1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <cstdlib>
147 #include <functional>
148 #include <iterator>
149 #include <limits>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 /// @{
161 /// Metadata attribute names
162 static const char *const LLVMLoopVectorizeFollowupAll =
163     "llvm.loop.vectorize.followup_all";
164 static const char *const LLVMLoopVectorizeFollowupVectorized =
165     "llvm.loop.vectorize.followup_vectorized";
166 static const char *const LLVMLoopVectorizeFollowupEpilogue =
167     "llvm.loop.vectorize.followup_epilogue";
168 /// @}
169 
170 STATISTIC(LoopsVectorized, "Number of loops vectorized");
171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
172 
173 /// Loops with a known constant trip count below this number are vectorized only
174 /// if no scalar iteration overheads are incurred.
175 static cl::opt<unsigned> TinyTripCountVectorThreshold(
176     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
177     cl::desc("Loops with a constant trip count that is smaller than this "
178              "value are vectorized only if no scalar iteration overheads "
179              "are incurred."));
180 
181 // Indicates that an epilogue is undesired, predication is preferred.
182 // This means that the vectorizer will try to fold the loop-tail (epilogue)
183 // into the loop and predicate the loop body accordingly.
184 static cl::opt<bool> PreferPredicateOverEpilog(
185     "prefer-predicate-over-epilog", cl::init(false), cl::Hidden,
186     cl::desc("Indicate that an epilogue is undesired, predication should be "
187              "used instead."));
188 
189 static cl::opt<bool> MaximizeBandwidth(
190     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
191     cl::desc("Maximize bandwidth when selecting vectorization factor which "
192              "will be determined by the smallest type in loop."));
193 
194 static cl::opt<bool> EnableInterleavedMemAccesses(
195     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
196     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
197 
198 /// An interleave-group may need masking if it resides in a block that needs
199 /// predication, or in order to mask away gaps.
200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
201     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
202     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
203 
204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
205     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
206     cl::desc("We don't interleave loops with a estimated constant trip count "
207              "below this number"));
208 
209 static cl::opt<unsigned> ForceTargetNumScalarRegs(
210     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
211     cl::desc("A flag that overrides the target's number of scalar registers."));
212 
213 static cl::opt<unsigned> ForceTargetNumVectorRegs(
214     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
215     cl::desc("A flag that overrides the target's number of vector registers."));
216 
217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
218     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
219     cl::desc("A flag that overrides the target's max interleave factor for "
220              "scalar loops."));
221 
222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
223     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
224     cl::desc("A flag that overrides the target's max interleave factor for "
225              "vectorized loops."));
226 
227 static cl::opt<unsigned> ForceTargetInstructionCost(
228     "force-target-instruction-cost", cl::init(0), cl::Hidden,
229     cl::desc("A flag that overrides the target's expected cost for "
230              "an instruction to a single constant value. Mostly "
231              "useful for getting consistent testing."));
232 
233 static cl::opt<unsigned> SmallLoopCost(
234     "small-loop-cost", cl::init(20), cl::Hidden,
235     cl::desc(
236         "The cost of a loop that is considered 'small' by the interleaver."));
237 
238 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
239     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
240     cl::desc("Enable the use of the block frequency analysis to access PGO "
241              "heuristics minimizing code growth in cold regions and being more "
242              "aggressive in hot regions."));
243 
244 // Runtime interleave loops for load/store throughput.
245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
246     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
247     cl::desc(
248         "Enable runtime interleaving until load/store ports are saturated"));
249 
250 /// The number of stores in a loop that are allowed to need predication.
251 static cl::opt<unsigned> NumberOfStoresToPredicate(
252     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
253     cl::desc("Max number of stores to be predicated behind an if."));
254 
255 static cl::opt<bool> EnableIndVarRegisterHeur(
256     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
257     cl::desc("Count the induction variable only once when interleaving"));
258 
259 static cl::opt<bool> EnableCondStoresVectorization(
260     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
261     cl::desc("Enable if predication of stores during vectorization."));
262 
263 static cl::opt<unsigned> MaxNestedScalarReductionIC(
264     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
265     cl::desc("The maximum interleave count to use when interleaving a scalar "
266              "reduction in a nested loop."));
267 
268 cl::opt<bool> EnableVPlanNativePath(
269     "enable-vplan-native-path", cl::init(false), cl::Hidden,
270     cl::desc("Enable VPlan-native vectorization path with "
271              "support for outer loop vectorization."));
272 
273 // FIXME: Remove this switch once we have divergence analysis. Currently we
274 // assume divergent non-backedge branches when this switch is true.
275 cl::opt<bool> EnableVPlanPredication(
276     "enable-vplan-predication", cl::init(false), cl::Hidden,
277     cl::desc("Enable VPlan-native vectorization path predicator with "
278              "support for outer loop vectorization."));
279 
280 // This flag enables the stress testing of the VPlan H-CFG construction in the
281 // VPlan-native vectorization path. It must be used in conjuction with
282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
283 // verification of the H-CFGs built.
284 static cl::opt<bool> VPlanBuildStressTest(
285     "vplan-build-stress-test", cl::init(false), cl::Hidden,
286     cl::desc(
287         "Build VPlan for every supported loop nest in the function and bail "
288         "out right after the build (stress test the VPlan H-CFG construction "
289         "in the VPlan-native vectorization path)."));
290 
291 cl::opt<bool> llvm::EnableLoopInterleaving(
292     "interleave-loops", cl::init(true), cl::Hidden,
293     cl::desc("Enable loop interleaving in Loop vectorization passes"));
294 cl::opt<bool> llvm::EnableLoopVectorization(
295     "vectorize-loops", cl::init(true), cl::Hidden,
296     cl::desc("Run the Loop vectorization passes"));
297 
298 /// A helper function that returns the type of loaded or stored value.
299 static Type *getMemInstValueType(Value *I) {
300   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
301          "Expected Load or Store instruction");
302   if (auto *LI = dyn_cast<LoadInst>(I))
303     return LI->getType();
304   return cast<StoreInst>(I)->getValueOperand()->getType();
305 }
306 
307 /// A helper function that returns true if the given type is irregular. The
308 /// type is irregular if its allocated size doesn't equal the store size of an
309 /// element of the corresponding vector type at the given vectorization factor.
310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
311   // Determine if an array of VF elements of type Ty is "bitcast compatible"
312   // with a <VF x Ty> vector.
313   if (VF > 1) {
314     auto *VectorTy = FixedVectorType::get(Ty, VF);
315     return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
316   }
317 
318   // If the vectorization factor is one, we just check if an array of type Ty
319   // requires padding between elements.
320   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
321 }
322 
323 /// A helper function that returns the reciprocal of the block probability of
324 /// predicated blocks. If we return X, we are assuming the predicated block
325 /// will execute once for every X iterations of the loop header.
326 ///
327 /// TODO: We should use actual block probability here, if available. Currently,
328 ///       we always assume predicated blocks have a 50% chance of executing.
329 static unsigned getReciprocalPredBlockProb() { return 2; }
330 
331 /// A helper function that adds a 'fast' flag to floating-point operations.
332 static Value *addFastMathFlag(Value *V) {
333   if (isa<FPMathOperator>(V))
334     cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast());
335   return V;
336 }
337 
338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
339   if (isa<FPMathOperator>(V))
340     cast<Instruction>(V)->setFastMathFlags(FMF);
341   return V;
342 }
343 
344 /// A helper function that returns an integer or floating-point constant with
345 /// value C.
346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
347   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
348                            : ConstantFP::get(Ty, C);
349 }
350 
351 /// Returns "best known" trip count for the specified loop \p L as defined by
352 /// the following procedure:
353 ///   1) Returns exact trip count if it is known.
354 ///   2) Returns expected trip count according to profile data if any.
355 ///   3) Returns upper bound estimate if it is known.
356 ///   4) Returns None if all of the above failed.
357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
358   // Check if exact trip count is known.
359   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
360     return ExpectedTC;
361 
362   // Check if there is an expected trip count available from profile data.
363   if (LoopVectorizeWithBlockFrequency)
364     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
365       return EstimatedTC;
366 
367   // Check if upper bound estimate is known.
368   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
369     return ExpectedTC;
370 
371   return None;
372 }
373 
374 namespace llvm {
375 
376 /// InnerLoopVectorizer vectorizes loops which contain only one basic
377 /// block to a specified vectorization factor (VF).
378 /// This class performs the widening of scalars into vectors, or multiple
379 /// scalars. This class also implements the following features:
380 /// * It inserts an epilogue loop for handling loops that don't have iteration
381 ///   counts that are known to be a multiple of the vectorization factor.
382 /// * It handles the code generation for reduction variables.
383 /// * Scalarization (implementation using scalars) of un-vectorizable
384 ///   instructions.
385 /// InnerLoopVectorizer does not perform any vectorization-legality
386 /// checks, and relies on the caller to check for the different legality
387 /// aspects. The InnerLoopVectorizer relies on the
388 /// LoopVectorizationLegality class to provide information about the induction
389 /// and reduction variables that were found to a given vectorization factor.
390 class InnerLoopVectorizer {
391 public:
392   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
393                       LoopInfo *LI, DominatorTree *DT,
394                       const TargetLibraryInfo *TLI,
395                       const TargetTransformInfo *TTI, AssumptionCache *AC,
396                       OptimizationRemarkEmitter *ORE, unsigned VecWidth,
397                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
398                       LoopVectorizationCostModel *CM)
399       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
400         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
401         Builder(PSE.getSE()->getContext()),
402         VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
403   virtual ~InnerLoopVectorizer() = default;
404 
405   /// Create a new empty loop. Unlink the old loop and connect the new one.
406   /// Return the pre-header block of the new loop.
407   BasicBlock *createVectorizedLoopSkeleton();
408 
409   /// Widen a single instruction within the innermost loop.
410   void widenInstruction(Instruction &I, VPUser &Operands,
411                         VPTransformState &State);
412 
413   /// Widen a single call instruction within the innermost loop.
414   void widenCallInstruction(CallInst &I, VPUser &ArgOperands,
415                             VPTransformState &State);
416 
417   /// Widen a single select instruction within the innermost loop.
418   void widenSelectInstruction(SelectInst &I, VPUser &Operands,
419                               bool InvariantCond, VPTransformState &State);
420 
421   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
422   void fixVectorizedLoop();
423 
424   // Return true if any runtime check is added.
425   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
426 
427   /// A type for vectorized values in the new loop. Each value from the
428   /// original loop, when vectorized, is represented by UF vector values in the
429   /// new unrolled loop, where UF is the unroll factor.
430   using VectorParts = SmallVector<Value *, 2>;
431 
432   /// Vectorize a single GetElementPtrInst based on information gathered and
433   /// decisions taken during planning.
434   void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF,
435                 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant);
436 
437   /// Vectorize a single PHINode in a block. This method handles the induction
438   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
439   /// arbitrary length vectors.
440   void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
441 
442   /// A helper function to scalarize a single Instruction in the innermost loop.
443   /// Generates a sequence of scalar instances for each lane between \p MinLane
444   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
445   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
446   /// Instr's operands.
447   void scalarizeInstruction(Instruction *Instr, VPUser &Operands,
448                             const VPIteration &Instance, bool IfPredicateInstr,
449                             VPTransformState &State);
450 
451   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
452   /// is provided, the integer induction variable will first be truncated to
453   /// the corresponding type.
454   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
455 
456   /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
457   /// vector or scalar value on-demand if one is not yet available. When
458   /// vectorizing a loop, we visit the definition of an instruction before its
459   /// uses. When visiting the definition, we either vectorize or scalarize the
460   /// instruction, creating an entry for it in the corresponding map. (In some
461   /// cases, such as induction variables, we will create both vector and scalar
462   /// entries.) Then, as we encounter uses of the definition, we derive values
463   /// for each scalar or vector use unless such a value is already available.
464   /// For example, if we scalarize a definition and one of its uses is vector,
465   /// we build the required vector on-demand with an insertelement sequence
466   /// when visiting the use. Otherwise, if the use is scalar, we can use the
467   /// existing scalar definition.
468   ///
469   /// Return a value in the new loop corresponding to \p V from the original
470   /// loop at unroll index \p Part. If the value has already been vectorized,
471   /// the corresponding vector entry in VectorLoopValueMap is returned. If,
472   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
473   /// a new vector value on-demand by inserting the scalar values into a vector
474   /// with an insertelement sequence. If the value has been neither vectorized
475   /// nor scalarized, it must be loop invariant, so we simply broadcast the
476   /// value into a vector.
477   Value *getOrCreateVectorValue(Value *V, unsigned Part);
478 
479   /// Return a value in the new loop corresponding to \p V from the original
480   /// loop at unroll and vector indices \p Instance. If the value has been
481   /// vectorized but not scalarized, the necessary extractelement instruction
482   /// will be generated.
483   Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
484 
485   /// Construct the vector value of a scalarized value \p V one lane at a time.
486   void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
487 
488   /// Try to vectorize interleaved access group \p Group with the base address
489   /// given in \p Addr, optionally masking the vector operations if \p
490   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
491   /// values in the vectorized loop.
492   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
493                                 VPTransformState &State, VPValue *Addr,
494                                 VPValue *BlockInMask = nullptr);
495 
496   /// Vectorize Load and Store instructions with the base address given in \p
497   /// Addr, optionally masking the vector operations if \p BlockInMask is
498   /// non-null. Use \p State to translate given VPValues to IR values in the
499   /// vectorized loop.
500   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
501                                   VPValue *Addr, VPValue *StoredValue,
502                                   VPValue *BlockInMask);
503 
504   /// Set the debug location in the builder using the debug location in
505   /// the instruction.
506   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
507 
508   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
509   void fixNonInductionPHIs(void);
510 
511 protected:
512   friend class LoopVectorizationPlanner;
513 
514   /// A small list of PHINodes.
515   using PhiVector = SmallVector<PHINode *, 4>;
516 
517   /// A type for scalarized values in the new loop. Each value from the
518   /// original loop, when scalarized, is represented by UF x VF scalar values
519   /// in the new unrolled loop, where UF is the unroll factor and VF is the
520   /// vectorization factor.
521   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
522 
523   /// Set up the values of the IVs correctly when exiting the vector loop.
524   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
525                     Value *CountRoundDown, Value *EndValue,
526                     BasicBlock *MiddleBlock);
527 
528   /// Create a new induction variable inside L.
529   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
530                                    Value *Step, Instruction *DL);
531 
532   /// Handle all cross-iteration phis in the header.
533   void fixCrossIterationPHIs();
534 
535   /// Fix a first-order recurrence. This is the second phase of vectorizing
536   /// this phi node.
537   void fixFirstOrderRecurrence(PHINode *Phi);
538 
539   /// Fix a reduction cross-iteration phi. This is the second phase of
540   /// vectorizing this phi node.
541   void fixReduction(PHINode *Phi);
542 
543   /// Clear NSW/NUW flags from reduction instructions if necessary.
544   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc);
545 
546   /// The Loop exit block may have single value PHI nodes with some
547   /// incoming value. While vectorizing we only handled real values
548   /// that were defined inside the loop and we should have one value for
549   /// each predecessor of its parent basic block. See PR14725.
550   void fixLCSSAPHIs();
551 
552   /// Iteratively sink the scalarized operands of a predicated instruction into
553   /// the block that was created for it.
554   void sinkScalarOperands(Instruction *PredInst);
555 
556   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
557   /// represented as.
558   void truncateToMinimalBitwidths();
559 
560   /// Create a broadcast instruction. This method generates a broadcast
561   /// instruction (shuffle) for loop invariant values and for the induction
562   /// value. If this is the induction variable then we extend it to N, N+1, ...
563   /// this is needed because each iteration in the loop corresponds to a SIMD
564   /// element.
565   virtual Value *getBroadcastInstrs(Value *V);
566 
567   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
568   /// to each vector element of Val. The sequence starts at StartIndex.
569   /// \p Opcode is relevant for FP induction variable.
570   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
571                                Instruction::BinaryOps Opcode =
572                                Instruction::BinaryOpsEnd);
573 
574   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
575   /// variable on which to base the steps, \p Step is the size of the step, and
576   /// \p EntryVal is the value from the original loop that maps to the steps.
577   /// Note that \p EntryVal doesn't have to be an induction variable - it
578   /// can also be a truncate instruction.
579   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
580                         const InductionDescriptor &ID);
581 
582   /// Create a vector induction phi node based on an existing scalar one. \p
583   /// EntryVal is the value from the original loop that maps to the vector phi
584   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
585   /// truncate instruction, instead of widening the original IV, we widen a
586   /// version of the IV truncated to \p EntryVal's type.
587   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
588                                        Value *Step, Instruction *EntryVal);
589 
590   /// Returns true if an instruction \p I should be scalarized instead of
591   /// vectorized for the chosen vectorization factor.
592   bool shouldScalarizeInstruction(Instruction *I) const;
593 
594   /// Returns true if we should generate a scalar version of \p IV.
595   bool needsScalarInduction(Instruction *IV) const;
596 
597   /// If there is a cast involved in the induction variable \p ID, which should
598   /// be ignored in the vectorized loop body, this function records the
599   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
600   /// cast. We had already proved that the casted Phi is equal to the uncasted
601   /// Phi in the vectorized loop (under a runtime guard), and therefore
602   /// there is no need to vectorize the cast - the same value can be used in the
603   /// vector loop for both the Phi and the cast.
604   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
605   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
606   ///
607   /// \p EntryVal is the value from the original loop that maps to the vector
608   /// phi node and is used to distinguish what is the IV currently being
609   /// processed - original one (if \p EntryVal is a phi corresponding to the
610   /// original IV) or the "newly-created" one based on the proof mentioned above
611   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
612   /// latter case \p EntryVal is a TruncInst and we must not record anything for
613   /// that IV, but it's error-prone to expect callers of this routine to care
614   /// about that, hence this explicit parameter.
615   void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
616                                              const Instruction *EntryVal,
617                                              Value *VectorLoopValue,
618                                              unsigned Part,
619                                              unsigned Lane = UINT_MAX);
620 
621   /// Generate a shuffle sequence that will reverse the vector Vec.
622   virtual Value *reverseVector(Value *Vec);
623 
624   /// Returns (and creates if needed) the original loop trip count.
625   Value *getOrCreateTripCount(Loop *NewLoop);
626 
627   /// Returns (and creates if needed) the trip count of the widened loop.
628   Value *getOrCreateVectorTripCount(Loop *NewLoop);
629 
630   /// Returns a bitcasted value to the requested vector type.
631   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
632   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
633                                 const DataLayout &DL);
634 
635   /// Emit a bypass check to see if the vector trip count is zero, including if
636   /// it overflows.
637   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
638 
639   /// Emit a bypass check to see if all of the SCEV assumptions we've
640   /// had to make are correct.
641   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
642 
643   /// Emit bypass checks to check any memory assumptions we may have made.
644   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
645 
646   /// Compute the transformed value of Index at offset StartValue using step
647   /// StepValue.
648   /// For integer induction, returns StartValue + Index * StepValue.
649   /// For pointer induction, returns StartValue[Index * StepValue].
650   /// FIXME: The newly created binary instructions should contain nsw/nuw
651   /// flags, which can be found from the original scalar operations.
652   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
653                               const DataLayout &DL,
654                               const InductionDescriptor &ID) const;
655 
656   /// Add additional metadata to \p To that was not present on \p Orig.
657   ///
658   /// Currently this is used to add the noalias annotations based on the
659   /// inserted memchecks.  Use this for instructions that are *cloned* into the
660   /// vector loop.
661   void addNewMetadata(Instruction *To, const Instruction *Orig);
662 
663   /// Add metadata from one instruction to another.
664   ///
665   /// This includes both the original MDs from \p From and additional ones (\see
666   /// addNewMetadata).  Use this for *newly created* instructions in the vector
667   /// loop.
668   void addMetadata(Instruction *To, Instruction *From);
669 
670   /// Similar to the previous function but it adds the metadata to a
671   /// vector of instructions.
672   void addMetadata(ArrayRef<Value *> To, Instruction *From);
673 
674   /// The original loop.
675   Loop *OrigLoop;
676 
677   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
678   /// dynamic knowledge to simplify SCEV expressions and converts them to a
679   /// more usable form.
680   PredicatedScalarEvolution &PSE;
681 
682   /// Loop Info.
683   LoopInfo *LI;
684 
685   /// Dominator Tree.
686   DominatorTree *DT;
687 
688   /// Alias Analysis.
689   AliasAnalysis *AA;
690 
691   /// Target Library Info.
692   const TargetLibraryInfo *TLI;
693 
694   /// Target Transform Info.
695   const TargetTransformInfo *TTI;
696 
697   /// Assumption Cache.
698   AssumptionCache *AC;
699 
700   /// Interface to emit optimization remarks.
701   OptimizationRemarkEmitter *ORE;
702 
703   /// LoopVersioning.  It's only set up (non-null) if memchecks were
704   /// used.
705   ///
706   /// This is currently only used to add no-alias metadata based on the
707   /// memchecks.  The actually versioning is performed manually.
708   std::unique_ptr<LoopVersioning> LVer;
709 
710   /// The vectorization SIMD factor to use. Each vector will have this many
711   /// vector elements.
712   unsigned VF;
713 
714   /// The vectorization unroll factor to use. Each scalar is vectorized to this
715   /// many different vector instructions.
716   unsigned UF;
717 
718   /// The builder that we use
719   IRBuilder<> Builder;
720 
721   // --- Vectorization state ---
722 
723   /// The vector-loop preheader.
724   BasicBlock *LoopVectorPreHeader;
725 
726   /// The scalar-loop preheader.
727   BasicBlock *LoopScalarPreHeader;
728 
729   /// Middle Block between the vector and the scalar.
730   BasicBlock *LoopMiddleBlock;
731 
732   /// The ExitBlock of the scalar loop.
733   BasicBlock *LoopExitBlock;
734 
735   /// The vector loop body.
736   BasicBlock *LoopVectorBody;
737 
738   /// The scalar loop body.
739   BasicBlock *LoopScalarBody;
740 
741   /// A list of all bypass blocks. The first block is the entry of the loop.
742   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
743 
744   /// The new Induction variable which was added to the new block.
745   PHINode *Induction = nullptr;
746 
747   /// The induction variable of the old basic block.
748   PHINode *OldInduction = nullptr;
749 
750   /// Maps values from the original loop to their corresponding values in the
751   /// vectorized loop. A key value can map to either vector values, scalar
752   /// values or both kinds of values, depending on whether the key was
753   /// vectorized and scalarized.
754   VectorizerValueMap VectorLoopValueMap;
755 
756   /// Store instructions that were predicated.
757   SmallVector<Instruction *, 4> PredicatedInstructions;
758 
759   /// Trip count of the original loop.
760   Value *TripCount = nullptr;
761 
762   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
763   Value *VectorTripCount = nullptr;
764 
765   /// The legality analysis.
766   LoopVectorizationLegality *Legal;
767 
768   /// The profitablity analysis.
769   LoopVectorizationCostModel *Cost;
770 
771   // Record whether runtime checks are added.
772   bool AddedSafetyChecks = false;
773 
774   // Holds the end values for each induction variable. We save the end values
775   // so we can later fix-up the external users of the induction variables.
776   DenseMap<PHINode *, Value *> IVEndValues;
777 
778   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
779   // fixed up at the end of vector code generation.
780   SmallVector<PHINode *, 8> OrigPHIsToFix;
781 };
782 
783 class InnerLoopUnroller : public InnerLoopVectorizer {
784 public:
785   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
786                     LoopInfo *LI, DominatorTree *DT,
787                     const TargetLibraryInfo *TLI,
788                     const TargetTransformInfo *TTI, AssumptionCache *AC,
789                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
790                     LoopVectorizationLegality *LVL,
791                     LoopVectorizationCostModel *CM)
792       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
793                             UnrollFactor, LVL, CM) {}
794 
795 private:
796   Value *getBroadcastInstrs(Value *V) override;
797   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
798                        Instruction::BinaryOps Opcode =
799                        Instruction::BinaryOpsEnd) override;
800   Value *reverseVector(Value *Vec) override;
801 };
802 
803 } // end namespace llvm
804 
805 /// Look for a meaningful debug location on the instruction or it's
806 /// operands.
807 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
808   if (!I)
809     return I;
810 
811   DebugLoc Empty;
812   if (I->getDebugLoc() != Empty)
813     return I;
814 
815   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
816     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
817       if (OpInst->getDebugLoc() != Empty)
818         return OpInst;
819   }
820 
821   return I;
822 }
823 
824 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
825   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
826     const DILocation *DIL = Inst->getDebugLoc();
827     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
828         !isa<DbgInfoIntrinsic>(Inst)) {
829       auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF);
830       if (NewDIL)
831         B.SetCurrentDebugLocation(NewDIL.getValue());
832       else
833         LLVM_DEBUG(dbgs()
834                    << "Failed to create new discriminator: "
835                    << DIL->getFilename() << " Line: " << DIL->getLine());
836     }
837     else
838       B.SetCurrentDebugLocation(DIL);
839   } else
840     B.SetCurrentDebugLocation(DebugLoc());
841 }
842 
843 /// Write a record \p DebugMsg about vectorization failure to the debug
844 /// output stream. If \p I is passed, it is an instruction that prevents
845 /// vectorization.
846 #ifndef NDEBUG
847 static void debugVectorizationFailure(const StringRef DebugMsg,
848     Instruction *I) {
849   dbgs() << "LV: Not vectorizing: " << DebugMsg;
850   if (I != nullptr)
851     dbgs() << " " << *I;
852   else
853     dbgs() << '.';
854   dbgs() << '\n';
855 }
856 #endif
857 
858 /// Create an analysis remark that explains why vectorization failed
859 ///
860 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
861 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
862 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
863 /// the location of the remark.  \return the remark object that can be
864 /// streamed to.
865 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
866     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
867   Value *CodeRegion = TheLoop->getHeader();
868   DebugLoc DL = TheLoop->getStartLoc();
869 
870   if (I) {
871     CodeRegion = I->getParent();
872     // If there is no debug location attached to the instruction, revert back to
873     // using the loop's.
874     if (I->getDebugLoc())
875       DL = I->getDebugLoc();
876   }
877 
878   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
879   R << "loop not vectorized: ";
880   return R;
881 }
882 
883 namespace llvm {
884 
885 void reportVectorizationFailure(const StringRef DebugMsg,
886     const StringRef OREMsg, const StringRef ORETag,
887     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
888   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
889   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
890   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
891                 ORETag, TheLoop, I) << OREMsg);
892 }
893 
894 } // end namespace llvm
895 
896 #ifndef NDEBUG
897 /// \return string containing a file name and a line # for the given loop.
898 static std::string getDebugLocString(const Loop *L) {
899   std::string Result;
900   if (L) {
901     raw_string_ostream OS(Result);
902     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
903       LoopDbgLoc.print(OS);
904     else
905       // Just print the module name.
906       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
907     OS.flush();
908   }
909   return Result;
910 }
911 #endif
912 
913 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
914                                          const Instruction *Orig) {
915   // If the loop was versioned with memchecks, add the corresponding no-alias
916   // metadata.
917   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
918     LVer->annotateInstWithNoAlias(To, Orig);
919 }
920 
921 void InnerLoopVectorizer::addMetadata(Instruction *To,
922                                       Instruction *From) {
923   propagateMetadata(To, From);
924   addNewMetadata(To, From);
925 }
926 
927 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
928                                       Instruction *From) {
929   for (Value *V : To) {
930     if (Instruction *I = dyn_cast<Instruction>(V))
931       addMetadata(I, From);
932   }
933 }
934 
935 namespace llvm {
936 
937 // Loop vectorization cost-model hints how the scalar epilogue loop should be
938 // lowered.
939 enum ScalarEpilogueLowering {
940 
941   // The default: allowing scalar epilogues.
942   CM_ScalarEpilogueAllowed,
943 
944   // Vectorization with OptForSize: don't allow epilogues.
945   CM_ScalarEpilogueNotAllowedOptSize,
946 
947   // A special case of vectorisation with OptForSize: loops with a very small
948   // trip count are considered for vectorization under OptForSize, thereby
949   // making sure the cost of their loop body is dominant, free of runtime
950   // guards and scalar iteration overheads.
951   CM_ScalarEpilogueNotAllowedLowTripLoop,
952 
953   // Loop hint predicate indicating an epilogue is undesired.
954   CM_ScalarEpilogueNotNeededUsePredicate
955 };
956 
957 /// LoopVectorizationCostModel - estimates the expected speedups due to
958 /// vectorization.
959 /// In many cases vectorization is not profitable. This can happen because of
960 /// a number of reasons. In this class we mainly attempt to predict the
961 /// expected speedup/slowdowns due to the supported instruction set. We use the
962 /// TargetTransformInfo to query the different backends for the cost of
963 /// different operations.
964 class LoopVectorizationCostModel {
965 public:
966   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
967                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
968                              LoopVectorizationLegality *Legal,
969                              const TargetTransformInfo &TTI,
970                              const TargetLibraryInfo *TLI, DemandedBits *DB,
971                              AssumptionCache *AC,
972                              OptimizationRemarkEmitter *ORE, const Function *F,
973                              const LoopVectorizeHints *Hints,
974                              InterleavedAccessInfo &IAI)
975       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
976         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
977         Hints(Hints), InterleaveInfo(IAI) {}
978 
979   /// \return An upper bound for the vectorization factor, or None if
980   /// vectorization and interleaving should be avoided up front.
981   Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC);
982 
983   /// \return True if runtime checks are required for vectorization, and false
984   /// otherwise.
985   bool runtimeChecksRequired();
986 
987   /// \return The most profitable vectorization factor and the cost of that VF.
988   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
989   /// then this vectorization factor will be selected if vectorization is
990   /// possible.
991   VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
992 
993   /// Setup cost-based decisions for user vectorization factor.
994   void selectUserVectorizationFactor(unsigned UserVF) {
995     collectUniformsAndScalars(UserVF);
996     collectInstsToScalarize(UserVF);
997   }
998 
999   /// \return The size (in bits) of the smallest and widest types in the code
1000   /// that needs to be vectorized. We ignore values that remain scalar such as
1001   /// 64 bit loop indices.
1002   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1003 
1004   /// \return The desired interleave count.
1005   /// If interleave count has been specified by metadata it will be returned.
1006   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1007   /// are the selected vectorization factor and the cost of the selected VF.
1008   unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost);
1009 
1010   /// Memory access instruction may be vectorized in more than one way.
1011   /// Form of instruction after vectorization depends on cost.
1012   /// This function takes cost-based decisions for Load/Store instructions
1013   /// and collects them in a map. This decisions map is used for building
1014   /// the lists of loop-uniform and loop-scalar instructions.
1015   /// The calculated cost is saved with widening decision in order to
1016   /// avoid redundant calculations.
1017   void setCostBasedWideningDecision(unsigned VF);
1018 
1019   /// A struct that represents some properties of the register usage
1020   /// of a loop.
1021   struct RegisterUsage {
1022     /// Holds the number of loop invariant values that are used in the loop.
1023     /// The key is ClassID of target-provided register class.
1024     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1025     /// Holds the maximum number of concurrent live intervals in the loop.
1026     /// The key is ClassID of target-provided register class.
1027     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1028   };
1029 
1030   /// \return Returns information about the register usages of the loop for the
1031   /// given vectorization factors.
1032   SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1033 
1034   /// Collect values we want to ignore in the cost model.
1035   void collectValuesToIgnore();
1036 
1037   /// \returns The smallest bitwidth each instruction can be represented with.
1038   /// The vector equivalents of these instructions should be truncated to this
1039   /// type.
1040   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1041     return MinBWs;
1042   }
1043 
1044   /// \returns True if it is more profitable to scalarize instruction \p I for
1045   /// vectorization factor \p VF.
1046   bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1047     assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
1048 
1049     // Cost model is not run in the VPlan-native path - return conservative
1050     // result until this changes.
1051     if (EnableVPlanNativePath)
1052       return false;
1053 
1054     auto Scalars = InstsToScalarize.find(VF);
1055     assert(Scalars != InstsToScalarize.end() &&
1056            "VF not yet analyzed for scalarization profitability");
1057     return Scalars->second.find(I) != Scalars->second.end();
1058   }
1059 
1060   /// Returns true if \p I is known to be uniform after vectorization.
1061   bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1062     if (VF == 1)
1063       return true;
1064 
1065     // Cost model is not run in the VPlan-native path - return conservative
1066     // result until this changes.
1067     if (EnableVPlanNativePath)
1068       return false;
1069 
1070     auto UniformsPerVF = Uniforms.find(VF);
1071     assert(UniformsPerVF != Uniforms.end() &&
1072            "VF not yet analyzed for uniformity");
1073     return UniformsPerVF->second.find(I) != UniformsPerVF->second.end();
1074   }
1075 
1076   /// Returns true if \p I is known to be scalar after vectorization.
1077   bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1078     if (VF == 1)
1079       return true;
1080 
1081     // Cost model is not run in the VPlan-native path - return conservative
1082     // result until this changes.
1083     if (EnableVPlanNativePath)
1084       return false;
1085 
1086     auto ScalarsPerVF = Scalars.find(VF);
1087     assert(ScalarsPerVF != Scalars.end() &&
1088            "Scalar values are not calculated for VF");
1089     return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end();
1090   }
1091 
1092   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1093   /// for vectorization factor \p VF.
1094   bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1095     return VF > 1 && MinBWs.find(I) != MinBWs.end() &&
1096            !isProfitableToScalarize(I, VF) &&
1097            !isScalarAfterVectorization(I, VF);
1098   }
1099 
1100   /// Decision that was taken during cost calculation for memory instruction.
1101   enum InstWidening {
1102     CM_Unknown,
1103     CM_Widen,         // For consecutive accesses with stride +1.
1104     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1105     CM_Interleave,
1106     CM_GatherScatter,
1107     CM_Scalarize
1108   };
1109 
1110   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1111   /// instruction \p I and vector width \p VF.
1112   void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1113                            unsigned Cost) {
1114     assert(VF >= 2 && "Expected VF >=2");
1115     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1116   }
1117 
1118   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1119   /// interleaving group \p Grp and vector width \p VF.
1120   void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF,
1121                            InstWidening W, unsigned Cost) {
1122     assert(VF >= 2 && "Expected VF >=2");
1123     /// Broadcast this decicion to all instructions inside the group.
1124     /// But the cost will be assigned to one instruction only.
1125     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1126       if (auto *I = Grp->getMember(i)) {
1127         if (Grp->getInsertPos() == I)
1128           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1129         else
1130           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1131       }
1132     }
1133   }
1134 
1135   /// Return the cost model decision for the given instruction \p I and vector
1136   /// width \p VF. Return CM_Unknown if this instruction did not pass
1137   /// through the cost modeling.
1138   InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1139     assert(VF >= 2 && "Expected VF >=2");
1140 
1141     // Cost model is not run in the VPlan-native path - return conservative
1142     // result until this changes.
1143     if (EnableVPlanNativePath)
1144       return CM_GatherScatter;
1145 
1146     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1147     auto Itr = WideningDecisions.find(InstOnVF);
1148     if (Itr == WideningDecisions.end())
1149       return CM_Unknown;
1150     return Itr->second.first;
1151   }
1152 
1153   /// Return the vectorization cost for the given instruction \p I and vector
1154   /// width \p VF.
