1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #define LV_NAME "loop-vectorize" 46 #define DEBUG_TYPE LV_NAME 47 48 #include "llvm/Transforms/Vectorize.h" 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/EquivalenceClasses.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/Analysis/AliasAnalysis.h" 59 #include "llvm/Analysis/BlockFrequencyInfo.h" 60 #include "llvm/Analysis/LoopInfo.h" 61 #include "llvm/Analysis/LoopIterator.h" 62 #include "llvm/Analysis/LoopPass.h" 63 #include "llvm/Analysis/ScalarEvolution.h" 64 #include "llvm/Analysis/ScalarEvolutionExpander.h" 65 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 66 #include "llvm/Analysis/TargetTransformInfo.h" 67 #include "llvm/Analysis/ValueTracking.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/LLVMContext.h" 77 #include "llvm/IR/Module.h" 78 #include "llvm/IR/Type.h" 79 #include "llvm/IR/Value.h" 80 #include "llvm/IR/Verifier.h" 81 #include "llvm/Pass.h" 82 #include "llvm/Support/BranchProbability.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/PatternMatch.h" 86 #include "llvm/Support/ValueHandle.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetLibraryInfo.h" 89 #include "llvm/Transforms/Scalar.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include <algorithm> 93 #include <map> 94 95 using namespace llvm; 96 using namespace llvm::PatternMatch; 97 98 static cl::opt<unsigned> 99 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 100 cl::desc("Sets the SIMD width. Zero is autoselect.")); 101 102 static cl::opt<unsigned> 103 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, 104 cl::desc("Sets the vectorization unroll count. " 105 "Zero is autoselect.")); 106 107 static cl::opt<bool> 108 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 109 cl::desc("Enable if-conversion during vectorization.")); 110 111 /// We don't vectorize loops with a known constant trip count below this number. 112 static cl::opt<unsigned> 113 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 114 cl::Hidden, 115 cl::desc("Don't vectorize loops with a constant " 116 "trip count that is smaller than this " 117 "value.")); 118 119 /// This enables versioning on the strides of symbolically striding memory 120 /// accesses in code like the following. 121 /// for (i = 0; i < N; ++i) 122 /// A[i * Stride1] += B[i * Stride2] ... 123 /// 124 /// Will be roughly translated to 125 /// if (Stride1 == 1 && Stride2 == 1) { 126 /// for (i = 0; i < N; i+=4) 127 /// A[i:i+3] += ... 128 /// } else 129 /// ... 130 static cl::opt<bool> EnableMemAccessVersioning( 131 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 132 cl::desc("Enable symblic stride memory access versioning")); 133 134 /// We don't unroll loops with a known constant trip count below this number. 135 static const unsigned TinyTripCountUnrollThreshold = 128; 136 137 /// When performing memory disambiguation checks at runtime do not make more 138 /// than this number of comparisons. 139 static const unsigned RuntimeMemoryCheckThreshold = 8; 140 141 /// Maximum simd width. 142 static const unsigned MaxVectorWidth = 64; 143 144 static cl::opt<unsigned> ForceTargetNumScalarRegs( 145 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 146 cl::desc("A flag that overrides the target's number of scalar registers.")); 147 148 static cl::opt<unsigned> ForceTargetNumVectorRegs( 149 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 150 cl::desc("A flag that overrides the target's number of vector registers.")); 151 152 /// Maximum vectorization unroll count. 153 static const unsigned MaxUnrollFactor = 16; 154 155 static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor( 156 "force-target-max-scalar-unroll", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's max unroll factor for scalar " 158 "loops.")); 159 160 static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor( 161 "force-target-max-vector-unroll", cl::init(0), cl::Hidden, 162 cl::desc("A flag that overrides the target's max unroll factor for " 163 "vectorized loops.")); 164 165 static cl::opt<unsigned> ForceTargetInstructionCost( 166 "force-target-instruction-cost", cl::init(0), cl::Hidden, 167 cl::desc("A flag that overrides the target's expected cost for " 168 "an instruction to a single constant value. Mostly " 169 "useful for getting consistent testing.")); 170 171 static cl::opt<unsigned> SmallLoopCost( 172 "small-loop-cost", cl::init(20), cl::Hidden, 173 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 174 175 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 176 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 177 cl::desc("Enable the use of the block frequency analysis to access PGO " 178 "heuristics minimizing code growth in cold regions and being more " 179 "aggressive in hot regions.")); 180 181 // Runtime unroll loops for load/store throughput. 182 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 183 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 184 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 185 186 /// The number of stores in a loop that are allowed to need predication. 