1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function for converting Scalar types to vector types. 299 /// If the incoming type is void, we return void. If the VF is 1, we return 300 /// the scalar type. 301 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 302 if (Scalar->isVoidTy() || VF == 1) 303 return Scalar; 304 return VectorType::get(Scalar, VF); 305 } 306 307 /// A helper function that returns the type of loaded or stored value. 308 static Type *getMemInstValueType(Value *I) { 309 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 310 "Expected Load or Store instruction"); 311 if (auto *LI = dyn_cast<LoadInst>(I)) 312 return LI->getType(); 313 return cast<StoreInst>(I)->getValueOperand()->getType(); 314 } 315 316 /// A helper function that returns true if the given type is irregular. The 317 /// type is irregular if its allocated size doesn't equal the store size of an 318 /// element of the corresponding vector type at the given vectorization factor. 319 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 320 // Determine if an array of VF elements of type Ty is "bitcast compatible" 321 // with a <VF x Ty> vector. 322 if (VF > 1) { 323 auto *VectorTy = VectorType::get(Ty, VF); 324 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 325 } 326 327 // If the vectorization factor is one, we just check if an array of type Ty 328 // requires padding between elements. 329 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 330 } 331 332 /// A helper function that returns the reciprocal of the block probability of 333 /// predicated blocks. If we return X, we are assuming the predicated block 334 /// will execute once for every X iterations of the loop header. 335 /// 336 /// TODO: We should use actual block probability here, if available. Currently, 337 /// we always assume predicated blocks have a 50% chance of executing. 338 static unsigned getReciprocalPredBlockProb() { return 2; } 339 340 /// A helper function that adds a 'fast' flag to floating-point operations. 341 static Value *addFastMathFlag(Value *V) { 342 if (isa<FPMathOperator>(V)) 343 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 344 return V; 345 } 346 347 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 348 if (isa<FPMathOperator>(V)) 349 cast<Instruction>(V)->setFastMathFlags(FMF); 350 return V; 351 } 352 353 /// A helper function that returns an integer or floating-point constant with 354 /// value C. 355 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 356 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 357 : ConstantFP::get(Ty, C); 358 } 359 360 /// Returns "best known" trip count for the specified loop \p L as defined by 361 /// the following procedure: 362 /// 1) Returns exact trip count if it is known. 363 /// 2) Returns expected trip count according to profile data if any. 364 /// 3) Returns upper bound estimate if it is known. 365 /// 4) Returns None if all of the above failed. 366 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 367 // Check if exact trip count is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 369 return ExpectedTC; 370 371 // Check if there is an expected trip count available from profile data. 372 if (LoopVectorizeWithBlockFrequency) 373 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 374 return EstimatedTC; 375 376 // Check if upper bound estimate is known. 377 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 378 return ExpectedTC; 379 380 return None; 381 } 382 383 namespace llvm { 384 385 /// InnerLoopVectorizer vectorizes loops which contain only one basic 386 /// block to a specified vectorization factor (VF). 387 /// This class performs the widening of scalars into vectors, or multiple 388 /// scalars. This class also implements the following features: 389 /// * It inserts an epilogue loop for handling loops that don't have iteration 390 /// counts that are known to be a multiple of the vectorization factor. 391 /// * It handles the code generation for reduction variables. 392 /// * Scalarization (implementation using scalars) of un-vectorizable 393 /// instructions. 394 /// InnerLoopVectorizer does not perform any vectorization-legality 395 /// checks, and relies on the caller to check for the different legality 396 /// aspects. The InnerLoopVectorizer relies on the 397 /// LoopVectorizationLegality class to provide information about the induction 398 /// and reduction variables that were found to a given vectorization factor. 399 class InnerLoopVectorizer { 400 public: 401 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 402 LoopInfo *LI, DominatorTree *DT, 403 const TargetLibraryInfo *TLI, 404 const TargetTransformInfo *TTI, AssumptionCache *AC, 405 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 406 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 407 LoopVectorizationCostModel *CM) 408 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 409 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 410 Builder(PSE.getSE()->getContext()), 411 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 412 virtual ~InnerLoopVectorizer() = default; 413 414 /// Create a new empty loop. Unlink the old loop and connect the new one. 415 /// Return the pre-header block of the new loop. 416 BasicBlock *createVectorizedLoopSkeleton(); 417 418 /// Widen a single instruction within the innermost loop. 419 void widenInstruction(Instruction &I); 420 421 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 422 void fixVectorizedLoop(); 423 424 // Return true if any runtime check is added. 425 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 426 427 /// A type for vectorized values in the new loop. Each value from the 428 /// original loop, when vectorized, is represented by UF vector values in the 429 /// new unrolled loop, where UF is the unroll factor. 430 using VectorParts = SmallVector<Value *, 2>; 431 432 /// Vectorize a single GetElementPtrInst based on information gathered and 433 /// decisions taken during planning. 434 void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF, 435 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant); 436 437 /// Vectorize a single PHINode in a block. This method handles the induction 438 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 439 /// arbitrary length vectors. 440 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 441 442 /// A helper function to scalarize a single Instruction in the innermost loop. 443 /// Generates a sequence of scalar instances for each lane between \p MinLane 444 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 445 /// inclusive.. 446 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 447 bool IfPredicateInstr); 448 449 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 450 /// is provided, the integer induction variable will first be truncated to 451 /// the corresponding type. 452 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 453 454 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 455 /// vector or scalar value on-demand if one is not yet available. When 456 /// vectorizing a loop, we visit the definition of an instruction before its 457 /// uses. When visiting the definition, we either vectorize or scalarize the 458 /// instruction, creating an entry for it in the corresponding map. (In some 459 /// cases, such as induction variables, we will create both vector and scalar 460 /// entries.) Then, as we encounter uses of the definition, we derive values 461 /// for each scalar or vector use unless such a value is already available. 462 /// For example, if we scalarize a definition and one of its uses is vector, 463 /// we build the required vector on-demand with an insertelement sequence 464 /// when visiting the use. Otherwise, if the use is scalar, we can use the 465 /// existing scalar definition. 466 /// 467 /// Return a value in the new loop corresponding to \p V from the original 468 /// loop at unroll index \p Part. If the value has already been vectorized, 469 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 470 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 471 /// a new vector value on-demand by inserting the scalar values into a vector 472 /// with an insertelement sequence. If the value has been neither vectorized 473 /// nor scalarized, it must be loop invariant, so we simply broadcast the 474 /// value into a vector. 475 Value *getOrCreateVectorValue(Value *V, unsigned Part); 476 477 /// Return a value in the new loop corresponding to \p V from the original 478 /// loop at unroll and vector indices \p Instance. If the value has been 479 /// vectorized but not scalarized, the necessary extractelement instruction 480 /// will be generated. 481 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 482 483 /// Construct the vector value of a scalarized value \p V one lane at a time. 484 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 485 486 /// Try to vectorize the interleaved access group that \p Instr belongs to, 487 /// optionally masking the vector operations if \p BlockInMask is non-null. 488 void vectorizeInterleaveGroup(Instruction *Instr, 489 VectorParts *BlockInMask = nullptr); 490 491 /// Vectorize Load and Store instructions, optionally masking the vector 492 /// operations if \p BlockInMask is non-null. 493 void vectorizeMemoryInstruction(Instruction *Instr, 494 VectorParts *BlockInMask = nullptr); 495 496 /// Set the debug location in the builder using the debug location in 497 /// the instruction. 498 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 499 500 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 501 void fixNonInductionPHIs(void); 502 503 protected: 504 friend class LoopVectorizationPlanner; 505 506 /// A small list of PHINodes. 507 using PhiVector = SmallVector<PHINode *, 4>; 508 509 /// A type for scalarized values in the new loop. Each value from the 510 /// original loop, when scalarized, is represented by UF x VF scalar values 511 /// in the new unrolled loop, where UF is the unroll factor and VF is the 512 /// vectorization factor. 513 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 514 515 /// Set up the values of the IVs correctly when exiting the vector loop. 516 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 517 Value *CountRoundDown, Value *EndValue, 518 BasicBlock *MiddleBlock); 519 520 /// Create a new induction variable inside L. 521 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 522 Value *Step, Instruction *DL); 523 524 /// Handle all cross-iteration phis in the header. 525 void fixCrossIterationPHIs(); 526 527 /// Fix a first-order recurrence. This is the second phase of vectorizing 528 /// this phi node. 529 void fixFirstOrderRecurrence(PHINode *Phi); 530 531 /// Fix a reduction cross-iteration phi. This is the second phase of 532 /// vectorizing this phi node. 533 void fixReduction(PHINode *Phi); 534 535 /// The Loop exit block may have single value PHI nodes with some 536 /// incoming value. While vectorizing we only handled real values 537 /// that were defined inside the loop and we should have one value for 538 /// each predecessor of its parent basic block. See PR14725. 539 void fixLCSSAPHIs(); 540 541 /// Iteratively sink the scalarized operands of a predicated instruction into 542 /// the block that was created for it. 543 void sinkScalarOperands(Instruction *PredInst); 544 545 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 546 /// represented as. 547 void truncateToMinimalBitwidths(); 548 549 /// Insert the new loop to the loop hierarchy and pass manager 550 /// and update the analysis passes. 551 void updateAnalysis(); 552 553 /// Create a broadcast instruction. This method generates a broadcast 554 /// instruction (shuffle) for loop invariant values and for the induction 555 /// value. If this is the induction variable then we extend it to N, N+1, ... 556 /// this is needed because each iteration in the loop corresponds to a SIMD 557 /// element. 558 virtual Value *getBroadcastInstrs(Value *V); 559 560 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 561 /// to each vector element of Val. The sequence starts at StartIndex. 562 /// \p Opcode is relevant for FP induction variable. 563 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 564 Instruction::BinaryOps Opcode = 565 Instruction::BinaryOpsEnd); 566 567 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 568 /// variable on which to base the steps, \p Step is the size of the step, and 569 /// \p EntryVal is the value from the original loop that maps to the steps. 570 /// Note that \p EntryVal doesn't have to be an induction variable - it 571 /// can also be a truncate instruction. 572 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 573 const InductionDescriptor &ID); 574 575 /// Create a vector induction phi node based on an existing scalar one. \p 576 /// EntryVal is the value from the original loop that maps to the vector phi 577 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 578 /// truncate instruction, instead of widening the original IV, we widen a 579 /// version of the IV truncated to \p EntryVal's type. 580 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 581 Value *Step, Instruction *EntryVal); 582 583 /// Returns true if an instruction \p I should be scalarized instead of 584 /// vectorized for the chosen vectorization factor. 585 bool shouldScalarizeInstruction(Instruction *I) const; 586 587 /// Returns true if we should generate a scalar version of \p IV. 588 bool needsScalarInduction(Instruction *IV) const; 589 590 /// If there is a cast involved in the induction variable \p ID, which should 591 /// be ignored in the vectorized loop body, this function records the 592 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 593 /// cast. We had already proved that the casted Phi is equal to the uncasted 594 /// Phi in the vectorized loop (under a runtime guard), and therefore 595 /// there is no need to vectorize the cast - the same value can be used in the 596 /// vector loop for both the Phi and the cast. 597 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 598 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 599 /// 600 /// \p EntryVal is the value from the original loop that maps to the vector 601 /// phi node and is used to distinguish what is the IV currently being 602 /// processed - original one (if \p EntryVal is a phi corresponding to the 603 /// original IV) or the "newly-created" one based on the proof mentioned above 604 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 605 /// latter case \p EntryVal is a TruncInst and we must not record anything for 606 /// that IV, but it's error-prone to expect callers of this routine to care 607 /// about that, hence this explicit parameter. 608 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 609 const Instruction *EntryVal, 610 Value *VectorLoopValue, 611 unsigned Part, 612 unsigned Lane = UINT_MAX); 613 614 /// Generate a shuffle sequence that will reverse the vector Vec. 615 virtual Value *reverseVector(Value *Vec); 616 617 /// Returns (and creates if needed) the original loop trip count. 618 Value *getOrCreateTripCount(Loop *NewLoop); 619 620 /// Returns (and creates if needed) the trip count of the widened loop. 621 Value *getOrCreateVectorTripCount(Loop *NewLoop); 622 623 /// Returns a bitcasted value to the requested vector type. 624 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 625 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 626 const DataLayout &DL); 627 628 /// Emit a bypass check to see if the vector trip count is zero, including if 629 /// it overflows. 630 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 631 632 /// Emit a bypass check to see if all of the SCEV assumptions we've 633 /// had to make are correct. 634 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 635 636 /// Emit bypass checks to check any memory assumptions we may have made. 637 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 638 639 /// Compute the transformed value of Index at offset StartValue using step 640 /// StepValue. 641 /// For integer induction, returns StartValue + Index * StepValue. 642 /// For pointer induction, returns StartValue[Index * StepValue]. 643 /// FIXME: The newly created binary instructions should contain nsw/nuw 644 /// flags, which can be found from the original scalar operations. 645 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 646 const DataLayout &DL, 647 const InductionDescriptor &ID) const; 648 649 /// Add additional metadata to \p To that was not present on \p Orig. 650 /// 651 /// Currently this is used to add the noalias annotations based on the 652 /// inserted memchecks. Use this for instructions that are *cloned* into the 653 /// vector loop. 654 void addNewMetadata(Instruction *To, const Instruction *Orig); 655 656 /// Add metadata from one instruction to another. 657 /// 658 /// This includes both the original MDs from \p From and additional ones (\see 659 /// addNewMetadata). Use this for *newly created* instructions in the vector 660 /// loop. 661 void addMetadata(Instruction *To, Instruction *From); 662 663 /// Similar to the previous function but it adds the metadata to a 664 /// vector of instructions. 665 void addMetadata(ArrayRef<Value *> To, Instruction *From); 666 667 /// The original loop. 668 Loop *OrigLoop; 669 670 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 671 /// dynamic knowledge to simplify SCEV expressions and converts them to a 672 /// more usable form. 673 PredicatedScalarEvolution &PSE; 674 675 /// Loop Info. 676 LoopInfo *LI; 677 678 /// Dominator Tree. 679 DominatorTree *DT; 680 681 /// Alias Analysis. 682 AliasAnalysis *AA; 683 684 /// Target Library Info. 685 const TargetLibraryInfo *TLI; 686 687 /// Target Transform Info. 688 const TargetTransformInfo *TTI; 689 690 /// Assumption Cache. 691 AssumptionCache *AC; 692 693 /// Interface to emit optimization remarks. 694 OptimizationRemarkEmitter *ORE; 695 696 /// LoopVersioning. It's only set up (non-null) if memchecks were 697 /// used. 698 /// 699 /// This is currently only used to add no-alias metadata based on the 700 /// memchecks. The actually versioning is performed manually. 701 std::unique_ptr<LoopVersioning> LVer; 702 703 /// The vectorization SIMD factor to use. Each vector will have this many 704 /// vector elements. 705 unsigned VF; 706 707 /// The vectorization unroll factor to use. Each scalar is vectorized to this 708 /// many different vector instructions. 709 unsigned UF; 710 711 /// The builder that we use 712 IRBuilder<> Builder; 713 714 // --- Vectorization state --- 715 716 /// The vector-loop preheader. 717 BasicBlock *LoopVectorPreHeader; 718 719 /// The scalar-loop preheader. 720 BasicBlock *LoopScalarPreHeader; 721 722 /// Middle Block between the vector and the scalar. 723 BasicBlock *LoopMiddleBlock; 724 725 /// The ExitBlock of the scalar loop. 726 BasicBlock *LoopExitBlock; 727 728 /// The vector loop body. 729 BasicBlock *LoopVectorBody; 730 731 /// The scalar loop body. 732 BasicBlock *LoopScalarBody; 733 734 /// A list of all bypass blocks. The first block is the entry of the loop. 735 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 736 737 /// The new Induction variable which was added to the new block. 738 PHINode *Induction = nullptr; 739 740 /// The induction variable of the old basic block. 741 PHINode *OldInduction = nullptr; 742 743 /// Maps values from the original loop to their corresponding values in the 744 /// vectorized loop. A key value can map to either vector values, scalar 745 /// values or both kinds of values, depending on whether the key was 746 /// vectorized and scalarized. 747 VectorizerValueMap VectorLoopValueMap; 748 749 /// Store instructions that were predicated. 750 SmallVector<Instruction *, 4> PredicatedInstructions; 751 752 /// Trip count of the original loop. 753 Value *TripCount = nullptr; 754 755 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 756 Value *VectorTripCount = nullptr; 757 758 /// The legality analysis. 759 LoopVectorizationLegality *Legal; 760 761 /// The profitablity analysis. 762 LoopVectorizationCostModel *Cost; 763 764 // Record whether runtime checks are added. 765 bool AddedSafetyChecks = false; 766 767 // Holds the end values for each induction variable. We save the end values 768 // so we can later fix-up the external users of the induction variables. 769 DenseMap<PHINode *, Value *> IVEndValues; 770 771 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 772 // fixed up at the end of vector code generation. 773 SmallVector<PHINode *, 8> OrigPHIsToFix; 774 }; 775 776 class InnerLoopUnroller : public InnerLoopVectorizer { 777 public: 778 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 779 LoopInfo *LI, DominatorTree *DT, 780 const TargetLibraryInfo *TLI, 781 const TargetTransformInfo *TTI, AssumptionCache *AC, 782 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 783 LoopVectorizationLegality *LVL, 784 LoopVectorizationCostModel *CM) 785 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 786 UnrollFactor, LVL, CM) {} 787 788 private: 789 Value *getBroadcastInstrs(Value *V) override; 790 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 791 Instruction::BinaryOps Opcode = 792 Instruction::BinaryOpsEnd) override; 793 Value *reverseVector(Value *Vec) override; 794 }; 795 796 } // end namespace llvm 797 798 /// Look for a meaningful debug location on the instruction or it's 799 /// operands. 800 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 801 if (!I) 802 return I; 803 804 DebugLoc Empty; 805 if (I->getDebugLoc() != Empty) 806 return I; 807 808 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 809 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 810 if (OpInst->getDebugLoc() != Empty) 811 return OpInst; 812 } 813 814 return I; 815 } 816 817 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 818 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 819 const DILocation *DIL = Inst->getDebugLoc(); 820 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 821 !isa<DbgInfoIntrinsic>(Inst)) { 822 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 823 if (NewDIL) 824 B.SetCurrentDebugLocation(NewDIL.getValue()); 825 else 826 LLVM_DEBUG(dbgs() 827 << "Failed to create new discriminator: " 828 << DIL->getFilename() << " Line: " << DIL->getLine()); 829 } 830 else 831 B.SetCurrentDebugLocation(DIL); 832 } else 833 B.SetCurrentDebugLocation(DebugLoc()); 834 } 835 836 /// Write a record \p DebugMsg about vectorization failure to the debug 837 /// output stream. If \p I is passed, it is an instruction that prevents 838 /// vectorization. 839 #ifndef NDEBUG 840 static void debugVectorizationFailure(const StringRef DebugMsg, 841 Instruction *I) { 842 dbgs() << "LV: Not vectorizing: " << DebugMsg; 843 if (I != nullptr) 844 dbgs() << " " << *I; 845 else 846 dbgs() << '.'; 847 dbgs() << '\n'; 848 } 849 #endif 850 851 /// Create an analysis remark that explains why vectorization failed 852 /// 853 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 854 /// RemarkName is the identifier for the remark. If \p I is passed it is an 855 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 856 /// the location of the remark. \return the remark object that can be 857 /// streamed to. 858 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 859 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 860 Value *CodeRegion = TheLoop->getHeader(); 861 DebugLoc DL = TheLoop->getStartLoc(); 862 863 if (I) { 864 CodeRegion = I->getParent(); 865 // If there is no debug location attached to the instruction, revert back to 866 // using the loop's. 867 if (I->getDebugLoc()) 868 DL = I->getDebugLoc(); 869 } 870 871 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 872 R << "loop not vectorized: "; 873 return R; 874 } 875 876 namespace llvm { 877 878 void reportVectorizationFailure(const StringRef DebugMsg, 879 const StringRef OREMsg, const StringRef ORETag, 880 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 881 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 882 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 883 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 884 ORETag, TheLoop, I) << OREMsg); 885 } 886 887 } // end namespace llvm 888 889 #ifndef NDEBUG 890 /// \return string containing a file name and a line # for the given loop. 891 static std::string getDebugLocString(const Loop *L) { 892 std::string Result; 893 if (L) { 894 raw_string_ostream OS(Result); 895 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 896 LoopDbgLoc.print(OS); 897 else 898 // Just print the module name. 899 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 900 OS.flush(); 901 } 902 return Result; 903 } 904 #endif 905 906 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 907 const Instruction *Orig) { 908 // If the loop was versioned with memchecks, add the corresponding no-alias 909 // metadata. 910 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 911 LVer->annotateInstWithNoAlias(To, Orig); 912 } 913 914 void InnerLoopVectorizer::addMetadata(Instruction *To, 915 Instruction *From) { 916 propagateMetadata(To, From); 917 addNewMetadata(To, From); 918 } 919 920 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 921 Instruction *From) { 922 for (Value *V : To) { 923 if (Instruction *I = dyn_cast<Instruction>(V)) 924 addMetadata(I, From); 925 } 926 } 927 928 namespace llvm { 929 930 // Loop vectorization cost-model hints how the scalar epilogue loop should be 931 // lowered. 932 enum ScalarEpilogueLowering { 933 934 // The default: allowing scalar epilogues. 935 CM_ScalarEpilogueAllowed, 936 937 // Vectorization with OptForSize: don't allow epilogues. 938 CM_ScalarEpilogueNotAllowedOptSize, 939 940 // A special case of vectorisation with OptForSize: loops with a very small 941 // trip count are considered for vectorization under OptForSize, thereby 942 // making sure the cost of their loop body is dominant, free of runtime 943 // guards and scalar iteration overheads. 944 CM_ScalarEpilogueNotAllowedLowTripLoop, 945 946 // Loop hint predicate indicating an epilogue is undesired. 947 CM_ScalarEpilogueNotNeededUsePredicate 948 }; 949 950 /// LoopVectorizationCostModel - estimates the expected speedups due to 951 /// vectorization. 952 /// In many cases vectorization is not profitable. This can happen because of 953 /// a number of reasons. In this class we mainly attempt to predict the 954 /// expected speedup/slowdowns due to the supported instruction set. We use the 955 /// TargetTransformInfo to query the different backends for the cost of 956 /// different operations. 957 class LoopVectorizationCostModel { 958 public: 959 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 960 PredicatedScalarEvolution &PSE, LoopInfo *LI, 961 LoopVectorizationLegality *Legal, 962 const TargetTransformInfo &TTI, 963 const TargetLibraryInfo *TLI, DemandedBits *DB, 964 AssumptionCache *AC, 965 OptimizationRemarkEmitter *ORE, const Function *F, 966 const LoopVectorizeHints *Hints, 967 InterleavedAccessInfo &IAI) 968 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 969 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 970 Hints(Hints), InterleaveInfo(IAI) {} 971 972 /// \return An upper bound for the vectorization factor, or None if 973 /// vectorization and interleaving should be avoided up front. 974 Optional<unsigned> computeMaxVF(); 975 976 /// \return True if runtime checks are required for vectorization, and false 977 /// otherwise. 978 bool runtimeChecksRequired(); 979 980 /// \return The most profitable vectorization factor and the cost of that VF. 981 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 982 /// then this vectorization factor will be selected if vectorization is 983 /// possible. 984 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 985 986 /// Setup cost-based decisions for user vectorization factor. 987 void selectUserVectorizationFactor(unsigned UserVF) { 988 collectUniformsAndScalars(UserVF); 989 collectInstsToScalarize(UserVF); 990 } 991 992 /// \return The size (in bits) of the smallest and widest types in the code 993 /// that needs to be vectorized. We ignore values that remain scalar such as 994 /// 64 bit loop indices. 995 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 996 997 /// \return The desired interleave count. 998 /// If interleave count has been specified by metadata it will be returned. 999 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1000 /// are the selected vectorization factor and the cost of the selected VF. 1001 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1002 1003 /// Memory access instruction may be vectorized in more than one way. 1004 /// Form of instruction after vectorization depends on cost. 1005 /// This function takes cost-based decisions for Load/Store instructions 1006 /// and collects them in a map. This decisions map is used for building 1007 /// the lists of loop-uniform and loop-scalar instructions. 1008 /// The calculated cost is saved with widening decision in order to 1009 /// avoid redundant calculations. 1010 void setCostBasedWideningDecision(unsigned VF); 1011 1012 /// A struct that represents some properties of the register usage 1013 /// of a loop. 1014 struct RegisterUsage { 1015 /// Holds the number of loop invariant values that are used in the loop. 1016 /// The key is ClassID of target-provided register class. 1017 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1018 /// Holds the maximum number of concurrent live intervals in the loop. 1019 /// The key is ClassID of target-provided register class. 1020 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1021 }; 1022 1023 /// \return Returns information about the register usages of the loop for the 1024 /// given vectorization factors. 1025 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1026 1027 /// Collect values we want to ignore in the cost model. 1028 void collectValuesToIgnore(); 1029 1030 /// \returns The smallest bitwidth each instruction can be represented with. 1031 /// The vector equivalents of these instructions should be truncated to this 1032 /// type. 1033 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1034 return MinBWs; 1035 } 1036 1037 /// \returns True if it is more profitable to scalarize instruction \p I for 1038 /// vectorization factor \p VF. 1039 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1040 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1041 1042 // Cost model is not run in the VPlan-native path - return conservative 1043 // result until this changes. 1044 if (EnableVPlanNativePath) 1045 return false; 1046 1047 auto Scalars = InstsToScalarize.find(VF); 1048 assert(Scalars != InstsToScalarize.end() && 1049 "VF not yet analyzed for scalarization profitability"); 1050 return Scalars->second.find(I) != Scalars->second.end(); 1051 } 1052 1053 /// Returns true if \p I is known to be uniform after vectorization. 1054 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1055 if (VF == 1) 1056 return true; 1057 1058 // Cost model is not run in the VPlan-native path - return conservative 1059 // result until this changes. 1060 if (EnableVPlanNativePath) 1061 return false; 1062 1063 auto UniformsPerVF = Uniforms.find(VF); 1064 assert(UniformsPerVF != Uniforms.end() && 1065 "VF not yet analyzed for uniformity"); 1066 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 1067 } 1068 1069 /// Returns true if \p I is known to be scalar after vectorization. 1070 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1071 if (VF == 1) 1072 return true; 1073 1074 // Cost model is not run in the VPlan-native path - return conservative 1075 // result until this changes. 1076 if (EnableVPlanNativePath) 1077 return false; 1078 1079 auto ScalarsPerVF = Scalars.find(VF); 1080 assert(ScalarsPerVF != Scalars.end() && 1081 "Scalar values are not calculated for VF"); 1082 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 1083 } 1084 1085 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1086 /// for vectorization factor \p VF. 1087 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1088 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1089 !isProfitableToScalarize(I, VF) && 1090 !isScalarAfterVectorization(I, VF); 1091 } 1092 1093 /// Decision that was taken during cost calculation for memory instruction. 1094 enum InstWidening { 1095 CM_Unknown, 1096 CM_Widen, // For consecutive accesses with stride +1. 1097 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1098 CM_Interleave, 1099 CM_GatherScatter, 1100 CM_Scalarize 1101 }; 1102 1103 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1104 /// instruction \p I and vector width \p VF. 1105 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1106 unsigned Cost) { 1107 assert(VF >= 2 && "Expected VF >=2"); 1108 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1109 } 1110 1111 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1112 /// interleaving group \p Grp and vector width \p VF. 1113 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1114 InstWidening W, unsigned Cost) { 1115 assert(VF >= 2 && "Expected VF >=2"); 1116 /// Broadcast this decicion to all instructions inside the group. 1117 /// But the cost will be assigned to one instruction only. 1118 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1119 if (auto *I = Grp->getMember(i)) { 1120 if (Grp->getInsertPos() == I) 1121 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1122 else 1123 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1124 } 1125 } 1126 } 1127 1128 /// Return the cost model decision for the given instruction \p I and vector 1129 /// width \p VF. Return CM_Unknown if this instruction did not pass 1130 /// through the cost modeling. 1131 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1132 assert(VF >= 2 && "Expected VF >=2"); 1133 1134 // Cost model is not run in the VPlan-native path - return conservative 1135 // result until this changes. 1136 if (EnableVPlanNativePath) 1137 return CM_GatherScatter; 1138 1139 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1140 auto Itr = WideningDecisions.find(InstOnVF); 1141 if (Itr == WideningDecisions.end()) 1142 return CM_Unknown; 1143 return Itr->second.first; 1144 } 1145 1146 /// Return the vectorization cost for the given instruction \p I and vector 1147 /// width \p VF. 1148 unsigned getWideningCost(Instruction *I, unsigned VF) { 1149 assert(VF >= 2 && "Expected VF >=2"); 1150 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1151 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1152 "The cost is not calculated"); 1153 return WideningDecisions[InstOnVF].second; 1154 } 1155 1156 /// Return True if instruction \p I is an optimizable truncate whose operand 1157 /// is an induction variable. Such a truncate will be removed by adding a new 1158 /// induction variable with the destination type. 1159 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1160 // If the instruction is not a truncate, return false. 1161 auto *Trunc = dyn_cast<TruncInst>(I); 1162 if (!Trunc) 1163 return false; 1164 1165 // Get the source and destination types of the truncate. 1166 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1167 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1168 1169 // If the truncate is free for the given types, return false. Replacing a 1170 // free truncate with an induction variable would add an induction variable 1171 // update instruction to each iteration of the loop. We exclude from this 1172 // check the primary induction variable since it will need an update 1173 // instruction regardless. 1174 Value *Op = Trunc->getOperand(0); 1175 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1176 return false; 1177 1178 // If the truncated value is not an induction variable, return false. 1179 return Legal->isInductionPhi(Op); 1180 } 1181 1182 /// Collects the instructions to scalarize for each predicated instruction in 1183 /// the loop. 1184 void collectInstsToScalarize(unsigned VF); 1185 1186 /// Collect Uniform and Scalar values for the given \p VF. 1187 /// The sets depend on CM decision for Load/Store instructions 1188 /// that may be vectorized as interleave, gather-scatter or scalarized. 1189 void collectUniformsAndScalars(unsigned VF) { 1190 // Do the analysis once. 1191 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1192 return; 1193 setCostBasedWideningDecision(VF); 1194 collectLoopUniforms(VF); 1195 collectLoopScalars(VF); 1196 } 1197 1198 /// Returns true if the target machine supports masked store operation 1199 /// for the given \p DataType and kind of access to \p Ptr. 1200 bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1201 return Legal->isConsecutivePtr(Ptr) && 1202 TTI.isLegalMaskedStore(DataType, Alignment); 1203 } 1204 1205 /// Returns true if the target machine supports masked load operation 1206 /// for the given \p DataType and kind of access to \p Ptr. 1207 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1208 return Legal->isConsecutivePtr(Ptr) && 1209 TTI.isLegalMaskedLoad(DataType, Alignment); 1210 } 1211 1212 /// Returns true if the target machine supports masked scatter operation 1213 /// for the given \p DataType. 1214 bool isLegalMaskedScatter(Type *DataType) { 1215 return TTI.isLegalMaskedScatter(DataType); 1216 } 1217 1218 /// Returns true if the target machine supports masked gather operation 1219 /// for the given \p DataType. 1220 bool isLegalMaskedGather(Type *DataType) { 1221 return TTI.isLegalMaskedGather(DataType); 1222 } 1223 1224 /// Returns true if the target machine can represent \p V as a masked gather 1225 /// or scatter operation. 1226 bool isLegalGatherOrScatter(Value *V) { 1227 bool LI = isa<LoadInst>(V); 1228 bool SI = isa<StoreInst>(V); 1229 if (!LI && !SI) 1230 return false; 1231 auto *Ty = getMemInstValueType(V); 1232 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1233 } 1234 1235 /// Returns true if \p I is an instruction that will be scalarized with 1236 /// predication. Such instructions include conditional stores and 1237 /// instructions that may divide by zero. 1238 /// If a non-zero VF has been calculated, we check if I will be scalarized 1239 /// predication for that VF. 1240 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1241 1242 // Returns true if \p I is an instruction that will be predicated either 1243 // through scalar predication or masked load/store or masked gather/scatter. 