1155   unsigned getWideningCost(Instruction *I, unsigned VF) {
1156     assert(VF >= 2 && "Expected VF >=2");
1157     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1158     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1159            "The cost is not calculated");
1160     return WideningDecisions[InstOnVF].second;
1161   }
1162 
1163   /// Return True if instruction \p I is an optimizable truncate whose operand
1164   /// is an induction variable. Such a truncate will be removed by adding a new
1165   /// induction variable with the destination type.
1166   bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1167     // If the instruction is not a truncate, return false.
1168     auto *Trunc = dyn_cast<TruncInst>(I);
1169     if (!Trunc)
1170       return false;
1171 
1172     // Get the source and destination types of the truncate.
1173     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1174     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1175 
1176     // If the truncate is free for the given types, return false. Replacing a
1177     // free truncate with an induction variable would add an induction variable
1178     // update instruction to each iteration of the loop. We exclude from this
1179     // check the primary induction variable since it will need an update
1180     // instruction regardless.
1181     Value *Op = Trunc->getOperand(0);
1182     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1183       return false;
1184 
1185     // If the truncated value is not an induction variable, return false.
1186     return Legal->isInductionPhi(Op);
1187   }
1188 
1189   /// Collects the instructions to scalarize for each predicated instruction in
1190   /// the loop.
1191   void collectInstsToScalarize(unsigned VF);
1192 
1193   /// Collect Uniform and Scalar values for the given \p VF.
1194   /// The sets depend on CM decision for Load/Store instructions
1195   /// that may be vectorized as interleave, gather-scatter or scalarized.
1196   void collectUniformsAndScalars(unsigned VF) {
1197     // Do the analysis once.
1198     if (VF == 1 || Uniforms.find(VF) != Uniforms.end())
1199       return;
1200     setCostBasedWideningDecision(VF);
1201     collectLoopUniforms(VF);
1202     collectLoopScalars(VF);
1203   }
1204 
1205   /// Returns true if the target machine supports masked store operation
1206   /// for the given \p DataType and kind of access to \p Ptr.
1207   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) {
1208     return Legal->isConsecutivePtr(Ptr) &&
1209            TTI.isLegalMaskedStore(DataType, Alignment);
1210   }
1211 
1212   /// Returns true if the target machine supports masked load operation
1213   /// for the given \p DataType and kind of access to \p Ptr.
1214   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) {
1215     return Legal->isConsecutivePtr(Ptr) &&
1216            TTI.isLegalMaskedLoad(DataType, Alignment);
1217   }
1218 
1219   /// Returns true if the target machine supports masked scatter operation
1220   /// for the given \p DataType.
1221   bool isLegalMaskedScatter(Type *DataType, Align Alignment) {
1222     return TTI.isLegalMaskedScatter(DataType, Alignment);
1223   }
1224 
1225   /// Returns true if the target machine supports masked gather operation
1226   /// for the given \p DataType.
1227   bool isLegalMaskedGather(Type *DataType, Align Alignment) {
1228     return TTI.isLegalMaskedGather(DataType, Alignment);
1229   }
1230 
1231   /// Returns true if the target machine can represent \p V as a masked gather
1232   /// or scatter operation.
1233   bool isLegalGatherOrScatter(Value *V) {
1234     bool LI = isa<LoadInst>(V);
1235     bool SI = isa<StoreInst>(V);
1236     if (!LI && !SI)
1237       return false;
1238     auto *Ty = getMemInstValueType(V);
1239     Align Align = getLoadStoreAlignment(V);
1240     return (LI && isLegalMaskedGather(Ty, Align)) ||
1241            (SI && isLegalMaskedScatter(Ty, Align));
1242   }
1243 
1244   /// Returns true if \p I is an instruction that will be scalarized with
1245   /// predication. Such instructions include conditional stores and
1246   /// instructions that may divide by zero.
1247   /// If a non-zero VF has been calculated, we check if I will be scalarized
1248   /// predication for that VF.
1249   bool isScalarWithPredication(Instruction *I, unsigned VF = 1);
1250 
1251   // Returns true if \p I is an instruction that will be predicated either
1252   // through scalar predication or masked load/store or masked gather/scatter.
1253   // Superset of instructions that return true for isScalarWithPredication.
1254   bool isPredicatedInst(Instruction *I) {
1255     if (!blockNeedsPredication(I->getParent()))
1256       return false;
1257     // Loads and stores that need some form of masked operation are predicated
1258     // instructions.
1259     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1260       return Legal->isMaskRequired(I);
1261     return isScalarWithPredication(I);
1262   }
1263 
1264   /// Returns true if \p I is a memory instruction with consecutive memory
1265   /// access that can be widened.
1266   bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
1267 
1268   /// Returns true if \p I is a memory instruction in an interleaved-group
1269   /// of memory accesses that can be vectorized with wide vector loads/stores
1270   /// and shuffles.
1271   bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1);
1272 
1273   /// Check if \p Instr belongs to any interleaved access group.
1274   bool isAccessInterleaved(Instruction *Instr) {
1275     return InterleaveInfo.isInterleaved(Instr);
1276   }
1277 
1278   /// Get the interleaved access group that \p Instr belongs to.
1279   const InterleaveGroup<Instruction> *
1280   getInterleavedAccessGroup(Instruction *Instr) {
1281     return InterleaveInfo.getInterleaveGroup(Instr);
1282   }
1283 
1284   /// Returns true if an interleaved group requires a scalar iteration
1285   /// to handle accesses with gaps, and there is nothing preventing us from
1286   /// creating a scalar epilogue.
1287   bool requiresScalarEpilogue() const {
1288     return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue();
1289   }
1290 
1291   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1292   /// loop hint annotation.
1293   bool isScalarEpilogueAllowed() const {
1294     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1295   }
1296 
1297   /// Returns true if all loop blocks should be masked to fold tail loop.
1298   bool foldTailByMasking() const { return FoldTailByMasking; }
1299 
1300   bool blockNeedsPredication(BasicBlock *BB) {
1301     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1302   }
1303 
1304   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1305   /// with factor VF.  Return the cost of the instruction, including
1306   /// scalarization overhead if it's needed.
1307   unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF);
1308 
1309   /// Estimate cost of a call instruction CI if it were vectorized with factor
1310   /// VF. Return the cost of the instruction, including scalarization overhead
1311   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1312   /// scalarized -
1313   /// i.e. either vector version isn't available, or is too expensive.
1314   unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize);
1315 
1316   /// Invalidates decisions already taken by the cost model.
1317   void invalidateCostModelingDecisions() {
1318     WideningDecisions.clear();
1319     Uniforms.clear();
1320     Scalars.clear();
1321   }
1322 
1323 private:
1324   unsigned NumPredStores = 0;
1325 
1326   /// \return An upper bound for the vectorization factor, a power-of-2 larger
1327   /// than zero. One is returned if vectorization should best be avoided due
1328   /// to cost.
1329   unsigned computeFeasibleMaxVF(unsigned ConstTripCount);
1330 
1331   /// The vectorization cost is a combination of the cost itself and a boolean
1332   /// indicating whether any of the contributing operations will actually
1333   /// operate on
1334   /// vector values after type legalization in the backend. If this latter value
1335   /// is
1336   /// false, then all operations will be scalarized (i.e. no vectorization has
1337   /// actually taken place).
1338   using VectorizationCostTy = std::pair<unsigned, bool>;
1339 
1340   /// Returns the expected execution cost. The unit of the cost does
1341   /// not matter because we use the 'cost' units to compare different
1342   /// vector widths. The cost that is returned is *not* normalized by
1343   /// the factor width.
1344   VectorizationCostTy expectedCost(unsigned VF);
1345 
1346   /// Returns the execution time cost of an instruction for a given vector
1347   /// width. Vector width of one means scalar.
1348   VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
1349 
1350   /// The cost-computation logic from getInstructionCost which provides
1351   /// the vector type as an output parameter.
1352   unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
1353 
1354   /// Calculate vectorization cost of memory instruction \p I.
1355   unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
1356 
1357   /// The cost computation for scalarized memory instruction.
1358   unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
1359 
1360   /// The cost computation for interleaving group of memory instructions.
1361   unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
1362 
1363   /// The cost computation for Gather/Scatter instruction.
1364   unsigned getGatherScatterCost(Instruction *I, unsigned VF);
1365 
1366   /// The cost computation for widening instruction \p I with consecutive
1367   /// memory access.
1368   unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
1369 
1370   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1371   /// Load: scalar load + broadcast.
1372   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1373   /// element)
1374   unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
1375 
1376   /// Estimate the overhead of scalarizing an instruction. This is a
1377   /// convenience wrapper for the type-based getScalarizationOverhead API.
1378   unsigned getScalarizationOverhead(Instruction *I, unsigned VF);
1379 
1380   /// Returns whether the instruction is a load or store and will be a emitted
1381   /// as a vector operation.
1382   bool isConsecutiveLoadOrStore(Instruction *I);
1383 
1384   /// Returns true if an artificially high cost for emulated masked memrefs
1385   /// should be used.
1386   bool useEmulatedMaskMemRefHack(Instruction *I);
1387 
1388   /// Map of scalar integer values to the smallest bitwidth they can be legally
1389   /// represented as. The vector equivalents of these values should be truncated
1390   /// to this type.
1391   MapVector<Instruction *, uint64_t> MinBWs;
1392 
1393   /// A type representing the costs for instructions if they were to be
1394   /// scalarized rather than vectorized. The entries are Instruction-Cost
1395   /// pairs.
1396   using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
1397 
1398   /// A set containing all BasicBlocks that are known to present after
1399   /// vectorization as a predicated block.
1400   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1401 
1402   /// Records whether it is allowed to have the original scalar loop execute at
1403   /// least once. This may be needed as a fallback loop in case runtime
1404   /// aliasing/dependence checks fail, or to handle the tail/remainder
1405   /// iterations when the trip count is unknown or doesn't divide by the VF,
1406   /// or as a peel-loop to handle gaps in interleave-groups.
1407   /// Under optsize and when the trip count is very small we don't allow any
1408   /// iterations to execute in the scalar loop.
1409   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1410 
1411   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1412   bool FoldTailByMasking = false;
1413 
1414   /// A map holding scalar costs for different vectorization factors. The
1415   /// presence of a cost for an instruction in the mapping indicates that the
1416   /// instruction will be scalarized when vectorizing with the associated
1417   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1418   DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
1419 
1420   /// Holds the instructions known to be uniform after vectorization.
1421   /// The data is collected per VF.
1422   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
1423 
1424   /// Holds the instructions known to be scalar after vectorization.
1425   /// The data is collected per VF.
1426   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
1427 
1428   /// Holds the instructions (address computations) that are forced to be
1429   /// scalarized.
1430   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1431 
1432   /// Returns the expected difference in cost from scalarizing the expression
1433   /// feeding a predicated instruction \p PredInst. The instructions to
1434   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1435   /// non-negative return value implies the expression will be scalarized.
1436   /// Currently, only single-use chains are considered for scalarization.
1437   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1438                               unsigned VF);
1439 
1440   /// Collect the instructions that are uniform after vectorization. An
1441   /// instruction is uniform if we represent it with a single scalar value in
1442   /// the vectorized loop corresponding to each vector iteration. Examples of
1443   /// uniform instructions include pointer operands of consecutive or
1444   /// interleaved memory accesses. Note that although uniformity implies an
1445   /// instruction will be scalar, the reverse is not true. In general, a
1446   /// scalarized instruction will be represented by VF scalar values in the
1447   /// vectorized loop, each corresponding to an iteration of the original
1448   /// scalar loop.
1449   void collectLoopUniforms(unsigned VF);
1450 
1451   /// Collect the instructions that are scalar after vectorization. An
1452   /// instruction is scalar if it is known to be uniform or will be scalarized
1453   /// during vectorization. Non-uniform scalarized instructions will be
1454   /// represented by VF values in the vectorized loop, each corresponding to an
1455   /// iteration of the original scalar loop.
1456   void collectLoopScalars(unsigned VF);
1457 
1458   /// Keeps cost model vectorization decision and cost for instructions.
1459   /// Right now it is used for memory instructions only.
1460   using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
1461                                 std::pair<InstWidening, unsigned>>;
1462 
1463   DecisionList WideningDecisions;
1464 
1465   /// Returns true if \p V is expected to be vectorized and it needs to be
1466   /// extracted.
1467   bool needsExtract(Value *V, unsigned VF) const {
1468     Instruction *I = dyn_cast<Instruction>(V);
1469     if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I))
1470       return false;
1471 
1472     // Assume we can vectorize V (and hence we need extraction) if the
1473     // scalars are not computed yet. This can happen, because it is called
1474     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1475     // the scalars are collected. That should be a safe assumption in most
1476     // cases, because we check if the operands have vectorizable types
1477     // beforehand in LoopVectorizationLegality.
1478     return Scalars.find(VF) == Scalars.end() ||
1479            !isScalarAfterVectorization(I, VF);
1480   };
1481 
1482   /// Returns a range containing only operands needing to be extracted.
1483   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1484                                                    unsigned VF) {
1485     return SmallVector<Value *, 4>(make_filter_range(
1486         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1487   }
1488 
1489 public:
1490   /// The loop that we evaluate.
1491   Loop *TheLoop;
1492 
1493   /// Predicated scalar evolution analysis.
1494   PredicatedScalarEvolution &PSE;
1495 
1496   /// Loop Info analysis.
1497   LoopInfo *LI;
1498 
1499   /// Vectorization legality.
1500   LoopVectorizationLegality *Legal;
1501 
1502   /// Vector target information.
1503   const TargetTransformInfo &TTI;
1504 
1505   /// Target Library Info.
1506   const TargetLibraryInfo *TLI;
1507 
1508   /// Demanded bits analysis.
1509   DemandedBits *DB;
1510 
1511   /// Assumption cache.
1512   AssumptionCache *AC;
1513 
1514   /// Interface to emit optimization remarks.
1515   OptimizationRemarkEmitter *ORE;
1516 
1517   const Function *TheFunction;
1518 
1519   /// Loop Vectorize Hint.
1520   const LoopVectorizeHints *Hints;
1521 
1522   /// The interleave access information contains groups of interleaved accesses
1523   /// with the same stride and close to each other.
1524   InterleavedAccessInfo &InterleaveInfo;
1525 
1526   /// Values to ignore in the cost model.
1527   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1528 
1529   /// Values to ignore in the cost model when VF > 1.
1530   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1531 };
1532 
1533 } // end namespace llvm
1534 
1535 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
1536 // vectorization. The loop needs to be annotated with #pragma omp simd
1537 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
1538 // vector length information is not provided, vectorization is not considered
1539 // explicit. Interleave hints are not allowed either. These limitations will be
1540 // relaxed in the future.
1541 // Please, note that we are currently forced to abuse the pragma 'clang
1542 // vectorize' semantics. This pragma provides *auto-vectorization hints*
1543 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
1544 // provides *explicit vectorization hints* (LV can bypass legal checks and
1545 // assume that vectorization is legal). However, both hints are implemented
1546 // using the same metadata (llvm.loop.vectorize, processed by
1547 // LoopVectorizeHints). This will be fixed in the future when the native IR
1548 // representation for pragma 'omp simd' is introduced.
1549 static bool isExplicitVecOuterLoop(Loop *OuterLp,
1550                                    OptimizationRemarkEmitter *ORE) {
1551   assert(!OuterLp->empty() && "This is not an outer loop");
1552   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
1553 
1554   // Only outer loops with an explicit vectorization hint are supported.
1555   // Unannotated outer loops are ignored.
1556   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
1557     return false;
1558 
1559   Function *Fn = OuterLp->getHeader()->getParent();
1560   if (!Hints.allowVectorization(Fn, OuterLp,
1561                                 true /*VectorizeOnlyWhenForced*/)) {
1562     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
1563     return false;
1564   }
1565 
1566   if (Hints.getInterleave() > 1) {
1567     // TODO: Interleave support is future work.
1568     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
1569                          "outer loops.\n");
1570     Hints.emitRemarkWithHints();
1571     return false;
1572   }
1573 
1574   return true;
1575 }
1576 
1577 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
1578                                   OptimizationRemarkEmitter *ORE,
1579                                   SmallVectorImpl<Loop *> &V) {
1580   // Collect inner loops and outer loops without irreducible control flow. For
1581   // now, only collect outer loops that have explicit vectorization hints. If we
1582   // are stress testing the VPlan H-CFG construction, we collect the outermost
1583   // loop of every loop nest.
1584   if (L.empty() || VPlanBuildStressTest ||
1585       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
1586     LoopBlocksRPO RPOT(&L);
1587     RPOT.perform(LI);
1588     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
1589       V.push_back(&L);
1590       // TODO: Collect inner loops inside marked outer loops in case
1591       // vectorization fails for the outer loop. Do not invoke
1592       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
1593       // already known to be reducible. We can use an inherited attribute for
1594       // that.
1595       return;
1596     }
1597   }
1598   for (Loop *InnerL : L)
1599     collectSupportedLoops(*InnerL, LI, ORE, V);
1600 }
1601 
1602 namespace {
1603 
1604 /// The LoopVectorize Pass.
1605 struct LoopVectorize : public FunctionPass {
1606   /// Pass identification, replacement for typeid
1607   static char ID;
1608 
1609   LoopVectorizePass Impl;
1610 
1611   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
1612                          bool VectorizeOnlyWhenForced = false)
1613       : FunctionPass(ID),
1614         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
1615     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1616   }
1617 
1618   bool runOnFunction(Function &F) override {
1619     if (skipFunction(F))
1620       return false;
1621 
1622     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1623     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1624     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1625     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1626     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1627     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1628     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
1629     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1630     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1631     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1632     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1633     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1634     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1635 
1636     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1637         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1638 
1639     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1640                         GetLAA, *ORE, PSI).MadeAnyChange;
1641   }
1642 
1643   void getAnalysisUsage(AnalysisUsage &AU) const override {
1644     AU.addRequired<AssumptionCacheTracker>();
1645     AU.addRequired<BlockFrequencyInfoWrapperPass>();
1646     AU.addRequired<DominatorTreeWrapperPass>();
1647     AU.addRequired<LoopInfoWrapperPass>();
1648     AU.addRequired<ScalarEvolutionWrapperPass>();
1649     AU.addRequired<TargetTransformInfoWrapperPass>();
1650     AU.addRequired<AAResultsWrapperPass>();
1651     AU.addRequired<LoopAccessLegacyAnalysis>();
1652     AU.addRequired<DemandedBitsWrapperPass>();
1653     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1654     AU.addRequired<InjectTLIMappingsLegacy>();
1655 
1656     // We currently do not preserve loopinfo/dominator analyses with outer loop
1657     // vectorization. Until this is addressed, mark these analyses as preserved
1658     // only for non-VPlan-native path.
1659     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
1660     if (!EnableVPlanNativePath) {
1661       AU.addPreserved<LoopInfoWrapperPass>();
1662       AU.addPreserved<DominatorTreeWrapperPass>();
1663     }
1664 
1665     AU.addPreserved<BasicAAWrapperPass>();
1666     AU.addPreserved<GlobalsAAWrapperPass>();
1667     AU.addRequired<ProfileSummaryInfoWrapperPass>();
1668   }
1669 };
1670 
1671 } // end anonymous namespace
1672 
1673 //===----------------------------------------------------------------------===//
1674 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1675 // LoopVectorizationCostModel and LoopVectorizationPlanner.
1676 //===----------------------------------------------------------------------===//
1677 
1678 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1679   // We need to place the broadcast of invariant variables outside the loop,
1680   // but only if it's proven safe to do so. Else, broadcast will be inside
1681   // vector loop body.
1682   Instruction *Instr = dyn_cast<Instruction>(V);
1683   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
1684                      (!Instr ||
1685                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
1686   // Place the code for broadcasting invariant variables in the new preheader.
1687   IRBuilder<>::InsertPointGuard Guard(Builder);
1688   if (SafeToHoist)
1689     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1690 
1691   // Broadcast the scalar into all locations in the vector.
1692   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1693 
1694   return Shuf;
1695 }
1696 
1697 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
1698     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
1699   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1700          "Expected either an induction phi-node or a truncate of it!");
1701   Value *Start = II.getStartValue();
1702 
1703   // Construct the initial value of the vector IV in the vector loop preheader
1704   auto CurrIP = Builder.saveIP();
1705   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1706   if (isa<TruncInst>(EntryVal)) {
1707     assert(Start->getType()->isIntegerTy() &&
1708            "Truncation requires an integer type");
1709     auto *TruncType = cast<IntegerType>(EntryVal->getType());
1710     Step = Builder.CreateTrunc(Step, TruncType);
1711     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1712   }
1713   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1714   Value *SteppedStart =
1715       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
1716 
1717   // We create vector phi nodes for both integer and floating-point induction
1718   // variables. Here, we determine the kind of arithmetic we will perform.
1719   Instruction::BinaryOps AddOp;
1720   Instruction::BinaryOps MulOp;
1721   if (Step->getType()->isIntegerTy()) {
1722     AddOp = Instruction::Add;
1723     MulOp = Instruction::Mul;
1724   } else {
1725     AddOp = II.getInductionOpcode();
1726     MulOp = Instruction::FMul;
1727   }
1728 
1729   // Multiply the vectorization factor by the step using integer or
1730   // floating-point arithmetic as appropriate.
1731   Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
1732   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
1733 
1734   // Create a vector splat to use in the induction update.
1735   //
1736   // FIXME: If the step is non-constant, we create the vector splat with
1737   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
1738   //        handle a constant vector splat.
1739   Value *SplatVF =
1740       isa<Constant>(Mul)
1741           ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul))
1742           : Builder.CreateVectorSplat(VF, Mul);
1743   Builder.restoreIP(CurrIP);
1744 
1745   // We may need to add the step a number of times, depending on the unroll
1746   // factor. The last of those goes into the PHI.
1747   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1748                                     &*LoopVectorBody->getFirstInsertionPt());
1749   VecInd->setDebugLoc(EntryVal->getDebugLoc());
1750   Instruction *LastInduction = VecInd;
1751   for (unsigned Part = 0; Part < UF; ++Part) {
1752     VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
1753 
1754     if (isa<TruncInst>(EntryVal))
1755       addMetadata(LastInduction, EntryVal);
1756     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
1757 
1758     LastInduction = cast<Instruction>(addFastMathFlag(
1759         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
1760     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
1761   }
1762 
1763   // Move the last step to the end of the latch block. This ensures consistent
1764   // placement of all induction updates.
1765   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
1766   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
1767   auto *ICmp = cast<Instruction>(Br->getCondition());
1768   LastInduction->moveBefore(ICmp);
1769   LastInduction->setName("vec.ind.next");
1770 
1771   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1772   VecInd->addIncoming(LastInduction, LoopVectorLatch);
1773 }
1774 
1775 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
1776   return Cost->isScalarAfterVectorization(I, VF) ||
1777          Cost->isProfitableToScalarize(I, VF);
1778 }
1779 
1780 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
1781   if (shouldScalarizeInstruction(IV))
1782     return true;
1783   auto isScalarInst = [&](User *U) -> bool {
1784     auto *I = cast<Instruction>(U);
1785     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
1786   };
1787   return llvm::any_of(IV->users(), isScalarInst);
1788 }
1789 
1790 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
1791     const InductionDescriptor &ID, const Instruction *EntryVal,
1792     Value *VectorLoopVal, unsigned Part, unsigned Lane) {
1793   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1794          "Expected either an induction phi-node or a truncate of it!");
1795 
1796   // This induction variable is not the phi from the original loop but the
1797   // newly-created IV based on the proof that casted Phi is equal to the
1798   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
1799   // re-uses the same InductionDescriptor that original IV uses but we don't
1800   // have to do any recording in this case - that is done when original IV is
1801   // processed.
1802   if (isa<TruncInst>(EntryVal))
1803     return;
1804 
1805   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
1806   if (Casts.empty())
1807     return;
1808   // Only the first Cast instruction in the Casts vector is of interest.
1809   // The rest of the Casts (if exist) have no uses outside the
1810   // induction update chain itself.
1811   Instruction *CastInst = *Casts.begin();
1812   if (Lane < UINT_MAX)
1813     VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
1814   else
1815     VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
1816 }
1817 
1818 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
1819   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
1820          "Primary induction variable must have an integer type");
1821 
1822   auto II = Legal->getInductionVars().find(IV);
1823   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
1824 
1825   auto ID = II->second;
1826   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1827 
1828   // The value from the original loop to which we are mapping the new induction
1829   // variable.
1830   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
1831 
1832   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1833 
1834   // Generate code for the induction step. Note that induction steps are
1835   // required to be loop-invariant
1836   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
1837     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
1838            "Induction step should be loop invariant");
1839     if (PSE.getSE()->isSCEVable(IV->getType())) {
1840       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1841       return Exp.expandCodeFor(Step, Step->getType(),
1842                                LoopVectorPreHeader->getTerminator());
1843     }
1844     return cast<SCEVUnknown>(Step)->getValue();
1845   };
1846 
1847   // The scalar value to broadcast. This is derived from the canonical
1848   // induction variable. If a truncation type is given, truncate the canonical
1849   // induction variable and step. Otherwise, derive these values from the
1850   // induction descriptor.
1851   auto CreateScalarIV = [&](Value *&Step) -> Value * {
1852     Value *ScalarIV = Induction;
1853     if (IV != OldInduction) {
1854       ScalarIV = IV->getType()->isIntegerTy()
1855                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
1856                      : Builder.CreateCast(Instruction::SIToFP, Induction,
1857                                           IV->getType());
1858       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
1859       ScalarIV->setName("offset.idx");
1860     }
1861     if (Trunc) {
1862       auto *TruncType = cast<IntegerType>(Trunc->getType());
1863       assert(Step->getType()->isIntegerTy() &&
1864              "Truncation requires an integer step");
1865       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
1866       Step = Builder.CreateTrunc(Step, TruncType);
1867     }
1868     return ScalarIV;
1869   };
1870 
1871   // Create the vector values from the scalar IV, in the absence of creating a
1872   // vector IV.
1873   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
1874     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1875     for (unsigned Part = 0; Part < UF; ++Part) {
1876       Value *EntryPart =
1877           getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
1878       VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
1879       if (Trunc)
1880         addMetadata(EntryPart, Trunc);
1881       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
1882     }
1883   };
1884 
1885   // Now do the actual transformations, and start with creating the step value.
1886   Value *Step = CreateStepValue(ID.getStep());
1887   if (VF <= 1) {
1888     Value *ScalarIV = CreateScalarIV(Step);
1889     CreateSplatIV(ScalarIV, Step);
1890     return;
1891   }
1892 
1893   // Determine if we want a scalar version of the induction variable. This is
1894   // true if the induction variable itself is not widened, or if it has at
1895   // least one user in the loop that is not widened.
1896   auto NeedsScalarIV = needsScalarInduction(EntryVal);
1897   if (!NeedsScalarIV) {
1898     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1899     return;
1900   }
1901 
1902   // Try to create a new independent vector induction variable. If we can't
1903   // create the phi node, we will splat the scalar induction variable in each
1904   // loop iteration.
1905   if (!shouldScalarizeInstruction(EntryVal)) {
1906     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1907     Value *ScalarIV = CreateScalarIV(Step);
1908     // Create scalar steps that can be used by instructions we will later
1909     // scalarize. Note that the addition of the scalar steps will not increase
1910     // the number of instructions in the loop in the common case prior to
1911     // InstCombine. We will be trading one vector extract for each scalar step.
1912     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1913     return;
1914   }
1915 
1916   // All IV users are scalar instructions, so only emit a scalar IV, not a
1917   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
1918   // predicate used by the masked loads/stores.
1919   Value *ScalarIV = CreateScalarIV(Step);
1920   if (!Cost->isScalarEpilogueAllowed())
1921     CreateSplatIV(ScalarIV, Step);
1922   buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1923 }
1924 
1925 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
1926                                           Instruction::BinaryOps BinOp) {
1927   // Create and check the types.
1928   auto *ValVTy = cast<VectorType>(Val->getType());
1929   int VLen = ValVTy->getNumElements();
1930 
1931   Type *STy = Val->getType()->getScalarType();
1932   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
1933          "Induction Step must be an integer or FP");
1934   assert(Step->getType() == STy && "Step has wrong type");
1935 
1936   SmallVector<Constant *, 8> Indices;
1937 
1938   if (STy->isIntegerTy()) {
1939     // Create a vector of consecutive numbers from zero to VF.
1940     for (int i = 0; i < VLen; ++i)
1941       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
1942 
1943     // Add the consecutive indices to the vector value.
1944     Constant *Cv = ConstantVector::get(Indices);
1945     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1946     Step = Builder.CreateVectorSplat(VLen, Step);
1947     assert(Step->getType() == Val->getType() && "Invalid step vec");
1948     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
1949     // which can be found from the original scalar operations.
1950     Step = Builder.CreateMul(Cv, Step);
1951     return Builder.CreateAdd(Val, Step, "induction");
1952   }
1953 
1954   // Floating point induction.
1955   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
1956          "Binary Opcode should be specified for FP induction");
1957   // Create a vector of consecutive numbers from zero to VF.
1958   for (int i = 0; i < VLen; ++i)
1959     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
1960 
1961   // Add the consecutive indices to the vector value.
1962   Constant *Cv = ConstantVector::get(Indices);
1963 
1964   Step = Builder.CreateVectorSplat(VLen, Step);
1965 
1966   // Floating point operations had to be 'fast' to enable the induction.
1967   FastMathFlags Flags;
1968   Flags.setFast();
1969 
1970   Value *MulOp = Builder.CreateFMul(Cv, Step);
1971   if (isa<Instruction>(MulOp))
1972     // Have to check, MulOp may be a constant
1973     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
1974 
1975   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
1976   if (isa<Instruction>(BOp))
1977     cast<Instruction>(BOp)->setFastMathFlags(Flags);
1978   return BOp;
1979 }
1980 
1981 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
1982                                            Instruction *EntryVal,
1983                                            const InductionDescriptor &ID) {
1984   // We shouldn't have to build scalar steps if we aren't vectorizing.
1985   assert(VF > 1 && "VF should be greater than one");
1986 
1987   // Get the value type and ensure it and the step have the same integer type.
1988   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
1989   assert(ScalarIVTy == Step->getType() &&
1990          "Val and Step should have the same type");
1991 
1992   // We build scalar steps for both integer and floating-point induction
1993   // variables. Here, we determine the kind of arithmetic we will perform.
1994   Instruction::BinaryOps AddOp;
1995   Instruction::BinaryOps MulOp;
1996   if (ScalarIVTy->isIntegerTy()) {
1997     AddOp = Instruction::Add;
1998     MulOp = Instruction::Mul;
1999   } else {
2000     AddOp = ID.getInductionOpcode();
2001     MulOp = Instruction::FMul;
2002   }
2003 
2004   // Determine the number of scalars we need to generate for each unroll
2005   // iteration. If EntryVal is uniform, we only need to generate the first
2006   // lane. Otherwise, we generate all VF values.
2007   unsigned Lanes =
2008       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
2009                                                                          : VF;
2010   // Compute the scalar steps and save the results in VectorLoopValueMap.
2011   for (unsigned Part = 0; Part < UF; ++Part) {
2012     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2013       auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
2014       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2015       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2016       VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2017       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2018     }
2019   }
2020 }
2021 
2022 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2023   assert(V != Induction && "The new induction variable should not be used.");
2024   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2025   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2026 
2027   // If we have a stride that is replaced by one, do it here. Defer this for
2028   // the VPlan-native path until we start running Legal checks in that path.
2029   if (!EnableVPlanNativePath && Legal->hasStride(V))
2030     V = ConstantInt::get(V->getType(), 1);
2031 
2032   // If we have a vector mapped to this value, return it.
2033   if (VectorLoopValueMap.hasVectorValue(V, Part))
2034     return VectorLoopValueMap.getVectorValue(V, Part);
2035 
2036   // If the value has not been vectorized, check if it has been scalarized
2037   // instead. If it has been scalarized, and we actually need the value in
2038   // vector form, we will construct the vector values on demand.
2039   if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2040     Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2041 
2042     // If we've scalarized a value, that value should be an instruction.
2043     auto *I = cast<Instruction>(V);
2044 
2045     // If we aren't vectorizing, we can just copy the scalar map values over to
2046     // the vector map.
2047     if (VF == 1) {
2048       VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2049       return ScalarValue;
2050     }
2051 
2052     // Get the last scalar instruction we generated for V and Part. If the value
2053     // is known to be uniform after vectorization, this corresponds to lane zero
2054     // of the Part unroll iteration. Otherwise, the last instruction is the one
2055     // we created for the last vector lane of the Part unroll iteration.
2056     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2057     auto *LastInst = cast<Instruction>(
2058         VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2059 
2060     // Set the insert point after the last scalarized instruction. This ensures
2061     // the insertelement sequence will directly follow the scalar definitions.
2062     auto OldIP = Builder.saveIP();
2063     auto NewIP = std::next(BasicBlock::iterator(LastInst));
2064     Builder.SetInsertPoint(&*NewIP);
2065 
2066     // However, if we are vectorizing, we need to construct the vector values.
2067     // If the value is known to be uniform after vectorization, we can just
2068     // broadcast the scalar value corresponding to lane zero for each unroll
2069     // iteration. Otherwise, we construct the vector values using insertelement
2070     // instructions. Since the resulting vectors are stored in
2071     // VectorLoopValueMap, we will only generate the insertelements once.
2072     Value *VectorValue = nullptr;
2073     if (Cost->isUniformAfterVectorization(I, VF)) {
2074       VectorValue = getBroadcastInstrs(ScalarValue);
2075       VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2076     } else {
2077       // Initialize packing with insertelements to start from undef.
2078       Value *Undef = UndefValue::get(FixedVectorType::get(V->getType(), VF));
2079       VectorLoopValueMap.setVectorValue(V, Part, Undef);
2080       for (unsigned Lane = 0; Lane < VF; ++Lane)
2081         packScalarIntoVectorValue(V, {Part, Lane});
2082       VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2083     }
2084     Builder.restoreIP(OldIP);
2085     return VectorValue;
2086   }
2087 
2088   // If this scalar is unknown, assume that it is a constant or that it is
2089   // loop invariant. Broadcast V and save the value for future uses.
2090   Value *B = getBroadcastInstrs(V);
2091   VectorLoopValueMap.setVectorValue(V, Part, B);
2092   return B;
2093 }
2094 
2095 Value *
2096 InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2097                                             const VPIteration &Instance) {
2098   // If the value is not an instruction contained in the loop, it should
2099   // already be scalar.
2100   if (OrigLoop->isLoopInvariant(V))
2101     return V;
2102 
2103   assert(Instance.Lane > 0
2104              ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2105              : true && "Uniform values only have lane zero");
2106 
2107   // If the value from the original loop has not been vectorized, it is
2108   // represented by UF x VF scalar values in the new loop. Return the requested
2109   // scalar value.
