481 buildVPlans(VF, VF); 6482 6483 // For VPlan build stress testing, we bail out after VPlan construction. 6484 if (VPlanBuildStressTest) 6485 return VectorizationFactor::Disabled(); 6486 6487 return {VF, 0}; 6488 } 6489 6490 LLVM_DEBUG( 6491 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6492 "VPlan-native path.\n"); 6493 return VectorizationFactor::Disabled(); 6494 } 6495 6496 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) { 6497 assert(OrigLoop->empty() && "Inner loop expected."); 6498 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(); 6499 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6500 return None; 6501 6502 // Invalidate interleave groups if all blocks of loop will be predicated. 6503 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6504 !useMaskedInterleavedAccesses(*TTI)) { 6505 LLVM_DEBUG( 6506 dbgs() 6507 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6508 "which requires masked-interleaved support.\n"); 6509 CM.InterleaveInfo.reset(); 6510 } 6511 6512 if (UserVF) { 6513 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6514 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6515 // Collect the instructions (and their associated costs) that will be more 6516 // profitable to scalarize. 6517 CM.selectUserVectorizationFactor(UserVF); 6518 buildVPlansWithVPRecipes(UserVF, UserVF); 6519 LLVM_DEBUG(printPlans(dbgs())); 6520 return {{UserVF, 0}}; 6521 } 6522 6523 unsigned MaxVF = MaybeMaxVF.getValue(); 6524 assert(MaxVF != 0 && "MaxVF is zero."); 6525 6526 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6527 // Collect Uniform and Scalar instructions after vectorization with VF. 6528 CM.collectUniformsAndScalars(VF); 6529 6530 // Collect the instructions (and their associated costs) that will be more 6531 // profitable to scalarize. 6532 if (VF > 1) 6533 CM.collectInstsToScalarize(VF); 6534 } 6535 6536 buildVPlansWithVPRecipes(1, MaxVF); 6537 LLVM_DEBUG(printPlans(dbgs())); 6538 if (MaxVF == 1) 6539 return VectorizationFactor::Disabled(); 6540 6541 // Select the optimal vectorization factor. 6542 return CM.selectVectorizationFactor(MaxVF); 6543 } 6544 6545 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6546 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6547 << '\n'); 6548 BestVF = VF; 6549 BestUF = UF; 6550 6551 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6552 return !Plan->hasVF(VF); 6553 }); 6554 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6555 } 6556 6557 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6558 DominatorTree *DT) { 6559 // Perform the actual loop transformation. 6560 6561 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6562 VPCallbackILV CallbackILV(ILV); 6563 6564 VPTransformState State{BestVF, BestUF, LI, 6565 DT, ILV.Builder, ILV.VectorLoopValueMap, 6566 &ILV, CallbackILV}; 6567 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6568 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6569 6570 //===------------------------------------------------===// 6571 // 6572 // Notice: any optimization or new instruction that go 6573 // into the code below should also be implemented in 6574 // the cost-model. 6575 // 6576 //===------------------------------------------------===// 6577 6578 // 2. Copy and widen instructions from the old loop into the new loop. 6579 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6580 VPlans.front()->execute(&State); 6581 6582 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6583 // predication, updating analyses. 6584 ILV.fixVectorizedLoop(); 6585 } 6586 6587 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6588 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6589 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6590 6591 // We create new control-flow for the vectorized loop, so the original 6592 // condition will be dead after vectorization if it's only used by the 6593 // branch. 6594 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6595 if (Cmp && Cmp->hasOneUse()) 6596 DeadInstructions.insert(Cmp); 6597 6598 // We create new "steps" for induction variable updates to which the original 6599 // induction variables map. An original update instruction will be dead if 6600 // all its users except the induction variable are dead. 6601 for (auto &Induction : *Legal->getInductionVars()) { 6602 PHINode *Ind = Induction.first; 6603 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6604 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6605 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6606 DeadInstructions.end(); 6607 })) 6608 DeadInstructions.insert(IndUpdate); 6609 6610 // We record as "Dead" also the type-casting instructions we had identified 6611 // during induction analysis. We don't need any handling for them in the 6612 // vectorized loop because we have proven that, under a proper runtime 6613 // test guarding the vectorized loop, the value of the phi, and the casted 6614 // value of the phi, are the same. The last instruction in this casting chain 6615 // will get its scalar/vector/widened def from the scalar/vector/widened def 6616 // of the respective phi node. Any other casts in the induction def-use chain 6617 // have no other uses outside the phi update chain, and will be ignored. 6618 InductionDescriptor &IndDes = Induction.second; 6619 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6620 DeadInstructions.insert(Casts.begin(), Casts.end()); 6621 } 6622 } 6623 6624 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6625 6626 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6627 6628 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6629 Instruction::BinaryOps BinOp) { 6630 // When unrolling and the VF is 1, we only need to add a simple scalar. 6631 Type *Ty = Val->getType(); 6632 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6633 6634 if (Ty->isFloatingPointTy()) { 6635 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6636 6637 // Floating point operations had to be 'fast' to enable the unrolling. 6638 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6639 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6640 } 6641 Constant *C = ConstantInt::get(Ty, StartIdx); 6642 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6643 } 6644 6645 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6646 SmallVector<Metadata *, 4> MDs; 6647 // Reserve first location for self reference to the LoopID metadata node. 6648 MDs.push_back(nullptr); 6649 bool IsUnrollMetadata = false; 6650 MDNode *LoopID = L->getLoopID(); 6651 if (LoopID) { 6652 // First find existing loop unrolling disable metadata. 6653 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6654 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6655 if (MD) { 6656 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6657 IsUnrollMetadata = 6658 S && S->getString().startswith("llvm.loop.unroll.disable"); 6659 } 6660 MDs.push_back(LoopID->getOperand(i)); 6661 } 6662 } 6663 6664 if (!IsUnrollMetadata) { 6665 // Add runtime unroll disable metadata. 6666 LLVMContext &Context = L->getHeader()->getContext(); 6667 SmallVector<Metadata *, 1> DisableOperands; 6668 DisableOperands.push_back( 6669 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6670 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6671 MDs.push_back(DisableNode); 6672 MDNode *NewLoopID = MDNode::get(Context, MDs); 6673 // Set operand 0 to refer to the loop id itself. 