1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/Analysis/AliasAnalysis.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/AliasSetTracker.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BlockFrequencyInfo.h" 64 #include "llvm/Analysis/CodeMetrics.h" 65 #include "llvm/Analysis/DemandedBits.h" 66 #include "llvm/Analysis/GlobalsModRef.h" 67 #include "llvm/Analysis/LoopAccessAnalysis.h" 68 #include "llvm/Analysis/LoopInfo.h" 69 #include "llvm/Analysis/LoopIterator.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/TargetTransformInfo.h" 75 #include "llvm/Analysis/ValueTracking.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfo.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/DiagnosticInfo.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/Function.h" 83 #include "llvm/IR/IRBuilder.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Module.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/IR/Verifier.h" 93 #include "llvm/Pass.h" 94 #include "llvm/Support/BranchProbability.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Transforms/Scalar.h" 99 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 100 #include "llvm/Transforms/Utils/Local.h" 101 #include "llvm/Analysis/VectorUtils.h" 102 #include "llvm/Transforms/Utils/LoopUtils.h" 103 #include <algorithm> 104 #include <functional> 105 #include <map> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace llvm::PatternMatch; 110 111 #define LV_NAME "loop-vectorize" 112 #define DEBUG_TYPE LV_NAME 113 114 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 115 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> 123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 124 cl::Hidden, 125 cl::desc("Don't vectorize loops with a constant " 126 "trip count that is smaller than this " 127 "value.")); 128 129 static cl::opt<bool> MaximizeBandwidth( 130 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 131 cl::desc("Maximize bandwidth when selecting vectorization factor which " 132 "will be determined by the smallest type in loop.")); 133 134 /// This enables versioning on the strides of symbolically striding memory 135 /// accesses in code like the following. 136 /// for (i = 0; i < N; ++i) 137 /// A[i * Stride1] += B[i * Stride2] ... 138 /// 139 /// Will be roughly translated to 140 /// if (Stride1 == 1 && Stride2 == 1) { 141 /// for (i = 0; i < N; i+=4) 142 /// A[i:i+3] += ... 143 /// } else 144 /// ... 145 static cl::opt<bool> EnableMemAccessVersioning( 146 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 147 cl::desc("Enable symblic stride memory access versioning")); 148 149 static cl::opt<bool> EnableInterleavedMemAccesses( 150 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 151 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 152 153 /// Maximum factor for an interleaved memory access. 154 static cl::opt<unsigned> MaxInterleaveGroupFactor( 155 "max-interleave-group-factor", cl::Hidden, 156 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 157 cl::init(8)); 158 159 /// We don't interleave loops with a known constant trip count below this 160 /// number. 161 static const unsigned TinyTripCountInterleaveThreshold = 128; 162 163 static cl::opt<unsigned> ForceTargetNumScalarRegs( 164 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 165 cl::desc("A flag that overrides the target's number of scalar registers.")); 166 167 static cl::opt<unsigned> ForceTargetNumVectorRegs( 168 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 169 cl::desc("A flag that overrides the target's number of vector registers.")); 170 171 /// Maximum vectorization interleave count. 172 static const unsigned MaxInterleaveFactor = 16; 173 174 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 175 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 176 cl::desc("A flag that overrides the target's max interleave factor for " 177 "scalar loops.")); 178 179 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 180 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 181 cl::desc("A flag that overrides the target's max interleave factor for " 182 "vectorized loops.")); 183 184 static cl::opt<unsigned> ForceTargetInstructionCost( 185 "force-target-instruction-cost", cl::init(0), cl::Hidden, 186 cl::desc("A flag that overrides the target's expected cost for " 187 "an instruction to a single constant value. Mostly " 188 "useful for getting consistent testing.")); 189 190 static cl::opt<unsigned> SmallLoopCost( 191 "small-loop-cost", cl::init(20), cl::Hidden, 192 cl::desc( 193 "The cost of a loop that is considered 'small' by the interleaver.")); 194 195 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 196 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 197 cl::desc("Enable the use of the block frequency analysis to access PGO " 198 "heuristics minimizing code growth in cold regions and being more " 199 "aggressive in hot regions.")); 200 201 // Runtime interleave loops for load/store throughput. 202 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 203 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 204 cl::desc( 205 "Enable runtime interleaving until load/store ports are saturated")); 206 207 /// The number of stores in a loop that are allowed to need predication. 208 static cl::opt<unsigned> NumberOfStoresToPredicate( 209 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 210 cl::desc("Max number of stores to be predicated behind an if.")); 211 212 static cl::opt<bool> EnableIndVarRegisterHeur( 213 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 214 cl::desc("Count the induction variable only once when interleaving")); 215 216 static cl::opt<bool> EnableCondStoresVectorization( 217 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 218 cl::desc("Enable if predication of stores during vectorization.")); 219 220 static cl::opt<unsigned> MaxNestedScalarReductionIC( 221 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 222 cl::desc("The maximum interleave count to use when interleaving a scalar " 223 "reduction in a nested loop.")); 224 225 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 226 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 227 cl::desc("The maximum allowed number of runtime memory checks with a " 228 "vectorize(enable) pragma.")); 229 230 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 231 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 232 cl::desc("The maximum number of SCEV checks allowed.")); 233 234 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 235 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 236 cl::desc("The maximum number of SCEV checks allowed with a " 237 "vectorize(enable) pragma")); 238 239 namespace { 240 241 // Forward declarations. 242 class LoopVectorizeHints; 243 class LoopVectorizationLegality; 244 class LoopVectorizationCostModel; 245 class LoopVectorizationRequirements; 246 247 /// \brief This modifies LoopAccessReport to initialize message with 248 /// loop-vectorizer-specific part. 249 class VectorizationReport : public LoopAccessReport { 250 public: 251 VectorizationReport(Instruction *I = nullptr) 252 : LoopAccessReport("loop not vectorized: ", I) {} 253 254 /// \brief This allows promotion of the loop-access analysis report into the 255 /// loop-vectorizer report. It modifies the message to add the 256 /// loop-vectorizer-specific part of the message. 257 explicit VectorizationReport(const LoopAccessReport &R) 258 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 259 R.getInstr()) {} 260 }; 261 262 /// A helper function for converting Scalar types to vector types. 263 /// If the incoming type is void, we return void. If the VF is 1, we return 264 /// the scalar type. 265 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 266 if (Scalar->isVoidTy() || VF == 1) 267 return Scalar; 268 return VectorType::get(Scalar, VF); 269 } 270 271 /// A helper function that returns GEP instruction and knows to skip a 272 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 273 /// pointee types of the 'bitcast' have the same size. 274 /// For example: 275 /// bitcast double** %var to i64* - can be skipped 276 /// bitcast double** %var to i8* - can not 277 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 278 279 if (isa<GetElementPtrInst>(Ptr)) 280 return cast<GetElementPtrInst>(Ptr); 281 282 if (isa<BitCastInst>(Ptr) && 283 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 284 Type *BitcastTy = Ptr->getType(); 285 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 286 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 287 return nullptr; 288 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 289 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 290 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 291 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 292 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 293 } 294 return nullptr; 295 } 296 297 /// InnerLoopVectorizer vectorizes loops which contain only one basic 298 /// block to a specified vectorization factor (VF). 299 /// This class performs the widening of scalars into vectors, or multiple 300 /// scalars. This class also implements the following features: 301 /// * It inserts an epilogue loop for handling loops that don't have iteration 302 /// counts that are known to be a multiple of the vectorization factor. 303 /// * It handles the code generation for reduction variables. 304 /// * Scalarization (implementation using scalars) of un-vectorizable 305 /// instructions. 306 /// InnerLoopVectorizer does not perform any vectorization-legality 307 /// checks, and relies on the caller to check for the different legality 308 /// aspects. The InnerLoopVectorizer relies on the 309 /// LoopVectorizationLegality class to provide information about the induction 310 /// and reduction variables that were found to a given vectorization factor. 311 class InnerLoopVectorizer { 312 public: 313 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 314 DominatorTree *DT, const TargetLibraryInfo *TLI, 315 const TargetTransformInfo *TTI, unsigned VecWidth, 316 unsigned UnrollFactor, SCEVUnionPredicate &Preds) 317 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 318 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 319 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 320 TripCount(nullptr), VectorTripCount(nullptr), Legal(nullptr), 321 AddedSafetyChecks(false), Preds(Preds) {} 322 323 // Perform the actual loop widening (vectorization). 324 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 325 // can be validly truncated to. The cost model has assumed this truncation 326 // will happen when vectorizing. 327 void vectorize(LoopVectorizationLegality *L, 328 DenseMap<Instruction*,uint64_t> MinimumBitWidths) { 329 MinBWs = MinimumBitWidths; 330 Legal = L; 331 // Create a new empty loop. Unlink the old loop and connect the new one. 332 createEmptyLoop(); 333 // Widen each instruction in the old loop to a new one in the new loop. 334 // Use the Legality module to find the induction and reduction variables. 335 vectorizeLoop(); 336 } 337 338 // Return true if any runtime check is added. 339 bool IsSafetyChecksAdded() { 340 return AddedSafetyChecks; 341 } 342 343 virtual ~InnerLoopVectorizer() {} 344 345 protected: 346 /// A small list of PHINodes. 347 typedef SmallVector<PHINode*, 4> PhiVector; 348 /// When we unroll loops we have multiple vector values for each scalar. 349 /// This data structure holds the unrolled and vectorized values that 350 /// originated from one scalar instruction. 351 typedef SmallVector<Value*, 2> VectorParts; 352 353 // When we if-convert we need to create edge masks. We have to cache values 354 // so that we don't end up with exponential recursion/IR. 355 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 356 VectorParts> EdgeMaskCache; 357 358 /// Create an empty loop, based on the loop ranges of the old loop. 359 void createEmptyLoop(); 360 /// Create a new induction variable inside L. 361 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 362 Value *Step, Instruction *DL); 363 /// Copy and widen the instructions from the old loop. 364 virtual void vectorizeLoop(); 365 366 /// \brief The Loop exit block may have single value PHI nodes where the 367 /// incoming value is 'Undef'. While vectorizing we only handled real values 368 /// that were defined inside the loop. Here we fix the 'undef case'. 369 /// See PR14725. 370 void fixLCSSAPHIs(); 371 372 /// Shrinks vector element sizes based on information in "MinBWs". 373 void truncateToMinimalBitwidths(); 374 375 /// A helper function that computes the predicate of the block BB, assuming 376 /// that the header block of the loop is set to True. It returns the *entry* 377 /// mask for the block BB. 378 VectorParts createBlockInMask(BasicBlock *BB); 379 /// A helper function that computes the predicate of the edge between SRC 380 /// and DST. 381 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 382 383 /// A helper function to vectorize a single BB within the innermost loop. 384 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 385 386 /// Vectorize a single PHINode in a block. This method handles the induction 387 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 388 /// arbitrary length vectors. 389 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 390 unsigned UF, unsigned VF, PhiVector *PV); 391 392 /// Insert the new loop to the loop hierarchy and pass manager 393 /// and update the analysis passes. 394 void updateAnalysis(); 395 396 /// This instruction is un-vectorizable. Implement it as a sequence 397 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 398 /// scalarized instruction behind an if block predicated on the control 399 /// dependence of the instruction. 400 virtual void scalarizeInstruction(Instruction *Instr, 401 bool IfPredicateStore=false); 402 403 /// Vectorize Load and Store instructions, 404 virtual void vectorizeMemoryInstruction(Instruction *Instr); 405 406 /// Create a broadcast instruction. This method generates a broadcast 407 /// instruction (shuffle) for loop invariant values and for the induction 408 /// value. If this is the induction variable then we extend it to N, N+1, ... 409 /// this is needed because each iteration in the loop corresponds to a SIMD 410 /// element. 411 virtual Value *getBroadcastInstrs(Value *V); 412 413 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 414 /// to each vector element of Val. The sequence starts at StartIndex. 415 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 416 417 /// When we go over instructions in the basic block we rely on previous 418 /// values within the current basic block or on loop invariant values. 419 /// When we widen (vectorize) values we place them in the map. If the values 420 /// are not within the map, they have to be loop invariant, so we simply 421 /// broadcast them into a vector. 422 VectorParts &getVectorValue(Value *V); 423 424 /// Try to vectorize the interleaved access group that \p Instr belongs to. 425 void vectorizeInterleaveGroup(Instruction *Instr); 426 427 /// Generate a shuffle sequence that will reverse the vector Vec. 428 virtual Value *reverseVector(Value *Vec); 429 430 /// Returns (and creates if needed) the original loop trip count. 431 Value *getOrCreateTripCount(Loop *NewLoop); 432 433 /// Returns (and creates if needed) the trip count of the widened loop. 434 Value *getOrCreateVectorTripCount(Loop *NewLoop); 435 436 /// Emit a bypass check to see if the trip count would overflow, or we 437 /// wouldn't have enough iterations to execute one vector loop. 438 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 439 /// Emit a bypass check to see if the vector trip count is nonzero. 440 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 441 /// Emit a bypass check to see if all of the SCEV assumptions we've 442 /// had to make are correct. 443 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 444 /// Emit bypass checks to check any memory assumptions we may have made. 445 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 446 447 /// This is a helper class that holds the vectorizer state. It maps scalar 448 /// instructions to vector instructions. When the code is 'unrolled' then 449 /// then a single scalar value is mapped to multiple vector parts. The parts 450 /// are stored in the VectorPart type. 451 struct ValueMap { 452 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 453 /// are mapped. 454 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 455 456 /// \return True if 'Key' is saved in the Value Map. 457 bool has(Value *Key) const { return MapStorage.count(Key); } 458 459 /// Initializes a new entry in the map. Sets all of the vector parts to the 460 /// save value in 'Val'. 461 /// \return A reference to a vector with splat values. 462 VectorParts &splat(Value *Key, Value *Val) { 463 VectorParts &Entry = MapStorage[Key]; 464 Entry.assign(UF, Val); 465 return Entry; 466 } 467 468 ///\return A reference to the value that is stored at 'Key'. 469 VectorParts &get(Value *Key) { 470 VectorParts &Entry = MapStorage[Key]; 471 if (Entry.empty()) 472 Entry.resize(UF); 473 assert(Entry.size() == UF); 474 return Entry; 475 } 476 477 private: 478 /// The unroll factor. Each entry in the map stores this number of vector 479 /// elements. 480 unsigned UF; 481 482 /// Map storage. We use std::map and not DenseMap because insertions to a 483 /// dense map invalidates its iterators. 484 std::map<Value *, VectorParts> MapStorage; 485 }; 486 487 /// The original loop. 488 Loop *OrigLoop; 489 /// Scev analysis to use. 490 ScalarEvolution *SE; 491 /// Loop Info. 492 LoopInfo *LI; 493 /// Dominator Tree. 494 DominatorTree *DT; 495 /// Alias Analysis. 496 AliasAnalysis *AA; 497 /// Target Library Info. 498 const TargetLibraryInfo *TLI; 499 /// Target Transform Info. 500 const TargetTransformInfo *TTI; 501 502 /// The vectorization SIMD factor to use. Each vector will have this many 503 /// vector elements. 504 unsigned VF; 505 506 protected: 507 /// The vectorization unroll factor to use. Each scalar is vectorized to this 508 /// many different vector instructions. 509 unsigned UF; 510 511 /// The builder that we use 512 IRBuilder<> Builder; 513 514 // --- Vectorization state --- 515 516 /// The vector-loop preheader. 517 BasicBlock *LoopVectorPreHeader; 518 /// The scalar-loop preheader. 519 BasicBlock *LoopScalarPreHeader; 520 /// Middle Block between the vector and the scalar. 521 BasicBlock *LoopMiddleBlock; 522 ///The ExitBlock of the scalar loop. 523 BasicBlock *LoopExitBlock; 524 ///The vector loop body. 525 SmallVector<BasicBlock *, 4> LoopVectorBody; 526 ///The scalar loop body. 527 BasicBlock *LoopScalarBody; 528 /// A list of all bypass blocks. The first block is the entry of the loop. 529 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 530 531 /// The new Induction variable which was added to the new block. 532 PHINode *Induction; 533 /// The induction variable of the old basic block. 534 PHINode *OldInduction; 535 /// Maps scalars to widened vectors. 536 ValueMap WidenMap; 537 /// Store instructions that should be predicated, as a pair 538 /// <StoreInst, Predicate> 539 SmallVector<std::pair<StoreInst*,Value*>, 4> PredicatedStores; 540 EdgeMaskCache MaskCache; 541 /// Trip count of the original loop. 542 Value *TripCount; 543 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 544 Value *VectorTripCount; 545 546 /// Map of scalar integer values to the smallest bitwidth they can be legally 547 /// represented as. The vector equivalents of these values should be truncated 548 /// to this type. 549 DenseMap<Instruction*,uint64_t> MinBWs; 550 LoopVectorizationLegality *Legal; 551 552 // Record whether runtime check is added. 553 bool AddedSafetyChecks; 554 555 /// The SCEV predicate containing all the SCEV-related assumptions. 556 /// The predicate is used to simplify existing expressions in the 557 /// context of existing SCEV assumptions. Since legality checking is 558 /// not done here, we don't need to use this predicate to record 559 /// further assumptions. 560 SCEVUnionPredicate &Preds; 561 }; 562 563 class InnerLoopUnroller : public InnerLoopVectorizer { 564 public: 565 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 566 DominatorTree *DT, const TargetLibraryInfo *TLI, 567 const TargetTransformInfo *TTI, unsigned UnrollFactor, 568 SCEVUnionPredicate &Preds) 569 : InnerLoopVectorizer(OrigLoop, SE, LI, DT, TLI, TTI, 1, UnrollFactor, 570 Preds) {} 571 572 private: 573 void scalarizeInstruction(Instruction *Instr, 574 bool IfPredicateStore = false) override; 575 void vectorizeMemoryInstruction(Instruction *Instr) override; 576 Value *getBroadcastInstrs(Value *V) override; 577 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 578 Value *reverseVector(Value *Vec) override; 579 }; 580 581 /// \brief Look for a meaningful debug location on the instruction or it's 582 /// operands. 583 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 584 if (!I) 585 return I; 586 587 DebugLoc Empty; 588 if (I->getDebugLoc() != Empty) 589 return I; 590 591 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 592 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 593 if (OpInst->getDebugLoc() != Empty) 594 return OpInst; 595 } 596 597 return I; 598 } 599 600 /// \brief Set the debug location in the builder using the debug location in the 601 /// instruction. 602 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 603 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 604 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 605 else 606 B.SetCurrentDebugLocation(DebugLoc()); 607 } 608 609 #ifndef NDEBUG 610 /// \return string containing a file name and a line # for the given loop. 611 static std::string getDebugLocString(const Loop *L) { 612 std::string Result; 613 if (L) { 614 raw_string_ostream OS(Result); 615 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 616 LoopDbgLoc.print(OS); 617 else 618 // Just print the module name. 619 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 620 OS.flush(); 621 } 622 return Result; 623 } 624 #endif 625 626 /// \brief Propagate known metadata from one instruction to another. 627 static void propagateMetadata(Instruction *To, const Instruction *From) { 628 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 629 From->getAllMetadataOtherThanDebugLoc(Metadata); 630 631 for (auto M : Metadata) { 632 unsigned Kind = M.first; 633 634 // These are safe to transfer (this is safe for TBAA, even when we 635 // if-convert, because should that metadata have had a control dependency 636 // on the condition, and thus actually aliased with some other 637 // non-speculated memory access when the condition was false, this would be 638 // caught by the runtime overlap checks). 639 if (Kind != LLVMContext::MD_tbaa && 640 Kind != LLVMContext::MD_alias_scope && 641 Kind != LLVMContext::MD_noalias && 642 Kind != LLVMContext::MD_fpmath && 643 Kind != LLVMContext::MD_nontemporal) 644 continue; 645 646 To->setMetadata(Kind, M.second); 647 } 648 } 649 650 /// \brief Propagate known metadata from one instruction to a vector of others. 651 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 652 for (Value *V : To) 653 if (Instruction *I = dyn_cast<Instruction>(V)) 654 propagateMetadata(I, From); 655 } 656 657 /// \brief The group of interleaved loads/stores sharing the same stride and 658 /// close to each other. 659 /// 660 /// Each member in this group has an index starting from 0, and the largest 661 /// index should be less than interleaved factor, which is equal to the absolute 662 /// value of the access's stride. 663 /// 664 /// E.g. An interleaved load group of factor 4: 665 /// for (unsigned i = 0; i < 1024; i+=4) { 666 /// a = A[i]; // Member of index 0 667 /// b = A[i+1]; // Member of index 1 668 /// d = A[i+3]; // Member of index 3 669 /// ... 670 /// } 671 /// 672 /// An interleaved store group of factor 4: 673 /// for (unsigned i = 0; i < 1024; i+=4) { 674 /// ... 675 /// A[i] = a; // Member of index 0 676 /// A[i+1] = b; // Member of index 1 677 /// A[i+2] = c; // Member of index 2 678 /// A[i+3] = d; // Member of index 3 679 /// } 680 /// 681 /// Note: the interleaved load group could have gaps (missing members), but 682 /// the interleaved store group doesn't allow gaps. 683 class InterleaveGroup { 684 public: 685 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 686 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 687 assert(Align && "The alignment should be non-zero"); 688 689 Factor = std::abs(Stride); 690 assert(Factor > 1 && "Invalid interleave factor"); 691 692 Reverse = Stride < 0; 693 Members[0] = Instr; 694 } 695 696 bool isReverse() const { return Reverse; } 697 unsigned getFactor() const { return Factor; } 698 unsigned getAlignment() const { return Align; } 699 unsigned getNumMembers() const { return Members.size(); } 700 701 /// \brief Try to insert a new member \p Instr with index \p Index and 702 /// alignment \p NewAlign. The index is related to the leader and it could be 703 /// negative if it is the new leader. 704 /// 705 /// \returns false if the instruction doesn't belong to the group. 706 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 707 assert(NewAlign && "The new member's alignment should be non-zero"); 708 709 int Key = Index + SmallestKey; 710 711 // Skip if there is already a member with the same index. 712 if (Members.count(Key)) 713 return false; 714 715 if (Key > LargestKey) { 716 // The largest index is always less than the interleave factor. 717 if (Index >= static_cast<int>(Factor)) 718 return false; 719 720 LargestKey = Key; 721 } else if (Key < SmallestKey) { 722 // The largest index is always less than the interleave factor. 723 if (LargestKey - Key >= static_cast<int>(Factor)) 724 return false; 725 726 SmallestKey = Key; 727 } 728 729 // It's always safe to select the minimum alignment. 730 Align = std::min(Align, NewAlign); 731 Members[Key] = Instr; 732 return true; 733 } 734 735 /// \brief Get the member with the given index \p Index 736 /// 737 /// \returns nullptr if contains no such member. 738 Instruction *getMember(unsigned Index) const { 739 int Key = SmallestKey + Index; 740 if (!Members.count(Key)) 741 return nullptr; 742 743 return Members.find(Key)->second; 744 } 745 746 /// \brief Get the index for the given member. Unlike the key in the member 747 /// map, the index starts from 0. 748 unsigned getIndex(Instruction *Instr) const { 749 for (auto I : Members) 750 if (I.second == Instr) 751 return I.first - SmallestKey; 752 753 llvm_unreachable("InterleaveGroup contains no such member"); 754 } 755 756 Instruction *getInsertPos() const { return InsertPos; } 757 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 758 759 private: 760 unsigned Factor; // Interleave Factor. 