187 static cl::opt<unsigned> NumberOfStoresToPredicate( 188 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 189 cl::desc("Max number of stores to be predicated behind an if.")); 190 191 static cl::opt<bool> EnableIndVarRegisterHeur( 192 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 193 cl::desc("Count the induction variable only once when unrolling")); 194 195 static cl::opt<bool> EnableCondStoresVectorization( 196 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 197 cl::desc("Enable if predication of stores during vectorization.")); 198 199 namespace { 200 201 // Forward declarations. 202 class LoopVectorizationLegality; 203 class LoopVectorizationCostModel; 204 205 /// InnerLoopVectorizer vectorizes loops which contain only one basic 206 /// block to a specified vectorization factor (VF). 207 /// This class performs the widening of scalars into vectors, or multiple 208 /// scalars. This class also implements the following features: 209 /// * It inserts an epilogue loop for handling loops that don't have iteration 210 /// counts that are known to be a multiple of the vectorization factor. 211 /// * It handles the code generation for reduction variables. 212 /// * Scalarization (implementation using scalars) of un-vectorizable 213 /// instructions. 214 /// InnerLoopVectorizer does not perform any vectorization-legality 215 /// checks, and relies on the caller to check for the different legality 216 /// aspects. The InnerLoopVectorizer relies on the 217 /// LoopVectorizationLegality class to provide information about the induction 218 /// and reduction variables that were found to a given vectorization factor. 219 class InnerLoopVectorizer { 220 public: 221 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 222 DominatorTree *DT, DataLayout *DL, 223 const TargetLibraryInfo *TLI, unsigned VecWidth, 224 unsigned UnrollFactor) 225 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 226 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0), 227 OldInduction(0), WidenMap(UnrollFactor), Legal(0) {} 228 229 // Perform the actual loop widening (vectorization). 230 void vectorize(LoopVectorizationLegality *L) { 231 Legal = L; 232 // Create a new empty loop. Unlink the old loop and connect the new one. 233 createEmptyLoop(); 234 // Widen each instruction in the old loop to a new one in the new loop. 235 // Use the Legality module to find the induction and reduction variables. 236 vectorizeLoop(); 237 // Register the new loop and update the analysis passes. 238 updateAnalysis(); 239 } 240 241 virtual ~InnerLoopVectorizer() {} 242 243 protected: 244 /// A small list of PHINodes. 245 typedef SmallVector<PHINode*, 4> PhiVector; 246 /// When we unroll loops we have multiple vector values for each scalar. 247 /// This data structure holds the unrolled and vectorized values that 248 /// originated from one scalar instruction. 249 typedef SmallVector<Value*, 2> VectorParts; 250 251 // When we if-convert we need create edge masks. We have to cache values so 252 // that we don't end up with exponential recursion/IR. 253 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 254 VectorParts> EdgeMaskCache; 255 256 /// \brief Add code that checks at runtime if the accessed arrays overlap. 257 /// 258 /// Returns a pair of instructions where the first element is the first 259 /// instruction generated in possibly a sequence of instructions and the 260 /// second value is the final comparator value or NULL if no check is needed. 261 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 262 263 /// \brief Add checks for strides that where assumed to be 1. 264 /// 265 /// Returns the last check instruction and the first check instruction in the 266 /// pair as (first, last). 267 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 268 269 /// Create an empty loop, based on the loop ranges of the old loop. 270 void createEmptyLoop(); 271 /// Copy and widen the instructions from the old loop. 272 virtual void vectorizeLoop(); 273 274 /// \brief The Loop exit block may have single value PHI nodes where the 275 /// incoming value is 'Undef'. While vectorizing we only handled real values 276 /// that were defined inside the loop. Here we fix the 'undef case'. 277 /// See PR14725. 278 void fixLCSSAPHIs(); 279 280 /// A helper function that computes the predicate of the block BB, assuming 281 /// that the header block of the loop is set to True. It returns the *entry* 282 /// mask for the block BB. 283 VectorParts createBlockInMask(BasicBlock *BB); 284 /// A helper function that computes the predicate of the edge between SRC 285 /// and DST. 286 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 287 288 /// A helper function to vectorize a single BB within the innermost loop. 289 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 290 291 /// Vectorize a single PHINode in a block. This method handles the induction 292 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 293 /// arbitrary length vectors. 