6674 NewLoopID->replaceOperandWith(0, NewLoopID); 6675 L->setLoopID(NewLoopID); 6676 } 6677 } 6678 6679 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6680 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6681 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6682 bool PredicateAtRangeStart = Predicate(Range.Start); 6683 6684 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6685 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6686 Range.End = TmpVF; 6687 break; 6688 } 6689 6690 return PredicateAtRangeStart; 6691 } 6692 6693 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6694 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6695 /// of VF's starting at a given VF and extending it as much as possible. Each 6696 /// vectorization decision can potentially shorten this sub-range during 6697 /// buildVPlan(). 6698 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6699 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6700 VFRange SubRange = {VF, MaxVF + 1}; 6701 VPlans.push_back(buildVPlan(SubRange)); 6702 VF = SubRange.End; 6703 } 6704 } 6705 6706 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6707 VPlanPtr &Plan) { 6708 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6709 6710 // Look for cached value. 6711 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6712 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6713 if (ECEntryIt != EdgeMaskCache.end()) 6714 return ECEntryIt->second; 6715 6716 VPValue *SrcMask = createBlockInMask(Src, Plan); 6717 6718 // The terminator has to be a branch inst! 6719 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6720 assert(BI && "Unexpected terminator found"); 6721 6722 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 6723 return EdgeMaskCache[Edge] = SrcMask; 6724 6725 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6726 assert(EdgeMask && "No Edge Mask found for condition"); 6727 6728 if (BI->getSuccessor(0) != Dst) 6729 EdgeMask = Builder.createNot(EdgeMask); 6730 6731 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6732 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6733 6734 return EdgeMaskCache[Edge] = EdgeMask; 6735 } 6736 6737 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6738 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6739 6740 // Look for cached value. 6741 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6742 if (BCEntryIt != BlockMaskCache.end()) 6743 return BCEntryIt->second; 6744 6745 // All-one mask is modelled as no-mask following the convention for masked 6746 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6747 VPValue *BlockMask = nullptr; 6748 6749 if (OrigLoop->getHeader() == BB) { 6750 if (!CM.blockNeedsPredication(BB)) 6751 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6752 6753 // Introduce the early-exit compare IV <= BTC to form header block mask. 6754 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6755 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6756 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6757 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6758 return BlockMaskCache[BB] = BlockMask; 6759 } 6760 6761 // This is the block mask. We OR all incoming edges. 6762 for (auto *Predecessor : predecessors(BB)) { 6763 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6764 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6765 return BlockMaskCache[BB] = EdgeMask; 6766 6767 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6768 BlockMask = EdgeMask; 6769 continue; 6770 } 6771 6772 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6773 } 6774 6775 return BlockMaskCache[BB] = BlockMask; 6776 } 6777 6778 VPWidenMemoryInstructionRecipe * 6779 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6780 VPlanPtr &Plan) { 6781 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6782 return nullptr; 6783 6784 auto willWiden = [&](unsigned VF) -> bool { 6785 if (VF == 1) 6786 return false; 6787 LoopVectorizationCostModel::InstWidening Decision = 6788 CM.getWideningDecision(I, VF); 6789 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6790 "CM decision should be taken at this point."); 6791 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6792 return true; 6793 if (CM.isScalarAfterVectorization(I, VF) || 6794 CM.isProfitableToScalarize(I, VF)) 6795 return false; 6796 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6797 }; 6798 6799 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6800 return nullptr; 6801 6802 VPValue *Mask = nullptr; 6803 if (Legal->isMaskRequired(I)) 6804 Mask = createBlockInMask(I->getParent(), Plan); 6805 6806 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 6807 return new VPWidenMemoryInstructionRecipe(*I, Addr, Mask); 6808 } 6809 6810 VPWidenIntOrFpInductionRecipe * 6811 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6812 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6813 // Check if this is an integer or fp induction. If so, build the recipe that 6814 // produces its scalar and vector values. 6815 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6816 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6817 II.getKind() == InductionDescriptor::IK_FpInduction) 6818 return new VPWidenIntOrFpInductionRecipe(Phi); 6819 6820 return nullptr; 6821 } 6822 6823 // Optimize the special case where the source is a constant integer 6824 // induction variable. Notice that we can only optimize the 'trunc' case 6825 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6826 // (c) other casts depend on pointer size. 6827 6828 // Determine whether \p K is a truncation based on an induction variable that 6829 // can be optimized. 6830 auto isOptimizableIVTruncate = 6831 [&](Instruction *K) -> std::function<bool(unsigned)> { 6832 return 6833 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6834 }; 6835 6836 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6837 isOptimizableIVTruncate(I), Range)) 6838 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6839 cast<TruncInst>(I)); 6840 return nullptr; 6841 } 6842 6843 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6844 PHINode *Phi = dyn_cast<PHINode>(I); 6845 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6846 return nullptr; 6847 6848 // We know that all PHIs in non-header blocks are converted into selects, so 6849 // we don't have to worry about the insertion order and we can just use the 6850 // builder. At this point we generate the predication tree. There may be 6851 // duplications since this is a simple recursive scan, but future 6852 // optimizations will clean it up. 6853 6854 SmallVector<VPValue *, 2> Masks; 6855 unsigned NumIncoming = Phi->getNumIncomingValues(); 6856 for (unsigned In = 0; In < NumIncoming; In++) { 6857 VPValue *EdgeMask = 6858 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6859 assert((EdgeMask || NumIncoming == 1) && 6860 "Multiple predecessors with one having a full mask"); 6861 if (EdgeMask) 6862 Masks.push_back(EdgeMask); 6863 } 6864 return new VPBlendRecipe(Phi, Masks); 6865 } 6866 6867 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6868 VFRange &Range) { 6869 6870 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6871 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6872 6873 if (IsPredicated) 6874 return false; 6875 6876 auto IsVectorizableOpcode = [](unsigned Opcode) { 6877 switch (Opcode) { 6878 case Instruction::Add: 6879 case Instruction::And: 6880 case Instruction::AShr: 