1244 // Superset of instructions that return true for isScalarWithPredication. 1245 bool isPredicatedInst(Instruction *I) { 1246 if (!blockNeedsPredication(I->getParent())) 1247 return false; 1248 // Loads and stores that need some form of masked operation are predicated 1249 // instructions. 1250 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1251 return Legal->isMaskRequired(I); 1252 return isScalarWithPredication(I); 1253 } 1254 1255 /// Returns true if \p I is a memory instruction with consecutive memory 1256 /// access that can be widened. 1257 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1258 1259 /// Returns true if \p I is a memory instruction in an interleaved-group 1260 /// of memory accesses that can be vectorized with wide vector loads/stores 1261 /// and shuffles. 1262 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1263 1264 /// Check if \p Instr belongs to any interleaved access group. 1265 bool isAccessInterleaved(Instruction *Instr) { 1266 return InterleaveInfo.isInterleaved(Instr); 1267 } 1268 1269 /// Get the interleaved access group that \p Instr belongs to. 1270 const InterleaveGroup<Instruction> * 1271 getInterleavedAccessGroup(Instruction *Instr) { 1272 return InterleaveInfo.getInterleaveGroup(Instr); 1273 } 1274 1275 /// Returns true if an interleaved group requires a scalar iteration 1276 /// to handle accesses with gaps, and there is nothing preventing us from 1277 /// creating a scalar epilogue. 1278 bool requiresScalarEpilogue() const { 1279 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1280 } 1281 1282 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1283 /// loop hint annotation. 1284 bool isScalarEpilogueAllowed() const { 1285 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1286 } 1287 1288 /// Returns true if all loop blocks should be masked to fold tail loop. 1289 bool foldTailByMasking() const { return FoldTailByMasking; } 1290 1291 bool blockNeedsPredication(BasicBlock *BB) { 1292 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1293 } 1294 1295 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1296 /// with factor VF. Return the cost of the instruction, including 1297 /// scalarization overhead if it's needed. 1298 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1299 1300 /// Estimate cost of a call instruction CI if it were vectorized with factor 1301 /// VF. Return the cost of the instruction, including scalarization overhead 1302 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1303 /// scalarized - 1304 /// i.e. either vector version isn't available, or is too expensive. 1305 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1306 1307 private: 1308 unsigned NumPredStores = 0; 1309 1310 /// \return An upper bound for the vectorization factor, larger than zero. 1311 /// One is returned if vectorization should best be avoided due to cost. 1312 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1313 1314 /// The vectorization cost is a combination of the cost itself and a boolean 1315 /// indicating whether any of the contributing operations will actually 1316 /// operate on 1317 /// vector values after type legalization in the backend. If this latter value 1318 /// is 1319 /// false, then all operations will be scalarized (i.e. no vectorization has 1320 /// actually taken place). 1321 using VectorizationCostTy = std::pair<unsigned, bool>; 1322 1323 /// Returns the expected execution cost. The unit of the cost does 1324 /// not matter because we use the 'cost' units to compare different 1325 /// vector widths. The cost that is returned is *not* normalized by 1326 /// the factor width. 1327 VectorizationCostTy expectedCost(unsigned VF); 1328 1329 /// Returns the execution time cost of an instruction for a given vector 1330 /// width. Vector width of one means scalar. 1331 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1332 1333 /// The cost-computation logic from getInstructionCost which provides 1334 /// the vector type as an output parameter. 1335 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1336 1337 /// Calculate vectorization cost of memory instruction \p I. 1338 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1339 1340 /// The cost computation for scalarized memory instruction. 1341 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1342 1343 /// The cost computation for interleaving group of memory instructions. 1344 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1345 1346 /// The cost computation for Gather/Scatter instruction. 1347 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1348 1349 /// The cost computation for widening instruction \p I with consecutive 1350 /// memory access. 1351 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1352 1353 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1354 /// Load: scalar load + broadcast. 1355 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1356 /// element) 1357 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1358 1359 /// Estimate the overhead of scalarizing an instruction. This is a 1360 /// convenience wrapper for the type-based getScalarizationOverhead API. 1361 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1362 1363 /// Returns whether the instruction is a load or store and will be a emitted 1364 /// as a vector operation. 1365 bool isConsecutiveLoadOrStore(Instruction *I); 1366 1367 /// Returns true if an artificially high cost for emulated masked memrefs 1368 /// should be used. 1369 bool useEmulatedMaskMemRefHack(Instruction *I); 1370 1371 /// Map of scalar integer values to the smallest bitwidth they can be legally 1372 /// represented as. The vector equivalents of these values should be truncated 1373 /// to this type. 1374 MapVector<Instruction *, uint64_t> MinBWs; 1375 1376 /// A type representing the costs for instructions if they were to be 1377 /// scalarized rather than vectorized. The entries are Instruction-Cost 1378 /// pairs. 1379 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1380 1381 /// A set containing all BasicBlocks that are known to present after 1382 /// vectorization as a predicated block. 1383 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1384 1385 /// Records whether it is allowed to have the original scalar loop execute at 1386 /// least once. This may be needed as a fallback loop in case runtime 1387 /// aliasing/dependence checks fail, or to handle the tail/remainder 1388 /// iterations when the trip count is unknown or doesn't divide by the VF, 1389 /// or as a peel-loop to handle gaps in interleave-groups. 1390 /// Under optsize and when the trip count is very small we don't allow any 1391 /// iterations to execute in the scalar loop. 1392 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1393 1394 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1395 bool FoldTailByMasking = false; 1396 1397 /// A map holding scalar costs for different vectorization factors. The 1398 /// presence of a cost for an instruction in the mapping indicates that the 1399 /// instruction will be scalarized when vectorizing with the associated 1400 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1401 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1402 1403 /// Holds the instructions known to be uniform after vectorization. 1404 /// The data is collected per VF. 1405 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1406 1407 /// Holds the instructions known to be scalar after vectorization. 1408 /// The data is collected per VF. 1409 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1410 1411 /// Holds the instructions (address computations) that are forced to be 1412 /// scalarized. 1413 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1414 1415 /// Returns the expected difference in cost from scalarizing the expression 1416 /// feeding a predicated instruction \p PredInst. The instructions to 1417 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1418 /// non-negative return value implies the expression will be scalarized. 1419 /// Currently, only single-use chains are considered for scalarization. 1420 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1421 unsigned VF); 1422 1423 /// Collect the instructions that are uniform after vectorization. An 1424 /// instruction is uniform if we represent it with a single scalar value in 1425 /// the vectorized loop corresponding to each vector iteration. Examples of 1426 /// uniform instructions include pointer operands of consecutive or 1427 /// interleaved memory accesses. Note that although uniformity implies an 1428 /// instruction will be scalar, the reverse is not true. In general, a 1429 /// scalarized instruction will be represented by VF scalar values in the 1430 /// vectorized loop, each corresponding to an iteration of the original 1431 /// scalar loop. 1432 void collectLoopUniforms(unsigned VF); 1433 1434 /// Collect the instructions that are scalar after vectorization. An 1435 /// instruction is scalar if it is known to be uniform or will be scalarized 1436 /// during vectorization. Non-uniform scalarized instructions will be 1437 /// represented by VF values in the vectorized loop, each corresponding to an 1438 /// iteration of the original scalar loop. 1439 void collectLoopScalars(unsigned VF); 1440 1441 /// Keeps cost model vectorization decision and cost for instructions. 1442 /// Right now it is used for memory instructions only. 1443 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1444 std::pair<InstWidening, unsigned>>; 1445 1446 DecisionList WideningDecisions; 1447 1448 /// Returns true if \p V is expected to be vectorized and it needs to be 1449 /// extracted. 1450 bool needsExtract(Value *V, unsigned VF) const { 1451 Instruction *I = dyn_cast<Instruction>(V); 1452 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1453 return false; 1454 1455 // Assume we can vectorize V (and hence we need extraction) if the 1456 // scalars are not computed yet. This can happen, because it is called 1457 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1458 // the scalars are collected. That should be a safe assumption in most 1459 // cases, because we check if the operands have vectorizable types 1460 // beforehand in LoopVectorizationLegality. 1461 return Scalars.find(VF) == Scalars.end() || 1462 !isScalarAfterVectorization(I, VF); 1463 }; 1464 1465 /// Returns a range containing only operands needing to be extracted. 1466 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1467 unsigned VF) { 1468 return SmallVector<Value *, 4>(make_filter_range( 1469 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1470 } 1471 1472 public: 1473 /// The loop that we evaluate. 1474 Loop *TheLoop; 1475 1476 /// Predicated scalar evolution analysis. 1477 PredicatedScalarEvolution &PSE; 1478 1479 /// Loop Info analysis. 1480 LoopInfo *LI; 1481 1482 /// Vectorization legality. 1483 LoopVectorizationLegality *Legal; 1484 1485 /// Vector target information. 1486 const TargetTransformInfo &TTI; 1487 1488 /// Target Library Info. 1489 const TargetLibraryInfo *TLI; 1490 1491 /// Demanded bits analysis. 1492 DemandedBits *DB; 1493 1494 /// Assumption cache. 1495 AssumptionCache *AC; 1496 1497 /// Interface to emit optimization remarks. 1498 OptimizationRemarkEmitter *ORE; 1499 1500 const Function *TheFunction; 1501 1502 /// Loop Vectorize Hint. 1503 const LoopVectorizeHints *Hints; 1504 1505 /// The interleave access information contains groups of interleaved accesses 1506 /// with the same stride and close to each other. 1507 InterleavedAccessInfo &InterleaveInfo; 1508 1509 /// Values to ignore in the cost model. 1510 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1511 1512 /// Values to ignore in the cost model when VF > 1. 1513 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1514 }; 1515 1516 } // end namespace llvm 1517 1518 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1519 // vectorization. The loop needs to be annotated with #pragma omp simd 1520 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1521 // vector length information is not provided, vectorization is not considered 1522 // explicit. Interleave hints are not allowed either. These limitations will be 1523 // relaxed in the future. 1524 // Please, note that we are currently forced to abuse the pragma 'clang 1525 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1526 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1527 // provides *explicit vectorization hints* (LV can bypass legal checks and 1528 // assume that vectorization is legal). However, both hints are implemented 1529 // using the same metadata (llvm.loop.vectorize, processed by 1530 // LoopVectorizeHints). This will be fixed in the future when the native IR 1531 // representation for pragma 'omp simd' is introduced. 1532 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1533 OptimizationRemarkEmitter *ORE) { 1534 assert(!OuterLp->empty() && "This is not an outer loop"); 1535 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1536 1537 // Only outer loops with an explicit vectorization hint are supported. 1538 // Unannotated outer loops are ignored. 1539 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1540 return false; 1541 1542 Function *Fn = OuterLp->getHeader()->getParent(); 1543 if (!Hints.allowVectorization(Fn, OuterLp, 1544 true /*VectorizeOnlyWhenForced*/)) { 1545 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1546 return false; 1547 } 1548 1549 if (Hints.getInterleave() > 1) { 1550 // TODO: Interleave support is future work. 1551 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1552 "outer loops.\n"); 1553 Hints.emitRemarkWithHints(); 1554 return false; 1555 } 1556 1557 return true; 1558 } 1559 1560 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1561 OptimizationRemarkEmitter *ORE, 1562 SmallVectorImpl<Loop *> &V) { 1563 // Collect inner loops and outer loops without irreducible control flow. For 1564 // now, only collect outer loops that have explicit vectorization hints. If we 1565 // are stress testing the VPlan H-CFG construction, we collect the outermost 1566 // loop of every loop nest. 1567 if (L.empty() || VPlanBuildStressTest || 1568 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1569 LoopBlocksRPO RPOT(&L); 1570 RPOT.perform(LI); 1571 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1572 V.push_back(&L); 1573 // TODO: Collect inner loops inside marked outer loops in case 1574 // vectorization fails for the outer loop. Do not invoke 1575 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1576 // already known to be reducible. We can use an inherited attribute for 1577 // that. 1578 return; 1579 } 1580 } 1581 for (Loop *InnerL : L) 1582 collectSupportedLoops(*InnerL, LI, ORE, V); 1583 } 1584 1585 namespace { 1586 1587 /// The LoopVectorize Pass. 1588 struct LoopVectorize : public FunctionPass { 1589 /// Pass identification, replacement for typeid 1590 static char ID; 1591 1592 LoopVectorizePass Impl; 1593 1594 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1595 bool VectorizeOnlyWhenForced = false) 1596 : FunctionPass(ID) { 1597 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1598 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1599 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1600 } 1601 1602 bool runOnFunction(Function &F) override { 1603 if (skipFunction(F)) 1604 return false; 1605 1606 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1607 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1608 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1609 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1610 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1611 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1612 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1613 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1614 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1615 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1616 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1617 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1618 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1619 1620 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1621 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1622 1623 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1624 GetLAA, *ORE, PSI); 1625 } 1626 1627 void getAnalysisUsage(AnalysisUsage &AU) const override { 1628 AU.addRequired<AssumptionCacheTracker>(); 1629 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1630 AU.addRequired<DominatorTreeWrapperPass>(); 1631 AU.addRequired<LoopInfoWrapperPass>(); 1632 AU.addRequired<ScalarEvolutionWrapperPass>(); 1633 AU.addRequired<TargetTransformInfoWrapperPass>(); 1634 AU.addRequired<AAResultsWrapperPass>(); 1635 AU.addRequired<LoopAccessLegacyAnalysis>(); 1636 AU.addRequired<DemandedBitsWrapperPass>(); 1637 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1638 AU.addRequired<InjectTLIMappingsLegacy>(); 1639 1640 // We currently do not preserve loopinfo/dominator analyses with outer loop 1641 // vectorization. Until this is addressed, mark these analyses as preserved 1642 // only for non-VPlan-native path. 1643 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1644 if (!EnableVPlanNativePath) { 1645 AU.addPreserved<LoopInfoWrapperPass>(); 1646 AU.addPreserved<DominatorTreeWrapperPass>(); 1647 } 1648 1649 AU.addPreserved<BasicAAWrapperPass>(); 1650 AU.addPreserved<GlobalsAAWrapperPass>(); 1651 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1652 } 1653 }; 1654 1655 } // end anonymous namespace 1656 1657 //===----------------------------------------------------------------------===// 1658 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1659 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1660 //===----------------------------------------------------------------------===// 1661 1662 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1663 // We need to place the broadcast of invariant variables outside the loop, 1664 // but only if it's proven safe to do so. Else, broadcast will be inside 1665 // vector loop body. 1666 Instruction *Instr = dyn_cast<Instruction>(V); 1667 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1668 (!Instr || 1669 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1670 // Place the code for broadcasting invariant variables in the new preheader. 1671 IRBuilder<>::InsertPointGuard Guard(Builder); 1672 if (SafeToHoist) 1673 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1674 1675 // Broadcast the scalar into all locations in the vector. 1676 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1677 1678 return Shuf; 1679 } 1680 1681 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1682 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1683 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1684 "Expected either an induction phi-node or a truncate of it!"); 1685 Value *Start = II.getStartValue(); 1686 1687 // Construct the initial value of the vector IV in the vector loop preheader 1688 auto CurrIP = Builder.saveIP(); 1689 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1690 if (isa<TruncInst>(EntryVal)) { 1691 assert(Start->getType()->isIntegerTy() && 1692 "Truncation requires an integer type"); 1693 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1694 Step = Builder.CreateTrunc(Step, TruncType); 1695 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1696 } 1697 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1698 Value *SteppedStart = 1699 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1700 1701 // We create vector phi nodes for both integer and floating-point induction 1702 // variables. Here, we determine the kind of arithmetic we will perform. 1703 Instruction::BinaryOps AddOp; 1704 Instruction::BinaryOps MulOp; 1705 if (Step->getType()->isIntegerTy()) { 1706 AddOp = Instruction::Add; 1707 MulOp = Instruction::Mul; 1708 } else { 1709 AddOp = II.getInductionOpcode(); 1710 MulOp = Instruction::FMul; 1711 } 1712 1713 // Multiply the vectorization factor by the step using integer or 1714 // floating-point arithmetic as appropriate. 1715 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1716 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1717 1718 // Create a vector splat to use in the induction update. 1719 // 1720 // FIXME: If the step is non-constant, we create the vector splat with 1721 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1722 // handle a constant vector splat. 1723 Value *SplatVF = isa<Constant>(Mul) 1724 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1725 : Builder.CreateVectorSplat(VF, Mul); 1726 Builder.restoreIP(CurrIP); 1727 1728 // We may need to add the step a number of times, depending on the unroll 1729 // factor. The last of those goes into the PHI. 1730 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1731 &*LoopVectorBody->getFirstInsertionPt()); 1732 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1733 Instruction *LastInduction = VecInd; 1734 for (unsigned Part = 0; Part < UF; ++Part) { 1735 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1736 1737 if (isa<TruncInst>(EntryVal)) 1738 addMetadata(LastInduction, EntryVal); 1739 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1740 1741 LastInduction = cast<Instruction>(addFastMathFlag( 1742 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1743 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1744 } 1745 1746 // Move the last step to the end of the latch block. This ensures consistent 1747 // placement of all induction updates. 1748 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1749 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1750 auto *ICmp = cast<Instruction>(Br->getCondition()); 1751 LastInduction->moveBefore(ICmp); 1752 LastInduction->setName("vec.ind.next"); 1753 1754 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1755 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1756 } 1757 1758 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1759 return Cost->isScalarAfterVectorization(I, VF) || 1760 Cost->isProfitableToScalarize(I, VF); 1761 } 1762 1763 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1764 if (shouldScalarizeInstruction(IV)) 1765 return true; 1766 auto isScalarInst = [&](User *U) -> bool { 1767 auto *I = cast<Instruction>(U); 1768 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1769 }; 1770 return llvm::any_of(IV->users(), isScalarInst); 1771 } 1772 1773 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1774 const InductionDescriptor &ID, const Instruction *EntryVal, 1775 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1776 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1777 "Expected either an induction phi-node or a truncate of it!"); 1778 1779 // This induction variable is not the phi from the original loop but the 1780 // newly-created IV based on the proof that casted Phi is equal to the 1781 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1782 // re-uses the same InductionDescriptor that original IV uses but we don't 1783 // have to do any recording in this case - that is done when original IV is 1784 // processed. 1785 if (isa<TruncInst>(EntryVal)) 1786 return; 1787 1788 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1789 if (Casts.empty()) 1790 return; 1791 // Only the first Cast instruction in the Casts vector is of interest. 1792 // The rest of the Casts (if exist) have no uses outside the 1793 // induction update chain itself. 1794 Instruction *CastInst = *Casts.begin(); 1795 if (Lane < UINT_MAX) 1796 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1797 else 1798 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1799 } 1800 1801 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1802 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1803 "Primary induction variable must have an integer type"); 1804 1805 auto II = Legal->getInductionVars()->find(IV); 1806 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1807 1808 auto ID = II->second; 1809 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1810 1811 // The scalar value to broadcast. This will be derived from the canonical 1812 // induction variable. 1813 Value *ScalarIV = nullptr; 1814 1815 // The value from the original loop to which we are mapping the new induction 1816 // variable. 1817 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1818 1819 // True if we have vectorized the induction variable. 1820 auto VectorizedIV = false; 1821 1822 // Determine if we want a scalar version of the induction variable. This is 1823 // true if the induction variable itself is not widened, or if it has at 1824 // least one user in the loop that is not widened. 1825 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1826 1827 // Generate code for the induction step. Note that induction steps are 1828 // required to be loop-invariant 1829 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1830 "Induction step should be loop invariant"); 1831 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1832 Value *Step = nullptr; 1833 if (PSE.getSE()->isSCEVable(IV->getType())) { 1834 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1835 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1836 LoopVectorPreHeader->getTerminator()); 1837 } else { 1838 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1839 } 1840 1841 // Try to create a new independent vector induction variable. If we can't 1842 // create the phi node, we will splat the scalar induction variable in each 1843 // loop iteration. 1844 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1845 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1846 VectorizedIV = true; 1847 } 1848 1849 // If we haven't yet vectorized the induction variable, or if we will create 1850 // a scalar one, we need to define the scalar induction variable and step 1851 // values. If we were given a truncation type, truncate the canonical 1852 // induction variable and step. Otherwise, derive these values from the 1853 // induction descriptor. 1854 if (!VectorizedIV || NeedsScalarIV) { 1855 ScalarIV = Induction; 1856 if (IV != OldInduction) { 1857 ScalarIV = IV->getType()->isIntegerTy() 1858 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1859 : Builder.CreateCast(Instruction::SIToFP, Induction, 1860 IV->getType()); 1861 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1862 ScalarIV->setName("offset.idx"); 1863 } 1864 if (Trunc) { 1865 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1866 assert(Step->getType()->isIntegerTy() && 1867 "Truncation requires an integer step"); 1868 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1869 Step = Builder.CreateTrunc(Step, TruncType); 1870 } 1871 } 1872 1873 // If we haven't yet vectorized the induction variable, splat the scalar 1874 // induction variable, and build the necessary step vectors. 1875 // TODO: Don't do it unless the vectorized IV is really required. 1876 if (!VectorizedIV) { 1877 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1878 for (unsigned Part = 0; Part < UF; ++Part) { 1879 Value *EntryPart = 1880 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1881 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1882 if (Trunc) 1883 addMetadata(EntryPart, Trunc); 1884 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1885 } 1886 } 1887 1888 // If an induction variable is only used for counting loop iterations or 1889 // calculating addresses, it doesn't need to be widened. Create scalar steps 1890 // that can be used by instructions we will later scalarize. Note that the 1891 // addition of the scalar steps will not increase the number of instructions 1892 // in the loop in the common case prior to InstCombine. We will be trading 1893 // one vector extract for each scalar step. 1894 if (NeedsScalarIV) 1895 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1896 } 1897 1898 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1899 Instruction::BinaryOps BinOp) { 1900 // Create and check the types. 1901 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1902 int VLen = Val->getType()->getVectorNumElements(); 1903 1904 Type *STy = Val->getType()->getScalarType(); 1905 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1906 "Induction Step must be an integer or FP"); 1907 assert(Step->getType() == STy && "Step has wrong type"); 1908 1909 SmallVector<Constant *, 8> Indices; 1910 1911 if (STy->isIntegerTy()) { 1912 // Create a vector of consecutive numbers from zero to VF. 1913 for (int i = 0; i < VLen; ++i) 1914 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1915 1916 // Add the consecutive indices to the vector value. 1917 Constant *Cv = ConstantVector::get(Indices); 1918 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1919 Step = Builder.CreateVectorSplat(VLen, Step); 1920 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1921 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1922 // which can be found from the original scalar operations. 1923 Step = Builder.CreateMul(Cv, Step); 1924 return Builder.CreateAdd(Val, Step, "induction"); 1925 } 1926 1927 // Floating point induction. 1928 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1929 "Binary Opcode should be specified for FP induction"); 1930 // Create a vector of consecutive numbers from zero to VF. 1931 for (int i = 0; i < VLen; ++i) 1932 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1933 1934 // Add the consecutive indices to the vector value. 1935 Constant *Cv = ConstantVector::get(Indices); 1936 1937 Step = Builder.CreateVectorSplat(VLen, Step); 1938 1939 // Floating point operations had to be 'fast' to enable the induction. 1940 FastMathFlags Flags; 1941 Flags.setFast(); 1942 1943 Value *MulOp = Builder.CreateFMul(Cv, Step); 1944 if (isa<Instruction>(MulOp)) 1945 // Have to check, MulOp may be a constant 1946 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1947 1948 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1949 if (isa<Instruction>(BOp)) 1950 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1951 return BOp; 1952 } 1953 1954 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1955 Instruction *EntryVal, 1956 const InductionDescriptor &ID) { 1957 // We shouldn't have to build scalar steps if we aren't vectorizing. 1958 assert(VF > 1 && "VF should be greater than one"); 1959 1960 // Get the value type and ensure it and the step have the same integer type. 1961 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1962 assert(ScalarIVTy == Step->getType() && 1963 "Val and Step should have the same type"); 1964 1965 // We build scalar steps for both integer and floating-point induction 1966 // variables. Here, we determine the kind of arithmetic we will perform. 1967 Instruction::BinaryOps AddOp; 1968 Instruction::BinaryOps MulOp; 1969 if (ScalarIVTy->isIntegerTy()) { 1970 AddOp = Instruction::Add; 1971 MulOp = Instruction::Mul; 1972 } else { 1973 AddOp = ID.getInductionOpcode(); 1974 MulOp = Instruction::FMul; 1975 } 1976 1977 // Determine the number of scalars we need to generate for each unroll 1978 // iteration. If EntryVal is uniform, we only need to generate the first 1979 // lane. Otherwise, we generate all VF values. 1980 unsigned Lanes = 1981 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1982 : VF; 1983 // Compute the scalar steps and save the results in VectorLoopValueMap. 1984 for (unsigned Part = 0; Part < UF; ++Part) { 1985 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1986 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1987 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1988 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1989 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1990 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1991 } 1992 } 1993 } 1994 1995 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1996 assert(V != Induction && "The new induction variable should not be used."); 1997 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1998 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1999 2000 // If we have a stride that is replaced by one, do it here. Defer this for 2001 // the VPlan-native path until we start running Legal checks in that path. 2002 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2003 V = ConstantInt::get(V->getType(), 1); 2004 2005 // If we have a vector mapped to this value, return it. 2006 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2007 return VectorLoopValueMap.getVectorValue(V, Part); 2008 2009 // If the value has not been vectorized, check if it has been scalarized 2010 // instead. If it has been scalarized, and we actually need the value in 2011 // vector form, we will construct the vector values on demand. 2012 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2013 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2014 2015 // If we've scalarized a value, that value should be an instruction. 2016 auto *I = cast<Instruction>(V); 2017 2018 // If we aren't vectorizing, we can just copy the scalar map values over to 2019 // the vector map. 2020 if (VF == 1) { 2021 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2022 return ScalarValue; 2023 } 2024 2025 // Get the last scalar instruction we generated for V and Part. If the value 2026 // is known to be uniform after vectorization, this corresponds to lane zero 2027 // of the Part unroll iteration. Otherwise, the last instruction is the one 2028 // we created for the last vector lane of the Part unroll iteration. 2029 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2030 auto *LastInst = cast<Instruction>( 2031 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2032 2033 // Set the insert point after the last scalarized instruction. This ensures 2034 // the insertelement sequence will directly follow the scalar definitions. 2035 auto OldIP = Builder.saveIP(); 2036 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2037 Builder.SetInsertPoint(&*NewIP); 2038 2039 // However, if we are vectorizing, we need to construct the vector values. 2040 // If the value is known to be uniform after vectorization, we can just 2041 // broadcast the scalar value corresponding to lane zero for each unroll 2042 // iteration. Otherwise, we construct the vector values using insertelement 2043 // instructions. Since the resulting vectors are stored in 2044 // VectorLoopValueMap, we will only generate the insertelements once. 2045 Value *VectorValue = nullptr; 2046 if (Cost->isUniformAfterVectorization(I, VF)) { 2047 VectorValue = getBroadcastInstrs(ScalarValue); 2048 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2049 } else { 2050 // Initialize packing with insertelements to start from undef. 2051 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2052 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2053 for (unsigned Lane = 0; Lane < VF; ++Lane) 2054 packScalarIntoVectorValue(V, {Part, Lane}); 2055 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2056 } 2057 Builder.restoreIP(OldIP); 2058 return VectorValue; 2059 } 2060 2061 // If this scalar is unknown, assume that it is a constant or that it is 2062 // loop invariant. Broadcast V and save the value for future uses. 2063 Value *B = getBroadcastInstrs(V); 2064 VectorLoopValueMap.setVectorValue(V, Part, B); 2065 return B; 2066 } 2067 2068 Value * 2069 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2070 const VPIteration &Instance) { 2071 // If the value is not an instruction contained in the loop, it should 2072 // already be scalar. 2073 if (OrigLoop->isLoopInvariant(V)) 2074 return V; 2075 2076 assert(Instance.Lane > 0 2077 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2078 : true && "Uniform values only have lane zero"); 2079 2080 // If the value from the original loop has not been vectorized, it is 2081 // represented by UF x VF scalar values in the new loop. Return the requested 2082 // scalar value. 2083 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2084 return VectorLoopValueMap.getScalarValue(V, Instance); 2085 2086 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2087 // for the given unroll part. If this entry is not a vector type (i.e., the 2088 // vectorization factor is one), there is no need to generate an 2089 // extractelement instruction. 2090 auto *U = getOrCreateVectorValue(V, Instance.Part); 2091 if (!U->getType()->isVectorTy()) { 2092 assert(VF == 1 && "Value not scalarized has non-vector type"); 2093 return U; 2094 } 2095 2096 // Otherwise, the value from the original loop has been vectorized and is 2097 // represented by UF vector values. Extract and return the requested scalar 2098 // value from the appropriate vector lane. 2099 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2100 } 2101 2102 void InnerLoopVectorizer::packScalarIntoVectorValue( 2103 Value *V, const VPIteration &Instance) { 2104 assert(V != Induction && "The new induction variable should not be used."); 2105 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2106 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2107 2108 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2109 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2110 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2111 Builder.getInt32(Instance.Lane)); 2112 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2113 } 2114 2115 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2116 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2117 SmallVector<Constant *, 8> ShuffleMask; 2118 for (unsigned i = 0; i < VF; ++i) 2119 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2120 2121 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2122 ConstantVector::get(ShuffleMask), 2123 "reverse"); 2124 } 2125 2126 // Return whether we allow using masked interleave-groups (for dealing with 2127 // strided loads/stores that reside in predicated blocks, or for dealing 2128 // with gaps). 