761 bool Reverse; 762 unsigned Align; 763 DenseMap<int, Instruction *> Members; 764 int SmallestKey; 765 int LargestKey; 766 767 // To avoid breaking dependences, vectorized instructions of an interleave 768 // group should be inserted at either the first load or the last store in 769 // program order. 770 // 771 // E.g. %even = load i32 // Insert Position 772 // %add = add i32 %even // Use of %even 773 // %odd = load i32 774 // 775 // store i32 %even 776 // %odd = add i32 // Def of %odd 777 // store i32 %odd // Insert Position 778 Instruction *InsertPos; 779 }; 780 781 /// \brief Drive the analysis of interleaved memory accesses in the loop. 782 /// 783 /// Use this class to analyze interleaved accesses only when we can vectorize 784 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 785 /// on interleaved accesses is unsafe. 786 /// 787 /// The analysis collects interleave groups and records the relationships 788 /// between the member and the group in a map. 789 class InterleavedAccessInfo { 790 public: 791 InterleavedAccessInfo(ScalarEvolution *SE, Loop *L, DominatorTree *DT, 792 SCEVUnionPredicate &Preds) 793 : SE(SE), TheLoop(L), DT(DT), Preds(Preds) {} 794 795 ~InterleavedAccessInfo() { 796 SmallSet<InterleaveGroup *, 4> DelSet; 797 // Avoid releasing a pointer twice. 798 for (auto &I : InterleaveGroupMap) 799 DelSet.insert(I.second); 800 for (auto *Ptr : DelSet) 801 delete Ptr; 802 } 803 804 /// \brief Analyze the interleaved accesses and collect them in interleave 805 /// groups. Substitute symbolic strides using \p Strides. 806 void analyzeInterleaving(const ValueToValueMap &Strides); 807 808 /// \brief Check if \p Instr belongs to any interleave group. 809 bool isInterleaved(Instruction *Instr) const { 810 return InterleaveGroupMap.count(Instr); 811 } 812 813 /// \brief Get the interleave group that \p Instr belongs to. 814 /// 815 /// \returns nullptr if doesn't have such group. 816 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 817 if (InterleaveGroupMap.count(Instr)) 818 return InterleaveGroupMap.find(Instr)->second; 819 return nullptr; 820 } 821 822 private: 823 ScalarEvolution *SE; 824 Loop *TheLoop; 825 DominatorTree *DT; 826 827 /// The SCEV predicate containing all the SCEV-related assumptions. 828 /// The predicate is used to simplify SCEV expressions in the 829 /// context of existing SCEV assumptions. The interleaved access 830 /// analysis can also add new predicates (for example by versioning 831 /// strides of pointers). 832 SCEVUnionPredicate &Preds; 833 834 /// Holds the relationships between the members and the interleave group. 835 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 836 837 /// \brief The descriptor for a strided memory access. 838 struct StrideDescriptor { 839 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 840 unsigned Align) 841 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 842 843 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 844 845 int Stride; // The access's stride. It is negative for a reverse access. 846 const SCEV *Scev; // The scalar expression of this access 847 unsigned Size; // The size of the memory object. 848 unsigned Align; // The alignment of this access. 849 }; 850 851 /// \brief Create a new interleave group with the given instruction \p Instr, 852 /// stride \p Stride and alignment \p Align. 853 /// 854 /// \returns the newly created interleave group. 855 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 856 unsigned Align) { 857 assert(!InterleaveGroupMap.count(Instr) && 858 "Already in an interleaved access group"); 859 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 860 return InterleaveGroupMap[Instr]; 861 } 862 863 /// \brief Release the group and remove all the relationships. 864 void releaseGroup(InterleaveGroup *Group) { 865 for (unsigned i = 0; i < Group->getFactor(); i++) 866 if (Instruction *Member = Group->getMember(i)) 867 InterleaveGroupMap.erase(Member); 868 869 delete Group; 870 } 871 872 /// \brief Collect all the accesses with a constant stride in program order. 873 void collectConstStridedAccesses( 874 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 875 const ValueToValueMap &Strides); 876 }; 877 878 /// Utility class for getting and setting loop vectorizer hints in the form 879 /// of loop metadata. 880 /// This class keeps a number of loop annotations locally (as member variables) 881 /// and can, upon request, write them back as metadata on the loop. It will 882 /// initially scan the loop for existing metadata, and will update the local 883 /// values based on information in the loop. 884 /// We cannot write all values to metadata, as the mere presence of some info, 885 /// for example 'force', means a decision has been made. So, we need to be 886 /// careful NOT to add them if the user hasn't specifically asked so. 887 class LoopVectorizeHints { 888 enum HintKind { 889 HK_WIDTH, 890 HK_UNROLL, 891 HK_FORCE 892 }; 893 894 /// Hint - associates name and validation with the hint value. 895 struct Hint { 896 const char * Name; 897 unsigned Value; // This may have to change for non-numeric values. 898 HintKind Kind; 899 900 Hint(const char * Name, unsigned Value, HintKind Kind) 901 : Name(Name), Value(Value), Kind(Kind) { } 902 903 bool validate(unsigned Val) { 904 switch (Kind) { 905 case HK_WIDTH: 906 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 907 case HK_UNROLL: 908 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 909 case HK_FORCE: 910 return (Val <= 1); 911 } 912 return false; 913 } 914 }; 915 916 /// Vectorization width. 917 Hint Width; 918 /// Vectorization interleave factor. 919 Hint Interleave; 920 /// Vectorization forced 921 Hint Force; 922 923 /// Return the loop metadata prefix. 924 static StringRef Prefix() { return "llvm.loop."; } 925 926 public: 927 enum ForceKind { 928 FK_Undefined = -1, ///< Not selected. 929 FK_Disabled = 0, ///< Forcing disabled. 930 FK_Enabled = 1, ///< Forcing enabled. 931 }; 932 933 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 934 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 935 HK_WIDTH), 936 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 937 Force("vectorize.enable", FK_Undefined, HK_FORCE), 938 TheLoop(L) { 939 // Populate values with existing loop metadata. 940 getHintsFromMetadata(); 941 942 // force-vector-interleave overrides DisableInterleaving. 943 if (VectorizerParams::isInterleaveForced()) 944 Interleave.Value = VectorizerParams::VectorizationInterleave; 945 946 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 947 << "LV: Interleaving disabled by the pass manager\n"); 948 } 949 950 /// Mark the loop L as already vectorized by setting the width to 1. 951 void setAlreadyVectorized() { 952 Width.Value = Interleave.Value = 1; 953 Hint Hints[] = {Width, Interleave}; 954 writeHintsToMetadata(Hints); 955 } 956 957 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 958 if (getForce() == LoopVectorizeHints::FK_Disabled) { 959 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 960 emitOptimizationRemarkAnalysis(F->getContext(), 961 vectorizeAnalysisPassName(), *F, 962 L->getStartLoc(), emitRemark()); 963 return false; 964 } 965 966 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 967 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 968 emitOptimizationRemarkAnalysis(F->getContext(), 969 vectorizeAnalysisPassName(), *F, 970 L->getStartLoc(), emitRemark()); 971 return false; 972 } 973 974 if (getWidth() == 1 && getInterleave() == 1) { 975 // FIXME: Add a separate metadata to indicate when the loop has already 976 // been vectorized instead of setting width and count to 1. 977 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 978 // FIXME: Add interleave.disable metadata. This will allow 979 // vectorize.disable to be used without disabling the pass and errors 980 // to differentiate between disabled vectorization and a width of 1. 981 emitOptimizationRemarkAnalysis( 982 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 983 "loop not vectorized: vectorization and interleaving are explicitly " 984 "disabled, or vectorize width and interleave count are both set to " 985 "1"); 986 return false; 987 } 988 989 return true; 990 } 991 992 /// Dumps all the hint information. 993 std::string emitRemark() const { 994 VectorizationReport R; 995 if (Force.Value == LoopVectorizeHints::FK_Disabled) 996 R << "vectorization is explicitly disabled"; 997 else { 998 R << "use -Rpass-analysis=loop-vectorize for more info"; 999 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1000 R << " (Force=true"; 1001 if (Width.Value != 0) 1002 R << ", Vector Width=" << Width.Value; 1003 if (Interleave.Value != 0) 1004 R << ", Interleave Count=" << Interleave.Value; 1005 R << ")"; 1006 } 1007 } 1008 1009 return R.str(); 1010 } 1011 1012 unsigned getWidth() const { return Width.Value; } 1013 unsigned getInterleave() const { return Interleave.Value; } 1014 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1015 const char *vectorizeAnalysisPassName() const { 1016 // If hints are provided that don't disable vectorization use the 1017 // AlwaysPrint pass name to force the frontend to print the diagnostic. 1018 if (getWidth() == 1) 1019 return LV_NAME; 1020 if (getForce() == LoopVectorizeHints::FK_Disabled) 1021 return LV_NAME; 1022 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1023 return LV_NAME; 1024 return DiagnosticInfo::AlwaysPrint; 1025 } 1026 1027 bool allowReordering() const { 1028 // When enabling loop hints are provided we allow the vectorizer to change 1029 // the order of operations that is given by the scalar loop. This is not 1030 // enabled by default because can be unsafe or inefficient. For example, 1031 // reordering floating-point operations will change the way round-off 1032 // error accumulates in the loop. 1033 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1034 } 1035 1036 private: 1037 /// Find hints specified in the loop metadata and update local values. 1038 void getHintsFromMetadata() { 1039 MDNode *LoopID = TheLoop->getLoopID(); 1040 if (!LoopID) 1041 return; 1042 1043 // First operand should refer to the loop id itself. 1044 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1045 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1046 1047 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1048 const MDString *S = nullptr; 1049 SmallVector<Metadata *, 4> Args; 1050 1051 // The expected hint is either a MDString or a MDNode with the first 1052 // operand a MDString. 1053 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1054 if (!MD || MD->getNumOperands() == 0) 1055 continue; 1056 S = dyn_cast<MDString>(MD->getOperand(0)); 1057 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1058 Args.push_back(MD->getOperand(i)); 1059 } else { 1060 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1061 assert(Args.size() == 0 && "too many arguments for MDString"); 1062 } 1063 1064 if (!S) 1065 continue; 1066 1067 // Check if the hint starts with the loop metadata prefix. 1068 StringRef Name = S->getString(); 1069 if (Args.size() == 1) 1070 setHint(Name, Args[0]); 1071 } 1072 } 1073 1074 /// Checks string hint with one operand and set value if valid. 1075 void setHint(StringRef Name, Metadata *Arg) { 1076 if (!Name.startswith(Prefix())) 1077 return; 1078 Name = Name.substr(Prefix().size(), StringRef::npos); 1079 1080 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1081 if (!C) return; 1082 unsigned Val = C->getZExtValue(); 1083 1084 Hint *Hints[] = {&Width, &Interleave, &Force}; 1085 for (auto H : Hints) { 1086 if (Name == H->Name) { 1087 if (H->validate(Val)) 1088 H->Value = Val; 1089 else 1090 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1091 break; 1092 } 1093 } 1094 } 1095 1096 /// Create a new hint from name / value pair. 1097 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1098 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1099 Metadata *MDs[] = {MDString::get(Context, Name), 1100 ConstantAsMetadata::get( 1101 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1102 return MDNode::get(Context, MDs); 1103 } 1104 1105 /// Matches metadata with hint name. 1106 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1107 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1108 if (!Name) 1109 return false; 1110 1111 for (auto H : HintTypes) 1112 if (Name->getString().endswith(H.Name)) 1113 return true; 1114 return false; 1115 } 1116 1117 /// Sets current hints into loop metadata, keeping other values intact. 1118 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1119 if (HintTypes.size() == 0) 1120 return; 1121 1122 // Reserve the first element to LoopID (see below). 1123 SmallVector<Metadata *, 4> MDs(1); 1124 // If the loop already has metadata, then ignore the existing operands. 1125 MDNode *LoopID = TheLoop->getLoopID(); 1126 if (LoopID) { 1127 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1128 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1129 // If node in update list, ignore old value. 1130 if (!matchesHintMetadataName(Node, HintTypes)) 1131 MDs.push_back(Node); 1132 } 1133 } 1134 1135 // Now, add the missing hints. 1136 for (auto H : HintTypes) 1137 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1138 1139 // Replace current metadata node with new one. 1140 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1141 MDNode *NewLoopID = MDNode::get(Context, MDs); 1142 // Set operand 0 to refer to the loop id itself. 1143 NewLoopID->replaceOperandWith(0, NewLoopID); 1144 1145 TheLoop->setLoopID(NewLoopID); 1146 } 1147 1148 /// The loop these hints belong to. 1149 const Loop *TheLoop; 1150 }; 1151 1152 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1153 const LoopVectorizeHints &Hints, 1154 const LoopAccessReport &Message) { 1155 const char *Name = Hints.vectorizeAnalysisPassName(); 1156 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1157 } 1158 1159 static void emitMissedWarning(Function *F, Loop *L, 1160 const LoopVectorizeHints &LH) { 1161 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1162 LH.emitRemark()); 1163 1164 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1165 if (LH.getWidth() != 1) 1166 emitLoopVectorizeWarning( 1167 F->getContext(), *F, L->getStartLoc(), 1168 "failed explicitly specified loop vectorization"); 1169 else if (LH.getInterleave() != 1) 1170 emitLoopInterleaveWarning( 1171 F->getContext(), *F, L->getStartLoc(), 1172 "failed explicitly specified loop interleaving"); 1173 } 1174 } 1175 1176 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1177 /// to what vectorization factor. 1178 /// This class does not look at the profitability of vectorization, only the 1179 /// legality. This class has two main kinds of checks: 1180 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1181 /// will change the order of memory accesses in a way that will change the 1182 /// correctness of the program. 1183 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1184 /// checks for a number of different conditions, such as the availability of a 1185 /// single induction variable, that all types are supported and vectorize-able, 1186 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1187 /// This class is also used by InnerLoopVectorizer for identifying 1188 /// induction variable and the different reduction variables. 1189 class LoopVectorizationLegality { 1190 public: 1191 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 1192 TargetLibraryInfo *TLI, AliasAnalysis *AA, 1193 Function *F, const TargetTransformInfo *TTI, 1194 LoopAccessAnalysis *LAA, 1195 LoopVectorizationRequirements *R, 1196 const LoopVectorizeHints *H, 1197 SCEVUnionPredicate &Preds) 1198 : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F), 1199 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), 1200 InterleaveInfo(SE, L, DT, Preds), Induction(nullptr), 1201 WidestIndTy(nullptr), HasFunNoNaNAttr(false), Requirements(R), Hints(H), 1202 Preds(Preds) {} 1203 1204 /// ReductionList contains the reduction descriptors for all 1205 /// of the reductions that were found in the loop. 1206 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1207 1208 /// InductionList saves induction variables and maps them to the 1209 /// induction descriptor. 1210 typedef MapVector<PHINode*, InductionDescriptor> InductionList; 1211 1212 /// Returns true if it is legal to vectorize this loop. 1213 /// This does not mean that it is profitable to vectorize this 1214 /// loop, only that it is legal to do so. 1215 bool canVectorize(); 1216 1217 /// Returns the Induction variable. 1218 PHINode *getInduction() { return Induction; } 1219 1220 /// Returns the reduction variables found in the loop. 1221 ReductionList *getReductionVars() { return &Reductions; } 1222 1223 /// Returns the induction variables found in the loop. 1224 InductionList *getInductionVars() { return &Inductions; } 1225 1226 /// Returns the widest induction type. 1227 Type *getWidestInductionType() { return WidestIndTy; } 1228 1229 /// Returns True if V is an induction variable in this loop. 1230 bool isInductionVariable(const Value *V); 1231 1232 /// Return true if the block BB needs to be predicated in order for the loop 1233 /// to be vectorized. 1234 bool blockNeedsPredication(BasicBlock *BB); 1235 1236 /// Check if this pointer is consecutive when vectorizing. This happens 1237 /// when the last index of the GEP is the induction variable, or that the 1238 /// pointer itself is an induction variable. 1239 /// This check allows us to vectorize A[idx] into a wide load/store. 1240 /// Returns: 1241 /// 0 - Stride is unknown or non-consecutive. 1242 /// 1 - Address is consecutive. 1243 /// -1 - Address is consecutive, and decreasing. 1244 int isConsecutivePtr(Value *Ptr); 1245 1246 /// Returns true if the value V is uniform within the loop. 1247 bool isUniform(Value *V); 1248 1249 /// Returns true if this instruction will remain scalar after vectorization. 1250 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 1251 1252 /// Returns the information that we collected about runtime memory check. 1253 const RuntimePointerChecking *getRuntimePointerChecking() const { 1254 return LAI->getRuntimePointerChecking(); 1255 } 1256 1257 const LoopAccessInfo *getLAI() const { 1258 return LAI; 1259 } 1260 1261 /// \brief Check if \p Instr belongs to any interleaved access group. 1262 bool isAccessInterleaved(Instruction *Instr) { 1263 return InterleaveInfo.isInterleaved(Instr); 1264 } 1265 1266 /// \brief Get the interleaved access group that \p Instr belongs to. 1267 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1268 return InterleaveInfo.getInterleaveGroup(Instr); 1269 } 1270 1271 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1272 1273 bool hasStride(Value *V) { return StrideSet.count(V); } 1274 bool mustCheckStrides() { return !StrideSet.empty(); } 1275 SmallPtrSet<Value *, 8>::iterator strides_begin() { 1276 return StrideSet.begin(); 1277 } 1278 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 1279 1280 /// Returns true if the target machine supports masked store operation 1281 /// for the given \p DataType and kind of access to \p Ptr. 1282 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1283 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1284 } 1285 /// Returns true if the target machine supports masked load operation 1286 /// for the given \p DataType and kind of access to \p Ptr. 1287 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1288 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1289 } 1290 /// Returns true if vector representation of the instruction \p I 1291 /// requires mask. 1292 bool isMaskRequired(const Instruction* I) { 1293 return (MaskedOp.count(I) != 0); 1294 } 1295 unsigned getNumStores() const { 1296 return LAI->getNumStores(); 1297 } 1298 unsigned getNumLoads() const { 1299 return LAI->getNumLoads(); 1300 } 1301 unsigned getNumPredStores() const { 1302 return NumPredStores; 1303 } 1304 private: 1305 /// Check if a single basic block loop is vectorizable. 1306 /// At this point we know that this is a loop with a constant trip count 1307 /// and we only need to check individual instructions. 1308 bool canVectorizeInstrs(); 1309 1310 /// When we vectorize loops we may change the order in which 1311 /// we read and write from memory. This method checks if it is 1312 /// legal to vectorize the code, considering only memory constrains. 1313 /// Returns true if the loop is vectorizable 1314 bool canVectorizeMemory(); 1315 1316 /// Return true if we can vectorize this loop using the IF-conversion 1317 /// transformation. 1318 bool canVectorizeWithIfConvert(); 1319 1320 /// Collect the variables that need to stay uniform after vectorization. 1321 void collectLoopUniforms(); 1322 1323 /// Return true if all of the instructions in the block can be speculatively 1324 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1325 /// and we know that we can read from them without segfault. 1326 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1327 1328 /// \brief Collect memory access with loop invariant strides. 1329 /// 1330 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1331 /// invariant. 1332 void collectStridedAccess(Value *LoadOrStoreInst); 1333 1334 /// Report an analysis message to assist the user in diagnosing loops that are 1335 /// not vectorized. These are handled as LoopAccessReport rather than 1336 /// VectorizationReport because the << operator of VectorizationReport returns 1337 /// LoopAccessReport. 1338 void emitAnalysis(const LoopAccessReport &Message) const { 1339 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1340 } 1341 1342 unsigned NumPredStores; 1343 1344 /// The loop that we evaluate. 1345 Loop *TheLoop; 1346 /// Scev analysis. 1347 ScalarEvolution *SE; 1348 /// Target Library Info. 1349 TargetLibraryInfo *TLI; 1350 /// Parent function 1351 Function *TheFunction; 1352 /// Target Transform Info 1353 const TargetTransformInfo *TTI; 1354 /// Dominator Tree. 1355 DominatorTree *DT; 1356 // LoopAccess analysis. 1357 LoopAccessAnalysis *LAA; 1358 // And the loop-accesses info corresponding to this loop. This pointer is 1359 // null until canVectorizeMemory sets it up. 1360 const LoopAccessInfo *LAI; 1361 1362 /// The interleave access information contains groups of interleaved accesses 1363 /// with the same stride and close to each other. 1364 InterleavedAccessInfo InterleaveInfo; 1365 1366 // --- vectorization state --- // 1367 1368 /// Holds the integer induction variable. This is the counter of the 1369 /// loop. 1370 PHINode *Induction; 1371 /// Holds the reduction variables. 1372 ReductionList Reductions; 1373 /// Holds all of the induction variables that we found in the loop. 1374 /// Notice that inductions don't need to start at zero and that induction 1375 /// variables can be pointers. 1376 InductionList Inductions; 1377 /// Holds the widest induction type encountered. 1378 Type *WidestIndTy; 1379 1380 /// Allowed outside users. This holds the reduction 1381 /// vars which can be accessed from outside the loop. 1382 SmallPtrSet<Value*, 4> AllowedExit; 1383 /// This set holds the variables which are known to be uniform after 1384 /// vectorization. 1385 SmallPtrSet<Instruction*, 4> Uniforms; 1386 1387 /// Can we assume the absence of NaNs. 1388 bool HasFunNoNaNAttr; 1389 1390 /// Vectorization requirements that will go through late-evaluation. 1391 LoopVectorizationRequirements *Requirements; 1392 1393 /// Used to emit an analysis of any legality issues. 1394 const LoopVectorizeHints *Hints; 1395 1396 ValueToValueMap Strides; 1397 SmallPtrSet<Value *, 8> StrideSet; 1398 1399 /// While vectorizing these instructions we have to generate a 1400 /// call to the appropriate masked intrinsic 1401 SmallPtrSet<const Instruction *, 8> MaskedOp; 1402 1403 /// The SCEV predicate containing all the SCEV-related assumptions. 1404 /// The predicate is used to simplify SCEV expressions in the 1405 /// context of existing SCEV assumptions. The analysis will also 1406 /// add a minimal set of new predicates if this is required to 1407 /// enable vectorization/unrolling. 1408 SCEVUnionPredicate &Preds; 1409 }; 1410 1411 /// LoopVectorizationCostModel - estimates the expected speedups due to 1412 /// vectorization. 1413 /// In many cases vectorization is not profitable. This can happen because of 1414 /// a number of reasons. In this class we mainly attempt to predict the 1415 /// expected speedup/slowdowns due to the supported instruction set. We use the 1416 /// TargetTransformInfo to query the different backends for the cost of 1417 /// different operations. 1418 class LoopVectorizationCostModel { 1419 public: 1420 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 1421 LoopVectorizationLegality *Legal, 1422 const TargetTransformInfo &TTI, 1423 const TargetLibraryInfo *TLI, DemandedBits *DB, 1424 AssumptionCache *AC, const Function *F, 1425 const LoopVectorizeHints *Hints, 1426 SmallPtrSetImpl<const Value *> &ValuesToIgnore, 1427 SCEVUnionPredicate &Preds) 1428 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1429 TheFunction(F), Hints(Hints), ValuesToIgnore(ValuesToIgnore) {} 1430 1431 /// Information about vectorization costs 1432 struct VectorizationFactor { 1433 unsigned Width; // Vector width with best cost 1434 unsigned Cost; // Cost of the loop with that width 1435 }; 1436 /// \return The most profitable vectorization factor and the cost of that VF. 1437 /// This method checks every power of two up to VF. If UserVF is not ZERO 1438 /// then this vectorization factor will be selected if vectorization is 1439 /// possible. 1440 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1441 1442 /// \return The size (in bits) of the smallest and widest types in the code 1443 /// that needs to be vectorized. We ignore values that remain scalar such as 1444 /// 64 bit loop indices. 1445 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1446 1447 /// \return The desired interleave count. 1448 /// If interleave count has been specified by metadata it will be returned. 1449 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1450 /// are the selected vectorization factor and the cost of the selected VF. 1451 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1452 unsigned LoopCost); 1453 1454 /// \return The most profitable unroll factor. 