6881 case Instruction::BitCast: 6882 case Instruction::Br: 6883 case Instruction::Call: 6884 case Instruction::FAdd: 6885 case Instruction::FCmp: 6886 case Instruction::FDiv: 6887 case Instruction::FMul: 6888 case Instruction::FNeg: 6889 case Instruction::FPExt: 6890 case Instruction::FPToSI: 6891 case Instruction::FPToUI: 6892 case Instruction::FPTrunc: 6893 case Instruction::FRem: 6894 case Instruction::FSub: 6895 case Instruction::ICmp: 6896 case Instruction::IntToPtr: 6897 case Instruction::Load: 6898 case Instruction::LShr: 6899 case Instruction::Mul: 6900 case Instruction::Or: 6901 case Instruction::PHI: 6902 case Instruction::PtrToInt: 6903 case Instruction::SDiv: 6904 case Instruction::Select: 6905 case Instruction::SExt: 6906 case Instruction::Shl: 6907 case Instruction::SIToFP: 6908 case Instruction::SRem: 6909 case Instruction::Store: 6910 case Instruction::Sub: 6911 case Instruction::Trunc: 6912 case Instruction::UDiv: 6913 case Instruction::UIToFP: 6914 case Instruction::URem: 6915 case Instruction::Xor: 6916 case Instruction::ZExt: 6917 return true; 6918 } 6919 return false; 6920 }; 6921 6922 if (!IsVectorizableOpcode(I->getOpcode())) 6923 return false; 6924 6925 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6926 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6927 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6928 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6929 return false; 6930 } 6931 6932 auto willWiden = [&](unsigned VF) -> bool { 6933 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6934 CM.isProfitableToScalarize(I, VF))) 6935 return false; 6936 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6937 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6938 // The following case may be scalarized depending on the VF. 6939 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6940 // version of the instruction. 6941 // Is it beneficial to perform intrinsic call compared to lib call? 6942 bool NeedToScalarize; 6943 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6944 bool UseVectorIntrinsic = 6945 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6946 return UseVectorIntrinsic || !NeedToScalarize; 6947 } 6948 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6949 assert(CM.getWideningDecision(I, VF) == 6950 LoopVectorizationCostModel::CM_Scalarize && 6951 "Memory widening decisions should have been taken care by now"); 6952 return false; 6953 } 6954 return true; 6955 }; 6956 6957 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6958 return false; 6959 // If this ingredient's recipe is to be recorded, keep its recipe a singleton 6960 // to avoid having to split recipes later. 6961 bool IsSingleton = Ingredient2Recipe.count(I); 6962 6963 // Success: widen this instruction. 6964 6965 // Use the default widening recipe. We optimize the common case where 6966 // consecutive instructions can be represented by a single recipe. 6967 if (!IsSingleton && !VPBB->empty() && LastExtensibleRecipe == &VPBB->back() && 6968 LastExtensibleRecipe->appendInstruction(I)) 6969 return true; 6970 6971 VPWidenRecipe *WidenRecipe = new VPWidenRecipe(I); 6972 if (!IsSingleton) 6973 LastExtensibleRecipe = WidenRecipe; 6974 setRecipe(I, WidenRecipe); 6975 VPBB->appendRecipe(WidenRecipe); 6976 return true; 6977 } 6978 6979 VPBasicBlock *VPRecipeBuilder::handleReplication( 6980 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6981 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6982 VPlanPtr &Plan) { 6983 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6984 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6985 Range); 6986 6987 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6988 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6989 6990 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6991 setRecipe(I, Recipe); 6992 6993 // Find if I uses a predicated instruction. If so, it will use its scalar 6994 // value. Avoid hoisting the insert-element which packs the scalar value into 6995 // a vector value, as that happens iff all users use the vector value. 6996 for (auto &Op : I->operands()) 6997 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6998 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6999 PredInst2Recipe[PredInst]->setAlsoPack(false); 7000 7001 // Finalize the recipe for Instr, first if it is not predicated. 7002 if (!IsPredicated) { 7003 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7004 VPBB->appendRecipe(Recipe); 7005 return VPBB; 7006 } 7007 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7008 assert(VPBB->getSuccessors().empty() && 7009 "VPBB has successors when handling predicated replication."); 7010 // Record predicated instructions for above packing optimizations. 7011 PredInst2Recipe[I] = Recipe; 7012 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7013 VPBlockUtils::insertBlockAfter(Region, VPBB); 7014 auto *RegSucc = new VPBasicBlock(); 7015 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7016 return RegSucc; 7017 } 7018 7019 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7020 VPRecipeBase *PredRecipe, 7021 VPlanPtr &Plan) { 7022 // Instructions marked for predication are replicated and placed under an 7023 // if-then construct to prevent side-effects. 7024 7025 // Generate recipes to compute the block mask for this region. 7026 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7027 7028 // Build the triangular if-then region. 7029 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7030 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7031 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7032 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7033 auto *PHIRecipe = 7034 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7035 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7036 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7037 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7038 7039 // Note: first set Entry as region entry and then connect successors starting 7040 // from it in order, to propagate the "parent" of each VPBasicBlock. 7041 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7042 VPBlockUtils::connectBlocks(Pred, Exit); 7043 7044 return Region; 7045 } 7046 7047 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 7048 VPlanPtr &Plan, VPBasicBlock *VPBB) { 7049 VPRecipeBase *Recipe = nullptr; 7050 7051 // First, check for specific widening recipes that deal with memory 7052 // operations, inductions and Phi nodes. 7053 if ((Recipe = tryToWidenMemory(Instr, Range, Plan)) || 7054 (Recipe = tryToOptimizeInduction(Instr, Range)) || 7055 (Recipe = tryToBlend(Instr, Plan)) || 7056 (isa<PHINode>(Instr) && 7057 (Recipe = new VPWidenPHIRecipe(cast<PHINode>(Instr))))) { 7058 setRecipe(Instr, Recipe); 7059 VPBB->appendRecipe(Recipe); 7060 return true; 7061 } 7062 7063 // Handle GEP widening. 7064 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 7065 auto Scalarize = [&](unsigned VF) { 7066 return CM.isScalarWithPredication(Instr, VF) || 7067 CM.isScalarAfterVectorization(Instr, VF) || 7068 CM.isProfitableToScalarize(Instr, VF); 7069 }; 7070 if (LoopVectorizationPlanner::getDecisionAndClampRange(Scalarize, Range)) 7071 return false; 7072 VPWidenGEPRecipe *Recipe = new VPWidenGEPRecipe(GEP, OrigLoop); 7073 setRecipe(Instr, Recipe); 7074 VPBB->appendRecipe(Recipe); 7075 return true; 7076 } 7077 7078 // Check if Instr is to be widened by a general VPWidenRecipe, after 7079 // having first checked for specific widening recipes. 