294 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 295 unsigned UF, unsigned VF, PhiVector *PV); 296 297 /// Insert the new loop to the loop hierarchy and pass manager 298 /// and update the analysis passes. 299 void updateAnalysis(); 300 301 /// This instruction is un-vectorizable. Implement it as a sequence 302 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 303 /// scalarized instruction behind an if block predicated on the control 304 /// dependence of the instruction. 305 virtual void scalarizeInstruction(Instruction *Instr, 306 bool IfPredicateStore=false); 307 308 /// Vectorize Load and Store instructions, 309 virtual void vectorizeMemoryInstruction(Instruction *Instr); 310 311 /// Create a broadcast instruction. This method generates a broadcast 312 /// instruction (shuffle) for loop invariant values and for the induction 313 /// value. If this is the induction variable then we extend it to N, N+1, ... 314 /// this is needed because each iteration in the loop corresponds to a SIMD 315 /// element. 316 virtual Value *getBroadcastInstrs(Value *V); 317 318 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 319 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 320 /// The sequence starts at StartIndex. 321 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 322 323 /// When we go over instructions in the basic block we rely on previous 324 /// values within the current basic block or on loop invariant values. 325 /// When we widen (vectorize) values we place them in the map. If the values 326 /// are not within the map, they have to be loop invariant, so we simply 327 /// broadcast them into a vector. 328 VectorParts &getVectorValue(Value *V); 329 330 /// Generate a shuffle sequence that will reverse the vector Vec. 331 virtual Value *reverseVector(Value *Vec); 332 333 /// This is a helper class that holds the vectorizer state. It maps scalar 334 /// instructions to vector instructions. When the code is 'unrolled' then 335 /// then a single scalar value is mapped to multiple vector parts. The parts 336 /// are stored in the VectorPart type. 337 struct ValueMap { 338 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 339 /// are mapped. 340 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 341 342 /// \return True if 'Key' is saved in the Value Map. 343 bool has(Value *Key) const { return MapStorage.count(Key); } 344 345 /// Initializes a new entry in the map. Sets all of the vector parts to the 346 /// save value in 'Val'. 347 /// \return A reference to a vector with splat values. 348 VectorParts &splat(Value *Key, Value *Val) { 349 VectorParts &Entry = MapStorage[Key]; 350 Entry.assign(UF, Val); 351 return Entry; 352 } 353 354 ///\return A reference to the value that is stored at 'Key'. 355 VectorParts &get(Value *Key) { 356 VectorParts &Entry = MapStorage[Key]; 357 if (Entry.empty()) 358 Entry.resize(UF); 359 assert(Entry.size() == UF); 360 return Entry; 361 } 362 363 private: 364 /// The unroll factor. Each entry in the map stores this number of vector 365 /// elements. 366 unsigned UF; 367 368 /// Map storage. We use std::map and not DenseMap because insertions to a 369 /// dense map invalidates its iterators. 370 std::map<Value *, VectorParts> MapStorage; 371 }; 372 373 /// The original loop. 374 Loop *OrigLoop; 375 /// Scev analysis to use. 376 ScalarEvolution *SE; 377 /// Loop Info. 378 LoopInfo *LI; 379 /// Dominator Tree. 380 DominatorTree *DT; 381 /// Data Layout. 382 DataLayout *DL; 383 /// Target Library Info. 384 const TargetLibraryInfo *TLI; 385 386 /// The vectorization SIMD factor to use. Each vector will have this many 387 /// vector elements. 388 unsigned VF; 389 390 protected: 391 /// The vectorization unroll factor to use. Each scalar is vectorized to this 392 /// many different vector instructions. 393 unsigned UF; 394 395 /// The builder that we use 396 IRBuilder<> Builder; 397 398 // --- Vectorization state --- 399 400 /// The vector-loop preheader. 401 BasicBlock *LoopVectorPreHeader; 402 /// The scalar-loop preheader. 403 BasicBlock *LoopScalarPreHeader; 404 /// Middle Block between the vector and the scalar. 405 BasicBlock *LoopMiddleBlock; 406 ///The ExitBlock of the scalar loop. 407 BasicBlock *LoopExitBlock; 408 ///The vector loop body. 409 SmallVector<BasicBlock *, 4> LoopVectorBody; 410 ///The scalar loop body. 411 BasicBlock *LoopScalarBody; 412 /// A list of all bypass blocks. The first block is the entry of the loop. 413 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 414 415 /// The new Induction variable which was added to the new block. 416 PHINode *Induction; 417 /// The induction variable of the old basic block. 418 PHINode *OldInduction; 419 /// Holds the extended (to the widest induction type) start index. 420 Value *ExtendedIdx; 421 /// Maps scalars to widened vectors. 