1455 /// This method finds the best unroll-factor based on register pressure and 1456 /// other parameters. VF and LoopCost are the selected vectorization factor 1457 /// and the cost of the selected VF. 1458 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1459 unsigned LoopCost); 1460 1461 /// \brief A struct that represents some properties of the register usage 1462 /// of a loop. 1463 struct RegisterUsage { 1464 /// Holds the number of loop invariant values that are used in the loop. 1465 unsigned LoopInvariantRegs; 1466 /// Holds the maximum number of concurrent live intervals in the loop. 1467 unsigned MaxLocalUsers; 1468 /// Holds the number of instructions in the loop. 1469 unsigned NumInstructions; 1470 }; 1471 1472 /// \return Returns information about the register usages of the loop for the 1473 /// given vectorization factors. 1474 SmallVector<RegisterUsage, 8> 1475 calculateRegisterUsage(const SmallVector<unsigned, 8> &VFs); 1476 1477 private: 1478 /// Returns the expected execution cost. The unit of the cost does 1479 /// not matter because we use the 'cost' units to compare different 1480 /// vector widths. The cost that is returned is *not* normalized by 1481 /// the factor width. 1482 unsigned expectedCost(unsigned VF); 1483 1484 /// Returns the execution time cost of an instruction for a given vector 1485 /// width. Vector width of one means scalar. 1486 unsigned getInstructionCost(Instruction *I, unsigned VF); 1487 1488 /// Returns whether the instruction is a load or store and will be a emitted 1489 /// as a vector operation. 1490 bool isConsecutiveLoadOrStore(Instruction *I); 1491 1492 /// Report an analysis message to assist the user in diagnosing loops that are 1493 /// not vectorized. These are handled as LoopAccessReport rather than 1494 /// VectorizationReport because the << operator of VectorizationReport returns 1495 /// LoopAccessReport. 1496 void emitAnalysis(const LoopAccessReport &Message) const { 1497 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1498 } 1499 1500 public: 1501 /// Map of scalar integer values to the smallest bitwidth they can be legally 1502 /// represented as. The vector equivalents of these values should be truncated 1503 /// to this type. 1504 DenseMap<Instruction*,uint64_t> MinBWs; 1505 1506 /// The loop that we evaluate. 1507 Loop *TheLoop; 1508 /// Scev analysis. 1509 ScalarEvolution *SE; 1510 /// Loop Info analysis. 1511 LoopInfo *LI; 1512 /// Vectorization legality. 1513 LoopVectorizationLegality *Legal; 1514 /// Vector target information. 1515 const TargetTransformInfo &TTI; 1516 /// Target Library Info. 1517 const TargetLibraryInfo *TLI; 1518 /// Demanded bits analysis 1519 DemandedBits *DB; 1520 const Function *TheFunction; 1521 // Loop Vectorize Hint. 1522 const LoopVectorizeHints *Hints; 1523 // Values to ignore in the cost model. 1524 const SmallPtrSetImpl<const Value *> &ValuesToIgnore; 1525 }; 1526 1527 /// \brief This holds vectorization requirements that must be verified late in 1528 /// the process. The requirements are set by legalize and costmodel. Once 1529 /// vectorization has been determined to be possible and profitable the 1530 /// requirements can be verified by looking for metadata or compiler options. 1531 /// For example, some loops require FP commutativity which is only allowed if 1532 /// vectorization is explicitly specified or if the fast-math compiler option 1533 /// has been provided. 1534 /// Late evaluation of these requirements allows helpful diagnostics to be 1535 /// composed that tells the user what need to be done to vectorize the loop. For 1536 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1537 /// evaluation should be used only when diagnostics can generated that can be 1538 /// followed by a non-expert user. 1539 class LoopVectorizationRequirements { 1540 public: 1541 LoopVectorizationRequirements() 1542 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1543 1544 void addUnsafeAlgebraInst(Instruction *I) { 1545 // First unsafe algebra instruction. 1546 if (!UnsafeAlgebraInst) 1547 UnsafeAlgebraInst = I; 1548 } 1549 1550 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1551 1552 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1553 const char *Name = Hints.vectorizeAnalysisPassName(); 1554 bool Failed = false; 1555 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1556 emitOptimizationRemarkAnalysisFPCommute( 1557 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1558 VectorizationReport() << "cannot prove it is safe to reorder " 1559 "floating-point operations"); 1560 Failed = true; 1561 } 1562 1563 // Test if runtime memcheck thresholds are exceeded. 1564 bool PragmaThresholdReached = 1565 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1566 bool ThresholdReached = 1567 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1568 if ((ThresholdReached && !Hints.allowReordering()) || 1569 PragmaThresholdReached) { 1570 emitOptimizationRemarkAnalysisAliasing( 1571 F->getContext(), Name, *F, L->getStartLoc(), 1572 VectorizationReport() 1573 << "cannot prove it is safe to reorder memory operations"); 1574 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1575 Failed = true; 1576 } 1577 1578 return Failed; 1579 } 1580 1581 private: 1582 unsigned NumRuntimePointerChecks; 1583 Instruction *UnsafeAlgebraInst; 1584 }; 1585 1586 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1587 if (L.empty()) 1588 return V.push_back(&L); 1589 1590 for (Loop *InnerL : L) 1591 addInnerLoop(*InnerL, V); 1592 } 1593 1594 /// The LoopVectorize Pass. 1595 struct LoopVectorize : public FunctionPass { 1596 /// Pass identification, replacement for typeid 1597 static char ID; 1598 1599 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1600 : FunctionPass(ID), 1601 DisableUnrolling(NoUnrolling), 1602 AlwaysVectorize(AlwaysVectorize) { 1603 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1604 } 1605 1606 ScalarEvolution *SE; 1607 LoopInfo *LI; 1608 TargetTransformInfo *TTI; 1609 DominatorTree *DT; 1610 BlockFrequencyInfo *BFI; 1611 TargetLibraryInfo *TLI; 1612 DemandedBits *DB; 1613 AliasAnalysis *AA; 1614 AssumptionCache *AC; 1615 LoopAccessAnalysis *LAA; 1616 bool DisableUnrolling; 1617 bool AlwaysVectorize; 1618 1619 BlockFrequency ColdEntryFreq; 1620 1621 bool runOnFunction(Function &F) override { 1622 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1623 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1624 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1625 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1626 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1627 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1628 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1629 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1630 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1631 LAA = &getAnalysis<LoopAccessAnalysis>(); 1632 DB = &getAnalysis<DemandedBits>(); 1633 1634 // Compute some weights outside of the loop over the loops. Compute this 1635 // using a BranchProbability to re-use its scaling math. 1636 const BranchProbability ColdProb(1, 5); // 20% 1637 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1638 1639 // Don't attempt if 1640 // 1. the target claims to have no vector registers, and 1641 // 2. interleaving won't help ILP. 1642 // 1643 // The second condition is necessary because, even if the target has no 1644 // vector registers, loop vectorization may still enable scalar 1645 // interleaving. 1646 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1647 return false; 1648 1649 // Build up a worklist of inner-loops to vectorize. This is necessary as 1650 // the act of vectorizing or partially unrolling a loop creates new loops 1651 // and can invalidate iterators across the loops. 1652 SmallVector<Loop *, 8> Worklist; 1653 1654 for (Loop *L : *LI) 1655 addInnerLoop(*L, Worklist); 1656 1657 LoopsAnalyzed += Worklist.size(); 1658 1659 // Now walk the identified inner loops. 1660 bool Changed = false; 1661 while (!Worklist.empty()) 1662 Changed |= processLoop(Worklist.pop_back_val()); 1663 1664 // Process each loop nest in the function. 1665 return Changed; 1666 } 1667 1668 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1669 SmallVector<Metadata *, 4> MDs; 1670 // Reserve first location for self reference to the LoopID metadata node. 1671 MDs.push_back(nullptr); 1672 bool IsUnrollMetadata = false; 1673 MDNode *LoopID = L->getLoopID(); 1674 if (LoopID) { 1675 // First find existing loop unrolling disable metadata. 1676 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1677 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1678 if (MD) { 1679 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1680 IsUnrollMetadata = 1681 S && S->getString().startswith("llvm.loop.unroll.disable"); 1682 } 1683 MDs.push_back(LoopID->getOperand(i)); 1684 } 1685 } 1686 1687 if (!IsUnrollMetadata) { 1688 // Add runtime unroll disable metadata. 1689 LLVMContext &Context = L->getHeader()->getContext(); 1690 SmallVector<Metadata *, 1> DisableOperands; 1691 DisableOperands.push_back( 1692 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1693 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1694 MDs.push_back(DisableNode); 1695 MDNode *NewLoopID = MDNode::get(Context, MDs); 1696 // Set operand 0 to refer to the loop id itself. 1697 NewLoopID->replaceOperandWith(0, NewLoopID); 1698 L->setLoopID(NewLoopID); 1699 } 1700 } 1701 1702 bool processLoop(Loop *L) { 1703 assert(L->empty() && "Only process inner loops."); 1704 1705 #ifndef NDEBUG 1706 const std::string DebugLocStr = getDebugLocString(L); 1707 #endif /* NDEBUG */ 1708 1709 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1710 << L->getHeader()->getParent()->getName() << "\" from " 1711 << DebugLocStr << "\n"); 1712 1713 LoopVectorizeHints Hints(L, DisableUnrolling); 1714 1715 DEBUG(dbgs() << "LV: Loop hints:" 1716 << " force=" 1717 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1718 ? "disabled" 1719 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1720 ? "enabled" 1721 : "?")) << " width=" << Hints.getWidth() 1722 << " unroll=" << Hints.getInterleave() << "\n"); 1723 1724 // Function containing loop 1725 Function *F = L->getHeader()->getParent(); 1726 1727 // Looking at the diagnostic output is the only way to determine if a loop 1728 // was vectorized (other than looking at the IR or machine code), so it 1729 // is important to generate an optimization remark for each loop. Most of 1730 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1731 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1732 // less verbose reporting vectorized loops and unvectorized loops that may 1733 // benefit from vectorization, respectively. 1734 1735 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1736 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1737 return false; 1738 } 1739 1740 // Check the loop for a trip count threshold: 1741 // do not vectorize loops with a tiny trip count. 1742 const unsigned TC = SE->getSmallConstantTripCount(L); 1743 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1744 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1745 << "This loop is not worth vectorizing."); 1746 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1747 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1748 else { 1749 DEBUG(dbgs() << "\n"); 1750 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1751 << "vectorization is not beneficial " 1752 "and is not explicitly forced"); 1753 return false; 1754 } 1755 } 1756 1757 SCEVUnionPredicate Preds; 1758 1759 // Check if it is legal to vectorize the loop. 1760 LoopVectorizationRequirements Requirements; 1761 LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA, 1762 &Requirements, &Hints, Preds); 1763 if (!LVL.canVectorize()) { 1764 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1765 emitMissedWarning(F, L, Hints); 1766 return false; 1767 } 1768 1769 // Collect values we want to ignore in the cost model. This includes 1770 // type-promoting instructions we identified during reduction detection. 1771 SmallPtrSet<const Value *, 32> ValuesToIgnore; 1772 CodeMetrics::collectEphemeralValues(L, AC, ValuesToIgnore); 1773 for (auto &Reduction : *LVL.getReductionVars()) { 1774 RecurrenceDescriptor &RedDes = Reduction.second; 1775 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 1776 ValuesToIgnore.insert(Casts.begin(), Casts.end()); 1777 } 1778 1779 // Use the cost model. 1780 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, TLI, DB, AC, F, &Hints, 1781 ValuesToIgnore, Preds); 1782 1783 // Check the function attributes to find out if this function should be 1784 // optimized for size. 1785 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1786 F->optForSize(); 1787 1788 // Compute the weighted frequency of this loop being executed and see if it 1789 // is less than 20% of the function entry baseline frequency. Note that we 1790 // always have a canonical loop here because we think we *can* vectorize. 1791 // FIXME: This is hidden behind a flag due to pervasive problems with 1792 // exactly what block frequency models. 1793 if (LoopVectorizeWithBlockFrequency) { 1794 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1795 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1796 LoopEntryFreq < ColdEntryFreq) 1797 OptForSize = true; 1798 } 1799 1800 // Check the function attributes to see if implicit floats are allowed. 1801 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1802 // an integer loop and the vector instructions selected are purely integer 1803 // vector instructions? 1804 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1805 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1806 "attribute is used.\n"); 1807 emitAnalysisDiag( 1808 F, L, Hints, 1809 VectorizationReport() 1810 << "loop not vectorized due to NoImplicitFloat attribute"); 1811 emitMissedWarning(F, L, Hints); 1812 return false; 1813 } 1814 1815 // Select the optimal vectorization factor. 1816 const LoopVectorizationCostModel::VectorizationFactor VF = 1817 CM.selectVectorizationFactor(OptForSize); 1818 1819 // Select the interleave count. 1820 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 1821 1822 // Get user interleave count. 1823 unsigned UserIC = Hints.getInterleave(); 1824 1825 // Identify the diagnostic messages that should be produced. 1826 std::string VecDiagMsg, IntDiagMsg; 1827 bool VectorizeLoop = true, InterleaveLoop = true; 1828 1829 if (Requirements.doesNotMeet(F, L, Hints)) { 1830 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 1831 "requirements.\n"); 1832 emitMissedWarning(F, L, Hints); 1833 return false; 1834 } 1835 1836 if (VF.Width == 1) { 1837 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1838 VecDiagMsg = 1839 "the cost-model indicates that vectorization is not beneficial"; 1840 VectorizeLoop = false; 1841 } 1842 1843 if (IC == 1 && UserIC <= 1) { 1844 // Tell the user interleaving is not beneficial. 1845 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 1846 IntDiagMsg = 1847 "the cost-model indicates that interleaving is not beneficial"; 1848 InterleaveLoop = false; 1849 if (UserIC == 1) 1850 IntDiagMsg += 1851 " and is explicitly disabled or interleave count is set to 1"; 1852 } else if (IC > 1 && UserIC == 1) { 1853 // Tell the user interleaving is beneficial, but it explicitly disabled. 1854 DEBUG(dbgs() 1855 << "LV: Interleaving is beneficial but is explicitly disabled."); 1856 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 1857 "but is explicitly disabled or interleave count is set to 1"; 1858 InterleaveLoop = false; 1859 } 1860 1861 // Override IC if user provided an interleave count. 1862 IC = UserIC > 0 ? UserIC : IC; 1863 1864 // Emit diagnostic messages, if any. 1865 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 1866 if (!VectorizeLoop && !InterleaveLoop) { 1867 // Do not vectorize or interleaving the loop. 1868 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1869 L->getStartLoc(), VecDiagMsg); 1870 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1871 L->getStartLoc(), IntDiagMsg); 1872 return false; 1873 } else if (!VectorizeLoop && InterleaveLoop) { 1874 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1875 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1876 L->getStartLoc(), VecDiagMsg); 1877 } else if (VectorizeLoop && !InterleaveLoop) { 1878 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1879 << DebugLocStr << '\n'); 1880 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1881 L->getStartLoc(), IntDiagMsg); 1882 } else if (VectorizeLoop && InterleaveLoop) { 1883 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1884 << DebugLocStr << '\n'); 1885 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1886 } 1887 1888 if (!VectorizeLoop) { 1889 assert(IC > 1 && "interleave count should not be 1 or 0"); 1890 // If we decided that it is not legal to vectorize the loop then 1891 // interleave it. 1892 InnerLoopUnroller Unroller(L, SE, LI, DT, TLI, TTI, IC, Preds); 1893 Unroller.vectorize(&LVL, CM.MinBWs); 1894 1895 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1896 Twine("interleaved loop (interleaved count: ") + 1897 Twine(IC) + ")"); 1898 } else { 1899 // If we decided that it is *legal* to vectorize the loop then do it. 1900 InnerLoopVectorizer LB(L, SE, LI, DT, TLI, TTI, VF.Width, IC, Preds); 1901 LB.vectorize(&LVL, CM.MinBWs); 1902 ++LoopsVectorized; 1903 1904 // Add metadata to disable runtime unrolling scalar loop when there's no 1905 // runtime check about strides and memory. Because at this situation, 1906 // scalar loop is rarely used not worthy to be unrolled. 1907 if (!LB.IsSafetyChecksAdded()) 1908 AddRuntimeUnrollDisableMetaData(L); 1909 1910 // Report the vectorization decision. 1911 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1912 Twine("vectorized loop (vectorization width: ") + 1913 Twine(VF.Width) + ", interleaved count: " + 1914 Twine(IC) + ")"); 1915 } 1916 1917 // Mark the loop as already vectorized to avoid vectorizing again. 1918 Hints.setAlreadyVectorized(); 1919 1920 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1921 return true; 1922 } 1923 1924 void getAnalysisUsage(AnalysisUsage &AU) const override { 1925 AU.addRequired<AssumptionCacheTracker>(); 1926 AU.addRequiredID(LoopSimplifyID); 1927 AU.addRequiredID(LCSSAID); 1928 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1929 AU.addRequired<DominatorTreeWrapperPass>(); 1930 AU.addRequired<LoopInfoWrapperPass>(); 1931 AU.addRequired<ScalarEvolutionWrapperPass>(); 1932 AU.addRequired<TargetTransformInfoWrapperPass>(); 1933 AU.addRequired<AAResultsWrapperPass>(); 1934 AU.addRequired<LoopAccessAnalysis>(); 1935 AU.addRequired<DemandedBits>(); 1936 AU.addPreserved<LoopInfoWrapperPass>(); 1937 AU.addPreserved<DominatorTreeWrapperPass>(); 1938 AU.addPreserved<BasicAAWrapperPass>(); 1939 AU.addPreserved<AAResultsWrapperPass>(); 1940 AU.addPreserved<GlobalsAAWrapperPass>(); 1941 } 1942 1943 }; 1944 1945 } // end anonymous namespace 1946 1947 //===----------------------------------------------------------------------===// 1948 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1949 // LoopVectorizationCostModel. 1950 //===----------------------------------------------------------------------===// 1951 1952 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1953 // We need to place the broadcast of invariant variables outside the loop. 1954 Instruction *Instr = dyn_cast<Instruction>(V); 1955 bool NewInstr = 1956 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1957 Instr->getParent()) != LoopVectorBody.end()); 1958 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1959 1960 // Place the code for broadcasting invariant variables in the new preheader. 1961 IRBuilder<>::InsertPointGuard Guard(Builder); 1962 if (Invariant) 1963 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1964 1965 // Broadcast the scalar into all locations in the vector. 1966 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1967 1968 return Shuf; 1969 } 1970 1971 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1972 Value *Step) { 1973 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1974 assert(Val->getType()->getScalarType()->isIntegerTy() && 1975 "Elem must be an integer"); 1976 assert(Step->getType() == Val->getType()->getScalarType() && 1977 "Step has wrong type"); 1978 // Create the types. 1979 Type *ITy = Val->getType()->getScalarType(); 1980 VectorType *Ty = cast<VectorType>(Val->getType()); 1981 int VLen = Ty->getNumElements(); 1982 SmallVector<Constant*, 8> Indices; 1983 1984 // Create a vector of consecutive numbers from zero to VF. 1985 for (int i = 0; i < VLen; ++i) 1986 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1987 1988 // Add the consecutive indices to the vector value. 1989 Constant *Cv = ConstantVector::get(Indices); 1990 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1991 Step = Builder.CreateVectorSplat(VLen, Step); 1992 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1993 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1994 // which can be found from the original scalar operations. 1995 Step = Builder.CreateMul(Cv, Step); 1996 return Builder.CreateAdd(Val, Step, "induction"); 1997 } 1998 1999 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2000 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2001 // Make sure that the pointer does not point to structs. 2002 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2003 return 0; 2004 2005 // If this value is a pointer induction variable we know it is consecutive. 2006 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2007 if (Phi && Inductions.count(Phi)) { 2008 InductionDescriptor II = Inductions[Phi]; 2009 return II.getConsecutiveDirection(); 2010 } 2011 2012 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2013 if (!Gep) 2014 return 0; 2015 2016 unsigned NumOperands = Gep->getNumOperands(); 2017 Value *GpPtr = Gep->getPointerOperand(); 2018 // If this GEP value is a consecutive pointer induction variable and all of 2019 // the indices are constant then we know it is consecutive. We can 2020 Phi = dyn_cast<PHINode>(GpPtr); 2021 if (Phi && Inductions.count(Phi)) { 2022 2023 // Make sure that the pointer does not point to structs. 2024 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2025 if (GepPtrType->getElementType()->isAggregateType()) 2026 return 0; 2027 2028 // Make sure that all of the index operands are loop invariant. 2029 for (unsigned i = 1; i < NumOperands; ++i) 2030 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 2031 return 0; 2032 2033 InductionDescriptor II = Inductions[Phi]; 2034 return II.getConsecutiveDirection(); 2035 } 2036 2037 unsigned InductionOperand = getGEPInductionOperand(Gep); 2038 2039 // Check that all of the gep indices are uniform except for our induction 2040 // operand. 2041 for (unsigned i = 0; i != NumOperands; ++i) 2042 if (i != InductionOperand && 2043 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 2044 return 0; 2045 2046 // We can emit wide load/stores only if the last non-zero index is the 2047 // induction variable. 2048 const SCEV *Last = nullptr; 2049 if (!Strides.count(Gep)) 2050 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 2051 else { 2052 // Because of the multiplication by a stride we can have a s/zext cast. 2053 // We are going to replace this stride by 1 so the cast is safe to ignore. 2054 // 2055 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2056 // %0 = trunc i64 %indvars.iv to i32 2057 // %mul = mul i32 %0, %Stride1 2058 // %idxprom = zext i32 %mul to i64 << Safe cast. 2059 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2060 // 2061 Last = replaceSymbolicStrideSCEV(SE, Strides, Preds, 2062 Gep->getOperand(InductionOperand), Gep); 2063 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2064 Last = 2065 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2066 ? C->getOperand() 2067 : Last; 2068 } 2069 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2070 const SCEV *Step = AR->getStepRecurrence(*SE); 2071 2072 // The memory is consecutive because the last index is consecutive 2073 // and all other indices are loop invariant. 2074 if (Step->isOne()) 2075 return 1; 2076 if (Step->isAllOnesValue()) 2077 return -1; 2078 } 2079 2080 return 0; 2081 } 2082 2083 bool LoopVectorizationLegality::isUniform(Value *V) { 2084 return LAI->isUniform(V); 2085 } 2086 2087 InnerLoopVectorizer::VectorParts& 2088 InnerLoopVectorizer::getVectorValue(Value *V) { 2089 assert(V != Induction && "The new induction variable should not be used."); 2090 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2091 2092 // If we have a stride that is replaced by one, do it here. 2093 if (Legal->hasStride(V)) 2094 V = ConstantInt::get(V->getType(), 1); 2095 2096 // If we have this scalar in the map, return it. 2097 if (WidenMap.has(V)) 2098 return WidenMap.get(V); 2099 2100 // If this scalar is unknown, assume that it is a constant or that it is 2101 // loop invariant. Broadcast V and save the value for future uses. 2102 Value *B = getBroadcastInstrs(V); 2103 return WidenMap.splat(V, B); 2104 } 2105 2106 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2107 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2108 SmallVector<Constant*, 8> ShuffleMask; 2109 for (unsigned i = 0; i < VF; ++i) 2110 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2111 2112 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2113 ConstantVector::get(ShuffleMask), 2114 "reverse"); 2115 } 2116 2117 // Get a mask to interleave \p NumVec vectors into a wide vector. 2118 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2119 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2120 // <0, 4, 1, 5, 2, 6, 3, 7> 2121 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2122 unsigned NumVec) { 2123 SmallVector<Constant *, 16> Mask; 2124 for (unsigned i = 0; i < VF; i++) 2125 for (unsigned j = 0; j < NumVec; j++) 2126 Mask.push_back(Builder.getInt32(j * VF + i)); 2127 2128 return ConstantVector::get(Mask); 2129 } 2130 2131 // Get the strided mask starting from index \p Start. 2132 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2133 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2134 unsigned Stride, unsigned VF) { 2135 SmallVector<Constant *, 16> Mask; 2136 for (unsigned i = 0; i < VF; i++) 2137 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2138 2139 return ConstantVector::get(Mask); 2140 } 2141 2142 // Get a mask of two parts: The first part consists of sequential integers 2143 // starting from 0, The second part consists of UNDEFs. 2144 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2145 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2146 unsigned NumUndef) { 2147 SmallVector<Constant *, 16> Mask; 2148 for (unsigned i = 0; i < NumInt; i++) 2149 Mask.push_back(Builder.getInt32(i)); 2150 2151 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2152 for (unsigned i = 0; i < NumUndef; i++) 2153 Mask.push_back(Undef); 2154 2155 return ConstantVector::get(Mask); 2156 } 2157 2158 // Concatenate two vectors with the same element type. The 2nd vector should 2159 // not have more elements than the 1st vector. If the 2nd vector has less 2160 // elements, extend it with UNDEFs. 