7080 if (tryToWiden(Instr, VPBB, Range)) 7081 return true; 7082 7083 return false; 7084 } 7085 7086 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7087 unsigned MaxVF) { 7088 assert(OrigLoop->empty() && "Inner loop expected."); 7089 7090 // Collect conditions feeding internal conditional branches; they need to be 7091 // represented in VPlan for it to model masking. 7092 SmallPtrSet<Value *, 1> NeedDef; 7093 7094 auto *Latch = OrigLoop->getLoopLatch(); 7095 for (BasicBlock *BB : OrigLoop->blocks()) { 7096 if (BB == Latch) 7097 continue; 7098 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7099 if (Branch && Branch->isConditional()) 7100 NeedDef.insert(Branch->getCondition()); 7101 } 7102 7103 // If the tail is to be folded by masking, the primary induction variable 7104 // needs to be represented in VPlan for it to model early-exit masking. 7105 // Also, both the Phi and the live-out instruction of each reduction are 7106 // required in order to introduce a select between them in VPlan. 7107 if (CM.foldTailByMasking()) { 7108 NeedDef.insert(Legal->getPrimaryInduction()); 7109 for (auto &Reduction : *Legal->getReductionVars()) { 7110 NeedDef.insert(Reduction.first); 7111 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7112 } 7113 } 7114 7115 // Collect instructions from the original loop that will become trivially dead 7116 // in the vectorized loop. We don't need to vectorize these instructions. For 7117 // example, original induction update instructions can become dead because we 7118 // separately emit induction "steps" when generating code for the new loop. 7119 // Similarly, we create a new latch condition when setting up the structure 7120 // of the new loop, so the old one can become dead. 7121 SmallPtrSet<Instruction *, 4> DeadInstructions; 7122 collectTriviallyDeadInstructions(DeadInstructions); 7123 7124 // Add assume instructions we need to drop to DeadInstructions, to prevent 7125 // them from being added to the VPlan. 7126 // TODO: We only need to drop assumes in blocks that get flattend. If the 7127 // control flow is preserved, we should keep them. 7128 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7129 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7130 7131 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7132 // Dead instructions do not need sinking. Remove them from SinkAfter. 7133 for (Instruction *I : DeadInstructions) 7134 SinkAfter.erase(I); 7135 7136 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7137 VFRange SubRange = {VF, MaxVF + 1}; 7138 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7139 DeadInstructions, SinkAfter)); 7140 VF = SubRange.End; 7141 } 7142 } 7143 7144 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7145 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7146 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7147 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7148 7149 // Hold a mapping from predicated instructions to their recipes, in order to 7150 // fix their AlsoPack behavior if a user is determined to replicate and use a 7151 // scalar instead of vector value. 7152 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7153 7154 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7155 7156 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder); 7157 7158 // --------------------------------------------------------------------------- 7159 // Pre-construction: record ingredients whose recipes we'll need to further 7160 // process after constructing the initial VPlan. 7161 // --------------------------------------------------------------------------- 7162 7163 // Mark instructions we'll need to sink later and their targets as 7164 // ingredients whose recipe we'll need to record. 7165 for (auto &Entry : SinkAfter) { 7166 RecipeBuilder.recordRecipeOf(Entry.first); 7167 RecipeBuilder.recordRecipeOf(Entry.second); 7168 } 7169 7170 // For each interleave group which is relevant for this (possibly trimmed) 7171 // Range, add it to the set of groups to be later applied to the VPlan and add 7172 // placeholders for its members' Recipes which we'll be replacing with a 7173 // single VPInterleaveRecipe. 7174 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7175 auto applyIG = [IG, this](unsigned VF) -> bool { 7176 return (VF >= 2 && // Query is illegal for VF == 1 7177 CM.getWideningDecision(IG->getInsertPos(), VF) == 7178 LoopVectorizationCostModel::CM_Interleave); 7179 }; 7180 if (!getDecisionAndClampRange(applyIG, Range)) 7181 continue; 7182 InterleaveGroups.insert(IG); 7183 for (unsigned i = 0; i < IG->getFactor(); i++) 7184 if (Instruction *Member = IG->getMember(i)) 7185 RecipeBuilder.recordRecipeOf(Member); 7186 }; 7187 7188 // --------------------------------------------------------------------------- 7189 // Build initial VPlan: Scan the body of the loop in a topological order to 7190 // visit each basic block after having visited its predecessor basic blocks. 7191 // --------------------------------------------------------------------------- 7192 7193 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7194 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7195 auto Plan = std::make_unique<VPlan>(VPBB); 7196 7197 // Represent values that will have defs inside VPlan. 7198 for (Value *V : NeedDef) 7199 Plan->addVPValue(V); 7200 7201 // Scan the body of the loop in a topological order to visit each basic block 7202 // after having visited its predecessor basic blocks. 7203 LoopBlocksDFS DFS(OrigLoop); 7204 DFS.perform(LI); 7205 7206 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7207 // Relevant instructions from basic block BB will be grouped into VPRecipe 7208 // ingredients and fill a new VPBasicBlock. 7209 unsigned VPBBsForBB = 0; 7210 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7211 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7212 VPBB = FirstVPBBForBB; 7213 Builder.setInsertPoint(VPBB); 7214 7215 // Introduce each ingredient into VPlan. 7216 for (Instruction &I : BB->instructionsWithoutDebug()) { 7217 Instruction *Instr = &I; 7218 7219 // First filter out irrelevant instructions, to ensure no recipes are 7220 // built for them. 7221 if (isa<BranchInst>(Instr) || 7222 DeadInstructions.find(Instr) != DeadInstructions.end()) 7223 continue; 7224 7225 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 7226 continue; 7227 7228 // Otherwise, if all widening options failed, Instruction is to be 7229 // replicated. This may create a successor for VPBB. 7230 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7231 Instr, Range, VPBB, PredInst2Recipe, Plan); 7232 if (NextVPBB != VPBB) { 7233 VPBB = NextVPBB; 7234 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7235 : ""); 7236 } 7237 } 7238 } 7239 7240 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7241 // may also be empty, such as the last one VPBB, reflecting original 7242 // basic-blocks with no recipes. 7243 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7244 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7245 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7246 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7247 delete PreEntry; 7248 7249 // --------------------------------------------------------------------------- 7250 // Transform initial VPlan: Apply previously taken decisions, in order, to 7251 // bring the VPlan to its final state. 