2129 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2130 // If an override option has been passed in for interleaved accesses, use it. 2131 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2132 return EnableMaskedInterleavedMemAccesses; 2133 2134 return TTI.enableMaskedInterleavedAccessVectorization(); 2135 } 2136 2137 // Try to vectorize the interleave group that \p Instr belongs to. 2138 // 2139 // E.g. Translate following interleaved load group (factor = 3): 2140 // for (i = 0; i < N; i+=3) { 2141 // R = Pic[i]; // Member of index 0 2142 // G = Pic[i+1]; // Member of index 1 2143 // B = Pic[i+2]; // Member of index 2 2144 // ... // do something to R, G, B 2145 // } 2146 // To: 2147 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2148 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2149 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2150 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2151 // 2152 // Or translate following interleaved store group (factor = 3): 2153 // for (i = 0; i < N; i+=3) { 2154 // ... do something to R, G, B 2155 // Pic[i] = R; // Member of index 0 2156 // Pic[i+1] = G; // Member of index 1 2157 // Pic[i+2] = B; // Member of index 2 2158 // } 2159 // To: 2160 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2161 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2162 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2163 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2164 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2165 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2166 VectorParts *BlockInMask) { 2167 const InterleaveGroup<Instruction> *Group = 2168 Cost->getInterleavedAccessGroup(Instr); 2169 assert(Group && "Fail to get an interleaved access group."); 2170 2171 // Skip if current instruction is not the insert position. 2172 if (Instr != Group->getInsertPos()) 2173 return; 2174 2175 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2176 Value *Ptr = getLoadStorePointerOperand(Instr); 2177 2178 // Prepare for the vector type of the interleaved load/store. 2179 Type *ScalarTy = getMemInstValueType(Instr); 2180 unsigned InterleaveFactor = Group->getFactor(); 2181 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2182 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2183 2184 // Prepare for the new pointers. 2185 setDebugLocFromInst(Builder, Ptr); 2186 SmallVector<Value *, 2> NewPtrs; 2187 unsigned Index = Group->getIndex(Instr); 2188 2189 VectorParts Mask; 2190 bool IsMaskForCondRequired = BlockInMask; 2191 if (IsMaskForCondRequired) { 2192 Mask = *BlockInMask; 2193 // TODO: extend the masked interleaved-group support to reversed access. 2194 assert(!Group->isReverse() && "Reversed masked interleave-group " 2195 "not supported."); 2196 } 2197 2198 // If the group is reverse, adjust the index to refer to the last vector lane 2199 // instead of the first. We adjust the index from the first vector lane, 2200 // rather than directly getting the pointer for lane VF - 1, because the 2201 // pointer operand of the interleaved access is supposed to be uniform. For 2202 // uniform instructions, we're only required to generate a value for the 2203 // first vector lane in each unroll iteration. 2204 if (Group->isReverse()) 2205 Index += (VF - 1) * Group->getFactor(); 2206 2207 bool InBounds = false; 2208 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2209 InBounds = gep->isInBounds(); 2210 2211 for (unsigned Part = 0; Part < UF; Part++) { 2212 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2213 2214 // Notice current instruction could be any index. Need to adjust the address 2215 // to the member of index 0. 2216 // 2217 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2218 // b = A[i]; // Member of index 0 2219 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2220 // 2221 // E.g. A[i+1] = a; // Member of index 1 2222 // A[i] = b; // Member of index 0 2223 // A[i+2] = c; // Member of index 2 (Current instruction) 2224 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2225 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2226 if (InBounds) 2227 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2228 2229 // Cast to the vector pointer type. 2230 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2231 } 2232 2233 setDebugLocFromInst(Builder, Instr); 2234 Value *UndefVec = UndefValue::get(VecTy); 2235 2236 Value *MaskForGaps = nullptr; 2237 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2238 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2239 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2240 } 2241 2242 // Vectorize the interleaved load group. 2243 if (isa<LoadInst>(Instr)) { 2244 // For each unroll part, create a wide load for the group. 2245 SmallVector<Value *, 2> NewLoads; 2246 for (unsigned Part = 0; Part < UF; Part++) { 2247 Instruction *NewLoad; 2248 if (IsMaskForCondRequired || MaskForGaps) { 2249 assert(useMaskedInterleavedAccesses(*TTI) && 2250 "masked interleaved groups are not allowed."); 2251 Value *GroupMask = MaskForGaps; 2252 if (IsMaskForCondRequired) { 2253 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2254 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2255 Value *ShuffledMask = Builder.CreateShuffleVector( 2256 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2257 GroupMask = MaskForGaps 2258 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2259 MaskForGaps) 2260 : ShuffledMask; 2261 } 2262 NewLoad = 2263 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2264 GroupMask, UndefVec, "wide.masked.vec"); 2265 } 2266 else 2267 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2268 Group->getAlignment(), "wide.vec"); 2269 Group->addMetadata(NewLoad); 2270 NewLoads.push_back(NewLoad); 2271 } 2272 2273 // For each member in the group, shuffle out the appropriate data from the 2274 // wide loads. 2275 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2276 Instruction *Member = Group->getMember(I); 2277 2278 // Skip the gaps in the group. 2279 if (!Member) 2280 continue; 2281 2282 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2283 for (unsigned Part = 0; Part < UF; Part++) { 2284 Value *StridedVec = Builder.CreateShuffleVector( 2285 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2286 2287 // If this member has different type, cast the result type. 2288 if (Member->getType() != ScalarTy) { 2289 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2290 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2291 } 2292 2293 if (Group->isReverse()) 2294 StridedVec = reverseVector(StridedVec); 2295 2296 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2297 } 2298 } 2299 return; 2300 } 2301 2302 // The sub vector type for current instruction. 2303 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2304 2305 // Vectorize the interleaved store group. 2306 for (unsigned Part = 0; Part < UF; Part++) { 2307 // Collect the stored vector from each member. 2308 SmallVector<Value *, 4> StoredVecs; 2309 for (unsigned i = 0; i < InterleaveFactor; i++) { 2310 // Interleaved store group doesn't allow a gap, so each index has a member 2311 Instruction *Member = Group->getMember(i); 2312 assert(Member && "Fail to get a member from an interleaved store group"); 2313 2314 Value *StoredVec = getOrCreateVectorValue( 2315 cast<StoreInst>(Member)->getValueOperand(), Part); 2316 if (Group->isReverse()) 2317 StoredVec = reverseVector(StoredVec); 2318 2319 // If this member has different type, cast it to a unified type. 2320 2321 if (StoredVec->getType() != SubVT) 2322 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2323 2324 StoredVecs.push_back(StoredVec); 2325 } 2326 2327 // Concatenate all vectors into a wide vector. 2328 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2329 2330 // Interleave the elements in the wide vector. 2331 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2332 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2333 "interleaved.vec"); 2334 2335 Instruction *NewStoreInstr; 2336 if (IsMaskForCondRequired) { 2337 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2338 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2339 Value *ShuffledMask = Builder.CreateShuffleVector( 2340 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2341 NewStoreInstr = Builder.CreateMaskedStore( 2342 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2343 } 2344 else 2345 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2346 Group->getAlignment()); 2347 2348 Group->addMetadata(NewStoreInstr); 2349 } 2350 } 2351 2352 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2353 VectorParts *BlockInMask) { 2354 // Attempt to issue a wide load. 2355 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2356 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2357 2358 assert((LI || SI) && "Invalid Load/Store instruction"); 2359 2360 LoopVectorizationCostModel::InstWidening Decision = 2361 Cost->getWideningDecision(Instr, VF); 2362 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2363 "CM decision should be taken at this point"); 2364 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2365 return vectorizeInterleaveGroup(Instr); 2366 2367 Type *ScalarDataTy = getMemInstValueType(Instr); 2368 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2369 Value *Ptr = getLoadStorePointerOperand(Instr); 2370 // An alignment of 0 means target abi alignment. We need to use the scalar's 2371 // target abi alignment in such a case. 2372 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2373 const Align Alignment = 2374 DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy); 2375 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2376 2377 // Determine if the pointer operand of the access is either consecutive or 2378 // reverse consecutive. 2379 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2380 bool ConsecutiveStride = 2381 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2382 bool CreateGatherScatter = 2383 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2384 2385 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2386 // gather/scatter. Otherwise Decision should have been to Scalarize. 2387 assert((ConsecutiveStride || CreateGatherScatter) && 2388 "The instruction should be scalarized"); 2389 2390 // Handle consecutive loads/stores. 2391 if (ConsecutiveStride) 2392 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2393 2394 VectorParts Mask; 2395 bool isMaskRequired = BlockInMask; 2396 if (isMaskRequired) 2397 Mask = *BlockInMask; 2398 2399 bool InBounds = false; 2400 if (auto *gep = dyn_cast<GetElementPtrInst>( 2401 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2402 InBounds = gep->isInBounds(); 2403 2404 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2405 // Calculate the pointer for the specific unroll-part. 2406 GetElementPtrInst *PartPtr = nullptr; 2407 2408 if (Reverse) { 2409 // If the address is consecutive but reversed, then the 2410 // wide store needs to start at the last vector element. 2411 PartPtr = cast<GetElementPtrInst>( 2412 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2413 PartPtr->setIsInBounds(InBounds); 2414 PartPtr = cast<GetElementPtrInst>( 2415 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2416 PartPtr->setIsInBounds(InBounds); 2417 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2418 Mask[Part] = reverseVector(Mask[Part]); 2419 } else { 2420 PartPtr = cast<GetElementPtrInst>( 2421 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2422 PartPtr->setIsInBounds(InBounds); 2423 } 2424 2425 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2426 }; 2427 2428 // Handle Stores: 2429 if (SI) { 2430 setDebugLocFromInst(Builder, SI); 2431 2432 for (unsigned Part = 0; Part < UF; ++Part) { 2433 Instruction *NewSI = nullptr; 2434 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2435 if (CreateGatherScatter) { 2436 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2437 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2438 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, 2439 Alignment.value(), MaskPart); 2440 } else { 2441 if (Reverse) { 2442 // If we store to reverse consecutive memory locations, then we need 2443 // to reverse the order of elements in the stored value. 2444 StoredVal = reverseVector(StoredVal); 2445 // We don't want to update the value in the map as it might be used in 2446 // another expression. So don't call resetVectorValue(StoredVal). 2447 } 2448 auto *VecPtr = CreateVecPtr(Part, Ptr); 2449 if (isMaskRequired) 2450 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, 2451 Alignment.value(), Mask[Part]); 2452 else 2453 NewSI = 2454 Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment.value()); 2455 } 2456 addMetadata(NewSI, SI); 2457 } 2458 return; 2459 } 2460 2461 // Handle loads. 2462 assert(LI && "Must have a load instruction"); 2463 setDebugLocFromInst(Builder, LI); 2464 for (unsigned Part = 0; Part < UF; ++Part) { 2465 Value *NewLI; 2466 if (CreateGatherScatter) { 2467 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2468 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2469 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment.value(), MaskPart, 2470 nullptr, "wide.masked.gather"); 2471 addMetadata(NewLI, LI); 2472 } else { 2473 auto *VecPtr = CreateVecPtr(Part, Ptr); 2474 if (isMaskRequired) 2475 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment.value(), Mask[Part], 2476 UndefValue::get(DataTy), 2477 "wide.masked.load"); 2478 else 2479 NewLI = Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment.value(), 2480 "wide.load"); 2481 2482 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2483 addMetadata(NewLI, LI); 2484 if (Reverse) 2485 NewLI = reverseVector(NewLI); 2486 } 2487 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2488 } 2489 } 2490 2491 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2492 const VPIteration &Instance, 2493 bool IfPredicateInstr) { 2494 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2495 2496 setDebugLocFromInst(Builder, Instr); 2497 2498 // Does this instruction return a value ? 2499 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2500 2501 Instruction *Cloned = Instr->clone(); 2502 if (!IsVoidRetTy) 2503 Cloned->setName(Instr->getName() + ".cloned"); 2504 2505 // Replace the operands of the cloned instructions with their scalar 2506 // equivalents in the new loop. 2507 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2508 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2509 Cloned->setOperand(op, NewOp); 2510 } 2511 addNewMetadata(Cloned, Instr); 2512 2513 // Place the cloned scalar in the new loop. 2514 Builder.Insert(Cloned); 2515 2516 // Add the cloned scalar to the scalar map entry. 2517 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2518 2519 // If we just cloned a new assumption, add it the assumption cache. 2520 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2521 if (II->getIntrinsicID() == Intrinsic::assume) 2522 AC->registerAssumption(II); 2523 2524 // End if-block. 2525 if (IfPredicateInstr) 2526 PredicatedInstructions.push_back(Cloned); 2527 } 2528 2529 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2530 Value *End, Value *Step, 2531 Instruction *DL) { 2532 BasicBlock *Header = L->getHeader(); 2533 BasicBlock *Latch = L->getLoopLatch(); 2534 // As we're just creating this loop, it's possible no latch exists 2535 // yet. If so, use the header as this will be a single block loop. 2536 if (!Latch) 2537 Latch = Header; 2538 2539 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2540 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2541 setDebugLocFromInst(Builder, OldInst); 2542 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2543 2544 Builder.SetInsertPoint(Latch->getTerminator()); 2545 setDebugLocFromInst(Builder, OldInst); 2546 2547 // Create i+1 and fill the PHINode. 2548 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2549 Induction->addIncoming(Start, L->getLoopPreheader()); 2550 Induction->addIncoming(Next, Latch); 2551 // Create the compare. 2552 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2553 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2554 2555 // Now we have two terminators. Remove the old one from the block. 2556 Latch->getTerminator()->eraseFromParent(); 2557 2558 return Induction; 2559 } 2560 2561 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2562 if (TripCount) 2563 return TripCount; 2564 2565 assert(L && "Create Trip Count for null loop."); 2566 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2567 // Find the loop boundaries. 2568 ScalarEvolution *SE = PSE.getSE(); 2569 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2570 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2571 "Invalid loop count"); 2572 2573 Type *IdxTy = Legal->getWidestInductionType(); 2574 assert(IdxTy && "No type for induction"); 2575 2576 // The exit count might have the type of i64 while the phi is i32. This can 2577 // happen if we have an induction variable that is sign extended before the 2578 // compare. The only way that we get a backedge taken count is that the 2579 // induction variable was signed and as such will not overflow. In such a case 2580 // truncation is legal. 2581 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2582 IdxTy->getPrimitiveSizeInBits()) 2583 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2584 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2585 2586 // Get the total trip count from the count by adding 1. 2587 const SCEV *ExitCount = SE->getAddExpr( 2588 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2589 2590 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2591 2592 // Expand the trip count and place the new instructions in the preheader. 2593 // Notice that the pre-header does not change, only the loop body. 2594 SCEVExpander Exp(*SE, DL, "induction"); 2595 2596 // Count holds the overall loop count (N). 2597 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2598 L->getLoopPreheader()->getTerminator()); 2599 2600 if (TripCount->getType()->isPointerTy()) 2601 TripCount = 2602 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2603 L->getLoopPreheader()->getTerminator()); 2604 2605 return TripCount; 2606 } 2607 2608 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2609 if (VectorTripCount) 2610 return VectorTripCount; 2611 2612 Value *TC = getOrCreateTripCount(L); 2613 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2614 2615 Type *Ty = TC->getType(); 2616 Constant *Step = ConstantInt::get(Ty, VF * UF); 2617 2618 // If the tail is to be folded by masking, round the number of iterations N 2619 // up to a multiple of Step instead of rounding down. This is done by first 2620 // adding Step-1 and then rounding down. Note that it's ok if this addition 2621 // overflows: the vector induction variable will eventually wrap to zero given 2622 // that it starts at zero and its Step is a power of two; the loop will then 2623 // exit, with the last early-exit vector comparison also producing all-true. 2624 if (Cost->foldTailByMasking()) { 2625 assert(isPowerOf2_32(VF * UF) && 2626 "VF*UF must be a power of 2 when folding tail by masking"); 2627 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2628 } 2629 2630 // Now we need to generate the expression for the part of the loop that the 2631 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2632 // iterations are not required for correctness, or N - Step, otherwise. Step 2633 // is equal to the vectorization factor (number of SIMD elements) times the 2634 // unroll factor (number of SIMD instructions). 2635 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2636 2637 // If there is a non-reversed interleaved group that may speculatively access 2638 // memory out-of-bounds, we need to ensure that there will be at least one 2639 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2640 // the trip count, we set the remainder to be equal to the step. If the step 2641 // does not evenly divide the trip count, no adjustment is necessary since 2642 // there will already be scalar iterations. Note that the minimum iterations 2643 // check ensures that N >= Step. 2644 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2645 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2646 R = Builder.CreateSelect(IsZero, Step, R); 2647 } 2648 2649 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2650 2651 return VectorTripCount; 2652 } 2653 2654 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2655 const DataLayout &DL) { 2656 // Verify that V is a vector type with same number of elements as DstVTy. 2657 unsigned VF = DstVTy->getNumElements(); 2658 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2659 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2660 Type *SrcElemTy = SrcVecTy->getElementType(); 2661 Type *DstElemTy = DstVTy->getElementType(); 2662 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2663 "Vector elements must have same size"); 2664 2665 // Do a direct cast if element types are castable. 2666 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2667 return Builder.CreateBitOrPointerCast(V, DstVTy); 2668 } 2669 // V cannot be directly casted to desired vector type. 2670 // May happen when V is a floating point vector but DstVTy is a vector of 2671 // pointers or vice-versa. Handle this using a two-step bitcast using an 2672 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2673 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2674 "Only one type should be a pointer type"); 2675 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2676 "Only one type should be a floating point type"); 2677 Type *IntTy = 2678 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2679 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2680 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2681 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2682 } 2683 2684 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2685 BasicBlock *Bypass) { 2686 Value *Count = getOrCreateTripCount(L); 2687 BasicBlock *BB = L->getLoopPreheader(); 2688 IRBuilder<> Builder(BB->getTerminator()); 2689 2690 // Generate code to check if the loop's trip count is less than VF * UF, or 2691 // equal to it in case a scalar epilogue is required; this implies that the 2692 // vector trip count is zero. This check also covers the case where adding one 2693 // to the backedge-taken count overflowed leading to an incorrect trip count 2694 // of zero. In this case we will also jump to the scalar loop. 2695 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2696 : ICmpInst::ICMP_ULT; 2697 2698 // If tail is to be folded, vector loop takes care of all iterations. 2699 Value *CheckMinIters = Builder.getFalse(); 2700 if (!Cost->foldTailByMasking()) 2701 CheckMinIters = Builder.CreateICmp( 2702 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2703 "min.iters.check"); 2704 2705 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2706 // Update dominator tree immediately if the generated block is a 2707 // LoopBypassBlock because SCEV expansions to generate loop bypass 2708 // checks may query it before the current function is finished. 2709 DT->addNewBlock(NewBB, BB); 2710 if (L->getParentLoop()) 2711 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2712 ReplaceInstWithInst(BB->getTerminator(), 2713 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2714 LoopBypassBlocks.push_back(BB); 2715 } 2716 2717 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2718 BasicBlock *BB = L->getLoopPreheader(); 2719 2720 // Generate the code to check that the SCEV assumptions that we made. 2721 // We want the new basic block to start at the first instruction in a 2722 // sequence of instructions that form a check. 2723 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2724 "scev.check"); 2725 Value *SCEVCheck = 2726 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2727 2728 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2729 if (C->isZero()) 2730 return; 2731 2732 assert(!BB->getParent()->hasOptSize() && 2733 "Cannot SCEV check stride or overflow when optimizing for size"); 2734 2735 // Create a new block containing the stride check. 2736 BB->setName("vector.scevcheck"); 2737 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2738 // Update dominator tree immediately if the generated block is a 2739 // LoopBypassBlock because SCEV expansions to generate loop bypass 2740 // checks may query it before the current function is finished. 2741 DT->addNewBlock(NewBB, BB); 2742 if (L->getParentLoop()) 2743 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2744 ReplaceInstWithInst(BB->getTerminator(), 2745 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2746 LoopBypassBlocks.push_back(BB); 2747 AddedSafetyChecks = true; 2748 } 2749 2750 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2751 // VPlan-native path does not do any analysis for runtime checks currently. 2752 if (EnableVPlanNativePath) 2753 return; 2754 2755 BasicBlock *BB = L->getLoopPreheader(); 2756 2757 // Generate the code that checks in runtime if arrays overlap. We put the 2758 // checks into a separate block to make the more common case of few elements 2759 // faster. 2760 Instruction *FirstCheckInst; 2761 Instruction *MemRuntimeCheck; 2762 std::tie(FirstCheckInst, MemRuntimeCheck) = 2763 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2764 if (!MemRuntimeCheck) 2765 return; 2766 2767 if (BB->getParent()->hasOptSize()) { 2768 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2769 "Cannot emit memory checks when optimizing for size, unless forced " 2770 "to vectorize."); 2771 ORE->emit([&]() { 2772 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2773 L->getStartLoc(), L->getHeader()) 2774 << "Code-size may be reduced by not forcing " 2775 "vectorization, or by source-code modifications " 2776 "eliminating the need for runtime checks " 2777 "(e.g., adding 'restrict')."; 2778 }); 2779 } 2780 2781 // Create a new block containing the memory check. 2782 BB->setName("vector.memcheck"); 2783 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2784 // Update dominator tree immediately if the generated block is a 2785 // LoopBypassBlock because SCEV expansions to generate loop bypass 2786 // checks may query it before the current function is finished. 2787 DT->addNewBlock(NewBB, BB); 2788 if (L->getParentLoop()) 2789 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2790 ReplaceInstWithInst(BB->getTerminator(), 2791 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2792 LoopBypassBlocks.push_back(BB); 2793 AddedSafetyChecks = true; 2794 2795 // We currently don't use LoopVersioning for the actual loop cloning but we 2796 // still use it to add the noalias metadata. 2797 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2798 PSE.getSE()); 2799 LVer->prepareNoAliasMetadata(); 2800 } 2801 2802 Value *InnerLoopVectorizer::emitTransformedIndex( 2803 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2804 const InductionDescriptor &ID) const { 2805 2806 SCEVExpander Exp(*SE, DL, "induction"); 2807 auto Step = ID.getStep(); 2808 auto StartValue = ID.getStartValue(); 2809 assert(Index->getType() == Step->getType() && 2810 "Index type does not match StepValue type"); 2811 2812 // Note: the IR at this point is broken. We cannot use SE to create any new 2813 // SCEV and then expand it, hoping that SCEV's simplification will give us 2814 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2815 // lead to various SCEV crashes. So all we can do is to use builder and rely 2816 // on InstCombine for future simplifications. Here we handle some trivial 2817 // cases only. 2818 auto CreateAdd = [&B](Value *X, Value *Y) { 2819 assert(X->getType() == Y->getType() && "Types don't match!"); 2820 if (auto *CX = dyn_cast<ConstantInt>(X)) 2821 if (CX->isZero()) 2822 return Y; 2823 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2824 if (CY->isZero()) 2825 return X; 2826 return B.CreateAdd(X, Y); 2827 }; 2828 2829 auto CreateMul = [&B](Value *X, Value *Y) { 2830 assert(X->getType() == Y->getType() && "Types don't match!"); 2831 if (auto *CX = dyn_cast<ConstantInt>(X)) 2832 if (CX->isOne()) 2833 return Y; 2834 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2835 if (CY->isOne()) 2836 return X; 2837 return B.CreateMul(X, Y); 2838 }; 2839 2840 switch (ID.getKind()) { 2841 case InductionDescriptor::IK_IntInduction: { 2842 assert(Index->getType() == StartValue->getType() && 2843 "Index type does not match StartValue type"); 2844 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2845 return B.CreateSub(StartValue, Index); 2846 auto *Offset = CreateMul( 2847 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2848 return CreateAdd(StartValue, Offset); 2849 } 2850 case InductionDescriptor::IK_PtrInduction: { 2851 assert(isa<SCEVConstant>(Step) && 2852 "Expected constant step for pointer induction"); 2853 return B.CreateGEP( 2854 StartValue->getType()->getPointerElementType(), StartValue, 2855 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2856 &*B.GetInsertPoint()))); 2857 } 2858 case InductionDescriptor::IK_FpInduction: { 2859 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2860 auto InductionBinOp = ID.getInductionBinOp(); 2861 assert(InductionBinOp && 2862 (InductionBinOp->getOpcode() == Instruction::FAdd || 2863 InductionBinOp->getOpcode() == Instruction::FSub) && 2864 "Original bin op should be defined for FP induction"); 2865 2866 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2867 2868 // Floating point operations had to be 'fast' to enable the induction. 2869 FastMathFlags Flags; 2870 Flags.setFast(); 2871 2872 Value *MulExp = B.CreateFMul(StepValue, Index); 2873 if (isa<Instruction>(MulExp)) 2874 // We have to check, the MulExp may be a constant. 2875 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2876 2877 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2878 "induction"); 2879 if (isa<Instruction>(BOp)) 2880 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2881 2882 return BOp; 2883 } 2884 case InductionDescriptor::IK_NoInduction: 2885 return nullptr; 2886 } 2887 llvm_unreachable("invalid enum"); 2888 } 2889 2890 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2891 /* 2892 In this function we generate a new loop. The new loop will contain 2893 the vectorized instructions while the old loop will continue to run the 2894 scalar remainder. 2895 2896 [ ] <-- loop iteration number check. 2897 / | 2898 / v 2899 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2900 | / | 2901 | / v 2902 || [ ] <-- vector pre header. 2903 |/ | 2904 | v 2905 | [ ] \ 2906 | [ ]_| <-- vector loop. 2907 | | 2908 | v 2909 | -[ ] <--- middle-block. 2910 | / | 2911 | / v 2912 -|- >[ ] <--- new preheader. 2913 | | 2914 | v 2915 | [ ] \ 2916 | [ ]_| <-- old scalar loop to handle remainder. 2917 \ | 2918 \ v 2919 >[ ] <-- exit block. 2920 ... 2921 */ 2922 2923 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2924 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2925 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2926 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2927 assert(VectorPH && "Invalid loop structure"); 2928 assert(ExitBlock && "Must have an exit block"); 2929 2930 // Some loops have a single integer induction variable, while other loops 2931 // don't. One example is c++ iterators that often have multiple pointer 2932 // induction variables. In the code below we also support a case where we 2933 // don't have a single induction variable. 2934 // 2935 // We try to obtain an induction variable from the original loop as hard 2936 // as possible. However if we don't find one that: 2937 // - is an integer 2938 // - counts from zero, stepping by one 2939 // - is the size of the widest induction variable type 2940 // then we create a new one. 2941 OldInduction = Legal->getPrimaryInduction(); 2942 Type *IdxTy = Legal->getWidestInductionType(); 2943 2944 // Split the single block loop into the two loop structure described above. 2945 BasicBlock *VecBody = 2946 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2947 BasicBlock *MiddleBlock = 2948 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2949 BasicBlock *ScalarPH = 2950 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2951 2952 // Create and register the new vector loop. 2953 Loop *Lp = LI->AllocateLoop(); 2954 Loop *ParentLoop = OrigLoop->getParentLoop(); 2955 2956 // Insert the new loop into the loop nest and register the new basic blocks 2957 // before calling any utilities such as SCEV that require valid LoopInfo. 2958 if (ParentLoop) { 2959 ParentLoop->addChildLoop(Lp); 2960 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2961 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2962 } else { 2963 LI->addTopLevelLoop(Lp); 2964 } 2965 Lp->addBasicBlockToLoop(VecBody, *LI); 2966 2967 // Find the loop boundaries. 2968 Value *Count = getOrCreateTripCount(Lp); 2969 2970 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2971 2972 // Now, compare the new count to zero. If it is zero skip the vector loop and 2973 // jump to the scalar loop. This check also covers the case where the 2974 // backedge-taken count is uint##_max: adding one to it will overflow leading 2975 // to an incorrect trip count of zero. In this (rare) case we will also jump 2976 // to the scalar loop. 2977 emitMinimumIterationCountCheck(Lp, ScalarPH); 2978 2979 // Generate the code to check any assumptions that we've made for SCEV 2980 // expressions. 2981 emitSCEVChecks(Lp, ScalarPH); 2982 2983 // Generate the code that checks in runtime if arrays overlap. We put the 2984 // checks into a separate block to make the more common case of few elements 2985 // faster. 2986 emitMemRuntimeChecks(Lp, ScalarPH); 2987 2988 // Generate the induction variable. 2989 // The loop step is equal to the vectorization factor (num of SIMD elements) 2990 // times the unroll factor (num of SIMD instructions). 2991 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2992 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2993 Induction = 2994 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2995 getDebugLocFromInstOrOperands(OldInduction)); 2996 2997 // We are going to resume the execution of the scalar loop. 2998 // Go over all of the induction variables that we found and fix the 2999 // PHIs that are left in the scalar version of the loop. 3000 // The starting values of PHI nodes depend on the counter of the last 3001 // iteration in the vectorized loop. 3002 // If we come from a bypass edge then we need to start from the original 3003 // start value. 3004 3005 // This variable saves the new starting index for the scalar loop. It is used 3006 // to test if there are any tail iterations left once the vector loop has 3007 // completed. 3008 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3009 for (auto &InductionEntry : *List) { 3010 PHINode *OrigPhi = InductionEntry.first; 3011 InductionDescriptor II = InductionEntry.second; 3012 3013 // Create phi nodes to merge from the backedge-taken check block. 3014 PHINode *BCResumeVal = PHINode::Create( 3015 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3016 // Copy original phi DL over to the new one. 3017 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3018 Value *&EndValue = IVEndValues[OrigPhi]; 3019 if (OrigPhi == OldInduction) { 3020 // We know what the end value is. 3021 EndValue = CountRoundDown; 3022 } else { 3023 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3024 Type *StepType = II.getStep()->getType(); 3025 Instruction::CastOps CastOp = 3026 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3027 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3028 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3029 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3030 EndValue->setName("ind.end"); 3031 } 3032 3033 // The new PHI merges the original incoming value, in case of a bypass, 3034 // or the value at the end of the vectorized loop. 3035 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3036 3037 // Fix the scalar body counter (PHI node). 3038 // The old induction's phi node in the scalar body needs the truncated 3039 // value. 3040 for (BasicBlock *BB : LoopBypassBlocks) 3041 BCResumeVal->addIncoming(II.getStartValue(), BB); 3042 OrigPhi->setIncomingValueForBlock(ScalarPH, BCResumeVal); 3043 } 3044 3045 // We need the OrigLoop (scalar loop part) latch terminator to help 3046 // produce correct debug info for the middle block BB instructions. 3047 // The legality check stage guarantees that the loop will have a single 3048 // latch. 3049 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3050 "Scalar loop latch terminator isn't a branch"); 3051 BranchInst *ScalarLatchBr = 3052 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3053 3054 // Add a check in the middle block to see if we have completed 3055 // all of the iterations in the first vector loop. 3056 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3057 // If tail is to be folded, we know we don't need to run the remainder. 3058 Value *CmpN = Builder.getTrue(); 3059 if (!Cost->foldTailByMasking()) { 3060 CmpN = 3061 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3062 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3063 3064 // Here we use the same DebugLoc as the scalar loop latch branch instead 3065 // of the corresponding compare because they may have ended up with 3066 // different line numbers and we want to avoid awkward line stepping while 3067 // debugging. Eg. if the compare has got a line number inside the loop. 3068 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3069 } 3070 3071 BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN); 3072 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3073 ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst); 3074 3075 // Get ready to start creating new instructions into the vectorized body. 3076 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3077 3078 // Save the state. 3079 LoopVectorPreHeader = Lp->getLoopPreheader(); 3080 LoopScalarPreHeader = ScalarPH; 3081 LoopMiddleBlock = MiddleBlock; 3082 LoopExitBlock = ExitBlock; 3083 LoopVectorBody = VecBody; 3084 LoopScalarBody = OldBasicBlock; 3085 3086 Optional<MDNode *> VectorizedLoopID = 3087 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3088 LLVMLoopVectorizeFollowupVectorized}); 3089 if (VectorizedLoopID.hasValue()) { 3090 Lp->setLoopID(VectorizedLoopID.getValue()); 3091 3092 // Do not setAlreadyVectorized if loop attributes have been defined 3093 // explicitly. 3094 return LoopVectorPreHeader; 3095 } 3096 3097 // Keep all loop hints from the original loop on the vector loop (we'll 3098 // replace the vectorizer-specific hints below). 