2161 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2162 Value *V2) { 2163 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2164 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2165 assert(VecTy1 && VecTy2 && 2166 VecTy1->getScalarType() == VecTy2->getScalarType() && 2167 "Expect two vectors with the same element type"); 2168 2169 unsigned NumElts1 = VecTy1->getNumElements(); 2170 unsigned NumElts2 = VecTy2->getNumElements(); 2171 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2172 2173 if (NumElts1 > NumElts2) { 2174 // Extend with UNDEFs. 2175 Constant *ExtMask = 2176 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2177 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2178 } 2179 2180 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2181 return Builder.CreateShuffleVector(V1, V2, Mask); 2182 } 2183 2184 // Concatenate vectors in the given list. All vectors have the same type. 2185 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2186 ArrayRef<Value *> InputList) { 2187 unsigned NumVec = InputList.size(); 2188 assert(NumVec > 1 && "Should be at least two vectors"); 2189 2190 SmallVector<Value *, 8> ResList; 2191 ResList.append(InputList.begin(), InputList.end()); 2192 do { 2193 SmallVector<Value *, 8> TmpList; 2194 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2195 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2196 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2197 "Only the last vector may have a different type"); 2198 2199 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2200 } 2201 2202 // Push the last vector if the total number of vectors is odd. 2203 if (NumVec % 2 != 0) 2204 TmpList.push_back(ResList[NumVec - 1]); 2205 2206 ResList = TmpList; 2207 NumVec = ResList.size(); 2208 } while (NumVec > 1); 2209 2210 return ResList[0]; 2211 } 2212 2213 // Try to vectorize the interleave group that \p Instr belongs to. 2214 // 2215 // E.g. Translate following interleaved load group (factor = 3): 2216 // for (i = 0; i < N; i+=3) { 2217 // R = Pic[i]; // Member of index 0 2218 // G = Pic[i+1]; // Member of index 1 2219 // B = Pic[i+2]; // Member of index 2 2220 // ... // do something to R, G, B 2221 // } 2222 // To: 2223 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2224 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2225 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2226 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2227 // 2228 // Or translate following interleaved store group (factor = 3): 2229 // for (i = 0; i < N; i+=3) { 2230 // ... do something to R, G, B 2231 // Pic[i] = R; // Member of index 0 2232 // Pic[i+1] = G; // Member of index 1 2233 // Pic[i+2] = B; // Member of index 2 2234 // } 2235 // To: 2236 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2237 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2238 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2239 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2240 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2241 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2242 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2243 assert(Group && "Fail to get an interleaved access group."); 2244 2245 // Skip if current instruction is not the insert position. 2246 if (Instr != Group->getInsertPos()) 2247 return; 2248 2249 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2250 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2251 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2252 2253 // Prepare for the vector type of the interleaved load/store. 2254 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2255 unsigned InterleaveFactor = Group->getFactor(); 2256 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2257 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2258 2259 // Prepare for the new pointers. 2260 setDebugLocFromInst(Builder, Ptr); 2261 VectorParts &PtrParts = getVectorValue(Ptr); 2262 SmallVector<Value *, 2> NewPtrs; 2263 unsigned Index = Group->getIndex(Instr); 2264 for (unsigned Part = 0; Part < UF; Part++) { 2265 // Extract the pointer for current instruction from the pointer vector. A 2266 // reverse access uses the pointer in the last lane. 2267 Value *NewPtr = Builder.CreateExtractElement( 2268 PtrParts[Part], 2269 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2270 2271 // Notice current instruction could be any index. Need to adjust the address 2272 // to the member of index 0. 2273 // 2274 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2275 // b = A[i]; // Member of index 0 2276 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2277 // 2278 // E.g. A[i+1] = a; // Member of index 1 2279 // A[i] = b; // Member of index 0 2280 // A[i+2] = c; // Member of index 2 (Current instruction) 2281 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2282 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2283 2284 // Cast to the vector pointer type. 2285 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2286 } 2287 2288 setDebugLocFromInst(Builder, Instr); 2289 Value *UndefVec = UndefValue::get(VecTy); 2290 2291 // Vectorize the interleaved load group. 2292 if (LI) { 2293 for (unsigned Part = 0; Part < UF; Part++) { 2294 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2295 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2296 2297 for (unsigned i = 0; i < InterleaveFactor; i++) { 2298 Instruction *Member = Group->getMember(i); 2299 2300 // Skip the gaps in the group. 2301 if (!Member) 2302 continue; 2303 2304 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2305 Value *StridedVec = Builder.CreateShuffleVector( 2306 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2307 2308 // If this member has different type, cast the result type. 2309 if (Member->getType() != ScalarTy) { 2310 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2311 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2312 } 2313 2314 VectorParts &Entry = WidenMap.get(Member); 2315 Entry[Part] = 2316 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2317 } 2318 2319 propagateMetadata(NewLoadInstr, Instr); 2320 } 2321 return; 2322 } 2323 2324 // The sub vector type for current instruction. 2325 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2326 2327 // Vectorize the interleaved store group. 2328 for (unsigned Part = 0; Part < UF; Part++) { 2329 // Collect the stored vector from each member. 2330 SmallVector<Value *, 4> StoredVecs; 2331 for (unsigned i = 0; i < InterleaveFactor; i++) { 2332 // Interleaved store group doesn't allow a gap, so each index has a member 2333 Instruction *Member = Group->getMember(i); 2334 assert(Member && "Fail to get a member from an interleaved store group"); 2335 2336 Value *StoredVec = 2337 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2338 if (Group->isReverse()) 2339 StoredVec = reverseVector(StoredVec); 2340 2341 // If this member has different type, cast it to an unified type. 2342 if (StoredVec->getType() != SubVT) 2343 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2344 2345 StoredVecs.push_back(StoredVec); 2346 } 2347 2348 // Concatenate all vectors into a wide vector. 2349 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2350 2351 // Interleave the elements in the wide vector. 2352 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2353 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2354 "interleaved.vec"); 2355 2356 Instruction *NewStoreInstr = 2357 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2358 propagateMetadata(NewStoreInstr, Instr); 2359 } 2360 } 2361 2362 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2363 // Attempt to issue a wide load. 2364 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2365 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2366 2367 assert((LI || SI) && "Invalid Load/Store instruction"); 2368 2369 // Try to vectorize the interleave group if this access is interleaved. 2370 if (Legal->isAccessInterleaved(Instr)) 2371 return vectorizeInterleaveGroup(Instr); 2372 2373 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2374 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2375 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2376 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2377 // An alignment of 0 means target abi alignment. We need to use the scalar's 2378 // target abi alignment in such a case. 2379 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2380 if (!Alignment) 2381 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2382 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2383 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2384 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2385 2386 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2387 !Legal->isMaskRequired(SI)) 2388 return scalarizeInstruction(Instr, true); 2389 2390 if (ScalarAllocatedSize != VectorElementSize) 2391 return scalarizeInstruction(Instr); 2392 2393 // If the pointer is loop invariant or if it is non-consecutive, 2394 // scalarize the load. 2395 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2396 bool Reverse = ConsecutiveStride < 0; 2397 bool UniformLoad = LI && Legal->isUniform(Ptr); 2398 if (!ConsecutiveStride || UniformLoad) 2399 return scalarizeInstruction(Instr); 2400 2401 Constant *Zero = Builder.getInt32(0); 2402 VectorParts &Entry = WidenMap.get(Instr); 2403 2404 // Handle consecutive loads/stores. 2405 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2406 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2407 setDebugLocFromInst(Builder, Gep); 2408 Value *PtrOperand = Gep->getPointerOperand(); 2409 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2410 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2411 2412 // Create the new GEP with the new induction variable. 2413 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2414 Gep2->setOperand(0, FirstBasePtr); 2415 Gep2->setName("gep.indvar.base"); 2416 Ptr = Builder.Insert(Gep2); 2417 } else if (Gep) { 2418 setDebugLocFromInst(Builder, Gep); 2419 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 2420 OrigLoop) && "Base ptr must be invariant"); 2421 2422 // The last index does not have to be the induction. It can be 2423 // consecutive and be a function of the index. For example A[I+1]; 2424 unsigned NumOperands = Gep->getNumOperands(); 2425 unsigned InductionOperand = getGEPInductionOperand(Gep); 2426 // Create the new GEP with the new induction variable. 2427 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2428 2429 for (unsigned i = 0; i < NumOperands; ++i) { 2430 Value *GepOperand = Gep->getOperand(i); 2431 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2432 2433 // Update last index or loop invariant instruction anchored in loop. 2434 if (i == InductionOperand || 2435 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2436 assert((i == InductionOperand || 2437 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 2438 "Must be last index or loop invariant"); 2439 2440 VectorParts &GEPParts = getVectorValue(GepOperand); 2441 Value *Index = GEPParts[0]; 2442 Index = Builder.CreateExtractElement(Index, Zero); 2443 Gep2->setOperand(i, Index); 2444 Gep2->setName("gep.indvar.idx"); 2445 } 2446 } 2447 Ptr = Builder.Insert(Gep2); 2448 } else { 2449 // Use the induction element ptr. 2450 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2451 setDebugLocFromInst(Builder, Ptr); 2452 VectorParts &PtrVal = getVectorValue(Ptr); 2453 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2454 } 2455 2456 VectorParts Mask = createBlockInMask(Instr->getParent()); 2457 // Handle Stores: 2458 if (SI) { 2459 assert(!Legal->isUniform(SI->getPointerOperand()) && 2460 "We do not allow storing to uniform addresses"); 2461 setDebugLocFromInst(Builder, SI); 2462 // We don't want to update the value in the map as it might be used in 2463 // another expression. So don't use a reference type for "StoredVal". 2464 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2465 2466 for (unsigned Part = 0; Part < UF; ++Part) { 2467 // Calculate the pointer for the specific unroll-part. 2468 Value *PartPtr = 2469 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2470 2471 if (Reverse) { 2472 // If we store to reverse consecutive memory locations, then we need 2473 // to reverse the order of elements in the stored value. 2474 StoredVal[Part] = reverseVector(StoredVal[Part]); 2475 // If the address is consecutive but reversed, then the 2476 // wide store needs to start at the last vector element. 2477 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2478 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2479 Mask[Part] = reverseVector(Mask[Part]); 2480 } 2481 2482 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2483 DataTy->getPointerTo(AddressSpace)); 2484 2485 Instruction *NewSI; 2486 if (Legal->isMaskRequired(SI)) 2487 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2488 Mask[Part]); 2489 else 2490 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2491 propagateMetadata(NewSI, SI); 2492 } 2493 return; 2494 } 2495 2496 // Handle loads. 2497 assert(LI && "Must have a load instruction"); 2498 setDebugLocFromInst(Builder, LI); 2499 for (unsigned Part = 0; Part < UF; ++Part) { 2500 // Calculate the pointer for the specific unroll-part. 2501 Value *PartPtr = 2502 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2503 2504 if (Reverse) { 2505 // If the address is consecutive but reversed, then the 2506 // wide load needs to start at the last vector element. 2507 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2508 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2509 Mask[Part] = reverseVector(Mask[Part]); 2510 } 2511 2512 Instruction* NewLI; 2513 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2514 DataTy->getPointerTo(AddressSpace)); 2515 if (Legal->isMaskRequired(LI)) 2516 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2517 UndefValue::get(DataTy), 2518 "wide.masked.load"); 2519 else 2520 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2521 propagateMetadata(NewLI, LI); 2522 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2523 } 2524 } 2525 2526 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 2527 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2528 // Holds vector parameters or scalars, in case of uniform vals. 2529 SmallVector<VectorParts, 4> Params; 2530 2531 setDebugLocFromInst(Builder, Instr); 2532 2533 // Find all of the vectorized parameters. 2534 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2535 Value *SrcOp = Instr->getOperand(op); 2536 2537 // If we are accessing the old induction variable, use the new one. 2538 if (SrcOp == OldInduction) { 2539 Params.push_back(getVectorValue(SrcOp)); 2540 continue; 2541 } 2542 2543 // Try using previously calculated values. 2544 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2545 2546 // If the src is an instruction that appeared earlier in the basic block, 2547 // then it should already be vectorized. 2548 if (SrcInst && OrigLoop->contains(SrcInst)) { 2549 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2550 // The parameter is a vector value from earlier. 2551 Params.push_back(WidenMap.get(SrcInst)); 2552 } else { 2553 // The parameter is a scalar from outside the loop. Maybe even a constant. 2554 VectorParts Scalars; 2555 Scalars.append(UF, SrcOp); 2556 Params.push_back(Scalars); 2557 } 2558 } 2559 2560 assert(Params.size() == Instr->getNumOperands() && 2561 "Invalid number of operands"); 2562 2563 // Does this instruction return a value ? 2564 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2565 2566 Value *UndefVec = IsVoidRetTy ? nullptr : 2567 UndefValue::get(VectorType::get(Instr->getType(), VF)); 2568 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2569 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2570 2571 VectorParts Cond; 2572 if (IfPredicateStore) { 2573 assert(Instr->getParent()->getSinglePredecessor() && 2574 "Only support single predecessor blocks"); 2575 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2576 Instr->getParent()); 2577 } 2578 2579 // For each vector unroll 'part': 2580 for (unsigned Part = 0; Part < UF; ++Part) { 2581 // For each scalar that we create: 2582 for (unsigned Width = 0; Width < VF; ++Width) { 2583 2584 // Start if-block. 2585 Value *Cmp = nullptr; 2586 if (IfPredicateStore) { 2587 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2588 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 2589 } 2590 2591 Instruction *Cloned = Instr->clone(); 2592 if (!IsVoidRetTy) 2593 Cloned->setName(Instr->getName() + ".cloned"); 2594 // Replace the operands of the cloned instructions with extracted scalars. 2595 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2596 Value *Op = Params[op][Part]; 2597 // Param is a vector. Need to extract the right lane. 2598 if (Op->getType()->isVectorTy()) 2599 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2600 Cloned->setOperand(op, Op); 2601 } 2602 2603 // Place the cloned scalar in the new loop. 2604 Builder.Insert(Cloned); 2605 2606 // If the original scalar returns a value we need to place it in a vector 2607 // so that future users will be able to use it. 2608 if (!IsVoidRetTy) 2609 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2610 Builder.getInt32(Width)); 2611 // End if-block. 2612 if (IfPredicateStore) 2613 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 2614 Cmp)); 2615 } 2616 } 2617 } 2618 2619 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2620 Value *End, Value *Step, 2621 Instruction *DL) { 2622 BasicBlock *Header = L->getHeader(); 2623 BasicBlock *Latch = L->getLoopLatch(); 2624 // As we're just creating this loop, it's possible no latch exists 2625 // yet. If so, use the header as this will be a single block loop. 2626 if (!Latch) 2627 Latch = Header; 2628 2629 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2630 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2631 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2632 2633 Builder.SetInsertPoint(Latch->getTerminator()); 2634 2635 // Create i+1 and fill the PHINode. 2636 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2637 Induction->addIncoming(Start, L->getLoopPreheader()); 2638 Induction->addIncoming(Next, Latch); 2639 // Create the compare. 2640 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2641 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2642 2643 // Now we have two terminators. Remove the old one from the block. 2644 Latch->getTerminator()->eraseFromParent(); 2645 2646 return Induction; 2647 } 2648 2649 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2650 if (TripCount) 2651 return TripCount; 2652 2653 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2654 // Find the loop boundaries. 2655 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(OrigLoop); 2656 assert(BackedgeTakenCount != SE->getCouldNotCompute() && "Invalid loop count"); 2657 2658 Type *IdxTy = Legal->getWidestInductionType(); 2659 2660 // The exit count might have the type of i64 while the phi is i32. This can 2661 // happen if we have an induction variable that is sign extended before the 2662 // compare. The only way that we get a backedge taken count is that the 2663 // induction variable was signed and as such will not overflow. In such a case 2664 // truncation is legal. 2665 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2666 IdxTy->getPrimitiveSizeInBits()) 2667 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2668 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2669 2670 // Get the total trip count from the count by adding 1. 2671 const SCEV *ExitCount = SE->getAddExpr( 2672 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2673 2674 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2675 2676 // Expand the trip count and place the new instructions in the preheader. 2677 // Notice that the pre-header does not change, only the loop body. 2678 SCEVExpander Exp(*SE, DL, "induction"); 2679 2680 // Count holds the overall loop count (N). 2681 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2682 L->getLoopPreheader()->getTerminator()); 2683 2684 if (TripCount->getType()->isPointerTy()) 2685 TripCount = 2686 CastInst::CreatePointerCast(TripCount, IdxTy, 2687 "exitcount.ptrcnt.to.int", 2688 L->getLoopPreheader()->getTerminator()); 2689 2690 return TripCount; 2691 } 2692 2693 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2694 if (VectorTripCount) 2695 return VectorTripCount; 2696 2697 Value *TC = getOrCreateTripCount(L); 2698 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2699 2700 // Now we need to generate the expression for N - (N % VF), which is 2701 // the part that the vectorized body will execute. 2702 // The loop step is equal to the vectorization factor (num of SIMD elements) 2703 // times the unroll factor (num of SIMD instructions). 2704 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2705 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2706 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2707 2708 return VectorTripCount; 2709 } 2710 2711 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2712 BasicBlock *Bypass) { 2713 Value *Count = getOrCreateTripCount(L); 2714 BasicBlock *BB = L->getLoopPreheader(); 2715 IRBuilder<> Builder(BB->getTerminator()); 2716 2717 // Generate code to check that the loop's trip count that we computed by 2718 // adding one to the backedge-taken count will not overflow. 2719 Value *CheckMinIters = 2720 Builder.CreateICmpULT(Count, 2721 ConstantInt::get(Count->getType(), VF * UF), 2722 "min.iters.check"); 2723 2724 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2725 "min.iters.checked"); 2726 if (L->getParentLoop()) 2727 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2728 ReplaceInstWithInst(BB->getTerminator(), 2729 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2730 LoopBypassBlocks.push_back(BB); 2731 } 2732 2733 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2734 BasicBlock *Bypass) { 2735 Value *TC = getOrCreateVectorTripCount(L); 2736 BasicBlock *BB = L->getLoopPreheader(); 2737 IRBuilder<> Builder(BB->getTerminator()); 2738 2739 // Now, compare the new count to zero. If it is zero skip the vector loop and 2740 // jump to the scalar loop. 2741 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 2742 "cmp.zero"); 2743 2744 // Generate code to check that the loop's trip count that we computed by 2745 // adding one to the backedge-taken count will not overflow. 2746 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2747 "vector.ph"); 2748 if (L->getParentLoop()) 2749 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2750 ReplaceInstWithInst(BB->getTerminator(), 2751 BranchInst::Create(Bypass, NewBB, Cmp)); 2752 LoopBypassBlocks.push_back(BB); 2753 } 2754 2755 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2756 BasicBlock *BB = L->getLoopPreheader(); 2757 2758 // Generate the code to check that the SCEV assumptions that we made. 2759 // We want the new basic block to start at the first instruction in a 2760 // sequence of instructions that form a check. 2761 SCEVExpander Exp(*SE, Bypass->getModule()->getDataLayout(), "scev.check"); 2762 Value *SCEVCheck = Exp.expandCodeForPredicate(&Preds, BB->getTerminator()); 2763 2764 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2765 if (C->isZero()) 2766 return; 2767 2768 // Create a new block containing the stride check. 2769 BB->setName("vector.scevcheck"); 2770 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2771 if (L->getParentLoop()) 2772 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2773 ReplaceInstWithInst(BB->getTerminator(), 2774 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2775 LoopBypassBlocks.push_back(BB); 2776 AddedSafetyChecks = true; 2777 } 2778 2779 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 2780 BasicBlock *Bypass) { 2781 BasicBlock *BB = L->getLoopPreheader(); 2782 2783 // Generate the code that checks in runtime if arrays overlap. We put the 2784 // checks into a separate block to make the more common case of few elements 2785 // faster. 2786 Instruction *FirstCheckInst; 2787 Instruction *MemRuntimeCheck; 2788 std::tie(FirstCheckInst, MemRuntimeCheck) = 2789 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2790 if (!MemRuntimeCheck) 2791 return; 2792 2793 // Create a new block containing the memory check. 2794 BB->setName("vector.memcheck"); 2795 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2796 if (L->getParentLoop()) 2797 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2798 ReplaceInstWithInst(BB->getTerminator(), 2799 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2800 LoopBypassBlocks.push_back(BB); 2801 AddedSafetyChecks = true; 2802 } 2803 2804 2805 void InnerLoopVectorizer::createEmptyLoop() { 2806 /* 2807 In this function we generate a new loop. The new loop will contain 2808 the vectorized instructions while the old loop will continue to run the 2809 scalar remainder. 2810 2811 [ ] <-- loop iteration number check. 2812 / | 2813 / v 2814 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2815 | / | 2816 | / v 2817 || [ ] <-- vector pre header. 2818 |/ | 2819 | v 2820 | [ ] \ 2821 | [ ]_| <-- vector loop. 2822 | | 2823 | v 2824 | -[ ] <--- middle-block. 2825 | / | 2826 | / v 2827 -|- >[ ] <--- new preheader. 2828 | | 2829 | v 2830 | [ ] \ 2831 | [ ]_| <-- old scalar loop to handle remainder. 2832 \ | 2833 \ v 2834 >[ ] <-- exit block. 2835 ... 2836 */ 2837 2838 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2839 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2840 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2841 assert(VectorPH && "Invalid loop structure"); 2842 assert(ExitBlock && "Must have an exit block"); 2843 2844 // Some loops have a single integer induction variable, while other loops 2845 // don't. One example is c++ iterators that often have multiple pointer 2846 // induction variables. In the code below we also support a case where we 2847 // don't have a single induction variable. 2848 // 2849 // We try to obtain an induction variable from the original loop as hard 2850 // as possible. However if we don't find one that: 2851 // - is an integer 2852 // - counts from zero, stepping by one 2853 // - is the size of the widest induction variable type 2854 // then we create a new one. 2855 OldInduction = Legal->getInduction(); 2856 Type *IdxTy = Legal->getWidestInductionType(); 2857 2858 // Split the single block loop into the two loop structure described above. 