7252 // --------------------------------------------------------------------------- 7253 7254 // Apply Sink-After legal constraints. 7255 for (auto &Entry : SinkAfter) { 7256 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7257 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7258 Sink->moveAfter(Target); 7259 } 7260 7261 // Interleave memory: for each Interleave Group we marked earlier as relevant 7262 // for this VPlan, replace the Recipes widening its memory instructions with a 7263 // single VPInterleaveRecipe at its insertion point. 7264 for (auto IG : InterleaveGroups) { 7265 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7266 RecipeBuilder.getRecipe(IG->getInsertPos())); 7267 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7268 ->insertBefore(Recipe); 7269 7270 for (unsigned i = 0; i < IG->getFactor(); ++i) 7271 if (Instruction *Member = IG->getMember(i)) { 7272 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7273 } 7274 } 7275 7276 // Finally, if tail is folded by masking, introduce selects between the phi 7277 // and the live-out instruction of each reduction, at the end of the latch. 7278 if (CM.foldTailByMasking()) { 7279 Builder.setInsertPoint(VPBB); 7280 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7281 for (auto &Reduction : *Legal->getReductionVars()) { 7282 VPValue *Phi = Plan->getVPValue(Reduction.first); 7283 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7284 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7285 } 7286 } 7287 7288 std::string PlanName; 7289 raw_string_ostream RSO(PlanName); 7290 unsigned VF = Range.Start; 7291 Plan->addVF(VF); 7292 RSO << "Initial VPlan for VF={" << VF; 7293 for (VF *= 2; VF < Range.End; VF *= 2) { 7294 Plan->addVF(VF); 7295 RSO << "," << VF; 7296 } 7297 RSO << "},UF>=1"; 7298 RSO.flush(); 7299 Plan->setName(PlanName); 7300 7301 return Plan; 7302 } 7303 7304 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7305 // Outer loop handling: They may require CFG and instruction level 7306 // transformations before even evaluating whether vectorization is profitable. 7307 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7308 // the vectorization pipeline. 7309 assert(!OrigLoop->empty()); 7310 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7311 7312 // Create new empty VPlan 7313 auto Plan = std::make_unique<VPlan>(); 7314 7315 // Build hierarchical CFG 7316 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7317 HCFGBuilder.buildHierarchicalCFG(); 7318 7319 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7320 Plan->addVF(VF); 7321 7322 if (EnableVPlanPredication) { 7323 VPlanPredicator VPP(*Plan); 7324 VPP.predicate(); 7325 7326 // Avoid running transformation to recipes until masked code generation in 7327 // VPlan-native path is in place. 7328 return Plan; 7329 } 7330 7331 SmallPtrSet<Instruction *, 1> DeadInstructions; 7332 VPlanTransforms::VPInstructionsToVPRecipes( 7333 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7334 return Plan; 7335 } 7336 7337 Value* LoopVectorizationPlanner::VPCallbackILV:: 7338 getOrCreateVectorValues(Value *V, unsigned Part) { 7339 return ILV.getOrCreateVectorValue(V, Part); 7340 } 7341 7342 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7343 Value *V, const VPIteration &Instance) { 7344 return ILV.getOrCreateScalarValue(V, Instance); 7345 } 7346 7347 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7348 O << " +\n" 7349 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7350 IG->getInsertPos()->printAsOperand(O, false); 7351 O << ", "; 7352 getAddr()->printAsOperand(O); 7353 VPValue *Mask = getMask(); 7354 if (Mask) { 7355 O << ", "; 7356 Mask->printAsOperand(O); 7357 } 7358 O << "\\l\""; 7359 for (unsigned i = 0; i < IG->getFactor(); ++i) 7360 if (Instruction *I = IG->getMember(i)) 7361 O << " +\n" 7362 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7363 } 7364 7365 void VPWidenRecipe::execute(VPTransformState &State) { 7366 for (auto &Instr : make_range(Begin, End)) 7367 State.ILV->widenInstruction(Instr); 7368 } 7369 7370 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7371 State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant, 7372 IsIndexLoopInvariant); 7373 } 7374 7375 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7376 assert(!State.Instance && "Int or FP induction being replicated."); 7377 State.ILV->widenIntOrFpInduction(IV, Trunc); 7378 } 7379 7380 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7381 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7382 } 7383 7384 void VPBlendRecipe::execute(VPTransformState &State) { 7385 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7386 // We know that all PHIs in non-header blocks are converted into 7387 // selects, so we don't have to worry about the insertion order and we 7388 // can just use the builder. 7389 // At this point we generate the predication tree. There may be 7390 // duplications since this is a simple recursive scan, but future 7391 // optimizations will clean it up. 7392 7393 unsigned NumIncoming = Phi->getNumIncomingValues(); 7394 7395 assert((User || NumIncoming == 1) && 7396 "Multiple predecessors with predecessors having a full mask"); 7397 // Generate a sequence of selects of the form: 7398 // SELECT(Mask3, In3, 7399 // SELECT(Mask2, In2, 7400 // ( ...))) 7401 InnerLoopVectorizer::VectorParts Entry(State.UF); 7402 for (unsigned In = 0; In < NumIncoming; ++In) { 7403 for (unsigned Part = 0; Part < State.UF; ++Part) { 7404 // We might have single edge PHIs (blocks) - use an identity 7405 // 'select' for the first PHI operand. 7406 Value *In0 = 7407 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7408 if (In == 0) 7409 Entry[Part] = In0; // Initialize with the first incoming value. 7410 else { 7411 // Select between the current value and the previous incoming edge 7412 // based on the incoming mask. 7413 Value *Cond = State.get(User->getOperand(In), Part); 7414 Entry[Part] = 7415 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7416 } 7417 } 7418 } 7419 for (unsigned Part = 0; Part < State.UF; ++Part) 7420 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7421 } 7422 7423 void VPInterleaveRecipe::execute(VPTransformState &State) { 7424 assert(!State.Instance && "Interleave group being replicated."); 7425 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), State, getAddr(), 7426 getMask()); 7427 } 7428 7429 void VPReplicateRecipe::execute(VPTransformState &State) { 7430 if (State.Instance) { // Generate a single instance. 7431 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7432 // Insert scalar instance packing it into a vector. 7433 if (AlsoPack && State.VF > 1) { 7434 // If we're constructing lane 0, initialize to start from undef. 7435 if (State.Instance->Lane == 0) { 7436 Value *Undef = 7437 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7438 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7439 } 7440 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7441 } 7442 return; 7443 } 7444 7445 // Generate scalar instances for all VF lanes of all UF parts, unless the 7446 // instruction is uniform inwhich case generate only the first lane for each 7447 // of the UF parts. 7448 unsigned EndLane = IsUniform ? 