2110   if (VectorLoopValueMap.hasScalarValue(V, Instance))
2111     return VectorLoopValueMap.getScalarValue(V, Instance);
2112 
2113   // If the value has not been scalarized, get its entry in VectorLoopValueMap
2114   // for the given unroll part. If this entry is not a vector type (i.e., the
2115   // vectorization factor is one), there is no need to generate an
2116   // extractelement instruction.
2117   auto *U = getOrCreateVectorValue(V, Instance.Part);
2118   if (!U->getType()->isVectorTy()) {
2119     assert(VF == 1 && "Value not scalarized has non-vector type");
2120     return U;
2121   }
2122 
2123   // Otherwise, the value from the original loop has been vectorized and is
2124   // represented by UF vector values. Extract and return the requested scalar
2125   // value from the appropriate vector lane.
2126   return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2127 }
2128 
2129 void InnerLoopVectorizer::packScalarIntoVectorValue(
2130     Value *V, const VPIteration &Instance) {
2131   assert(V != Induction && "The new induction variable should not be used.");
2132   assert(!V->getType()->isVectorTy() && "Can't pack a vector");
2133   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2134 
2135   Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2136   Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2137   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2138                                             Builder.getInt32(Instance.Lane));
2139   VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2140 }
2141 
2142 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2143   assert(Vec->getType()->isVectorTy() && "Invalid type");
2144   SmallVector<int, 8> ShuffleMask;
2145   for (unsigned i = 0; i < VF; ++i)
2146     ShuffleMask.push_back(VF - i - 1);
2147 
2148   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2149                                      ShuffleMask, "reverse");
2150 }
2151 
2152 // Return whether we allow using masked interleave-groups (for dealing with
2153 // strided loads/stores that reside in predicated blocks, or for dealing
2154 // with gaps).
2155 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2156   // If an override option has been passed in for interleaved accesses, use it.
2157   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2158     return EnableMaskedInterleavedMemAccesses;
2159 
2160   return TTI.enableMaskedInterleavedAccessVectorization();
2161 }
2162 
2163 // Try to vectorize the interleave group that \p Instr belongs to.
2164 //
2165 // E.g. Translate following interleaved load group (factor = 3):
2166 //   for (i = 0; i < N; i+=3) {
2167 //     R = Pic[i];             // Member of index 0
2168 //     G = Pic[i+1];           // Member of index 1
2169 //     B = Pic[i+2];           // Member of index 2
2170 //     ... // do something to R, G, B
2171 //   }
2172 // To:
2173 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2174 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2175 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2176 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2177 //
2178 // Or translate following interleaved store group (factor = 3):
2179 //   for (i = 0; i < N; i+=3) {
2180 //     ... do something to R, G, B
2181 //     Pic[i]   = R;           // Member of index 0
2182 //     Pic[i+1] = G;           // Member of index 1
2183 //     Pic[i+2] = B;           // Member of index 2
2184 //   }
2185 // To:
2186 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2187 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2188 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2189 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2190 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2191 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2192     const InterleaveGroup<Instruction> *Group, VPTransformState &State,
2193     VPValue *Addr, VPValue *BlockInMask) {
2194   Instruction *Instr = Group->getInsertPos();
2195   const DataLayout &DL = Instr->getModule()->getDataLayout();
2196 
2197   // Prepare for the vector type of the interleaved load/store.
2198   Type *ScalarTy = getMemInstValueType(Instr);
2199   unsigned InterleaveFactor = Group->getFactor();
2200   auto *VecTy = FixedVectorType::get(ScalarTy, InterleaveFactor * VF);
2201 
2202   // Prepare for the new pointers.
2203   SmallVector<Value *, 2> AddrParts;
2204   unsigned Index = Group->getIndex(Instr);
2205 
2206   // TODO: extend the masked interleaved-group support to reversed access.
2207   assert((!BlockInMask || !Group->isReverse()) &&
2208          "Reversed masked interleave-group not supported.");
2209 
2210   // If the group is reverse, adjust the index to refer to the last vector lane
2211   // instead of the first. We adjust the index from the first vector lane,
2212   // rather than directly getting the pointer for lane VF - 1, because the
2213   // pointer operand of the interleaved access is supposed to be uniform. For
2214   // uniform instructions, we're only required to generate a value for the
2215   // first vector lane in each unroll iteration.
2216   if (Group->isReverse())
2217     Index += (VF - 1) * Group->getFactor();
2218 
2219   for (unsigned Part = 0; Part < UF; Part++) {
2220     Value *AddrPart = State.get(Addr, {Part, 0});
2221     setDebugLocFromInst(Builder, AddrPart);
2222 
2223     // Notice current instruction could be any index. Need to adjust the address
2224     // to the member of index 0.
2225     //
2226     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2227     //       b = A[i];       // Member of index 0
2228     // Current pointer is pointed to A[i+1], adjust it to A[i].
2229     //
2230     // E.g.  A[i+1] = a;     // Member of index 1
2231     //       A[i]   = b;     // Member of index 0
2232     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2233     // Current pointer is pointed to A[i+2], adjust it to A[i].
2234 
2235     bool InBounds = false;
2236     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2237       InBounds = gep->isInBounds();
2238     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2239     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2240 
2241     // Cast to the vector pointer type.
2242     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2243     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2244     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2245   }
2246 
2247   setDebugLocFromInst(Builder, Instr);
2248   Value *UndefVec = UndefValue::get(VecTy);
2249 
2250   Value *MaskForGaps = nullptr;
2251   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2252     MaskForGaps = createBitMaskForGaps(Builder, VF, *Group);
2253     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2254   }
2255 
2256   // Vectorize the interleaved load group.
2257   if (isa<LoadInst>(Instr)) {
2258     // For each unroll part, create a wide load for the group.
2259     SmallVector<Value *, 2> NewLoads;
2260     for (unsigned Part = 0; Part < UF; Part++) {
2261       Instruction *NewLoad;
2262       if (BlockInMask || MaskForGaps) {
2263         assert(useMaskedInterleavedAccesses(*TTI) &&
2264                "masked interleaved groups are not allowed.");
2265         Value *GroupMask = MaskForGaps;
2266         if (BlockInMask) {
2267           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2268           auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2269           Value *ShuffledMask = Builder.CreateShuffleVector(
2270               BlockInMaskPart, Undefs,
2271               createReplicatedMask(InterleaveFactor, VF), "interleaved.mask");
2272           GroupMask = MaskForGaps
2273                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2274                                                 MaskForGaps)
2275                           : ShuffledMask;
2276         }
2277         NewLoad =
2278             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2279                                      GroupMask, UndefVec, "wide.masked.vec");
2280       }
2281       else
2282         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2283                                             Group->getAlign(), "wide.vec");
2284       Group->addMetadata(NewLoad);
2285       NewLoads.push_back(NewLoad);
2286     }
2287 
2288     // For each member in the group, shuffle out the appropriate data from the
2289     // wide loads.
2290     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2291       Instruction *Member = Group->getMember(I);
2292 
2293       // Skip the gaps in the group.
2294       if (!Member)
2295         continue;
2296 
2297       auto StrideMask = createStrideMask(I, InterleaveFactor, VF);
2298       for (unsigned Part = 0; Part < UF; Part++) {
2299         Value *StridedVec = Builder.CreateShuffleVector(
2300             NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2301 
2302         // If this member has different type, cast the result type.
2303         if (Member->getType() != ScalarTy) {
2304           VectorType *OtherVTy = FixedVectorType::get(Member->getType(), VF);
2305           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2306         }
2307 
2308         if (Group->isReverse())
2309           StridedVec = reverseVector(StridedVec);
2310 
2311         VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2312       }
2313     }
2314     return;
2315   }
2316 
2317   // The sub vector type for current instruction.
2318   auto *SubVT = FixedVectorType::get(ScalarTy, VF);
2319 
2320   // Vectorize the interleaved store group.
2321   for (unsigned Part = 0; Part < UF; Part++) {
2322     // Collect the stored vector from each member.
2323     SmallVector<Value *, 4> StoredVecs;
2324     for (unsigned i = 0; i < InterleaveFactor; i++) {
2325       // Interleaved store group doesn't allow a gap, so each index has a member
2326       Instruction *Member = Group->getMember(i);
2327       assert(Member && "Fail to get a member from an interleaved store group");
2328 
2329       Value *StoredVec = getOrCreateVectorValue(
2330           cast<StoreInst>(Member)->getValueOperand(), Part);
2331       if (Group->isReverse())
2332         StoredVec = reverseVector(StoredVec);
2333 
2334       // If this member has different type, cast it to a unified type.
2335 
2336       if (StoredVec->getType() != SubVT)
2337         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2338 
2339       StoredVecs.push_back(StoredVec);
2340     }
2341 
2342     // Concatenate all vectors into a wide vector.
2343     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2344 
2345     // Interleave the elements in the wide vector.
2346     Value *IVec = Builder.CreateShuffleVector(
2347         WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor),
2348         "interleaved.vec");
2349 
2350     Instruction *NewStoreInstr;
2351     if (BlockInMask) {
2352       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2353       auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2354       Value *ShuffledMask = Builder.CreateShuffleVector(
2355           BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF),
2356           "interleaved.mask");
2357       NewStoreInstr = Builder.CreateMaskedStore(
2358           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2359     }
2360     else
2361       NewStoreInstr =
2362           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2363 
2364     Group->addMetadata(NewStoreInstr);
2365   }
2366 }
2367 
2368 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
2369                                                      VPTransformState &State,
2370                                                      VPValue *Addr,
2371                                                      VPValue *StoredValue,
2372                                                      VPValue *BlockInMask) {
2373   // Attempt to issue a wide load.
2374   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2375   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2376 
2377   assert((LI || SI) && "Invalid Load/Store instruction");
2378   assert((!SI || StoredValue) && "No stored value provided for widened store");
2379   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2380 
2381   LoopVectorizationCostModel::InstWidening Decision =
2382       Cost->getWideningDecision(Instr, VF);
2383   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2384           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2385           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2386          "CM decision is not to widen the memory instruction");
2387 
2388   Type *ScalarDataTy = getMemInstValueType(Instr);
2389   auto *DataTy = FixedVectorType::get(ScalarDataTy, VF);
2390   const Align Alignment = getLoadStoreAlignment(Instr);
2391 
2392   // Determine if the pointer operand of the access is either consecutive or
2393   // reverse consecutive.
2394   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2395   bool ConsecutiveStride =
2396       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2397   bool CreateGatherScatter =
2398       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2399 
2400   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2401   // gather/scatter. Otherwise Decision should have been to Scalarize.
2402   assert((ConsecutiveStride || CreateGatherScatter) &&
2403          "The instruction should be scalarized");
2404   (void)ConsecutiveStride;
2405 
2406   VectorParts BlockInMaskParts(UF);
2407   bool isMaskRequired = BlockInMask;
2408   if (isMaskRequired)
2409     for (unsigned Part = 0; Part < UF; ++Part)
2410       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2411 
2412   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2413     // Calculate the pointer for the specific unroll-part.
2414     GetElementPtrInst *PartPtr = nullptr;
2415 
2416     bool InBounds = false;
2417     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2418       InBounds = gep->isInBounds();
2419 
2420     if (Reverse) {
2421       // If the address is consecutive but reversed, then the
2422       // wide store needs to start at the last vector element.
2423       PartPtr = cast<GetElementPtrInst>(
2424           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF)));
2425       PartPtr->setIsInBounds(InBounds);
2426       PartPtr = cast<GetElementPtrInst>(
2427           Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF)));
2428       PartPtr->setIsInBounds(InBounds);
2429       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2430         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2431     } else {
2432       PartPtr = cast<GetElementPtrInst>(
2433           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF)));
2434       PartPtr->setIsInBounds(InBounds);
2435     }
2436 
2437     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2438     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2439   };
2440 
2441   // Handle Stores:
2442   if (SI) {
2443     setDebugLocFromInst(Builder, SI);
2444 
2445     for (unsigned Part = 0; Part < UF; ++Part) {
2446       Instruction *NewSI = nullptr;
2447       Value *StoredVal = State.get(StoredValue, Part);
2448       if (CreateGatherScatter) {
2449         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2450         Value *VectorGep = State.get(Addr, Part);
2451         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2452                                             MaskPart);
2453       } else {
2454         if (Reverse) {
2455           // If we store to reverse consecutive memory locations, then we need
2456           // to reverse the order of elements in the stored value.
2457           StoredVal = reverseVector(StoredVal);
2458           // We don't want to update the value in the map as it might be used in
2459           // another expression. So don't call resetVectorValue(StoredVal).
2460         }
2461         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2462         if (isMaskRequired)
2463           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2464                                             BlockInMaskParts[Part]);
2465         else
2466           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2467       }
2468       addMetadata(NewSI, SI);
2469     }
2470     return;
2471   }
2472 
2473   // Handle loads.
2474   assert(LI && "Must have a load instruction");
2475   setDebugLocFromInst(Builder, LI);
2476   for (unsigned Part = 0; Part < UF; ++Part) {
2477     Value *NewLI;
2478     if (CreateGatherScatter) {
2479       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2480       Value *VectorGep = State.get(Addr, Part);
2481       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2482                                          nullptr, "wide.masked.gather");
2483       addMetadata(NewLI, LI);
2484     } else {
2485       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2486       if (isMaskRequired)
2487         NewLI = Builder.CreateMaskedLoad(
2488             VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy),
2489             "wide.masked.load");
2490       else
2491         NewLI =
2492             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2493 
2494       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2495       addMetadata(NewLI, LI);
2496       if (Reverse)
2497         NewLI = reverseVector(NewLI);
2498     }
2499     VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
2500   }
2501 }
2502 
2503 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User,
2504                                                const VPIteration &Instance,
2505                                                bool IfPredicateInstr,
2506                                                VPTransformState &State) {
2507   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2508 
2509   setDebugLocFromInst(Builder, Instr);
2510 
2511   // Does this instruction return a value ?
2512   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2513 
2514   Instruction *Cloned = Instr->clone();
2515   if (!IsVoidRetTy)
2516     Cloned->setName(Instr->getName() + ".cloned");
2517 
2518   // Replace the operands of the cloned instructions with their scalar
2519   // equivalents in the new loop.
2520   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
2521     auto *NewOp = State.get(User.getOperand(op), Instance);
2522     Cloned->setOperand(op, NewOp);
2523   }
2524   addNewMetadata(Cloned, Instr);
2525 
2526   // Place the cloned scalar in the new loop.
2527   Builder.Insert(Cloned);
2528 
2529   // Add the cloned scalar to the scalar map entry.
2530   VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
2531 
2532   // If we just cloned a new assumption, add it the assumption cache.
2533   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2534     if (II->getIntrinsicID() == Intrinsic::assume)
2535       AC->registerAssumption(II);
2536 
2537   // End if-block.
2538   if (IfPredicateInstr)
2539     PredicatedInstructions.push_back(Cloned);
2540 }
2541 
2542 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2543                                                       Value *End, Value *Step,
2544                                                       Instruction *DL) {
2545   BasicBlock *Header = L->getHeader();
2546   BasicBlock *Latch = L->getLoopLatch();
2547   // As we're just creating this loop, it's possible no latch exists
2548   // yet. If so, use the header as this will be a single block loop.
2549   if (!Latch)
2550     Latch = Header;
2551 
2552   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2553   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
2554   setDebugLocFromInst(Builder, OldInst);
2555   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2556 
2557   Builder.SetInsertPoint(Latch->getTerminator());
2558   setDebugLocFromInst(Builder, OldInst);
2559 
2560   // Create i+1 and fill the PHINode.
2561   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2562   Induction->addIncoming(Start, L->getLoopPreheader());
2563   Induction->addIncoming(Next, Latch);
2564   // Create the compare.
2565   Value *ICmp = Builder.CreateICmpEQ(Next, End);
2566   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2567 
2568   // Now we have two terminators. Remove the old one from the block.
2569   Latch->getTerminator()->eraseFromParent();
2570 
2571   return Induction;
2572 }
2573 
2574 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2575   if (TripCount)
2576     return TripCount;
2577 
2578   assert(L && "Create Trip Count for null loop.");
2579   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2580   // Find the loop boundaries.
2581   ScalarEvolution *SE = PSE.getSE();
2582   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2583   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2584          "Invalid loop count");
2585 
2586   Type *IdxTy = Legal->getWidestInductionType();
2587   assert(IdxTy && "No type for induction");
2588 
2589   // The exit count might have the type of i64 while the phi is i32. This can
2590   // happen if we have an induction variable that is sign extended before the
2591   // compare. The only way that we get a backedge taken count is that the
2592   // induction variable was signed and as such will not overflow. In such a case
2593   // truncation is legal.
2594   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2595       IdxTy->getPrimitiveSizeInBits())
2596     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2597   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2598 
2599   // Get the total trip count from the count by adding 1.
2600   const SCEV *ExitCount = SE->getAddExpr(
2601       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2602 
2603   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2604 
2605   // Expand the trip count and place the new instructions in the preheader.
2606   // Notice that the pre-header does not change, only the loop body.
2607   SCEVExpander Exp(*SE, DL, "induction");
2608 
2609   // Count holds the overall loop count (N).
2610   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2611                                 L->getLoopPreheader()->getTerminator());
2612 
2613   if (TripCount->getType()->isPointerTy())
2614     TripCount =
2615         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2616                                     L->getLoopPreheader()->getTerminator());
2617 
2618   return TripCount;
2619 }
2620 
2621 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2622   if (VectorTripCount)
2623     return VectorTripCount;
2624 
2625   Value *TC = getOrCreateTripCount(L);
2626   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2627 
2628   Type *Ty = TC->getType();
2629   Constant *Step = ConstantInt::get(Ty, VF * UF);
2630 
2631   // If the tail is to be folded by masking, round the number of iterations N
2632   // up to a multiple of Step instead of rounding down. This is done by first
2633   // adding Step-1 and then rounding down. Note that it's ok if this addition
2634   // overflows: the vector induction variable will eventually wrap to zero given
2635   // that it starts at zero and its Step is a power of two; the loop will then
2636   // exit, with the last early-exit vector comparison also producing all-true.
2637   if (Cost->foldTailByMasking()) {
2638     assert(isPowerOf2_32(VF * UF) &&
2639            "VF*UF must be a power of 2 when folding tail by masking");
2640     TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up");
2641   }
2642 
2643   // Now we need to generate the expression for the part of the loop that the
2644   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2645   // iterations are not required for correctness, or N - Step, otherwise. Step
2646   // is equal to the vectorization factor (number of SIMD elements) times the
2647   // unroll factor (number of SIMD instructions).
2648   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2649 
2650   // If there is a non-reversed interleaved group that may speculatively access
2651   // memory out-of-bounds, we need to ensure that there will be at least one
2652   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2653   // the trip count, we set the remainder to be equal to the step. If the step
2654   // does not evenly divide the trip count, no adjustment is necessary since
2655   // there will already be scalar iterations. Note that the minimum iterations
2656   // check ensures that N >= Step.
2657   if (VF > 1 && Cost->requiresScalarEpilogue()) {
2658     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2659     R = Builder.CreateSelect(IsZero, Step, R);
2660   }
2661 
2662   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2663 
2664   return VectorTripCount;
2665 }
2666 
2667 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2668                                                    const DataLayout &DL) {
2669   // Verify that V is a vector type with same number of elements as DstVTy.
2670   unsigned VF = DstVTy->getNumElements();
2671   VectorType *SrcVecTy = cast<VectorType>(V->getType());
2672   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2673   Type *SrcElemTy = SrcVecTy->getElementType();
2674   Type *DstElemTy = DstVTy->getElementType();
2675   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2676          "Vector elements must have same size");
2677 
2678   // Do a direct cast if element types are castable.
2679   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2680     return Builder.CreateBitOrPointerCast(V, DstVTy);
2681   }
2682   // V cannot be directly casted to desired vector type.
2683   // May happen when V is a floating point vector but DstVTy is a vector of
2684   // pointers or vice-versa. Handle this using a two-step bitcast using an
2685   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2686   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2687          "Only one type should be a pointer type");
2688   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2689          "Only one type should be a floating point type");
2690   Type *IntTy =
2691       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2692   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2693   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2694   return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
2695 }
2696 
2697 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2698                                                          BasicBlock *Bypass) {
2699   Value *Count = getOrCreateTripCount(L);
2700   // Reuse existing vector loop preheader for TC checks.
2701   // Note that new preheader block is generated for vector loop.
2702   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2703   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2704 
2705   // Generate code to check if the loop's trip count is less than VF * UF, or
2706   // equal to it in case a scalar epilogue is required; this implies that the
2707   // vector trip count is zero. This check also covers the case where adding one
2708   // to the backedge-taken count overflowed leading to an incorrect trip count
2709   // of zero. In this case we will also jump to the scalar loop.
2710   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
2711                                           : ICmpInst::ICMP_ULT;
2712 
2713   // If tail is to be folded, vector loop takes care of all iterations.
2714   Value *CheckMinIters = Builder.getFalse();
2715   if (!Cost->foldTailByMasking())
2716     CheckMinIters = Builder.CreateICmp(
2717         P, Count, ConstantInt::get(Count->getType(), VF * UF),
2718         "min.iters.check");
2719 
2720   // Create new preheader for vector loop.
2721   LoopVectorPreHeader =
2722       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2723                  "vector.ph");
2724 
2725   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2726                                DT->getNode(Bypass)->getIDom()) &&
2727          "TC check is expected to dominate Bypass");
2728 
2729   // Update dominator for Bypass & LoopExit.
2730   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2731   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2732 
2733   ReplaceInstWithInst(
2734       TCCheckBlock->getTerminator(),
2735       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2736   LoopBypassBlocks.push_back(TCCheckBlock);
2737 }
2738 
2739 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2740   // Reuse existing vector loop preheader for SCEV checks.
2741   // Note that new preheader block is generated for vector loop.
2742   BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader;
2743 
2744   // Generate the code to check that the SCEV assumptions that we made.
2745   // We want the new basic block to start at the first instruction in a
2746   // sequence of instructions that form a check.
2747   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2748                    "scev.check");
2749   Value *SCEVCheck = Exp.expandCodeForPredicate(
2750       &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator());
2751 
2752   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2753     if (C->isZero())
2754       return;
2755 
2756   assert(!SCEVCheckBlock->getParent()->hasOptSize() &&
2757          "Cannot SCEV check stride or overflow when optimizing for size");
2758 
2759   SCEVCheckBlock->setName("vector.scevcheck");
2760   // Create new preheader for vector loop.
2761   LoopVectorPreHeader =
2762       SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI,
2763                  nullptr, "vector.ph");
2764 
2765   // Update dominator only if this is first RT check.
2766   if (LoopBypassBlocks.empty()) {
2767     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
2768     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
2769   }
2770 
2771   ReplaceInstWithInst(
2772       SCEVCheckBlock->getTerminator(),
2773       BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck));
2774   LoopBypassBlocks.push_back(SCEVCheckBlock);
2775   AddedSafetyChecks = true;
2776 }
2777 
2778 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2779   // VPlan-native path does not do any analysis for runtime checks currently.
2780   if (EnableVPlanNativePath)
2781     return;
2782 
2783   // Reuse existing vector loop preheader for runtime memory checks.
2784   // Note that new preheader block is generated for vector loop.
2785   BasicBlock *const MemCheckBlock = L->getLoopPreheader();
2786 
2787   // Generate the code that checks in runtime if arrays overlap. We put the
2788   // checks into a separate block to make the more common case of few elements
2789   // faster.
2790   auto *LAI = Legal->getLAI();
2791   const auto &RtPtrChecking = *LAI->getRuntimePointerChecking();
2792   if (!RtPtrChecking.Need)
2793     return;
2794   Instruction *FirstCheckInst;
2795   Instruction *MemRuntimeCheck;
2796   std::tie(FirstCheckInst, MemRuntimeCheck) =
2797       addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop,
2798                        RtPtrChecking.getChecks(), RtPtrChecking.getSE());
2799   assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking "
2800                             "claimed checks are required");
2801 
2802   if (MemCheckBlock->getParent()->hasOptSize()) {
2803     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
2804            "Cannot emit memory checks when optimizing for size, unless forced "
2805            "to vectorize.");
2806     ORE->emit([&]() {
2807       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
2808                                         L->getStartLoc(), L->getHeader())
2809              << "Code-size may be reduced by not forcing "
2810                 "vectorization, or by source-code modifications "
2811                 "eliminating the need for runtime checks "
2812                 "(e.g., adding 'restrict').";
2813     });
2814   }
2815 
2816   MemCheckBlock->setName("vector.memcheck");
2817   // Create new preheader for vector loop.
2818   LoopVectorPreHeader =
2819       SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr,
2820                  "vector.ph");
2821 
2822   // Update dominator only if this is first RT check.
2823   if (LoopBypassBlocks.empty()) {
2824     DT->changeImmediateDominator(Bypass, MemCheckBlock);
2825     DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock);
2826   }
2827 
2828   ReplaceInstWithInst(
2829       MemCheckBlock->getTerminator(),
2830       BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck));
2831   LoopBypassBlocks.push_back(MemCheckBlock);
2832   AddedSafetyChecks = true;
2833 
2834   // We currently don't use LoopVersioning for the actual loop cloning but we
2835   // still use it to add the noalias metadata.
2836   LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
2837                                           PSE.getSE());
2838   LVer->prepareNoAliasMetadata();
2839 }
2840 
2841 Value *InnerLoopVectorizer::emitTransformedIndex(
2842     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
2843     const InductionDescriptor &ID) const {
2844 
2845   SCEVExpander Exp(*SE, DL, "induction");
2846   auto Step = ID.getStep();
2847   auto StartValue = ID.getStartValue();
2848   assert(Index->getType() == Step->getType() &&
2849          "Index type does not match StepValue type");
2850 
2851   // Note: the IR at this point is broken. We cannot use SE to create any new
2852   // SCEV and then expand it, hoping that SCEV's simplification will give us
2853   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2854   // lead to various SCEV crashes. So all we can do is to use builder and rely
2855   // on InstCombine for future simplifications. Here we handle some trivial
2856   // cases only.
2857   auto CreateAdd = [&B](Value *X, Value *Y) {
2858     assert(X->getType() == Y->getType() && "Types don't match!");
2859     if (auto *CX = dyn_cast<ConstantInt>(X))
2860       if (CX->isZero())
2861         return Y;
2862     if (auto *CY = dyn_cast<ConstantInt>(Y))
2863       if (CY->isZero())
2864         return X;
2865     return B.CreateAdd(X, Y);
2866   };
2867 
2868   auto CreateMul = [&B](Value *X, Value *Y) {
2869     assert(X->getType() == Y->getType() && "Types don't match!");
2870     if (auto *CX = dyn_cast<ConstantInt>(X))
2871       if (CX->isOne())
2872         return Y;
2873     if (auto *CY = dyn_cast<ConstantInt>(Y))
2874       if (CY->isOne())
2875         return X;
2876     return B.CreateMul(X, Y);
2877   };
2878 
2879   switch (ID.getKind()) {
2880   case InductionDescriptor::IK_IntInduction: {
2881     assert(Index->getType() == StartValue->getType() &&
2882            "Index type does not match StartValue type");
2883     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
2884       return B.CreateSub(StartValue, Index);
2885     auto *Offset = CreateMul(
2886         Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint()));
2887     return CreateAdd(StartValue, Offset);
2888   }
2889   case InductionDescriptor::IK_PtrInduction: {
2890     assert(isa<SCEVConstant>(Step) &&
2891            "Expected constant step for pointer induction");
2892     return B.CreateGEP(
2893         StartValue->getType()->getPointerElementType(), StartValue,
2894         CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(),
2895                                            &*B.GetInsertPoint())));
2896   }
2897   case InductionDescriptor::IK_FpInduction: {
2898     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2899     auto InductionBinOp = ID.getInductionBinOp();
2900     assert(InductionBinOp &&
2901            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2902             InductionBinOp->getOpcode() == Instruction::FSub) &&
2903            "Original bin op should be defined for FP induction");
2904 
2905     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
2906 
2907     // Floating point operations had to be 'fast' to enable the induction.
2908     FastMathFlags Flags;
2909     Flags.setFast();
2910 
2911     Value *MulExp = B.CreateFMul(StepValue, Index);
2912     if (isa<Instruction>(MulExp))
2913       // We have to check, the MulExp may be a constant.
2914       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
2915 
2916     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2917                                "induction");
2918     if (isa<Instruction>(BOp))
2919       cast<Instruction>(BOp)->setFastMathFlags(Flags);
2920 
2921     return BOp;
2922   }
2923   case InductionDescriptor::IK_NoInduction:
2924     return nullptr;
2925   }
2926   llvm_unreachable("invalid enum");
2927 }
2928 
2929 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
2930   /*
2931    In this function we generate a new loop. The new loop will contain
2932    the vectorized instructions while the old loop will continue to run the
2933    scalar remainder.
2934 
2935        [ ] <-- loop iteration number check.
2936     /   |
2937    /    v
2938   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
2939   |  /  |
2940   | /   v
2941   ||   [ ]     <-- vector pre header.
2942   |/    |
2943   |     v
2944   |    [  ] \
2945   |    [  ]_|   <-- vector loop.
2946   |     |
2947   |     v
2948   |   -[ ]   <--- middle-block.
2949   |  /  |
2950   | /   v
2951   -|- >[ ]     <--- new preheader.
2952    |    |
2953    |    v
2954    |   [ ] \
2955    |   [ ]_|   <-- old scalar loop to handle remainder.
2956     \   |
2957      \  v
2958       >[ ]     <-- exit block.
2959    ...
2960    */
2961 
2962   MDNode *OrigLoopID = OrigLoop->getLoopID();
2963 
2964   // Some loops have a single integer induction variable, while other loops
2965   // don't. One example is c++ iterators that often have multiple pointer
2966   // induction variables. In the code below we also support a case where we
2967   // don't have a single induction variable.
2968   //
2969   // We try to obtain an induction variable from the original loop as hard
2970   // as possible. However if we don't find one that:
2971   //   - is an integer
2972   //   - counts from zero, stepping by one
2973   //   - is the size of the widest induction variable type
2974   // then we create a new one.
2975   OldInduction = Legal->getPrimaryInduction();
2976   Type *IdxTy = Legal->getWidestInductionType();
2977 
2978   // Split the single block loop into the two loop structure described above.
2979   LoopScalarBody = OrigLoop->getHeader();
2980   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
2981   LoopExitBlock = OrigLoop->getExitBlock();
2982   assert(LoopExitBlock && "Must have an exit block");
2983   assert(LoopVectorPreHeader && "Invalid loop structure");
2984 
2985   LoopMiddleBlock =
2986       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2987                  LI, nullptr, "middle.block");
2988   LoopScalarPreHeader =
2989       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
2990                  nullptr, "scalar.ph");
2991   // We intentionally don't let SplitBlock to update LoopInfo since
2992   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
2993   // LoopVectorBody is explicitly added to the correct place few lines later.
2994   LoopVectorBody =
2995       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2996                  nullptr, nullptr, "vector.body");
2997 
2998   // Update dominator for loop exit.
2999   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3000 
3001   // Create and register the new vector loop.
3002   Loop *Lp = LI->AllocateLoop();
3003   Loop *ParentLoop = OrigLoop->getParentLoop();
3004 
3005   // Insert the new loop into the loop nest and register the new basic blocks
3006   // before calling any utilities such as SCEV that require valid LoopInfo.
3007   if (ParentLoop) {
3008     ParentLoop->addChildLoop(Lp);
3009   } else {
3010     LI->addTopLevelLoop(Lp);
3011   }
3012   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3013 
3014   // Find the loop boundaries.
3015   Value *Count = getOrCreateTripCount(Lp);
3016 
3017   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3018 
3019   // Now, compare the new count to zero. If it is zero skip the vector loop and
3020   // jump to the scalar loop. This check also covers the case where the
3021   // backedge-taken count is uint##_max: adding one to it will overflow leading
3022   // to an incorrect trip count of zero. In this (rare) case we will also jump
3023   // to the scalar loop.
3024   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3025 
3026   // Generate the code to check any assumptions that we've made for SCEV
3027   // expressions.
3028   emitSCEVChecks(Lp, LoopScalarPreHeader);
3029 
3030   // Generate the code that checks in runtime if arrays overlap. We put the
3031   // checks into a separate block to make the more common case of few elements
3032   // faster.
3033   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3034 
3035   // Generate the induction variable.
3036   // The loop step is equal to the vectorization factor (num of SIMD elements)
3037   // times the unroll factor (num of SIMD instructions).
3038   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3039   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3040   Induction =
3041       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3042                               getDebugLocFromInstOrOperands(OldInduction));
3043 
3044   // We are going to resume the execution of the scalar loop.
3045   // Go over all of the induction variables that we found and fix the
3046   // PHIs that are left in the scalar version of the loop.
3047   // The starting values of PHI nodes depend on the counter of the last
3048   // iteration in the vectorized loop.
3049   // If we come from a bypass edge then we need to start from the original
3050   // start value.
3051 
3052   // This variable saves the new starting index for the scalar loop. It is used
3053   // to test if there are any tail iterations left once the vector loop has
3054   // completed.
3055   for (auto &InductionEntry : Legal->getInductionVars()) {
3056     PHINode *OrigPhi = InductionEntry.first;
3057     InductionDescriptor II = InductionEntry.second;
3058 
3059     // Create phi nodes to merge from the  backedge-taken check block.
3060     PHINode *BCResumeVal =
3061         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3062                         LoopScalarPreHeader->getTerminator());
3063     // Copy original phi DL over to the new one.
3064     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3065     Value *&EndValue = IVEndValues[OrigPhi];
3066     if (OrigPhi == OldInduction) {
3067       // We know what the end value is.
3068       EndValue = CountRoundDown;
3069     } else {
3070       IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
3071       Type *StepType = II.getStep()->getType();
3072       Instruction::CastOps CastOp =
3073           CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
3074       Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
3075       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3076       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3077       EndValue->setName("ind.end");
3078     }
3079 
3080     // The new PHI merges the original incoming value, in case of a bypass,
3081     // or the value at the end of the vectorized loop.
3082     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3083 
3084     // Fix the scalar body counter (PHI node).
3085     // The old induction's phi node in the scalar body needs the truncated
3086     // value.
3087     for (BasicBlock *BB : LoopBypassBlocks)
3088       BCResumeVal->addIncoming(II.getStartValue(), BB);
3089     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3090   }
3091 
3092   // We need the OrigLoop (scalar loop part) latch terminator to help
3093   // produce correct debug info for the middle block BB instructions.
3094   // The legality check stage guarantees that the loop will have a single
3095   // latch.
3096   assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) &&
3097          "Scalar loop latch terminator isn't a branch");
3098   BranchInst *ScalarLatchBr =
3099       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
3100 
3101   // Add a check in the middle block to see if we have completed
3102   // all of the iterations in the first vector loop.
3103   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3104   // If tail is to be folded, we know we don't need to run the remainder.