3099 if (MDNode *LID = OrigLoop->getLoopID()) 3100 Lp->setLoopID(LID); 3101 3102 LoopVectorizeHints Hints(Lp, true, *ORE); 3103 Hints.setAlreadyVectorized(); 3104 3105 return LoopVectorPreHeader; 3106 } 3107 3108 // Fix up external users of the induction variable. At this point, we are 3109 // in LCSSA form, with all external PHIs that use the IV having one input value, 3110 // coming from the remainder loop. We need those PHIs to also have a correct 3111 // value for the IV when arriving directly from the middle block. 3112 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3113 const InductionDescriptor &II, 3114 Value *CountRoundDown, Value *EndValue, 3115 BasicBlock *MiddleBlock) { 3116 // There are two kinds of external IV usages - those that use the value 3117 // computed in the last iteration (the PHI) and those that use the penultimate 3118 // value (the value that feeds into the phi from the loop latch). 3119 // We allow both, but they, obviously, have different values. 3120 3121 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3122 3123 DenseMap<Value *, Value *> MissingVals; 3124 3125 // An external user of the last iteration's value should see the value that 3126 // the remainder loop uses to initialize its own IV. 3127 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3128 for (User *U : PostInc->users()) { 3129 Instruction *UI = cast<Instruction>(U); 3130 if (!OrigLoop->contains(UI)) { 3131 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3132 MissingVals[UI] = EndValue; 3133 } 3134 } 3135 3136 // An external user of the penultimate value need to see EndValue - Step. 3137 // The simplest way to get this is to recompute it from the constituent SCEVs, 3138 // that is Start + (Step * (CRD - 1)). 3139 for (User *U : OrigPhi->users()) { 3140 auto *UI = cast<Instruction>(U); 3141 if (!OrigLoop->contains(UI)) { 3142 const DataLayout &DL = 3143 OrigLoop->getHeader()->getModule()->getDataLayout(); 3144 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3145 3146 IRBuilder<> B(MiddleBlock->getTerminator()); 3147 Value *CountMinusOne = B.CreateSub( 3148 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3149 Value *CMO = 3150 !II.getStep()->getType()->isIntegerTy() 3151 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3152 II.getStep()->getType()) 3153 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3154 CMO->setName("cast.cmo"); 3155 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3156 Escape->setName("ind.escape"); 3157 MissingVals[UI] = Escape; 3158 } 3159 } 3160 3161 for (auto &I : MissingVals) { 3162 PHINode *PHI = cast<PHINode>(I.first); 3163 // One corner case we have to handle is two IVs "chasing" each-other, 3164 // that is %IV2 = phi [...], [ %IV1, %latch ] 3165 // In this case, if IV1 has an external use, we need to avoid adding both 3166 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3167 // don't already have an incoming value for the middle block. 3168 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3169 PHI->addIncoming(I.second, MiddleBlock); 3170 } 3171 } 3172 3173 namespace { 3174 3175 struct CSEDenseMapInfo { 3176 static bool canHandle(const Instruction *I) { 3177 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3178 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3179 } 3180 3181 static inline Instruction *getEmptyKey() { 3182 return DenseMapInfo<Instruction *>::getEmptyKey(); 3183 } 3184 3185 static inline Instruction *getTombstoneKey() { 3186 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3187 } 3188 3189 static unsigned getHashValue(const Instruction *I) { 3190 assert(canHandle(I) && "Unknown instruction!"); 3191 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3192 I->value_op_end())); 3193 } 3194 3195 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3196 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3197 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3198 return LHS == RHS; 3199 return LHS->isIdenticalTo(RHS); 3200 } 3201 }; 3202 3203 } // end anonymous namespace 3204 3205 ///Perform cse of induction variable instructions. 3206 static void cse(BasicBlock *BB) { 3207 // Perform simple cse. 3208 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3209 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3210 Instruction *In = &*I++; 3211 3212 if (!CSEDenseMapInfo::canHandle(In)) 3213 continue; 3214 3215 // Check if we can replace this instruction with any of the 3216 // visited instructions. 3217 if (Instruction *V = CSEMap.lookup(In)) { 3218 In->replaceAllUsesWith(V); 3219 In->eraseFromParent(); 3220 continue; 3221 } 3222 3223 CSEMap[In] = In; 3224 } 3225 } 3226 3227 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3228 unsigned VF, 3229 bool &NeedToScalarize) { 3230 Function *F = CI->getCalledFunction(); 3231 Type *ScalarRetTy = CI->getType(); 3232 SmallVector<Type *, 4> Tys, ScalarTys; 3233 for (auto &ArgOp : CI->arg_operands()) 3234 ScalarTys.push_back(ArgOp->getType()); 3235 3236 // Estimate cost of scalarized vector call. The source operands are assumed 3237 // to be vectors, so we need to extract individual elements from there, 3238 // execute VF scalar calls, and then gather the result into the vector return 3239 // value. 3240 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3241 if (VF == 1) 3242 return ScalarCallCost; 3243 3244 // Compute corresponding vector type for return value and arguments. 3245 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3246 for (Type *ScalarTy : ScalarTys) 3247 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3248 3249 // Compute costs of unpacking argument values for the scalar calls and 3250 // packing the return values to a vector. 3251 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3252 3253 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3254 3255 // If we can't emit a vector call for this function, then the currently found 3256 // cost is the cost we need to return. 3257 NeedToScalarize = true; 3258 if (!TLI || CI->isNoBuiltin() || 3259 !VFDatabase(*CI).isFunctionVectorizable( 3260 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/))) 3261 return Cost; 3262 3263 // If the corresponding vector cost is cheaper, return its cost. 3264 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3265 if (VectorCallCost < Cost) { 3266 NeedToScalarize = false; 3267 return VectorCallCost; 3268 } 3269 return Cost; 3270 } 3271 3272 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3273 unsigned VF) { 3274 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3275 assert(ID && "Expected intrinsic call!"); 3276 3277 FastMathFlags FMF; 3278 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3279 FMF = FPMO->getFastMathFlags(); 3280 3281 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3282 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3283 } 3284 3285 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3286 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3287 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3288 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3289 } 3290 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3291 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3292 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3293 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3294 } 3295 3296 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3297 // For every instruction `I` in MinBWs, truncate the operands, create a 3298 // truncated version of `I` and reextend its result. InstCombine runs 3299 // later and will remove any ext/trunc pairs. 3300 SmallPtrSet<Value *, 4> Erased; 3301 for (const auto &KV : Cost->getMinimalBitwidths()) { 3302 // If the value wasn't vectorized, we must maintain the original scalar 3303 // type. The absence of the value from VectorLoopValueMap indicates that it 3304 // wasn't vectorized. 3305 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3306 continue; 3307 for (unsigned Part = 0; Part < UF; ++Part) { 3308 Value *I = getOrCreateVectorValue(KV.first, Part); 3309 if (Erased.find(I) != Erased.end() || I->use_empty() || 3310 !isa<Instruction>(I)) 3311 continue; 3312 Type *OriginalTy = I->getType(); 3313 Type *ScalarTruncatedTy = 3314 IntegerType::get(OriginalTy->getContext(), KV.second); 3315 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3316 OriginalTy->getVectorNumElements()); 3317 if (TruncatedTy == OriginalTy) 3318 continue; 3319 3320 IRBuilder<> B(cast<Instruction>(I)); 3321 auto ShrinkOperand = [&](Value *V) -> Value * { 3322 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3323 if (ZI->getSrcTy() == TruncatedTy) 3324 return ZI->getOperand(0); 3325 return B.CreateZExtOrTrunc(V, TruncatedTy); 3326 }; 3327 3328 // The actual instruction modification depends on the instruction type, 3329 // unfortunately. 3330 Value *NewI = nullptr; 3331 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3332 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3333 ShrinkOperand(BO->getOperand(1))); 3334 3335 // Any wrapping introduced by shrinking this operation shouldn't be 3336 // considered undefined behavior. So, we can't unconditionally copy 3337 // arithmetic wrapping flags to NewI. 3338 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3339 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3340 NewI = 3341 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3342 ShrinkOperand(CI->getOperand(1))); 3343 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3344 NewI = B.CreateSelect(SI->getCondition(), 3345 ShrinkOperand(SI->getTrueValue()), 3346 ShrinkOperand(SI->getFalseValue())); 3347 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3348 switch (CI->getOpcode()) { 3349 default: 3350 llvm_unreachable("Unhandled cast!"); 3351 case Instruction::Trunc: 3352 NewI = ShrinkOperand(CI->getOperand(0)); 3353 break; 3354 case Instruction::SExt: 3355 NewI = B.CreateSExtOrTrunc( 3356 CI->getOperand(0), 3357 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3358 break; 3359 case Instruction::ZExt: 3360 NewI = B.CreateZExtOrTrunc( 3361 CI->getOperand(0), 3362 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3363 break; 3364 } 3365 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3366 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3367 auto *O0 = B.CreateZExtOrTrunc( 3368 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3369 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3370 auto *O1 = B.CreateZExtOrTrunc( 3371 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3372 3373 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3374 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3375 // Don't do anything with the operands, just extend the result. 3376 continue; 3377 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3378 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3379 auto *O0 = B.CreateZExtOrTrunc( 3380 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3381 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3382 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3383 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3384 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3385 auto *O0 = B.CreateZExtOrTrunc( 3386 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3387 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3388 } else { 3389 // If we don't know what to do, be conservative and don't do anything. 3390 continue; 3391 } 3392 3393 // Lastly, extend the result. 3394 NewI->takeName(cast<Instruction>(I)); 3395 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3396 I->replaceAllUsesWith(Res); 3397 cast<Instruction>(I)->eraseFromParent(); 3398 Erased.insert(I); 3399 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3400 } 3401 } 3402 3403 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3404 for (const auto &KV : Cost->getMinimalBitwidths()) { 3405 // If the value wasn't vectorized, we must maintain the original scalar 3406 // type. The absence of the value from VectorLoopValueMap indicates that it 3407 // wasn't vectorized. 3408 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3409 continue; 3410 for (unsigned Part = 0; Part < UF; ++Part) { 3411 Value *I = getOrCreateVectorValue(KV.first, Part); 3412 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3413 if (Inst && Inst->use_empty()) { 3414 Value *NewI = Inst->getOperand(0); 3415 Inst->eraseFromParent(); 3416 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3417 } 3418 } 3419 } 3420 } 3421 3422 void InnerLoopVectorizer::fixVectorizedLoop() { 3423 // Insert truncates and extends for any truncated instructions as hints to 3424 // InstCombine. 3425 if (VF > 1) 3426 truncateToMinimalBitwidths(); 3427 3428 // Fix widened non-induction PHIs by setting up the PHI operands. 3429 if (OrigPHIsToFix.size()) { 3430 assert(EnableVPlanNativePath && 3431 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3432 fixNonInductionPHIs(); 3433 } 3434 3435 // At this point every instruction in the original loop is widened to a 3436 // vector form. Now we need to fix the recurrences in the loop. These PHI 3437 // nodes are currently empty because we did not want to introduce cycles. 3438 // This is the second stage of vectorizing recurrences. 3439 fixCrossIterationPHIs(); 3440 3441 // Update the dominator tree. 3442 // 3443 // FIXME: After creating the structure of the new loop, the dominator tree is 3444 // no longer up-to-date, and it remains that way until we update it 3445 // here. An out-of-date dominator tree is problematic for SCEV, 3446 // because SCEVExpander uses it to guide code generation. The 3447 // vectorizer use SCEVExpanders in several places. Instead, we should 3448 // keep the dominator tree up-to-date as we go. 3449 updateAnalysis(); 3450 3451 // Fix-up external users of the induction variables. 3452 for (auto &Entry : *Legal->getInductionVars()) 3453 fixupIVUsers(Entry.first, Entry.second, 3454 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3455 IVEndValues[Entry.first], LoopMiddleBlock); 3456 3457 fixLCSSAPHIs(); 3458 for (Instruction *PI : PredicatedInstructions) 3459 sinkScalarOperands(&*PI); 3460 3461 // Remove redundant induction instructions. 3462 cse(LoopVectorBody); 3463 } 3464 3465 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3466 // In order to support recurrences we need to be able to vectorize Phi nodes. 3467 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3468 // stage #2: We now need to fix the recurrences by adding incoming edges to 3469 // the currently empty PHI nodes. At this point every instruction in the 3470 // original loop is widened to a vector form so we can use them to construct 3471 // the incoming edges. 3472 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3473 // Handle first-order recurrences and reductions that need to be fixed. 3474 if (Legal->isFirstOrderRecurrence(&Phi)) 3475 fixFirstOrderRecurrence(&Phi); 3476 else if (Legal->isReductionVariable(&Phi)) 3477 fixReduction(&Phi); 3478 } 3479 } 3480 3481 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3482 // This is the second phase of vectorizing first-order recurrences. An 3483 // overview of the transformation is described below. Suppose we have the 3484 // following loop. 3485 // 3486 // for (int i = 0; i < n; ++i) 3487 // b[i] = a[i] - a[i - 1]; 3488 // 3489 // There is a first-order recurrence on "a". For this loop, the shorthand 3490 // scalar IR looks like: 3491 // 3492 // scalar.ph: 3493 // s_init = a[-1] 3494 // br scalar.body 3495 // 3496 // scalar.body: 3497 // i = phi [0, scalar.ph], [i+1, scalar.body] 3498 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3499 // s2 = a[i] 3500 // b[i] = s2 - s1 3501 // br cond, scalar.body, ... 3502 // 3503 // In this example, s1 is a recurrence because it's value depends on the 3504 // previous iteration. In the first phase of vectorization, we created a 3505 // temporary value for s1. We now complete the vectorization and produce the 3506 // shorthand vector IR shown below (for VF = 4, UF = 1). 3507 // 3508 // vector.ph: 3509 // v_init = vector(..., ..., ..., a[-1]) 3510 // br vector.body 3511 // 3512 // vector.body 3513 // i = phi [0, vector.ph], [i+4, vector.body] 3514 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3515 // v2 = a[i, i+1, i+2, i+3]; 3516 // v3 = vector(v1(3), v2(0, 1, 2)) 3517 // b[i, i+1, i+2, i+3] = v2 - v3 3518 // br cond, vector.body, middle.block 3519 // 3520 // middle.block: 3521 // x = v2(3) 3522 // br scalar.ph 3523 // 3524 // scalar.ph: 3525 // s_init = phi [x, middle.block], [a[-1], otherwise] 3526 // br scalar.body 3527 // 3528 // After execution completes the vector loop, we extract the next value of 3529 // the recurrence (x) to use as the initial value in the scalar loop. 3530 3531 // Get the original loop preheader and single loop latch. 3532 auto *Preheader = OrigLoop->getLoopPreheader(); 3533 auto *Latch = OrigLoop->getLoopLatch(); 3534 3535 // Get the initial and previous values of the scalar recurrence. 3536 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3537 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3538 3539 // Create a vector from the initial value. 3540 auto *VectorInit = ScalarInit; 3541 if (VF > 1) { 3542 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3543 VectorInit = Builder.CreateInsertElement( 3544 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3545 Builder.getInt32(VF - 1), "vector.recur.init"); 3546 } 3547 3548 // We constructed a temporary phi node in the first phase of vectorization. 3549 // This phi node will eventually be deleted. 3550 Builder.SetInsertPoint( 3551 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3552 3553 // Create a phi node for the new recurrence. The current value will either be 3554 // the initial value inserted into a vector or loop-varying vector value. 3555 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3556 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3557 3558 // Get the vectorized previous value of the last part UF - 1. It appears last 3559 // among all unrolled iterations, due to the order of their construction. 3560 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3561 3562 // Find and set the insertion point after the previous value if it is an 3563 // instruction. 3564 BasicBlock::iterator InsertPt; 3565 // Note that the previous value may have been constant-folded so it is not 3566 // guaranteed to be an instruction in the vector loop. 3567 // FIXME: Loop invariant values do not form recurrences. We should deal with 3568 // them earlier. 3569 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3570 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3571 else { 3572 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3573 if (isa<PHINode>(PreviousLastPart)) 3574 // If the previous value is a phi node, we should insert after all the phi 3575 // nodes in the block containing the PHI to avoid breaking basic block 3576 // verification. Note that the basic block may be different to 3577 // LoopVectorBody, in case we predicate the loop. 3578 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3579 else 3580 InsertPt = ++PreviousInst->getIterator(); 3581 } 3582 Builder.SetInsertPoint(&*InsertPt); 3583 3584 // We will construct a vector for the recurrence by combining the values for 3585 // the current and previous iterations. This is the required shuffle mask. 3586 SmallVector<Constant *, 8> ShuffleMask(VF); 3587 ShuffleMask[0] = Builder.getInt32(VF - 1); 3588 for (unsigned I = 1; I < VF; ++I) 3589 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3590 3591 // The vector from which to take the initial value for the current iteration 3592 // (actual or unrolled). Initially, this is the vector phi node. 3593 Value *Incoming = VecPhi; 3594 3595 // Shuffle the current and previous vector and update the vector parts. 3596 for (unsigned Part = 0; Part < UF; ++Part) { 3597 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3598 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3599 auto *Shuffle = 3600 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3601 ConstantVector::get(ShuffleMask)) 3602 : Incoming; 3603 PhiPart->replaceAllUsesWith(Shuffle); 3604 cast<Instruction>(PhiPart)->eraseFromParent(); 3605 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3606 Incoming = PreviousPart; 3607 } 3608 3609 // Fix the latch value of the new recurrence in the vector loop. 3610 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3611 3612 // Extract the last vector element in the middle block. This will be the 3613 // initial value for the recurrence when jumping to the scalar loop. 3614 auto *ExtractForScalar = Incoming; 3615 if (VF > 1) { 3616 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3617 ExtractForScalar = Builder.CreateExtractElement( 3618 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3619 } 3620 // Extract the second last element in the middle block if the 3621 // Phi is used outside the loop. We need to extract the phi itself 3622 // and not the last element (the phi update in the current iteration). This 3623 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3624 // when the scalar loop is not run at all. 3625 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3626 if (VF > 1) 3627 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3628 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3629 // When loop is unrolled without vectorizing, initialize 3630 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3631 // `Incoming`. This is analogous to the vectorized case above: extracting the 3632 // second last element when VF > 1. 3633 else if (UF > 1) 3634 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3635 3636 // Fix the initial value of the original recurrence in the scalar loop. 3637 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3638 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3639 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3640 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3641 Start->addIncoming(Incoming, BB); 3642 } 3643 3644 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3645 Phi->setName("scalar.recur"); 3646 3647 // Finally, fix users of the recurrence outside the loop. The users will need 3648 // either the last value of the scalar recurrence or the last value of the 3649 // vector recurrence we extracted in the middle block. Since the loop is in 3650 // LCSSA form, we just need to find all the phi nodes for the original scalar 3651 // recurrence in the exit block, and then add an edge for the middle block. 3652 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3653 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3654 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3655 } 3656 } 3657 } 3658 3659 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3660 Constant *Zero = Builder.getInt32(0); 3661 3662 // Get it's reduction variable descriptor. 3663 assert(Legal->isReductionVariable(Phi) && 3664 "Unable to find the reduction variable"); 3665 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3666 3667 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3668 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3669 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3670 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3671 RdxDesc.getMinMaxRecurrenceKind(); 3672 setDebugLocFromInst(Builder, ReductionStartValue); 3673 3674 // We need to generate a reduction vector from the incoming scalar. 3675 // To do so, we need to generate the 'identity' vector and override 3676 // one of the elements with the incoming scalar reduction. We need 3677 // to do it in the vector-loop preheader. 3678 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3679 3680 // This is the vector-clone of the value that leaves the loop. 3681 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3682 3683 // Find the reduction identity variable. Zero for addition, or, xor, 3684 // one for multiplication, -1 for And. 3685 Value *Identity; 3686 Value *VectorStart; 3687 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3688 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3689 // MinMax reduction have the start value as their identify. 3690 if (VF == 1) { 3691 VectorStart = Identity = ReductionStartValue; 3692 } else { 3693 VectorStart = Identity = 3694 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3695 } 3696 } else { 3697 // Handle other reduction kinds: 3698 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3699 RK, VecTy->getScalarType()); 3700 if (VF == 1) { 3701 Identity = Iden; 3702 // This vector is the Identity vector where the first element is the 3703 // incoming scalar reduction. 3704 VectorStart = ReductionStartValue; 3705 } else { 3706 Identity = ConstantVector::getSplat(VF, Iden); 3707 3708 // This vector is the Identity vector where the first element is the 3709 // incoming scalar reduction. 3710 VectorStart = 3711 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3712 } 3713 } 3714 3715 // Fix the vector-loop phi. 3716 3717 // Reductions do not have to start at zero. They can start with 3718 // any loop invariant values. 3719 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3720 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3721 for (unsigned Part = 0; Part < UF; ++Part) { 3722 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3723 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3724 // Make sure to add the reduction stat value only to the 3725 // first unroll part. 3726 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3727 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3728 cast<PHINode>(VecRdxPhi) 3729 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3730 } 3731 3732 // Before each round, move the insertion point right between 3733 // the PHIs and the values we are going to write. 3734 // This allows us to write both PHINodes and the extractelement 3735 // instructions. 3736 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3737 3738 setDebugLocFromInst(Builder, LoopExitInst); 3739 3740 // If tail is folded by masking, the vector value to leave the loop should be 3741 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3742 // instead of the former. 3743 if (Cost->foldTailByMasking()) { 3744 for (unsigned Part = 0; Part < UF; ++Part) { 3745 Value *VecLoopExitInst = 3746 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3747 Value *Sel = nullptr; 3748 for (User *U : VecLoopExitInst->users()) { 3749 if (isa<SelectInst>(U)) { 3750 assert(!Sel && "Reduction exit feeding two selects"); 3751 Sel = U; 3752 } else 3753 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3754 } 3755 assert(Sel && "Reduction exit feeds no select"); 3756 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3757 } 3758 } 3759 3760 // If the vector reduction can be performed in a smaller type, we truncate 3761 // then extend the loop exit value to enable InstCombine to evaluate the 3762 // entire expression in the smaller type. 3763 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3764 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3765 Builder.SetInsertPoint( 3766 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3767 VectorParts RdxParts(UF); 3768 for (unsigned Part = 0; Part < UF; ++Part) { 3769 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3770 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3771 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3772 : Builder.CreateZExt(Trunc, VecTy); 3773 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3774 UI != RdxParts[Part]->user_end();) 3775 if (*UI != Trunc) { 3776 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3777 RdxParts[Part] = Extnd; 3778 } else { 3779 ++UI; 3780 } 3781 } 3782 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3783 for (unsigned Part = 0; Part < UF; ++Part) { 3784 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3785 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3786 } 3787 } 3788 3789 // Reduce all of the unrolled parts into a single vector. 3790 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3791 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3792 3793 // The middle block terminator has already been assigned a DebugLoc here (the 3794 // OrigLoop's single latch terminator). We want the whole middle block to 3795 // appear to execute on this line because: (a) it is all compiler generated, 3796 // (b) these instructions are always executed after evaluating the latch 3797 // conditional branch, and (c) other passes may add new predecessors which 3798 // terminate on this line. This is the easiest way to ensure we don't 3799 // accidentally cause an extra step back into the loop while debugging. 3800 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3801 for (unsigned Part = 1; Part < UF; ++Part) { 3802 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3803 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3804 // Floating point operations had to be 'fast' to enable the reduction. 3805 ReducedPartRdx = addFastMathFlag( 3806 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3807 ReducedPartRdx, "bin.rdx"), 3808 RdxDesc.getFastMathFlags()); 3809 else 3810 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3811 RdxPart); 3812 } 3813 3814 if (VF > 1) { 3815 bool NoNaN = Legal->hasFunNoNaNAttr(); 3816 ReducedPartRdx = 3817 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3818 // If the reduction can be performed in a smaller type, we need to extend 3819 // the reduction to the wider type before we branch to the original loop. 3820 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3821 ReducedPartRdx = 3822 RdxDesc.isSigned() 3823 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3824 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3825 } 3826 3827 // Create a phi node that merges control-flow from the backedge-taken check 3828 // block and the middle block. 3829 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3830 LoopScalarPreHeader->getTerminator()); 3831 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3832 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3833 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3834 3835 // Now, we need to fix the users of the reduction variable 3836 // inside and outside of the scalar remainder loop. 3837 // We know that the loop is in LCSSA form. We need to update the 3838 // PHI nodes in the exit blocks. 3839 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3840 // All PHINodes need to have a single entry edge, or two if 3841 // we already fixed them. 3842 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3843 3844 // We found a reduction value exit-PHI. Update it with the 3845 // incoming bypass edge. 3846 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3847 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3848 } // end of the LCSSA phi scan. 3849 3850 // Fix the scalar loop reduction variable with the incoming reduction sum 3851 // from the vector body and from the backedge value. 3852 int IncomingEdgeBlockIdx = 3853 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3854 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3855 // Pick the other block. 3856 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3857 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3858 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3859 } 3860 3861 void InnerLoopVectorizer::fixLCSSAPHIs() { 3862 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3863 if (LCSSAPhi.getNumIncomingValues() == 1) { 3864 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3865 // Non-instruction incoming values will have only one value. 3866 unsigned LastLane = 0; 3867 if (isa<Instruction>(IncomingValue)) 3868 LastLane = Cost->isUniformAfterVectorization( 3869 cast<Instruction>(IncomingValue), VF) 3870 ? 0 3871 : VF - 1; 3872 // Can be a loop invariant incoming value or the last scalar value to be 3873 // extracted from the vectorized loop. 3874 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3875 Value *lastIncomingValue = 3876 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3877 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3878 } 3879 } 3880 } 3881 3882 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3883 // The basic block and loop containing the predicated instruction. 3884 auto *PredBB = PredInst->getParent(); 3885 auto *VectorLoop = LI->getLoopFor(PredBB); 3886 3887 // Initialize a worklist with the operands of the predicated instruction. 3888 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3889 3890 // Holds instructions that we need to analyze again. An instruction may be 3891 // reanalyzed if we don't yet know if we can sink it or not. 3892 SmallVector<Instruction *, 8> InstsToReanalyze; 3893 3894 // Returns true if a given use occurs in the predicated block. Phi nodes use 3895 // their operands in their corresponding predecessor blocks. 3896 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3897 auto *I = cast<Instruction>(U.getUser()); 3898 BasicBlock *BB = I->getParent(); 3899 if (auto *Phi = dyn_cast<PHINode>(I)) 3900 BB = Phi->getIncomingBlock( 3901 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3902 return BB == PredBB; 3903 }; 3904 3905 // Iteratively sink the scalarized operands of the predicated instruction 3906 // into the block we created for it. When an instruction is sunk, it's 3907 // operands are then added to the worklist. The algorithm ends after one pass 3908 // through the worklist doesn't sink a single instruction. 3909 bool Changed; 3910 do { 3911 // Add the instructions that need to be reanalyzed to the worklist, and 3912 // reset the changed indicator. 3913 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3914 InstsToReanalyze.clear(); 3915 Changed = false; 3916 3917 while (!Worklist.empty()) { 3918 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3919 3920 // We can't sink an instruction if it is a phi node, is already in the 3921 // predicated block, is not in the loop, or may have side effects. 3922 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3923 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3924 continue; 3925 3926 // It's legal to sink the instruction if all its uses occur in the 3927 // predicated block. Otherwise, there's nothing to do yet, and we may 3928 // need to reanalyze the instruction. 3929 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3930 InstsToReanalyze.push_back(I); 3931 continue; 3932 } 3933 3934 // Move the instruction to the beginning of the predicated block, and add 3935 // it's operands to the worklist. 3936 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3937 Worklist.insert(I->op_begin(), I->op_end()); 3938 3939 // The sinking may have enabled other instructions to be sunk, so we will 3940 // need to iterate. 3941 Changed = true; 3942 } 3943 } while (Changed); 3944 } 3945 3946 void InnerLoopVectorizer::fixNonInductionPHIs() { 3947 for (PHINode *OrigPhi : OrigPHIsToFix) { 3948 PHINode *NewPhi = 3949 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3950 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3951 3952 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3953 predecessors(OrigPhi->getParent())); 3954 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3955 predecessors(NewPhi->getParent())); 3956 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3957 "Scalar and Vector BB should have the same number of predecessors"); 3958 3959 // The insertion point in Builder may be invalidated by the time we get 3960 // here. Force the Builder insertion point to something valid so that we do 3961 // not run into issues during insertion point restore in 3962 // getOrCreateVectorValue calls below. 3963 Builder.SetInsertPoint(NewPhi); 3964 3965 // The predecessor order is preserved and we can rely on mapping between 3966 // scalar and vector block predecessors. 3967 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3968 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3969 3970 // When looking up the new scalar/vector values to fix up, use incoming 3971 // values from original phi. 3972 Value *ScIncV = 3973 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3974 3975 // Scalar incoming value may need a broadcast 3976 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3977 NewPhi->addIncoming(NewIncV, NewPredBB); 3978 } 3979 } 3980 } 3981 3982 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF, 3983 unsigned VF, bool IsPtrLoopInvariant, 3984 SmallBitVector &IsIndexLoopInvariant) { 3985 // Construct a vector GEP by widening the operands of the scalar GEP as 3986 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3987 // results in a vector of pointers when at least one operand of the GEP 3988 // is vector-typed. Thus, to keep the representation compact, we only use 3989 // vector-typed operands for loop-varying values. 3990 3991 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 3992 // If we are vectorizing, but the GEP has only loop-invariant operands, 3993 // the GEP we build (by only using vector-typed operands for 3994 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3995 // produce a vector of pointers, we need to either arbitrarily pick an 3996 // operand to broadcast, or broadcast a clone of the original GEP. 3997 // Here, we broadcast a clone of the original. 3998 // 3999 // TODO: If at some point we decide to scalarize instructions having 4000 // loop-invariant operands, this special case will no longer be 4001 // required. We would add the scalarization decision to 4002 // collectLoopScalars() and teach getVectorValue() to broadcast 4003 // the lane-zero scalar value. 4004 auto *Clone = Builder.Insert(GEP->clone()); 4005 for (unsigned Part = 0; Part < UF; ++Part) { 4006 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4007 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4008 addMetadata(EntryPart, GEP); 4009 } 4010 } else { 4011 // If the GEP has at least one loop-varying operand, we are sure to 4012 // produce a vector of pointers. But if we are only unrolling, we want 4013 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4014 // produce with the code below will be scalar (if VF == 1) or vector 4015 // (otherwise). Note that for the unroll-only case, we still maintain 4016 // values in the vector mapping with initVector, as we do for other 4017 // instructions. 