1 : State.VF; 7449 for (unsigned Part = 0; Part < State.UF; ++Part) 7450 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7451 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7452 } 7453 7454 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7455 assert(State.Instance && "Branch on Mask works only on single instance."); 7456 7457 unsigned Part = State.Instance->Part; 7458 unsigned Lane = State.Instance->Lane; 7459 7460 Value *ConditionBit = nullptr; 7461 if (!User) // Block in mask is all-one. 7462 ConditionBit = State.Builder.getTrue(); 7463 else { 7464 VPValue *BlockInMask = User->getOperand(0); 7465 ConditionBit = State.get(BlockInMask, Part); 7466 if (ConditionBit->getType()->isVectorTy()) 7467 ConditionBit = State.Builder.CreateExtractElement( 7468 ConditionBit, State.Builder.getInt32(Lane)); 7469 } 7470 7471 // Replace the temporary unreachable terminator with a new conditional branch, 7472 // whose two destinations will be set later when they are created. 7473 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7474 assert(isa<UnreachableInst>(CurrentTerminator) && 7475 "Expected to replace unreachable terminator with conditional branch."); 7476 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7477 CondBr->setSuccessor(0, nullptr); 7478 ReplaceInstWithInst(CurrentTerminator, CondBr); 7479 } 7480 7481 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7482 assert(State.Instance && "Predicated instruction PHI works per instance."); 7483 Instruction *ScalarPredInst = cast<Instruction>( 7484 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7485 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7486 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7487 assert(PredicatingBB && "Predicated block has no single predecessor."); 7488 7489 // By current pack/unpack logic we need to generate only a single phi node: if 7490 // a vector value for the predicated instruction exists at this point it means 7491 // the instruction has vector users only, and a phi for the vector value is 7492 // needed. In this case the recipe of the predicated instruction is marked to 7493 // also do that packing, thereby "hoisting" the insert-element sequence. 7494 // Otherwise, a phi node for the scalar value is needed. 7495 unsigned Part = State.Instance->Part; 7496 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7497 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7498 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7499 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7500 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7501 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7502 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7503 } else { 7504 Type *PredInstType = PredInst->getType(); 7505 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7506 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7507 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7508 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7509 } 7510 } 7511 7512 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7513 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), getMask()); 7514 } 7515 7516 // Determine how to lower the scalar epilogue, which depends on 1) optimising 7517 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 7518 // predication, and 4) a TTI hook that analyses whether the loop is suitable 7519 // for predication. 7520 static ScalarEpilogueLowering getScalarEpilogueLowering( 7521 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 7522 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7523 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 7524 LoopVectorizationLegality &LVL) { 7525 bool OptSize = 7526 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7527 PGSOQueryType::IRPass); 7528 // 1) OptSize takes precedence over all other options, i.e. if this is set, 7529 // don't look at hints or options, and don't request a scalar epilogue. 7530 if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) 7531 return CM_ScalarEpilogueNotAllowedOptSize; 7532 7533 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7534 !PreferPredicateOverEpilog; 7535 7536 // 2) Next, if disabling predication is requested on the command line, honour 7537 // this and request a scalar epilogue. Also do this if we don't have a 7538 // primary induction variable, which is required for predication. 7539 if (PredicateOptDisabled || !LVL.getPrimaryInduction()) 7540 return CM_ScalarEpilogueAllowed; 7541 7542 // 3) and 4) look if enabling predication is requested on the command line, 7543 // with a loop hint, or if the TTI hook indicates this is profitable, request 7544 // predication . 7545 if (PreferPredicateOverEpilog || 7546 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7547 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 7548 LVL.getLAI()) && 7549 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 7550 return CM_ScalarEpilogueNotNeededUsePredicate; 7551 7552 return CM_ScalarEpilogueAllowed; 7553 } 7554 7555 // Process the loop in the VPlan-native vectorization path. This path builds 7556 // VPlan upfront in the vectorization pipeline, which allows to apply 7557 // VPlan-to-VPlan transformations from the very beginning without modifying the 7558 // input LLVM IR. 7559 static bool processLoopInVPlanNativePath( 7560 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7561 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7562 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7563 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7564 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7565 7566 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7567 Function *F = L->getHeader()->getParent(); 7568 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7569 7570 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7571 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 7572 7573 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7574 &Hints, IAI); 7575 // Use the planner for outer loop vectorization. 7576 // TODO: CM is not used at this point inside the planner. Turn CM into an 7577 // optional argument if we don't need it in the future. 7578 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI); 7579 7580 // Get user vectorization factor. 7581 const unsigned UserVF = Hints.getWidth(); 7582 7583 // Plan how to best vectorize, return the best VF and its cost. 7584 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7585 7586 // If we are stress testing VPlan builds, do not attempt to generate vector 7587 // code. Masked vector code generation support will follow soon. 7588 // Also, do not attempt to vectorize if no vector code will be produced. 7589 if (VPlanBuildStressTest || EnableVPlanPredication || 7590 VectorizationFactor::Disabled() == VF) 7591 return false; 7592 7593 LVP.setBestPlan(VF.Width, 1); 7594 7595 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7596 &CM); 7597 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7598 << L->getHeader()->getParent()->getName() << "\"\n"); 7599 LVP.executePlan(LB, DT); 7600 7601 // Mark the loop as already vectorized to avoid vectorizing again. 7602 Hints.setAlreadyVectorized(); 7603 7604 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7605 return true; 7606 } 7607 7608 bool LoopVectorizePass::processLoop(Loop *L) { 7609 assert((EnableVPlanNativePath || L->empty()) && 7610 "VPlan-native path is not enabled. Only process inner loops."); 7611 7612 #ifndef NDEBUG 7613 const std::string DebugLocStr = getDebugLocString(L); 7614 #endif /* NDEBUG */ 7615 7616 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7617 << L->getHeader()->getParent()->getName() << "\" from " 7618 << DebugLocStr << "\n"); 7619 7620 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7621 7622 LLVM_DEBUG( 7623 dbgs() << "LV: Loop hints:" 7624 << " force=" 7625 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7626 ? "disabled" 7627 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7628 ? "enabled" 7629 : "?")) 