3105   Value *CmpN = Builder.getTrue();
3106   if (!Cost->foldTailByMasking()) {
3107     CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3108                            CountRoundDown, "cmp.n",
3109                            LoopMiddleBlock->getTerminator());
3110 
3111     // Here we use the same DebugLoc as the scalar loop latch branch instead
3112     // of the corresponding compare because they may have ended up with
3113     // different line numbers and we want to avoid awkward line stepping while
3114     // debugging. Eg. if the compare has got a line number inside the loop.
3115     cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc());
3116   }
3117 
3118   BranchInst *BrInst =
3119       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN);
3120   BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc());
3121   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3122 
3123   // Get ready to start creating new instructions into the vectorized body.
3124   assert(LoopVectorPreHeader == Lp->getLoopPreheader() &&
3125          "Inconsistent vector loop preheader");
3126   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3127 
3128   Optional<MDNode *> VectorizedLoopID =
3129       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3130                                       LLVMLoopVectorizeFollowupVectorized});
3131   if (VectorizedLoopID.hasValue()) {
3132     Lp->setLoopID(VectorizedLoopID.getValue());
3133 
3134     // Do not setAlreadyVectorized if loop attributes have been defined
3135     // explicitly.
3136     return LoopVectorPreHeader;
3137   }
3138 
3139   // Keep all loop hints from the original loop on the vector loop (we'll
3140   // replace the vectorizer-specific hints below).
3141   if (MDNode *LID = OrigLoop->getLoopID())
3142     Lp->setLoopID(LID);
3143 
3144   LoopVectorizeHints Hints(Lp, true, *ORE);
3145   Hints.setAlreadyVectorized();
3146 
3147 #ifdef EXPENSIVE_CHECKS
3148   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3149   LI->verify(*DT);
3150 #endif
3151 
3152   return LoopVectorPreHeader;
3153 }
3154 
3155 // Fix up external users of the induction variable. At this point, we are
3156 // in LCSSA form, with all external PHIs that use the IV having one input value,
3157 // coming from the remainder loop. We need those PHIs to also have a correct
3158 // value for the IV when arriving directly from the middle block.
3159 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3160                                        const InductionDescriptor &II,
3161                                        Value *CountRoundDown, Value *EndValue,
3162                                        BasicBlock *MiddleBlock) {
3163   // There are two kinds of external IV usages - those that use the value
3164   // computed in the last iteration (the PHI) and those that use the penultimate
3165   // value (the value that feeds into the phi from the loop latch).
3166   // We allow both, but they, obviously, have different values.
3167 
3168   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3169 
3170   DenseMap<Value *, Value *> MissingVals;
3171 
3172   // An external user of the last iteration's value should see the value that
3173   // the remainder loop uses to initialize its own IV.
3174   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3175   for (User *U : PostInc->users()) {
3176     Instruction *UI = cast<Instruction>(U);
3177     if (!OrigLoop->contains(UI)) {
3178       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3179       MissingVals[UI] = EndValue;
3180     }
3181   }
3182 
3183   // An external user of the penultimate value need to see EndValue - Step.
3184   // The simplest way to get this is to recompute it from the constituent SCEVs,
3185   // that is Start + (Step * (CRD - 1)).
3186   for (User *U : OrigPhi->users()) {
3187     auto *UI = cast<Instruction>(U);
3188     if (!OrigLoop->contains(UI)) {
3189       const DataLayout &DL =
3190           OrigLoop->getHeader()->getModule()->getDataLayout();
3191       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3192 
3193       IRBuilder<> B(MiddleBlock->getTerminator());
3194       Value *CountMinusOne = B.CreateSub(
3195           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3196       Value *CMO =
3197           !II.getStep()->getType()->isIntegerTy()
3198               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3199                              II.getStep()->getType())
3200               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3201       CMO->setName("cast.cmo");
3202       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3203       Escape->setName("ind.escape");
3204       MissingVals[UI] = Escape;
3205     }
3206   }
3207 
3208   for (auto &I : MissingVals) {
3209     PHINode *PHI = cast<PHINode>(I.first);
3210     // One corner case we have to handle is two IVs "chasing" each-other,
3211     // that is %IV2 = phi [...], [ %IV1, %latch ]
3212     // In this case, if IV1 has an external use, we need to avoid adding both
3213     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3214     // don't already have an incoming value for the middle block.
3215     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3216       PHI->addIncoming(I.second, MiddleBlock);
3217   }
3218 }
3219 
3220 namespace {
3221 
3222 struct CSEDenseMapInfo {
3223   static bool canHandle(const Instruction *I) {
3224     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3225            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3226   }
3227 
3228   static inline Instruction *getEmptyKey() {
3229     return DenseMapInfo<Instruction *>::getEmptyKey();
3230   }
3231 
3232   static inline Instruction *getTombstoneKey() {
3233     return DenseMapInfo<Instruction *>::getTombstoneKey();
3234   }
3235 
3236   static unsigned getHashValue(const Instruction *I) {
3237     assert(canHandle(I) && "Unknown instruction!");
3238     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3239                                                            I->value_op_end()));
3240   }
3241 
3242   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3243     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3244         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3245       return LHS == RHS;
3246     return LHS->isIdenticalTo(RHS);
3247   }
3248 };
3249 
3250 } // end anonymous namespace
3251 
3252 ///Perform cse of induction variable instructions.
3253 static void cse(BasicBlock *BB) {
3254   // Perform simple cse.
3255   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3256   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3257     Instruction *In = &*I++;
3258 
3259     if (!CSEDenseMapInfo::canHandle(In))
3260       continue;
3261 
3262     // Check if we can replace this instruction with any of the
3263     // visited instructions.
3264     if (Instruction *V = CSEMap.lookup(In)) {
3265       In->replaceAllUsesWith(V);
3266       In->eraseFromParent();
3267       continue;
3268     }
3269 
3270     CSEMap[In] = In;
3271   }
3272 }
3273 
3274 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI,
3275                                                        unsigned VF,
3276                                                        bool &NeedToScalarize) {
3277   Function *F = CI->getCalledFunction();
3278   Type *ScalarRetTy = CI->getType();
3279   SmallVector<Type *, 4> Tys, ScalarTys;
3280   for (auto &ArgOp : CI->arg_operands())
3281     ScalarTys.push_back(ArgOp->getType());
3282 
3283   // Estimate cost of scalarized vector call. The source operands are assumed
3284   // to be vectors, so we need to extract individual elements from there,
3285   // execute VF scalar calls, and then gather the result into the vector return
3286   // value.
3287   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys,
3288                                                  TTI::TCK_RecipThroughput);
3289   if (VF == 1)
3290     return ScalarCallCost;
3291 
3292   // Compute corresponding vector type for return value and arguments.
3293   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3294   for (Type *ScalarTy : ScalarTys)
3295     Tys.push_back(ToVectorTy(ScalarTy, VF));
3296 
3297   // Compute costs of unpacking argument values for the scalar calls and
3298   // packing the return values to a vector.
3299   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF);
3300 
3301   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3302 
3303   // If we can't emit a vector call for this function, then the currently found
3304   // cost is the cost we need to return.
3305   NeedToScalarize = true;
3306   VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/);
3307   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3308 
3309   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3310     return Cost;
3311 
3312   // If the corresponding vector cost is cheaper, return its cost.
3313   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys,
3314                                                  TTI::TCK_RecipThroughput);
3315   if (VectorCallCost < Cost) {
3316     NeedToScalarize = false;
3317     return VectorCallCost;
3318   }
3319   return Cost;
3320 }
3321 
3322 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3323                                                             unsigned VF) {
3324   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3325   assert(ID && "Expected intrinsic call!");
3326 
3327   IntrinsicCostAttributes CostAttrs(ID, *CI, VF);
3328   return TTI.getIntrinsicInstrCost(CostAttrs,
3329                                    TargetTransformInfo::TCK_RecipThroughput);
3330 }
3331 
3332 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3333   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3334   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3335   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3336 }
3337 
3338 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3339   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3340   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3341   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3342 }
3343 
3344 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3345   // For every instruction `I` in MinBWs, truncate the operands, create a
3346   // truncated version of `I` and reextend its result. InstCombine runs
3347   // later and will remove any ext/trunc pairs.
3348   SmallPtrSet<Value *, 4> Erased;
3349   for (const auto &KV : Cost->getMinimalBitwidths()) {
3350     // If the value wasn't vectorized, we must maintain the original scalar
3351     // type. The absence of the value from VectorLoopValueMap indicates that it
3352     // wasn't vectorized.
3353     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3354       continue;
3355     for (unsigned Part = 0; Part < UF; ++Part) {
3356       Value *I = getOrCreateVectorValue(KV.first, Part);
3357       if (Erased.find(I) != Erased.end() || I->use_empty() ||
3358           !isa<Instruction>(I))
3359         continue;
3360       Type *OriginalTy = I->getType();
3361       Type *ScalarTruncatedTy =
3362           IntegerType::get(OriginalTy->getContext(), KV.second);
3363       auto *TruncatedTy = FixedVectorType::get(
3364           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements());
3365       if (TruncatedTy == OriginalTy)
3366         continue;
3367 
3368       IRBuilder<> B(cast<Instruction>(I));
3369       auto ShrinkOperand = [&](Value *V) -> Value * {
3370         if (auto *ZI = dyn_cast<ZExtInst>(V))
3371           if (ZI->getSrcTy() == TruncatedTy)
3372             return ZI->getOperand(0);
3373         return B.CreateZExtOrTrunc(V, TruncatedTy);
3374       };
3375 
3376       // The actual instruction modification depends on the instruction type,
3377       // unfortunately.
3378       Value *NewI = nullptr;
3379       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3380         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3381                              ShrinkOperand(BO->getOperand(1)));
3382 
3383         // Any wrapping introduced by shrinking this operation shouldn't be
3384         // considered undefined behavior. So, we can't unconditionally copy
3385         // arithmetic wrapping flags to NewI.
3386         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3387       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3388         NewI =
3389             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3390                          ShrinkOperand(CI->getOperand(1)));
3391       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3392         NewI = B.CreateSelect(SI->getCondition(),
3393                               ShrinkOperand(SI->getTrueValue()),
3394                               ShrinkOperand(SI->getFalseValue()));
3395       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3396         switch (CI->getOpcode()) {
3397         default:
3398           llvm_unreachable("Unhandled cast!");
3399         case Instruction::Trunc:
3400           NewI = ShrinkOperand(CI->getOperand(0));
3401           break;
3402         case Instruction::SExt:
3403           NewI = B.CreateSExtOrTrunc(
3404               CI->getOperand(0),
3405               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3406           break;
3407         case Instruction::ZExt:
3408           NewI = B.CreateZExtOrTrunc(
3409               CI->getOperand(0),
3410               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3411           break;
3412         }
3413       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3414         auto Elements0 =
3415             cast<VectorType>(SI->getOperand(0)->getType())->getNumElements();
3416         auto *O0 = B.CreateZExtOrTrunc(
3417             SI->getOperand(0),
3418             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3419         auto Elements1 =
3420             cast<VectorType>(SI->getOperand(1)->getType())->getNumElements();
3421         auto *O1 = B.CreateZExtOrTrunc(
3422             SI->getOperand(1),
3423             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3424 
3425         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3426       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3427         // Don't do anything with the operands, just extend the result.
3428         continue;
3429       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3430         auto Elements =
3431             cast<VectorType>(IE->getOperand(0)->getType())->getNumElements();
3432         auto *O0 = B.CreateZExtOrTrunc(
3433             IE->getOperand(0),
3434             FixedVectorType::get(ScalarTruncatedTy, Elements));
3435         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3436         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3437       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3438         auto Elements =
3439             cast<VectorType>(EE->getOperand(0)->getType())->getNumElements();
3440         auto *O0 = B.CreateZExtOrTrunc(
3441             EE->getOperand(0),
3442             FixedVectorType::get(ScalarTruncatedTy, Elements));
3443         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3444       } else {
3445         // If we don't know what to do, be conservative and don't do anything.
3446         continue;
3447       }
3448 
3449       // Lastly, extend the result.
3450       NewI->takeName(cast<Instruction>(I));
3451       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3452       I->replaceAllUsesWith(Res);
3453       cast<Instruction>(I)->eraseFromParent();
3454       Erased.insert(I);
3455       VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3456     }
3457   }
3458 
3459   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3460   for (const auto &KV : Cost->getMinimalBitwidths()) {
3461     // If the value wasn't vectorized, we must maintain the original scalar
3462     // type. The absence of the value from VectorLoopValueMap indicates that it
3463     // wasn't vectorized.
3464     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3465       continue;
3466     for (unsigned Part = 0; Part < UF; ++Part) {
3467       Value *I = getOrCreateVectorValue(KV.first, Part);
3468       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3469       if (Inst && Inst->use_empty()) {
3470         Value *NewI = Inst->getOperand(0);
3471         Inst->eraseFromParent();
3472         VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3473       }
3474     }
3475   }
3476 }
3477 
3478 void InnerLoopVectorizer::fixVectorizedLoop() {
3479   // Insert truncates and extends for any truncated instructions as hints to
3480   // InstCombine.
3481   if (VF > 1)
3482     truncateToMinimalBitwidths();
3483 
3484   // Fix widened non-induction PHIs by setting up the PHI operands.
3485   if (OrigPHIsToFix.size()) {
3486     assert(EnableVPlanNativePath &&
3487            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3488     fixNonInductionPHIs();
3489   }
3490 
3491   // At this point every instruction in the original loop is widened to a
3492   // vector form. Now we need to fix the recurrences in the loop. These PHI
3493   // nodes are currently empty because we did not want to introduce cycles.
3494   // This is the second stage of vectorizing recurrences.
3495   fixCrossIterationPHIs();
3496 
3497   // Forget the original basic block.
3498   PSE.getSE()->forgetLoop(OrigLoop);
3499 
3500   // Fix-up external users of the induction variables.
3501   for (auto &Entry : Legal->getInductionVars())
3502     fixupIVUsers(Entry.first, Entry.second,
3503                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3504                  IVEndValues[Entry.first], LoopMiddleBlock);
3505 
3506   fixLCSSAPHIs();
3507   for (Instruction *PI : PredicatedInstructions)
3508     sinkScalarOperands(&*PI);
3509 
3510   // Remove redundant induction instructions.
3511   cse(LoopVectorBody);
3512 
3513   // Set/update profile weights for the vector and remainder loops as original
3514   // loop iterations are now distributed among them. Note that original loop
3515   // represented by LoopScalarBody becomes remainder loop after vectorization.
3516   //
3517   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3518   // end up getting slightly roughened result but that should be OK since
3519   // profile is not inherently precise anyway. Note also possible bypass of
3520   // vector code caused by legality checks is ignored, assigning all the weight
3521   // to the vector loop, optimistically.
3522   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody),
3523                                LI->getLoopFor(LoopVectorBody),
3524                                LI->getLoopFor(LoopScalarBody), VF * UF);
3525 }
3526 
3527 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3528   // In order to support recurrences we need to be able to vectorize Phi nodes.
3529   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3530   // stage #2: We now need to fix the recurrences by adding incoming edges to
3531   // the currently empty PHI nodes. At this point every instruction in the
3532   // original loop is widened to a vector form so we can use them to construct
3533   // the incoming edges.
3534   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3535     // Handle first-order recurrences and reductions that need to be fixed.
3536     if (Legal->isFirstOrderRecurrence(&Phi))
3537       fixFirstOrderRecurrence(&Phi);
3538     else if (Legal->isReductionVariable(&Phi))
3539       fixReduction(&Phi);
3540   }
3541 }
3542 
3543 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3544   // This is the second phase of vectorizing first-order recurrences. An
3545   // overview of the transformation is described below. Suppose we have the
3546   // following loop.
3547   //
3548   //   for (int i = 0; i < n; ++i)
3549   //     b[i] = a[i] - a[i - 1];
3550   //
3551   // There is a first-order recurrence on "a". For this loop, the shorthand
3552   // scalar IR looks like:
3553   //
3554   //   scalar.ph:
3555   //     s_init = a[-1]
3556   //     br scalar.body
3557   //
3558   //   scalar.body:
3559   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3560   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3561   //     s2 = a[i]
3562   //     b[i] = s2 - s1
3563   //     br cond, scalar.body, ...
3564   //
3565   // In this example, s1 is a recurrence because it's value depends on the
3566   // previous iteration. In the first phase of vectorization, we created a
3567   // temporary value for s1. We now complete the vectorization and produce the
3568   // shorthand vector IR shown below (for VF = 4, UF = 1).
3569   //
3570   //   vector.ph:
3571   //     v_init = vector(..., ..., ..., a[-1])
3572   //     br vector.body
3573   //
3574   //   vector.body
3575   //     i = phi [0, vector.ph], [i+4, vector.body]
3576   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3577   //     v2 = a[i, i+1, i+2, i+3];
3578   //     v3 = vector(v1(3), v2(0, 1, 2))
3579   //     b[i, i+1, i+2, i+3] = v2 - v3
3580   //     br cond, vector.body, middle.block
3581   //
3582   //   middle.block:
3583   //     x = v2(3)
3584   //     br scalar.ph
3585   //
3586   //   scalar.ph:
3587   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3588   //     br scalar.body
3589   //
3590   // After execution completes the vector loop, we extract the next value of
3591   // the recurrence (x) to use as the initial value in the scalar loop.
3592 
3593   // Get the original loop preheader and single loop latch.
3594   auto *Preheader = OrigLoop->getLoopPreheader();
3595   auto *Latch = OrigLoop->getLoopLatch();
3596 
3597   // Get the initial and previous values of the scalar recurrence.
3598   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3599   auto *Previous = Phi->getIncomingValueForBlock(Latch);
3600 
3601   // Create a vector from the initial value.
3602   auto *VectorInit = ScalarInit;
3603   if (VF > 1) {
3604     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3605     VectorInit = Builder.CreateInsertElement(
3606         UndefValue::get(FixedVectorType::get(VectorInit->getType(), VF)),
3607         VectorInit, Builder.getInt32(VF - 1), "vector.recur.init");
3608   }
3609 
3610   // We constructed a temporary phi node in the first phase of vectorization.
3611   // This phi node will eventually be deleted.
3612   Builder.SetInsertPoint(
3613       cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
3614 
3615   // Create a phi node for the new recurrence. The current value will either be
3616   // the initial value inserted into a vector or loop-varying vector value.
3617   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3618   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3619 
3620   // Get the vectorized previous value of the last part UF - 1. It appears last
3621   // among all unrolled iterations, due to the order of their construction.
3622   Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
3623 
3624   // Find and set the insertion point after the previous value if it is an
3625   // instruction.
3626   BasicBlock::iterator InsertPt;
3627   // Note that the previous value may have been constant-folded so it is not
3628   // guaranteed to be an instruction in the vector loop.
3629   // FIXME: Loop invariant values do not form recurrences. We should deal with
3630   //        them earlier.
3631   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
3632     InsertPt = LoopVectorBody->getFirstInsertionPt();
3633   else {
3634     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
3635     if (isa<PHINode>(PreviousLastPart))
3636       // If the previous value is a phi node, we should insert after all the phi
3637       // nodes in the block containing the PHI to avoid breaking basic block
3638       // verification. Note that the basic block may be different to
3639       // LoopVectorBody, in case we predicate the loop.
3640       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
3641     else
3642       InsertPt = ++PreviousInst->getIterator();
3643   }
3644   Builder.SetInsertPoint(&*InsertPt);
3645 
3646   // We will construct a vector for the recurrence by combining the values for
3647   // the current and previous iterations. This is the required shuffle mask.
3648   SmallVector<int, 8> ShuffleMask(VF);
3649   ShuffleMask[0] = VF - 1;
3650   for (unsigned I = 1; I < VF; ++I)
3651     ShuffleMask[I] = I + VF - 1;
3652 
3653   // The vector from which to take the initial value for the current iteration
3654   // (actual or unrolled). Initially, this is the vector phi node.
3655   Value *Incoming = VecPhi;
3656 
3657   // Shuffle the current and previous vector and update the vector parts.
3658   for (unsigned Part = 0; Part < UF; ++Part) {
3659     Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
3660     Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
3661     auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
3662                                                          ShuffleMask)
3663                            : Incoming;
3664     PhiPart->replaceAllUsesWith(Shuffle);
3665     cast<Instruction>(PhiPart)->eraseFromParent();
3666     VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
3667     Incoming = PreviousPart;
3668   }
3669 
3670   // Fix the latch value of the new recurrence in the vector loop.
3671   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3672 
3673   // Extract the last vector element in the middle block. This will be the
3674   // initial value for the recurrence when jumping to the scalar loop.
3675   auto *ExtractForScalar = Incoming;
3676   if (VF > 1) {
3677     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3678     ExtractForScalar = Builder.CreateExtractElement(
3679         ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
3680   }
3681   // Extract the second last element in the middle block if the
3682   // Phi is used outside the loop. We need to extract the phi itself
3683   // and not the last element (the phi update in the current iteration). This
3684   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3685   // when the scalar loop is not run at all.
3686   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3687   if (VF > 1)
3688     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3689         Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
3690   // When loop is unrolled without vectorizing, initialize
3691   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
3692   // `Incoming`. This is analogous to the vectorized case above: extracting the
3693   // second last element when VF > 1.
3694   else if (UF > 1)
3695     ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
3696 
3697   // Fix the initial value of the original recurrence in the scalar loop.
3698   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3699   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3700   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3701     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3702     Start->addIncoming(Incoming, BB);
3703   }
3704 
3705   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3706   Phi->setName("scalar.recur");
3707 
3708   // Finally, fix users of the recurrence outside the loop. The users will need
3709   // either the last value of the scalar recurrence or the last value of the
3710   // vector recurrence we extracted in the middle block. Since the loop is in
3711   // LCSSA form, we just need to find all the phi nodes for the original scalar
3712   // recurrence in the exit block, and then add an edge for the middle block.
3713   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3714     if (LCSSAPhi.getIncomingValue(0) == Phi) {
3715       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3716     }
3717   }
3718 }
3719 
3720 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
3721   Constant *Zero = Builder.getInt32(0);
3722 
3723   // Get it's reduction variable descriptor.
3724   assert(Legal->isReductionVariable(Phi) &&
3725          "Unable to find the reduction variable");
3726   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
3727 
3728   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3729   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3730   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3731   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3732     RdxDesc.getMinMaxRecurrenceKind();
3733   setDebugLocFromInst(Builder, ReductionStartValue);
3734 
3735   // We need to generate a reduction vector from the incoming scalar.
3736   // To do so, we need to generate the 'identity' vector and override
3737   // one of the elements with the incoming scalar reduction. We need
3738   // to do it in the vector-loop preheader.
3739   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3740 
3741   // This is the vector-clone of the value that leaves the loop.
3742   Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
3743 
3744   // Find the reduction identity variable. Zero for addition, or, xor,
3745   // one for multiplication, -1 for And.
3746   Value *Identity;
3747   Value *VectorStart;
3748   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3749       RK == RecurrenceDescriptor::RK_FloatMinMax) {
3750     // MinMax reduction have the start value as their identify.
3751     if (VF == 1) {
3752       VectorStart = Identity = ReductionStartValue;
3753     } else {
3754       VectorStart = Identity =
3755         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3756     }
3757   } else {
3758     // Handle other reduction kinds:
3759     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3760         RK, VecTy->getScalarType());
3761     if (VF == 1) {
3762       Identity = Iden;
3763       // This vector is the Identity vector where the first element is the
3764       // incoming scalar reduction.
3765       VectorStart = ReductionStartValue;
3766     } else {
3767       Identity = ConstantVector::getSplat({VF, false}, Iden);
3768 
3769       // This vector is the Identity vector where the first element is the
3770       // incoming scalar reduction.
3771       VectorStart =
3772         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3773     }
3774   }
3775 
3776   // Wrap flags are in general invalid after vectorization, clear them.
3777   clearReductionWrapFlags(RdxDesc);
3778 
3779   // Fix the vector-loop phi.
3780 
3781   // Reductions do not have to start at zero. They can start with
3782   // any loop invariant values.
3783   BasicBlock *Latch = OrigLoop->getLoopLatch();
3784   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3785 
3786   for (unsigned Part = 0; Part < UF; ++Part) {
3787     Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
3788     Value *Val = getOrCreateVectorValue(LoopVal, Part);
3789     // Make sure to add the reduction start value only to the
3790     // first unroll part.
3791     Value *StartVal = (Part == 0) ? VectorStart : Identity;
3792     cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
3793     cast<PHINode>(VecRdxPhi)
3794       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3795   }
3796 
3797   // Before each round, move the insertion point right between
3798   // the PHIs and the values we are going to write.
3799   // This allows us to write both PHINodes and the extractelement
3800   // instructions.
3801   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3802 
3803   setDebugLocFromInst(Builder, LoopExitInst);
3804 
3805   // If tail is folded by masking, the vector value to leave the loop should be
3806   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3807   // instead of the former.
3808   if (Cost->foldTailByMasking()) {
3809     for (unsigned Part = 0; Part < UF; ++Part) {
3810       Value *VecLoopExitInst =
3811           VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3812       Value *Sel = nullptr;
3813       for (User *U : VecLoopExitInst->users()) {
3814         if (isa<SelectInst>(U)) {
3815           assert(!Sel && "Reduction exit feeding two selects");
3816           Sel = U;
3817         } else
3818           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3819       }
3820       assert(Sel && "Reduction exit feeds no select");
3821       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel);
3822     }
3823   }
3824 
3825   // If the vector reduction can be performed in a smaller type, we truncate
3826   // then extend the loop exit value to enable InstCombine to evaluate the
3827   // entire expression in the smaller type.
3828   if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
3829     Type *RdxVecTy = FixedVectorType::get(RdxDesc.getRecurrenceType(), VF);
3830     Builder.SetInsertPoint(
3831         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
3832     VectorParts RdxParts(UF);
3833     for (unsigned Part = 0; Part < UF; ++Part) {
3834       RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3835       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3836       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3837                                         : Builder.CreateZExt(Trunc, VecTy);
3838       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
3839            UI != RdxParts[Part]->user_end();)
3840         if (*UI != Trunc) {
3841           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
3842           RdxParts[Part] = Extnd;
3843         } else {
3844           ++UI;
3845         }
3846     }
3847     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3848     for (unsigned Part = 0; Part < UF; ++Part) {
3849       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3850       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
3851     }
3852   }
3853 
3854   // Reduce all of the unrolled parts into a single vector.
3855   Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
3856   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3857 
3858   // The middle block terminator has already been assigned a DebugLoc here (the
3859   // OrigLoop's single latch terminator). We want the whole middle block to
3860   // appear to execute on this line because: (a) it is all compiler generated,
3861   // (b) these instructions are always executed after evaluating the latch
3862   // conditional branch, and (c) other passes may add new predecessors which
3863   // terminate on this line. This is the easiest way to ensure we don't
3864   // accidentally cause an extra step back into the loop while debugging.
3865   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
3866   for (unsigned Part = 1; Part < UF; ++Part) {
3867     Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3868     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3869       // Floating point operations had to be 'fast' to enable the reduction.
3870       ReducedPartRdx = addFastMathFlag(
3871           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
3872                               ReducedPartRdx, "bin.rdx"),
3873           RdxDesc.getFastMathFlags());
3874     else
3875       ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
3876                                       RdxPart);
3877   }
3878 
3879   if (VF > 1) {
3880     bool NoNaN = Legal->hasFunNoNaNAttr();
3881     ReducedPartRdx =
3882         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
3883     // If the reduction can be performed in a smaller type, we need to extend
3884     // the reduction to the wider type before we branch to the original loop.
3885     if (Phi->getType() != RdxDesc.getRecurrenceType())
3886       ReducedPartRdx =
3887         RdxDesc.isSigned()
3888         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
3889         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
3890   }
3891 
3892   // Create a phi node that merges control-flow from the backedge-taken check
3893   // block and the middle block.
3894   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
3895                                         LoopScalarPreHeader->getTerminator());
3896   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3897     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3898   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3899 
3900   // Now, we need to fix the users of the reduction variable
3901   // inside and outside of the scalar remainder loop.
3902   // We know that the loop is in LCSSA form. We need to update the
3903   // PHI nodes in the exit blocks.
3904   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3905     // All PHINodes need to have a single entry edge, or two if
3906     // we already fixed them.
3907     assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3908 
3909     // We found a reduction value exit-PHI. Update it with the
3910     // incoming bypass edge.
3911     if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
3912       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
3913   } // end of the LCSSA phi scan.
3914 
3915     // Fix the scalar loop reduction variable with the incoming reduction sum
3916     // from the vector body and from the backedge value.
3917   int IncomingEdgeBlockIdx =
3918     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
3919   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3920   // Pick the other block.
3921   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3922   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3923   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3924 }
3925 
3926 void InnerLoopVectorizer::clearReductionWrapFlags(
3927     RecurrenceDescriptor &RdxDesc) {
3928   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3929   if (RK != RecurrenceDescriptor::RK_IntegerAdd &&
3930       RK != RecurrenceDescriptor::RK_IntegerMult)
3931     return;
3932 
3933   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
3934   assert(LoopExitInstr && "null loop exit instruction");
3935   SmallVector<Instruction *, 8> Worklist;
3936   SmallPtrSet<Instruction *, 8> Visited;
3937   Worklist.push_back(LoopExitInstr);
3938   Visited.insert(LoopExitInstr);
3939 
3940   while (!Worklist.empty()) {
3941     Instruction *Cur = Worklist.pop_back_val();
3942     if (isa<OverflowingBinaryOperator>(Cur))
3943       for (unsigned Part = 0; Part < UF; ++Part) {
3944         Value *V = getOrCreateVectorValue(Cur, Part);
3945         cast<Instruction>(V)->dropPoisonGeneratingFlags();
3946       }
3947 
3948     for (User *U : Cur->users()) {
3949       Instruction *UI = cast<Instruction>(U);
3950       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
3951           Visited.insert(UI).second)
3952         Worklist.push_back(UI);
3953     }
3954   }
3955 }
3956 
3957 void InnerLoopVectorizer::fixLCSSAPHIs() {
3958   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3959     if (LCSSAPhi.getNumIncomingValues() == 1) {
3960       auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
3961       // Non-instruction incoming values will have only one value.
3962       unsigned LastLane = 0;
3963       if (isa<Instruction>(IncomingValue))
3964           LastLane = Cost->isUniformAfterVectorization(
3965                          cast<Instruction>(IncomingValue), VF)
3966                          ? 0
3967                          : VF - 1;
3968       // Can be a loop invariant incoming value or the last scalar value to be
3969       // extracted from the vectorized loop.
3970       Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3971       Value *lastIncomingValue =
3972           getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
3973       LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
3974     }
3975   }
3976 }
3977 
3978 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
3979   // The basic block and loop containing the predicated instruction.
3980   auto *PredBB = PredInst->getParent();
3981   auto *VectorLoop = LI->getLoopFor(PredBB);
3982 
3983   // Initialize a worklist with the operands of the predicated instruction.
3984   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
3985 
3986   // Holds instructions that we need to analyze again. An instruction may be
3987   // reanalyzed if we don't yet know if we can sink it or not.
3988   SmallVector<Instruction *, 8> InstsToReanalyze;
3989 
3990   // Returns true if a given use occurs in the predicated block. Phi nodes use
3991   // their operands in their corresponding predecessor blocks.
3992   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
3993     auto *I = cast<Instruction>(U.getUser());
3994     BasicBlock *BB = I->getParent();
3995     if (auto *Phi = dyn_cast<PHINode>(I))
3996       BB = Phi->getIncomingBlock(
3997           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3998     return BB == PredBB;
3999   };
4000 
4001   // Iteratively sink the scalarized operands of the predicated instruction
4002   // into the block we created for it. When an instruction is sunk, it's
4003   // operands are then added to the worklist. The algorithm ends after one pass
4004   // through the worklist doesn't sink a single instruction.
4005   bool Changed;
4006   do {
4007     // Add the instructions that need to be reanalyzed to the worklist, and
4008     // reset the changed indicator.
4009     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4010     InstsToReanalyze.clear();
4011     Changed = false;
4012 
4013     while (!Worklist.empty()) {
4014       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4015 
4016       // We can't sink an instruction if it is a phi node, is already in the
4017       // predicated block, is not in the loop, or may have side effects.
4018       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4019           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4020         continue;
4021 
4022       // It's legal to sink the instruction if all its uses occur in the
4023       // predicated block. Otherwise, there's nothing to do yet, and we may
4024       // need to reanalyze the instruction.
4025       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4026         InstsToReanalyze.push_back(I);
4027         continue;
4028       }
4029 
4030       // Move the instruction to the beginning of the predicated block, and add
4031       // it's operands to the worklist.
4032       I->moveBefore(&*PredBB->getFirstInsertionPt());
4033       Worklist.insert(I->op_begin(), I->op_end());
4034 
4035       // The sinking may have enabled other instructions to be sunk, so we will
4036       // need to iterate.
4037       Changed = true;
4038     }
4039   } while (Changed);
4040 }
4041 
4042 void InnerLoopVectorizer::fixNonInductionPHIs() {
4043   for (PHINode *OrigPhi : OrigPHIsToFix) {
4044     PHINode *NewPhi =
4045         cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
4046     unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
4047 
4048     SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
4049         predecessors(OrigPhi->getParent()));
4050     SmallVector<BasicBlock *, 2> VectorBBPredecessors(
4051         predecessors(NewPhi->getParent()));
4052     assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
4053            "Scalar and Vector BB should have the same number of predecessors");
4054 
4055     // The insertion point in Builder may be invalidated by the time we get
4056     // here. Force the Builder insertion point to something valid so that we do
4057     // not run into issues during insertion point restore in
4058     // getOrCreateVectorValue calls below.
4059     Builder.SetInsertPoint(NewPhi);
4060 
4061     // The predecessor order is preserved and we can rely on mapping between
4062     // scalar and vector block predecessors.
4063     for (unsigned i = 0; i < NumIncomingValues; ++i) {
4064       BasicBlock *NewPredBB = VectorBBPredecessors[i];
4065 
4066       // When looking up the new scalar/vector values to fix up, use incoming
4067       // values from original phi.
4068       Value *ScIncV =
4069           OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
4070 
4071       // Scalar incoming value may need a broadcast
4072       Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
4073       NewPhi->addIncoming(NewIncV, NewPredBB);
4074     }
4075   }
4076 }
4077 
4078 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF,
4079                                    unsigned VF, bool IsPtrLoopInvariant,
4080                                    SmallBitVector &IsIndexLoopInvariant) {
4081   // Construct a vector GEP by widening the operands of the scalar GEP as
4082   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4083   // results in a vector of pointers when at least one operand of the GEP
4084   // is vector-typed. Thus, to keep the representation compact, we only use
4085   // vector-typed operands for loop-varying values.
4086 
4087   if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4088     // If we are vectorizing, but the GEP has only loop-invariant operands,
4089     // the GEP we build (by only using vector-typed operands for
4090     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4091     // produce a vector of pointers, we need to either arbitrarily pick an
4092     // operand to broadcast, or broadcast a clone of the original GEP.
4093     // Here, we broadcast a clone of the original.
4094     //
4095     // TODO: If at some point we decide to scalarize instructions having
4096     //       loop-invariant operands, this special case will no longer be
4097     //       required. We would add the scalarization decision to
4098     //       collectLoopScalars() and teach getVectorValue() to broadcast
4099     //       the lane-zero scalar value.