2859 BasicBlock *VecBody = 2860 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2861 BasicBlock *MiddleBlock = 2862 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2863 BasicBlock *ScalarPH = 2864 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2865 2866 // Create and register the new vector loop. 2867 Loop* Lp = new Loop(); 2868 Loop *ParentLoop = OrigLoop->getParentLoop(); 2869 2870 // Insert the new loop into the loop nest and register the new basic blocks 2871 // before calling any utilities such as SCEV that require valid LoopInfo. 2872 if (ParentLoop) { 2873 ParentLoop->addChildLoop(Lp); 2874 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2875 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2876 } else { 2877 LI->addTopLevelLoop(Lp); 2878 } 2879 Lp->addBasicBlockToLoop(VecBody, *LI); 2880 2881 // Find the loop boundaries. 2882 Value *Count = getOrCreateTripCount(Lp); 2883 2884 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2885 2886 // We need to test whether the backedge-taken count is uint##_max. Adding one 2887 // to it will cause overflow and an incorrect loop trip count in the vector 2888 // body. In case of overflow we want to directly jump to the scalar remainder 2889 // loop. 2890 emitMinimumIterationCountCheck(Lp, ScalarPH); 2891 // Now, compare the new count to zero. If it is zero skip the vector loop and 2892 // jump to the scalar loop. 2893 emitVectorLoopEnteredCheck(Lp, ScalarPH); 2894 // Generate the code to check any assumptions that we've made for SCEV 2895 // expressions. 2896 emitSCEVChecks(Lp, ScalarPH); 2897 2898 // Generate the code that checks in runtime if arrays overlap. We put the 2899 // checks into a separate block to make the more common case of few elements 2900 // faster. 2901 emitMemRuntimeChecks(Lp, ScalarPH); 2902 2903 // Generate the induction variable. 2904 // The loop step is equal to the vectorization factor (num of SIMD elements) 2905 // times the unroll factor (num of SIMD instructions). 2906 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2907 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2908 Induction = 2909 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2910 getDebugLocFromInstOrOperands(OldInduction)); 2911 2912 // We are going to resume the execution of the scalar loop. 2913 // Go over all of the induction variables that we found and fix the 2914 // PHIs that are left in the scalar version of the loop. 2915 // The starting values of PHI nodes depend on the counter of the last 2916 // iteration in the vectorized loop. 2917 // If we come from a bypass edge then we need to start from the original 2918 // start value. 2919 2920 // This variable saves the new starting index for the scalar loop. It is used 2921 // to test if there are any tail iterations left once the vector loop has 2922 // completed. 2923 LoopVectorizationLegality::InductionList::iterator I, E; 2924 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2925 for (I = List->begin(), E = List->end(); I != E; ++I) { 2926 PHINode *OrigPhi = I->first; 2927 InductionDescriptor II = I->second; 2928 2929 // Create phi nodes to merge from the backedge-taken check block. 2930 PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, 2931 "bc.resume.val", 2932 ScalarPH->getTerminator()); 2933 Value *EndValue; 2934 if (OrigPhi == OldInduction) { 2935 // We know what the end value is. 2936 EndValue = CountRoundDown; 2937 } else { 2938 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 2939 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 2940 II.getStepValue()->getType(), 2941 "cast.crd"); 2942 EndValue = II.transform(B, CRD); 2943 EndValue->setName("ind.end"); 2944 } 2945 2946 // The new PHI merges the original incoming value, in case of a bypass, 2947 // or the value at the end of the vectorized loop. 2948 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2949 2950 // Fix the scalar body counter (PHI node). 2951 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2952 2953 // The old induction's phi node in the scalar body needs the truncated 2954 // value. 2955 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2956 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 2957 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2958 } 2959 2960 // Add a check in the middle block to see if we have completed 2961 // all of the iterations in the first vector loop. 2962 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2963 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2964 CountRoundDown, "cmp.n", 2965 MiddleBlock->getTerminator()); 2966 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2967 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2968 2969 // Get ready to start creating new instructions into the vectorized body. 2970 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2971 2972 // Save the state. 2973 LoopVectorPreHeader = Lp->getLoopPreheader(); 2974 LoopScalarPreHeader = ScalarPH; 2975 LoopMiddleBlock = MiddleBlock; 2976 LoopExitBlock = ExitBlock; 2977 LoopVectorBody.push_back(VecBody); 2978 LoopScalarBody = OldBasicBlock; 2979 2980 LoopVectorizeHints Hints(Lp, true); 2981 Hints.setAlreadyVectorized(); 2982 } 2983 2984 namespace { 2985 struct CSEDenseMapInfo { 2986 static bool canHandle(Instruction *I) { 2987 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2988 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2989 } 2990 static inline Instruction *getEmptyKey() { 2991 return DenseMapInfo<Instruction *>::getEmptyKey(); 2992 } 2993 static inline Instruction *getTombstoneKey() { 2994 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2995 } 2996 static unsigned getHashValue(Instruction *I) { 2997 assert(canHandle(I) && "Unknown instruction!"); 2998 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2999 I->value_op_end())); 3000 } 3001 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3002 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3003 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3004 return LHS == RHS; 3005 return LHS->isIdenticalTo(RHS); 3006 } 3007 }; 3008 } 3009 3010 /// \brief Check whether this block is a predicated block. 3011 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 3012 /// = ...; " blocks. We start with one vectorized basic block. For every 3013 /// conditional block we split this vectorized block. Therefore, every second 3014 /// block will be a predicated one. 3015 static bool isPredicatedBlock(unsigned BlockNum) { 3016 return BlockNum % 2; 3017 } 3018 3019 ///\brief Perform cse of induction variable instructions. 3020 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 3021 // Perform simple cse. 3022 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3023 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 3024 BasicBlock *BB = BBs[i]; 3025 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3026 Instruction *In = &*I++; 3027 3028 if (!CSEDenseMapInfo::canHandle(In)) 3029 continue; 3030 3031 // Check if we can replace this instruction with any of the 3032 // visited instructions. 3033 if (Instruction *V = CSEMap.lookup(In)) { 3034 In->replaceAllUsesWith(V); 3035 In->eraseFromParent(); 3036 continue; 3037 } 3038 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 3039 // ...;" blocks for predicated stores. Every second block is a predicated 3040 // block. 3041 if (isPredicatedBlock(i)) 3042 continue; 3043 3044 CSEMap[In] = In; 3045 } 3046 } 3047 } 3048 3049 /// \brief Adds a 'fast' flag to floating point operations. 3050 static Value *addFastMathFlag(Value *V) { 3051 if (isa<FPMathOperator>(V)){ 3052 FastMathFlags Flags; 3053 Flags.setUnsafeAlgebra(); 3054 cast<Instruction>(V)->setFastMathFlags(Flags); 3055 } 3056 return V; 3057 } 3058 3059 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3060 /// the result needs to be inserted and/or extracted from vectors. 3061 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3062 const TargetTransformInfo &TTI) { 3063 if (Ty->isVoidTy()) 3064 return 0; 3065 3066 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3067 unsigned Cost = 0; 3068 3069 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3070 if (Insert) 3071 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3072 if (Extract) 3073 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3074 } 3075 3076 return Cost; 3077 } 3078 3079 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3080 // Return the cost of the instruction, including scalarization overhead if it's 3081 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3082 // i.e. either vector version isn't available, or is too expensive. 3083 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3084 const TargetTransformInfo &TTI, 3085 const TargetLibraryInfo *TLI, 3086 bool &NeedToScalarize) { 3087 Function *F = CI->getCalledFunction(); 3088 StringRef FnName = CI->getCalledFunction()->getName(); 3089 Type *ScalarRetTy = CI->getType(); 3090 SmallVector<Type *, 4> Tys, ScalarTys; 3091 for (auto &ArgOp : CI->arg_operands()) 3092 ScalarTys.push_back(ArgOp->getType()); 3093 3094 // Estimate cost of scalarized vector call. The source operands are assumed 3095 // to be vectors, so we need to extract individual elements from there, 3096 // execute VF scalar calls, and then gather the result into the vector return 3097 // value. 3098 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3099 if (VF == 1) 3100 return ScalarCallCost; 3101 3102 // Compute corresponding vector type for return value and arguments. 3103 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3104 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3105 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3106 3107 // Compute costs of unpacking argument values for the scalar calls and 3108 // packing the return values to a vector. 3109 unsigned ScalarizationCost = 3110 getScalarizationOverhead(RetTy, true, false, TTI); 3111 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3112 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3113 3114 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3115 3116 // If we can't emit a vector call for this function, then the currently found 3117 // cost is the cost we need to return. 3118 NeedToScalarize = true; 3119 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3120 return Cost; 3121 3122 // If the corresponding vector cost is cheaper, return its cost. 3123 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3124 if (VectorCallCost < Cost) { 3125 NeedToScalarize = false; 3126 return VectorCallCost; 3127 } 3128 return Cost; 3129 } 3130 3131 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3132 // factor VF. Return the cost of the instruction, including scalarization 3133 // overhead if it's needed. 3134 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3135 const TargetTransformInfo &TTI, 3136 const TargetLibraryInfo *TLI) { 3137 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3138 assert(ID && "Expected intrinsic call!"); 3139 3140 Type *RetTy = ToVectorTy(CI->getType(), VF); 3141 SmallVector<Type *, 4> Tys; 3142 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3143 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3144 3145 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 3146 } 3147 3148 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3149 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3150 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3151 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3152 } 3153 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3154 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3155 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3156 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3157 } 3158 3159 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3160 // For every instruction `I` in MinBWs, truncate the operands, create a 3161 // truncated version of `I` and reextend its result. InstCombine runs 3162 // later and will remove any ext/trunc pairs. 3163 // 3164 for (auto &KV : MinBWs) { 3165 VectorParts &Parts = WidenMap.get(KV.first); 3166 for (Value *&I : Parts) { 3167 if (I->use_empty()) 3168 continue; 3169 Type *OriginalTy = I->getType(); 3170 Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(), 3171 KV.second); 3172 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3173 OriginalTy->getVectorNumElements()); 3174 if (TruncatedTy == OriginalTy) 3175 continue; 3176 3177 IRBuilder<> B(cast<Instruction>(I)); 3178 auto ShrinkOperand = [&](Value *V) -> Value* { 3179 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3180 if (ZI->getSrcTy() == TruncatedTy) 3181 return ZI->getOperand(0); 3182 return B.CreateZExtOrTrunc(V, TruncatedTy); 3183 }; 3184 3185 // The actual instruction modification depends on the instruction type, 3186 // unfortunately. 3187 Value *NewI = nullptr; 3188 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3189 NewI = B.CreateBinOp(BO->getOpcode(), 3190 ShrinkOperand(BO->getOperand(0)), 3191 ShrinkOperand(BO->getOperand(1))); 3192 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3193 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3194 NewI = B.CreateICmp(CI->getPredicate(), 3195 ShrinkOperand(CI->getOperand(0)), 3196 ShrinkOperand(CI->getOperand(1))); 3197 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3198 NewI = B.CreateSelect(SI->getCondition(), 3199 ShrinkOperand(SI->getTrueValue()), 3200 ShrinkOperand(SI->getFalseValue())); 3201 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3202 switch (CI->getOpcode()) { 3203 default: llvm_unreachable("Unhandled cast!"); 3204 case Instruction::Trunc: 3205 NewI = ShrinkOperand(CI->getOperand(0)); 3206 break; 3207 case Instruction::SExt: 3208 NewI = B.CreateSExtOrTrunc(CI->getOperand(0), 3209 smallestIntegerVectorType(OriginalTy, 3210 TruncatedTy)); 3211 break; 3212 case Instruction::ZExt: 3213 NewI = B.CreateZExtOrTrunc(CI->getOperand(0), 3214 smallestIntegerVectorType(OriginalTy, 3215 TruncatedTy)); 3216 break; 3217 } 3218 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3219 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3220 auto *O0 = 3221 B.CreateZExtOrTrunc(SI->getOperand(0), 3222 VectorType::get(ScalarTruncatedTy, Elements0)); 3223 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3224 auto *O1 = 3225 B.CreateZExtOrTrunc(SI->getOperand(1), 3226 VectorType::get(ScalarTruncatedTy, Elements1)); 3227 3228 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3229 } else if (isa<LoadInst>(I)) { 3230 // Don't do anything with the operands, just extend the result. 3231 continue; 3232 } else { 3233 llvm_unreachable("Unhandled instruction type!"); 3234 } 3235 3236 // Lastly, extend the result. 3237 NewI->takeName(cast<Instruction>(I)); 3238 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3239 I->replaceAllUsesWith(Res); 3240 cast<Instruction>(I)->eraseFromParent(); 3241 I = Res; 3242 } 3243 } 3244 3245 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3246 for (auto &KV : MinBWs) { 3247 VectorParts &Parts = WidenMap.get(KV.first); 3248 for (Value *&I : Parts) { 3249 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3250 if (Inst && Inst->use_empty()) { 3251 Value *NewI = Inst->getOperand(0); 3252 Inst->eraseFromParent(); 3253 I = NewI; 3254 } 3255 } 3256 } 3257 } 3258 3259 void InnerLoopVectorizer::vectorizeLoop() { 3260 //===------------------------------------------------===// 3261 // 3262 // Notice: any optimization or new instruction that go 3263 // into the code below should be also be implemented in 3264 // the cost-model. 3265 // 3266 //===------------------------------------------------===// 3267 Constant *Zero = Builder.getInt32(0); 3268 3269 // In order to support reduction variables we need to be able to vectorize 3270 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 3271 // stages. First, we create a new vector PHI node with no incoming edges. 3272 // We use this value when we vectorize all of the instructions that use the 3273 // PHI. Next, after all of the instructions in the block are complete we 3274 // add the new incoming edges to the PHI. At this point all of the 3275 // instructions in the basic block are vectorized, so we can use them to 3276 // construct the PHI. 3277 PhiVector RdxPHIsToFix; 3278 3279 // Scan the loop in a topological order to ensure that defs are vectorized 3280 // before users. 3281 LoopBlocksDFS DFS(OrigLoop); 3282 DFS.perform(LI); 3283 3284 // Vectorize all of the blocks in the original loop. 3285 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 3286 be = DFS.endRPO(); bb != be; ++bb) 3287 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 3288 3289 // Insert truncates and extends for any truncated instructions as hints to 3290 // InstCombine. 3291 if (VF > 1) 3292 truncateToMinimalBitwidths(); 3293 3294 // At this point every instruction in the original loop is widened to 3295 // a vector form. We are almost done. Now, we need to fix the PHI nodes 3296 // that we vectorized. The PHI nodes are currently empty because we did 3297 // not want to introduce cycles. Notice that the remaining PHI nodes 3298 // that we need to fix are reduction variables. 3299 3300 // Create the 'reduced' values for each of the induction vars. 3301 // The reduced values are the vector values that we scalarize and combine 3302 // after the loop is finished. 3303 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 3304 it != e; ++it) { 3305 PHINode *RdxPhi = *it; 3306 assert(RdxPhi && "Unable to recover vectorized PHI"); 3307 3308 // Find the reduction variable descriptor. 3309 assert(Legal->getReductionVars()->count(RdxPhi) && 3310 "Unable to find the reduction variable"); 3311 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; 3312 3313 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3314 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3315 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3316 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3317 RdxDesc.getMinMaxRecurrenceKind(); 3318 setDebugLocFromInst(Builder, ReductionStartValue); 3319 3320 // We need to generate a reduction vector from the incoming scalar. 3321 // To do so, we need to generate the 'identity' vector and override 3322 // one of the elements with the incoming scalar reduction. We need 3323 // to do it in the vector-loop preheader. 3324 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3325 3326 // This is the vector-clone of the value that leaves the loop. 3327 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3328 Type *VecTy = VectorExit[0]->getType(); 3329 3330 // Find the reduction identity variable. Zero for addition, or, xor, 3331 // one for multiplication, -1 for And. 3332 Value *Identity; 3333 Value *VectorStart; 3334 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3335 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3336 // MinMax reduction have the start value as their identify. 3337 if (VF == 1) { 3338 VectorStart = Identity = ReductionStartValue; 3339 } else { 3340 VectorStart = Identity = 3341 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3342 } 3343 } else { 3344 // Handle other reduction kinds: 3345 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3346 RK, VecTy->getScalarType()); 3347 if (VF == 1) { 3348 Identity = Iden; 3349 // This vector is the Identity vector where the first element is the 3350 // incoming scalar reduction. 3351 VectorStart = ReductionStartValue; 3352 } else { 3353 Identity = ConstantVector::getSplat(VF, Iden); 3354 3355 // This vector is the Identity vector where the first element is the 3356 // incoming scalar reduction. 3357 VectorStart = 3358 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3359 } 3360 } 3361 3362 // Fix the vector-loop phi. 3363 3364 // Reductions do not have to start at zero. They can start with 3365 // any loop invariant values. 3366 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 3367 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3368 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 3369 VectorParts &Val = getVectorValue(LoopVal); 3370 for (unsigned part = 0; part < UF; ++part) { 3371 // Make sure to add the reduction stat value only to the 3372 // first unroll part. 3373 Value *StartVal = (part == 0) ? VectorStart : Identity; 3374 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 3375 LoopVectorPreHeader); 3376 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 3377 LoopVectorBody.back()); 3378 } 3379 3380 // Before each round, move the insertion point right between 3381 // the PHIs and the values we are going to write. 3382 // This allows us to write both PHINodes and the extractelement 3383 // instructions. 3384 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3385 3386 VectorParts RdxParts = getVectorValue(LoopExitInst); 3387 setDebugLocFromInst(Builder, LoopExitInst); 3388 3389 // If the vector reduction can be performed in a smaller type, we truncate 3390 // then extend the loop exit value to enable InstCombine to evaluate the 3391 // entire expression in the smaller type. 3392 if (VF > 1 && RdxPhi->getType() != RdxDesc.getRecurrenceType()) { 3393 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3394 Builder.SetInsertPoint(LoopVectorBody.back()->getTerminator()); 3395 for (unsigned part = 0; part < UF; ++part) { 3396 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3397 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3398 : Builder.CreateZExt(Trunc, VecTy); 3399 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3400 UI != RdxParts[part]->user_end();) 3401 if (*UI != Trunc) { 3402 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3403 RdxParts[part] = Extnd; 3404 } else { 3405 ++UI; 3406 } 3407 } 3408 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3409 for (unsigned part = 0; part < UF; ++part) 3410 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3411 } 3412 3413 // Reduce all of the unrolled parts into a single vector. 3414 Value *ReducedPartRdx = RdxParts[0]; 3415 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3416 setDebugLocFromInst(Builder, ReducedPartRdx); 3417 for (unsigned part = 1; part < UF; ++part) { 3418 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3419 // Floating point operations had to be 'fast' to enable the reduction. 3420 ReducedPartRdx = addFastMathFlag( 3421 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3422 ReducedPartRdx, "bin.rdx")); 3423 else 3424 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3425 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3426 } 3427 3428 if (VF > 1) { 3429 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3430 // and vector ops, reducing the set of values being computed by half each 3431 // round. 3432 assert(isPowerOf2_32(VF) && 3433 "Reduction emission only supported for pow2 vectors!"); 3434 Value *TmpVec = ReducedPartRdx; 3435 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 3436 for (unsigned i = VF; i != 1; i >>= 1) { 3437 // Move the upper half of the vector to the lower half. 3438 for (unsigned j = 0; j != i/2; ++j) 3439 ShuffleMask[j] = Builder.getInt32(i/2 + j); 3440 3441 // Fill the rest of the mask with undef. 3442 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 3443 UndefValue::get(Builder.getInt32Ty())); 3444 3445 Value *Shuf = 3446 Builder.CreateShuffleVector(TmpVec, 3447 UndefValue::get(TmpVec->getType()), 3448 ConstantVector::get(ShuffleMask), 3449 "rdx.shuf"); 3450 3451 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3452 // Floating point operations had to be 'fast' to enable the reduction. 3453 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3454 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3455 else 3456 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3457 TmpVec, Shuf); 3458 } 3459 3460 // The result is in the first element of the vector. 3461 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 3462 Builder.getInt32(0)); 3463 3464 // If the reduction can be performed in a smaller type, we need to extend 3465 // the reduction to the wider type before we branch to the original loop. 3466 if (RdxPhi->getType() != RdxDesc.getRecurrenceType()) 3467 ReducedPartRdx = 3468 RdxDesc.isSigned() 3469 ? Builder.CreateSExt(ReducedPartRdx, RdxPhi->getType()) 3470 : Builder.CreateZExt(ReducedPartRdx, RdxPhi->getType()); 3471 } 3472 3473 // Create a phi node that merges control-flow from the backedge-taken check 3474 // block and the middle block. 3475 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 3476 LoopScalarPreHeader->getTerminator()); 3477 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3478 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3479 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3480 3481 // Now, we need to fix the users of the reduction variable 3482 // inside and outside of the scalar remainder loop. 3483 // We know that the loop is in LCSSA form. We need to update the 3484 // PHI nodes in the exit blocks. 3485 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3486 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3487 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3488 if (!LCSSAPhi) break; 3489 3490 // All PHINodes need to have a single entry edge, or two if 3491 // we already fixed them. 3492 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3493 3494 // We found our reduction value exit-PHI. Update it with the 3495 // incoming bypass edge. 3496 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3497 // Add an edge coming from the bypass. 3498 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3499 break; 3500 } 3501 }// end of the LCSSA phi scan. 3502 3503 // Fix the scalar loop reduction variable with the incoming reduction sum 3504 // from the vector body and from the backedge value. 3505 int IncomingEdgeBlockIdx = 3506 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3507 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3508 // Pick the other block. 3509 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3510 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3511 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3512 }// end of for each redux variable. 3513 3514 fixLCSSAPHIs(); 3515 3516 // Make sure DomTree is updated. 3517 updateAnalysis(); 3518 3519 // Predicate any stores. 3520 for (auto KV : PredicatedStores) { 3521 BasicBlock::iterator I(KV.first); 3522 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3523 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3524 /*BranchWeights=*/nullptr, DT); 3525 I->moveBefore(T); 3526 I->getParent()->setName("pred.store.if"); 3527 BB->setName("pred.store.continue"); 3528 } 3529 DEBUG(DT->verifyDomTree()); 3530 // Remove redundant induction instructions. 