4018 for (unsigned Part = 0; Part < UF; ++Part) { 4019 // The pointer operand of the new GEP. If it's loop-invariant, we 4020 // won't broadcast it. 4021 auto *Ptr = IsPtrLoopInvariant 4022 ? GEP->getPointerOperand() 4023 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4024 4025 // Collect all the indices for the new GEP. If any index is 4026 // loop-invariant, we won't broadcast it. 4027 SmallVector<Value *, 4> Indices; 4028 for (auto Index : enumerate(GEP->indices())) { 4029 Value *User = Index.value().get(); 4030 if (IsIndexLoopInvariant[Index.index()]) 4031 Indices.push_back(User); 4032 else 4033 Indices.push_back(getOrCreateVectorValue(User, Part)); 4034 } 4035 4036 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4037 // but it should be a vector, otherwise. 4038 auto *NewGEP = 4039 GEP->isInBounds() 4040 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4041 Indices) 4042 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4043 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4044 "NewGEP is not a pointer vector"); 4045 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4046 addMetadata(NewGEP, GEP); 4047 } 4048 } 4049 } 4050 4051 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4052 unsigned VF) { 4053 PHINode *P = cast<PHINode>(PN); 4054 if (EnableVPlanNativePath) { 4055 // Currently we enter here in the VPlan-native path for non-induction 4056 // PHIs where all control flow is uniform. We simply widen these PHIs. 4057 // Create a vector phi with no operands - the vector phi operands will be 4058 // set at the end of vector code generation. 4059 Type *VecTy = 4060 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4061 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4062 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4063 OrigPHIsToFix.push_back(P); 4064 4065 return; 4066 } 4067 4068 assert(PN->getParent() == OrigLoop->getHeader() && 4069 "Non-header phis should have been handled elsewhere"); 4070 4071 // In order to support recurrences we need to be able to vectorize Phi nodes. 4072 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4073 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4074 // this value when we vectorize all of the instructions that use the PHI. 4075 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4076 for (unsigned Part = 0; Part < UF; ++Part) { 4077 // This is phase one of vectorizing PHIs. 4078 Type *VecTy = 4079 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4080 Value *EntryPart = PHINode::Create( 4081 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4082 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4083 } 4084 return; 4085 } 4086 4087 setDebugLocFromInst(Builder, P); 4088 4089 // This PHINode must be an induction variable. 4090 // Make sure that we know about it. 4091 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4092 4093 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4094 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4095 4096 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4097 // which can be found from the original scalar operations. 4098 switch (II.getKind()) { 4099 case InductionDescriptor::IK_NoInduction: 4100 llvm_unreachable("Unknown induction"); 4101 case InductionDescriptor::IK_IntInduction: 4102 case InductionDescriptor::IK_FpInduction: 4103 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4104 case InductionDescriptor::IK_PtrInduction: { 4105 // Handle the pointer induction variable case. 4106 assert(P->getType()->isPointerTy() && "Unexpected type."); 4107 // This is the normalized GEP that starts counting at zero. 4108 Value *PtrInd = Induction; 4109 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4110 // Determine the number of scalars we need to generate for each unroll 4111 // iteration. If the instruction is uniform, we only need to generate the 4112 // first lane. Otherwise, we generate all VF values. 4113 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4114 // These are the scalar results. Notice that we don't generate vector GEPs 4115 // because scalar GEPs result in better code. 4116 for (unsigned Part = 0; Part < UF; ++Part) { 4117 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4118 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4119 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4120 Value *SclrGep = 4121 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4122 SclrGep->setName("next.gep"); 4123 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4124 } 4125 } 4126 return; 4127 } 4128 } 4129 } 4130 4131 /// A helper function for checking whether an integer division-related 4132 /// instruction may divide by zero (in which case it must be predicated if 4133 /// executed conditionally in the scalar code). 4134 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4135 /// Non-zero divisors that are non compile-time constants will not be 4136 /// converted into multiplication, so we will still end up scalarizing 4137 /// the division, but can do so w/o predication. 4138 static bool mayDivideByZero(Instruction &I) { 4139 assert((I.getOpcode() == Instruction::UDiv || 4140 I.getOpcode() == Instruction::SDiv || 4141 I.getOpcode() == Instruction::URem || 4142 I.getOpcode() == Instruction::SRem) && 4143 "Unexpected instruction"); 4144 Value *Divisor = I.getOperand(1); 4145 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4146 return !CInt || CInt->isZero(); 4147 } 4148 4149 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4150 switch (I.getOpcode()) { 4151 case Instruction::Br: 4152 case Instruction::PHI: 4153 case Instruction::GetElementPtr: 4154 llvm_unreachable("This instruction is handled by a different recipe."); 4155 case Instruction::UDiv: 4156 case Instruction::SDiv: 4157 case Instruction::SRem: 4158 case Instruction::URem: 4159 case Instruction::Add: 4160 case Instruction::FAdd: 4161 case Instruction::Sub: 4162 case Instruction::FSub: 4163 case Instruction::FNeg: 4164 case Instruction::Mul: 4165 case Instruction::FMul: 4166 case Instruction::FDiv: 4167 case Instruction::FRem: 4168 case Instruction::Shl: 4169 case Instruction::LShr: 4170 case Instruction::AShr: 4171 case Instruction::And: 4172 case Instruction::Or: 4173 case Instruction::Xor: { 4174 // Just widen unops and binops. 4175 setDebugLocFromInst(Builder, &I); 4176 4177 for (unsigned Part = 0; Part < UF; ++Part) { 4178 SmallVector<Value *, 2> Ops; 4179 for (Value *Op : I.operands()) 4180 Ops.push_back(getOrCreateVectorValue(Op, Part)); 4181 4182 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4183 4184 if (auto *VecOp = dyn_cast<Instruction>(V)) 4185 VecOp->copyIRFlags(&I); 4186 4187 // Use this vector value for all users of the original instruction. 4188 VectorLoopValueMap.setVectorValue(&I, Part, V); 4189 addMetadata(V, &I); 4190 } 4191 4192 break; 4193 } 4194 case Instruction::Select: { 4195 // Widen selects. 4196 // If the selector is loop invariant we can create a select 4197 // instruction with a scalar condition. Otherwise, use vector-select. 4198 auto *SE = PSE.getSE(); 4199 bool InvariantCond = 4200 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4201 setDebugLocFromInst(Builder, &I); 4202 4203 // The condition can be loop invariant but still defined inside the 4204 // loop. This means that we can't just use the original 'cond' value. 4205 // We have to take the 'vectorized' value and pick the first lane. 4206 // Instcombine will make this a no-op. 4207 4208 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4209 4210 for (unsigned Part = 0; Part < UF; ++Part) { 4211 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4212 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4213 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4214 Value *Sel = 4215 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4216 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4217 addMetadata(Sel, &I); 4218 } 4219 4220 break; 4221 } 4222 4223 case Instruction::ICmp: 4224 case Instruction::FCmp: { 4225 // Widen compares. Generate vector compares. 4226 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4227 auto *Cmp = cast<CmpInst>(&I); 4228 setDebugLocFromInst(Builder, Cmp); 4229 for (unsigned Part = 0; Part < UF; ++Part) { 4230 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4231 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4232 Value *C = nullptr; 4233 if (FCmp) { 4234 // Propagate fast math flags. 4235 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4236 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4237 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4238 } else { 4239 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4240 } 4241 VectorLoopValueMap.setVectorValue(&I, Part, C); 4242 addMetadata(C, &I); 4243 } 4244 4245 break; 4246 } 4247 4248 case Instruction::ZExt: 4249 case Instruction::SExt: 4250 case Instruction::FPToUI: 4251 case Instruction::FPToSI: 4252 case Instruction::FPExt: 4253 case Instruction::PtrToInt: 4254 case Instruction::IntToPtr: 4255 case Instruction::SIToFP: 4256 case Instruction::UIToFP: 4257 case Instruction::Trunc: 4258 case Instruction::FPTrunc: 4259 case Instruction::BitCast: { 4260 auto *CI = cast<CastInst>(&I); 4261 setDebugLocFromInst(Builder, CI); 4262 4263 /// Vectorize casts. 4264 Type *DestTy = 4265 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4266 4267 for (unsigned Part = 0; Part < UF; ++Part) { 4268 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4269 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4270 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4271 addMetadata(Cast, &I); 4272 } 4273 break; 4274 } 4275 4276 case Instruction::Call: { 4277 // Ignore dbg intrinsics. 4278 if (isa<DbgInfoIntrinsic>(I)) 4279 break; 4280 setDebugLocFromInst(Builder, &I); 4281 4282 Module *M = I.getParent()->getParent()->getParent(); 4283 auto *CI = cast<CallInst>(&I); 4284 4285 SmallVector<Type *, 4> Tys; 4286 for (Value *ArgOperand : CI->arg_operands()) 4287 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4288 4289 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4290 4291 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4292 // version of the instruction. 4293 // Is it beneficial to perform intrinsic call compared to lib call? 4294 bool NeedToScalarize; 4295 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4296 bool UseVectorIntrinsic = 4297 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4298 assert((UseVectorIntrinsic || !NeedToScalarize) && 4299 "Instruction should be scalarized elsewhere."); 4300 4301 for (unsigned Part = 0; Part < UF; ++Part) { 4302 SmallVector<Value *, 4> Args; 4303 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4304 Value *Arg = CI->getArgOperand(i); 4305 // Some intrinsics have a scalar argument - don't replace it with a 4306 // vector. 4307 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4308 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4309 Args.push_back(Arg); 4310 } 4311 4312 Function *VectorF; 4313 if (UseVectorIntrinsic) { 4314 // Use vector version of the intrinsic. 4315 Type *TysForDecl[] = {CI->getType()}; 4316 if (VF > 1) 4317 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4318 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4319 } else { 4320 // Use vector version of the function call. 4321 const VFShape Shape = 4322 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4323 #ifndef NDEBUG 4324 const SmallVector<VFInfo, 8> Infos = VFDatabase::getMappings(*CI); 4325 assert(std::find_if(Infos.begin(), Infos.end(), 4326 [&Shape](const VFInfo &Info) { 4327 return Info.Shape == Shape; 4328 }) != Infos.end() && 4329 "Vector function shape is missing from the database."); 4330 #endif 4331 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4332 } 4333 assert(VectorF && "Can't create vector function."); 4334 4335 SmallVector<OperandBundleDef, 1> OpBundles; 4336 CI->getOperandBundlesAsDefs(OpBundles); 4337 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4338 4339 if (isa<FPMathOperator>(V)) 4340 V->copyFastMathFlags(CI); 4341 4342 VectorLoopValueMap.setVectorValue(&I, Part, V); 4343 addMetadata(V, &I); 4344 } 4345 4346 break; 4347 } 4348 4349 default: 4350 // This instruction is not vectorized by simple widening. 4351 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4352 llvm_unreachable("Unhandled instruction!"); 4353 } // end of switch. 4354 } 4355 4356 void InnerLoopVectorizer::updateAnalysis() { 4357 // Forget the original basic block. 4358 PSE.getSE()->forgetLoop(OrigLoop); 4359 4360 // DT is not kept up-to-date for outer loop vectorization 4361 if (EnableVPlanNativePath) 4362 return; 4363 4364 // Update the dominator tree information. 4365 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4366 "Entry does not dominate exit."); 4367 4368 DT->addNewBlock(LoopMiddleBlock, 4369 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4370 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4371 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4372 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4373 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4374 } 4375 4376 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4377 // We should not collect Scalars more than once per VF. Right now, this 4378 // function is called from collectUniformsAndScalars(), which already does 4379 // this check. Collecting Scalars for VF=1 does not make any sense. 4380 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4381 "This function should not be visited twice for the same VF"); 4382 4383 SmallSetVector<Instruction *, 8> Worklist; 4384 4385 // These sets are used to seed the analysis with pointers used by memory 4386 // accesses that will remain scalar. 4387 SmallSetVector<Instruction *, 8> ScalarPtrs; 4388 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4389 4390 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4391 // The pointer operands of loads and stores will be scalar as long as the 4392 // memory access is not a gather or scatter operation. The value operand of a 4393 // store will remain scalar if the store is scalarized. 4394 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4395 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4396 assert(WideningDecision != CM_Unknown && 4397 "Widening decision should be ready at this moment"); 4398 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4399 if (Ptr == Store->getValueOperand()) 4400 return WideningDecision == CM_Scalarize; 4401 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4402 "Ptr is neither a value or pointer operand"); 4403 return WideningDecision != CM_GatherScatter; 4404 }; 4405 4406 // A helper that returns true if the given value is a bitcast or 4407 // getelementptr instruction contained in the loop. 4408 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4409 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4410 isa<GetElementPtrInst>(V)) && 4411 !TheLoop->isLoopInvariant(V); 4412 }; 4413 4414 // A helper that evaluates a memory access's use of a pointer. If the use 4415 // will be a scalar use, and the pointer is only used by memory accesses, we 4416 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4417 // PossibleNonScalarPtrs. 4418 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4419 // We only care about bitcast and getelementptr instructions contained in 4420 // the loop. 4421 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4422 return; 4423 4424 // If the pointer has already been identified as scalar (e.g., if it was 4425 // also identified as uniform), there's nothing to do. 4426 auto *I = cast<Instruction>(Ptr); 4427 if (Worklist.count(I)) 4428 return; 4429 4430 // If the use of the pointer will be a scalar use, and all users of the 4431 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4432 // place the pointer in PossibleNonScalarPtrs. 4433 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4434 return isa<LoadInst>(U) || isa<StoreInst>(U); 4435 })) 4436 ScalarPtrs.insert(I); 4437 else 4438 PossibleNonScalarPtrs.insert(I); 4439 }; 4440 4441 // We seed the scalars analysis with three classes of instructions: (1) 4442 // instructions marked uniform-after-vectorization, (2) bitcast and 4443 // getelementptr instructions used by memory accesses requiring a scalar use, 4444 // and (3) pointer induction variables and their update instructions (we 4445 // currently only scalarize these). 4446 // 4447 // (1) Add to the worklist all instructions that have been identified as 4448 // uniform-after-vectorization. 4449 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4450 4451 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4452 // memory accesses requiring a scalar use. The pointer operands of loads and 4453 // stores will be scalar as long as the memory accesses is not a gather or 4454 // scatter operation. The value operand of a store will remain scalar if the 4455 // store is scalarized. 4456 for (auto *BB : TheLoop->blocks()) 4457 for (auto &I : *BB) { 4458 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4459 evaluatePtrUse(Load, Load->getPointerOperand()); 4460 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4461 evaluatePtrUse(Store, Store->getPointerOperand()); 4462 evaluatePtrUse(Store, Store->getValueOperand()); 4463 } 4464 } 4465 for (auto *I : ScalarPtrs) 4466 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4467 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4468 Worklist.insert(I); 4469 } 4470 4471 // (3) Add to the worklist all pointer induction variables and their update 4472 // instructions. 4473 // 4474 // TODO: Once we are able to vectorize pointer induction variables we should 4475 // no longer insert them into the worklist here. 4476 auto *Latch = TheLoop->getLoopLatch(); 4477 for (auto &Induction : *Legal->getInductionVars()) { 4478 auto *Ind = Induction.first; 4479 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4480 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4481 continue; 4482 Worklist.insert(Ind); 4483 Worklist.insert(IndUpdate); 4484 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4485 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4486 << "\n"); 4487 } 4488 4489 // Insert the forced scalars. 4490 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4491 // induction variable when the PHI user is scalarized. 4492 auto ForcedScalar = ForcedScalars.find(VF); 4493 if (ForcedScalar != ForcedScalars.end()) 4494 for (auto *I : ForcedScalar->second) 4495 Worklist.insert(I); 4496 4497 // Expand the worklist by looking through any bitcasts and getelementptr 4498 // instructions we've already identified as scalar. This is similar to the 4499 // expansion step in collectLoopUniforms(); however, here we're only 4500 // expanding to include additional bitcasts and getelementptr instructions. 4501 unsigned Idx = 0; 4502 while (Idx != Worklist.size()) { 4503 Instruction *Dst = Worklist[Idx++]; 4504 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4505 continue; 4506 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4507 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4508 auto *J = cast<Instruction>(U); 4509 return !TheLoop->contains(J) || Worklist.count(J) || 4510 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4511 isScalarUse(J, Src)); 4512 })) { 4513 Worklist.insert(Src); 4514 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4515 } 4516 } 4517 4518 // An induction variable will remain scalar if all users of the induction 4519 // variable and induction variable update remain scalar. 4520 for (auto &Induction : *Legal->getInductionVars()) { 4521 auto *Ind = Induction.first; 4522 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4523 4524 // We already considered pointer induction variables, so there's no reason 4525 // to look at their users again. 4526 // 4527 // TODO: Once we are able to vectorize pointer induction variables we 4528 // should no longer skip over them here. 4529 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4530 continue; 4531 4532 // Determine if all users of the induction variable are scalar after 4533 // vectorization. 4534 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4535 auto *I = cast<Instruction>(U); 4536 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4537 }); 4538 if (!ScalarInd) 4539 continue; 4540 4541 // Determine if all users of the induction variable update instruction are 4542 // scalar after vectorization. 4543 auto ScalarIndUpdate = 4544 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4545 auto *I = cast<Instruction>(U); 4546 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4547 }); 4548 if (!ScalarIndUpdate) 4549 continue; 4550 4551 // The induction variable and its update instruction will remain scalar. 4552 Worklist.insert(Ind); 4553 Worklist.insert(IndUpdate); 4554 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4555 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4556 << "\n"); 4557 } 4558 4559 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4560 } 4561 4562 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4563 if (!blockNeedsPredication(I->getParent())) 4564 return false; 4565 switch(I->getOpcode()) { 4566 default: 4567 break; 4568 case Instruction::Load: 4569 case Instruction::Store: { 4570 if (!Legal->isMaskRequired(I)) 4571 return false; 4572 auto *Ptr = getLoadStorePointerOperand(I); 4573 auto *Ty = getMemInstValueType(I); 4574 // We have already decided how to vectorize this instruction, get that 4575 // result. 4576 if (VF > 1) { 4577 InstWidening WideningDecision = getWideningDecision(I, VF); 4578 assert(WideningDecision != CM_Unknown && 4579 "Widening decision should be ready at this moment"); 4580 return WideningDecision == CM_Scalarize; 4581 } 4582 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4583 return isa<LoadInst>(I) ? 4584 !(isLegalMaskedLoad(Ty, Ptr, Alignment) || isLegalMaskedGather(Ty)) 4585 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || isLegalMaskedScatter(Ty)); 4586 } 4587 case Instruction::UDiv: 4588 case Instruction::SDiv: 4589 case Instruction::SRem: 4590 case Instruction::URem: 4591 return mayDivideByZero(*I); 4592 } 4593 return false; 4594 } 4595 4596 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4597 unsigned VF) { 4598 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4599 assert(getWideningDecision(I, VF) == CM_Unknown && 4600 "Decision should not be set yet."); 4601 auto *Group = getInterleavedAccessGroup(I); 4602 assert(Group && "Must have a group."); 4603 4604 // If the instruction's allocated size doesn't equal it's type size, it 4605 // requires padding and will be scalarized. 4606 auto &DL = I->getModule()->getDataLayout(); 4607 auto *ScalarTy = getMemInstValueType(I); 4608 if (hasIrregularType(ScalarTy, DL, VF)) 4609 return false; 4610 4611 // Check if masking is required. 4612 // A Group may need masking for one of two reasons: it resides in a block that 4613 // needs predication, or it was decided to use masking to deal with gaps. 4614 bool PredicatedAccessRequiresMasking = 4615 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4616 bool AccessWithGapsRequiresMasking = 4617 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4618 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4619 return true; 4620 4621 // If masked interleaving is required, we expect that the user/target had 4622 // enabled it, because otherwise it either wouldn't have been created or 4623 // it should have been invalidated by the CostModel. 4624 assert(useMaskedInterleavedAccesses(TTI) && 4625 "Masked interleave-groups for predicated accesses are not enabled."); 4626 4627 auto *Ty = getMemInstValueType(I); 4628 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4629 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4630 : TTI.isLegalMaskedStore(Ty, Alignment); 4631 } 4632 4633 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4634 unsigned VF) { 4635 // Get and ensure we have a valid memory instruction. 4636 LoadInst *LI = dyn_cast<LoadInst>(I); 4637 StoreInst *SI = dyn_cast<StoreInst>(I); 4638 assert((LI || SI) && "Invalid memory instruction"); 4639 4640 auto *Ptr = getLoadStorePointerOperand(I); 4641 4642 // In order to be widened, the pointer should be consecutive, first of all. 4643 if (!Legal->isConsecutivePtr(Ptr)) 4644 return false; 4645 4646 // If the instruction is a store located in a predicated block, it will be 4647 // scalarized. 4648 if (isScalarWithPredication(I)) 4649 return false; 4650 4651 // If the instruction's allocated size doesn't equal it's type size, it 4652 // requires padding and will be scalarized. 4653 auto &DL = I->getModule()->getDataLayout(); 4654 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4655 if (hasIrregularType(ScalarTy, DL, VF)) 4656 return false; 4657 4658 return true; 4659 } 4660 4661 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4662 // We should not collect Uniforms more than once per VF. Right now, 4663 // this function is called from collectUniformsAndScalars(), which 4664 // already does this check. Collecting Uniforms for VF=1 does not make any 4665 // sense. 4666 4667 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4668 "This function should not be visited twice for the same VF"); 4669 4670 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4671 // not analyze again. Uniforms.count(VF) will return 1. 4672 Uniforms[VF].clear(); 4673 4674 // We now know that the loop is vectorizable! 4675 // Collect instructions inside the loop that will remain uniform after 4676 // vectorization. 4677 4678 // Global values, params and instructions outside of current loop are out of 4679 // scope. 4680 auto isOutOfScope = [&](Value *V) -> bool { 4681 Instruction *I = dyn_cast<Instruction>(V); 4682 return (!I || !TheLoop->contains(I)); 4683 }; 4684 4685 SetVector<Instruction *> Worklist; 4686 BasicBlock *Latch = TheLoop->getLoopLatch(); 4687 4688 // Instructions that are scalar with predication must not be considered 4689 // uniform after vectorization, because that would create an erroneous 4690 // replicating region where only a single instance out of VF should be formed. 4691 // TODO: optimize such seldom cases if found important, see PR40816. 4692 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4693 if (isScalarWithPredication(I, VF)) { 4694 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4695 << *I << "\n"); 4696 return; 4697 } 4698 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4699 Worklist.insert(I); 4700 }; 4701 4702 // Start with the conditional branch. If the branch condition is an 4703 // instruction contained in the loop that is only used by the branch, it is 4704 // uniform. 4705 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4706 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4707 addToWorklistIfAllowed(Cmp); 4708 4709 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4710 // are pointers that are treated like consecutive pointers during 4711 // vectorization. The pointer operands of interleaved accesses are an 4712 // example. 4713 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4714 4715 // Holds pointer operands of instructions that are possibly non-uniform. 4716 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4717 4718 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4719 InstWidening WideningDecision = getWideningDecision(I, VF); 4720 assert(WideningDecision != CM_Unknown && 4721 "Widening decision should be ready at this moment"); 4722 4723 return (WideningDecision == CM_Widen || 4724 WideningDecision == CM_Widen_Reverse || 4725 WideningDecision == CM_Interleave); 4726 }; 4727 // Iterate over the instructions in the loop, and collect all 4728 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4729 // that a consecutive-like pointer operand will be scalarized, we collect it 4730 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4731 // getelementptr instruction can be used by both vectorized and scalarized 4732 // memory instructions. For example, if a loop loads and stores from the same 4733 // location, but the store is conditional, the store will be scalarized, and 4734 // the getelementptr won't remain uniform. 4735 for (auto *BB : TheLoop->blocks()) 4736 for (auto &I : *BB) { 4737 // If there's no pointer operand, there's nothing to do. 4738 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4739 if (!Ptr) 4740 continue; 4741 4742 // True if all users of Ptr are memory accesses that have Ptr as their 4743 // pointer operand. 4744 auto UsersAreMemAccesses = 4745 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4746 return getLoadStorePointerOperand(U) == Ptr; 4747 }); 4748 4749 // Ensure the memory instruction will not be scalarized or used by 4750 // gather/scatter, making its pointer operand non-uniform. If the pointer 4751 // operand is used by any instruction other than a memory access, we 4752 // conservatively assume the pointer operand may be non-uniform. 4753 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4754 PossibleNonUniformPtrs.insert(Ptr); 4755 4756 // If the memory instruction will be vectorized and its pointer operand 4757 // is consecutive-like, or interleaving - the pointer operand should 4758 // remain uniform. 4759 else 4760 ConsecutiveLikePtrs.insert(Ptr); 4761 } 4762 4763 // Add to the Worklist all consecutive and consecutive-like pointers that 4764 // aren't also identified as possibly non-uniform. 4765 for (auto *V : ConsecutiveLikePtrs) 4766 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) 4767 addToWorklistIfAllowed(V); 4768 4769 // Expand Worklist in topological order: whenever a new instruction 4770 // is added , its users should be already inside Worklist. It ensures 4771 // a uniform instruction will only be used by uniform instructions. 4772 unsigned idx = 0; 4773 while (idx != Worklist.size()) { 4774 Instruction *I = Worklist[idx++]; 4775 4776 for (auto OV : I->operand_values()) { 4777 // isOutOfScope operands cannot be uniform instructions. 4778 if (isOutOfScope(OV)) 4779 continue; 4780 // First order recurrence Phi's should typically be considered 4781 // non-uniform. 4782 auto *OP = dyn_cast<PHINode>(OV); 4783 if (OP && Legal->isFirstOrderRecurrence(OP)) 4784 continue; 4785 // If all the users of the operand are uniform, then add the 4786 // operand into the uniform worklist. 4787 auto *OI = cast<Instruction>(OV); 4788 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4789 auto *J = cast<Instruction>(U); 4790 return Worklist.count(J) || 4791 (OI == getLoadStorePointerOperand(J) && 4792 isUniformDecision(J, VF)); 4793 })) 4794 addToWorklistIfAllowed(OI); 4795 } 4796 } 4797 4798 // Returns true if Ptr is the pointer operand of a memory access instruction 4799 // I, and I is known to not require scalarization. 4800 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4801 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4802 }; 4803 4804 // For an instruction to be added into Worklist above, all its users inside 4805 // the loop should also be in Worklist. However, this condition cannot be 4806 // true for phi nodes that form a cyclic dependence. We must process phi 4807 // nodes separately. An induction variable will remain uniform if all users 4808 // of the induction variable and induction variable update remain uniform. 4809 // The code below handles both pointer and non-pointer induction variables. 4810 for (auto &Induction : *Legal->getInductionVars()) { 4811 auto *Ind = Induction.first; 4812 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4813 4814 // Determine if all users of the induction variable are uniform after 4815 // vectorization. 4816 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4817 auto *I = cast<Instruction>(U); 4818 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4819 isVectorizedMemAccessUse(I, Ind); 4820 }); 4821 if (!UniformInd) 4822 continue; 4823 4824 // Determine if all users of the induction variable update instruction are 4825 // uniform after vectorization. 4826 auto UniformIndUpdate = 4827 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4828 auto *I = cast<Instruction>(U); 4829 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4830 isVectorizedMemAccessUse(I, IndUpdate); 4831 }); 4832 if (!UniformIndUpdate) 4833 continue; 4834 4835 // The induction variable and its update instruction will remain uniform. 4836 addToWorklistIfAllowed(Ind); 4837 addToWorklistIfAllowed(IndUpdate); 4838 } 4839 4840 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4841 } 4842 4843 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4844 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4845 4846 if (Legal->getRuntimePointerChecking()->Need) { 4847 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4848 "runtime pointer checks needed. Enable vectorization of this " 4849 "loop with '#pragma clang loop vectorize(enable)' when " 4850 "compiling with -Os/-Oz", 4851 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4852 return true; 4853 } 4854 4855 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4856 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4857 "runtime SCEV checks needed. Enable vectorization of this " 4858 "loop with '#pragma clang loop vectorize(enable)' when " 4859 "compiling with -Os/-Oz", 4860 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4861 return true; 4862 } 4863 4864 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4865 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4866 reportVectorizationFailure("Runtime stride check is required with -Os/-Oz", 4867 "runtime stride == 1 checks needed. Enable vectorization of " 4868 "this loop with '#pragma clang loop vectorize(enable)' when " 4869 "compiling with -Os/-Oz", 4870 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4871 return true; 4872 } 4873 4874 return false; 4875 } 4876 4877 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() { 4878 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4879 // TODO: It may by useful to do since it's still likely to be dynamically 4880 // uniform if the target can skip. 4881 reportVectorizationFailure( 4882 "Not inserting runtime ptr check for divergent target", 4883 "runtime pointer checks needed. Not enabled for divergent target", 4884 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4885 return None; 4886 } 4887 4888 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4889 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4890 if (TC == 1) { 4891 reportVectorizationFailure("Single iteration (non) loop", 4892 "loop trip count is one, irrelevant for vectorization", 4893 "SingleIterationLoop", ORE, TheLoop); 4894 return None; 4895 } 4896 4897 switch (ScalarEpilogueStatus) { 4898 case CM_ScalarEpilogueAllowed: 4899 return computeFeasibleMaxVF(TC); 4900 case CM_ScalarEpilogueNotNeededUsePredicate: 4901 LLVM_DEBUG( 4902 dbgs() << "LV: vector predicate hint/switch found.\n" 4903 << "LV: Not allowing scalar epilogue, creating predicated " 4904 << "vector loop.\n"); 4905 break; 4906 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4907 // fallthrough as a special case of OptForSize 4908 case CM_ScalarEpilogueNotAllowedOptSize: 4909 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4910 LLVM_DEBUG( 4911 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4912 else 4913 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4914 << "count.\n"); 4915 4916 // Bail if runtime checks are required, which are not good when optimising 4917 // for size. 4918 if (runtimeChecksRequired()) 4919 return None; 4920 break; 4921 } 4922 4923 // Now try the tail folding 4924 4925 // Invalidate interleave groups that require an epilogue if we can't mask 4926 // the interleave-group. 4927 if (!useMaskedInterleavedAccesses(TTI)) 4928 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4929 4930 unsigned MaxVF = computeFeasibleMaxVF(TC); 4931 if (TC > 0 && TC % MaxVF == 0) { 4932 // Accept MaxVF if we do not have a tail. 4933 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4934 return MaxVF; 4935 } 4936 4937 // If we don't know the precise trip count, or if the trip count that we 4938 // found modulo the vectorization factor is not zero, try to fold the tail 4939 // by masking. 4940 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4941 if (Legal->prepareToFoldTailByMasking()) { 4942 FoldTailByMasking = true; 4943 return MaxVF; 4944 } 4945 4946 if (TC == 0) { 4947 reportVectorizationFailure( 4948 "Unable to calculate the loop count due to complex control flow", 4949 "unable to calculate the loop count due to complex control flow", 4950 "UnknownLoopCountComplexCFG", ORE, TheLoop); 4951 return None; 4952 } 4953 4954 reportVectorizationFailure( 4955 "Cannot optimize for size and vectorize at the same time.", 4956 "cannot optimize for size and vectorize at the same time. " 4957 "Enable vectorization of this loop with '#pragma clang loop " 4958 "vectorize(enable)' when compiling with -Os/-Oz", 4959 "NoTailLoopWithOptForSize", ORE, TheLoop); 4960 return None; 4961 } 4962 4963 unsigned 4964 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 4965 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4966 unsigned SmallestType, WidestType; 4967 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4968 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4969 4970 // Get the maximum safe dependence distance in bits computed by LAA. 4971 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4972 // the memory accesses that is most restrictive (involved in the smallest 4973 // dependence distance). 4974 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4975 4976 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4977 4978 unsigned MaxVectorSize = WidestRegister / WidestType; 4979 4980 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4981 << " / " << WidestType << " bits.\n"); 4982 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4983 << WidestRegister << " bits.\n"); 4984 4985 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4986 " into one vector!"); 4987 if (MaxVectorSize == 0) { 4988 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4989 MaxVectorSize = 1; 4990 return MaxVectorSize; 4991 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4992 isPowerOf2_32(ConstTripCount)) { 4993 // We need to clamp the VF to be the ConstTripCount. There is no point in 4994 // choosing a higher viable VF as done in the loop below. 