7630 << " width=" << Hints.getWidth() 7631 << " unroll=" << Hints.getInterleave() << "\n"); 7632 7633 // Function containing loop 7634 Function *F = L->getHeader()->getParent(); 7635 7636 // Looking at the diagnostic output is the only way to determine if a loop 7637 // was vectorized (other than looking at the IR or machine code), so it 7638 // is important to generate an optimization remark for each loop. Most of 7639 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7640 // generated as OptimizationRemark and OptimizationRemarkMissed are 7641 // less verbose reporting vectorized loops and unvectorized loops that may 7642 // benefit from vectorization, respectively. 7643 7644 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7645 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7646 return false; 7647 } 7648 7649 PredicatedScalarEvolution PSE(*SE, *L); 7650 7651 // Check if it is legal to vectorize the loop. 7652 LoopVectorizationRequirements Requirements(*ORE); 7653 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7654 &Requirements, &Hints, DB, AC); 7655 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7656 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7657 Hints.emitRemarkWithHints(); 7658 return false; 7659 } 7660 7661 // Check the function attributes and profiles to find out if this function 7662 // should be optimized for size. 7663 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7664 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 7665 7666 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7667 // here. They may require CFG and instruction level transformations before 7668 // even evaluating whether vectorization is profitable. Since we cannot modify 7669 // the incoming IR, we need to build VPlan upfront in the vectorization 7670 // pipeline. 7671 if (!L->empty()) 7672 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7673 ORE, BFI, PSI, Hints); 7674 7675 assert(L->empty() && "Inner loop expected."); 7676 7677 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7678 // count by optimizing for size, to minimize overheads. 7679 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7680 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7681 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7682 << "This loop is worth vectorizing only if no scalar " 7683 << "iteration overheads are incurred."); 7684 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7685 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7686 else { 7687 LLVM_DEBUG(dbgs() << "\n"); 7688 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7689 } 7690 } 7691 7692 // Check the function attributes to see if implicit floats are allowed. 7693 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7694 // an integer loop and the vector instructions selected are purely integer 7695 // vector instructions? 7696 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7697 reportVectorizationFailure( 7698 "Can't vectorize when the NoImplicitFloat attribute is used", 7699 "loop not vectorized due to NoImplicitFloat attribute", 7700 "NoImplicitFloat", ORE, L); 7701 Hints.emitRemarkWithHints(); 7702 return false; 7703 } 7704 7705 // Check if the target supports potentially unsafe FP vectorization. 7706 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7707 // for the target we're vectorizing for, to make sure none of the 7708 // additional fp-math flags can help. 7709 if (Hints.isPotentiallyUnsafe() && 7710 TTI->isFPVectorizationPotentiallyUnsafe()) { 7711 reportVectorizationFailure( 7712 "Potentially unsafe FP op prevents vectorization", 7713 "loop not vectorized due to unsafe FP support.", 7714 "UnsafeFP", ORE, L); 7715 Hints.emitRemarkWithHints(); 7716 return false; 7717 } 7718 7719 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7720 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7721 7722 // If an override option has been passed in for interleaved accesses, use it. 7723 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7724 UseInterleaved = EnableInterleavedMemAccesses; 7725 7726 // Analyze interleaved memory accesses. 7727 if (UseInterleaved) { 7728 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7729 } 7730 7731 // Use the cost model. 7732 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7733 F, &Hints, IAI); 7734 CM.collectValuesToIgnore(); 7735 7736 // Use the planner for vectorization. 7737 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI); 7738 7739 // Get user vectorization factor. 7740 unsigned UserVF = Hints.getWidth(); 7741 7742 // Plan how to best vectorize, return the best VF and its cost. 7743 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF); 7744 7745 VectorizationFactor VF = VectorizationFactor::Disabled(); 7746 unsigned IC = 1; 7747 unsigned UserIC = Hints.getInterleave(); 7748 7749 if (MaybeVF) { 7750 VF = *MaybeVF; 7751 // Select the interleave count. 7752 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7753 } 7754 7755 // Identify the diagnostic messages that should be produced. 7756 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7757 bool VectorizeLoop = true, InterleaveLoop = true; 7758 if (Requirements.doesNotMeet(F, L, Hints)) { 7759 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7760 "requirements.\n"); 7761 Hints.emitRemarkWithHints(); 7762 return false; 7763 } 7764 7765 if (VF.Width == 1) { 7766 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7767 VecDiagMsg = std::make_pair( 7768 "VectorizationNotBeneficial", 7769 "the cost-model indicates that vectorization is not beneficial"); 7770 VectorizeLoop = false; 7771 } 7772 7773 if (!MaybeVF && UserIC > 1) { 7774 // Tell the user interleaving was avoided up-front, despite being explicitly 7775 // requested. 7776 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7777 "interleaving should be avoided up front\n"); 7778 IntDiagMsg = std::make_pair( 7779 "InterleavingAvoided", 7780 "Ignoring UserIC, because interleaving was avoided up front"); 7781 InterleaveLoop = false; 7782 } else if (IC == 1 && UserIC <= 1) { 7783 // Tell the user interleaving is not beneficial. 7784 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7785 IntDiagMsg = std::make_pair( 7786 "InterleavingNotBeneficial", 7787 "the cost-model indicates that interleaving is not beneficial"); 7788 InterleaveLoop = false; 7789 if (UserIC == 1) { 7790 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7791 IntDiagMsg.second += 7792 " and is explicitly disabled or interleave count is set to 1"; 7793 } 7794 } else if (IC > 1 && UserIC == 1) { 7795 // Tell the user interleaving is beneficial, but it explicitly disabled. 7796 LLVM_DEBUG( 7797 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7798 IntDiagMsg = std::make_pair( 7799 "InterleavingBeneficialButDisabled", 7800 "the cost-model indicates that interleaving is beneficial " 7801 "but is explicitly disabled or interleave count is set to 1"); 7802 InterleaveLoop = false; 7803 } 7804 7805 // Override IC if user provided an interleave count. 