3531 cse(LoopVectorBody); 3532 } 3533 3534 void InnerLoopVectorizer::fixLCSSAPHIs() { 3535 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3536 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3537 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3538 if (!LCSSAPhi) break; 3539 if (LCSSAPhi->getNumIncomingValues() == 1) 3540 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3541 LoopMiddleBlock); 3542 } 3543 } 3544 3545 InnerLoopVectorizer::VectorParts 3546 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3547 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3548 "Invalid edge"); 3549 3550 // Look for cached value. 3551 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3552 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3553 if (ECEntryIt != MaskCache.end()) 3554 return ECEntryIt->second; 3555 3556 VectorParts SrcMask = createBlockInMask(Src); 3557 3558 // The terminator has to be a branch inst! 3559 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3560 assert(BI && "Unexpected terminator found"); 3561 3562 if (BI->isConditional()) { 3563 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3564 3565 if (BI->getSuccessor(0) != Dst) 3566 for (unsigned part = 0; part < UF; ++part) 3567 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3568 3569 for (unsigned part = 0; part < UF; ++part) 3570 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3571 3572 MaskCache[Edge] = EdgeMask; 3573 return EdgeMask; 3574 } 3575 3576 MaskCache[Edge] = SrcMask; 3577 return SrcMask; 3578 } 3579 3580 InnerLoopVectorizer::VectorParts 3581 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3582 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3583 3584 // Loop incoming mask is all-one. 3585 if (OrigLoop->getHeader() == BB) { 3586 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3587 return getVectorValue(C); 3588 } 3589 3590 // This is the block mask. We OR all incoming edges, and with zero. 3591 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3592 VectorParts BlockMask = getVectorValue(Zero); 3593 3594 // For each pred: 3595 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3596 VectorParts EM = createEdgeMask(*it, BB); 3597 for (unsigned part = 0; part < UF; ++part) 3598 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3599 } 3600 3601 return BlockMask; 3602 } 3603 3604 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 3605 InnerLoopVectorizer::VectorParts &Entry, 3606 unsigned UF, unsigned VF, PhiVector *PV) { 3607 PHINode* P = cast<PHINode>(PN); 3608 // Handle reduction variables: 3609 if (Legal->getReductionVars()->count(P)) { 3610 for (unsigned part = 0; part < UF; ++part) { 3611 // This is phase one of vectorizing PHIs. 3612 Type *VecTy = (VF == 1) ? PN->getType() : 3613 VectorType::get(PN->getType(), VF); 3614 Entry[part] = PHINode::Create( 3615 VecTy, 2, "vec.phi", &*LoopVectorBody.back()->getFirstInsertionPt()); 3616 } 3617 PV->push_back(P); 3618 return; 3619 } 3620 3621 setDebugLocFromInst(Builder, P); 3622 // Check for PHI nodes that are lowered to vector selects. 3623 if (P->getParent() != OrigLoop->getHeader()) { 3624 // We know that all PHIs in non-header blocks are converted into 3625 // selects, so we don't have to worry about the insertion order and we 3626 // can just use the builder. 3627 // At this point we generate the predication tree. There may be 3628 // duplications since this is a simple recursive scan, but future 3629 // optimizations will clean it up. 3630 3631 unsigned NumIncoming = P->getNumIncomingValues(); 3632 3633 // Generate a sequence of selects of the form: 3634 // SELECT(Mask3, In3, 3635 // SELECT(Mask2, In2, 3636 // ( ...))) 3637 for (unsigned In = 0; In < NumIncoming; In++) { 3638 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3639 P->getParent()); 3640 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3641 3642 for (unsigned part = 0; part < UF; ++part) { 3643 // We might have single edge PHIs (blocks) - use an identity 3644 // 'select' for the first PHI operand. 3645 if (In == 0) 3646 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3647 In0[part]); 3648 else 3649 // Select between the current value and the previous incoming edge 3650 // based on the incoming mask. 3651 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3652 Entry[part], "predphi"); 3653 } 3654 } 3655 return; 3656 } 3657 3658 // This PHINode must be an induction variable. 3659 // Make sure that we know about it. 3660 assert(Legal->getInductionVars()->count(P) && 3661 "Not an induction variable"); 3662 3663 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3664 3665 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3666 // which can be found from the original scalar operations. 3667 switch (II.getKind()) { 3668 case InductionDescriptor::IK_NoInduction: 3669 llvm_unreachable("Unknown induction"); 3670 case InductionDescriptor::IK_IntInduction: { 3671 assert(P->getType() == II.getStartValue()->getType() && "Types must match"); 3672 // Handle other induction variables that are now based on the 3673 // canonical one. 3674 Value *V = Induction; 3675 if (P != OldInduction) { 3676 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 3677 V = II.transform(Builder, V); 3678 V->setName("offset.idx"); 3679 } 3680 Value *Broadcasted = getBroadcastInstrs(V); 3681 // After broadcasting the induction variable we need to make the vector 3682 // consecutive by adding 0, 1, 2, etc. 3683 for (unsigned part = 0; part < UF; ++part) 3684 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStepValue()); 3685 return; 3686 } 3687 case InductionDescriptor::IK_PtrInduction: 3688 // Handle the pointer induction variable case. 3689 assert(P->getType()->isPointerTy() && "Unexpected type."); 3690 // This is the normalized GEP that starts counting at zero. 3691 Value *PtrInd = Induction; 3692 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStepValue()->getType()); 3693 // This is the vector of results. Notice that we don't generate 3694 // vector geps because scalar geps result in better code. 3695 for (unsigned part = 0; part < UF; ++part) { 3696 if (VF == 1) { 3697 int EltIndex = part; 3698 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 3699 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3700 Value *SclrGep = II.transform(Builder, GlobalIdx); 3701 SclrGep->setName("next.gep"); 3702 Entry[part] = SclrGep; 3703 continue; 3704 } 3705 3706 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3707 for (unsigned int i = 0; i < VF; ++i) { 3708 int EltIndex = i + part * VF; 3709 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 3710 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3711 Value *SclrGep = II.transform(Builder, GlobalIdx); 3712 SclrGep->setName("next.gep"); 3713 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3714 Builder.getInt32(i), 3715 "insert.gep"); 3716 } 3717 Entry[part] = VecVal; 3718 } 3719 return; 3720 } 3721 } 3722 3723 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3724 // For each instruction in the old loop. 3725 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3726 VectorParts &Entry = WidenMap.get(&*it); 3727 3728 switch (it->getOpcode()) { 3729 case Instruction::Br: 3730 // Nothing to do for PHIs and BR, since we already took care of the 3731 // loop control flow instructions. 3732 continue; 3733 case Instruction::PHI: { 3734 // Vectorize PHINodes. 3735 widenPHIInstruction(&*it, Entry, UF, VF, PV); 3736 continue; 3737 }// End of PHI. 3738 3739 case Instruction::Add: 3740 case Instruction::FAdd: 3741 case Instruction::Sub: 3742 case Instruction::FSub: 3743 case Instruction::Mul: 3744 case Instruction::FMul: 3745 case Instruction::UDiv: 3746 case Instruction::SDiv: 3747 case Instruction::FDiv: 3748 case Instruction::URem: 3749 case Instruction::SRem: 3750 case Instruction::FRem: 3751 case Instruction::Shl: 3752 case Instruction::LShr: 3753 case Instruction::AShr: 3754 case Instruction::And: 3755 case Instruction::Or: 3756 case Instruction::Xor: { 3757 // Just widen binops. 3758 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3759 setDebugLocFromInst(Builder, BinOp); 3760 VectorParts &A = getVectorValue(it->getOperand(0)); 3761 VectorParts &B = getVectorValue(it->getOperand(1)); 3762 3763 // Use this vector value for all users of the original instruction. 3764 for (unsigned Part = 0; Part < UF; ++Part) { 3765 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3766 3767 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3768 VecOp->copyIRFlags(BinOp); 3769 3770 Entry[Part] = V; 3771 } 3772 3773 propagateMetadata(Entry, &*it); 3774 break; 3775 } 3776 case Instruction::Select: { 3777 // Widen selects. 3778 // If the selector is loop invariant we can create a select 3779 // instruction with a scalar condition. Otherwise, use vector-select. 3780 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3781 OrigLoop); 3782 setDebugLocFromInst(Builder, &*it); 3783 3784 // The condition can be loop invariant but still defined inside the 3785 // loop. This means that we can't just use the original 'cond' value. 3786 // We have to take the 'vectorized' value and pick the first lane. 3787 // Instcombine will make this a no-op. 3788 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3789 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3790 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3791 3792 Value *ScalarCond = (VF == 1) ? Cond[0] : 3793 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3794 3795 for (unsigned Part = 0; Part < UF; ++Part) { 3796 Entry[Part] = Builder.CreateSelect( 3797 InvariantCond ? ScalarCond : Cond[Part], 3798 Op0[Part], 3799 Op1[Part]); 3800 } 3801 3802 propagateMetadata(Entry, &*it); 3803 break; 3804 } 3805 3806 case Instruction::ICmp: 3807 case Instruction::FCmp: { 3808 // Widen compares. Generate vector compares. 3809 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3810 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3811 setDebugLocFromInst(Builder, &*it); 3812 VectorParts &A = getVectorValue(it->getOperand(0)); 3813 VectorParts &B = getVectorValue(it->getOperand(1)); 3814 for (unsigned Part = 0; Part < UF; ++Part) { 3815 Value *C = nullptr; 3816 if (FCmp) { 3817 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3818 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 3819 } else { 3820 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3821 } 3822 Entry[Part] = C; 3823 } 3824 3825 propagateMetadata(Entry, &*it); 3826 break; 3827 } 3828 3829 case Instruction::Store: 3830 case Instruction::Load: 3831 vectorizeMemoryInstruction(&*it); 3832 break; 3833 case Instruction::ZExt: 3834 case Instruction::SExt: 3835 case Instruction::FPToUI: 3836 case Instruction::FPToSI: 3837 case Instruction::FPExt: 3838 case Instruction::PtrToInt: 3839 case Instruction::IntToPtr: 3840 case Instruction::SIToFP: 3841 case Instruction::UIToFP: 3842 case Instruction::Trunc: 3843 case Instruction::FPTrunc: 3844 case Instruction::BitCast: { 3845 CastInst *CI = dyn_cast<CastInst>(it); 3846 setDebugLocFromInst(Builder, &*it); 3847 /// Optimize the special case where the source is the induction 3848 /// variable. Notice that we can only optimize the 'trunc' case 3849 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3850 /// c. other casts depend on pointer size. 3851 if (CI->getOperand(0) == OldInduction && 3852 it->getOpcode() == Instruction::Trunc) { 3853 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3854 CI->getType()); 3855 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3856 InductionDescriptor II = Legal->getInductionVars()->lookup(OldInduction); 3857 Constant *Step = 3858 ConstantInt::getSigned(CI->getType(), II.getStepValue()->getSExtValue()); 3859 for (unsigned Part = 0; Part < UF; ++Part) 3860 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3861 propagateMetadata(Entry, &*it); 3862 break; 3863 } 3864 /// Vectorize casts. 3865 Type *DestTy = (VF == 1) ? CI->getType() : 3866 VectorType::get(CI->getType(), VF); 3867 3868 VectorParts &A = getVectorValue(it->getOperand(0)); 3869 for (unsigned Part = 0; Part < UF; ++Part) 3870 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3871 propagateMetadata(Entry, &*it); 3872 break; 3873 } 3874 3875 case Instruction::Call: { 3876 // Ignore dbg intrinsics. 3877 if (isa<DbgInfoIntrinsic>(it)) 3878 break; 3879 setDebugLocFromInst(Builder, &*it); 3880 3881 Module *M = BB->getParent()->getParent(); 3882 CallInst *CI = cast<CallInst>(it); 3883 3884 StringRef FnName = CI->getCalledFunction()->getName(); 3885 Function *F = CI->getCalledFunction(); 3886 Type *RetTy = ToVectorTy(CI->getType(), VF); 3887 SmallVector<Type *, 4> Tys; 3888 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3889 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3890 3891 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3892 if (ID && 3893 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 3894 ID == Intrinsic::lifetime_start)) { 3895 scalarizeInstruction(&*it); 3896 break; 3897 } 3898 // The flag shows whether we use Intrinsic or a usual Call for vectorized 3899 // version of the instruction. 3900 // Is it beneficial to perform intrinsic call compared to lib call? 3901 bool NeedToScalarize; 3902 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 3903 bool UseVectorIntrinsic = 3904 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 3905 if (!UseVectorIntrinsic && NeedToScalarize) { 3906 scalarizeInstruction(&*it); 3907 break; 3908 } 3909 3910 for (unsigned Part = 0; Part < UF; ++Part) { 3911 SmallVector<Value *, 4> Args; 3912 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3913 Value *Arg = CI->getArgOperand(i); 3914 // Some intrinsics have a scalar argument - don't replace it with a 3915 // vector. 3916 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 3917 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 3918 Arg = VectorArg[Part]; 3919 } 3920 Args.push_back(Arg); 3921 } 3922 3923 Function *VectorF; 3924 if (UseVectorIntrinsic) { 3925 // Use vector version of the intrinsic. 3926 Type *TysForDecl[] = {CI->getType()}; 3927 if (VF > 1) 3928 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3929 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 3930 } else { 3931 // Use vector version of the library call. 3932 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 3933 assert(!VFnName.empty() && "Vector function name is empty."); 3934 VectorF = M->getFunction(VFnName); 3935 if (!VectorF) { 3936 // Generate a declaration 3937 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 3938 VectorF = 3939 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 3940 VectorF->copyAttributesFrom(F); 3941 } 3942 } 3943 assert(VectorF && "Can't create vector function."); 3944 Entry[Part] = Builder.CreateCall(VectorF, Args); 3945 } 3946 3947 propagateMetadata(Entry, &*it); 3948 break; 3949 } 3950 3951 default: 3952 // All other instructions are unsupported. Scalarize them. 3953 scalarizeInstruction(&*it); 3954 break; 3955 }// end of switch. 3956 }// end of for_each instr. 3957 } 3958 3959 void InnerLoopVectorizer::updateAnalysis() { 3960 // Forget the original basic block. 3961 SE->forgetLoop(OrigLoop); 3962 3963 // Update the dominator tree information. 3964 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3965 "Entry does not dominate exit."); 3966 3967 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3968 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3969 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3970 3971 // We don't predicate stores by this point, so the vector body should be a 3972 // single loop. 3973 assert(LoopVectorBody.size() == 1 && "Expected single block loop!"); 3974 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3975 3976 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody.back()); 3977 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3978 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3979 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3980 3981 DEBUG(DT->verifyDomTree()); 3982 } 3983 3984 /// \brief Check whether it is safe to if-convert this phi node. 3985 /// 3986 /// Phi nodes with constant expressions that can trap are not safe to if 3987 /// convert. 3988 static bool canIfConvertPHINodes(BasicBlock *BB) { 3989 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3990 PHINode *Phi = dyn_cast<PHINode>(I); 3991 if (!Phi) 3992 return true; 3993 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3994 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3995 if (C->canTrap()) 3996 return false; 3997 } 3998 return true; 3999 } 4000 4001 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4002 if (!EnableIfConversion) { 4003 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4004 return false; 4005 } 4006 4007 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4008 4009 // A list of pointers that we can safely read and write to. 4010 SmallPtrSet<Value *, 8> SafePointes; 4011 4012 // Collect safe addresses. 4013 for (Loop::block_iterator BI = TheLoop->block_begin(), 4014 BE = TheLoop->block_end(); BI != BE; ++BI) { 4015 BasicBlock *BB = *BI; 4016 4017 if (blockNeedsPredication(BB)) 4018 continue; 4019 4020 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4021 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4022 SafePointes.insert(LI->getPointerOperand()); 4023 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 4024 SafePointes.insert(SI->getPointerOperand()); 4025 } 4026 } 4027 4028 // Collect the blocks that need predication. 4029 BasicBlock *Header = TheLoop->getHeader(); 4030 for (Loop::block_iterator BI = TheLoop->block_begin(), 4031 BE = TheLoop->block_end(); BI != BE; ++BI) { 4032 BasicBlock *BB = *BI; 4033 4034 // We don't support switch statements inside loops. 4035 if (!isa<BranchInst>(BB->getTerminator())) { 4036 emitAnalysis(VectorizationReport(BB->getTerminator()) 4037 << "loop contains a switch statement"); 4038 return false; 4039 } 4040 4041 // We must be able to predicate all blocks that need to be predicated. 4042 if (blockNeedsPredication(BB)) { 4043 if (!blockCanBePredicated(BB, SafePointes)) { 4044 emitAnalysis(VectorizationReport(BB->getTerminator()) 4045 << "control flow cannot be substituted for a select"); 4046 return false; 4047 } 4048 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4049 emitAnalysis(VectorizationReport(BB->getTerminator()) 4050 << "control flow cannot be substituted for a select"); 4051 return false; 4052 } 4053 } 4054 4055 // We can if-convert this loop. 4056 return true; 4057 } 4058 4059 bool LoopVectorizationLegality::canVectorize() { 4060 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4061 // be canonicalized. 4062 if (!TheLoop->getLoopPreheader()) { 4063 emitAnalysis( 4064 VectorizationReport() << 4065 "loop control flow is not understood by vectorizer"); 4066 return false; 4067 } 4068 4069 // We can only vectorize innermost loops. 4070 if (!TheLoop->empty()) { 4071 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4072 return false; 4073 } 4074 4075 // We must have a single backedge. 4076 if (TheLoop->getNumBackEdges() != 1) { 4077 emitAnalysis( 4078 VectorizationReport() << 4079 "loop control flow is not understood by vectorizer"); 4080 return false; 4081 } 4082 4083 // We must have a single exiting block. 4084 if (!TheLoop->getExitingBlock()) { 4085 emitAnalysis( 4086 VectorizationReport() << 4087 "loop control flow is not understood by vectorizer"); 4088 return false; 4089 } 4090 4091 // We only handle bottom-tested loops, i.e. loop in which the condition is 4092 // checked at the end of each iteration. With that we can assume that all 4093 // instructions in the loop are executed the same number of times. 4094 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4095 emitAnalysis( 4096 VectorizationReport() << 4097 "loop control flow is not understood by vectorizer"); 4098 return false; 4099 } 4100 4101 // We need to have a loop header. 4102 DEBUG(dbgs() << "LV: Found a loop: " << 4103 TheLoop->getHeader()->getName() << '\n'); 4104 4105 // Check if we can if-convert non-single-bb loops. 4106 unsigned NumBlocks = TheLoop->getNumBlocks(); 4107 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4108 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4109 return false; 4110 } 4111 4112 // ScalarEvolution needs to be able to find the exit count. 4113 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 4114 if (ExitCount == SE->getCouldNotCompute()) { 4115 emitAnalysis(VectorizationReport() << 4116 "could not determine number of loop iterations"); 4117 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4118 return false; 4119 } 4120 4121 // Check if we can vectorize the instructions and CFG in this loop. 4122 if (!canVectorizeInstrs()) { 4123 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4124 return false; 4125 } 4126 4127 // Go over each instruction and look at memory deps. 4128 if (!canVectorizeMemory()) { 4129 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4130 return false; 4131 } 4132 4133 // Collect all of the variables that remain uniform after vectorization. 4134 collectLoopUniforms(); 4135 4136 DEBUG(dbgs() << "LV: We can vectorize this loop" 4137 << (LAI->getRuntimePointerChecking()->Need 4138 ? " (with a runtime bound check)" 4139 : "") 4140 << "!\n"); 4141 4142 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4143 4144 // If an override option has been passed in for interleaved accesses, use it. 4145 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4146 UseInterleaved = EnableInterleavedMemAccesses; 4147 4148 // Analyze interleaved memory accesses. 4149 if (UseInterleaved) 4150 InterleaveInfo.analyzeInterleaving(Strides); 4151 4152 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4153 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4154 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4155 4156 if (Preds.getComplexity() > SCEVThreshold) { 4157 emitAnalysis(VectorizationReport() 4158 << "Too many SCEV assumptions need to be made and checked " 4159 << "at runtime"); 4160 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4161 return false; 4162 } 4163 4164 // Okay! We can vectorize. At this point we don't have any other mem analysis 4165 // which may limit our maximum vectorization factor, so just return true with 4166 // no restrictions. 4167 return true; 4168 } 4169 4170 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4171 if (Ty->isPointerTy()) 4172 return DL.getIntPtrType(Ty); 4173 4174 // It is possible that char's or short's overflow when we ask for the loop's 4175 // trip count, work around this by changing the type size. 4176 if (Ty->getScalarSizeInBits() < 32) 4177 return Type::getInt32Ty(Ty->getContext()); 4178 4179 return Ty; 4180 } 4181 4182 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4183 Ty0 = convertPointerToIntegerType(DL, Ty0); 4184 Ty1 = convertPointerToIntegerType(DL, Ty1); 4185 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4186 return Ty0; 4187 return Ty1; 4188 } 4189 4190 /// \brief Check that the instruction has outside loop users and is not an 4191 /// identified reduction variable. 4192 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4193 SmallPtrSetImpl<Value *> &Reductions) { 4194 // Reduction instructions are allowed to have exit users. All other 4195 // instructions must not have external users. 4196 if (!Reductions.count(Inst)) 4197 //Check that all of the users of the loop are inside the BB. 4198 for (User *U : Inst->users()) { 4199 Instruction *UI = cast<Instruction>(U); 4200 // This user may be a reduction exit value. 4201 if (!TheLoop->contains(UI)) { 4202 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4203 return true; 4204 } 4205 } 4206 return false; 4207 } 4208 4209 bool LoopVectorizationLegality::canVectorizeInstrs() { 4210 BasicBlock *Header = TheLoop->getHeader(); 4211 4212 // Look for the attribute signaling the absence of NaNs. 4213 Function &F = *Header->getParent(); 4214 const DataLayout &DL = F.getParent()->getDataLayout(); 4215 if (F.hasFnAttribute("no-nans-fp-math")) 4216 HasFunNoNaNAttr = 4217 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4218 4219 // For each block in the loop. 4220 for (Loop::block_iterator bb = TheLoop->block_begin(), 4221 be = TheLoop->block_end(); bb != be; ++bb) { 4222 4223 // Scan the instructions in the block and look for hazards. 4224 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4225 ++it) { 4226 4227 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4228 Type *PhiTy = Phi->getType(); 4229 // Check that this PHI type is allowed. 4230 if (!PhiTy->isIntegerTy() && 4231 !PhiTy->isFloatingPointTy() && 4232 !PhiTy->isPointerTy()) { 4233 emitAnalysis(VectorizationReport(&*it) 4234 << "loop control flow is not understood by vectorizer"); 4235 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4236 return false; 4237 } 4238 4239 // If this PHINode is not in the header block, then we know that we 4240 // can convert it to select during if-conversion. No need to check if 4241 // the PHIs in this block are induction or reduction variables. 4242 if (*bb != Header) { 4243 // Check that this instruction has no outside users or is an 4244 // identified reduction value with an outside user. 4245 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4246 continue; 4247 emitAnalysis(VectorizationReport(&*it) << 4248 "value could not be identified as " 4249 "an induction or reduction variable"); 4250 return false; 4251 } 4252 4253 // We only allow if-converted PHIs with exactly two incoming values. 4254 if (Phi->getNumIncomingValues() != 2) { 4255 emitAnalysis(VectorizationReport(&*it) 4256 << "control flow not understood by vectorizer"); 4257 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4258 return false; 4259 } 4260 4261 InductionDescriptor ID; 4262 if (InductionDescriptor::isInductionPHI(Phi, SE, ID)) { 4263 Inductions[Phi] = ID; 4264 // Get the widest type. 4265 if (!WidestIndTy) 4266 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4267 else 4268 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4269 4270 // Int inductions are special because we only allow one IV. 4271 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4272 ID.getStepValue()->isOne() && 4273 isa<Constant>(ID.getStartValue()) && 4274 cast<Constant>(ID.getStartValue())->isNullValue()) { 4275 // Use the phi node with the widest type as induction. Use the last 4276 // one if there are multiple (no good reason for doing this other 4277 // than it is expedient). We've checked that it begins at zero and 4278 // steps by one, so this is a canonical induction variable. 