4100     auto *Clone = Builder.Insert(GEP->clone());
4101     for (unsigned Part = 0; Part < UF; ++Part) {
4102       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4103       VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart);
4104       addMetadata(EntryPart, GEP);
4105     }
4106   } else {
4107     // If the GEP has at least one loop-varying operand, we are sure to
4108     // produce a vector of pointers. But if we are only unrolling, we want
4109     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4110     // produce with the code below will be scalar (if VF == 1) or vector
4111     // (otherwise). Note that for the unroll-only case, we still maintain
4112     // values in the vector mapping with initVector, as we do for other
4113     // instructions.
4114     for (unsigned Part = 0; Part < UF; ++Part) {
4115       // The pointer operand of the new GEP. If it's loop-invariant, we
4116       // won't broadcast it.
4117       auto *Ptr = IsPtrLoopInvariant
4118                       ? GEP->getPointerOperand()
4119                       : getOrCreateVectorValue(GEP->getPointerOperand(), Part);
4120 
4121       // Collect all the indices for the new GEP. If any index is
4122       // loop-invariant, we won't broadcast it.
4123       SmallVector<Value *, 4> Indices;
4124       for (auto Index : enumerate(GEP->indices())) {
4125         Value *User = Index.value().get();
4126         if (IsIndexLoopInvariant[Index.index()])
4127           Indices.push_back(User);
4128         else
4129           Indices.push_back(getOrCreateVectorValue(User, Part));
4130       }
4131 
4132       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4133       // but it should be a vector, otherwise.
4134       auto *NewGEP =
4135           GEP->isInBounds()
4136               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4137                                           Indices)
4138               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4139       assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
4140              "NewGEP is not a pointer vector");
4141       VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP);
4142       addMetadata(NewGEP, GEP);
4143     }
4144   }
4145 }
4146 
4147 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4148                                               unsigned VF) {
4149   PHINode *P = cast<PHINode>(PN);
4150   if (EnableVPlanNativePath) {
4151     // Currently we enter here in the VPlan-native path for non-induction
4152     // PHIs where all control flow is uniform. We simply widen these PHIs.
4153     // Create a vector phi with no operands - the vector phi operands will be
4154     // set at the end of vector code generation.
4155     Type *VecTy =
4156         (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF);
4157     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4158     VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
4159     OrigPHIsToFix.push_back(P);
4160 
4161     return;
4162   }
4163 
4164   assert(PN->getParent() == OrigLoop->getHeader() &&
4165          "Non-header phis should have been handled elsewhere");
4166 
4167   // In order to support recurrences we need to be able to vectorize Phi nodes.
4168   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4169   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4170   // this value when we vectorize all of the instructions that use the PHI.
4171   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4172     for (unsigned Part = 0; Part < UF; ++Part) {
4173       // This is phase one of vectorizing PHIs.
4174       Type *VecTy =
4175           (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF);
4176       Value *EntryPart = PHINode::Create(
4177           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4178       VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4179     }
4180     return;
4181   }
4182 
4183   setDebugLocFromInst(Builder, P);
4184 
4185   // This PHINode must be an induction variable.
4186   // Make sure that we know about it.
4187   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4188 
4189   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4190   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4191 
4192   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4193   // which can be found from the original scalar operations.
4194   switch (II.getKind()) {
4195   case InductionDescriptor::IK_NoInduction:
4196     llvm_unreachable("Unknown induction");
4197   case InductionDescriptor::IK_IntInduction:
4198   case InductionDescriptor::IK_FpInduction:
4199     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4200   case InductionDescriptor::IK_PtrInduction: {
4201     // Handle the pointer induction variable case.
4202     assert(P->getType()->isPointerTy() && "Unexpected type.");
4203     // This is the normalized GEP that starts counting at zero.
4204     Value *PtrInd = Induction;
4205     PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4206     // Determine the number of scalars we need to generate for each unroll
4207     // iteration. If the instruction is uniform, we only need to generate the
4208     // first lane. Otherwise, we generate all VF values.
4209     unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
4210     // These are the scalar results. Notice that we don't generate vector GEPs
4211     // because scalar GEPs result in better code.
4212     for (unsigned Part = 0; Part < UF; ++Part) {
4213       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4214         Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
4215         Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4216         Value *SclrGep =
4217             emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4218         SclrGep->setName("next.gep");
4219         VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4220       }
4221     }
4222     return;
4223   }
4224   }
4225 }
4226 
4227 /// A helper function for checking whether an integer division-related
4228 /// instruction may divide by zero (in which case it must be predicated if
4229 /// executed conditionally in the scalar code).
4230 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4231 /// Non-zero divisors that are non compile-time constants will not be
4232 /// converted into multiplication, so we will still end up scalarizing
4233 /// the division, but can do so w/o predication.
4234 static bool mayDivideByZero(Instruction &I) {
4235   assert((I.getOpcode() == Instruction::UDiv ||
4236           I.getOpcode() == Instruction::SDiv ||
4237           I.getOpcode() == Instruction::URem ||
4238           I.getOpcode() == Instruction::SRem) &&
4239          "Unexpected instruction");
4240   Value *Divisor = I.getOperand(1);
4241   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4242   return !CInt || CInt->isZero();
4243 }
4244 
4245 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User,
4246                                            VPTransformState &State) {
4247   switch (I.getOpcode()) {
4248   case Instruction::Call:
4249   case Instruction::Br:
4250   case Instruction::PHI:
4251   case Instruction::GetElementPtr:
4252   case Instruction::Select:
4253     llvm_unreachable("This instruction is handled by a different recipe.");
4254   case Instruction::UDiv:
4255   case Instruction::SDiv:
4256   case Instruction::SRem:
4257   case Instruction::URem:
4258   case Instruction::Add:
4259   case Instruction::FAdd:
4260   case Instruction::Sub:
4261   case Instruction::FSub:
4262   case Instruction::FNeg:
4263   case Instruction::Mul:
4264   case Instruction::FMul:
4265   case Instruction::FDiv:
4266   case Instruction::FRem:
4267   case Instruction::Shl:
4268   case Instruction::LShr:
4269   case Instruction::AShr:
4270   case Instruction::And:
4271   case Instruction::Or:
4272   case Instruction::Xor: {
4273     // Just widen unops and binops.
4274     setDebugLocFromInst(Builder, &I);
4275 
4276     for (unsigned Part = 0; Part < UF; ++Part) {
4277       SmallVector<Value *, 2> Ops;
4278       for (VPValue *VPOp : User.operands())
4279         Ops.push_back(State.get(VPOp, Part));
4280 
4281       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4282 
4283       if (auto *VecOp = dyn_cast<Instruction>(V))
4284         VecOp->copyIRFlags(&I);
4285 
4286       // Use this vector value for all users of the original instruction.
4287       VectorLoopValueMap.setVectorValue(&I, Part, V);
4288       addMetadata(V, &I);
4289     }
4290 
4291     break;
4292   }
4293   case Instruction::ICmp:
4294   case Instruction::FCmp: {
4295     // Widen compares. Generate vector compares.
4296     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4297     auto *Cmp = cast<CmpInst>(&I);
4298     setDebugLocFromInst(Builder, Cmp);
4299     for (unsigned Part = 0; Part < UF; ++Part) {
4300       Value *A = State.get(User.getOperand(0), Part);
4301       Value *B = State.get(User.getOperand(1), Part);
4302       Value *C = nullptr;
4303       if (FCmp) {
4304         // Propagate fast math flags.
4305         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4306         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4307         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4308       } else {
4309         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4310       }
4311       VectorLoopValueMap.setVectorValue(&I, Part, C);
4312       addMetadata(C, &I);
4313     }
4314 
4315     break;
4316   }
4317 
4318   case Instruction::ZExt:
4319   case Instruction::SExt:
4320   case Instruction::FPToUI:
4321   case Instruction::FPToSI:
4322   case Instruction::FPExt:
4323   case Instruction::PtrToInt:
4324   case Instruction::IntToPtr:
4325   case Instruction::SIToFP:
4326   case Instruction::UIToFP:
4327   case Instruction::Trunc:
4328   case Instruction::FPTrunc:
4329   case Instruction::BitCast: {
4330     auto *CI = cast<CastInst>(&I);
4331     setDebugLocFromInst(Builder, CI);
4332 
4333     /// Vectorize casts.
4334     Type *DestTy =
4335         (VF == 1) ? CI->getType() : FixedVectorType::get(CI->getType(), VF);
4336 
4337     for (unsigned Part = 0; Part < UF; ++Part) {
4338       Value *A = State.get(User.getOperand(0), Part);
4339       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4340       VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4341       addMetadata(Cast, &I);
4342     }
4343     break;
4344   }
4345   default:
4346     // This instruction is not vectorized by simple widening.
4347     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4348     llvm_unreachable("Unhandled instruction!");
4349   } // end of switch.
4350 }
4351 
4352 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands,
4353                                                VPTransformState &State) {
4354   assert(!isa<DbgInfoIntrinsic>(I) &&
4355          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4356   setDebugLocFromInst(Builder, &I);
4357 
4358   Module *M = I.getParent()->getParent()->getParent();
4359   auto *CI = cast<CallInst>(&I);
4360 
4361   SmallVector<Type *, 4> Tys;
4362   for (Value *ArgOperand : CI->arg_operands())
4363     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4364 
4365   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4366 
4367   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4368   // version of the instruction.
4369   // Is it beneficial to perform intrinsic call compared to lib call?
4370   bool NeedToScalarize = false;
4371   unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4372   bool UseVectorIntrinsic =
4373       ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost;
4374   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4375          "Instruction should be scalarized elsewhere.");
4376 
4377   for (unsigned Part = 0; Part < UF; ++Part) {
4378     SmallVector<Value *, 4> Args;
4379     for (auto &I : enumerate(ArgOperands.operands())) {
4380       // Some intrinsics have a scalar argument - don't replace it with a
4381       // vector.
4382       Value *Arg;
4383       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4384         Arg = State.get(I.value(), Part);
4385       else
4386         Arg = State.get(I.value(), {0, 0});
4387       Args.push_back(Arg);
4388     }
4389 
4390     Function *VectorF;
4391     if (UseVectorIntrinsic) {
4392       // Use vector version of the intrinsic.
4393       Type *TysForDecl[] = {CI->getType()};
4394       if (VF > 1)
4395         TysForDecl[0] =
4396             FixedVectorType::get(CI->getType()->getScalarType(), VF);
4397       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4398       assert(VectorF && "Can't retrieve vector intrinsic.");
4399     } else {
4400       // Use vector version of the function call.
4401       const VFShape Shape =
4402           VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/);
4403 #ifndef NDEBUG
4404       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4405              "Can't create vector function.");
4406 #endif
4407         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4408     }
4409       SmallVector<OperandBundleDef, 1> OpBundles;
4410       CI->getOperandBundlesAsDefs(OpBundles);
4411       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4412 
4413       if (isa<FPMathOperator>(V))
4414         V->copyFastMathFlags(CI);
4415 
4416       VectorLoopValueMap.setVectorValue(&I, Part, V);
4417       addMetadata(V, &I);
4418   }
4419 }
4420 
4421 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I,
4422                                                  VPUser &Operands,
4423                                                  bool InvariantCond,
4424                                                  VPTransformState &State) {
4425   setDebugLocFromInst(Builder, &I);
4426 
4427   // The condition can be loop invariant  but still defined inside the
4428   // loop. This means that we can't just use the original 'cond' value.
4429   // We have to take the 'vectorized' value and pick the first lane.
4430   // Instcombine will make this a no-op.
4431   auto *InvarCond =
4432       InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr;
4433 
4434   for (unsigned Part = 0; Part < UF; ++Part) {
4435     Value *Cond =
4436         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
4437     Value *Op0 = State.get(Operands.getOperand(1), Part);
4438     Value *Op1 = State.get(Operands.getOperand(2), Part);
4439     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
4440     VectorLoopValueMap.setVectorValue(&I, Part, Sel);
4441     addMetadata(Sel, &I);
4442   }
4443 }
4444 
4445 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
4446   // We should not collect Scalars more than once per VF. Right now, this
4447   // function is called from collectUniformsAndScalars(), which already does
4448   // this check. Collecting Scalars for VF=1 does not make any sense.
4449   assert(VF >= 2 && Scalars.find(VF) == Scalars.end() &&
4450          "This function should not be visited twice for the same VF");
4451 
4452   SmallSetVector<Instruction *, 8> Worklist;
4453 
4454   // These sets are used to seed the analysis with pointers used by memory
4455   // accesses that will remain scalar.
4456   SmallSetVector<Instruction *, 8> ScalarPtrs;
4457   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4458 
4459   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4460   // The pointer operands of loads and stores will be scalar as long as the
4461   // memory access is not a gather or scatter operation. The value operand of a
4462   // store will remain scalar if the store is scalarized.
4463   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4464     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4465     assert(WideningDecision != CM_Unknown &&
4466            "Widening decision should be ready at this moment");
4467     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4468       if (Ptr == Store->getValueOperand())
4469         return WideningDecision == CM_Scalarize;
4470     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4471            "Ptr is neither a value or pointer operand");
4472     return WideningDecision != CM_GatherScatter;
4473   };
4474 
4475   // A helper that returns true if the given value is a bitcast or
4476   // getelementptr instruction contained in the loop.
4477   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4478     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4479             isa<GetElementPtrInst>(V)) &&
4480            !TheLoop->isLoopInvariant(V);
4481   };
4482 
4483   // A helper that evaluates a memory access's use of a pointer. If the use
4484   // will be a scalar use, and the pointer is only used by memory accesses, we
4485   // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4486   // PossibleNonScalarPtrs.
4487   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4488     // We only care about bitcast and getelementptr instructions contained in
4489     // the loop.
4490     if (!isLoopVaryingBitCastOrGEP(Ptr))
4491       return;
4492 
4493     // If the pointer has already been identified as scalar (e.g., if it was
4494     // also identified as uniform), there's nothing to do.
4495     auto *I = cast<Instruction>(Ptr);
4496     if (Worklist.count(I))
4497       return;
4498 
4499     // If the use of the pointer will be a scalar use, and all users of the
4500     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4501     // place the pointer in PossibleNonScalarPtrs.
4502     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4503           return isa<LoadInst>(U) || isa<StoreInst>(U);
4504         }))
4505       ScalarPtrs.insert(I);
4506     else
4507       PossibleNonScalarPtrs.insert(I);
4508   };
4509 
4510   // We seed the scalars analysis with three classes of instructions: (1)
4511   // instructions marked uniform-after-vectorization, (2) bitcast and
4512   // getelementptr instructions used by memory accesses requiring a scalar use,
4513   // and (3) pointer induction variables and their update instructions (we
4514   // currently only scalarize these).
4515   //
4516   // (1) Add to the worklist all instructions that have been identified as
4517   // uniform-after-vectorization.
4518   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4519 
4520   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4521   // memory accesses requiring a scalar use. The pointer operands of loads and
4522   // stores will be scalar as long as the memory accesses is not a gather or
4523   // scatter operation. The value operand of a store will remain scalar if the
4524   // store is scalarized.
4525   for (auto *BB : TheLoop->blocks())
4526     for (auto &I : *BB) {
4527       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4528         evaluatePtrUse(Load, Load->getPointerOperand());
4529       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4530         evaluatePtrUse(Store, Store->getPointerOperand());
4531         evaluatePtrUse(Store, Store->getValueOperand());
4532       }
4533     }
4534   for (auto *I : ScalarPtrs)
4535     if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) {
4536       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4537       Worklist.insert(I);
4538     }
4539 
4540   // (3) Add to the worklist all pointer induction variables and their update
4541   // instructions.
4542   //
4543   // TODO: Once we are able to vectorize pointer induction variables we should
4544   //       no longer insert them into the worklist here.
4545   auto *Latch = TheLoop->getLoopLatch();
4546   for (auto &Induction : Legal->getInductionVars()) {
4547     auto *Ind = Induction.first;
4548     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4549     if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
4550       continue;
4551     Worklist.insert(Ind);
4552     Worklist.insert(IndUpdate);
4553     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4554     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4555                       << "\n");
4556   }
4557 
4558   // Insert the forced scalars.
4559   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4560   // induction variable when the PHI user is scalarized.
4561   auto ForcedScalar = ForcedScalars.find(VF);
4562   if (ForcedScalar != ForcedScalars.end())
4563     for (auto *I : ForcedScalar->second)
4564       Worklist.insert(I);
4565 
4566   // Expand the worklist by looking through any bitcasts and getelementptr
4567   // instructions we've already identified as scalar. This is similar to the
4568   // expansion step in collectLoopUniforms(); however, here we're only
4569   // expanding to include additional bitcasts and getelementptr instructions.
4570   unsigned Idx = 0;
4571   while (Idx != Worklist.size()) {
4572     Instruction *Dst = Worklist[Idx++];
4573     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4574       continue;
4575     auto *Src = cast<Instruction>(Dst->getOperand(0));
4576     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4577           auto *J = cast<Instruction>(U);
4578           return !TheLoop->contains(J) || Worklist.count(J) ||
4579                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4580                   isScalarUse(J, Src));
4581         })) {
4582       Worklist.insert(Src);
4583       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4584     }
4585   }
4586 
4587   // An induction variable will remain scalar if all users of the induction
4588   // variable and induction variable update remain scalar.
4589   for (auto &Induction : Legal->getInductionVars()) {
4590     auto *Ind = Induction.first;
4591     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4592 
4593     // We already considered pointer induction variables, so there's no reason
4594     // to look at their users again.
4595     //
4596     // TODO: Once we are able to vectorize pointer induction variables we
4597     //       should no longer skip over them here.
4598     if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
4599       continue;
4600 
4601     // If tail-folding is applied, the primary induction variable will be used
4602     // to feed a vector compare.
4603     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4604       continue;
4605 
4606     // Determine if all users of the induction variable are scalar after
4607     // vectorization.
4608     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4609       auto *I = cast<Instruction>(U);
4610       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
4611     });
4612     if (!ScalarInd)
4613       continue;
4614 
4615     // Determine if all users of the induction variable update instruction are
4616     // scalar after vectorization.
4617     auto ScalarIndUpdate =
4618         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4619           auto *I = cast<Instruction>(U);
4620           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
4621         });
4622     if (!ScalarIndUpdate)
4623       continue;
4624 
4625     // The induction variable and its update instruction will remain scalar.
4626     Worklist.insert(Ind);
4627     Worklist.insert(IndUpdate);
4628     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4629     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4630                       << "\n");
4631   }
4632 
4633   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4634 }
4635 
4636 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) {
4637   if (!blockNeedsPredication(I->getParent()))
4638     return false;
4639   switch(I->getOpcode()) {
4640   default:
4641     break;
4642   case Instruction::Load:
4643   case Instruction::Store: {
4644     if (!Legal->isMaskRequired(I))
4645       return false;
4646     auto *Ptr = getLoadStorePointerOperand(I);
4647     auto *Ty = getMemInstValueType(I);
4648     // We have already decided how to vectorize this instruction, get that
4649     // result.
4650     if (VF > 1) {
4651       InstWidening WideningDecision = getWideningDecision(I, VF);
4652       assert(WideningDecision != CM_Unknown &&
4653              "Widening decision should be ready at this moment");
4654       return WideningDecision == CM_Scalarize;
4655     }
4656     const Align Alignment = getLoadStoreAlignment(I);
4657     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4658                                 isLegalMaskedGather(Ty, Alignment))
4659                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4660                                 isLegalMaskedScatter(Ty, Alignment));
4661   }
4662   case Instruction::UDiv:
4663   case Instruction::SDiv:
4664   case Instruction::SRem:
4665   case Instruction::URem:
4666     return mayDivideByZero(*I);
4667   }
4668   return false;
4669 }
4670 
4671 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I,
4672                                                                unsigned VF) {
4673   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4674   assert(getWideningDecision(I, VF) == CM_Unknown &&
4675          "Decision should not be set yet.");
4676   auto *Group = getInterleavedAccessGroup(I);
4677   assert(Group && "Must have a group.");
4678 
4679   // If the instruction's allocated size doesn't equal it's type size, it
4680   // requires padding and will be scalarized.
4681   auto &DL = I->getModule()->getDataLayout();
4682   auto *ScalarTy = getMemInstValueType(I);
4683   if (hasIrregularType(ScalarTy, DL, VF))
4684     return false;
4685 
4686   // Check if masking is required.
4687   // A Group may need masking for one of two reasons: it resides in a block that
4688   // needs predication, or it was decided to use masking to deal with gaps.
4689   bool PredicatedAccessRequiresMasking =
4690       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
4691   bool AccessWithGapsRequiresMasking =
4692       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
4693   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
4694     return true;
4695 
4696   // If masked interleaving is required, we expect that the user/target had
4697   // enabled it, because otherwise it either wouldn't have been created or
4698   // it should have been invalidated by the CostModel.
4699   assert(useMaskedInterleavedAccesses(TTI) &&
4700          "Masked interleave-groups for predicated accesses are not enabled.");
4701 
4702   auto *Ty = getMemInstValueType(I);
4703   const Align Alignment = getLoadStoreAlignment(I);
4704   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4705                           : TTI.isLegalMaskedStore(Ty, Alignment);
4706 }
4707 
4708 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
4709                                                                unsigned VF) {
4710   // Get and ensure we have a valid memory instruction.
4711   LoadInst *LI = dyn_cast<LoadInst>(I);
4712   StoreInst *SI = dyn_cast<StoreInst>(I);
4713   assert((LI || SI) && "Invalid memory instruction");
4714 
4715   auto *Ptr = getLoadStorePointerOperand(I);
4716 
4717   // In order to be widened, the pointer should be consecutive, first of all.
4718   if (!Legal->isConsecutivePtr(Ptr))
4719     return false;
4720 
4721   // If the instruction is a store located in a predicated block, it will be
4722   // scalarized.
4723   if (isScalarWithPredication(I))
4724     return false;
4725 
4726   // If the instruction's allocated size doesn't equal it's type size, it
4727   // requires padding and will be scalarized.
4728   auto &DL = I->getModule()->getDataLayout();
4729   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
4730   if (hasIrregularType(ScalarTy, DL, VF))
4731     return false;
4732 
4733   return true;
4734 }
4735 
4736 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
4737   // We should not collect Uniforms more than once per VF. Right now,
4738   // this function is called from collectUniformsAndScalars(), which
4739   // already does this check. Collecting Uniforms for VF=1 does not make any
4740   // sense.
4741 
4742   assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() &&
4743          "This function should not be visited twice for the same VF");
4744 
4745   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4746   // not analyze again.  Uniforms.count(VF) will return 1.
4747   Uniforms[VF].clear();
4748 
4749   // We now know that the loop is vectorizable!
4750   // Collect instructions inside the loop that will remain uniform after
4751   // vectorization.
4752 
4753   // Global values, params and instructions outside of current loop are out of
4754   // scope.
4755   auto isOutOfScope = [&](Value *V) -> bool {
4756     Instruction *I = dyn_cast<Instruction>(V);
4757     return (!I || !TheLoop->contains(I));
4758   };
4759 
4760   SetVector<Instruction *> Worklist;
4761   BasicBlock *Latch = TheLoop->getLoopLatch();
4762 
4763   // Instructions that are scalar with predication must not be considered
4764   // uniform after vectorization, because that would create an erroneous
4765   // replicating region where only a single instance out of VF should be formed.
4766   // TODO: optimize such seldom cases if found important, see PR40816.
4767   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4768     if (isScalarWithPredication(I, VF)) {
4769       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4770                         << *I << "\n");
4771       return;
4772     }
4773     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4774     Worklist.insert(I);
4775   };
4776 
4777   // Start with the conditional branch. If the branch condition is an
4778   // instruction contained in the loop that is only used by the branch, it is
4779   // uniform.
4780   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4781   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4782     addToWorklistIfAllowed(Cmp);
4783 
4784   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
4785   // are pointers that are treated like consecutive pointers during
4786   // vectorization. The pointer operands of interleaved accesses are an
4787   // example.
4788   SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
4789 
4790   // Holds pointer operands of instructions that are possibly non-uniform.
4791   SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
4792 
4793   auto isUniformDecision = [&](Instruction *I, unsigned VF) {
4794     InstWidening WideningDecision = getWideningDecision(I, VF);
4795     assert(WideningDecision != CM_Unknown &&
4796            "Widening decision should be ready at this moment");
4797 
4798     return (WideningDecision == CM_Widen ||
4799             WideningDecision == CM_Widen_Reverse ||
4800             WideningDecision == CM_Interleave);
4801   };
4802   // Iterate over the instructions in the loop, and collect all
4803   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
4804   // that a consecutive-like pointer operand will be scalarized, we collect it
4805   // in PossibleNonUniformPtrs instead. We use two sets here because a single
4806   // getelementptr instruction can be used by both vectorized and scalarized
4807   // memory instructions. For example, if a loop loads and stores from the same
4808   // location, but the store is conditional, the store will be scalarized, and
4809   // the getelementptr won't remain uniform.
4810   for (auto *BB : TheLoop->blocks())
4811     for (auto &I : *BB) {
4812       // If there's no pointer operand, there's nothing to do.
4813       auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
4814       if (!Ptr)
4815         continue;
4816 
4817       // True if all users of Ptr are memory accesses that have Ptr as their
4818       // pointer operand.
4819       auto UsersAreMemAccesses =
4820           llvm::all_of(Ptr->users(), [&](User *U) -> bool {
4821             return getLoadStorePointerOperand(U) == Ptr;
4822           });
4823 
4824       // Ensure the memory instruction will not be scalarized or used by
4825       // gather/scatter, making its pointer operand non-uniform. If the pointer
4826       // operand is used by any instruction other than a memory access, we
4827       // conservatively assume the pointer operand may be non-uniform.
4828       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
4829         PossibleNonUniformPtrs.insert(Ptr);
4830 
4831       // If the memory instruction will be vectorized and its pointer operand
4832       // is consecutive-like, or interleaving - the pointer operand should
4833       // remain uniform.
4834       else
4835         ConsecutiveLikePtrs.insert(Ptr);
4836     }
4837 
4838   // Add to the Worklist all consecutive and consecutive-like pointers that
4839   // aren't also identified as possibly non-uniform.
4840   for (auto *V : ConsecutiveLikePtrs)
4841     if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end())
4842       addToWorklistIfAllowed(V);
4843 
4844   // Expand Worklist in topological order: whenever a new instruction
4845   // is added , its users should be already inside Worklist.  It ensures
4846   // a uniform instruction will only be used by uniform instructions.
4847   unsigned idx = 0;
4848   while (idx != Worklist.size()) {
4849     Instruction *I = Worklist[idx++];
4850 
4851     for (auto OV : I->operand_values()) {
4852       // isOutOfScope operands cannot be uniform instructions.
4853       if (isOutOfScope(OV))
4854         continue;
4855       // First order recurrence Phi's should typically be considered
4856       // non-uniform.
4857       auto *OP = dyn_cast<PHINode>(OV);
4858       if (OP && Legal->isFirstOrderRecurrence(OP))
4859         continue;
4860       // If all the users of the operand are uniform, then add the
4861       // operand into the uniform worklist.
4862       auto *OI = cast<Instruction>(OV);
4863       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4864             auto *J = cast<Instruction>(U);
4865             return Worklist.count(J) ||
4866                    (OI == getLoadStorePointerOperand(J) &&
4867                     isUniformDecision(J, VF));
4868           }))
4869         addToWorklistIfAllowed(OI);
4870     }
4871   }
4872 
4873   // Returns true if Ptr is the pointer operand of a memory access instruction
4874   // I, and I is known to not require scalarization.
4875   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4876     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4877   };
4878 
4879   // For an instruction to be added into Worklist above, all its users inside
4880   // the loop should also be in Worklist. However, this condition cannot be
4881   // true for phi nodes that form a cyclic dependence. We must process phi
4882   // nodes separately. An induction variable will remain uniform if all users
4883   // of the induction variable and induction variable update remain uniform.
4884   // The code below handles both pointer and non-pointer induction variables.
4885   for (auto &Induction : Legal->getInductionVars()) {
4886     auto *Ind = Induction.first;
4887     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4888 
4889     // Determine if all users of the induction variable are uniform after
4890     // vectorization.
4891     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4892       auto *I = cast<Instruction>(U);
4893       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4894              isVectorizedMemAccessUse(I, Ind);
4895     });
4896     if (!UniformInd)
4897       continue;
4898 
4899     // Determine if all users of the induction variable update instruction are
4900     // uniform after vectorization.
4901     auto UniformIndUpdate =
4902         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4903           auto *I = cast<Instruction>(U);
4904           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4905                  isVectorizedMemAccessUse(I, IndUpdate);
4906         });
4907     if (!UniformIndUpdate)
4908       continue;
4909 
4910     // The induction variable and its update instruction will remain uniform.
4911     addToWorklistIfAllowed(Ind);
4912     addToWorklistIfAllowed(IndUpdate);
4913   }
4914 
4915   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4916 }
4917 
4918 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4919   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4920 
4921   if (Legal->getRuntimePointerChecking()->Need) {
4922     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4923         "runtime pointer checks needed. Enable vectorization of this "
4924         "loop with '#pragma clang loop vectorize(enable)' when "
4925         "compiling with -Os/-Oz",
4926         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4927     return true;
4928   }
4929 
4930   if (!PSE.getUnionPredicate().getPredicates().empty()) {
4931     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4932         "runtime SCEV checks needed. Enable vectorization of this "
4933         "loop with '#pragma clang loop vectorize(enable)' when "
4934         "compiling with -Os/-Oz",
4935         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4936     return true;
4937   }
4938 
4939   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4940   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4941     reportVectorizationFailure("Runtime stride check is required with -Os/-Oz",
4942         "runtime stride == 1 checks needed. Enable vectorization of "
4943         "this loop with '#pragma clang loop vectorize(enable)' when "
4944         "compiling with -Os/-Oz",
4945         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4946     return true;
4947   }
4948 
4949   return false;
4950 }
4951 
4952 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF,
4953                                                             unsigned UserIC) {
4954   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4955     // TODO: It may by useful to do since it's still likely to be dynamically
4956     // uniform if the target can skip.
4957     reportVectorizationFailure(
4958         "Not inserting runtime ptr check for divergent target",
4959         "runtime pointer checks needed. Not enabled for divergent target",
4960         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
4961     return None;
4962   }
4963 
4964   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
4965   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4966   if (TC == 1) {
4967     reportVectorizationFailure("Single iteration (non) loop",
4968         "loop trip count is one, irrelevant for vectorization",
4969         "SingleIterationLoop", ORE, TheLoop);
4970     return None;
4971   }
4972 
4973   switch (ScalarEpilogueStatus) {
4974   case CM_ScalarEpilogueAllowed:
4975     return UserVF ? UserVF : computeFeasibleMaxVF(TC);
4976   case CM_ScalarEpilogueNotNeededUsePredicate:
4977     LLVM_DEBUG(
4978         dbgs() << "LV: vector predicate hint/switch found.\n"
4979                << "LV: Not allowing scalar epilogue, creating predicated "
4980                << "vector loop.\n");
4981     break;
4982   case CM_ScalarEpilogueNotAllowedLowTripLoop:
4983     // fallthrough as a special case of OptForSize
4984   case CM_ScalarEpilogueNotAllowedOptSize:
4985     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
4986       LLVM_DEBUG(
4987           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4988     else
4989       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
4990                         << "count.\n");
4991 
4992     // Bail if runtime checks are required, which are not good when optimising
4993     // for size.
4994     if (runtimeChecksRequired())
4995       return None;
4996     break;
4997   }
4998 
4999   // Now try the tail folding
5000 
5001   // Invalidate interleave groups that require an epilogue if we can't mask
5002   // the interleave-group.
5003   if (!useMaskedInterleavedAccesses(TTI)) {
5004     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5005            "No decisions should have been taken at this point");
5006     // Note: There is no need to invalidate any cost modeling decisions here, as
5007     // non where taken so far.
5008     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5009   }
5010 
5011   unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC);
5012   assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2");
5013   unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
5014   if (TC > 0 && TC % MaxVFtimesIC == 0) {
5015     // Accept MaxVF if we do not have a tail.
5016     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5017     return MaxVF;
5018   }
5019 
5020   // If we don't know the precise trip count, or if the trip count that we
5021   // found modulo the vectorization factor is not zero, try to fold the tail
5022   // by masking.
5023   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5024   if (Legal->prepareToFoldTailByMasking()) {
5025     FoldTailByMasking = true;
5026     return MaxVF;
5027   }
5028 
5029   if (TC == 0) {
5030     reportVectorizationFailure(
5031         "Unable to calculate the loop count due to complex control flow",
5032         "unable to calculate the loop count due to complex control flow",
5033         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5034     return None;
5035   }
5036 
5037   reportVectorizationFailure(
5038       "Cannot optimize for size and vectorize at the same time.",
5039       "cannot optimize for size and vectorize at the same time. "
5040       "Enable vectorization of this loop with '#pragma clang loop "
5041       "vectorize(enable)' when compiling with -Os/-Oz",
5042       "NoTailLoopWithOptForSize", ORE, TheLoop);
5043   return None;
5044 }
5045 
5046 unsigned
5047 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) {
5048   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5049   unsigned SmallestType, WidestType;
5050   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5051   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5052 
5053   // Get the maximum safe dependence distance in bits computed by LAA.
5054   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5055   // the memory accesses that is most restrictive (involved in the smallest
5056   // dependence distance).
5057   unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
5058 
5059   WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
5060 
5061   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5062   // Note that both WidestRegister and WidestType may not be a powers of 2.
5063   unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType);
5064 
5065   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5066                     << " / " << WidestType << " bits.\n");
5067   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5068                     << WidestRegister << " bits.\n");
5069 
5070   assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
5071                                  " into one vector!");
5072   if (MaxVectorSize == 0) {
5073     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5074     MaxVectorSize = 1;
5075     return MaxVectorSize;
5076   } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
5077              isPowerOf2_32(ConstTripCount)) {
5078     // We need to clamp the VF to be the ConstTripCount. There is no point in
5079     // choosing a higher viable VF as done in the loop below.
5080     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5081                       << ConstTripCount << "\n");
5082     MaxVectorSize = ConstTripCount;
5083     return MaxVectorSize;
5084   }
5085 
5086   unsigned MaxVF = MaxVectorSize;
5087   if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5088       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5089     // Collect all viable vectorization factors larger than the default MaxVF
5090     // (i.e. MaxVectorSize).
5091     SmallVector<unsigned, 8> VFs;
5092     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5093     for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
5094       VFs.push_back(VS);
5095 
5096     // For each VF calculate its register usage.
5097     auto RUs = calculateRegisterUsage(VFs);
5098 
5099     // Select the largest VF which doesn't require more registers than existing
5100     // ones.