4995 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4996 << ConstTripCount << "\n"); 4997 MaxVectorSize = ConstTripCount; 4998 return MaxVectorSize; 4999 } 5000 5001 unsigned MaxVF = MaxVectorSize; 5002 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5003 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5004 // Collect all viable vectorization factors larger than the default MaxVF 5005 // (i.e. MaxVectorSize). 5006 SmallVector<unsigned, 8> VFs; 5007 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5008 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5009 VFs.push_back(VS); 5010 5011 // For each VF calculate its register usage. 5012 auto RUs = calculateRegisterUsage(VFs); 5013 5014 // Select the largest VF which doesn't require more registers than existing 5015 // ones. 5016 for (int i = RUs.size() - 1; i >= 0; --i) { 5017 bool Selected = true; 5018 for (auto& pair : RUs[i].MaxLocalUsers) { 5019 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5020 if (pair.second > TargetNumRegisters) 5021 Selected = false; 5022 } 5023 if (Selected) { 5024 MaxVF = VFs[i]; 5025 break; 5026 } 5027 } 5028 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5029 if (MaxVF < MinVF) { 5030 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5031 << ") with target's minimum: " << MinVF << '\n'); 5032 MaxVF = MinVF; 5033 } 5034 } 5035 } 5036 return MaxVF; 5037 } 5038 5039 VectorizationFactor 5040 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5041 float Cost = expectedCost(1).first; 5042 const float ScalarCost = Cost; 5043 unsigned Width = 1; 5044 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5045 5046 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5047 if (ForceVectorization && MaxVF > 1) { 5048 // Ignore scalar width, because the user explicitly wants vectorization. 5049 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5050 // evaluation. 5051 Cost = std::numeric_limits<float>::max(); 5052 } 5053 5054 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5055 // Notice that the vector loop needs to be executed less times, so 5056 // we need to divide the cost of the vector loops by the width of 5057 // the vector elements. 5058 VectorizationCostTy C = expectedCost(i); 5059 float VectorCost = C.first / (float)i; 5060 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5061 << " costs: " << (int)VectorCost << ".\n"); 5062 if (!C.second && !ForceVectorization) { 5063 LLVM_DEBUG( 5064 dbgs() << "LV: Not considering vector loop of width " << i 5065 << " because it will not generate any vector instructions.\n"); 5066 continue; 5067 } 5068 if (VectorCost < Cost) { 5069 Cost = VectorCost; 5070 Width = i; 5071 } 5072 } 5073 5074 if (!EnableCondStoresVectorization && NumPredStores) { 5075 reportVectorizationFailure("There are conditional stores.", 5076 "store that is conditionally executed prevents vectorization", 5077 "ConditionalStore", ORE, TheLoop); 5078 Width = 1; 5079 Cost = ScalarCost; 5080 } 5081 5082 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5083 << "LV: Vectorization seems to be not beneficial, " 5084 << "but was forced by a user.\n"); 5085 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5086 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5087 return Factor; 5088 } 5089 5090 std::pair<unsigned, unsigned> 5091 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5092 unsigned MinWidth = -1U; 5093 unsigned MaxWidth = 8; 5094 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5095 5096 // For each block. 5097 for (BasicBlock *BB : TheLoop->blocks()) { 5098 // For each instruction in the loop. 5099 for (Instruction &I : BB->instructionsWithoutDebug()) { 5100 Type *T = I.getType(); 5101 5102 // Skip ignored values. 5103 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 5104 continue; 5105 5106 // Only examine Loads, Stores and PHINodes. 5107 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5108 continue; 5109 5110 // Examine PHI nodes that are reduction variables. Update the type to 5111 // account for the recurrence type. 5112 if (auto *PN = dyn_cast<PHINode>(&I)) { 5113 if (!Legal->isReductionVariable(PN)) 5114 continue; 5115 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5116 T = RdxDesc.getRecurrenceType(); 5117 } 5118 5119 // Examine the stored values. 5120 if (auto *ST = dyn_cast<StoreInst>(&I)) 5121 T = ST->getValueOperand()->getType(); 5122 5123 // Ignore loaded pointer types and stored pointer types that are not 5124 // vectorizable. 5125 // 5126 // FIXME: The check here attempts to predict whether a load or store will 5127 // be vectorized. We only know this for certain after a VF has 5128 // been selected. Here, we assume that if an access can be 5129 // vectorized, it will be. We should also look at extending this 5130 // optimization to non-pointer types. 5131 // 5132 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5133 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5134 continue; 5135 5136 MinWidth = std::min(MinWidth, 5137 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5138 MaxWidth = std::max(MaxWidth, 5139 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5140 } 5141 } 5142 5143 return {MinWidth, MaxWidth}; 5144 } 5145 5146 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5147 unsigned LoopCost) { 5148 // -- The interleave heuristics -- 5149 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5150 // There are many micro-architectural considerations that we can't predict 5151 // at this level. For example, frontend pressure (on decode or fetch) due to 5152 // code size, or the number and capabilities of the execution ports. 5153 // 5154 // We use the following heuristics to select the interleave count: 5155 // 1. If the code has reductions, then we interleave to break the cross 5156 // iteration dependency. 5157 // 2. If the loop is really small, then we interleave to reduce the loop 5158 // overhead. 5159 // 3. We don't interleave if we think that we will spill registers to memory 5160 // due to the increased register pressure. 5161 5162 if (!isScalarEpilogueAllowed()) 5163 return 1; 5164 5165 // We used the distance for the interleave count. 5166 if (Legal->getMaxSafeDepDistBytes() != -1U) 5167 return 1; 5168 5169 // Do not interleave loops with a relatively small known or estimated trip 5170 // count. 5171 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5172 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5173 return 1; 5174 5175 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5176 // We divide by these constants so assume that we have at least one 5177 // instruction that uses at least one register. 5178 for (auto& pair : R.MaxLocalUsers) { 5179 pair.second = std::max(pair.second, 1U); 5180 } 5181 5182 // We calculate the interleave count using the following formula. 5183 // Subtract the number of loop invariants from the number of available 5184 // registers. These registers are used by all of the interleaved instances. 5185 // Next, divide the remaining registers by the number of registers that is 5186 // required by the loop, in order to estimate how many parallel instances 5187 // fit without causing spills. All of this is rounded down if necessary to be 5188 // a power of two. We want power of two interleave count to simplify any 5189 // addressing operations or alignment considerations. 5190 // We also want power of two interleave counts to ensure that the induction 5191 // variable of the vector loop wraps to zero, when tail is folded by masking; 5192 // this currently happens when OptForSize, in which case IC is set to 1 above. 5193 unsigned IC = UINT_MAX; 5194 5195 for (auto& pair : R.MaxLocalUsers) { 5196 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5197 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5198 << " registers of " 5199 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5200 if (VF == 1) { 5201 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5202 TargetNumRegisters = ForceTargetNumScalarRegs; 5203 } else { 5204 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5205 TargetNumRegisters = ForceTargetNumVectorRegs; 5206 } 5207 unsigned MaxLocalUsers = pair.second; 5208 unsigned LoopInvariantRegs = 0; 5209 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5210 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5211 5212 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5213 // Don't count the induction variable as interleaved. 5214 if (EnableIndVarRegisterHeur) { 5215 TmpIC = 5216 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5217 std::max(1U, (MaxLocalUsers - 1))); 5218 } 5219 5220 IC = std::min(IC, TmpIC); 5221 } 5222 5223 // Clamp the interleave ranges to reasonable counts. 5224 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5225 5226 // Check if the user has overridden the max. 5227 if (VF == 1) { 5228 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5229 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5230 } else { 5231 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5232 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5233 } 5234 5235 // If trip count is known or estimated compile time constant, limit the 5236 // interleave count to be less than the trip count divided by VF. 5237 if (BestKnownTC) { 5238 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5239 } 5240 5241 // If we did not calculate the cost for VF (because the user selected the VF) 5242 // then we calculate the cost of VF here. 5243 if (LoopCost == 0) 5244 LoopCost = expectedCost(VF).first; 5245 5246 assert(LoopCost && "Non-zero loop cost expected"); 5247 5248 // Clamp the calculated IC to be between the 1 and the max interleave count 5249 // that the target and trip count allows. 5250 if (IC > MaxInterleaveCount) 5251 IC = MaxInterleaveCount; 5252 else if (IC < 1) 5253 IC = 1; 5254 5255 // Interleave if we vectorized this loop and there is a reduction that could 5256 // benefit from interleaving. 5257 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5258 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5259 return IC; 5260 } 5261 5262 // Note that if we've already vectorized the loop we will have done the 5263 // runtime check and so interleaving won't require further checks. 5264 bool InterleavingRequiresRuntimePointerCheck = 5265 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5266 5267 // We want to interleave small loops in order to reduce the loop overhead and 5268 // potentially expose ILP opportunities. 5269 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5270 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5271 // We assume that the cost overhead is 1 and we use the cost model 5272 // to estimate the cost of the loop and interleave until the cost of the 5273 // loop overhead is about 5% of the cost of the loop. 5274 unsigned SmallIC = 5275 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5276 5277 // Interleave until store/load ports (estimated by max interleave count) are 5278 // saturated. 5279 unsigned NumStores = Legal->getNumStores(); 5280 unsigned NumLoads = Legal->getNumLoads(); 5281 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5282 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5283 5284 // If we have a scalar reduction (vector reductions are already dealt with 5285 // by this point), we can increase the critical path length if the loop 5286 // we're interleaving is inside another loop. Limit, by default to 2, so the 5287 // critical path only gets increased by one reduction operation. 5288 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5289 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5290 SmallIC = std::min(SmallIC, F); 5291 StoresIC = std::min(StoresIC, F); 5292 LoadsIC = std::min(LoadsIC, F); 5293 } 5294 5295 if (EnableLoadStoreRuntimeInterleave && 5296 std::max(StoresIC, LoadsIC) > SmallIC) { 5297 LLVM_DEBUG( 5298 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5299 return std::max(StoresIC, LoadsIC); 5300 } 5301 5302 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5303 return SmallIC; 5304 } 5305 5306 // Interleave if this is a large loop (small loops are already dealt with by 5307 // this point) that could benefit from interleaving. 5308 bool HasReductions = !Legal->getReductionVars()->empty(); 5309 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5310 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5311 return IC; 5312 } 5313 5314 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5315 return 1; 5316 } 5317 5318 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5319 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5320 // This function calculates the register usage by measuring the highest number 5321 // of values that are alive at a single location. Obviously, this is a very 5322 // rough estimation. We scan the loop in a topological order in order and 5323 // assign a number to each instruction. We use RPO to ensure that defs are 5324 // met before their users. We assume that each instruction that has in-loop 5325 // users starts an interval. We record every time that an in-loop value is 5326 // used, so we have a list of the first and last occurrences of each 5327 // instruction. Next, we transpose this data structure into a multi map that 5328 // holds the list of intervals that *end* at a specific location. This multi 5329 // map allows us to perform a linear search. We scan the instructions linearly 5330 // and record each time that a new interval starts, by placing it in a set. 5331 // If we find this value in the multi-map then we remove it from the set. 5332 // The max register usage is the maximum size of the set. 5333 // We also search for instructions that are defined outside the loop, but are 5334 // used inside the loop. We need this number separately from the max-interval 5335 // usage number because when we unroll, loop-invariant values do not take 5336 // more register. 5337 LoopBlocksDFS DFS(TheLoop); 5338 DFS.perform(LI); 5339 5340 RegisterUsage RU; 5341 5342 // Each 'key' in the map opens a new interval. The values 5343 // of the map are the index of the 'last seen' usage of the 5344 // instruction that is the key. 5345 using IntervalMap = DenseMap<Instruction *, unsigned>; 5346 5347 // Maps instruction to its index. 5348 SmallVector<Instruction *, 64> IdxToInstr; 5349 // Marks the end of each interval. 5350 IntervalMap EndPoint; 5351 // Saves the list of instruction indices that are used in the loop. 5352 SmallPtrSet<Instruction *, 8> Ends; 5353 // Saves the list of values that are used in the loop but are 5354 // defined outside the loop, such as arguments and constants. 5355 SmallPtrSet<Value *, 8> LoopInvariants; 5356 5357 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5358 for (Instruction &I : BB->instructionsWithoutDebug()) { 5359 IdxToInstr.push_back(&I); 5360 5361 // Save the end location of each USE. 5362 for (Value *U : I.operands()) { 5363 auto *Instr = dyn_cast<Instruction>(U); 5364 5365 // Ignore non-instruction values such as arguments, constants, etc. 5366 if (!Instr) 5367 continue; 5368 5369 // If this instruction is outside the loop then record it and continue. 5370 if (!TheLoop->contains(Instr)) { 5371 LoopInvariants.insert(Instr); 5372 continue; 5373 } 5374 5375 // Overwrite previous end points. 5376 EndPoint[Instr] = IdxToInstr.size(); 5377 Ends.insert(Instr); 5378 } 5379 } 5380 } 5381 5382 // Saves the list of intervals that end with the index in 'key'. 5383 using InstrList = SmallVector<Instruction *, 2>; 5384 DenseMap<unsigned, InstrList> TransposeEnds; 5385 5386 // Transpose the EndPoints to a list of values that end at each index. 5387 for (auto &Interval : EndPoint) 5388 TransposeEnds[Interval.second].push_back(Interval.first); 5389 5390 SmallPtrSet<Instruction *, 8> OpenIntervals; 5391 5392 // Get the size of the widest register. 5393 unsigned MaxSafeDepDist = -1U; 5394 if (Legal->getMaxSafeDepDistBytes() != -1U) 5395 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5396 unsigned WidestRegister = 5397 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5398 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5399 5400 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5401 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5402 5403 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5404 5405 // A lambda that gets the register usage for the given type and VF. 5406 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5407 if (Ty->isTokenTy()) 5408 return 0U; 5409 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5410 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5411 }; 5412 5413 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5414 Instruction *I = IdxToInstr[i]; 5415 5416 // Remove all of the instructions that end at this location. 5417 InstrList &List = TransposeEnds[i]; 5418 for (Instruction *ToRemove : List) 5419 OpenIntervals.erase(ToRemove); 5420 5421 // Ignore instructions that are never used within the loop. 5422 if (Ends.find(I) == Ends.end()) 5423 continue; 5424 5425 // Skip ignored values. 5426 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5427 continue; 5428 5429 // For each VF find the maximum usage of registers. 5430 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5431 // Count the number of live intervals. 5432 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5433 5434 if (VFs[j] == 1) { 5435 for (auto Inst : OpenIntervals) { 5436 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5437 if (RegUsage.find(ClassID) == RegUsage.end()) 5438 RegUsage[ClassID] = 1; 5439 else 5440 RegUsage[ClassID] += 1; 5441 } 5442 } else { 5443 collectUniformsAndScalars(VFs[j]); 5444 for (auto Inst : OpenIntervals) { 5445 // Skip ignored values for VF > 1. 5446 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end()) 5447 continue; 5448 if (isScalarAfterVectorization(Inst, VFs[j])) { 5449 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5450 if (RegUsage.find(ClassID) == RegUsage.end()) 5451 RegUsage[ClassID] = 1; 5452 else 5453 RegUsage[ClassID] += 1; 5454 } else { 5455 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5456 if (RegUsage.find(ClassID) == RegUsage.end()) 5457 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5458 else 5459 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5460 } 5461 } 5462 } 5463 5464 for (auto& pair : RegUsage) { 5465 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5466 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5467 else 5468 MaxUsages[j][pair.first] = pair.second; 5469 } 5470 } 5471 5472 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5473 << OpenIntervals.size() << '\n'); 5474 5475 // Add the current instruction to the list of open intervals. 5476 OpenIntervals.insert(I); 5477 } 5478 5479 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5480 SmallMapVector<unsigned, unsigned, 4> Invariant; 5481 5482 for (auto Inst : LoopInvariants) { 5483 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5484 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5485 if (Invariant.find(ClassID) == Invariant.end()) 5486 Invariant[ClassID] = Usage; 5487 else 5488 Invariant[ClassID] += Usage; 5489 } 5490 5491 LLVM_DEBUG({ 5492 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5493 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5494 << " item\n"; 5495 for (const auto &pair : MaxUsages[i]) { 5496 dbgs() << "LV(REG): RegisterClass: " 5497 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5498 << " registers\n"; 5499 } 5500 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5501 << " item\n"; 5502 for (const auto &pair : Invariant) { 5503 dbgs() << "LV(REG): RegisterClass: " 5504 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5505 << " registers\n"; 5506 } 5507 }); 5508 5509 RU.LoopInvariantRegs = Invariant; 5510 RU.MaxLocalUsers = MaxUsages[i]; 5511 RUs[i] = RU; 5512 } 5513 5514 return RUs; 5515 } 5516 5517 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5518 // TODO: Cost model for emulated masked load/store is completely 5519 // broken. This hack guides the cost model to use an artificially 5520 // high enough value to practically disable vectorization with such 5521 // operations, except where previously deployed legality hack allowed 5522 // using very low cost values. This is to avoid regressions coming simply 5523 // from moving "masked load/store" check from legality to cost model. 5524 // Masked Load/Gather emulation was previously never allowed. 5525 // Limited number of Masked Store/Scatter emulation was allowed. 5526 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5527 return isa<LoadInst>(I) || 5528 (isa<StoreInst>(I) && 5529 NumPredStores > NumberOfStoresToPredicate); 5530 } 5531 5532 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5533 // If we aren't vectorizing the loop, or if we've already collected the 5534 // instructions to scalarize, there's nothing to do. Collection may already 5535 // have occurred if we have a user-selected VF and are now computing the 5536 // expected cost for interleaving. 5537 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5538 return; 5539 5540 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5541 // not profitable to scalarize any instructions, the presence of VF in the 5542 // map will indicate that we've analyzed it already. 5543 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5544 5545 // Find all the instructions that are scalar with predication in the loop and 5546 // determine if it would be better to not if-convert the blocks they are in. 5547 // If so, we also record the instructions to scalarize. 5548 for (BasicBlock *BB : TheLoop->blocks()) { 5549 if (!blockNeedsPredication(BB)) 5550 continue; 5551 for (Instruction &I : *BB) 5552 if (isScalarWithPredication(&I)) { 5553 ScalarCostsTy ScalarCosts; 5554 // Do not apply discount logic if hacked cost is needed 5555 // for emulated masked memrefs. 5556 if (!useEmulatedMaskMemRefHack(&I) && 5557 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5558 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5559 // Remember that BB will remain after vectorization. 5560 PredicatedBBsAfterVectorization.insert(BB); 5561 } 5562 } 5563 } 5564 5565 int LoopVectorizationCostModel::computePredInstDiscount( 5566 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5567 unsigned VF) { 5568 assert(!isUniformAfterVectorization(PredInst, VF) && 5569 "Instruction marked uniform-after-vectorization will be predicated"); 5570 5571 // Initialize the discount to zero, meaning that the scalar version and the 5572 // vector version cost the same. 5573 int Discount = 0; 5574 5575 // Holds instructions to analyze. The instructions we visit are mapped in 5576 // ScalarCosts. Those instructions are the ones that would be scalarized if 5577 // we find that the scalar version costs less. 5578 SmallVector<Instruction *, 8> Worklist; 5579 5580 // Returns true if the given instruction can be scalarized. 5581 auto canBeScalarized = [&](Instruction *I) -> bool { 5582 // We only attempt to scalarize instructions forming a single-use chain 5583 // from the original predicated block that would otherwise be vectorized. 5584 // Although not strictly necessary, we give up on instructions we know will 5585 // already be scalar to avoid traversing chains that are unlikely to be 5586 // beneficial. 5587 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5588 isScalarAfterVectorization(I, VF)) 5589 return false; 5590 5591 // If the instruction is scalar with predication, it will be analyzed 5592 // separately. We ignore it within the context of PredInst. 5593 if (isScalarWithPredication(I)) 5594 return false; 5595 5596 // If any of the instruction's operands are uniform after vectorization, 5597 // the instruction cannot be scalarized. This prevents, for example, a 5598 // masked load from being scalarized. 5599 // 5600 // We assume we will only emit a value for lane zero of an instruction 5601 // marked uniform after vectorization, rather than VF identical values. 5602 // Thus, if we scalarize an instruction that uses a uniform, we would 5603 // create uses of values corresponding to the lanes we aren't emitting code 5604 // for. This behavior can be changed by allowing getScalarValue to clone 5605 // the lane zero values for uniforms rather than asserting. 5606 for (Use &U : I->operands()) 5607 if (auto *J = dyn_cast<Instruction>(U.get())) 5608 if (isUniformAfterVectorization(J, VF)) 5609 return false; 5610 5611 // Otherwise, we can scalarize the instruction. 5612 return true; 5613 }; 5614 5615 // Compute the expected cost discount from scalarizing the entire expression 5616 // feeding the predicated instruction. We currently only consider expressions 5617 // that are single-use instruction chains. 5618 Worklist.push_back(PredInst); 5619 while (!Worklist.empty()) { 5620 Instruction *I = Worklist.pop_back_val(); 5621 5622 // If we've already analyzed the instruction, there's nothing to do. 5623 if (ScalarCosts.find(I) != ScalarCosts.end()) 5624 continue; 5625 5626 // Compute the cost of the vector instruction. Note that this cost already 5627 // includes the scalarization overhead of the predicated instruction. 5628 unsigned VectorCost = getInstructionCost(I, VF).first; 5629 5630 // Compute the cost of the scalarized instruction. This cost is the cost of 5631 // the instruction as if it wasn't if-converted and instead remained in the 5632 // predicated block. We will scale this cost by block probability after 5633 // computing the scalarization overhead. 5634 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5635 5636 // Compute the scalarization overhead of needed insertelement instructions 5637 // and phi nodes. 5638 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5639 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5640 true, false); 5641 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5642 } 5643 5644 // Compute the scalarization overhead of needed extractelement 5645 // instructions. For each of the instruction's operands, if the operand can 5646 // be scalarized, add it to the worklist; otherwise, account for the 5647 // overhead. 5648 for (Use &U : I->operands()) 5649 if (auto *J = dyn_cast<Instruction>(U.get())) { 5650 assert(VectorType::isValidElementType(J->getType()) && 5651 "Instruction has non-scalar type"); 5652 if (canBeScalarized(J)) 5653 Worklist.push_back(J); 5654 else if (needsExtract(J, VF)) 5655 ScalarCost += TTI.getScalarizationOverhead( 5656 ToVectorTy(J->getType(),VF), false, true); 5657 } 5658 5659 // Scale the total scalar cost by block probability. 5660 ScalarCost /= getReciprocalPredBlockProb(); 5661 5662 // Compute the discount. A non-negative discount means the vector version 5663 // of the instruction costs more, and scalarizing would be beneficial. 5664 Discount += VectorCost - ScalarCost; 5665 ScalarCosts[I] = ScalarCost; 5666 } 5667 5668 return Discount; 5669 } 5670 5671 LoopVectorizationCostModel::VectorizationCostTy 5672 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5673 VectorizationCostTy Cost; 5674 5675 // For each block. 5676 for (BasicBlock *BB : TheLoop->blocks()) { 5677 VectorizationCostTy BlockCost; 5678 5679 // For each instruction in the old loop. 5680 for (Instruction &I : BB->instructionsWithoutDebug()) { 5681 // Skip ignored values. 5682 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5683 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5684 continue; 5685 5686 VectorizationCostTy C = getInstructionCost(&I, VF); 5687 5688 // Check if we should override the cost. 5689 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5690 C.first = ForceTargetInstructionCost; 5691 5692 BlockCost.first += C.first; 5693 BlockCost.second |= C.second; 5694 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5695 << " for VF " << VF << " For instruction: " << I 5696 << '\n'); 5697 } 5698 5699 // If we are vectorizing a predicated block, it will have been 5700 // if-converted. This means that the block's instructions (aside from 5701 // stores and instructions that may divide by zero) will now be 5702 // unconditionally executed. For the scalar case, we may not always execute 5703 // the predicated block. Thus, scale the block's cost by the probability of 5704 // executing it. 5705 if (VF == 1 && blockNeedsPredication(BB)) 5706 BlockCost.first /= getReciprocalPredBlockProb(); 5707 5708 Cost.first += BlockCost.first; 5709 Cost.second |= BlockCost.second; 5710 } 5711 5712 return Cost; 5713 } 5714 5715 /// Gets Address Access SCEV after verifying that the access pattern 5716 /// is loop invariant except the induction variable dependence. 5717 /// 5718 /// This SCEV can be sent to the Target in order to estimate the address 5719 /// calculation cost. 5720 static const SCEV *getAddressAccessSCEV( 5721 Value *Ptr, 5722 LoopVectorizationLegality *Legal, 5723 PredicatedScalarEvolution &PSE, 5724 const Loop *TheLoop) { 5725 5726 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5727 if (!Gep) 5728 return nullptr; 5729 5730 // We are looking for a gep with all loop invariant indices except for one 5731 // which should be an induction variable. 5732 auto SE = PSE.getSE(); 5733 unsigned NumOperands = Gep->getNumOperands(); 5734 for (unsigned i = 1; i < NumOperands; ++i) { 5735 Value *Opd = Gep->getOperand(i); 5736 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5737 !Legal->isInductionVariable(Opd)) 5738 return nullptr; 5739 } 5740 5741 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5742 return PSE.getSCEV(Ptr); 5743 } 5744 5745 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5746 return Legal->hasStride(I->getOperand(0)) || 5747 Legal->hasStride(I->getOperand(1)); 5748 } 5749 5750 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5751 unsigned VF) { 5752 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5753 Type *ValTy = getMemInstValueType(I); 5754 auto SE = PSE.getSE(); 5755 5756 unsigned AS = getLoadStoreAddressSpace(I); 5757 Value *Ptr = getLoadStorePointerOperand(I); 5758 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5759 5760 // Figure out whether the access is strided and get the stride value 5761 // if it's known in compile time 5762 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5763 5764 // Get the cost of the scalar memory instruction and address computation. 5765 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5766 5767 // Don't pass *I here, since it is scalar but will actually be part of a 5768 // vectorized loop where the user of it is a vectorized instruction. 5769 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5770 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5771 Alignment, AS); 5772 5773 // Get the overhead of the extractelement and insertelement instructions 5774 // we might create due to scalarization. 5775 Cost += getScalarizationOverhead(I, VF); 5776 5777 // If we have a predicated store, it may not be executed for each vector 5778 // lane. Scale the cost by the probability of executing the predicated 5779 // block. 5780 if (isPredicatedInst(I)) { 5781 Cost /= getReciprocalPredBlockProb(); 5782 5783 if (useEmulatedMaskMemRefHack(I)) 5784 // Artificially setting to a high enough value to practically disable 5785 // vectorization with such operations. 5786 Cost = 3000000; 5787 } 5788 5789 return Cost; 5790 } 5791 5792 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5793 unsigned VF) { 5794 Type *ValTy = getMemInstValueType(I); 5795 Type *VectorTy = ToVectorTy(ValTy, VF); 5796 Value *Ptr = getLoadStorePointerOperand(I); 5797 unsigned AS = getLoadStoreAddressSpace(I); 5798 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5799 5800 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5801 "Stride should be 1 or -1 for consecutive memory access"); 5802 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5803 unsigned Cost = 0; 5804 if (Legal->isMaskRequired(I)) 5805 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, 5806 Alignment ? Alignment->value() : 0, AS); 5807 else 5808 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5809 5810 bool Reverse = ConsecutiveStride < 0; 5811 if (Reverse) 5812 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5813 return Cost; 5814 } 5815 5816 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5817 unsigned VF) { 5818 Type *ValTy = getMemInstValueType(I); 5819 Type *VectorTy = ToVectorTy(ValTy, VF); 5820 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5821 unsigned AS = getLoadStoreAddressSpace(I); 5822 if (isa<LoadInst>(I)) { 5823 return TTI.getAddressComputationCost(ValTy) + 5824 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5825 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5826 } 5827 StoreInst *SI = cast<StoreInst>(I); 5828 5829 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5830 return TTI.getAddressComputationCost(ValTy) + 5831 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5832 (isLoopInvariantStoreValue 5833 ? 0 5834 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5835 VF - 1)); 5836 } 5837 5838 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5839 unsigned VF) { 5840 Type *ValTy = getMemInstValueType(I); 5841 Type *VectorTy = ToVectorTy(ValTy, VF); 5842 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5843 Value *Ptr = getLoadStorePointerOperand(I); 5844 5845 return TTI.getAddressComputationCost(VectorTy) + 5846 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5847 Legal->isMaskRequired(I), 5848 Alignment ? Alignment->value() : 0); 5849 } 5850 5851 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5852 unsigned VF) { 5853 Type *ValTy = getMemInstValueType(I); 5854 Type *VectorTy = ToVectorTy(ValTy, VF); 5855 unsigned AS = getLoadStoreAddressSpace(I); 5856 5857 auto Group = getInterleavedAccessGroup(I); 5858 assert(Group && "Fail to get an interleaved access group."); 5859 5860 unsigned InterleaveFactor = Group->getFactor(); 5861 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5862 5863 // Holds the indices of existing members in an interleaved load group. 5864 // An interleaved store group doesn't need this as it doesn't allow gaps. 5865 SmallVector<unsigned, 4> Indices; 5866 if (isa<LoadInst>(I)) { 5867 for (unsigned i = 0; i < InterleaveFactor; i++) 5868 if (Group->getMember(i)) 5869 Indices.push_back(i); 5870 } 5871 5872 // Calculate the cost of the whole interleaved group. 5873 bool UseMaskForGaps = 5874 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5875 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5876 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5877 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5878 5879 if (Group->isReverse()) { 5880 // TODO: Add support for reversed masked interleaved access. 5881 assert(!Legal->isMaskRequired(I) && 5882 "Reverse masked interleaved access not supported."); 5883 Cost += Group->getNumMembers() * 5884 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5885 } 5886 return Cost; 5887 } 5888 5889 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5890 unsigned VF) { 5891 // Calculate scalar cost only. Vectorization cost should be ready at this 5892 // moment. 5893 if (VF == 1) { 5894 Type *ValTy = getMemInstValueType(I); 5895 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5896 unsigned AS = getLoadStoreAddressSpace(I); 5897 5898 return TTI.getAddressComputationCost(ValTy) + 5899 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5900 } 5901 return getWideningCost(I, VF); 5902 } 5903 5904 LoopVectorizationCostModel::VectorizationCostTy 5905 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5906 // If we know that this instruction will remain uniform, check the cost of 5907 // the scalar version. 5908 if (isUniformAfterVectorization(I, VF)) 5909 VF = 1; 5910 5911 if (VF > 1 && isProfitableToScalarize(I, VF)) 5912 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5913 5914 // Forced scalars do not have any scalarization overhead. 5915 auto ForcedScalar = ForcedScalars.find(VF); 5916 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5917 auto InstSet = ForcedScalar->second; 5918 if (InstSet.find(I) != InstSet.end()) 5919 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5920 } 5921 5922 Type *VectorTy; 5923 unsigned C = getInstructionCost(I, VF, VectorTy); 5924 5925 bool TypeNotScalarized = 5926 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5927 return VectorizationCostTy(C, TypeNotScalarized); 5928 } 5929 5930 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5931 unsigned VF) { 5932 5933 if (VF == 1) 5934 return 0; 5935 5936 unsigned Cost = 0; 5937 Type *RetTy = ToVectorTy(I->getType(), VF); 5938 if (!RetTy->isVoidTy() && 5939 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5940 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 5941 5942 // Some targets keep addresses scalar. 5943 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 5944 return Cost; 5945 5946 // Some targets support efficient element stores. 5947 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 5948 return Cost; 5949 5950 // Collect operands to consider. 5951 CallInst *CI = dyn_cast<CallInst>(I); 5952 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 5953 5954 // Skip operands that do not require extraction/scalarization and do not incur 5955 // any overhead. 5956 return Cost + TTI.getOperandsScalarizationOverhead( 5957 filterExtractingOperands(Ops, VF), VF); 5958 } 5959 5960 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5961 if (VF == 1) 5962 return; 5963 NumPredStores = 0; 5964 for (BasicBlock *BB : TheLoop->blocks()) { 5965 // For each instruction in the old loop. 5966 for (Instruction &I : *BB) { 5967 Value *Ptr = getLoadStorePointerOperand(&I); 5968 if (!Ptr) 5969 continue; 5970 5971 // TODO: We should generate better code and update the cost model for 5972 // predicated uniform stores. Today they are treated as any other 5973 // predicated store (see added test cases in 5974 // invariant-store-vectorization.ll). 5975 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5976 NumPredStores++; 5977 5978 if (Legal->isUniform(Ptr) && 5979 // Conditional loads and stores should be scalarized and predicated. 5980 // isScalarWithPredication cannot be used here since masked 5981 // gather/scatters are not considered scalar with predication. 