4279 if (!Induction || PhiTy == WidestIndTy) 4280 Induction = Phi; 4281 } 4282 4283 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4284 4285 // Until we explicitly handle the case of an induction variable with 4286 // an outside loop user we have to give up vectorizing this loop. 4287 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4288 emitAnalysis(VectorizationReport(&*it) << 4289 "use of induction value outside of the " 4290 "loop is not handled by vectorizer"); 4291 return false; 4292 } 4293 4294 continue; 4295 } 4296 4297 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, 4298 Reductions[Phi])) { 4299 if (Reductions[Phi].hasUnsafeAlgebra()) 4300 Requirements->addUnsafeAlgebraInst( 4301 Reductions[Phi].getUnsafeAlgebraInst()); 4302 AllowedExit.insert(Reductions[Phi].getLoopExitInstr()); 4303 continue; 4304 } 4305 4306 emitAnalysis(VectorizationReport(&*it) << 4307 "value that could not be identified as " 4308 "reduction is used outside the loop"); 4309 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 4310 return false; 4311 }// end of PHI handling 4312 4313 // We handle calls that: 4314 // * Are debug info intrinsics. 4315 // * Have a mapping to an IR intrinsic. 4316 // * Have a vector version available. 4317 CallInst *CI = dyn_cast<CallInst>(it); 4318 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 4319 !(CI->getCalledFunction() && TLI && 4320 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4321 emitAnalysis(VectorizationReport(&*it) 4322 << "call instruction cannot be vectorized"); 4323 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4324 return false; 4325 } 4326 4327 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4328 // second argument is the same (i.e. loop invariant) 4329 if (CI && 4330 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 4331 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 4332 emitAnalysis(VectorizationReport(&*it) 4333 << "intrinsic instruction cannot be vectorized"); 4334 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4335 return false; 4336 } 4337 } 4338 4339 // Check that the instruction return type is vectorizable. 4340 // Also, we can't vectorize extractelement instructions. 4341 if ((!VectorType::isValidElementType(it->getType()) && 4342 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 4343 emitAnalysis(VectorizationReport(&*it) 4344 << "instruction return type cannot be vectorized"); 4345 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4346 return false; 4347 } 4348 4349 // Check that the stored type is vectorizable. 4350 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4351 Type *T = ST->getValueOperand()->getType(); 4352 if (!VectorType::isValidElementType(T)) { 4353 emitAnalysis(VectorizationReport(ST) << 4354 "store instruction cannot be vectorized"); 4355 return false; 4356 } 4357 if (EnableMemAccessVersioning) 4358 collectStridedAccess(ST); 4359 } 4360 4361 if (EnableMemAccessVersioning) 4362 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 4363 collectStridedAccess(LI); 4364 4365 // Reduction instructions are allowed to have exit users. 4366 // All other instructions must not have external users. 4367 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4368 emitAnalysis(VectorizationReport(&*it) << 4369 "value cannot be used outside the loop"); 4370 return false; 4371 } 4372 4373 } // next instr. 4374 4375 } 4376 4377 if (!Induction) { 4378 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4379 if (Inductions.empty()) { 4380 emitAnalysis(VectorizationReport() 4381 << "loop induction variable could not be identified"); 4382 return false; 4383 } 4384 } 4385 4386 // Now we know the widest induction type, check if our found induction 4387 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4388 // will create another. 4389 if (Induction && WidestIndTy != Induction->getType()) 4390 Induction = nullptr; 4391 4392 return true; 4393 } 4394 4395 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4396 Value *Ptr = nullptr; 4397 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4398 Ptr = LI->getPointerOperand(); 4399 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4400 Ptr = SI->getPointerOperand(); 4401 else 4402 return; 4403 4404 Value *Stride = getStrideFromPointer(Ptr, SE, TheLoop); 4405 if (!Stride) 4406 return; 4407 4408 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4409 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4410 Strides[Ptr] = Stride; 4411 StrideSet.insert(Stride); 4412 } 4413 4414 void LoopVectorizationLegality::collectLoopUniforms() { 4415 // We now know that the loop is vectorizable! 4416 // Collect variables that will remain uniform after vectorization. 4417 std::vector<Value*> Worklist; 4418 BasicBlock *Latch = TheLoop->getLoopLatch(); 4419 4420 // Start with the conditional branch and walk up the block. 4421 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4422 4423 // Also add all consecutive pointer values; these values will be uniform 4424 // after vectorization (and subsequent cleanup) and, until revectorization is 4425 // supported, all dependencies must also be uniform. 4426 for (Loop::block_iterator B = TheLoop->block_begin(), 4427 BE = TheLoop->block_end(); B != BE; ++B) 4428 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4429 I != IE; ++I) 4430 if (I->getType()->isPointerTy() && isConsecutivePtr(&*I)) 4431 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4432 4433 while (!Worklist.empty()) { 4434 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4435 Worklist.pop_back(); 4436 4437 // Look at instructions inside this loop. 4438 // Stop when reaching PHI nodes. 4439 // TODO: we need to follow values all over the loop, not only in this block. 4440 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4441 continue; 4442 4443 // This is a known uniform. 4444 Uniforms.insert(I); 4445 4446 // Insert all operands. 4447 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4448 } 4449 } 4450 4451 bool LoopVectorizationLegality::canVectorizeMemory() { 4452 LAI = &LAA->getInfo(TheLoop, Strides); 4453 auto &OptionalReport = LAI->getReport(); 4454 if (OptionalReport) 4455 emitAnalysis(VectorizationReport(*OptionalReport)); 4456 if (!LAI->canVectorizeMemory()) 4457 return false; 4458 4459 if (LAI->hasStoreToLoopInvariantAddress()) { 4460 emitAnalysis( 4461 VectorizationReport() 4462 << "write to a loop invariant address could not be vectorized"); 4463 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4464 return false; 4465 } 4466 4467 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 4468 Preds.add(&LAI->Preds); 4469 4470 return true; 4471 } 4472 4473 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4474 Value *In0 = const_cast<Value*>(V); 4475 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4476 if (!PN) 4477 return false; 4478 4479 return Inductions.count(PN); 4480 } 4481 4482 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4483 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4484 } 4485 4486 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4487 SmallPtrSetImpl<Value *> &SafePtrs) { 4488 4489 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4490 // Check that we don't have a constant expression that can trap as operand. 4491 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4492 OI != OE; ++OI) { 4493 if (Constant *C = dyn_cast<Constant>(*OI)) 4494 if (C->canTrap()) 4495 return false; 4496 } 4497 // We might be able to hoist the load. 4498 if (it->mayReadFromMemory()) { 4499 LoadInst *LI = dyn_cast<LoadInst>(it); 4500 if (!LI) 4501 return false; 4502 if (!SafePtrs.count(LI->getPointerOperand())) { 4503 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 4504 MaskedOp.insert(LI); 4505 continue; 4506 } 4507 return false; 4508 } 4509 } 4510 4511 // We don't predicate stores at the moment. 4512 if (it->mayWriteToMemory()) { 4513 StoreInst *SI = dyn_cast<StoreInst>(it); 4514 // We only support predication of stores in basic blocks with one 4515 // predecessor. 4516 if (!SI) 4517 return false; 4518 4519 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4520 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4521 4522 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4523 !isSinglePredecessor) { 4524 // Build a masked store if it is legal for the target, otherwise scalarize 4525 // the block. 4526 bool isLegalMaskedOp = 4527 isLegalMaskedStore(SI->getValueOperand()->getType(), 4528 SI->getPointerOperand()); 4529 if (isLegalMaskedOp) { 4530 --NumPredStores; 4531 MaskedOp.insert(SI); 4532 continue; 4533 } 4534 return false; 4535 } 4536 } 4537 if (it->mayThrow()) 4538 return false; 4539 4540 // The instructions below can trap. 4541 switch (it->getOpcode()) { 4542 default: continue; 4543 case Instruction::UDiv: 4544 case Instruction::SDiv: 4545 case Instruction::URem: 4546 case Instruction::SRem: 4547 return false; 4548 } 4549 } 4550 4551 return true; 4552 } 4553 4554 void InterleavedAccessInfo::collectConstStridedAccesses( 4555 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 4556 const ValueToValueMap &Strides) { 4557 // Holds load/store instructions in program order. 4558 SmallVector<Instruction *, 16> AccessList; 4559 4560 for (auto *BB : TheLoop->getBlocks()) { 4561 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4562 4563 for (auto &I : *BB) { 4564 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 4565 continue; 4566 // FIXME: Currently we can't handle mixed accesses and predicated accesses 4567 if (IsPred) 4568 return; 4569 4570 AccessList.push_back(&I); 4571 } 4572 } 4573 4574 if (AccessList.empty()) 4575 return; 4576 4577 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4578 for (auto I : AccessList) { 4579 LoadInst *LI = dyn_cast<LoadInst>(I); 4580 StoreInst *SI = dyn_cast<StoreInst>(I); 4581 4582 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 4583 int Stride = isStridedPtr(SE, Ptr, TheLoop, Strides, Preds); 4584 4585 // The factor of the corresponding interleave group. 4586 unsigned Factor = std::abs(Stride); 4587 4588 // Ignore the access if the factor is too small or too large. 4589 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 4590 continue; 4591 4592 const SCEV *Scev = replaceSymbolicStrideSCEV(SE, Strides, Preds, Ptr); 4593 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4594 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4595 4596 // An alignment of 0 means target ABI alignment. 4597 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 4598 if (!Align) 4599 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4600 4601 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 4602 } 4603 } 4604 4605 // Analyze interleaved accesses and collect them into interleave groups. 4606 // 4607 // Notice that the vectorization on interleaved groups will change instruction 4608 // orders and may break dependences. But the memory dependence check guarantees 4609 // that there is no overlap between two pointers of different strides, element 4610 // sizes or underlying bases. 4611 // 4612 // For pointers sharing the same stride, element size and underlying base, no 4613 // need to worry about Read-After-Write dependences and Write-After-Read 4614 // dependences. 4615 // 4616 // E.g. The RAW dependence: A[i] = a; 4617 // b = A[i]; 4618 // This won't exist as it is a store-load forwarding conflict, which has 4619 // already been checked and forbidden in the dependence check. 4620 // 4621 // E.g. The WAR dependence: a = A[i]; // (1) 4622 // A[i] = b; // (2) 4623 // The store group of (2) is always inserted at or below (2), and the load group 4624 // of (1) is always inserted at or above (1). The dependence is safe. 4625 void InterleavedAccessInfo::analyzeInterleaving( 4626 const ValueToValueMap &Strides) { 4627 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 4628 4629 // Holds all the stride accesses. 4630 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 4631 collectConstStridedAccesses(StrideAccesses, Strides); 4632 4633 if (StrideAccesses.empty()) 4634 return; 4635 4636 // Holds all interleaved store groups temporarily. 4637 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 4638 4639 // Search the load-load/write-write pair B-A in bottom-up order and try to 4640 // insert B into the interleave group of A according to 3 rules: 4641 // 1. A and B have the same stride. 4642 // 2. A and B have the same memory object size. 4643 // 3. B belongs to the group according to the distance. 4644 // 4645 // The bottom-up order can avoid breaking the Write-After-Write dependences 4646 // between two pointers of the same base. 4647 // E.g. A[i] = a; (1) 4648 // A[i] = b; (2) 4649 // A[i+1] = c (3) 4650 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 4651 // above (1), which guarantees that (1) is always above (2). 4652 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 4653 ++I) { 4654 Instruction *A = I->first; 4655 StrideDescriptor DesA = I->second; 4656 4657 InterleaveGroup *Group = getInterleaveGroup(A); 4658 if (!Group) { 4659 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 4660 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 4661 } 4662 4663 if (A->mayWriteToMemory()) 4664 StoreGroups.insert(Group); 4665 4666 for (auto II = std::next(I); II != E; ++II) { 4667 Instruction *B = II->first; 4668 StrideDescriptor DesB = II->second; 4669 4670 // Ignore if B is already in a group or B is a different memory operation. 4671 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 4672 continue; 4673 4674 // Check the rule 1 and 2. 4675 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 4676 continue; 4677 4678 // Calculate the distance and prepare for the rule 3. 4679 const SCEVConstant *DistToA = 4680 dyn_cast<SCEVConstant>(SE->getMinusSCEV(DesB.Scev, DesA.Scev)); 4681 if (!DistToA) 4682 continue; 4683 4684 int DistanceToA = DistToA->getValue()->getValue().getSExtValue(); 4685 4686 // Skip if the distance is not multiple of size as they are not in the 4687 // same group. 4688 if (DistanceToA % static_cast<int>(DesA.Size)) 4689 continue; 4690 4691 // The index of B is the index of A plus the related index to A. 4692 int IndexB = 4693 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 4694 4695 // Try to insert B into the group. 4696 if (Group->insertMember(B, IndexB, DesB.Align)) { 4697 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 4698 << " into the interleave group with" << *A << '\n'); 4699 InterleaveGroupMap[B] = Group; 4700 4701 // Set the first load in program order as the insert position. 4702 if (B->mayReadFromMemory()) 4703 Group->setInsertPos(B); 4704 } 4705 } // Iteration on instruction B 4706 } // Iteration on instruction A 4707 4708 // Remove interleaved store groups with gaps. 4709 for (InterleaveGroup *Group : StoreGroups) 4710 if (Group->getNumMembers() != Group->getFactor()) 4711 releaseGroup(Group); 4712 } 4713 4714 LoopVectorizationCostModel::VectorizationFactor 4715 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 4716 // Width 1 means no vectorize 4717 VectorizationFactor Factor = { 1U, 0U }; 4718 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 4719 emitAnalysis(VectorizationReport() << 4720 "runtime pointer checks needed. Enable vectorization of this " 4721 "loop with '#pragma clang loop vectorize(enable)' when " 4722 "compiling with -Os/-Oz"); 4723 DEBUG(dbgs() << 4724 "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4725 return Factor; 4726 } 4727 4728 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 4729 emitAnalysis(VectorizationReport() << 4730 "store that is conditionally executed prevents vectorization"); 4731 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4732 return Factor; 4733 } 4734 4735 // Find the trip count. 4736 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4737 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4738 4739 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4740 unsigned SmallestType, WidestType; 4741 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4742 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4743 unsigned MaxSafeDepDist = -1U; 4744 if (Legal->getMaxSafeDepDistBytes() != -1U) 4745 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4746 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4747 WidestRegister : MaxSafeDepDist); 4748 unsigned MaxVectorSize = WidestRegister / WidestType; 4749 4750 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 4751 << WidestType << " bits.\n"); 4752 DEBUG(dbgs() << "LV: The Widest register is: " 4753 << WidestRegister << " bits.\n"); 4754 4755 if (MaxVectorSize == 0) { 4756 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4757 MaxVectorSize = 1; 4758 } 4759 4760 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4761 " into one vector!"); 4762 4763 unsigned VF = MaxVectorSize; 4764 if (MaximizeBandwidth && !OptForSize) { 4765 // Collect all viable vectorization factors. 4766 SmallVector<unsigned, 8> VFs; 4767 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4768 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 4769 VFs.push_back(VS); 4770 4771 // For each VF calculate its register usage. 4772 auto RUs = calculateRegisterUsage(VFs); 4773 4774 // Select the largest VF which doesn't require more registers than existing 4775 // ones. 4776 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4777 for (int i = RUs.size() - 1; i >= 0; --i) { 4778 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4779 VF = VFs[i]; 4780 break; 4781 } 4782 } 4783 } 4784 4785 // If we optimize the program for size, avoid creating the tail loop. 4786 if (OptForSize) { 4787 // If we are unable to calculate the trip count then don't try to vectorize. 4788 if (TC < 2) { 4789 emitAnalysis 4790 (VectorizationReport() << 4791 "unable to calculate the loop count due to complex control flow"); 4792 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4793 return Factor; 4794 } 4795 4796 // Find the maximum SIMD width that can fit within the trip count. 4797 VF = TC % MaxVectorSize; 4798 4799 if (VF == 0) 4800 VF = MaxVectorSize; 4801 else { 4802 // If the trip count that we found modulo the vectorization factor is not 4803 // zero then we require a tail. 4804 emitAnalysis(VectorizationReport() << 4805 "cannot optimize for size and vectorize at the " 4806 "same time. Enable vectorization of this loop " 4807 "with '#pragma clang loop vectorize(enable)' " 4808 "when compiling with -Os/-Oz"); 4809 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4810 return Factor; 4811 } 4812 } 4813 4814 int UserVF = Hints->getWidth(); 4815 if (UserVF != 0) { 4816 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4817 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4818 4819 Factor.Width = UserVF; 4820 return Factor; 4821 } 4822 4823 float Cost = expectedCost(1); 4824 #ifndef NDEBUG 4825 const float ScalarCost = Cost; 4826 #endif /* NDEBUG */ 4827 unsigned Width = 1; 4828 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4829 4830 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4831 // Ignore scalar width, because the user explicitly wants vectorization. 4832 if (ForceVectorization && VF > 1) { 4833 Width = 2; 4834 Cost = expectedCost(Width) / (float)Width; 4835 } 4836 4837 for (unsigned i=2; i <= VF; i*=2) { 4838 // Notice that the vector loop needs to be executed less times, so 4839 // we need to divide the cost of the vector loops by the width of 4840 // the vector elements. 4841 float VectorCost = expectedCost(i) / (float)i; 4842 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4843 (int)VectorCost << ".\n"); 4844 if (VectorCost < Cost) { 4845 Cost = VectorCost; 4846 Width = i; 4847 } 4848 } 4849 4850 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4851 << "LV: Vectorization seems to be not beneficial, " 4852 << "but was forced by a user.\n"); 4853 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4854 Factor.Width = Width; 4855 Factor.Cost = Width * Cost; 4856 return Factor; 4857 } 4858 4859 std::pair<unsigned, unsigned> 4860 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4861 unsigned MinWidth = -1U; 4862 unsigned MaxWidth = 8; 4863 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4864 4865 // For each block. 4866 for (Loop::block_iterator bb = TheLoop->block_begin(), 4867 be = TheLoop->block_end(); bb != be; ++bb) { 4868 BasicBlock *BB = *bb; 4869 4870 // For each instruction in the loop. 4871 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4872 Type *T = it->getType(); 4873 4874 // Skip ignored values. 4875 if (ValuesToIgnore.count(&*it)) 4876 continue; 4877 4878 // Only examine Loads, Stores and PHINodes. 4879 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4880 continue; 4881 4882 // Examine PHI nodes that are reduction variables. Update the type to 4883 // account for the recurrence type. 4884 if (PHINode *PN = dyn_cast<PHINode>(it)) { 4885 if (!Legal->getReductionVars()->count(PN)) 4886 continue; 4887 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4888 T = RdxDesc.getRecurrenceType(); 4889 } 4890 4891 // Examine the stored values. 4892 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4893 T = ST->getValueOperand()->getType(); 4894 4895 // Ignore loaded pointer types and stored pointer types that are not 4896 // consecutive. However, we do want to take consecutive stores/loads of 4897 // pointer vectors into account. 4898 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 4899 continue; 4900 4901 MinWidth = std::min(MinWidth, 4902 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4903 MaxWidth = std::max(MaxWidth, 4904 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4905 } 4906 } 4907 4908 return {MinWidth, MaxWidth}; 4909 } 4910 4911 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4912 unsigned VF, 4913 unsigned LoopCost) { 4914 4915 // -- The interleave heuristics -- 4916 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4917 // There are many micro-architectural considerations that we can't predict 4918 // at this level. For example, frontend pressure (on decode or fetch) due to 4919 // code size, or the number and capabilities of the execution ports. 4920 // 4921 // We use the following heuristics to select the interleave count: 4922 // 1. If the code has reductions, then we interleave to break the cross 4923 // iteration dependency. 4924 // 2. If the loop is really small, then we interleave to reduce the loop 4925 // overhead. 4926 // 3. We don't interleave if we think that we will spill registers to memory 4927 // due to the increased register pressure. 4928 4929 // When we optimize for size, we don't interleave. 4930 if (OptForSize) 4931 return 1; 4932 4933 // We used the distance for the interleave count. 4934 if (Legal->getMaxSafeDepDistBytes() != -1U) 4935 return 1; 4936 4937 // Do not interleave loops with a relatively small trip count. 4938 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4939 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4940 return 1; 4941 4942 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4943 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4944 " registers\n"); 4945 4946 if (VF == 1) { 4947 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4948 TargetNumRegisters = ForceTargetNumScalarRegs; 4949 } else { 4950 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4951 TargetNumRegisters = ForceTargetNumVectorRegs; 4952 } 4953 4954 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4955 // We divide by these constants so assume that we have at least one 4956 // instruction that uses at least one register. 4957 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4958 R.NumInstructions = std::max(R.NumInstructions, 1U); 4959 4960 // We calculate the interleave count using the following formula. 4961 // Subtract the number of loop invariants from the number of available 4962 // registers. These registers are used by all of the interleaved instances. 4963 // Next, divide the remaining registers by the number of registers that is 4964 // required by the loop, in order to estimate how many parallel instances 4965 // fit without causing spills. All of this is rounded down if necessary to be 4966 // a power of two. We want power of two interleave count to simplify any 4967 // addressing operations or alignment considerations. 4968 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4969 R.MaxLocalUsers); 4970 4971 // Don't count the induction variable as interleaved. 4972 if (EnableIndVarRegisterHeur) 4973 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4974 std::max(1U, (R.MaxLocalUsers - 1))); 4975 4976 // Clamp the interleave ranges to reasonable counts. 4977 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4978 4979 // Check if the user has overridden the max. 4980 if (VF == 1) { 4981 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4982 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4983 } else { 4984 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4985 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4986 } 4987 4988 // If we did not calculate the cost for VF (because the user selected the VF) 4989 // then we calculate the cost of VF here. 4990 if (LoopCost == 0) 4991 LoopCost = expectedCost(VF); 4992 4993 // Clamp the calculated IC to be between the 1 and the max interleave count 4994 // that the target allows. 4995 if (IC > MaxInterleaveCount) 4996 IC = MaxInterleaveCount; 4997 else if (IC < 1) 4998 IC = 1; 4999 5000 // Interleave if we vectorized this loop and there is a reduction that could 5001 // benefit from interleaving. 5002 if (VF > 1 && Legal->getReductionVars()->size()) { 5003 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5004 return IC; 5005 } 5006 5007 // Note that if we've already vectorized the loop we will have done the 5008 // runtime check and so interleaving won't require further checks. 5009 bool InterleavingRequiresRuntimePointerCheck = 5010 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5011 5012 // We want to interleave small loops in order to reduce the loop overhead and 5013 // potentially expose ILP opportunities. 5014 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5015 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5016 // We assume that the cost overhead is 1 and we use the cost model 5017 // to estimate the cost of the loop and interleave until the cost of the 5018 // loop overhead is about 5% of the cost of the loop. 5019 unsigned SmallIC = 5020 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5021 5022 // Interleave until store/load ports (estimated by max interleave count) are 5023 // saturated. 