5101     for (int i = RUs.size() - 1; i >= 0; --i) {
5102       bool Selected = true;
5103       for (auto& pair : RUs[i].MaxLocalUsers) {
5104         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5105         if (pair.second > TargetNumRegisters)
5106           Selected = false;
5107       }
5108       if (Selected) {
5109         MaxVF = VFs[i];
5110         break;
5111       }
5112     }
5113     if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
5114       if (MaxVF < MinVF) {
5115         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5116                           << ") with target's minimum: " << MinVF << '\n');
5117         MaxVF = MinVF;
5118       }
5119     }
5120   }
5121   return MaxVF;
5122 }
5123 
5124 VectorizationFactor
5125 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
5126   float Cost = expectedCost(1).first;
5127   const float ScalarCost = Cost;
5128   unsigned Width = 1;
5129   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5130 
5131   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5132   if (ForceVectorization && MaxVF > 1) {
5133     // Ignore scalar width, because the user explicitly wants vectorization.
5134     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5135     // evaluation.
5136     Cost = std::numeric_limits<float>::max();
5137   }
5138 
5139   for (unsigned i = 2; i <= MaxVF; i *= 2) {
5140     // Notice that the vector loop needs to be executed less times, so
5141     // we need to divide the cost of the vector loops by the width of
5142     // the vector elements.
5143     VectorizationCostTy C = expectedCost(i);
5144     float VectorCost = C.first / (float)i;
5145     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5146                       << " costs: " << (int)VectorCost << ".\n");
5147     if (!C.second && !ForceVectorization) {
5148       LLVM_DEBUG(
5149           dbgs() << "LV: Not considering vector loop of width " << i
5150                  << " because it will not generate any vector instructions.\n");
5151       continue;
5152     }
5153     if (VectorCost < Cost) {
5154       Cost = VectorCost;
5155       Width = i;
5156     }
5157   }
5158 
5159   if (!EnableCondStoresVectorization && NumPredStores) {
5160     reportVectorizationFailure("There are conditional stores.",
5161         "store that is conditionally executed prevents vectorization",
5162         "ConditionalStore", ORE, TheLoop);
5163     Width = 1;
5164     Cost = ScalarCost;
5165   }
5166 
5167   LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5168              << "LV: Vectorization seems to be not beneficial, "
5169              << "but was forced by a user.\n");
5170   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5171   VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
5172   return Factor;
5173 }
5174 
5175 std::pair<unsigned, unsigned>
5176 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5177   unsigned MinWidth = -1U;
5178   unsigned MaxWidth = 8;
5179   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5180 
5181   // For each block.
5182   for (BasicBlock *BB : TheLoop->blocks()) {
5183     // For each instruction in the loop.
5184     for (Instruction &I : BB->instructionsWithoutDebug()) {
5185       Type *T = I.getType();
5186 
5187       // Skip ignored values.
5188       if (ValuesToIgnore.find(&I) != ValuesToIgnore.end())
5189         continue;
5190 
5191       // Only examine Loads, Stores and PHINodes.
5192       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5193         continue;
5194 
5195       // Examine PHI nodes that are reduction variables. Update the type to
5196       // account for the recurrence type.
5197       if (auto *PN = dyn_cast<PHINode>(&I)) {
5198         if (!Legal->isReductionVariable(PN))
5199           continue;
5200         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
5201         T = RdxDesc.getRecurrenceType();
5202       }
5203 
5204       // Examine the stored values.
5205       if (auto *ST = dyn_cast<StoreInst>(&I))
5206         T = ST->getValueOperand()->getType();
5207 
5208       // Ignore loaded pointer types and stored pointer types that are not
5209       // vectorizable.
5210       //
5211       // FIXME: The check here attempts to predict whether a load or store will
5212       //        be vectorized. We only know this for certain after a VF has
5213       //        been selected. Here, we assume that if an access can be
5214       //        vectorized, it will be. We should also look at extending this
5215       //        optimization to non-pointer types.
5216       //
5217       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
5218           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
5219         continue;
5220 
5221       MinWidth = std::min(MinWidth,
5222                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5223       MaxWidth = std::max(MaxWidth,
5224                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5225     }
5226   }
5227 
5228   return {MinWidth, MaxWidth};
5229 }
5230 
5231 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF,
5232                                                            unsigned LoopCost) {
5233   // -- The interleave heuristics --
5234   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5235   // There are many micro-architectural considerations that we can't predict
5236   // at this level. For example, frontend pressure (on decode or fetch) due to
5237   // code size, or the number and capabilities of the execution ports.
5238   //
5239   // We use the following heuristics to select the interleave count:
5240   // 1. If the code has reductions, then we interleave to break the cross
5241   // iteration dependency.
5242   // 2. If the loop is really small, then we interleave to reduce the loop
5243   // overhead.
5244   // 3. We don't interleave if we think that we will spill registers to memory
5245   // due to the increased register pressure.
5246 
5247   if (!isScalarEpilogueAllowed())
5248     return 1;
5249 
5250   // We used the distance for the interleave count.
5251   if (Legal->getMaxSafeDepDistBytes() != -1U)
5252     return 1;
5253 
5254   // Do not interleave loops with a relatively small known or estimated trip
5255   // count.
5256   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5257   if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold)
5258     return 1;
5259 
5260   RegisterUsage R = calculateRegisterUsage({VF})[0];
5261   // We divide by these constants so assume that we have at least one
5262   // instruction that uses at least one register.
5263   for (auto& pair : R.MaxLocalUsers) {
5264     pair.second = std::max(pair.second, 1U);
5265   }
5266 
5267   // We calculate the interleave count using the following formula.
5268   // Subtract the number of loop invariants from the number of available
5269   // registers. These registers are used by all of the interleaved instances.
5270   // Next, divide the remaining registers by the number of registers that is
5271   // required by the loop, in order to estimate how many parallel instances
5272   // fit without causing spills. All of this is rounded down if necessary to be
5273   // a power of two. We want power of two interleave count to simplify any
5274   // addressing operations or alignment considerations.
5275   // We also want power of two interleave counts to ensure that the induction
5276   // variable of the vector loop wraps to zero, when tail is folded by masking;
5277   // this currently happens when OptForSize, in which case IC is set to 1 above.
5278   unsigned IC = UINT_MAX;
5279 
5280   for (auto& pair : R.MaxLocalUsers) {
5281     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5282     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5283                       << " registers of "
5284                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5285     if (VF == 1) {
5286       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5287         TargetNumRegisters = ForceTargetNumScalarRegs;
5288     } else {
5289       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5290         TargetNumRegisters = ForceTargetNumVectorRegs;
5291     }
5292     unsigned MaxLocalUsers = pair.second;
5293     unsigned LoopInvariantRegs = 0;
5294     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5295       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5296 
5297     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5298     // Don't count the induction variable as interleaved.
5299     if (EnableIndVarRegisterHeur) {
5300       TmpIC =
5301           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5302                         std::max(1U, (MaxLocalUsers - 1)));
5303     }
5304 
5305     IC = std::min(IC, TmpIC);
5306   }
5307 
5308   // Clamp the interleave ranges to reasonable counts.
5309   unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
5310 
5311   // Check if the user has overridden the max.
5312   if (VF == 1) {
5313     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5314       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5315   } else {
5316     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5317       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5318   }
5319 
5320   // If trip count is known or estimated compile time constant, limit the
5321   // interleave count to be less than the trip count divided by VF.
5322   if (BestKnownTC) {
5323     MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount);
5324   }
5325 
5326   // If we did not calculate the cost for VF (because the user selected the VF)
5327   // then we calculate the cost of VF here.
5328   if (LoopCost == 0)
5329     LoopCost = expectedCost(VF).first;
5330 
5331   assert(LoopCost && "Non-zero loop cost expected");
5332 
5333   // Clamp the calculated IC to be between the 1 and the max interleave count
5334   // that the target and trip count allows.
5335   if (IC > MaxInterleaveCount)
5336     IC = MaxInterleaveCount;
5337   else if (IC < 1)
5338     IC = 1;
5339 
5340   // Interleave if we vectorized this loop and there is a reduction that could
5341   // benefit from interleaving.
5342   if (VF > 1 && !Legal->getReductionVars().empty()) {
5343     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5344     return IC;
5345   }
5346 
5347   // Note that if we've already vectorized the loop we will have done the
5348   // runtime check and so interleaving won't require further checks.
5349   bool InterleavingRequiresRuntimePointerCheck =
5350       (VF == 1 && Legal->getRuntimePointerChecking()->Need);
5351 
5352   // We want to interleave small loops in order to reduce the loop overhead and
5353   // potentially expose ILP opportunities.
5354   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5355   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5356     // We assume that the cost overhead is 1 and we use the cost model
5357     // to estimate the cost of the loop and interleave until the cost of the
5358     // loop overhead is about 5% of the cost of the loop.
5359     unsigned SmallIC =
5360         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5361 
5362     // Interleave until store/load ports (estimated by max interleave count) are
5363     // saturated.
5364     unsigned NumStores = Legal->getNumStores();
5365     unsigned NumLoads = Legal->getNumLoads();
5366     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5367     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5368 
5369     // If we have a scalar reduction (vector reductions are already dealt with
5370     // by this point), we can increase the critical path length if the loop
5371     // we're interleaving is inside another loop. Limit, by default to 2, so the
5372     // critical path only gets increased by one reduction operation.
5373     if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) {
5374       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5375       SmallIC = std::min(SmallIC, F);
5376       StoresIC = std::min(StoresIC, F);
5377       LoadsIC = std::min(LoadsIC, F);
5378     }
5379 
5380     if (EnableLoadStoreRuntimeInterleave &&
5381         std::max(StoresIC, LoadsIC) > SmallIC) {
5382       LLVM_DEBUG(
5383           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5384       return std::max(StoresIC, LoadsIC);
5385     }
5386 
5387     LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5388     return SmallIC;
5389   }
5390 
5391   // Interleave if this is a large loop (small loops are already dealt with by
5392   // this point) that could benefit from interleaving.
5393   bool HasReductions = !Legal->getReductionVars().empty();
5394   if (TTI.enableAggressiveInterleaving(HasReductions)) {
5395     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5396     return IC;
5397   }
5398 
5399   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5400   return 1;
5401 }
5402 
5403 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5404 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
5405   // This function calculates the register usage by measuring the highest number
5406   // of values that are alive at a single location. Obviously, this is a very
5407   // rough estimation. We scan the loop in a topological order in order and
5408   // assign a number to each instruction. We use RPO to ensure that defs are
5409   // met before their users. We assume that each instruction that has in-loop
5410   // users starts an interval. We record every time that an in-loop value is
5411   // used, so we have a list of the first and last occurrences of each
5412   // instruction. Next, we transpose this data structure into a multi map that
5413   // holds the list of intervals that *end* at a specific location. This multi
5414   // map allows us to perform a linear search. We scan the instructions linearly
5415   // and record each time that a new interval starts, by placing it in a set.
5416   // If we find this value in the multi-map then we remove it from the set.
5417   // The max register usage is the maximum size of the set.
5418   // We also search for instructions that are defined outside the loop, but are
5419   // used inside the loop. We need this number separately from the max-interval
5420   // usage number because when we unroll, loop-invariant values do not take
5421   // more register.
5422   LoopBlocksDFS DFS(TheLoop);
5423   DFS.perform(LI);
5424 
5425   RegisterUsage RU;
5426 
5427   // Each 'key' in the map opens a new interval. The values
5428   // of the map are the index of the 'last seen' usage of the
5429   // instruction that is the key.
5430   using IntervalMap = DenseMap<Instruction *, unsigned>;
5431 
5432   // Maps instruction to its index.
5433   SmallVector<Instruction *, 64> IdxToInstr;
5434   // Marks the end of each interval.
5435   IntervalMap EndPoint;
5436   // Saves the list of instruction indices that are used in the loop.
5437   SmallPtrSet<Instruction *, 8> Ends;
5438   // Saves the list of values that are used in the loop but are
5439   // defined outside the loop, such as arguments and constants.
5440   SmallPtrSet<Value *, 8> LoopInvariants;
5441 
5442   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5443     for (Instruction &I : BB->instructionsWithoutDebug()) {
5444       IdxToInstr.push_back(&I);
5445 
5446       // Save the end location of each USE.
5447       for (Value *U : I.operands()) {
5448         auto *Instr = dyn_cast<Instruction>(U);
5449 
5450         // Ignore non-instruction values such as arguments, constants, etc.
5451         if (!Instr)
5452           continue;
5453 
5454         // If this instruction is outside the loop then record it and continue.
5455         if (!TheLoop->contains(Instr)) {
5456           LoopInvariants.insert(Instr);
5457           continue;
5458         }
5459 
5460         // Overwrite previous end points.
5461         EndPoint[Instr] = IdxToInstr.size();
5462         Ends.insert(Instr);
5463       }
5464     }
5465   }
5466 
5467   // Saves the list of intervals that end with the index in 'key'.
5468   using InstrList = SmallVector<Instruction *, 2>;
5469   DenseMap<unsigned, InstrList> TransposeEnds;
5470 
5471   // Transpose the EndPoints to a list of values that end at each index.
5472   for (auto &Interval : EndPoint)
5473     TransposeEnds[Interval.second].push_back(Interval.first);
5474 
5475   SmallPtrSet<Instruction *, 8> OpenIntervals;
5476 
5477   // Get the size of the widest register.
5478   unsigned MaxSafeDepDist = -1U;
5479   if (Legal->getMaxSafeDepDistBytes() != -1U)
5480     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5481   unsigned WidestRegister =
5482       std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5483   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5484 
5485   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5486   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5487 
5488   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5489 
5490   // A lambda that gets the register usage for the given type and VF.
5491   auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
5492     if (Ty->isTokenTy())
5493       return 0U;
5494     unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5495     return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
5496   };
5497 
5498   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5499     Instruction *I = IdxToInstr[i];
5500 
5501     // Remove all of the instructions that end at this location.
5502     InstrList &List = TransposeEnds[i];
5503     for (Instruction *ToRemove : List)
5504       OpenIntervals.erase(ToRemove);
5505 
5506     // Ignore instructions that are never used within the loop.
5507     if (Ends.find(I) == Ends.end())
5508       continue;
5509 
5510     // Skip ignored values.
5511     if (ValuesToIgnore.find(I) != ValuesToIgnore.end())
5512       continue;
5513 
5514     // For each VF find the maximum usage of registers.
5515     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5516       // Count the number of live intervals.
5517       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5518 
5519       if (VFs[j] == 1) {
5520         for (auto Inst : OpenIntervals) {
5521           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5522           if (RegUsage.find(ClassID) == RegUsage.end())
5523             RegUsage[ClassID] = 1;
5524           else
5525             RegUsage[ClassID] += 1;
5526         }
5527       } else {
5528         collectUniformsAndScalars(VFs[j]);
5529         for (auto Inst : OpenIntervals) {
5530           // Skip ignored values for VF > 1.
5531           if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end())
5532             continue;
5533           if (isScalarAfterVectorization(Inst, VFs[j])) {
5534             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5535             if (RegUsage.find(ClassID) == RegUsage.end())
5536               RegUsage[ClassID] = 1;
5537             else
5538               RegUsage[ClassID] += 1;
5539           } else {
5540             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
5541             if (RegUsage.find(ClassID) == RegUsage.end())
5542               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
5543             else
5544               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
5545           }
5546         }
5547       }
5548 
5549       for (auto& pair : RegUsage) {
5550         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
5551           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
5552         else
5553           MaxUsages[j][pair.first] = pair.second;
5554       }
5555     }
5556 
5557     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5558                       << OpenIntervals.size() << '\n');
5559 
5560     // Add the current instruction to the list of open intervals.
5561     OpenIntervals.insert(I);
5562   }
5563 
5564   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5565     SmallMapVector<unsigned, unsigned, 4> Invariant;
5566 
5567     for (auto Inst : LoopInvariants) {
5568       unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
5569       unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType());
5570       if (Invariant.find(ClassID) == Invariant.end())
5571         Invariant[ClassID] = Usage;
5572       else
5573         Invariant[ClassID] += Usage;
5574     }
5575 
5576     LLVM_DEBUG({
5577       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
5578       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
5579              << " item\n";
5580       for (const auto &pair : MaxUsages[i]) {
5581         dbgs() << "LV(REG): RegisterClass: "
5582                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5583                << " registers\n";
5584       }
5585       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
5586              << " item\n";
5587       for (const auto &pair : Invariant) {
5588         dbgs() << "LV(REG): RegisterClass: "
5589                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5590                << " registers\n";
5591       }
5592     });
5593 
5594     RU.LoopInvariantRegs = Invariant;
5595     RU.MaxLocalUsers = MaxUsages[i];
5596     RUs[i] = RU;
5597   }
5598 
5599   return RUs;
5600 }
5601 
5602 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
5603   // TODO: Cost model for emulated masked load/store is completely
5604   // broken. This hack guides the cost model to use an artificially
5605   // high enough value to practically disable vectorization with such
5606   // operations, except where previously deployed legality hack allowed
5607   // using very low cost values. This is to avoid regressions coming simply
5608   // from moving "masked load/store" check from legality to cost model.
5609   // Masked Load/Gather emulation was previously never allowed.
5610   // Limited number of Masked Store/Scatter emulation was allowed.
5611   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
5612   return isa<LoadInst>(I) ||
5613          (isa<StoreInst>(I) &&
5614           NumPredStores > NumberOfStoresToPredicate);
5615 }
5616 
5617 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
5618   // If we aren't vectorizing the loop, or if we've already collected the
5619   // instructions to scalarize, there's nothing to do. Collection may already
5620   // have occurred if we have a user-selected VF and are now computing the
5621   // expected cost for interleaving.
5622   if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end())
5623     return;
5624 
5625   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5626   // not profitable to scalarize any instructions, the presence of VF in the
5627   // map will indicate that we've analyzed it already.
5628   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5629 
5630   // Find all the instructions that are scalar with predication in the loop and
5631   // determine if it would be better to not if-convert the blocks they are in.
5632   // If so, we also record the instructions to scalarize.
5633   for (BasicBlock *BB : TheLoop->blocks()) {
5634     if (!blockNeedsPredication(BB))
5635       continue;
5636     for (Instruction &I : *BB)
5637       if (isScalarWithPredication(&I)) {
5638         ScalarCostsTy ScalarCosts;
5639         // Do not apply discount logic if hacked cost is needed
5640         // for emulated masked memrefs.
5641         if (!useEmulatedMaskMemRefHack(&I) &&
5642             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
5643           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
5644         // Remember that BB will remain after vectorization.
5645         PredicatedBBsAfterVectorization.insert(BB);
5646       }
5647   }
5648 }
5649 
5650 int LoopVectorizationCostModel::computePredInstDiscount(
5651     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
5652     unsigned VF) {
5653   assert(!isUniformAfterVectorization(PredInst, VF) &&
5654          "Instruction marked uniform-after-vectorization will be predicated");
5655 
5656   // Initialize the discount to zero, meaning that the scalar version and the
5657   // vector version cost the same.
5658   int Discount = 0;
5659 
5660   // Holds instructions to analyze. The instructions we visit are mapped in
5661   // ScalarCosts. Those instructions are the ones that would be scalarized if
5662   // we find that the scalar version costs less.
5663   SmallVector<Instruction *, 8> Worklist;
5664 
5665   // Returns true if the given instruction can be scalarized.
5666   auto canBeScalarized = [&](Instruction *I) -> bool {
5667     // We only attempt to scalarize instructions forming a single-use chain
5668     // from the original predicated block that would otherwise be vectorized.
5669     // Although not strictly necessary, we give up on instructions we know will
5670     // already be scalar to avoid traversing chains that are unlikely to be
5671     // beneficial.
5672     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5673         isScalarAfterVectorization(I, VF))
5674       return false;
5675 
5676     // If the instruction is scalar with predication, it will be analyzed
5677     // separately. We ignore it within the context of PredInst.
5678     if (isScalarWithPredication(I))
5679       return false;
5680 
5681     // If any of the instruction's operands are uniform after vectorization,
5682     // the instruction cannot be scalarized. This prevents, for example, a
5683     // masked load from being scalarized.
5684     //
5685     // We assume we will only emit a value for lane zero of an instruction
5686     // marked uniform after vectorization, rather than VF identical values.
5687     // Thus, if we scalarize an instruction that uses a uniform, we would
5688     // create uses of values corresponding to the lanes we aren't emitting code
5689     // for. This behavior can be changed by allowing getScalarValue to clone
5690     // the lane zero values for uniforms rather than asserting.
5691     for (Use &U : I->operands())
5692       if (auto *J = dyn_cast<Instruction>(U.get()))
5693         if (isUniformAfterVectorization(J, VF))
5694           return false;
5695 
5696     // Otherwise, we can scalarize the instruction.
5697     return true;
5698   };
5699 
5700   // Compute the expected cost discount from scalarizing the entire expression
5701   // feeding the predicated instruction. We currently only consider expressions
5702   // that are single-use instruction chains.
5703   Worklist.push_back(PredInst);
5704   while (!Worklist.empty()) {
5705     Instruction *I = Worklist.pop_back_val();
5706 
5707     // If we've already analyzed the instruction, there's nothing to do.
5708     if (ScalarCosts.find(I) != ScalarCosts.end())
5709       continue;
5710 
5711     // Compute the cost of the vector instruction. Note that this cost already
5712     // includes the scalarization overhead of the predicated instruction.
5713     unsigned VectorCost = getInstructionCost(I, VF).first;
5714 
5715     // Compute the cost of the scalarized instruction. This cost is the cost of
5716     // the instruction as if it wasn't if-converted and instead remained in the
5717     // predicated block. We will scale this cost by block probability after
5718     // computing the scalarization overhead.
5719     unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
5720 
5721     // Compute the scalarization overhead of needed insertelement instructions
5722     // and phi nodes.
5723     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
5724       ScalarCost += TTI.getScalarizationOverhead(
5725           cast<VectorType>(ToVectorTy(I->getType(), VF)),
5726           APInt::getAllOnesValue(VF), true, false);
5727       ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
5728     }
5729 
5730     // Compute the scalarization overhead of needed extractelement
5731     // instructions. For each of the instruction's operands, if the operand can
5732     // be scalarized, add it to the worklist; otherwise, account for the
5733     // overhead.
5734     for (Use &U : I->operands())
5735       if (auto *J = dyn_cast<Instruction>(U.get())) {
5736         assert(VectorType::isValidElementType(J->getType()) &&
5737                "Instruction has non-scalar type");
5738         if (canBeScalarized(J))
5739           Worklist.push_back(J);
5740         else if (needsExtract(J, VF))
5741           ScalarCost += TTI.getScalarizationOverhead(
5742               cast<VectorType>(ToVectorTy(J->getType(), VF)),
5743               APInt::getAllOnesValue(VF), false, true);
5744       }
5745 
5746     // Scale the total scalar cost by block probability.
5747     ScalarCost /= getReciprocalPredBlockProb();
5748 
5749     // Compute the discount. A non-negative discount means the vector version
5750     // of the instruction costs more, and scalarizing would be beneficial.
5751     Discount += VectorCost - ScalarCost;
5752     ScalarCosts[I] = ScalarCost;
5753   }
5754 
5755   return Discount;
5756 }
5757 
5758 LoopVectorizationCostModel::VectorizationCostTy
5759 LoopVectorizationCostModel::expectedCost(unsigned VF) {
5760   VectorizationCostTy Cost;
5761 
5762   // For each block.
5763   for (BasicBlock *BB : TheLoop->blocks()) {
5764     VectorizationCostTy BlockCost;
5765 
5766     // For each instruction in the old loop.
5767     for (Instruction &I : BB->instructionsWithoutDebug()) {
5768       // Skip ignored values.
5769       if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() ||
5770           (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end()))
5771         continue;
5772 
5773       VectorizationCostTy C = getInstructionCost(&I, VF);
5774 
5775       // Check if we should override the cost.
5776       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5777         C.first = ForceTargetInstructionCost;
5778 
5779       BlockCost.first += C.first;
5780       BlockCost.second |= C.second;
5781       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
5782                         << " for VF " << VF << " For instruction: " << I
5783                         << '\n');
5784     }
5785 
5786     // If we are vectorizing a predicated block, it will have been
5787     // if-converted. This means that the block's instructions (aside from
5788     // stores and instructions that may divide by zero) will now be
5789     // unconditionally executed. For the scalar case, we may not always execute
5790     // the predicated block. Thus, scale the block's cost by the probability of
5791     // executing it.
5792     if (VF == 1 && blockNeedsPredication(BB))
5793       BlockCost.first /= getReciprocalPredBlockProb();
5794 
5795     Cost.first += BlockCost.first;
5796     Cost.second |= BlockCost.second;
5797   }
5798 
5799   return Cost;
5800 }
5801 
5802 /// Gets Address Access SCEV after verifying that the access pattern
5803 /// is loop invariant except the induction variable dependence.
5804 ///
5805 /// This SCEV can be sent to the Target in order to estimate the address
5806 /// calculation cost.
5807 static const SCEV *getAddressAccessSCEV(
5808               Value *Ptr,
5809               LoopVectorizationLegality *Legal,
5810               PredicatedScalarEvolution &PSE,
5811               const Loop *TheLoop) {
5812 
5813   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5814   if (!Gep)
5815     return nullptr;
5816 
5817   // We are looking for a gep with all loop invariant indices except for one
5818   // which should be an induction variable.
5819   auto SE = PSE.getSE();
5820   unsigned NumOperands = Gep->getNumOperands();
5821   for (unsigned i = 1; i < NumOperands; ++i) {
5822     Value *Opd = Gep->getOperand(i);
5823     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5824         !Legal->isInductionVariable(Opd))
5825       return nullptr;
5826   }
5827 
5828   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5829   return PSE.getSCEV(Ptr);
5830 }
5831 
5832 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5833   return Legal->hasStride(I->getOperand(0)) ||
5834          Legal->hasStride(I->getOperand(1));
5835 }
5836 
5837 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5838                                                                  unsigned VF) {
5839   assert(VF > 1 && "Scalarization cost of instruction implies vectorization.");
5840   Type *ValTy = getMemInstValueType(I);
5841   auto SE = PSE.getSE();
5842 
5843   unsigned AS = getLoadStoreAddressSpace(I);
5844   Value *Ptr = getLoadStorePointerOperand(I);
5845   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
5846 
5847   // Figure out whether the access is strided and get the stride value
5848   // if it's known in compile time
5849   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5850 
5851   // Get the cost of the scalar memory instruction and address computation.
5852   unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
5853 
5854   // Don't pass *I here, since it is scalar but will actually be part of a
5855   // vectorized loop where the user of it is a vectorized instruction.
5856   const Align Alignment = getLoadStoreAlignment(I);
5857   Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5858                                    Alignment, AS,
5859                                    TTI::TCK_RecipThroughput);
5860 
5861   // Get the overhead of the extractelement and insertelement instructions
5862   // we might create due to scalarization.
5863   Cost += getScalarizationOverhead(I, VF);
5864 
5865   // If we have a predicated store, it may not be executed for each vector
5866   // lane. Scale the cost by the probability of executing the predicated
5867   // block.
5868   if (isPredicatedInst(I)) {
5869     Cost /= getReciprocalPredBlockProb();
5870 
5871     if (useEmulatedMaskMemRefHack(I))
5872       // Artificially setting to a high enough value to practically disable
5873       // vectorization with such operations.
5874       Cost = 3000000;
5875   }
5876 
5877   return Cost;
5878 }
5879 
5880 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5881                                                              unsigned VF) {
5882   Type *ValTy = getMemInstValueType(I);
5883   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5884   Value *Ptr = getLoadStorePointerOperand(I);
5885   unsigned AS = getLoadStoreAddressSpace(I);
5886   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5887   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5888 
5889   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5890          "Stride should be 1 or -1 for consecutive memory access");
5891   const Align Alignment = getLoadStoreAlignment(I);
5892   unsigned Cost = 0;
5893   if (Legal->isMaskRequired(I))
5894     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy,
5895                                       Alignment.value(), AS, CostKind);
5896   else
5897     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5898                                 CostKind, I);
5899 
5900   bool Reverse = ConsecutiveStride < 0;
5901   if (Reverse)
5902     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5903   return Cost;
5904 }
5905 
5906 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5907                                                          unsigned VF) {
5908   Type *ValTy = getMemInstValueType(I);
5909   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5910   const Align Alignment = getLoadStoreAlignment(I);
5911   unsigned AS = getLoadStoreAddressSpace(I);
5912   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5913   if (isa<LoadInst>(I)) {
5914     return TTI.getAddressComputationCost(ValTy) +
5915            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5916                                CostKind) +
5917            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
5918   }
5919   StoreInst *SI = cast<StoreInst>(I);
5920 
5921   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
5922   return TTI.getAddressComputationCost(ValTy) +
5923          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
5924                              CostKind) +
5925          (isLoopInvariantStoreValue
5926               ? 0
5927               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
5928                                        VF - 1));
5929 }
5930 
5931 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5932                                                           unsigned VF) {
5933   Type *ValTy = getMemInstValueType(I);
5934   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5935   const Align Alignment = getLoadStoreAlignment(I);
5936   Value *Ptr = getLoadStorePointerOperand(I);
5937 
5938   return TTI.getAddressComputationCost(VectorTy) +
5939          TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
5940                                     Legal->isMaskRequired(I), Alignment.value(),
5941                                     TargetTransformInfo::TCK_RecipThroughput,
5942                                     I);
5943 }
5944 
5945 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5946                                                             unsigned VF) {
5947   Type *ValTy = getMemInstValueType(I);
5948   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5949   unsigned AS = getLoadStoreAddressSpace(I);
5950 
5951   auto Group = getInterleavedAccessGroup(I);
5952   assert(Group && "Fail to get an interleaved access group.");
5953 
5954   unsigned InterleaveFactor = Group->getFactor();
5955   auto *WideVecTy = FixedVectorType::get(ValTy, VF * InterleaveFactor);
5956 
5957   // Holds the indices of existing members in an interleaved load group.
5958   // An interleaved store group doesn't need this as it doesn't allow gaps.
5959   SmallVector<unsigned, 4> Indices;
5960   if (isa<LoadInst>(I)) {
5961     for (unsigned i = 0; i < InterleaveFactor; i++)
5962       if (Group->getMember(i))
5963         Indices.push_back(i);
5964   }
5965 
5966   // Calculate the cost of the whole interleaved group.
5967   bool UseMaskForGaps =
5968       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5969   unsigned Cost = TTI.getInterleavedMemoryOpCost(
5970       I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5971       Group->getAlign().value(), AS, TTI::TCK_RecipThroughput,
5972       Legal->isMaskRequired(I), UseMaskForGaps);
5973 
5974   if (Group->isReverse()) {
5975     // TODO: Add support for reversed masked interleaved access.
5976     assert(!Legal->isMaskRequired(I) &&
5977            "Reverse masked interleaved access not supported.");
5978     Cost += Group->getNumMembers() *
5979             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5980   }
5981   return Cost;
5982 }
5983 
5984 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5985                                                               unsigned VF) {
5986   // Calculate scalar cost only. Vectorization cost should be ready at this
5987   // moment.
5988   if (VF == 1) {
5989     Type *ValTy = getMemInstValueType(I);
5990     const Align Alignment = getLoadStoreAlignment(I);
5991     unsigned AS = getLoadStoreAddressSpace(I);
5992 
5993     return TTI.getAddressComputationCost(ValTy) +
5994            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
5995                                TTI::TCK_RecipThroughput, I);
5996   }
5997   return getWideningCost(I, VF);
5998 }
5999 
6000 LoopVectorizationCostModel::VectorizationCostTy
6001 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
6002   // If we know that this instruction will remain uniform, check the cost of
6003   // the scalar version.
6004   if (isUniformAfterVectorization(I, VF))
6005     VF = 1;
6006 
6007   if (VF > 1 && isProfitableToScalarize(I, VF))
6008     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6009 
6010   // Forced scalars do not have any scalarization overhead.
6011   auto ForcedScalar = ForcedScalars.find(VF);
6012   if (VF > 1 && ForcedScalar != ForcedScalars.end()) {
6013     auto InstSet = ForcedScalar->second;
6014     if (InstSet.find(I) != InstSet.end())
6015       return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
6016   }
6017 
6018   Type *VectorTy;
6019   unsigned C = getInstructionCost(I, VF, VectorTy);
6020 
6021   bool TypeNotScalarized =
6022       VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
6023   return VectorizationCostTy(C, TypeNotScalarized);
6024 }
6025 
6026 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6027                                                               unsigned VF) {
6028 
6029   if (VF == 1)
6030     return 0;
6031 
6032   unsigned Cost = 0;
6033   Type *RetTy = ToVectorTy(I->getType(), VF);
6034   if (!RetTy->isVoidTy() &&
6035       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6036     Cost += TTI.getScalarizationOverhead(
6037         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false);
6038 
6039   // Some targets keep addresses scalar.
6040   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6041     return Cost;
6042 
6043   // Some targets support efficient element stores.
6044   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6045     return Cost;
6046 
6047   // Collect operands to consider.
6048   CallInst *CI = dyn_cast<CallInst>(I);
6049   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
6050 
6051   // Skip operands that do not require extraction/scalarization and do not incur
6052   // any overhead.
6053   return Cost + TTI.getOperandsScalarizationOverhead(
6054                     filterExtractingOperands(Ops, VF), VF);
6055 }
6056 
6057 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
6058   if (VF == 1)
6059     return;
6060   NumPredStores = 0;
6061   for (BasicBlock *BB : TheLoop->blocks()) {
6062     // For each instruction in the old loop.
6063     for (Instruction &I : *BB) {
6064       Value *Ptr =  getLoadStorePointerOperand(&I);
6065       if (!Ptr)
6066         continue;
6067 
6068       // TODO: We should generate better code and update the cost model for
6069       // predicated uniform stores. Today they are treated as any other
6070       // predicated store (see added test cases in
6071       // invariant-store-vectorization.ll).
6072       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6073         NumPredStores++;
6074 
6075       if (Legal->isUniform(Ptr) &&
6076           // Conditional loads and stores should be scalarized and predicated.
6077           // isScalarWithPredication cannot be used here since masked
6078           // gather/scatters are not considered scalar with predication.
6079           !Legal->blockNeedsPredication(I.getParent())) {
6080         // TODO: Avoid replicating loads and stores instead of
6081         // relying on instcombine to remove them.
6082         // Load: Scalar load + broadcast
6083         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6084         unsigned Cost = getUniformMemOpCost(&I, VF);
6085         setWideningDecision(&I, VF, CM_Scalarize, Cost);
6086         continue;
6087       }
6088 
6089       // We assume that widening is the best solution when possible.
6090       if (memoryInstructionCanBeWidened(&I, VF)) {
6091         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
6092         int ConsecutiveStride =
6093                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
6094         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6095                "Expected consecutive stride.");
6096         InstWidening Decision =
6097             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6098         setWideningDecision(&I, VF, Decision, Cost);
6099         continue;
6100       }
6101 
6102       // Choose between Interleaving, Gather/Scatter or Scalarization.
6103       unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
6104       unsigned NumAccesses = 1;
6105       if (isAccessInterleaved(&I)) {
6106         auto Group = getInterleavedAccessGroup(&I);
6107         assert(Group && "Fail to get an interleaved access group.");
6108 
6109         // Make one decision for the whole group.