5982 !Legal->blockNeedsPredication(I.getParent())) { 5983 // TODO: Avoid replicating loads and stores instead of 5984 // relying on instcombine to remove them. 5985 // Load: Scalar load + broadcast 5986 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5987 unsigned Cost = getUniformMemOpCost(&I, VF); 5988 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5989 continue; 5990 } 5991 5992 // We assume that widening is the best solution when possible. 5993 if (memoryInstructionCanBeWidened(&I, VF)) { 5994 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5995 int ConsecutiveStride = 5996 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5997 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5998 "Expected consecutive stride."); 5999 InstWidening Decision = 6000 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6001 setWideningDecision(&I, VF, Decision, Cost); 6002 continue; 6003 } 6004 6005 // Choose between Interleaving, Gather/Scatter or Scalarization. 6006 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6007 unsigned NumAccesses = 1; 6008 if (isAccessInterleaved(&I)) { 6009 auto Group = getInterleavedAccessGroup(&I); 6010 assert(Group && "Fail to get an interleaved access group."); 6011 6012 // Make one decision for the whole group. 6013 if (getWideningDecision(&I, VF) != CM_Unknown) 6014 continue; 6015 6016 NumAccesses = Group->getNumMembers(); 6017 if (interleavedAccessCanBeWidened(&I, VF)) 6018 InterleaveCost = getInterleaveGroupCost(&I, VF); 6019 } 6020 6021 unsigned GatherScatterCost = 6022 isLegalGatherOrScatter(&I) 6023 ? getGatherScatterCost(&I, VF) * NumAccesses 6024 : std::numeric_limits<unsigned>::max(); 6025 6026 unsigned ScalarizationCost = 6027 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6028 6029 // Choose better solution for the current VF, 6030 // write down this decision and use it during vectorization. 6031 unsigned Cost; 6032 InstWidening Decision; 6033 if (InterleaveCost <= GatherScatterCost && 6034 InterleaveCost < ScalarizationCost) { 6035 Decision = CM_Interleave; 6036 Cost = InterleaveCost; 6037 } else if (GatherScatterCost < ScalarizationCost) { 6038 Decision = CM_GatherScatter; 6039 Cost = GatherScatterCost; 6040 } else { 6041 Decision = CM_Scalarize; 6042 Cost = ScalarizationCost; 6043 } 6044 // If the instructions belongs to an interleave group, the whole group 6045 // receives the same decision. The whole group receives the cost, but 6046 // the cost will actually be assigned to one instruction. 6047 if (auto Group = getInterleavedAccessGroup(&I)) 6048 setWideningDecision(Group, VF, Decision, Cost); 6049 else 6050 setWideningDecision(&I, VF, Decision, Cost); 6051 } 6052 } 6053 6054 // Make sure that any load of address and any other address computation 6055 // remains scalar unless there is gather/scatter support. This avoids 6056 // inevitable extracts into address registers, and also has the benefit of 6057 // activating LSR more, since that pass can't optimize vectorized 6058 // addresses. 6059 if (TTI.prefersVectorizedAddressing()) 6060 return; 6061 6062 // Start with all scalar pointer uses. 6063 SmallPtrSet<Instruction *, 8> AddrDefs; 6064 for (BasicBlock *BB : TheLoop->blocks()) 6065 for (Instruction &I : *BB) { 6066 Instruction *PtrDef = 6067 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6068 if (PtrDef && TheLoop->contains(PtrDef) && 6069 getWideningDecision(&I, VF) != CM_GatherScatter) 6070 AddrDefs.insert(PtrDef); 6071 } 6072 6073 // Add all instructions used to generate the addresses. 6074 SmallVector<Instruction *, 4> Worklist; 6075 for (auto *I : AddrDefs) 6076 Worklist.push_back(I); 6077 while (!Worklist.empty()) { 6078 Instruction *I = Worklist.pop_back_val(); 6079 for (auto &Op : I->operands()) 6080 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6081 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6082 AddrDefs.insert(InstOp).second) 6083 Worklist.push_back(InstOp); 6084 } 6085 6086 for (auto *I : AddrDefs) { 6087 if (isa<LoadInst>(I)) { 6088 // Setting the desired widening decision should ideally be handled in 6089 // by cost functions, but since this involves the task of finding out 6090 // if the loaded register is involved in an address computation, it is 6091 // instead changed here when we know this is the case. 6092 InstWidening Decision = getWideningDecision(I, VF); 6093 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6094 // Scalarize a widened load of address. 6095 setWideningDecision(I, VF, CM_Scalarize, 6096 (VF * getMemoryInstructionCost(I, 1))); 6097 else if (auto Group = getInterleavedAccessGroup(I)) { 6098 // Scalarize an interleave group of address loads. 6099 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6100 if (Instruction *Member = Group->getMember(I)) 6101 setWideningDecision(Member, VF, CM_Scalarize, 6102 (VF * getMemoryInstructionCost(Member, 1))); 6103 } 6104 } 6105 } else 6106 // Make sure I gets scalarized and a cost estimate without 6107 // scalarization overhead. 6108 ForcedScalars[VF].insert(I); 6109 } 6110 } 6111 6112 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6113 unsigned VF, 6114 Type *&VectorTy) { 6115 Type *RetTy = I->getType(); 6116 if (canTruncateToMinimalBitwidth(I, VF)) 6117 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6118 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6119 auto SE = PSE.getSE(); 6120 6121 // TODO: We need to estimate the cost of intrinsic calls. 6122 switch (I->getOpcode()) { 6123 case Instruction::GetElementPtr: 6124 // We mark this instruction as zero-cost because the cost of GEPs in 6125 // vectorized code depends on whether the corresponding memory instruction 6126 // is scalarized or not. Therefore, we handle GEPs with the memory 6127 // instruction cost. 6128 return 0; 6129 case Instruction::Br: { 6130 // In cases of scalarized and predicated instructions, there will be VF 6131 // predicated blocks in the vectorized loop. Each branch around these 6132 // blocks requires also an extract of its vector compare i1 element. 6133 bool ScalarPredicatedBB = false; 6134 BranchInst *BI = cast<BranchInst>(I); 6135 if (VF > 1 && BI->isConditional() && 6136 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 6137 PredicatedBBsAfterVectorization.end() || 6138 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 6139 PredicatedBBsAfterVectorization.end())) 6140 ScalarPredicatedBB = true; 6141 6142 if (ScalarPredicatedBB) { 6143 // Return cost for branches around scalarized and predicated blocks. 6144 Type *Vec_i1Ty = 6145 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6146 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 6147 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6148 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6149 // The back-edge branch will remain, as will all scalar branches. 6150 return TTI.getCFInstrCost(Instruction::Br); 6151 else 6152 // This branch will be eliminated by if-conversion. 6153 return 0; 6154 // Note: We currently assume zero cost for an unconditional branch inside 6155 // a predicated block since it will become a fall-through, although we 6156 // may decide in the future to call TTI for all branches. 6157 } 6158 case Instruction::PHI: { 6159 auto *Phi = cast<PHINode>(I); 6160 6161 // First-order recurrences are replaced by vector shuffles inside the loop. 6162 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6163 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6164 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6165 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 6166 6167 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6168 // converted into select instructions. We require N - 1 selects per phi 6169 // node, where N is the number of incoming values. 6170 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6171 return (Phi->getNumIncomingValues() - 1) * 6172 TTI.getCmpSelInstrCost( 6173 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6174 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 6175 6176 return TTI.getCFInstrCost(Instruction::PHI); 6177 } 6178 case Instruction::UDiv: 6179 case Instruction::SDiv: 6180 case Instruction::URem: 6181 case Instruction::SRem: 6182 // If we have a predicated instruction, it may not be executed for each 6183 // vector lane. Get the scalarization cost and scale this amount by the 6184 // probability of executing the predicated block. If the instruction is not 6185 // predicated, we fall through to the next case. 6186 if (VF > 1 && isScalarWithPredication(I)) { 6187 unsigned Cost = 0; 6188 6189 // These instructions have a non-void type, so account for the phi nodes 6190 // that we will create. This cost is likely to be zero. The phi node 6191 // cost, if any, should be scaled by the block probability because it 6192 // models a copy at the end of each predicated block. 6193 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6194 6195 // The cost of the non-predicated instruction. 6196 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6197 6198 // The cost of insertelement and extractelement instructions needed for 6199 // scalarization. 6200 Cost += getScalarizationOverhead(I, VF); 6201 6202 // Scale the cost by the probability of executing the predicated blocks. 6203 // This assumes the predicated block for each vector lane is equally 6204 // likely. 6205 return Cost / getReciprocalPredBlockProb(); 6206 } 6207 LLVM_FALLTHROUGH; 6208 case Instruction::Add: 6209 case Instruction::FAdd: 6210 case Instruction::Sub: 6211 case Instruction::FSub: 6212 case Instruction::Mul: 6213 case Instruction::FMul: 6214 case Instruction::FDiv: 6215 case Instruction::FRem: 6216 case Instruction::Shl: 6217 case Instruction::LShr: 6218 case Instruction::AShr: 6219 case Instruction::And: 6220 case Instruction::Or: 6221 case Instruction::Xor: { 6222 // Since we will replace the stride by 1 the multiplication should go away. 6223 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6224 return 0; 6225 // Certain instructions can be cheaper to vectorize if they have a constant 6226 // second vector operand. One example of this are shifts on x86. 6227 Value *Op2 = I->getOperand(1); 6228 TargetTransformInfo::OperandValueProperties Op2VP; 6229 TargetTransformInfo::OperandValueKind Op2VK = 6230 TTI.getOperandInfo(Op2, Op2VP); 6231 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6232 Op2VK = TargetTransformInfo::OK_UniformValue; 6233 6234 SmallVector<const Value *, 4> Operands(I->operand_values()); 6235 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6236 return N * TTI.getArithmeticInstrCost( 6237 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6238 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6239 } 6240 case Instruction::FNeg: { 6241 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6242 return N * TTI.getArithmeticInstrCost( 6243 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6244 TargetTransformInfo::OK_AnyValue, 6245 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6246 I->getOperand(0), I); 6247 } 6248 case Instruction::Select: { 6249 SelectInst *SI = cast<SelectInst>(I); 6250 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6251 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6252 Type *CondTy = SI->getCondition()->getType(); 6253 if (!ScalarCond) 6254 CondTy = VectorType::get(CondTy, VF); 6255 6256 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6257 } 6258 case Instruction::ICmp: 6259 case Instruction::FCmp: { 6260 Type *ValTy = I->getOperand(0)->getType(); 6261 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6262 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6263 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6264 VectorTy = ToVectorTy(ValTy, VF); 6265 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6266 } 6267 case Instruction::Store: 6268 case Instruction::Load: { 6269 unsigned Width = VF; 6270 if (Width > 1) { 6271 InstWidening Decision = getWideningDecision(I, Width); 6272 assert(Decision != CM_Unknown && 6273 "CM decision should be taken at this point"); 6274 if (Decision == CM_Scalarize) 6275 Width = 1; 6276 } 6277 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6278 return getMemoryInstructionCost(I, VF); 6279 } 6280 case Instruction::ZExt: 6281 case Instruction::SExt: 6282 case Instruction::FPToUI: 6283 case Instruction::FPToSI: 6284 case Instruction::FPExt: 6285 case Instruction::PtrToInt: 6286 case Instruction::IntToPtr: 6287 case Instruction::SIToFP: 6288 case Instruction::UIToFP: 6289 case Instruction::Trunc: 6290 case Instruction::FPTrunc: 6291 case Instruction::BitCast: { 6292 // We optimize the truncation of induction variables having constant 6293 // integer steps. The cost of these truncations is the same as the scalar 6294 // operation. 6295 if (isOptimizableIVTruncate(I, VF)) { 6296 auto *Trunc = cast<TruncInst>(I); 6297 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6298 Trunc->getSrcTy(), Trunc); 6299 } 6300 6301 Type *SrcScalarTy = I->getOperand(0)->getType(); 6302 Type *SrcVecTy = 6303 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6304 if (canTruncateToMinimalBitwidth(I, VF)) { 6305 // This cast is going to be shrunk. This may remove the cast or it might 6306 // turn it into slightly different cast. For example, if MinBW == 16, 6307 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6308 // 6309 // Calculate the modified src and dest types. 6310 Type *MinVecTy = VectorTy; 6311 if (I->getOpcode() == Instruction::Trunc) { 6312 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6313 VectorTy = 6314 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6315 } else if (I->getOpcode() == Instruction::ZExt || 6316 I->getOpcode() == Instruction::SExt) { 6317 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6318 VectorTy = 6319 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6320 } 6321 } 6322 6323 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6324 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6325 } 6326 case Instruction::Call: { 6327 bool NeedToScalarize; 6328 CallInst *CI = cast<CallInst>(I); 6329 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6330 if (getVectorIntrinsicIDForCall(CI, TLI)) 6331 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6332 return CallCost; 6333 } 6334 default: 6335 // The cost of executing VF copies of the scalar instruction. This opcode 6336 // is unknown. Assume that it is the same as 'mul'. 6337 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6338 getScalarizationOverhead(I, VF); 6339 } // end of switch. 6340 } 6341 6342 char LoopVectorize::ID = 0; 6343 6344 static const char lv_name[] = "Loop Vectorization"; 6345 6346 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6347 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6348 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6349 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6350 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6351 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6352 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6353 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6354 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6355 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6356 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6357 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6358 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6359 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6360 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6361 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6362 6363 namespace llvm { 6364 6365 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6366 6367 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6368 bool VectorizeOnlyWhenForced) { 6369 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6370 } 6371 6372 } // end namespace llvm 6373 6374 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6375 // Check if the pointer operand of a load or store instruction is 6376 // consecutive. 6377 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6378 return Legal->isConsecutivePtr(Ptr); 6379 return false; 6380 } 6381 6382 void LoopVectorizationCostModel::collectValuesToIgnore() { 6383 // Ignore ephemeral values. 6384 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6385 6386 // Ignore type-promoting instructions we identified during reduction 6387 // detection. 6388 for (auto &Reduction : *Legal->getReductionVars()) { 6389 RecurrenceDescriptor &RedDes = Reduction.second; 6390 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6391 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6392 } 6393 // Ignore type-casting instructions we identified during induction 6394 // detection. 6395 for (auto &Induction : *Legal->getInductionVars()) { 6396 InductionDescriptor &IndDes = Induction.second; 6397 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6398 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6399 } 6400 } 6401 6402 // TODO: we could return a pair of values that specify the max VF and 6403 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6404 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6405 // doesn't have a cost model that can choose which plan to execute if 6406 // more than one is generated. 6407 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6408 LoopVectorizationCostModel &CM) { 6409 unsigned WidestType; 6410 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6411 return WidestVectorRegBits / WidestType; 6412 } 6413 6414 VectorizationFactor 6415 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6416 unsigned VF = UserVF; 6417 // Outer loop handling: They may require CFG and instruction level 6418 // transformations before even evaluating whether vectorization is profitable. 6419 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6420 // the vectorization pipeline. 6421 if (!OrigLoop->empty()) { 6422 // If the user doesn't provide a vectorization factor, determine a 6423 // reasonable one. 6424 if (!UserVF) { 6425 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6426 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6427 6428 // Make sure we have a VF > 1 for stress testing. 6429 if (VPlanBuildStressTest && VF < 2) { 6430 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6431 << "overriding computed VF.\n"); 6432 VF = 4; 6433 } 6434 } 6435 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6436 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6437 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6438 << " to build VPlans.\n"); 6439 buildVPlans(VF, VF); 6440 6441 // For VPlan build stress testing, we bail out after VPlan construction. 6442 if (VPlanBuildStressTest) 6443 return VectorizationFactor::Disabled(); 6444 6445 return {VF, 0}; 6446 } 6447 6448 LLVM_DEBUG( 6449 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6450 "VPlan-native path.\n"); 6451 return VectorizationFactor::Disabled(); 6452 } 6453 6454 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) { 6455 assert(OrigLoop->empty() && "Inner loop expected."); 6456 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(); 6457 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6458 return None; 6459 6460 // Invalidate interleave groups if all blocks of loop will be predicated. 6461 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6462 !useMaskedInterleavedAccesses(*TTI)) { 6463 LLVM_DEBUG( 6464 dbgs() 6465 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6466 "which requires masked-interleaved support.\n"); 6467 CM.InterleaveInfo.reset(); 6468 } 6469 6470 if (UserVF) { 6471 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6472 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6473 // Collect the instructions (and their associated costs) that will be more 6474 // profitable to scalarize. 6475 CM.selectUserVectorizationFactor(UserVF); 6476 buildVPlansWithVPRecipes(UserVF, UserVF); 6477 LLVM_DEBUG(printPlans(dbgs())); 6478 return {{UserVF, 0}}; 6479 } 6480 6481 unsigned MaxVF = MaybeMaxVF.getValue(); 6482 assert(MaxVF != 0 && "MaxVF is zero."); 6483 6484 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6485 // Collect Uniform and Scalar instructions after vectorization with VF. 6486 CM.collectUniformsAndScalars(VF); 6487 6488 // Collect the instructions (and their associated costs) that will be more 6489 // profitable to scalarize. 6490 if (VF > 1) 6491 CM.collectInstsToScalarize(VF); 6492 } 6493 6494 buildVPlansWithVPRecipes(1, MaxVF); 6495 LLVM_DEBUG(printPlans(dbgs())); 6496 if (MaxVF == 1) 6497 return VectorizationFactor::Disabled(); 6498 6499 // Select the optimal vectorization factor. 6500 return CM.selectVectorizationFactor(MaxVF); 6501 } 6502 6503 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6504 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6505 << '\n'); 6506 BestVF = VF; 6507 BestUF = UF; 6508 6509 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6510 return !Plan->hasVF(VF); 6511 }); 6512 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6513 } 6514 6515 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6516 DominatorTree *DT) { 6517 // Perform the actual loop transformation. 6518 6519 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6520 VPCallbackILV CallbackILV(ILV); 6521 6522 VPTransformState State{BestVF, BestUF, LI, 6523 DT, ILV.Builder, ILV.VectorLoopValueMap, 6524 &ILV, CallbackILV}; 6525 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6526 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6527 6528 //===------------------------------------------------===// 6529 // 6530 // Notice: any optimization or new instruction that go 6531 // into the code below should also be implemented in 6532 // the cost-model. 6533 // 6534 //===------------------------------------------------===// 6535 6536 // 2. Copy and widen instructions from the old loop into the new loop. 6537 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6538 VPlans.front()->execute(&State); 6539 6540 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6541 // predication, updating analyses. 6542 ILV.fixVectorizedLoop(); 6543 } 6544 6545 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6546 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6547 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6548 6549 // We create new control-flow for the vectorized loop, so the original 6550 // condition will be dead after vectorization if it's only used by the 6551 // branch. 6552 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6553 if (Cmp && Cmp->hasOneUse()) 6554 DeadInstructions.insert(Cmp); 6555 6556 // We create new "steps" for induction variable updates to which the original 6557 // induction variables map. An original update instruction will be dead if 6558 // all its users except the induction variable are dead. 6559 for (auto &Induction : *Legal->getInductionVars()) { 6560 PHINode *Ind = Induction.first; 6561 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6562 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6563 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6564 DeadInstructions.end(); 6565 })) 6566 DeadInstructions.insert(IndUpdate); 6567 6568 // We record as "Dead" also the type-casting instructions we had identified 6569 // during induction analysis. We don't need any handling for them in the 6570 // vectorized loop because we have proven that, under a proper runtime 6571 // test guarding the vectorized loop, the value of the phi, and the casted 6572 // value of the phi, are the same. The last instruction in this casting chain 6573 // will get its scalar/vector/widened def from the scalar/vector/widened def 6574 // of the respective phi node. Any other casts in the induction def-use chain 6575 // have no other uses outside the phi update chain, and will be ignored. 6576 InductionDescriptor &IndDes = Induction.second; 6577 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6578 DeadInstructions.insert(Casts.begin(), Casts.end()); 6579 } 6580 } 6581 6582 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6583 6584 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6585 6586 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6587 Instruction::BinaryOps BinOp) { 6588 // When unrolling and the VF is 1, we only need to add a simple scalar. 6589 Type *Ty = Val->getType(); 6590 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6591 6592 if (Ty->isFloatingPointTy()) { 6593 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6594 6595 // Floating point operations had to be 'fast' to enable the unrolling. 6596 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6597 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6598 } 6599 Constant *C = ConstantInt::get(Ty, StartIdx); 6600 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6601 } 6602 6603 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6604 SmallVector<Metadata *, 4> MDs; 6605 // Reserve first location for self reference to the LoopID metadata node. 6606 MDs.push_back(nullptr); 6607 bool IsUnrollMetadata = false; 6608 MDNode *LoopID = L->getLoopID(); 6609 if (LoopID) { 6610 // First find existing loop unrolling disable metadata. 6611 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6612 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6613 if (MD) { 6614 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6615 IsUnrollMetadata = 6616 S && S->getString().startswith("llvm.loop.unroll.disable"); 6617 } 6618 MDs.push_back(LoopID->getOperand(i)); 6619 } 6620 } 6621 6622 if (!IsUnrollMetadata) { 6623 // Add runtime unroll disable metadata. 6624 LLVMContext &Context = L->getHeader()->getContext(); 6625 SmallVector<Metadata *, 1> DisableOperands; 6626 DisableOperands.push_back( 6627 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6628 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6629 MDs.push_back(DisableNode); 6630 MDNode *NewLoopID = MDNode::get(Context, MDs); 6631 // Set operand 0 to refer to the loop id itself. 6632 NewLoopID->replaceOperandWith(0, NewLoopID); 6633 L->setLoopID(NewLoopID); 6634 } 6635 } 6636 6637 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6638 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6639 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6640 bool PredicateAtRangeStart = Predicate(Range.Start); 6641 6642 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6643 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6644 Range.End = TmpVF; 6645 break; 6646 } 6647 6648 return PredicateAtRangeStart; 6649 } 6650 6651 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6652 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6653 /// of VF's starting at a given VF and extending it as much as possible. Each 6654 /// vectorization decision can potentially shorten this sub-range during 6655 /// buildVPlan(). 6656 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6657 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6658 VFRange SubRange = {VF, MaxVF + 1}; 6659 VPlans.push_back(buildVPlan(SubRange)); 6660 VF = SubRange.End; 6661 } 6662 } 6663 6664 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6665 VPlanPtr &Plan) { 6666 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6667 6668 // Look for cached value. 6669 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6670 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6671 if (ECEntryIt != EdgeMaskCache.end()) 6672 return ECEntryIt->second; 6673 6674 VPValue *SrcMask = createBlockInMask(Src, Plan); 6675 6676 // The terminator has to be a branch inst! 6677 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6678 assert(BI && "Unexpected terminator found"); 6679 6680 if (!BI->isConditional()) 6681 return EdgeMaskCache[Edge] = SrcMask; 6682 6683 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6684 assert(EdgeMask && "No Edge Mask found for condition"); 6685 6686 if (BI->getSuccessor(0) != Dst) 6687 EdgeMask = Builder.createNot(EdgeMask); 6688 6689 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6690 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6691 6692 return EdgeMaskCache[Edge] = EdgeMask; 6693 } 6694 6695 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6696 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6697 6698 // Look for cached value. 6699 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6700 if (BCEntryIt != BlockMaskCache.end()) 6701 return BCEntryIt->second; 6702 6703 // All-one mask is modelled as no-mask following the convention for masked 6704 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6705 VPValue *BlockMask = nullptr; 6706 6707 if (OrigLoop->getHeader() == BB) { 6708 if (!CM.blockNeedsPredication(BB)) 6709 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6710 6711 // Introduce the early-exit compare IV <= BTC to form header block mask. 6712 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6713 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6714 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6715 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6716 return BlockMaskCache[BB] = BlockMask; 6717 } 6718 6719 // This is the block mask. We OR all incoming edges. 6720 for (auto *Predecessor : predecessors(BB)) { 6721 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6722 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6723 return BlockMaskCache[BB] = EdgeMask; 6724 6725 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6726 BlockMask = EdgeMask; 6727 continue; 6728 } 6729 6730 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6731 } 6732 6733 return BlockMaskCache[BB] = BlockMask; 6734 } 6735 6736 VPWidenMemoryInstructionRecipe * 6737 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6738 VPlanPtr &Plan) { 6739 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6740 return nullptr; 6741 6742 auto willWiden = [&](unsigned VF) -> bool { 6743 if (VF == 1) 6744 return false; 6745 LoopVectorizationCostModel::InstWidening Decision = 6746 CM.getWideningDecision(I, VF); 6747 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6748 "CM decision should be taken at this point."); 6749 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6750 return true; 6751 if (CM.isScalarAfterVectorization(I, VF) || 6752 CM.isProfitableToScalarize(I, VF)) 6753 return false; 6754 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6755 }; 6756 6757 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6758 return nullptr; 6759 6760 VPValue *Mask = nullptr; 6761 if (Legal->isMaskRequired(I)) 6762 Mask = createBlockInMask(I->getParent(), Plan); 6763 6764 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6765 } 6766 6767 VPWidenIntOrFpInductionRecipe * 6768 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6769 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6770 // Check if this is an integer or fp induction. If so, build the recipe that 6771 // produces its scalar and vector values. 6772 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6773 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6774 II.getKind() == InductionDescriptor::IK_FpInduction) 6775 return new VPWidenIntOrFpInductionRecipe(Phi); 6776 6777 return nullptr; 6778 } 6779 6780 // Optimize the special case where the source is a constant integer 6781 // induction variable. Notice that we can only optimize the 'trunc' case 6782 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6783 // (c) other casts depend on pointer size. 6784 6785 // Determine whether \p K is a truncation based on an induction variable that 6786 // can be optimized. 6787 auto isOptimizableIVTruncate = 6788 [&](Instruction *K) -> std::function<bool(unsigned)> { 6789 return 6790 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6791 }; 6792 6793 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6794 isOptimizableIVTruncate(I), Range)) 6795 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6796 cast<TruncInst>(I)); 6797 return nullptr; 6798 } 6799 6800 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6801 PHINode *Phi = dyn_cast<PHINode>(I); 6802 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6803 return nullptr; 6804 6805 // We know that all PHIs in non-header blocks are converted into selects, so 6806 // we don't have to worry about the insertion order and we can just use the 6807 // builder. At this point we generate the predication tree. There may be 6808 // duplications since this is a simple recursive scan, but future 6809 // optimizations will clean it up. 6810 6811 SmallVector<VPValue *, 2> Masks; 6812 unsigned NumIncoming = Phi->getNumIncomingValues(); 6813 for (unsigned In = 0; In < NumIncoming; In++) { 6814 VPValue *EdgeMask = 6815 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6816 assert((EdgeMask || NumIncoming == 1) && 6817 "Multiple predecessors with one having a full mask"); 6818 if (EdgeMask) 6819 Masks.push_back(EdgeMask); 6820 } 6821 return new VPBlendRecipe(Phi, Masks); 6822 } 6823 6824 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6825 VFRange &Range) { 6826 6827 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6828 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6829 6830 if (IsPredicated) 6831 return false; 6832 6833 auto IsVectorizableOpcode = [](unsigned Opcode) { 6834 switch (Opcode) { 6835 case Instruction::Add: 6836 case Instruction::And: 6837 case Instruction::AShr: 6838 case Instruction::BitCast: 6839 case Instruction::Br: 6840 case Instruction::Call: 6841 case Instruction::FAdd: 6842 case Instruction::FCmp: 6843 case Instruction::FDiv: 6844 case Instruction::FMul: 6845 case Instruction::FNeg: 6846 case Instruction::FPExt: 6847 case Instruction::FPToSI: 6848 case Instruction::FPToUI: 6849 case Instruction::FPTrunc: 6850 case Instruction::FRem: 6851 case Instruction::FSub: 6852 case Instruction::ICmp: 6853 case Instruction::IntToPtr: 6854 case Instruction::Load: 6855 case Instruction::LShr: 6856 case Instruction::Mul: 6857 case Instruction::Or: 6858 case Instruction::PHI: 6859 case Instruction::PtrToInt: 6860 case Instruction::SDiv: 6861 case Instruction::Select: 6862 case Instruction::SExt: 6863 case Instruction::Shl: 6864 case Instruction::SIToFP: 6865 case Instruction::SRem: 6866 case Instruction::Store: 6867 case Instruction::Sub: 6868 case Instruction::Trunc: 6869 case Instruction::UDiv: 6870 case Instruction::UIToFP: 6871 case Instruction::URem: 6872 case Instruction::Xor: 6873 case Instruction::ZExt: 6874 return true; 6875 } 6876 return false; 6877 }; 6878 6879 if (!IsVectorizableOpcode(I->getOpcode())) 6880 return false; 6881 6882 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6883 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6884 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6885 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6886 return false; 6887 } 6888 6889 auto willWiden = [&](unsigned VF) -> bool { 6890 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6891 CM.isProfitableToScalarize(I, VF))) 6892 return false; 6893 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6894 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6895 // The following case may be scalarized depending on the VF. 6896 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6897 // version of the instruction. 6898 // Is it beneficial to perform intrinsic call compared to lib call? 6899 bool NeedToScalarize; 6900 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6901 bool UseVectorIntrinsic = 6902 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6903 return UseVectorIntrinsic || !NeedToScalarize; 6904 } 6905 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6906 assert(CM.getWideningDecision(I, VF) == 6907 LoopVectorizationCostModel::CM_Scalarize && 6908 "Memory widening decisions should have been taken care by now"); 6909 return false; 6910 } 6911 return true; 6912 }; 6913 6914 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6915 return false; 6916 // If this ingredient's recipe is to be recorded, keep its recipe a singleton 6917 // to avoid having to split recipes later. 6918 bool IsSingleton = Ingredient2Recipe.count(I); 6919 6920 // Success: widen this instruction. 6921 6922 // Use the default widening recipe. We optimize the common case where 6923 // consecutive instructions can be represented by a single recipe. 6924 if (!IsSingleton && !VPBB->empty() && LastExtensibleRecipe == &VPBB->back() && 6925 LastExtensibleRecipe->appendInstruction(I)) 6926 return true; 6927 6928 VPWidenRecipe *WidenRecipe = new VPWidenRecipe(I); 6929 if (!IsSingleton) 6930 LastExtensibleRecipe = WidenRecipe; 6931 setRecipe(I, WidenRecipe); 6932 VPBB->appendRecipe(WidenRecipe); 6933 return true; 6934 } 6935 6936 VPBasicBlock *VPRecipeBuilder::handleReplication( 6937 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6938 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6939 VPlanPtr &Plan) { 6940 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6941 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6942 Range); 6943 6944 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6945 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6946 6947 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6948 setRecipe(I, Recipe); 6949 6950 // Find if I uses a predicated instruction. If so, it will use its scalar 6951 // value. Avoid hoisting the insert-element which packs the scalar value into 6952 // a vector value, as that happens iff all users use the vector value. 6953 for (auto &Op : I->operands()) 6954 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6955 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6956 PredInst2Recipe[PredInst]->setAlsoPack(false); 6957 6958 // Finalize the recipe for Instr, first if it is not predicated. 6959 if (!IsPredicated) { 6960 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6961 VPBB->appendRecipe(Recipe); 6962 return VPBB; 6963 } 6964 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6965 assert(VPBB->getSuccessors().empty() && 6966 "VPBB has successors when handling predicated replication."); 6967 // Record predicated instructions for above packing optimizations. 6968 PredInst2Recipe[I] = Recipe; 6969 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6970 VPBlockUtils::insertBlockAfter(Region, VPBB); 6971 auto *RegSucc = new VPBasicBlock(); 6972 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6973 return RegSucc; 6974 } 6975 6976 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6977 VPRecipeBase *PredRecipe, 6978 VPlanPtr &Plan) { 6979 // Instructions marked for predication are replicated and placed under an 6980 // if-then construct to prevent side-effects. 