7806 IC = UserIC > 0 ? UserIC : IC; 7807 7808 // Emit diagnostic messages, if any. 7809 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7810 if (!VectorizeLoop && !InterleaveLoop) { 7811 // Do not vectorize or interleaving the loop. 7812 ORE->emit([&]() { 7813 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7814 L->getStartLoc(), L->getHeader()) 7815 << VecDiagMsg.second; 7816 }); 7817 ORE->emit([&]() { 7818 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7819 L->getStartLoc(), L->getHeader()) 7820 << IntDiagMsg.second; 7821 }); 7822 return false; 7823 } else if (!VectorizeLoop && InterleaveLoop) { 7824 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7825 ORE->emit([&]() { 7826 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7827 L->getStartLoc(), L->getHeader()) 7828 << VecDiagMsg.second; 7829 }); 7830 } else if (VectorizeLoop && !InterleaveLoop) { 7831 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7832 << ") in " << DebugLocStr << '\n'); 7833 ORE->emit([&]() { 7834 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7835 L->getStartLoc(), L->getHeader()) 7836 << IntDiagMsg.second; 7837 }); 7838 } else if (VectorizeLoop && InterleaveLoop) { 7839 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7840 << ") in " << DebugLocStr << '\n'); 7841 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7842 } 7843 7844 LVP.setBestPlan(VF.Width, IC); 7845 7846 using namespace ore; 7847 bool DisableRuntimeUnroll = false; 7848 MDNode *OrigLoopID = L->getLoopID(); 7849 7850 if (!VectorizeLoop) { 7851 assert(IC > 1 && "interleave count should not be 1 or 0"); 7852 // If we decided that it is not legal to vectorize the loop, then 7853 // interleave it. 7854 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7855 &CM); 7856 LVP.executePlan(Unroller, DT); 7857 7858 ORE->emit([&]() { 7859 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7860 L->getHeader()) 7861 << "interleaved loop (interleaved count: " 7862 << NV("InterleaveCount", IC) << ")"; 7863 }); 7864 } else { 7865 // If we decided that it is *legal* to vectorize the loop, then do it. 7866 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7867 &LVL, &CM); 7868 LVP.executePlan(LB, DT); 7869 ++LoopsVectorized; 7870 7871 // Add metadata to disable runtime unrolling a scalar loop when there are 7872 // no runtime checks about strides and memory. A scalar loop that is 7873 // rarely used is not worth unrolling. 7874 if (!LB.areSafetyChecksAdded()) 7875 DisableRuntimeUnroll = true; 7876 7877 // Report the vectorization decision. 7878 ORE->emit([&]() { 7879 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7880 L->getHeader()) 7881 << "vectorized loop (vectorization width: " 7882 << NV("VectorizationFactor", VF.Width) 7883 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7884 }); 7885 } 7886 7887 Optional<MDNode *> RemainderLoopID = 7888 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7889 LLVMLoopVectorizeFollowupEpilogue}); 7890 if (RemainderLoopID.hasValue()) { 7891 L->setLoopID(RemainderLoopID.getValue()); 7892 } else { 7893 if (DisableRuntimeUnroll) 7894 AddRuntimeUnrollDisableMetaData(L); 7895 7896 // Mark the loop as already vectorized to avoid vectorizing again. 7897 Hints.setAlreadyVectorized(); 7898 } 7899 7900 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7901 return true; 7902 } 7903 7904 bool LoopVectorizePass::runImpl( 7905 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7906 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7907 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7908 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7909 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7910 SE = &SE_; 7911 LI = &LI_; 7912 TTI = &TTI_; 7913 DT = &DT_; 7914 BFI = &BFI_; 7915 TLI = TLI_; 7916 AA = &AA_; 7917 AC = &AC_; 7918 GetLAA = &GetLAA_; 7919 DB = &DB_; 7920 ORE = &ORE_; 7921 PSI = PSI_; 7922 7923 // Don't attempt if 7924 // 1. the target claims to have no vector registers, and 7925 // 2. interleaving won't help ILP. 7926 // 7927 // The second condition is necessary because, even if the target has no 7928 // vector registers, loop vectorization may still enable scalar 7929 // interleaving. 7930 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 7931 TTI->getMaxInterleaveFactor(1) < 2) 7932 return false; 7933 7934 bool Changed = false; 7935 7936 // The vectorizer requires loops to be in simplified form. 7937 // Since simplification may add new inner loops, it has to run before the 7938 // legality and profitability checks. This means running the loop vectorizer 7939 // will simplify all loops, regardless of whether anything end up being 7940 // vectorized. 7941 for (auto &L : *LI) 7942 Changed |= 7943 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 7944 7945 // Build up a worklist of inner-loops to vectorize. This is necessary as 7946 // the act of vectorizing or partially unrolling a loop creates new loops 7947 // and can invalidate iterators across the loops. 7948 SmallVector<Loop *, 8> Worklist; 7949 7950 for (Loop *L : *LI) 7951 collectSupportedLoops(*L, LI, ORE, Worklist); 7952 7953 LoopsAnalyzed += Worklist.size(); 7954 7955 // Now walk the identified inner loops. 7956 while (!Worklist.empty()) { 7957 Loop *L = Worklist.pop_back_val(); 7958 7959 // For the inner loops we actually process, form LCSSA to simplify the 7960 // transform. 7961 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7962 7963 Changed |= processLoop(L); 7964 } 7965 7966 // Process each loop nest in the function. 7967 return Changed; 7968 } 7969 7970 PreservedAnalyses LoopVectorizePass::run(Function &F, 7971 FunctionAnalysisManager &AM) { 7972 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7973 auto &LI = AM.getResult<LoopAnalysis>(F); 7974 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7975 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7976 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7977 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7978 auto &AA = AM.getResult<AAManager>(F); 7979 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7980 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7981 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7982 MemorySSA *MSSA = EnableMSSALoopDependency 7983 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7984 : nullptr; 7985 7986 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7987 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7988 [&](Loop &L) -> const LoopAccessInfo & { 7989 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7990 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7991 }; 7992 const ModuleAnalysisManager &MAM = 7993 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 7994 ProfileSummaryInfo *PSI = 7995 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 7996 bool Changed = 7997 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 7998 if (!Changed) 7999 return PreservedAnalyses::all(); 8000 PreservedAnalyses PA; 8001 8002 // We currently do not preserve loopinfo/dominator analyses with outer loop 8003 // vectorization. Until this is addressed, mark these analyses as preserved 8004 // only for non-VPlan-native path. 8005 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8006 if (!EnableVPlanNativePath) { 8007 PA.preserve<LoopAnalysis>(); 8008 PA.preserve<DominatorTreeAnalysis>(); 8009 } 8010 PA.preserve<BasicAA>(); 8011 PA.preserve<GlobalsAA>(); 8012 return PA; 8013 } 8014