6110         if (getWideningDecision(&I, VF) != CM_Unknown)
6111           continue;
6112 
6113         NumAccesses = Group->getNumMembers();
6114         if (interleavedAccessCanBeWidened(&I, VF))
6115           InterleaveCost = getInterleaveGroupCost(&I, VF);
6116       }
6117 
6118       unsigned GatherScatterCost =
6119           isLegalGatherOrScatter(&I)
6120               ? getGatherScatterCost(&I, VF) * NumAccesses
6121               : std::numeric_limits<unsigned>::max();
6122 
6123       unsigned ScalarizationCost =
6124           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6125 
6126       // Choose better solution for the current VF,
6127       // write down this decision and use it during vectorization.
6128       unsigned Cost;
6129       InstWidening Decision;
6130       if (InterleaveCost <= GatherScatterCost &&
6131           InterleaveCost < ScalarizationCost) {
6132         Decision = CM_Interleave;
6133         Cost = InterleaveCost;
6134       } else if (GatherScatterCost < ScalarizationCost) {
6135         Decision = CM_GatherScatter;
6136         Cost = GatherScatterCost;
6137       } else {
6138         Decision = CM_Scalarize;
6139         Cost = ScalarizationCost;
6140       }
6141       // If the instructions belongs to an interleave group, the whole group
6142       // receives the same decision. The whole group receives the cost, but
6143       // the cost will actually be assigned to one instruction.
6144       if (auto Group = getInterleavedAccessGroup(&I))
6145         setWideningDecision(Group, VF, Decision, Cost);
6146       else
6147         setWideningDecision(&I, VF, Decision, Cost);
6148     }
6149   }
6150 
6151   // Make sure that any load of address and any other address computation
6152   // remains scalar unless there is gather/scatter support. This avoids
6153   // inevitable extracts into address registers, and also has the benefit of
6154   // activating LSR more, since that pass can't optimize vectorized
6155   // addresses.
6156   if (TTI.prefersVectorizedAddressing())
6157     return;
6158 
6159   // Start with all scalar pointer uses.
6160   SmallPtrSet<Instruction *, 8> AddrDefs;
6161   for (BasicBlock *BB : TheLoop->blocks())
6162     for (Instruction &I : *BB) {
6163       Instruction *PtrDef =
6164         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6165       if (PtrDef && TheLoop->contains(PtrDef) &&
6166           getWideningDecision(&I, VF) != CM_GatherScatter)
6167         AddrDefs.insert(PtrDef);
6168     }
6169 
6170   // Add all instructions used to generate the addresses.
6171   SmallVector<Instruction *, 4> Worklist;
6172   for (auto *I : AddrDefs)
6173     Worklist.push_back(I);
6174   while (!Worklist.empty()) {
6175     Instruction *I = Worklist.pop_back_val();
6176     for (auto &Op : I->operands())
6177       if (auto *InstOp = dyn_cast<Instruction>(Op))
6178         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6179             AddrDefs.insert(InstOp).second)
6180           Worklist.push_back(InstOp);
6181   }
6182 
6183   for (auto *I : AddrDefs) {
6184     if (isa<LoadInst>(I)) {
6185       // Setting the desired widening decision should ideally be handled in
6186       // by cost functions, but since this involves the task of finding out
6187       // if the loaded register is involved in an address computation, it is
6188       // instead changed here when we know this is the case.
6189       InstWidening Decision = getWideningDecision(I, VF);
6190       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6191         // Scalarize a widened load of address.
6192         setWideningDecision(I, VF, CM_Scalarize,
6193                             (VF * getMemoryInstructionCost(I, 1)));
6194       else if (auto Group = getInterleavedAccessGroup(I)) {
6195         // Scalarize an interleave group of address loads.
6196         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6197           if (Instruction *Member = Group->getMember(I))
6198             setWideningDecision(Member, VF, CM_Scalarize,
6199                                 (VF * getMemoryInstructionCost(Member, 1)));
6200         }
6201       }
6202     } else
6203       // Make sure I gets scalarized and a cost estimate without
6204       // scalarization overhead.
6205       ForcedScalars[VF].insert(I);
6206   }
6207 }
6208 
6209 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6210                                                         unsigned VF,
6211                                                         Type *&VectorTy) {
6212   Type *RetTy = I->getType();
6213   if (canTruncateToMinimalBitwidth(I, VF))
6214     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6215   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
6216   auto SE = PSE.getSE();
6217   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6218 
6219   // TODO: We need to estimate the cost of intrinsic calls.
6220   switch (I->getOpcode()) {
6221   case Instruction::GetElementPtr:
6222     // We mark this instruction as zero-cost because the cost of GEPs in
6223     // vectorized code depends on whether the corresponding memory instruction
6224     // is scalarized or not. Therefore, we handle GEPs with the memory
6225     // instruction cost.
6226     return 0;
6227   case Instruction::Br: {
6228     // In cases of scalarized and predicated instructions, there will be VF
6229     // predicated blocks in the vectorized loop. Each branch around these
6230     // blocks requires also an extract of its vector compare i1 element.
6231     bool ScalarPredicatedBB = false;
6232     BranchInst *BI = cast<BranchInst>(I);
6233     if (VF > 1 && BI->isConditional() &&
6234         (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) !=
6235              PredicatedBBsAfterVectorization.end() ||
6236          PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) !=
6237              PredicatedBBsAfterVectorization.end()))
6238       ScalarPredicatedBB = true;
6239 
6240     if (ScalarPredicatedBB) {
6241       // Return cost for branches around scalarized and predicated blocks.
6242       VectorType *Vec_i1Ty =
6243           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6244       return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF),
6245                                            false, true) +
6246               (TTI.getCFInstrCost(Instruction::Br) * VF));
6247     } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
6248       // The back-edge branch will remain, as will all scalar branches.
6249       return TTI.getCFInstrCost(Instruction::Br);
6250     else
6251       // This branch will be eliminated by if-conversion.
6252       return 0;
6253     // Note: We currently assume zero cost for an unconditional branch inside
6254     // a predicated block since it will become a fall-through, although we
6255     // may decide in the future to call TTI for all branches.
6256   }
6257   case Instruction::PHI: {
6258     auto *Phi = cast<PHINode>(I);
6259 
6260     // First-order recurrences are replaced by vector shuffles inside the loop.
6261     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
6262     if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
6263       return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
6264                                 cast<VectorType>(VectorTy), VF - 1,
6265                                 VectorType::get(RetTy, 1));
6266 
6267     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6268     // converted into select instructions. We require N - 1 selects per phi
6269     // node, where N is the number of incoming values.
6270     if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
6271       return (Phi->getNumIncomingValues() - 1) *
6272              TTI.getCmpSelInstrCost(
6273                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
6274                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6275                  CostKind);
6276 
6277     return TTI.getCFInstrCost(Instruction::PHI);
6278   }
6279   case Instruction::UDiv:
6280   case Instruction::SDiv:
6281   case Instruction::URem:
6282   case Instruction::SRem:
6283     // If we have a predicated instruction, it may not be executed for each
6284     // vector lane. Get the scalarization cost and scale this amount by the
6285     // probability of executing the predicated block. If the instruction is not
6286     // predicated, we fall through to the next case.
6287     if (VF > 1 && isScalarWithPredication(I)) {
6288       unsigned Cost = 0;
6289 
6290       // These instructions have a non-void type, so account for the phi nodes
6291       // that we will create. This cost is likely to be zero. The phi node
6292       // cost, if any, should be scaled by the block probability because it
6293       // models a copy at the end of each predicated block.
6294       Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
6295 
6296       // The cost of the non-predicated instruction.
6297       Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
6298 
6299       // The cost of insertelement and extractelement instructions needed for
6300       // scalarization.
6301       Cost += getScalarizationOverhead(I, VF);
6302 
6303       // Scale the cost by the probability of executing the predicated blocks.
6304       // This assumes the predicated block for each vector lane is equally
6305       // likely.
6306       return Cost / getReciprocalPredBlockProb();
6307     }
6308     LLVM_FALLTHROUGH;
6309   case Instruction::Add:
6310   case Instruction::FAdd:
6311   case Instruction::Sub:
6312   case Instruction::FSub:
6313   case Instruction::Mul:
6314   case Instruction::FMul:
6315   case Instruction::FDiv:
6316   case Instruction::FRem:
6317   case Instruction::Shl:
6318   case Instruction::LShr:
6319   case Instruction::AShr:
6320   case Instruction::And:
6321   case Instruction::Or:
6322   case Instruction::Xor: {
6323     // Since we will replace the stride by 1 the multiplication should go away.
6324     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
6325       return 0;
6326     // Certain instructions can be cheaper to vectorize if they have a constant
6327     // second vector operand. One example of this are shifts on x86.
6328     Value *Op2 = I->getOperand(1);
6329     TargetTransformInfo::OperandValueProperties Op2VP;
6330     TargetTransformInfo::OperandValueKind Op2VK =
6331         TTI.getOperandInfo(Op2, Op2VP);
6332     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
6333       Op2VK = TargetTransformInfo::OK_UniformValue;
6334 
6335     SmallVector<const Value *, 4> Operands(I->operand_values());
6336     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6337     return N * TTI.getArithmeticInstrCost(
6338                    I->getOpcode(), VectorTy, CostKind,
6339                    TargetTransformInfo::OK_AnyValue,
6340                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
6341   }
6342   case Instruction::FNeg: {
6343     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6344     return N * TTI.getArithmeticInstrCost(
6345                    I->getOpcode(), VectorTy, CostKind,
6346                    TargetTransformInfo::OK_AnyValue,
6347                    TargetTransformInfo::OK_AnyValue,
6348                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
6349                    I->getOperand(0), I);
6350   }
6351   case Instruction::Select: {
6352     SelectInst *SI = cast<SelectInst>(I);
6353     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6354     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6355     Type *CondTy = SI->getCondition()->getType();
6356     if (!ScalarCond)
6357       CondTy = FixedVectorType::get(CondTy, VF);
6358 
6359     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
6360                                   CostKind, I);
6361   }
6362   case Instruction::ICmp:
6363   case Instruction::FCmp: {
6364     Type *ValTy = I->getOperand(0)->getType();
6365     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6366     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6367       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
6368     VectorTy = ToVectorTy(ValTy, VF);
6369     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind,
6370                                   I);
6371   }
6372   case Instruction::Store:
6373   case Instruction::Load: {
6374     unsigned Width = VF;
6375     if (Width > 1) {
6376       InstWidening Decision = getWideningDecision(I, Width);
6377       assert(Decision != CM_Unknown &&
6378              "CM decision should be taken at this point");
6379       if (Decision == CM_Scalarize)
6380         Width = 1;
6381     }
6382     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
6383     return getMemoryInstructionCost(I, VF);
6384   }
6385   case Instruction::ZExt:
6386   case Instruction::SExt:
6387   case Instruction::FPToUI:
6388   case Instruction::FPToSI:
6389   case Instruction::FPExt:
6390   case Instruction::PtrToInt:
6391   case Instruction::IntToPtr:
6392   case Instruction::SIToFP:
6393   case Instruction::UIToFP:
6394   case Instruction::Trunc:
6395   case Instruction::FPTrunc:
6396   case Instruction::BitCast: {
6397     // We optimize the truncation of induction variables having constant
6398     // integer steps. The cost of these truncations is the same as the scalar
6399     // operation.
6400     if (isOptimizableIVTruncate(I, VF)) {
6401       auto *Trunc = cast<TruncInst>(I);
6402       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6403                                   Trunc->getSrcTy(), CostKind, Trunc);
6404     }
6405 
6406     Type *SrcScalarTy = I->getOperand(0)->getType();
6407     Type *SrcVecTy =
6408         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6409     if (canTruncateToMinimalBitwidth(I, VF)) {
6410       // This cast is going to be shrunk. This may remove the cast or it might
6411       // turn it into slightly different cast. For example, if MinBW == 16,
6412       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6413       //
6414       // Calculate the modified src and dest types.
6415       Type *MinVecTy = VectorTy;
6416       if (I->getOpcode() == Instruction::Trunc) {
6417         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6418         VectorTy =
6419             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6420       } else if (I->getOpcode() == Instruction::ZExt ||
6421                  I->getOpcode() == Instruction::SExt) {
6422         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6423         VectorTy =
6424             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6425       }
6426     }
6427 
6428     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6429     return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy,
6430                                     CostKind, I);
6431   }
6432   case Instruction::Call: {
6433     bool NeedToScalarize;
6434     CallInst *CI = cast<CallInst>(I);
6435     unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
6436     if (getVectorIntrinsicIDForCall(CI, TLI))
6437       return std::min(CallCost, getVectorIntrinsicCost(CI, VF));
6438     return CallCost;
6439   }
6440   default:
6441     // The cost of executing VF copies of the scalar instruction. This opcode
6442     // is unknown. Assume that it is the same as 'mul'.
6443     return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
6444                                            CostKind) +
6445            getScalarizationOverhead(I, VF);
6446   } // end of switch.
6447 }
6448 
6449 char LoopVectorize::ID = 0;
6450 
6451 static const char lv_name[] = "Loop Vectorization";
6452 
6453 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6454 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6455 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6456 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6457 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6458 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6459 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6460 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6461 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6462 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6463 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6464 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6465 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6466 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
6467 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
6468 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6469 
6470 namespace llvm {
6471 
6472 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
6473 
6474 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
6475                               bool VectorizeOnlyWhenForced) {
6476   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
6477 }
6478 
6479 } // end namespace llvm
6480 
6481 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6482   // Check if the pointer operand of a load or store instruction is
6483   // consecutive.
6484   if (auto *Ptr = getLoadStorePointerOperand(Inst))
6485     return Legal->isConsecutivePtr(Ptr);
6486   return false;
6487 }
6488 
6489 void LoopVectorizationCostModel::collectValuesToIgnore() {
6490   // Ignore ephemeral values.
6491   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6492 
6493   // Ignore type-promoting instructions we identified during reduction
6494   // detection.
6495   for (auto &Reduction : Legal->getReductionVars()) {
6496     RecurrenceDescriptor &RedDes = Reduction.second;
6497     SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6498     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6499   }
6500   // Ignore type-casting instructions we identified during induction
6501   // detection.
6502   for (auto &Induction : Legal->getInductionVars()) {
6503     InductionDescriptor &IndDes = Induction.second;
6504     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6505     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6506   }
6507 }
6508 
6509 // TODO: we could return a pair of values that specify the max VF and
6510 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6511 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6512 // doesn't have a cost model that can choose which plan to execute if
6513 // more than one is generated.
6514 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
6515                                  LoopVectorizationCostModel &CM) {
6516   unsigned WidestType;
6517   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6518   return WidestVectorRegBits / WidestType;
6519 }
6520 
6521 VectorizationFactor
6522 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) {
6523   unsigned VF = UserVF;
6524   // Outer loop handling: They may require CFG and instruction level
6525   // transformations before even evaluating whether vectorization is profitable.
6526   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6527   // the vectorization pipeline.
6528   if (!OrigLoop->empty()) {
6529     // If the user doesn't provide a vectorization factor, determine a
6530     // reasonable one.
6531     if (!UserVF) {
6532       VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM);
6533       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6534 
6535       // Make sure we have a VF > 1 for stress testing.
6536       if (VPlanBuildStressTest && VF < 2) {
6537         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6538                           << "overriding computed VF.\n");
6539         VF = 4;
6540       }
6541     }
6542     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6543     assert(isPowerOf2_32(VF) && "VF needs to be a power of two");
6544     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF
6545                       << " to build VPlans.\n");
6546     buildVPlans(VF, VF);
6547 
6548     // For VPlan build stress testing, we bail out after VPlan construction.
6549     if (VPlanBuildStressTest)
6550       return VectorizationFactor::Disabled();
6551 
6552     return {VF, 0};
6553   }
6554 
6555   LLVM_DEBUG(
6556       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6557                 "VPlan-native path.\n");
6558   return VectorizationFactor::Disabled();
6559 }
6560 
6561 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF,
6562                                                              unsigned UserIC) {
6563   assert(OrigLoop->empty() && "Inner loop expected.");
6564   Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
6565   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
6566     return None;
6567 
6568   // Invalidate interleave groups if all blocks of loop will be predicated.
6569   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
6570       !useMaskedInterleavedAccesses(*TTI)) {
6571     LLVM_DEBUG(
6572         dbgs()
6573         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6574            "which requires masked-interleaved support.\n");
6575     if (CM.InterleaveInfo.invalidateGroups())
6576       // Invalidating interleave groups also requires invalidating all decisions
6577       // based on them, which includes widening decisions and uniform and scalar
6578       // values.
6579       CM.invalidateCostModelingDecisions();
6580   }
6581 
6582   if (UserVF) {
6583     LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6584     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
6585     // Collect the instructions (and their associated costs) that will be more
6586     // profitable to scalarize.
6587     CM.selectUserVectorizationFactor(UserVF);
6588     buildVPlansWithVPRecipes(UserVF, UserVF);
6589     LLVM_DEBUG(printPlans(dbgs()));
6590     return {{UserVF, 0}};
6591   }
6592 
6593   unsigned MaxVF = MaybeMaxVF.getValue();
6594   assert(MaxVF != 0 && "MaxVF is zero.");
6595 
6596   for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
6597     // Collect Uniform and Scalar instructions after vectorization with VF.
6598     CM.collectUniformsAndScalars(VF);
6599 
6600     // Collect the instructions (and their associated costs) that will be more
6601     // profitable to scalarize.
6602     if (VF > 1)
6603       CM.collectInstsToScalarize(VF);
6604   }
6605 
6606   buildVPlansWithVPRecipes(1, MaxVF);
6607   LLVM_DEBUG(printPlans(dbgs()));
6608   if (MaxVF == 1)
6609     return VectorizationFactor::Disabled();
6610 
6611   // Select the optimal vectorization factor.
6612   return CM.selectVectorizationFactor(MaxVF);
6613 }
6614 
6615 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
6616   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
6617                     << '\n');
6618   BestVF = VF;
6619   BestUF = UF;
6620 
6621   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
6622     return !Plan->hasVF(VF);
6623   });
6624   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
6625 }
6626 
6627 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
6628                                            DominatorTree *DT) {
6629   // Perform the actual loop transformation.
6630 
6631   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
6632   VPCallbackILV CallbackILV(ILV);
6633 
6634   VPTransformState State{BestVF, BestUF,      LI,
6635                          DT,     ILV.Builder, ILV.VectorLoopValueMap,
6636                          &ILV,   CallbackILV};
6637   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
6638   State.TripCount = ILV.getOrCreateTripCount(nullptr);
6639   State.CanonicalIV = ILV.Induction;
6640 
6641   //===------------------------------------------------===//
6642   //
6643   // Notice: any optimization or new instruction that go
6644   // into the code below should also be implemented in
6645   // the cost-model.
6646   //
6647   //===------------------------------------------------===//
6648 
6649   // 2. Copy and widen instructions from the old loop into the new loop.
6650   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
6651   VPlans.front()->execute(&State);
6652 
6653   // 3. Fix the vectorized code: take care of header phi's, live-outs,
6654   //    predication, updating analyses.
6655   ILV.fixVectorizedLoop();
6656 }
6657 
6658 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
6659     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
6660   BasicBlock *Latch = OrigLoop->getLoopLatch();
6661 
6662   // We create new control-flow for the vectorized loop, so the original
6663   // condition will be dead after vectorization if it's only used by the
6664   // branch.
6665   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
6666   if (Cmp && Cmp->hasOneUse())
6667     DeadInstructions.insert(Cmp);
6668 
6669   // We create new "steps" for induction variable updates to which the original
6670   // induction variables map. An original update instruction will be dead if
6671   // all its users except the induction variable are dead.
6672   for (auto &Induction : Legal->getInductionVars()) {
6673     PHINode *Ind = Induction.first;
6674     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
6675     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
6676           return U == Ind || DeadInstructions.find(cast<Instruction>(U)) !=
6677                                  DeadInstructions.end();
6678         }))
6679       DeadInstructions.insert(IndUpdate);
6680 
6681     // We record as "Dead" also the type-casting instructions we had identified
6682     // during induction analysis. We don't need any handling for them in the
6683     // vectorized loop because we have proven that, under a proper runtime
6684     // test guarding the vectorized loop, the value of the phi, and the casted
6685     // value of the phi, are the same. The last instruction in this casting chain
6686     // will get its scalar/vector/widened def from the scalar/vector/widened def
6687     // of the respective phi node. Any other casts in the induction def-use chain
6688     // have no other uses outside the phi update chain, and will be ignored.
6689     InductionDescriptor &IndDes = Induction.second;
6690     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6691     DeadInstructions.insert(Casts.begin(), Casts.end());
6692   }
6693 }
6694 
6695 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
6696 
6697 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
6698 
6699 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
6700                                         Instruction::BinaryOps BinOp) {
6701   // When unrolling and the VF is 1, we only need to add a simple scalar.
6702   Type *Ty = Val->getType();
6703   assert(!Ty->isVectorTy() && "Val must be a scalar");
6704 
6705   if (Ty->isFloatingPointTy()) {
6706     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
6707 
6708     // Floating point operations had to be 'fast' to enable the unrolling.
6709     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
6710     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
6711   }
6712   Constant *C = ConstantInt::get(Ty, StartIdx);
6713   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
6714 }
6715 
6716 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
6717   SmallVector<Metadata *, 4> MDs;
6718   // Reserve first location for self reference to the LoopID metadata node.
6719   MDs.push_back(nullptr);
6720   bool IsUnrollMetadata = false;
6721   MDNode *LoopID = L->getLoopID();
6722   if (LoopID) {
6723     // First find existing loop unrolling disable metadata.
6724     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
6725       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
6726       if (MD) {
6727         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
6728         IsUnrollMetadata =
6729             S && S->getString().startswith("llvm.loop.unroll.disable");
6730       }
6731       MDs.push_back(LoopID->getOperand(i));
6732     }
6733   }
6734 
6735   if (!IsUnrollMetadata) {
6736     // Add runtime unroll disable metadata.
6737     LLVMContext &Context = L->getHeader()->getContext();
6738     SmallVector<Metadata *, 1> DisableOperands;
6739     DisableOperands.push_back(
6740         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
6741     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
6742     MDs.push_back(DisableNode);
6743     MDNode *NewLoopID = MDNode::get(Context, MDs);
6744     // Set operand 0 to refer to the loop id itself.
6745     NewLoopID->replaceOperandWith(0, NewLoopID);
6746     L->setLoopID(NewLoopID);
6747   }
6748 }
6749 
6750 bool LoopVectorizationPlanner::getDecisionAndClampRange(
6751     const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
6752   assert(Range.End > Range.Start && "Trying to test an empty VF range.");
6753   bool PredicateAtRangeStart = Predicate(Range.Start);
6754 
6755   for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
6756     if (Predicate(TmpVF) != PredicateAtRangeStart) {
6757       Range.End = TmpVF;
6758       break;
6759     }
6760 
6761   return PredicateAtRangeStart;
6762 }
6763 
6764 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
6765 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
6766 /// of VF's starting at a given VF and extending it as much as possible. Each
6767 /// vectorization decision can potentially shorten this sub-range during
6768 /// buildVPlan().
6769 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
6770   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
6771     VFRange SubRange = {VF, MaxVF + 1};
6772     VPlans.push_back(buildVPlan(SubRange));
6773     VF = SubRange.End;
6774   }
6775 }
6776 
6777 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
6778                                          VPlanPtr &Plan) {
6779   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
6780 
6781   // Look for cached value.
6782   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
6783   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
6784   if (ECEntryIt != EdgeMaskCache.end())
6785     return ECEntryIt->second;
6786 
6787   VPValue *SrcMask = createBlockInMask(Src, Plan);
6788 
6789   // The terminator has to be a branch inst!
6790   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
6791   assert(BI && "Unexpected terminator found");
6792 
6793   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
6794     return EdgeMaskCache[Edge] = SrcMask;
6795 
6796   VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
6797   assert(EdgeMask && "No Edge Mask found for condition");
6798 
6799   if (BI->getSuccessor(0) != Dst)
6800     EdgeMask = Builder.createNot(EdgeMask);
6801 
6802   if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
6803     EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
6804 
6805   return EdgeMaskCache[Edge] = EdgeMask;
6806 }
6807 
6808 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
6809   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
6810 
6811   // Look for cached value.
6812   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
6813   if (BCEntryIt != BlockMaskCache.end())
6814     return BCEntryIt->second;
6815 
6816   // All-one mask is modelled as no-mask following the convention for masked
6817   // load/store/gather/scatter. Initialize BlockMask to no-mask.
6818   VPValue *BlockMask = nullptr;
6819 
6820   if (OrigLoop->getHeader() == BB) {
6821     if (!CM.blockNeedsPredication(BB))
6822       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
6823 
6824     // Introduce the early-exit compare IV <= BTC to form header block mask.
6825     // This is used instead of IV < TC because TC may wrap, unlike BTC.
6826     // Start by constructing the desired canonical IV.
6827     VPValue *IV = nullptr;
6828     if (Legal->getPrimaryInduction())
6829       IV = Plan->getVPValue(Legal->getPrimaryInduction());
6830     else {
6831       auto IVRecipe = new VPWidenCanonicalIVRecipe();
6832       Builder.getInsertBlock()->appendRecipe(IVRecipe);
6833       IV = IVRecipe->getVPValue();
6834     }
6835     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
6836     BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
6837     return BlockMaskCache[BB] = BlockMask;
6838   }
6839 
6840   // This is the block mask. We OR all incoming edges.
6841   for (auto *Predecessor : predecessors(BB)) {
6842     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
6843     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
6844       return BlockMaskCache[BB] = EdgeMask;
6845 
6846     if (!BlockMask) { // BlockMask has its initialized nullptr value.
6847       BlockMask = EdgeMask;
6848       continue;
6849     }
6850 
6851     BlockMask = Builder.createOr(BlockMask, EdgeMask);
6852   }
6853 
6854   return BlockMaskCache[BB] = BlockMask;
6855 }
6856 
6857 VPWidenMemoryInstructionRecipe *
6858 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
6859                                   VPlanPtr &Plan) {
6860   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
6861          "Must be called with either a load or store");
6862 
6863   auto willWiden = [&](unsigned VF) -> bool {
6864     if (VF == 1)
6865       return false;
6866     LoopVectorizationCostModel::InstWidening Decision =
6867         CM.getWideningDecision(I, VF);
6868     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
6869            "CM decision should be taken at this point.");
6870     if (Decision == LoopVectorizationCostModel::CM_Interleave)
6871       return true;
6872     if (CM.isScalarAfterVectorization(I, VF) ||
6873         CM.isProfitableToScalarize(I, VF))
6874       return false;
6875     return Decision != LoopVectorizationCostModel::CM_Scalarize;
6876   };
6877 
6878   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6879     return nullptr;
6880 
6881   VPValue *Mask = nullptr;
6882   if (Legal->isMaskRequired(I))
6883     Mask = createBlockInMask(I->getParent(), Plan);
6884 
6885   VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I));
6886   if (LoadInst *Load = dyn_cast<LoadInst>(I))
6887     return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask);
6888 
6889   StoreInst *Store = cast<StoreInst>(I);
6890   VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand());
6891   return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask);
6892 }
6893 
6894 VPWidenIntOrFpInductionRecipe *
6895 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const {
6896   // Check if this is an integer or fp induction. If so, build the recipe that
6897   // produces its scalar and vector values.
6898   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
6899   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
6900       II.getKind() == InductionDescriptor::IK_FpInduction)
6901     return new VPWidenIntOrFpInductionRecipe(Phi);
6902 
6903   return nullptr;
6904 }
6905 
6906 VPWidenIntOrFpInductionRecipe *
6907 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I,
6908                                                 VFRange &Range) const {
6909   // Optimize the special case where the source is a constant integer
6910   // induction variable. Notice that we can only optimize the 'trunc' case
6911   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
6912   // (c) other casts depend on pointer size.
6913 
6914   // Determine whether \p K is a truncation based on an induction variable that
6915   // can be optimized.
6916   auto isOptimizableIVTruncate =
6917       [&](Instruction *K) -> std::function<bool(unsigned)> {
6918     return
6919         [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
6920   };
6921 
6922   if (LoopVectorizationPlanner::getDecisionAndClampRange(
6923           isOptimizableIVTruncate(I), Range))
6924     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
6925                                              I);
6926   return nullptr;
6927 }
6928 
6929 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) {
6930   // We know that all PHIs in non-header blocks are converted into selects, so
6931   // we don't have to worry about the insertion order and we can just use the
6932   // builder. At this point we generate the predication tree. There may be
6933   // duplications since this is a simple recursive scan, but future
6934   // optimizations will clean it up.
6935 
6936   SmallVector<VPValue *, 2> Operands;
6937   unsigned NumIncoming = Phi->getNumIncomingValues();
6938   for (unsigned In = 0; In < NumIncoming; In++) {
6939     VPValue *EdgeMask =
6940       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
6941     assert((EdgeMask || NumIncoming == 1) &&
6942            "Multiple predecessors with one having a full mask");
6943     Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In)));
6944     if (EdgeMask)
6945       Operands.push_back(EdgeMask);
6946   }
6947   return new VPBlendRecipe(Phi, Operands);
6948 }
6949 
6950 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range,
6951                                                    VPlan &Plan) const {
6952 
6953   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
6954       [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); },
6955       Range);
6956 
6957   if (IsPredicated)
6958     return nullptr;
6959 
6960   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6961   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
6962              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
6963     return nullptr;
6964 
6965   auto willWiden = [&](unsigned VF) -> bool {
6966     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6967     // The following case may be scalarized depending on the VF.
6968     // The flag shows whether we use Intrinsic or a usual Call for vectorized
6969     // version of the instruction.
6970     // Is it beneficial to perform intrinsic call compared to lib call?
6971     bool NeedToScalarize = false;
6972     unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
6973     bool UseVectorIntrinsic =
6974         ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost;
6975     return UseVectorIntrinsic || !NeedToScalarize;
6976   };
6977 
6978   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6979     return nullptr;
6980 
6981   return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands()));
6982 }
6983 
6984 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
6985   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
6986          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
6987   // Instruction should be widened, unless it is scalar after vectorization,
6988   // scalarization is profitable or it is predicated.
6989   auto WillScalarize = [this, I](unsigned VF) -> bool {
6990     return CM.isScalarAfterVectorization(I, VF) ||
6991            CM.isProfitableToScalarize(I, VF) ||
6992            CM.isScalarWithPredication(I, VF);
6993   };
6994   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
6995                                                              Range);
6996 }
6997 
6998 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const {
6999   auto IsVectorizableOpcode = [](unsigned Opcode) {
7000     switch (Opcode) {
7001     case Instruction::Add:
7002     case Instruction::And:
7003     case Instruction::AShr:
7004     case Instruction::BitCast:
7005     case Instruction::FAdd:
7006     case Instruction::FCmp:
7007     case Instruction::FDiv:
7008     case Instruction::FMul:
7009     case Instruction::FNeg:
7010     case Instruction::FPExt:
7011     case Instruction::FPToSI:
7012     case Instruction::FPToUI:
7013     case Instruction::FPTrunc:
7014     case Instruction::FRem:
7015     case Instruction::FSub:
7016     case Instruction::ICmp:
7017     case Instruction::IntToPtr:
7018     case Instruction::LShr:
7019     case Instruction::Mul:
7020     case Instruction::Or:
7021     case Instruction::PtrToInt:
7022     case Instruction::SDiv:
7023     case Instruction::Select:
7024     case Instruction::SExt:
7025     case Instruction::Shl:
7026     case Instruction::SIToFP:
7027     case Instruction::SRem:
7028     case Instruction::Sub:
7029     case Instruction::Trunc:
7030     case Instruction::UDiv:
7031     case Instruction::UIToFP:
7032     case Instruction::URem:
7033     case Instruction::Xor:
7034     case Instruction::ZExt:
7035       return true;
7036     }
7037     return false;
7038   };
7039 
7040   if (!IsVectorizableOpcode(I->getOpcode()))
7041     return nullptr;
7042 
7043   // Success: widen this instruction.
7044   return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands()));
7045 }
7046 
7047 VPBasicBlock *VPRecipeBuilder::handleReplication(
7048     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
7049     DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
7050     VPlanPtr &Plan) {
7051   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
7052       [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
7053       Range);
7054 
7055   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
7056       [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
7057 
7058   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
7059                                        IsUniform, IsPredicated);
7060   setRecipe(I, Recipe);
7061 
7062   // Find if I uses a predicated instruction. If so, it will use its scalar
7063   // value. Avoid hoisting the insert-element which packs the scalar value into
7064   // a vector value, as that happens iff all users use the vector value.
7065   for (auto &Op : I->operands())
7066     if (auto *PredInst = dyn_cast<Instruction>(Op))
7067       if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
7068         PredInst2Recipe[PredInst]->setAlsoPack(false);
7069 
7070   // Finalize the recipe for Instr, first if it is not predicated.
7071   if (!IsPredicated) {
7072     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7073     VPBB->appendRecipe(Recipe);
7074     return VPBB;
7075   }
7076   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7077   assert(VPBB->getSuccessors().empty() &&
7078          "VPBB has successors when handling predicated replication.");
7079   // Record predicated instructions for above packing optimizations.
7080   PredInst2Recipe[I] = Recipe;
7081   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
7082   VPBlockUtils::insertBlockAfter(Region, VPBB);
7083   auto *RegSucc = new VPBasicBlock();
7084   VPBlockUtils::insertBlockAfter(RegSucc, Region);
7085   return RegSucc;
7086 }
7087 
7088 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
7089                                                       VPRecipeBase *PredRecipe,
7090                                                       VPlanPtr &Plan) {
7091   // Instructions marked for predication are replicated and placed under an
7092   // if-then construct to prevent side-effects.
7093 
7094   // Generate recipes to compute the block mask for this region.
7095   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7096 
7097   // Build the triangular if-then region.
7098   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7099   assert(Instr->getParent() && "Predicated instruction not in any basic block");
7100   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7101   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7102   auto *PHIRecipe =
7103       Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7104   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7105   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7106   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7107 
7108   // Note: first set Entry as region entry and then connect successors starting
7109   // from it in order, to propagate the "parent" of each VPBasicBlock.
7110   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
7111   VPBlockUtils::connectBlocks(Pred, Exit);
7112 
7113   return Region;
7114 }
7115 
7116 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
7117                                                       VFRange &Range,
7118                                                       VPlanPtr &Plan) {
7119   // First, check for specific widening recipes that deal with calls, memory
7120   // operations, inductions and Phi nodes.