6981 6982 // Generate recipes to compute the block mask for this region. 6983 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6984 6985 // Build the triangular if-then region. 6986 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6987 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6988 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6989 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6990 auto *PHIRecipe = 6991 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6992 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6993 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6994 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6995 6996 // Note: first set Entry as region entry and then connect successors starting 6997 // from it in order, to propagate the "parent" of each VPBasicBlock. 6998 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6999 VPBlockUtils::connectBlocks(Pred, Exit); 7000 7001 return Region; 7002 } 7003 7004 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 7005 VPlanPtr &Plan, VPBasicBlock *VPBB) { 7006 VPRecipeBase *Recipe = nullptr; 7007 7008 // First, check for specific widening recipes that deal with memory 7009 // operations, inductions and Phi nodes. 7010 if ((Recipe = tryToWidenMemory(Instr, Range, Plan)) || 7011 (Recipe = tryToOptimizeInduction(Instr, Range)) || 7012 (Recipe = tryToBlend(Instr, Plan)) || 7013 (isa<PHINode>(Instr) && 7014 (Recipe = new VPWidenPHIRecipe(cast<PHINode>(Instr))))) { 7015 setRecipe(Instr, Recipe); 7016 VPBB->appendRecipe(Recipe); 7017 return true; 7018 } 7019 7020 // Handle GEP widening. 7021 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 7022 auto Scalarize = [&](unsigned VF) { 7023 return CM.isScalarWithPredication(Instr, VF) || 7024 CM.isScalarAfterVectorization(Instr, VF) || 7025 CM.isProfitableToScalarize(Instr, VF); 7026 }; 7027 if (LoopVectorizationPlanner::getDecisionAndClampRange(Scalarize, Range)) 7028 return false; 7029 VPWidenGEPRecipe *Recipe = new VPWidenGEPRecipe(GEP, OrigLoop); 7030 setRecipe(Instr, Recipe); 7031 VPBB->appendRecipe(Recipe); 7032 return true; 7033 } 7034 7035 // Check if Instr is to be widened by a general VPWidenRecipe, after 7036 // having first checked for specific widening recipes. 7037 if (tryToWiden(Instr, VPBB, Range)) 7038 return true; 7039 7040 return false; 7041 } 7042 7043 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7044 unsigned MaxVF) { 7045 assert(OrigLoop->empty() && "Inner loop expected."); 7046 7047 // Collect conditions feeding internal conditional branches; they need to be 7048 // represented in VPlan for it to model masking. 7049 SmallPtrSet<Value *, 1> NeedDef; 7050 7051 auto *Latch = OrigLoop->getLoopLatch(); 7052 for (BasicBlock *BB : OrigLoop->blocks()) { 7053 if (BB == Latch) 7054 continue; 7055 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7056 if (Branch && Branch->isConditional()) 7057 NeedDef.insert(Branch->getCondition()); 7058 } 7059 7060 // If the tail is to be folded by masking, the primary induction variable 7061 // needs to be represented in VPlan for it to model early-exit masking. 7062 // Also, both the Phi and the live-out instruction of each reduction are 7063 // required in order to introduce a select between them in VPlan. 7064 if (CM.foldTailByMasking()) { 7065 NeedDef.insert(Legal->getPrimaryInduction()); 7066 for (auto &Reduction : *Legal->getReductionVars()) { 7067 NeedDef.insert(Reduction.first); 7068 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7069 } 7070 } 7071 7072 // Collect instructions from the original loop that will become trivially dead 7073 // in the vectorized loop. We don't need to vectorize these instructions. For 7074 // example, original induction update instructions can become dead because we 7075 // separately emit induction "steps" when generating code for the new loop. 7076 // Similarly, we create a new latch condition when setting up the structure 7077 // of the new loop, so the old one can become dead. 7078 SmallPtrSet<Instruction *, 4> DeadInstructions; 7079 collectTriviallyDeadInstructions(DeadInstructions); 7080 7081 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7082 VFRange SubRange = {VF, MaxVF + 1}; 7083 VPlans.push_back( 7084 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 7085 VF = SubRange.End; 7086 } 7087 } 7088 7089 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7090 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7091 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7092 7093 // Hold a mapping from predicated instructions to their recipes, in order to 7094 // fix their AlsoPack behavior if a user is determined to replicate and use a 7095 // scalar instead of vector value. 7096 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7097 7098 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7099 7100 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7101 7102 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder); 7103 7104 // --------------------------------------------------------------------------- 7105 // Pre-construction: record ingredients whose recipes we'll need to further 7106 // process after constructing the initial VPlan. 7107 // --------------------------------------------------------------------------- 7108 7109 // Mark instructions we'll need to sink later and their targets as 7110 // ingredients whose recipe we'll need to record. 7111 for (auto &Entry : SinkAfter) { 7112 RecipeBuilder.recordRecipeOf(Entry.first); 7113 RecipeBuilder.recordRecipeOf(Entry.second); 7114 } 7115 7116 // For each interleave group which is relevant for this (possibly trimmed) 7117 // Range, add it to the set of groups to be later applied to the VPlan and add 7118 // placeholders for its members' Recipes which we'll be replacing with a 7119 // single VPInterleaveRecipe. 7120 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7121 auto applyIG = [IG, this](unsigned VF) -> bool { 7122 return (VF >= 2 && // Query is illegal for VF == 1 7123 CM.getWideningDecision(IG->getInsertPos(), VF) == 7124 LoopVectorizationCostModel::CM_Interleave); 7125 }; 7126 if (!getDecisionAndClampRange(applyIG, Range)) 7127 continue; 7128 InterleaveGroups.insert(IG); 7129 for (unsigned i = 0; i < IG->getFactor(); i++) 7130 if (Instruction *Member = IG->getMember(i)) 7131 RecipeBuilder.recordRecipeOf(Member); 7132 }; 7133 7134 // --------------------------------------------------------------------------- 7135 // Build initial VPlan: Scan the body of the loop in a topological order to 7136 // visit each basic block after having visited its predecessor basic blocks. 7137 // --------------------------------------------------------------------------- 7138 7139 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7140 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7141 auto Plan = std::make_unique<VPlan>(VPBB); 7142 7143 // Represent values that will have defs inside VPlan. 7144 for (Value *V : NeedDef) 7145 Plan->addVPValue(V); 7146 7147 // Scan the body of the loop in a topological order to visit each basic block 7148 // after having visited its predecessor basic blocks. 7149 LoopBlocksDFS DFS(OrigLoop); 7150 DFS.perform(LI); 7151 7152 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7153 // Relevant instructions from basic block BB will be grouped into VPRecipe 7154 // ingredients and fill a new VPBasicBlock. 7155 unsigned VPBBsForBB = 0; 7156 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7157 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7158 VPBB = FirstVPBBForBB; 7159 Builder.setInsertPoint(VPBB); 7160 7161 // Introduce each ingredient into VPlan. 7162 for (Instruction &I : BB->instructionsWithoutDebug()) { 7163 Instruction *Instr = &I; 7164 7165 // First filter out irrelevant instructions, to ensure no recipes are 7166 // built for them. 7167 if (isa<BranchInst>(Instr) || 7168 DeadInstructions.find(Instr) != DeadInstructions.end()) 7169 continue; 7170 7171 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 7172 continue; 7173 7174 // Otherwise, if all widening options failed, Instruction is to be 7175 // replicated. This may create a successor for VPBB. 7176 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7177 Instr, Range, VPBB, PredInst2Recipe, Plan); 7178 if (NextVPBB != VPBB) { 7179 VPBB = NextVPBB; 7180 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7181 : ""); 7182 } 7183 } 7184 } 7185 7186 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7187 // may also be empty, such as the last one VPBB, reflecting original 7188 // basic-blocks with no recipes. 7189 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7190 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7191 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7192 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7193 delete PreEntry; 7194 7195 // --------------------------------------------------------------------------- 7196 // Transform initial VPlan: Apply previously taken decisions, in order, to 7197 // bring the VPlan to its final state. 7198 // --------------------------------------------------------------------------- 7199 7200 // Apply Sink-After legal constraints. 7201 for (auto &Entry : SinkAfter) { 7202 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7203 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7204 Sink->moveAfter(Target); 7205 } 7206 7207 // Interleave memory: for each Interleave Group we marked earlier as relevant 7208 // for this VPlan, replace the Recipes widening its memory instructions with a 7209 // single VPInterleaveRecipe at its insertion point. 7210 for (auto IG : InterleaveGroups) { 7211 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7212 RecipeBuilder.getRecipe(IG->getInsertPos())); 7213 (new VPInterleaveRecipe(IG, Recipe->getMask()))->insertBefore(Recipe); 7214 7215 for (unsigned i = 0; i < IG->getFactor(); ++i) 7216 if (Instruction *Member = IG->getMember(i)) { 7217 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7218 } 7219 } 7220 7221 // Finally, if tail is folded by masking, introduce selects between the phi 7222 // and the live-out instruction of each reduction, at the end of the latch. 7223 if (CM.foldTailByMasking()) { 7224 Builder.setInsertPoint(VPBB); 7225 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7226 for (auto &Reduction : *Legal->getReductionVars()) { 7227 VPValue *Phi = Plan->getVPValue(Reduction.first); 7228 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7229 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7230 } 7231 } 7232 7233 std::string PlanName; 7234 raw_string_ostream RSO(PlanName); 7235 unsigned VF = Range.Start; 7236 Plan->addVF(VF); 7237 RSO << "Initial VPlan for VF={" << VF; 7238 for (VF *= 2; VF < Range.End; VF *= 2) { 7239 Plan->addVF(VF); 7240 RSO << "," << VF; 7241 } 7242 RSO << "},UF>=1"; 7243 RSO.flush(); 7244 Plan->setName(PlanName); 7245 7246 return Plan; 7247 } 7248 7249 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7250 // Outer loop handling: They may require CFG and instruction level 7251 // transformations before even evaluating whether vectorization is profitable. 7252 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7253 // the vectorization pipeline. 7254 assert(!OrigLoop->empty()); 7255 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7256 7257 // Create new empty VPlan 7258 auto Plan = std::make_unique<VPlan>(); 7259 7260 // Build hierarchical CFG 7261 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7262 HCFGBuilder.buildHierarchicalCFG(); 7263 7264 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7265 Plan->addVF(VF); 7266 7267 if (EnableVPlanPredication) { 7268 VPlanPredicator VPP(*Plan); 7269 VPP.predicate(); 7270 7271 // Avoid running transformation to recipes until masked code generation in 7272 // VPlan-native path is in place. 7273 return Plan; 7274 } 7275 7276 SmallPtrSet<Instruction *, 1> DeadInstructions; 7277 VPlanTransforms::VPInstructionsToVPRecipes( 7278 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7279 return Plan; 7280 } 7281 7282 Value* LoopVectorizationPlanner::VPCallbackILV:: 7283 getOrCreateVectorValues(Value *V, unsigned Part) { 7284 return ILV.getOrCreateVectorValue(V, Part); 7285 } 7286 7287 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7288 O << " +\n" 7289 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7290 IG->getInsertPos()->printAsOperand(O, false); 7291 if (User) { 7292 O << ", "; 7293 User->getOperand(0)->printAsOperand(O); 7294 } 7295 O << "\\l\""; 7296 for (unsigned i = 0; i < IG->getFactor(); ++i) 7297 if (Instruction *I = IG->getMember(i)) 7298 O << " +\n" 7299 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7300 } 7301 7302 void VPWidenRecipe::execute(VPTransformState &State) { 7303 for (auto &Instr : make_range(Begin, End)) 7304 State.ILV->widenInstruction(Instr); 7305 } 7306 7307 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7308 State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant, 7309 IsIndexLoopInvariant); 7310 } 7311 7312 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7313 assert(!State.Instance && "Int or FP induction being replicated."); 7314 State.ILV->widenIntOrFpInduction(IV, Trunc); 7315 } 7316 7317 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7318 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7319 } 7320 7321 void VPBlendRecipe::execute(VPTransformState &State) { 7322 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7323 // We know that all PHIs in non-header blocks are converted into 7324 // selects, so we don't have to worry about the insertion order and we 7325 // can just use the builder. 7326 // At this point we generate the predication tree. There may be 7327 // duplications since this is a simple recursive scan, but future 7328 // optimizations will clean it up. 7329 7330 unsigned NumIncoming = Phi->getNumIncomingValues(); 7331 7332 assert((User || NumIncoming == 1) && 7333 "Multiple predecessors with predecessors having a full mask"); 7334 // Generate a sequence of selects of the form: 7335 // SELECT(Mask3, In3, 7336 // SELECT(Mask2, In2, 7337 // ( ...))) 7338 InnerLoopVectorizer::VectorParts Entry(State.UF); 7339 for (unsigned In = 0; In < NumIncoming; ++In) { 7340 for (unsigned Part = 0; Part < State.UF; ++Part) { 7341 // We might have single edge PHIs (blocks) - use an identity 7342 // 'select' for the first PHI operand. 7343 Value *In0 = 7344 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7345 if (In == 0) 7346 Entry[Part] = In0; // Initialize with the first incoming value. 7347 else { 7348 // Select between the current value and the previous incoming edge 7349 // based on the incoming mask. 7350 Value *Cond = State.get(User->getOperand(In), Part); 7351 Entry[Part] = 7352 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7353 } 7354 } 7355 } 7356 for (unsigned Part = 0; Part < State.UF; ++Part) 7357 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7358 } 7359 7360 void VPInterleaveRecipe::execute(VPTransformState &State) { 7361 assert(!State.Instance && "Interleave group being replicated."); 7362 if (!User) 7363 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7364 7365 // Last (and currently only) operand is a mask. 7366 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7367 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7368 for (unsigned Part = 0; Part < State.UF; ++Part) 7369 MaskValues[Part] = State.get(Mask, Part); 7370 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7371 } 7372 7373 void VPReplicateRecipe::execute(VPTransformState &State) { 7374 if (State.Instance) { // Generate a single instance. 7375 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7376 // Insert scalar instance packing it into a vector. 7377 if (AlsoPack && State.VF > 1) { 7378 // If we're constructing lane 0, initialize to start from undef. 7379 if (State.Instance->Lane == 0) { 7380 Value *Undef = 7381 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7382 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7383 } 7384 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7385 } 7386 return; 7387 } 7388 7389 // Generate scalar instances for all VF lanes of all UF parts, unless the 7390 // instruction is uniform inwhich case generate only the first lane for each 7391 // of the UF parts. 7392 unsigned EndLane = IsUniform ? 1 : State.VF; 7393 for (unsigned Part = 0; Part < State.UF; ++Part) 7394 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7395 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7396 } 7397 7398 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7399 assert(State.Instance && "Branch on Mask works only on single instance."); 7400 7401 unsigned Part = State.Instance->Part; 7402 unsigned Lane = State.Instance->Lane; 7403 7404 Value *ConditionBit = nullptr; 7405 if (!User) // Block in mask is all-one. 7406 ConditionBit = State.Builder.getTrue(); 7407 else { 7408 VPValue *BlockInMask = User->getOperand(0); 7409 ConditionBit = State.get(BlockInMask, Part); 7410 if (ConditionBit->getType()->isVectorTy()) 7411 ConditionBit = State.Builder.CreateExtractElement( 7412 ConditionBit, State.Builder.getInt32(Lane)); 7413 } 7414 7415 // Replace the temporary unreachable terminator with a new conditional branch, 7416 // whose two destinations will be set later when they are created. 7417 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7418 assert(isa<UnreachableInst>(CurrentTerminator) && 7419 "Expected to replace unreachable terminator with conditional branch."); 7420 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7421 CondBr->setSuccessor(0, nullptr); 7422 ReplaceInstWithInst(CurrentTerminator, CondBr); 7423 } 7424 7425 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7426 assert(State.Instance && "Predicated instruction PHI works per instance."); 7427 Instruction *ScalarPredInst = cast<Instruction>( 7428 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7429 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7430 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7431 assert(PredicatingBB && "Predicated block has no single predecessor."); 7432 7433 // By current pack/unpack logic we need to generate only a single phi node: if 7434 // a vector value for the predicated instruction exists at this point it means 7435 // the instruction has vector users only, and a phi for the vector value is 7436 // needed. In this case the recipe of the predicated instruction is marked to 7437 // also do that packing, thereby "hoisting" the insert-element sequence. 7438 // Otherwise, a phi node for the scalar value is needed. 7439 unsigned Part = State.Instance->Part; 7440 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7441 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7442 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7443 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7444 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7445 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7446 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7447 } else { 7448 Type *PredInstType = PredInst->getType(); 7449 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7450 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7451 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7452 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7453 } 7454 } 7455 7456 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7457 VPValue *Mask = getMask(); 7458 if (!Mask) 7459 return State.ILV->vectorizeMemoryInstruction(&Instr); 7460 7461 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7462 for (unsigned Part = 0; Part < State.UF; ++Part) 7463 MaskValues[Part] = State.get(Mask, Part); 7464 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7465 } 7466 7467 static ScalarEpilogueLowering 7468 getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, 7469 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, 7470 TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7471 AssumptionCache *AC, LoopInfo *LI, 7472 ScalarEvolution *SE, DominatorTree *DT, 7473 const LoopAccessInfo *LAI) { 7474 ScalarEpilogueLowering SEL = CM_ScalarEpilogueAllowed; 7475 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7476 !PreferPredicateOverEpilog; 7477 7478 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7479 (F->hasOptSize() || 7480 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7481 PGSOQueryType::IRPass))) 7482 SEL = CM_ScalarEpilogueNotAllowedOptSize; 7483 else if (PreferPredicateOverEpilog || 7484 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7485 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, LAI) && 7486 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled && 7487 !PredicateOptDisabled)) 7488 SEL = CM_ScalarEpilogueNotNeededUsePredicate; 7489 7490 return SEL; 7491 } 7492 7493 // Process the loop in the VPlan-native vectorization path. This path builds 7494 // VPlan upfront in the vectorization pipeline, which allows to apply 7495 // VPlan-to-VPlan transformations from the very beginning without modifying the 7496 // input LLVM IR. 7497 static bool processLoopInVPlanNativePath( 7498 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7499 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7500 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7501 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7502 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7503 7504 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7505 Function *F = L->getHeader()->getParent(); 7506 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7507 7508 ScalarEpilogueLowering SEL = 7509 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, 7510 PSE.getSE(), DT, LVL->getLAI()); 7511 7512 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7513 &Hints, IAI); 7514 // Use the planner for outer loop vectorization. 7515 // TODO: CM is not used at this point inside the planner. Turn CM into an 7516 // optional argument if we don't need it in the future. 7517 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI); 7518 7519 // Get user vectorization factor. 7520 const unsigned UserVF = Hints.getWidth(); 7521 7522 // Plan how to best vectorize, return the best VF and its cost. 7523 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7524 7525 // If we are stress testing VPlan builds, do not attempt to generate vector 7526 // code. Masked vector code generation support will follow soon. 7527 // Also, do not attempt to vectorize if no vector code will be produced. 7528 if (VPlanBuildStressTest || EnableVPlanPredication || 7529 VectorizationFactor::Disabled() == VF) 7530 return false; 7531 7532 LVP.setBestPlan(VF.Width, 1); 7533 7534 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7535 &CM); 7536 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7537 << L->getHeader()->getParent()->getName() << "\"\n"); 7538 LVP.executePlan(LB, DT); 7539 7540 // Mark the loop as already vectorized to avoid vectorizing again. 7541 Hints.setAlreadyVectorized(); 7542 7543 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7544 return true; 7545 } 7546 7547 bool LoopVectorizePass::processLoop(Loop *L) { 7548 assert((EnableVPlanNativePath || L->empty()) && 7549 "VPlan-native path is not enabled. Only process inner loops."); 7550 7551 #ifndef NDEBUG 7552 const std::string DebugLocStr = getDebugLocString(L); 7553 #endif /* NDEBUG */ 7554 7555 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7556 << L->getHeader()->getParent()->getName() << "\" from " 7557 << DebugLocStr << "\n"); 7558 7559 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7560 7561 LLVM_DEBUG( 7562 dbgs() << "LV: Loop hints:" 7563 << " force=" 7564 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7565 ? "disabled" 7566 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7567 ? "enabled" 7568 : "?")) 7569 << " width=" << Hints.getWidth() 7570 << " unroll=" << Hints.getInterleave() << "\n"); 7571 7572 // Function containing loop 7573 Function *F = L->getHeader()->getParent(); 7574 7575 // Looking at the diagnostic output is the only way to determine if a loop 7576 // was vectorized (other than looking at the IR or machine code), so it 7577 // is important to generate an optimization remark for each loop. Most of 7578 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7579 // generated as OptimizationRemark and OptimizationRemarkMissed are 7580 // less verbose reporting vectorized loops and unvectorized loops that may 7581 // benefit from vectorization, respectively. 7582 7583 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7584 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7585 return false; 7586 } 7587 7588 PredicatedScalarEvolution PSE(*SE, *L); 7589 7590 // Check if it is legal to vectorize the loop. 7591 LoopVectorizationRequirements Requirements(*ORE); 7592 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7593 &Requirements, &Hints, DB, AC); 7594 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7595 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7596 Hints.emitRemarkWithHints(); 7597 return false; 7598 } 7599 7600 // Check the function attributes and profiles to find out if this function 7601 // should be optimized for size. 7602 ScalarEpilogueLowering SEL = 7603 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, 7604 PSE.getSE(), DT, LVL.getLAI()); 7605 7606 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7607 // here. They may require CFG and instruction level transformations before 7608 // even evaluating whether vectorization is profitable. Since we cannot modify 7609 // the incoming IR, we need to build VPlan upfront in the vectorization 7610 // pipeline. 7611 if (!L->empty()) 7612 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7613 ORE, BFI, PSI, Hints); 7614 7615 assert(L->empty() && "Inner loop expected."); 7616 7617 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7618 // count by optimizing for size, to minimize overheads. 7619 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7620 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7621 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7622 << "This loop is worth vectorizing only if no scalar " 7623 << "iteration overheads are incurred."); 7624 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7625 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7626 else { 7627 LLVM_DEBUG(dbgs() << "\n"); 7628 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7629 } 7630 } 7631 7632 // Check the function attributes to see if implicit floats are allowed. 7633 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7634 // an integer loop and the vector instructions selected are purely integer 7635 // vector instructions? 7636 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7637 reportVectorizationFailure( 7638 "Can't vectorize when the NoImplicitFloat attribute is used", 7639 "loop not vectorized due to NoImplicitFloat attribute", 7640 "NoImplicitFloat", ORE, L); 7641 Hints.emitRemarkWithHints(); 7642 return false; 7643 } 7644 7645 // Check if the target supports potentially unsafe FP vectorization. 7646 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7647 // for the target we're vectorizing for, to make sure none of the 7648 // additional fp-math flags can help. 7649 if (Hints.isPotentiallyUnsafe() && 7650 TTI->isFPVectorizationPotentiallyUnsafe()) { 7651 reportVectorizationFailure( 7652 "Potentially unsafe FP op prevents vectorization", 7653 "loop not vectorized due to unsafe FP support.", 7654 "UnsafeFP", ORE, L); 7655 Hints.emitRemarkWithHints(); 7656 return false; 7657 } 7658 7659 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7660 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7661 7662 // If an override option has been passed in for interleaved accesses, use it. 7663 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7664 UseInterleaved = EnableInterleavedMemAccesses; 7665 7666 // Analyze interleaved memory accesses. 7667 if (UseInterleaved) { 7668 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7669 } 7670 7671 // Use the cost model. 7672 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7673 F, &Hints, IAI); 7674 CM.collectValuesToIgnore(); 7675 7676 // Use the planner for vectorization. 7677 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI); 7678 7679 // Get user vectorization factor. 7680 unsigned UserVF = Hints.getWidth(); 7681 7682 // Plan how to best vectorize, return the best VF and its cost. 7683 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF); 7684 7685 VectorizationFactor VF = VectorizationFactor::Disabled(); 7686 unsigned IC = 1; 7687 unsigned UserIC = Hints.getInterleave(); 7688 7689 if (MaybeVF) { 7690 VF = *MaybeVF; 7691 // Select the interleave count. 7692 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7693 } 7694 7695 // Identify the diagnostic messages that should be produced. 7696 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7697 bool VectorizeLoop = true, InterleaveLoop = true; 7698 if (Requirements.doesNotMeet(F, L, Hints)) { 7699 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7700 "requirements.\n"); 7701 Hints.emitRemarkWithHints(); 7702 return false; 7703 } 7704 7705 if (VF.Width == 1) { 7706 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7707 VecDiagMsg = std::make_pair( 7708 "VectorizationNotBeneficial", 7709 "the cost-model indicates that vectorization is not beneficial"); 7710 VectorizeLoop = false; 7711 } 7712 7713 if (!MaybeVF && UserIC > 1) { 7714 // Tell the user interleaving was avoided up-front, despite being explicitly 7715 // requested. 7716 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7717 "interleaving should be avoided up front\n"); 7718 IntDiagMsg = std::make_pair( 7719 "InterleavingAvoided", 7720 "Ignoring UserIC, because interleaving was avoided up front"); 7721 InterleaveLoop = false; 7722 } else if (IC == 1 && UserIC <= 1) { 7723 // Tell the user interleaving is not beneficial. 7724 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7725 IntDiagMsg = std::make_pair( 7726 "InterleavingNotBeneficial", 7727 "the cost-model indicates that interleaving is not beneficial"); 7728 InterleaveLoop = false; 7729 if (UserIC == 1) { 7730 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7731 IntDiagMsg.second += 7732 " and is explicitly disabled or interleave count is set to 1"; 7733 } 7734 } else if (IC > 1 && UserIC == 1) { 7735 // Tell the user interleaving is beneficial, but it explicitly disabled. 7736 LLVM_DEBUG( 7737 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7738 IntDiagMsg = std::make_pair( 7739 "InterleavingBeneficialButDisabled", 7740 "the cost-model indicates that interleaving is beneficial " 7741 "but is explicitly disabled or interleave count is set to 1"); 7742 InterleaveLoop = false; 7743 } 7744 7745 // Override IC if user provided an interleave count. 7746 IC = UserIC > 0 ? UserIC : IC; 7747 7748 // Emit diagnostic messages, if any. 7749 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7750 if (!VectorizeLoop && !InterleaveLoop) { 7751 // Do not vectorize or interleaving the loop. 7752 ORE->emit([&]() { 7753 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7754 L->getStartLoc(), L->getHeader()) 7755 << VecDiagMsg.second; 7756 }); 7757 ORE->emit([&]() { 7758 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7759 L->getStartLoc(), L->getHeader()) 7760 << IntDiagMsg.second; 7761 }); 7762 return false; 7763 } else if (!VectorizeLoop && InterleaveLoop) { 7764 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7765 ORE->emit([&]() { 7766 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7767 L->getStartLoc(), L->getHeader()) 7768 << VecDiagMsg.second; 7769 }); 7770 } else if (VectorizeLoop && !InterleaveLoop) { 7771 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7772 << ") in " << DebugLocStr << '\n'); 7773 ORE->emit([&]() { 7774 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7775 L->getStartLoc(), L->getHeader()) 7776 << IntDiagMsg.second; 7777 }); 7778 } else if (VectorizeLoop && InterleaveLoop) { 7779 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7780 << ") in " << DebugLocStr << '\n'); 7781 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7782 } 7783 7784 LVP.setBestPlan(VF.Width, IC); 7785 7786 using namespace ore; 7787 bool DisableRuntimeUnroll = false; 7788 MDNode *OrigLoopID = L->getLoopID(); 7789 7790 if (!VectorizeLoop) { 7791 assert(IC > 1 && "interleave count should not be 1 or 0"); 7792 // If we decided that it is not legal to vectorize the loop, then 7793 // interleave it. 7794 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7795 &CM); 7796 LVP.executePlan(Unroller, DT); 7797 7798 ORE->emit([&]() { 7799 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7800 L->getHeader()) 7801 << "interleaved loop (interleaved count: " 7802 << NV("InterleaveCount", IC) << ")"; 7803 }); 7804 } else { 7805 // If we decided that it is *legal* to vectorize the loop, then do it. 7806 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7807 &LVL, &CM); 7808 LVP.executePlan(LB, DT); 7809 ++LoopsVectorized; 7810 7811 // Add metadata to disable runtime unrolling a scalar loop when there are 7812 // no runtime checks about strides and memory. A scalar loop that is 7813 // rarely used is not worth unrolling. 7814 if (!LB.areSafetyChecksAdded()) 7815 DisableRuntimeUnroll = true; 7816 7817 // Report the vectorization decision. 7818 ORE->emit([&]() { 7819 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7820 L->getHeader()) 7821 << "vectorized loop (vectorization width: " 7822 << NV("VectorizationFactor", VF.Width) 7823 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7824 }); 7825 } 7826 7827 Optional<MDNode *> RemainderLoopID = 7828 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7829 LLVMLoopVectorizeFollowupEpilogue}); 7830 if (RemainderLoopID.hasValue()) { 7831 L->setLoopID(RemainderLoopID.getValue()); 7832 } else { 7833 if (DisableRuntimeUnroll) 7834 AddRuntimeUnrollDisableMetaData(L); 7835 7836 // Mark the loop as already vectorized to avoid vectorizing again. 7837 Hints.setAlreadyVectorized(); 7838 } 7839 7840 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7841 return true; 7842 } 7843 7844 bool LoopVectorizePass::runImpl( 7845 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7846 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7847 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7848 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7849 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7850 SE = &SE_; 7851 LI = &LI_; 7852 TTI = &TTI_; 7853 DT = &DT_; 7854 BFI = &BFI_; 7855 TLI = TLI_; 7856 AA = &AA_; 7857 AC = &AC_; 7858 GetLAA = &GetLAA_; 7859 DB = &DB_; 7860 ORE = &ORE_; 7861 PSI = PSI_; 7862 7863 // Don't attempt if 7864 // 1. the target claims to have no vector registers, and 7865 // 2. interleaving won't help ILP. 7866 // 7867 // The second condition is necessary because, even if the target has no 7868 // vector registers, loop vectorization may still enable scalar 7869 // interleaving. 7870 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 7871 TTI->getMaxInterleaveFactor(1) < 2) 7872 return false; 7873 7874 bool Changed = false; 7875 7876 // The vectorizer requires loops to be in simplified form. 7877 // Since simplification may add new inner loops, it has to run before the 7878 // legality and profitability checks. This means running the loop vectorizer 7879 // will simplify all loops, regardless of whether anything end up being 7880 // vectorized. 7881 for (auto &L : *LI) 7882 Changed |= 7883 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 7884 7885 // Build up a worklist of inner-loops to vectorize. This is necessary as 7886 // the act of vectorizing or partially unrolling a loop creates new loops 7887 // and can invalidate iterators across the loops. 7888 SmallVector<Loop *, 8> Worklist; 7889 7890 for (Loop *L : *LI) 7891 collectSupportedLoops(*L, LI, ORE, Worklist); 7892 7893 LoopsAnalyzed += Worklist.size(); 7894 7895 // Now walk the identified inner loops. 7896 while (!Worklist.empty()) { 7897 Loop *L = Worklist.pop_back_val(); 7898 7899 // For the inner loops we actually process, form LCSSA to simplify the 7900 // transform. 7901 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7902 7903 Changed |= processLoop(L); 7904 } 7905 7906 // Process each loop nest in the function. 7907 return Changed; 7908 } 7909 7910 PreservedAnalyses LoopVectorizePass::run(Function &F, 7911 FunctionAnalysisManager &AM) { 7912 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7913 auto &LI = AM.getResult<LoopAnalysis>(F); 7914 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7915 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7916 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7917 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7918 auto &AA = AM.getResult<AAManager>(F); 7919 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7920 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7921 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7922 MemorySSA *MSSA = EnableMSSALoopDependency 7923 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7924 : nullptr; 7925 7926 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7927 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7928 [&](Loop &L) -> const LoopAccessInfo & { 7929 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7930 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7931 }; 7932 const ModuleAnalysisManager &MAM = 7933 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 7934 ProfileSummaryInfo *PSI = 7935 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 7936 bool Changed = 7937 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 7938 if (!Changed) 7939 return PreservedAnalyses::all(); 7940 PreservedAnalyses PA; 7941 7942 // We currently do not preserve loopinfo/dominator analyses with outer loop 7943 // vectorization. Until this is addressed, mark these analyses as preserved 7944 // only for non-VPlan-native path. 7945 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7946 if (!EnableVPlanNativePath) { 7947 PA.preserve<LoopAnalysis>(); 7948 PA.preserve<DominatorTreeAnalysis>(); 7949 } 7950 PA.preserve<BasicAA>(); 7951 PA.preserve<GlobalsAA>(); 7952 return PA; 7953 } 7954