5024 unsigned NumStores = Legal->getNumStores(); 5025 unsigned NumLoads = Legal->getNumLoads(); 5026 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5027 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5028 5029 // If we have a scalar reduction (vector reductions are already dealt with 5030 // by this point), we can increase the critical path length if the loop 5031 // we're interleaving is inside another loop. Limit, by default to 2, so the 5032 // critical path only gets increased by one reduction operation. 5033 if (Legal->getReductionVars()->size() && 5034 TheLoop->getLoopDepth() > 1) { 5035 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5036 SmallIC = std::min(SmallIC, F); 5037 StoresIC = std::min(StoresIC, F); 5038 LoadsIC = std::min(LoadsIC, F); 5039 } 5040 5041 if (EnableLoadStoreRuntimeInterleave && 5042 std::max(StoresIC, LoadsIC) > SmallIC) { 5043 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5044 return std::max(StoresIC, LoadsIC); 5045 } 5046 5047 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5048 return SmallIC; 5049 } 5050 5051 // Interleave if this is a large loop (small loops are already dealt with by 5052 // this 5053 // point) that could benefit from interleaving. 5054 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5055 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5056 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5057 return IC; 5058 } 5059 5060 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5061 return 1; 5062 } 5063 5064 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5065 LoopVectorizationCostModel::calculateRegisterUsage( 5066 const SmallVector<unsigned, 8> &VFs) { 5067 // This function calculates the register usage by measuring the highest number 5068 // of values that are alive at a single location. Obviously, this is a very 5069 // rough estimation. We scan the loop in a topological order in order and 5070 // assign a number to each instruction. We use RPO to ensure that defs are 5071 // met before their users. We assume that each instruction that has in-loop 5072 // users starts an interval. We record every time that an in-loop value is 5073 // used, so we have a list of the first and last occurrences of each 5074 // instruction. Next, we transpose this data structure into a multi map that 5075 // holds the list of intervals that *end* at a specific location. This multi 5076 // map allows us to perform a linear search. We scan the instructions linearly 5077 // and record each time that a new interval starts, by placing it in a set. 5078 // If we find this value in the multi-map then we remove it from the set. 5079 // The max register usage is the maximum size of the set. 5080 // We also search for instructions that are defined outside the loop, but are 5081 // used inside the loop. We need this number separately from the max-interval 5082 // usage number because when we unroll, loop-invariant values do not take 5083 // more register. 5084 LoopBlocksDFS DFS(TheLoop); 5085 DFS.perform(LI); 5086 5087 RegisterUsage RU; 5088 RU.NumInstructions = 0; 5089 5090 // Each 'key' in the map opens a new interval. The values 5091 // of the map are the index of the 'last seen' usage of the 5092 // instruction that is the key. 5093 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5094 // Maps instruction to its index. 5095 DenseMap<unsigned, Instruction*> IdxToInstr; 5096 // Marks the end of each interval. 5097 IntervalMap EndPoint; 5098 // Saves the list of instruction indices that are used in the loop. 5099 SmallSet<Instruction*, 8> Ends; 5100 // Saves the list of values that are used in the loop but are 5101 // defined outside the loop, such as arguments and constants. 5102 SmallPtrSet<Value*, 8> LoopInvariants; 5103 5104 unsigned Index = 0; 5105 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5106 be = DFS.endRPO(); bb != be; ++bb) { 5107 RU.NumInstructions += (*bb)->size(); 5108 for (Instruction &I : **bb) { 5109 IdxToInstr[Index++] = &I; 5110 5111 // Save the end location of each USE. 5112 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5113 Value *U = I.getOperand(i); 5114 Instruction *Instr = dyn_cast<Instruction>(U); 5115 5116 // Ignore non-instruction values such as arguments, constants, etc. 5117 if (!Instr) continue; 5118 5119 // If this instruction is outside the loop then record it and continue. 5120 if (!TheLoop->contains(Instr)) { 5121 LoopInvariants.insert(Instr); 5122 continue; 5123 } 5124 5125 // Overwrite previous end points. 5126 EndPoint[Instr] = Index; 5127 Ends.insert(Instr); 5128 } 5129 } 5130 } 5131 5132 // Saves the list of intervals that end with the index in 'key'. 5133 typedef SmallVector<Instruction*, 2> InstrList; 5134 DenseMap<unsigned, InstrList> TransposeEnds; 5135 5136 // Transpose the EndPoints to a list of values that end at each index. 5137 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5138 it != e; ++it) 5139 TransposeEnds[it->second].push_back(it->first); 5140 5141 SmallSet<Instruction*, 8> OpenIntervals; 5142 5143 // Get the size of the widest register. 5144 unsigned MaxSafeDepDist = -1U; 5145 if (Legal->getMaxSafeDepDistBytes() != -1U) 5146 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5147 unsigned WidestRegister = 5148 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5149 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5150 5151 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5152 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5153 5154 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5155 5156 // A lambda that gets the register usage for the given type and VF. 5157 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5158 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5159 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5160 }; 5161 5162 for (unsigned int i = 0; i < Index; ++i) { 5163 Instruction *I = IdxToInstr[i]; 5164 // Ignore instructions that are never used within the loop. 5165 if (!Ends.count(I)) continue; 5166 5167 // Skip ignored values. 5168 if (ValuesToIgnore.count(I)) 5169 continue; 5170 5171 // Remove all of the instructions that end at this location. 5172 InstrList &List = TransposeEnds[i]; 5173 for (unsigned int j = 0, e = List.size(); j < e; ++j) 5174 OpenIntervals.erase(List[j]); 5175 5176 // For each VF find the maximum usage of registers. 5177 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5178 if (VFs[j] == 1) { 5179 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5180 continue; 5181 } 5182 5183 // Count the number of live interals. 5184 unsigned RegUsage = 0; 5185 for (auto Inst : OpenIntervals) 5186 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5187 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5188 } 5189 5190 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5191 << OpenIntervals.size() << '\n'); 5192 5193 // Add the current instruction to the list of open intervals. 5194 OpenIntervals.insert(I); 5195 } 5196 5197 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5198 unsigned Invariant = 0; 5199 if (VFs[i] == 1) 5200 Invariant = LoopInvariants.size(); 5201 else { 5202 for (auto Inst : LoopInvariants) 5203 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5204 } 5205 5206 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5207 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5208 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5209 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5210 5211 RU.LoopInvariantRegs = Invariant; 5212 RU.MaxLocalUsers = MaxUsages[i]; 5213 RUs[i] = RU; 5214 } 5215 5216 return RUs; 5217 } 5218 5219 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5220 unsigned Cost = 0; 5221 5222 // For each block. 5223 for (Loop::block_iterator bb = TheLoop->block_begin(), 5224 be = TheLoop->block_end(); bb != be; ++bb) { 5225 unsigned BlockCost = 0; 5226 BasicBlock *BB = *bb; 5227 5228 // For each instruction in the old loop. 5229 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5230 // Skip dbg intrinsics. 5231 if (isa<DbgInfoIntrinsic>(it)) 5232 continue; 5233 5234 // Skip ignored values. 5235 if (ValuesToIgnore.count(&*it)) 5236 continue; 5237 5238 unsigned C = getInstructionCost(&*it, VF); 5239 5240 // Check if we should override the cost. 5241 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5242 C = ForceTargetInstructionCost; 5243 5244 BlockCost += C; 5245 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5246 VF << " For instruction: " << *it << '\n'); 5247 } 5248 5249 // We assume that if-converted blocks have a 50% chance of being executed. 5250 // When the code is scalar then some of the blocks are avoided due to CF. 5251 // When the code is vectorized we execute all code paths. 5252 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5253 BlockCost /= 2; 5254 5255 Cost += BlockCost; 5256 } 5257 5258 return Cost; 5259 } 5260 5261 /// \brief Check whether the address computation for a non-consecutive memory 5262 /// access looks like an unlikely candidate for being merged into the indexing 5263 /// mode. 5264 /// 5265 /// We look for a GEP which has one index that is an induction variable and all 5266 /// other indices are loop invariant. If the stride of this access is also 5267 /// within a small bound we decide that this address computation can likely be 5268 /// merged into the addressing mode. 5269 /// In all other cases, we identify the address computation as complex. 5270 static bool isLikelyComplexAddressComputation(Value *Ptr, 5271 LoopVectorizationLegality *Legal, 5272 ScalarEvolution *SE, 5273 const Loop *TheLoop) { 5274 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5275 if (!Gep) 5276 return true; 5277 5278 // We are looking for a gep with all loop invariant indices except for one 5279 // which should be an induction variable. 5280 unsigned NumOperands = Gep->getNumOperands(); 5281 for (unsigned i = 1; i < NumOperands; ++i) { 5282 Value *Opd = Gep->getOperand(i); 5283 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5284 !Legal->isInductionVariable(Opd)) 5285 return true; 5286 } 5287 5288 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5289 // can likely be merged into the address computation. 5290 unsigned MaxMergeDistance = 64; 5291 5292 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5293 if (!AddRec) 5294 return true; 5295 5296 // Check the step is constant. 5297 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5298 // Calculate the pointer stride and check if it is consecutive. 5299 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5300 if (!C) 5301 return true; 5302 5303 const APInt &APStepVal = C->getValue()->getValue(); 5304 5305 // Huge step value - give up. 5306 if (APStepVal.getBitWidth() > 64) 5307 return true; 5308 5309 int64_t StepVal = APStepVal.getSExtValue(); 5310 5311 return StepVal > MaxMergeDistance; 5312 } 5313 5314 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5315 return Legal->hasStride(I->getOperand(0)) || 5316 Legal->hasStride(I->getOperand(1)); 5317 } 5318 5319 unsigned 5320 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5321 // If we know that this instruction will remain uniform, check the cost of 5322 // the scalar version. 5323 if (Legal->isUniformAfterVectorization(I)) 5324 VF = 1; 5325 5326 Type *RetTy = I->getType(); 5327 if (VF > 1 && MinBWs.count(I)) 5328 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5329 Type *VectorTy = ToVectorTy(RetTy, VF); 5330 5331 // TODO: We need to estimate the cost of intrinsic calls. 5332 switch (I->getOpcode()) { 5333 case Instruction::GetElementPtr: 5334 // We mark this instruction as zero-cost because the cost of GEPs in 5335 // vectorized code depends on whether the corresponding memory instruction 5336 // is scalarized or not. Therefore, we handle GEPs with the memory 5337 // instruction cost. 5338 return 0; 5339 case Instruction::Br: { 5340 return TTI.getCFInstrCost(I->getOpcode()); 5341 } 5342 case Instruction::PHI: 5343 //TODO: IF-converted IFs become selects. 5344 return 0; 5345 case Instruction::Add: 5346 case Instruction::FAdd: 5347 case Instruction::Sub: 5348 case Instruction::FSub: 5349 case Instruction::Mul: 5350 case Instruction::FMul: 5351 case Instruction::UDiv: 5352 case Instruction::SDiv: 5353 case Instruction::FDiv: 5354 case Instruction::URem: 5355 case Instruction::SRem: 5356 case Instruction::FRem: 5357 case Instruction::Shl: 5358 case Instruction::LShr: 5359 case Instruction::AShr: 5360 case Instruction::And: 5361 case Instruction::Or: 5362 case Instruction::Xor: { 5363 // Since we will replace the stride by 1 the multiplication should go away. 5364 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5365 return 0; 5366 // Certain instructions can be cheaper to vectorize if they have a constant 5367 // second vector operand. One example of this are shifts on x86. 5368 TargetTransformInfo::OperandValueKind Op1VK = 5369 TargetTransformInfo::OK_AnyValue; 5370 TargetTransformInfo::OperandValueKind Op2VK = 5371 TargetTransformInfo::OK_AnyValue; 5372 TargetTransformInfo::OperandValueProperties Op1VP = 5373 TargetTransformInfo::OP_None; 5374 TargetTransformInfo::OperandValueProperties Op2VP = 5375 TargetTransformInfo::OP_None; 5376 Value *Op2 = I->getOperand(1); 5377 5378 // Check for a splat of a constant or for a non uniform vector of constants. 5379 if (isa<ConstantInt>(Op2)) { 5380 ConstantInt *CInt = cast<ConstantInt>(Op2); 5381 if (CInt && CInt->getValue().isPowerOf2()) 5382 Op2VP = TargetTransformInfo::OP_PowerOf2; 5383 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5384 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5385 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5386 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5387 if (SplatValue) { 5388 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5389 if (CInt && CInt->getValue().isPowerOf2()) 5390 Op2VP = TargetTransformInfo::OP_PowerOf2; 5391 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5392 } 5393 } 5394 5395 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5396 Op1VP, Op2VP); 5397 } 5398 case Instruction::Select: { 5399 SelectInst *SI = cast<SelectInst>(I); 5400 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5401 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5402 Type *CondTy = SI->getCondition()->getType(); 5403 if (!ScalarCond) 5404 CondTy = VectorType::get(CondTy, VF); 5405 5406 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5407 } 5408 case Instruction::ICmp: 5409 case Instruction::FCmp: { 5410 Type *ValTy = I->getOperand(0)->getType(); 5411 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5412 auto It = MinBWs.find(Op0AsInstruction); 5413 if (VF > 1 && It != MinBWs.end()) 5414 ValTy = IntegerType::get(ValTy->getContext(), It->second); 5415 VectorTy = ToVectorTy(ValTy, VF); 5416 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5417 } 5418 case Instruction::Store: 5419 case Instruction::Load: { 5420 StoreInst *SI = dyn_cast<StoreInst>(I); 5421 LoadInst *LI = dyn_cast<LoadInst>(I); 5422 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5423 LI->getType()); 5424 VectorTy = ToVectorTy(ValTy, VF); 5425 5426 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5427 unsigned AS = SI ? SI->getPointerAddressSpace() : 5428 LI->getPointerAddressSpace(); 5429 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5430 // We add the cost of address computation here instead of with the gep 5431 // instruction because only here we know whether the operation is 5432 // scalarized. 5433 if (VF == 1) 5434 return TTI.getAddressComputationCost(VectorTy) + 5435 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5436 5437 // For an interleaved access, calculate the total cost of the whole 5438 // interleave group. 5439 if (Legal->isAccessInterleaved(I)) { 5440 auto Group = Legal->getInterleavedAccessGroup(I); 5441 assert(Group && "Fail to get an interleaved access group."); 5442 5443 // Only calculate the cost once at the insert position. 5444 if (Group->getInsertPos() != I) 5445 return 0; 5446 5447 unsigned InterleaveFactor = Group->getFactor(); 5448 Type *WideVecTy = 5449 VectorType::get(VectorTy->getVectorElementType(), 5450 VectorTy->getVectorNumElements() * InterleaveFactor); 5451 5452 // Holds the indices of existing members in an interleaved load group. 5453 // An interleaved store group doesn't need this as it dones't allow gaps. 5454 SmallVector<unsigned, 4> Indices; 5455 if (LI) { 5456 for (unsigned i = 0; i < InterleaveFactor; i++) 5457 if (Group->getMember(i)) 5458 Indices.push_back(i); 5459 } 5460 5461 // Calculate the cost of the whole interleaved group. 5462 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5463 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5464 Group->getAlignment(), AS); 5465 5466 if (Group->isReverse()) 5467 Cost += 5468 Group->getNumMembers() * 5469 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5470 5471 // FIXME: The interleaved load group with a huge gap could be even more 5472 // expensive than scalar operations. Then we could ignore such group and 5473 // use scalar operations instead. 5474 return Cost; 5475 } 5476 5477 // Scalarized loads/stores. 5478 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5479 bool Reverse = ConsecutiveStride < 0; 5480 const DataLayout &DL = I->getModule()->getDataLayout(); 5481 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5482 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5483 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5484 bool IsComplexComputation = 5485 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5486 unsigned Cost = 0; 5487 // The cost of extracting from the value vector and pointer vector. 5488 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5489 for (unsigned i = 0; i < VF; ++i) { 5490 // The cost of extracting the pointer operand. 5491 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5492 // In case of STORE, the cost of ExtractElement from the vector. 5493 // In case of LOAD, the cost of InsertElement into the returned 5494 // vector. 5495 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5496 Instruction::InsertElement, 5497 VectorTy, i); 5498 } 5499 5500 // The cost of the scalar loads/stores. 5501 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5502 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5503 Alignment, AS); 5504 return Cost; 5505 } 5506 5507 // Wide load/stores. 5508 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5509 if (Legal->isMaskRequired(I)) 5510 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 5511 AS); 5512 else 5513 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5514 5515 if (Reverse) 5516 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5517 VectorTy, 0); 5518 return Cost; 5519 } 5520 case Instruction::ZExt: 5521 case Instruction::SExt: 5522 case Instruction::FPToUI: 5523 case Instruction::FPToSI: 5524 case Instruction::FPExt: 5525 case Instruction::PtrToInt: 5526 case Instruction::IntToPtr: 5527 case Instruction::SIToFP: 5528 case Instruction::UIToFP: 5529 case Instruction::Trunc: 5530 case Instruction::FPTrunc: 5531 case Instruction::BitCast: { 5532 // We optimize the truncation of induction variable. 5533 // The cost of these is the same as the scalar operation. 5534 if (I->getOpcode() == Instruction::Trunc && 5535 Legal->isInductionVariable(I->getOperand(0))) 5536 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5537 I->getOperand(0)->getType()); 5538 5539 Type *SrcScalarTy = I->getOperand(0)->getType(); 5540 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 5541 if (VF > 1 && MinBWs.count(I)) { 5542 // This cast is going to be shrunk. This may remove the cast or it might 5543 // turn it into slightly different cast. For example, if MinBW == 16, 5544 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 5545 // 5546 // Calculate the modified src and dest types. 5547 Type *MinVecTy = VectorTy; 5548 if (I->getOpcode() == Instruction::Trunc) { 5549 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 5550 VectorTy = largestIntegerVectorType(ToVectorTy(I->getType(), VF), 5551 MinVecTy); 5552 } else if (I->getOpcode() == Instruction::ZExt || 5553 I->getOpcode() == Instruction::SExt) { 5554 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 5555 VectorTy = smallestIntegerVectorType(ToVectorTy(I->getType(), VF), 5556 MinVecTy); 5557 } 5558 } 5559 5560 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5561 } 5562 case Instruction::Call: { 5563 bool NeedToScalarize; 5564 CallInst *CI = cast<CallInst>(I); 5565 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 5566 if (getIntrinsicIDForCall(CI, TLI)) 5567 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 5568 return CallCost; 5569 } 5570 default: { 5571 // We are scalarizing the instruction. Return the cost of the scalar 5572 // instruction, plus the cost of insert and extract into vector 5573 // elements, times the vector width. 5574 unsigned Cost = 0; 5575 5576 if (!RetTy->isVoidTy() && VF != 1) { 5577 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5578 VectorTy); 5579 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5580 VectorTy); 5581 5582 // The cost of inserting the results plus extracting each one of the 5583 // operands. 5584 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5585 } 5586 5587 // The cost of executing VF copies of the scalar instruction. This opcode 5588 // is unknown. Assume that it is the same as 'mul'. 5589 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5590 return Cost; 5591 } 5592 }// end of switch. 5593 } 5594 5595 char LoopVectorize::ID = 0; 5596 static const char lv_name[] = "Loop Vectorization"; 5597 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5598 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5599 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 5600 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5601 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 5602 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5603 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 5604 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5605 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5606 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5607 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5608 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5609 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 5610 INITIALIZE_PASS_DEPENDENCY(DemandedBits) 5611 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5612 5613 namespace llvm { 5614 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5615 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5616 } 5617 } 5618 5619 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5620 // Check for a store. 5621 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5622 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5623 5624 // Check for a load. 5625 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5626 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5627 5628 return false; 5629 } 5630 5631 5632 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5633 bool IfPredicateStore) { 5634 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5635 // Holds vector parameters or scalars, in case of uniform vals. 5636 SmallVector<VectorParts, 4> Params; 5637 5638 setDebugLocFromInst(Builder, Instr); 5639 5640 // Find all of the vectorized parameters. 5641 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5642 Value *SrcOp = Instr->getOperand(op); 5643 5644 // If we are accessing the old induction variable, use the new one. 5645 if (SrcOp == OldInduction) { 5646 Params.push_back(getVectorValue(SrcOp)); 5647 continue; 5648 } 5649 5650 // Try using previously calculated values. 5651 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5652 5653 // If the src is an instruction that appeared earlier in the basic block 5654 // then it should already be vectorized. 5655 if (SrcInst && OrigLoop->contains(SrcInst)) { 5656 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5657 // The parameter is a vector value from earlier. 5658 Params.push_back(WidenMap.get(SrcInst)); 5659 } else { 5660 // The parameter is a scalar from outside the loop. Maybe even a constant. 5661 VectorParts Scalars; 5662 Scalars.append(UF, SrcOp); 5663 Params.push_back(Scalars); 5664 } 5665 } 5666 5667 assert(Params.size() == Instr->getNumOperands() && 5668 "Invalid number of operands"); 5669 5670 // Does this instruction return a value ? 5671 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5672 5673 Value *UndefVec = IsVoidRetTy ? nullptr : 5674 UndefValue::get(Instr->getType()); 5675 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5676 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5677 5678 VectorParts Cond; 5679 if (IfPredicateStore) { 5680 assert(Instr->getParent()->getSinglePredecessor() && 5681 "Only support single predecessor blocks"); 5682 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5683 Instr->getParent()); 5684 } 5685 5686 // For each vector unroll 'part': 5687 for (unsigned Part = 0; Part < UF; ++Part) { 5688 // For each scalar that we create: 5689 5690 // Start an "if (pred) a[i] = ..." block. 5691 Value *Cmp = nullptr; 5692 if (IfPredicateStore) { 5693 if (Cond[Part]->getType()->isVectorTy()) 5694 Cond[Part] = 5695 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5696 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5697 ConstantInt::get(Cond[Part]->getType(), 1)); 5698 } 5699 5700 Instruction *Cloned = Instr->clone(); 5701 if (!IsVoidRetTy) 5702 Cloned->setName(Instr->getName() + ".cloned"); 5703 // Replace the operands of the cloned instructions with extracted scalars. 5704 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5705 Value *Op = Params[op][Part]; 5706 Cloned->setOperand(op, Op); 5707 } 5708 5709 // Place the cloned scalar in the new loop. 5710 Builder.Insert(Cloned); 5711 5712 // If the original scalar returns a value we need to place it in a vector 5713 // so that future users will be able to use it. 5714 if (!IsVoidRetTy) 5715 VecResults[Part] = Cloned; 5716 5717 // End if-block. 5718 if (IfPredicateStore) 5719 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 5720 Cmp)); 5721 } 5722 } 5723 5724 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5725 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5726 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5727 5728 return scalarizeInstruction(Instr, IfPredicateStore); 5729 } 5730 5731 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5732 return Vec; 5733 } 5734 5735 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5736 return V; 5737 } 5738 5739 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 5740 // When unrolling and the VF is 1, we only need to add a simple scalar. 5741 Type *ITy = Val->getType(); 5742 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5743 Constant *C = ConstantInt::get(ITy, StartIdx); 5744 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 5745 } 5746