7121   if (auto *CI = dyn_cast<CallInst>(Instr))
7122     return tryToWidenCall(CI, Range, *Plan);
7123 
7124   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
7125     return tryToWidenMemory(Instr, Range, Plan);
7126 
7127   VPRecipeBase *Recipe;
7128   if (auto Phi = dyn_cast<PHINode>(Instr)) {
7129     if (Phi->getParent() != OrigLoop->getHeader())
7130       return tryToBlend(Phi, Plan);
7131     if ((Recipe = tryToOptimizeInductionPHI(Phi)))
7132       return Recipe;
7133     return new VPWidenPHIRecipe(Phi);
7134   }
7135 
7136   if (isa<TruncInst>(Instr) &&
7137       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range)))
7138     return Recipe;
7139 
7140   if (!shouldWiden(Instr, Range))
7141     return nullptr;
7142 
7143   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
7144     return new VPWidenGEPRecipe(GEP, OrigLoop);
7145 
7146   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
7147     bool InvariantCond =
7148         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
7149     return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()),
7150                                    InvariantCond);
7151   }
7152 
7153   return tryToWiden(Instr, *Plan);
7154 }
7155 
7156 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF,
7157                                                         unsigned MaxVF) {
7158   assert(OrigLoop->empty() && "Inner loop expected.");
7159 
7160   // Collect conditions feeding internal conditional branches; they need to be
7161   // represented in VPlan for it to model masking.
7162   SmallPtrSet<Value *, 1> NeedDef;
7163 
7164   auto *Latch = OrigLoop->getLoopLatch();
7165   for (BasicBlock *BB : OrigLoop->blocks()) {
7166     if (BB == Latch)
7167       continue;
7168     BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
7169     if (Branch && Branch->isConditional())
7170       NeedDef.insert(Branch->getCondition());
7171   }
7172 
7173   // If the tail is to be folded by masking, the primary induction variable, if
7174   // exists needs to be represented in VPlan for it to model early-exit masking.
7175   // Also, both the Phi and the live-out instruction of each reduction are
7176   // required in order to introduce a select between them in VPlan.
7177   if (CM.foldTailByMasking()) {
7178     if (Legal->getPrimaryInduction())
7179       NeedDef.insert(Legal->getPrimaryInduction());
7180     for (auto &Reduction : Legal->getReductionVars()) {
7181       NeedDef.insert(Reduction.first);
7182       NeedDef.insert(Reduction.second.getLoopExitInstr());
7183     }
7184   }
7185 
7186   // Collect instructions from the original loop that will become trivially dead
7187   // in the vectorized loop. We don't need to vectorize these instructions. For
7188   // example, original induction update instructions can become dead because we
7189   // separately emit induction "steps" when generating code for the new loop.
7190   // Similarly, we create a new latch condition when setting up the structure
7191   // of the new loop, so the old one can become dead.
7192   SmallPtrSet<Instruction *, 4> DeadInstructions;
7193   collectTriviallyDeadInstructions(DeadInstructions);
7194 
7195   // Add assume instructions we need to drop to DeadInstructions, to prevent
7196   // them from being added to the VPlan.
7197   // TODO: We only need to drop assumes in blocks that get flattend. If the
7198   // control flow is preserved, we should keep them.
7199   auto &ConditionalAssumes = Legal->getConditionalAssumes();
7200   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
7201 
7202   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7203   // Dead instructions do not need sinking. Remove them from SinkAfter.
7204   for (Instruction *I : DeadInstructions)
7205     SinkAfter.erase(I);
7206 
7207   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
7208     VFRange SubRange = {VF, MaxVF + 1};
7209     VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef,
7210                                              DeadInstructions, SinkAfter));
7211     VF = SubRange.End;
7212   }
7213 }
7214 
7215 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
7216     VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
7217     SmallPtrSetImpl<Instruction *> &DeadInstructions,
7218     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
7219 
7220   // Hold a mapping from predicated instructions to their recipes, in order to
7221   // fix their AlsoPack behavior if a user is determined to replicate and use a
7222   // scalar instead of vector value.
7223   DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
7224 
7225   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
7226 
7227   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
7228 
7229   // ---------------------------------------------------------------------------
7230   // Pre-construction: record ingredients whose recipes we'll need to further
7231   // process after constructing the initial VPlan.
7232   // ---------------------------------------------------------------------------
7233 
7234   // Mark instructions we'll need to sink later and their targets as
7235   // ingredients whose recipe we'll need to record.
7236   for (auto &Entry : SinkAfter) {
7237     RecipeBuilder.recordRecipeOf(Entry.first);
7238     RecipeBuilder.recordRecipeOf(Entry.second);
7239   }
7240 
7241   // For each interleave group which is relevant for this (possibly trimmed)
7242   // Range, add it to the set of groups to be later applied to the VPlan and add
7243   // placeholders for its members' Recipes which we'll be replacing with a
7244   // single VPInterleaveRecipe.
7245   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
7246     auto applyIG = [IG, this](unsigned VF) -> bool {
7247       return (VF >= 2 && // Query is illegal for VF == 1
7248               CM.getWideningDecision(IG->getInsertPos(), VF) ==
7249                   LoopVectorizationCostModel::CM_Interleave);
7250     };
7251     if (!getDecisionAndClampRange(applyIG, Range))
7252       continue;
7253     InterleaveGroups.insert(IG);
7254     for (unsigned i = 0; i < IG->getFactor(); i++)
7255       if (Instruction *Member = IG->getMember(i))
7256         RecipeBuilder.recordRecipeOf(Member);
7257   };
7258 
7259   // ---------------------------------------------------------------------------
7260   // Build initial VPlan: Scan the body of the loop in a topological order to
7261   // visit each basic block after having visited its predecessor basic blocks.
7262   // ---------------------------------------------------------------------------
7263 
7264   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
7265   auto Plan = std::make_unique<VPlan>();
7266   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
7267   Plan->setEntry(VPBB);
7268 
7269   // Represent values that will have defs inside VPlan.
7270   for (Value *V : NeedDef)
7271     Plan->addVPValue(V);
7272 
7273   // Scan the body of the loop in a topological order to visit each basic block
7274   // after having visited its predecessor basic blocks.
7275   LoopBlocksDFS DFS(OrigLoop);
7276   DFS.perform(LI);
7277 
7278   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
7279     // Relevant instructions from basic block BB will be grouped into VPRecipe
7280     // ingredients and fill a new VPBasicBlock.
7281     unsigned VPBBsForBB = 0;
7282     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
7283     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
7284     VPBB = FirstVPBBForBB;
7285     Builder.setInsertPoint(VPBB);
7286 
7287     // Introduce each ingredient into VPlan.
7288     // TODO: Model and preserve debug instrinsics in VPlan.
7289     for (Instruction &I : BB->instructionsWithoutDebug()) {
7290       Instruction *Instr = &I;
7291 
7292       // First filter out irrelevant instructions, to ensure no recipes are
7293       // built for them.
7294       if (isa<BranchInst>(Instr) ||
7295           DeadInstructions.find(Instr) != DeadInstructions.end())
7296         continue;
7297 
7298       if (auto Recipe =
7299               RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) {
7300         RecipeBuilder.setRecipe(Instr, Recipe);
7301         VPBB->appendRecipe(Recipe);
7302         continue;
7303       }
7304 
7305       // Otherwise, if all widening options failed, Instruction is to be
7306       // replicated. This may create a successor for VPBB.
7307       VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
7308           Instr, Range, VPBB, PredInst2Recipe, Plan);
7309       if (NextVPBB != VPBB) {
7310         VPBB = NextVPBB;
7311         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
7312                                     : "");
7313       }
7314     }
7315   }
7316 
7317   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
7318   // may also be empty, such as the last one VPBB, reflecting original
7319   // basic-blocks with no recipes.
7320   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
7321   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
7322   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
7323   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
7324   delete PreEntry;
7325 
7326   // ---------------------------------------------------------------------------
7327   // Transform initial VPlan: Apply previously taken decisions, in order, to
7328   // bring the VPlan to its final state.
7329   // ---------------------------------------------------------------------------
7330 
7331   // Apply Sink-After legal constraints.
7332   for (auto &Entry : SinkAfter) {
7333     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
7334     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
7335     Sink->moveAfter(Target);
7336   }
7337 
7338   // Interleave memory: for each Interleave Group we marked earlier as relevant
7339   // for this VPlan, replace the Recipes widening its memory instructions with a
7340   // single VPInterleaveRecipe at its insertion point.
7341   for (auto IG : InterleaveGroups) {
7342     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
7343         RecipeBuilder.getRecipe(IG->getInsertPos()));
7344     (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask()))
7345         ->insertBefore(Recipe);
7346 
7347     for (unsigned i = 0; i < IG->getFactor(); ++i)
7348       if (Instruction *Member = IG->getMember(i)) {
7349         RecipeBuilder.getRecipe(Member)->eraseFromParent();
7350       }
7351   }
7352 
7353   // Finally, if tail is folded by masking, introduce selects between the phi
7354   // and the live-out instruction of each reduction, at the end of the latch.
7355   if (CM.foldTailByMasking()) {
7356     Builder.setInsertPoint(VPBB);
7357     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
7358     for (auto &Reduction : Legal->getReductionVars()) {
7359       VPValue *Phi = Plan->getVPValue(Reduction.first);
7360       VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr());
7361       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
7362     }
7363   }
7364 
7365   std::string PlanName;
7366   raw_string_ostream RSO(PlanName);
7367   unsigned VF = Range.Start;
7368   Plan->addVF(VF);
7369   RSO << "Initial VPlan for VF={" << VF;
7370   for (VF *= 2; VF < Range.End; VF *= 2) {
7371     Plan->addVF(VF);
7372     RSO << "," << VF;
7373   }
7374   RSO << "},UF>=1";
7375   RSO.flush();
7376   Plan->setName(PlanName);
7377 
7378   return Plan;
7379 }
7380 
7381 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
7382   // Outer loop handling: They may require CFG and instruction level
7383   // transformations before even evaluating whether vectorization is profitable.
7384   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7385   // the vectorization pipeline.
7386   assert(!OrigLoop->empty());
7387   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7388 
7389   // Create new empty VPlan
7390   auto Plan = std::make_unique<VPlan>();
7391 
7392   // Build hierarchical CFG
7393   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
7394   HCFGBuilder.buildHierarchicalCFG();
7395 
7396   for (unsigned VF = Range.Start; VF < Range.End; VF *= 2)
7397     Plan->addVF(VF);
7398 
7399   if (EnableVPlanPredication) {
7400     VPlanPredicator VPP(*Plan);
7401     VPP.predicate();
7402 
7403     // Avoid running transformation to recipes until masked code generation in
7404     // VPlan-native path is in place.
7405     return Plan;
7406   }
7407 
7408   SmallPtrSet<Instruction *, 1> DeadInstructions;
7409   VPlanTransforms::VPInstructionsToVPRecipes(
7410       OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions);
7411   return Plan;
7412 }
7413 
7414 Value* LoopVectorizationPlanner::VPCallbackILV::
7415 getOrCreateVectorValues(Value *V, unsigned Part) {
7416       return ILV.getOrCreateVectorValue(V, Part);
7417 }
7418 
7419 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue(
7420     Value *V, const VPIteration &Instance) {
7421   return ILV.getOrCreateScalarValue(V, Instance);
7422 }
7423 
7424 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
7425                                VPSlotTracker &SlotTracker) const {
7426   O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
7427   IG->getInsertPos()->printAsOperand(O, false);
7428   O << ", ";
7429   getAddr()->printAsOperand(O, SlotTracker);
7430   VPValue *Mask = getMask();
7431   if (Mask) {
7432     O << ", ";
7433     Mask->printAsOperand(O, SlotTracker);
7434   }
7435   for (unsigned i = 0; i < IG->getFactor(); ++i)
7436     if (Instruction *I = IG->getMember(i))
7437       O << "\\l\" +\n" << Indent << "\"  " << VPlanIngredient(I) << " " << i;
7438 }
7439 
7440 void VPWidenCallRecipe::execute(VPTransformState &State) {
7441   State.ILV->widenCallInstruction(Ingredient, User, State);
7442 }
7443 
7444 void VPWidenSelectRecipe::execute(VPTransformState &State) {
7445   State.ILV->widenSelectInstruction(Ingredient, User, InvariantCond, State);
7446 }
7447 
7448 void VPWidenRecipe::execute(VPTransformState &State) {
7449   State.ILV->widenInstruction(Ingredient, User, State);
7450 }
7451 
7452 void VPWidenGEPRecipe::execute(VPTransformState &State) {
7453   State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant,
7454                       IsIndexLoopInvariant);
7455 }
7456 
7457 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
7458   assert(!State.Instance && "Int or FP induction being replicated.");
7459   State.ILV->widenIntOrFpInduction(IV, Trunc);
7460 }
7461 
7462 void VPWidenPHIRecipe::execute(VPTransformState &State) {
7463   State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
7464 }
7465 
7466 void VPBlendRecipe::execute(VPTransformState &State) {
7467   State.ILV->setDebugLocFromInst(State.Builder, Phi);
7468   // We know that all PHIs in non-header blocks are converted into
7469   // selects, so we don't have to worry about the insertion order and we
7470   // can just use the builder.
7471   // At this point we generate the predication tree. There may be
7472   // duplications since this is a simple recursive scan, but future
7473   // optimizations will clean it up.
7474 
7475   unsigned NumIncoming = getNumIncomingValues();
7476 
7477   // Generate a sequence of selects of the form:
7478   // SELECT(Mask3, In3,
7479   //        SELECT(Mask2, In2,
7480   //               SELECT(Mask1, In1,
7481   //                      In0)))
7482   // Note that Mask0 is never used: lanes for which no path reaches this phi and
7483   // are essentially undef are taken from In0.
7484   InnerLoopVectorizer::VectorParts Entry(State.UF);
7485   for (unsigned In = 0; In < NumIncoming; ++In) {
7486     for (unsigned Part = 0; Part < State.UF; ++Part) {
7487       // We might have single edge PHIs (blocks) - use an identity
7488       // 'select' for the first PHI operand.
7489       Value *In0 = State.get(getIncomingValue(In), Part);
7490       if (In == 0)
7491         Entry[Part] = In0; // Initialize with the first incoming value.
7492       else {
7493         // Select between the current value and the previous incoming edge
7494         // based on the incoming mask.
7495         Value *Cond = State.get(getMask(In), Part);
7496         Entry[Part] =
7497             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
7498       }
7499     }
7500   }
7501   for (unsigned Part = 0; Part < State.UF; ++Part)
7502     State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
7503 }
7504 
7505 void VPInterleaveRecipe::execute(VPTransformState &State) {
7506   assert(!State.Instance && "Interleave group being replicated.");
7507   State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask());
7508 }
7509 
7510 void VPReplicateRecipe::execute(VPTransformState &State) {
7511   if (State.Instance) { // Generate a single instance.
7512     State.ILV->scalarizeInstruction(Ingredient, User, *State.Instance,
7513                                     IsPredicated, State);
7514     // Insert scalar instance packing it into a vector.
7515     if (AlsoPack && State.VF > 1) {
7516       // If we're constructing lane 0, initialize to start from undef.
7517       if (State.Instance->Lane == 0) {
7518         Value *Undef = UndefValue::get(
7519             FixedVectorType::get(Ingredient->getType(), State.VF));
7520         State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
7521       }
7522       State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
7523     }
7524     return;
7525   }
7526 
7527   // Generate scalar instances for all VF lanes of all UF parts, unless the
7528   // instruction is uniform inwhich case generate only the first lane for each
7529   // of the UF parts.
7530   unsigned EndLane = IsUniform ? 1 : State.VF;
7531   for (unsigned Part = 0; Part < State.UF; ++Part)
7532     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
7533       State.ILV->scalarizeInstruction(Ingredient, User, {Part, Lane},
7534                                       IsPredicated, State);
7535 }
7536 
7537 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
7538   assert(State.Instance && "Branch on Mask works only on single instance.");
7539 
7540   unsigned Part = State.Instance->Part;
7541   unsigned Lane = State.Instance->Lane;
7542 
7543   Value *ConditionBit = nullptr;
7544   VPValue *BlockInMask = getMask();
7545   if (BlockInMask) {
7546     ConditionBit = State.get(BlockInMask, Part);
7547     if (ConditionBit->getType()->isVectorTy())
7548       ConditionBit = State.Builder.CreateExtractElement(
7549           ConditionBit, State.Builder.getInt32(Lane));
7550   } else // Block in mask is all-one.
7551     ConditionBit = State.Builder.getTrue();
7552 
7553   // Replace the temporary unreachable terminator with a new conditional branch,
7554   // whose two destinations will be set later when they are created.
7555   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
7556   assert(isa<UnreachableInst>(CurrentTerminator) &&
7557          "Expected to replace unreachable terminator with conditional branch.");
7558   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
7559   CondBr->setSuccessor(0, nullptr);
7560   ReplaceInstWithInst(CurrentTerminator, CondBr);
7561 }
7562 
7563 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
7564   assert(State.Instance && "Predicated instruction PHI works per instance.");
7565   Instruction *ScalarPredInst = cast<Instruction>(
7566       State.ValueMap.getScalarValue(PredInst, *State.Instance));
7567   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
7568   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
7569   assert(PredicatingBB && "Predicated block has no single predecessor.");
7570 
7571   // By current pack/unpack logic we need to generate only a single phi node: if
7572   // a vector value for the predicated instruction exists at this point it means
7573   // the instruction has vector users only, and a phi for the vector value is
7574   // needed. In this case the recipe of the predicated instruction is marked to
7575   // also do that packing, thereby "hoisting" the insert-element sequence.
7576   // Otherwise, a phi node for the scalar value is needed.
7577   unsigned Part = State.Instance->Part;
7578   if (State.ValueMap.hasVectorValue(PredInst, Part)) {
7579     Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
7580     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
7581     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
7582     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
7583     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
7584     State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
7585   } else {
7586     Type *PredInstType = PredInst->getType();
7587     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
7588     Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
7589     Phi->addIncoming(ScalarPredInst, PredicatedBB);
7590     State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
7591   }
7592 }
7593 
7594 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
7595   VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr;
7596   State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue,
7597                                         getMask());
7598 }
7599 
7600 // Determine how to lower the scalar epilogue, which depends on 1) optimising
7601 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
7602 // predication, and 4) a TTI hook that analyses whether the loop is suitable
7603 // for predication.
7604 static ScalarEpilogueLowering getScalarEpilogueLowering(
7605     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
7606     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
7607     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
7608     LoopVectorizationLegality &LVL) {
7609   bool OptSize =
7610       F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
7611                                                      PGSOQueryType::IRPass);
7612   // 1) OptSize takes precedence over all other options, i.e. if this is set,
7613   // don't look at hints or options, and don't request a scalar epilogue.
7614   if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled)
7615     return CM_ScalarEpilogueNotAllowedOptSize;
7616 
7617   bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() &&
7618                               !PreferPredicateOverEpilog;
7619 
7620   // 2) Next, if disabling predication is requested on the command line, honour
7621   // this and request a scalar epilogue.
7622   if (PredicateOptDisabled)
7623     return CM_ScalarEpilogueAllowed;
7624 
7625   // 3) and 4) look if enabling predication is requested on the command line,
7626   // with a loop hint, or if the TTI hook indicates this is profitable, request
7627   // predication .
7628   if (PreferPredicateOverEpilog ||
7629       Hints.getPredicate() == LoopVectorizeHints::FK_Enabled ||
7630       (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
7631                                         LVL.getLAI()) &&
7632        Hints.getPredicate() != LoopVectorizeHints::FK_Disabled))
7633     return CM_ScalarEpilogueNotNeededUsePredicate;
7634 
7635   return CM_ScalarEpilogueAllowed;
7636 }
7637 
7638 // Process the loop in the VPlan-native vectorization path. This path builds
7639 // VPlan upfront in the vectorization pipeline, which allows to apply
7640 // VPlan-to-VPlan transformations from the very beginning without modifying the
7641 // input LLVM IR.
7642 static bool processLoopInVPlanNativePath(
7643     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
7644     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
7645     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
7646     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
7647     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
7648 
7649   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
7650   Function *F = L->getHeader()->getParent();
7651   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
7652 
7653   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7654       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
7655 
7656   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
7657                                 &Hints, IAI);
7658   // Use the planner for outer loop vectorization.
7659   // TODO: CM is not used at this point inside the planner. Turn CM into an
7660   // optional argument if we don't need it in the future.
7661   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE);
7662 
7663   // Get user vectorization factor.
7664   const unsigned UserVF = Hints.getWidth();
7665 
7666   // Plan how to best vectorize, return the best VF and its cost.
7667   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
7668 
7669   // If we are stress testing VPlan builds, do not attempt to generate vector
7670   // code. Masked vector code generation support will follow soon.
7671   // Also, do not attempt to vectorize if no vector code will be produced.
7672   if (VPlanBuildStressTest || EnableVPlanPredication ||
7673       VectorizationFactor::Disabled() == VF)
7674     return false;
7675 
7676   LVP.setBestPlan(VF.Width, 1);
7677 
7678   InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
7679                          &CM);
7680   LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
7681                     << L->getHeader()->getParent()->getName() << "\"\n");
7682   LVP.executePlan(LB, DT);
7683 
7684   // Mark the loop as already vectorized to avoid vectorizing again.
7685   Hints.setAlreadyVectorized();
7686 
7687   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
7688   return true;
7689 }
7690 
7691 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
7692     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
7693                                !EnableLoopInterleaving),
7694       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
7695                               !EnableLoopVectorization) {}
7696 
7697 bool LoopVectorizePass::processLoop(Loop *L) {
7698   assert((EnableVPlanNativePath || L->empty()) &&
7699          "VPlan-native path is not enabled. Only process inner loops.");
7700 
7701 #ifndef NDEBUG
7702   const std::string DebugLocStr = getDebugLocString(L);
7703 #endif /* NDEBUG */
7704 
7705   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
7706                     << L->getHeader()->getParent()->getName() << "\" from "
7707                     << DebugLocStr << "\n");
7708 
7709   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
7710 
7711   LLVM_DEBUG(
7712       dbgs() << "LV: Loop hints:"
7713              << " force="
7714              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
7715                      ? "disabled"
7716                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
7717                             ? "enabled"
7718                             : "?"))
7719              << " width=" << Hints.getWidth()
7720              << " unroll=" << Hints.getInterleave() << "\n");
7721 
7722   // Function containing loop
7723   Function *F = L->getHeader()->getParent();
7724 
7725   // Looking at the diagnostic output is the only way to determine if a loop
7726   // was vectorized (other than looking at the IR or machine code), so it
7727   // is important to generate an optimization remark for each loop. Most of
7728   // these messages are generated as OptimizationRemarkAnalysis. Remarks
7729   // generated as OptimizationRemark and OptimizationRemarkMissed are
7730   // less verbose reporting vectorized loops and unvectorized loops that may
7731   // benefit from vectorization, respectively.
7732 
7733   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
7734     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
7735     return false;
7736   }
7737 
7738   PredicatedScalarEvolution PSE(*SE, *L);
7739 
7740   // Check if it is legal to vectorize the loop.
7741   LoopVectorizationRequirements Requirements(*ORE);
7742   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
7743                                 &Requirements, &Hints, DB, AC);
7744   if (!LVL.canVectorize(EnableVPlanNativePath)) {
7745     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
7746     Hints.emitRemarkWithHints();
7747     return false;
7748   }
7749 
7750   // Check the function attributes and profiles to find out if this function
7751   // should be optimized for size.
7752   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7753       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
7754 
7755   // Entrance to the VPlan-native vectorization path. Outer loops are processed
7756   // here. They may require CFG and instruction level transformations before
7757   // even evaluating whether vectorization is profitable. Since we cannot modify
7758   // the incoming IR, we need to build VPlan upfront in the vectorization
7759   // pipeline.
7760   if (!L->empty())
7761     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
7762                                         ORE, BFI, PSI, Hints);
7763 
7764   assert(L->empty() && "Inner loop expected.");
7765 
7766   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
7767   // count by optimizing for size, to minimize overheads.
7768   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
7769   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
7770     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
7771                       << "This loop is worth vectorizing only if no scalar "
7772                       << "iteration overheads are incurred.");
7773     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
7774       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
7775     else {
7776       LLVM_DEBUG(dbgs() << "\n");
7777       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
7778     }
7779   }
7780 
7781   // Check the function attributes to see if implicit floats are allowed.
7782   // FIXME: This check doesn't seem possibly correct -- what if the loop is
7783   // an integer loop and the vector instructions selected are purely integer
7784   // vector instructions?
7785   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
7786     reportVectorizationFailure(
7787         "Can't vectorize when the NoImplicitFloat attribute is used",
7788         "loop not vectorized due to NoImplicitFloat attribute",
7789         "NoImplicitFloat", ORE, L);
7790     Hints.emitRemarkWithHints();
7791     return false;
7792   }
7793 
7794   // Check if the target supports potentially unsafe FP vectorization.
7795   // FIXME: Add a check for the type of safety issue (denormal, signaling)
7796   // for the target we're vectorizing for, to make sure none of the
7797   // additional fp-math flags can help.
7798   if (Hints.isPotentiallyUnsafe() &&
7799       TTI->isFPVectorizationPotentiallyUnsafe()) {
7800     reportVectorizationFailure(
7801         "Potentially unsafe FP op prevents vectorization",
7802         "loop not vectorized due to unsafe FP support.",
7803         "UnsafeFP", ORE, L);
7804     Hints.emitRemarkWithHints();
7805     return false;
7806   }
7807 
7808   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
7809   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
7810 
7811   // If an override option has been passed in for interleaved accesses, use it.
7812   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
7813     UseInterleaved = EnableInterleavedMemAccesses;
7814 
7815   // Analyze interleaved memory accesses.
7816   if (UseInterleaved) {
7817     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
7818   }
7819 
7820   // Use the cost model.
7821   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
7822                                 F, &Hints, IAI);
7823   CM.collectValuesToIgnore();
7824 
7825   // Use the planner for vectorization.
7826   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE);
7827 
7828   // Get user vectorization factor and interleave count.
7829   unsigned UserVF = Hints.getWidth();
7830   unsigned UserIC = Hints.getInterleave();
7831 
7832   // Plan how to best vectorize, return the best VF and its cost.
7833   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
7834 
7835   VectorizationFactor VF = VectorizationFactor::Disabled();
7836   unsigned IC = 1;
7837 
7838   if (MaybeVF) {
7839     VF = *MaybeVF;
7840     // Select the interleave count.
7841     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
7842   }
7843 
7844   // Identify the diagnostic messages that should be produced.
7845   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
7846   bool VectorizeLoop = true, InterleaveLoop = true;
7847   if (Requirements.doesNotMeet(F, L, Hints)) {
7848     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
7849                          "requirements.\n");
7850     Hints.emitRemarkWithHints();
7851     return false;
7852   }
7853 
7854   if (VF.Width == 1) {
7855     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
7856     VecDiagMsg = std::make_pair(
7857         "VectorizationNotBeneficial",
7858         "the cost-model indicates that vectorization is not beneficial");
7859     VectorizeLoop = false;
7860   }
7861 
7862   if (!MaybeVF && UserIC > 1) {
7863     // Tell the user interleaving was avoided up-front, despite being explicitly
7864     // requested.
7865     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
7866                          "interleaving should be avoided up front\n");
7867     IntDiagMsg = std::make_pair(
7868         "InterleavingAvoided",
7869         "Ignoring UserIC, because interleaving was avoided up front");
7870     InterleaveLoop = false;
7871   } else if (IC == 1 && UserIC <= 1) {
7872     // Tell the user interleaving is not beneficial.
7873     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
7874     IntDiagMsg = std::make_pair(
7875         "InterleavingNotBeneficial",
7876         "the cost-model indicates that interleaving is not beneficial");
7877     InterleaveLoop = false;
7878     if (UserIC == 1) {
7879       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
7880       IntDiagMsg.second +=
7881           " and is explicitly disabled or interleave count is set to 1";
7882     }
7883   } else if (IC > 1 && UserIC == 1) {
7884     // Tell the user interleaving is beneficial, but it explicitly disabled.
7885     LLVM_DEBUG(
7886         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
7887     IntDiagMsg = std::make_pair(
7888         "InterleavingBeneficialButDisabled",
7889         "the cost-model indicates that interleaving is beneficial "
7890         "but is explicitly disabled or interleave count is set to 1");
7891     InterleaveLoop = false;
7892   }
7893 
7894   // Override IC if user provided an interleave count.
7895   IC = UserIC > 0 ? UserIC : IC;
7896 
7897   // Emit diagnostic messages, if any.
7898   const char *VAPassName = Hints.vectorizeAnalysisPassName();
7899   if (!VectorizeLoop && !InterleaveLoop) {
7900     // Do not vectorize or interleaving the loop.
7901     ORE->emit([&]() {
7902       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
7903                                       L->getStartLoc(), L->getHeader())
7904              << VecDiagMsg.second;
7905     });
7906     ORE->emit([&]() {
7907       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
7908                                       L->getStartLoc(), L->getHeader())
7909              << IntDiagMsg.second;
7910     });
7911     return false;
7912   } else if (!VectorizeLoop && InterleaveLoop) {
7913     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7914     ORE->emit([&]() {
7915       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
7916                                         L->getStartLoc(), L->getHeader())
7917              << VecDiagMsg.second;
7918     });
7919   } else if (VectorizeLoop && !InterleaveLoop) {
7920     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7921                       << ") in " << DebugLocStr << '\n');
7922     ORE->emit([&]() {
7923       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
7924                                         L->getStartLoc(), L->getHeader())
7925              << IntDiagMsg.second;
7926     });
7927   } else if (VectorizeLoop && InterleaveLoop) {
7928     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7929                       << ") in " << DebugLocStr << '\n');
7930     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7931   }
7932 
7933   LVP.setBestPlan(VF.Width, IC);
7934 
7935   using namespace ore;
7936   bool DisableRuntimeUnroll = false;
7937   MDNode *OrigLoopID = L->getLoopID();
7938 
7939   if (!VectorizeLoop) {
7940     assert(IC > 1 && "interleave count should not be 1 or 0");
7941     // If we decided that it is not legal to vectorize the loop, then
7942     // interleave it.
7943     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
7944                                &CM);
7945     LVP.executePlan(Unroller, DT);
7946 
7947     ORE->emit([&]() {
7948       return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
7949                                 L->getHeader())
7950              << "interleaved loop (interleaved count: "
7951              << NV("InterleaveCount", IC) << ")";
7952     });
7953   } else {
7954     // If we decided that it is *legal* to vectorize the loop, then do it.
7955     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
7956                            &LVL, &CM);
7957     LVP.executePlan(LB, DT);
7958     ++LoopsVectorized;
7959 
7960     // Add metadata to disable runtime unrolling a scalar loop when there are
7961     // no runtime checks about strides and memory. A scalar loop that is
7962     // rarely used is not worth unrolling.
7963     if (!LB.areSafetyChecksAdded())
7964       DisableRuntimeUnroll = true;
7965 
7966     // Report the vectorization decision.
7967     ORE->emit([&]() {
7968       return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
7969                                 L->getHeader())
7970              << "vectorized loop (vectorization width: "
7971              << NV("VectorizationFactor", VF.Width)
7972              << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
7973     });
7974   }
7975 
7976   Optional<MDNode *> RemainderLoopID =
7977       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7978                                       LLVMLoopVectorizeFollowupEpilogue});
7979   if (RemainderLoopID.hasValue()) {
7980     L->setLoopID(RemainderLoopID.getValue());
7981   } else {
7982     if (DisableRuntimeUnroll)
7983       AddRuntimeUnrollDisableMetaData(L);
7984 
7985     // Mark the loop as already vectorized to avoid vectorizing again.
7986     Hints.setAlreadyVectorized();
7987   }
7988 
7989   assert(!verifyFunction(*L->getHeader()->getParent()));
7990   return true;
7991 }
7992 
7993 LoopVectorizeResult LoopVectorizePass::runImpl(
7994     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
7995     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
7996     DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
7997     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
7998     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
7999   SE = &SE_;
8000   LI = &LI_;
8001   TTI = &TTI_;
8002   DT = &DT_;
8003   BFI = &BFI_;
8004   TLI = TLI_;
8005   AA = &AA_;
8006   AC = &AC_;
8007   GetLAA = &GetLAA_;
8008   DB = &DB_;
8009   ORE = &ORE_;
8010   PSI = PSI_;
8011 
8012   // Don't attempt if
8013   // 1. the target claims to have no vector registers, and
8014   // 2. interleaving won't help ILP.
8015   //
8016   // The second condition is necessary because, even if the target has no
8017   // vector registers, loop vectorization may still enable scalar
8018   // interleaving.
8019   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
8020       TTI->getMaxInterleaveFactor(1) < 2)
8021     return LoopVectorizeResult(false, false);
8022 
8023   bool Changed = false, CFGChanged = false;
8024 
8025   // The vectorizer requires loops to be in simplified form.
8026   // Since simplification may add new inner loops, it has to run before the
8027   // legality and profitability checks. This means running the loop vectorizer
8028   // will simplify all loops, regardless of whether anything end up being
8029   // vectorized.
8030   for (auto &L : *LI)
8031     Changed |= CFGChanged |=
8032         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
8033 
8034   // Build up a worklist of inner-loops to vectorize. This is necessary as
8035   // the act of vectorizing or partially unrolling a loop creates new loops
8036   // and can invalidate iterators across the loops.
8037   SmallVector<Loop *, 8> Worklist;
8038 
8039   for (Loop *L : *LI)
8040     collectSupportedLoops(*L, LI, ORE, Worklist);
8041 
8042   LoopsAnalyzed += Worklist.size();
8043 
8044   // Now walk the identified inner loops.
8045   while (!Worklist.empty()) {
8046     Loop *L = Worklist.pop_back_val();
8047 
8048     // For the inner loops we actually process, form LCSSA to simplify the
8049     // transform.
8050     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
8051 
8052     Changed |= CFGChanged |= processLoop(L);
8053   }
8054 
8055   // Process each loop nest in the function.
8056   return LoopVectorizeResult(Changed, CFGChanged);
8057 }
8058 
8059 PreservedAnalyses LoopVectorizePass::run(Function &F,
8060                                          FunctionAnalysisManager &AM) {
8061     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
8062     auto &LI = AM.getResult<LoopAnalysis>(F);
8063     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
8064     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
8065     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
8066     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
8067     auto &AA = AM.getResult<AAManager>(F);
8068     auto &AC = AM.getResult<AssumptionAnalysis>(F);
8069     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
8070     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8071     MemorySSA *MSSA = EnableMSSALoopDependency
8072                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
8073                           : nullptr;
8074 
8075     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
8076     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
8077         [&](Loop &L) -> const LoopAccessInfo & {
8078       LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
8079       return LAM.getResult<LoopAccessAnalysis>(L, AR);
8080     };
8081     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
8082     ProfileSummaryInfo *PSI =
8083         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
8084     LoopVectorizeResult Result =
8085         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
8086     if (!Result.MadeAnyChange)
8087       return PreservedAnalyses::all();
8088     PreservedAnalyses PA;
8089 
8090     // We currently do not preserve loopinfo/dominator analyses with outer loop
8091     // vectorization. Until this is addressed, mark these analyses as preserved
8092     // only for non-VPlan-native path.
8093     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
8094     if (!EnableVPlanNativePath) {
8095       PA.preserve<LoopAnalysis>();
8096       PA.preserve<DominatorTreeAnalysis>();
8097     }
8098     PA.preserve<BasicAA>();
8099     PA.preserve<GlobalsAA>();
8100     if (!Result.MadeCFGChange)
8101       PA.preserveSet<CFGAnalyses>();
8102     return PA;
8103 }
8104