422 ValueMap WidenMap; 423 EdgeMaskCache MaskCache; 424 425 LoopVectorizationLegality *Legal; 426 }; 427 428 class InnerLoopUnroller : public InnerLoopVectorizer { 429 public: 430 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 431 DominatorTree *DT, DataLayout *DL, 432 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 433 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 434 435 private: 436 virtual void scalarizeInstruction(Instruction *Instr, bool IfPredicateStore = false); 437 virtual void vectorizeMemoryInstruction(Instruction *Instr); 438 virtual Value *getBroadcastInstrs(Value *V); 439 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 440 virtual Value *reverseVector(Value *Vec); 441 }; 442 443 /// \brief Look for a meaningful debug location on the instruction or it's 444 /// operands. 445 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 446 if (!I) 447 return I; 448 449 DebugLoc Empty; 450 if (I->getDebugLoc() != Empty) 451 return I; 452 453 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 454 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 455 if (OpInst->getDebugLoc() != Empty) 456 return OpInst; 457 } 458 459 return I; 460 } 461 462 /// \brief Set the debug location in the builder using the debug location in the 463 /// instruction. 464 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 465 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 466 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 467 else 468 B.SetCurrentDebugLocation(DebugLoc()); 469 } 470 471 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 472 /// to what vectorization factor. 473 /// This class does not look at the profitability of vectorization, only the 474 /// legality. This class has two main kinds of checks: 475 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 476 /// will change the order of memory accesses in a way that will change the 477 /// correctness of the program. 478 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 479 /// checks for a number of different conditions, such as the availability of a 480 /// single induction variable, that all types are supported and vectorize-able, 481 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 482 /// This class is also used by InnerLoopVectorizer for identifying 483 /// induction variable and the different reduction variables. 484 class LoopVectorizationLegality { 485 public: 486 unsigned NumLoads; 487 unsigned NumStores; 488 unsigned NumPredStores; 489 490 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL, 491 DominatorTree *DT, TargetLibraryInfo *TLI) 492 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 493 DT(DT), TLI(TLI), Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false), 494 MaxSafeDepDistBytes(-1U) {} 495 496 /// This enum represents the kinds of reductions that we support. 497 enum ReductionKind { 498 RK_NoReduction, ///< Not a reduction. 499 RK_IntegerAdd, ///< Sum of integers. 500 RK_IntegerMult, ///< Product of integers. 501 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 502 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 503 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 504 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 505 RK_FloatAdd, ///< Sum of floats. 506 RK_FloatMult, ///< Product of floats. 507 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 508 }; 509 510 /// This enum represents the kinds of inductions that we support. 511 enum InductionKind { 512 IK_NoInduction, ///< Not an induction variable. 513 IK_IntInduction, ///< Integer induction variable. Step = 1. 514 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 515 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 516 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 517 }; 518 519 // This enum represents the kind of minmax reduction. 520 enum MinMaxReductionKind { 521 MRK_Invalid, 522 MRK_UIntMin, 523 MRK_UIntMax, 524 MRK_SIntMin, 525 MRK_SIntMax, 526 MRK_FloatMin, 527 MRK_FloatMax 528 }; 529 530 /// This struct holds information about reduction variables. 531 struct ReductionDescriptor { 532 ReductionDescriptor() : StartValue(0), LoopExitInstr(0), 533 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 534 535 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 536 MinMaxReductionKind MK) 537 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 538 539 // The starting value of the reduction. 540 // It does not have to be zero! 541 TrackingVH<Value> StartValue; 542 // The instruction who's value is used outside the loop. 543 Instruction *LoopExitInstr; 544 // The kind of the reduction. 545 ReductionKind Kind; 546 // If this a min/max reduction the kind of reduction. 547 MinMaxReductionKind MinMaxKind; 548 }; 549 550 /// This POD struct holds information about a potential reduction operation. 551 struct ReductionInstDesc { 552 ReductionInstDesc(bool IsRedux, Instruction *I) : 553 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 554 555 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 556 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 557 558 // Is this instruction a reduction candidate. 559 bool IsReduction; 560 // The last instruction in a min/max pattern (select of the select(icmp()) 561 // pattern), or the current reduction instruction otherwise. 562 Instruction *PatternLastInst; 563 // If this is a min/max pattern the comparison predicate. 564 MinMaxReductionKind MinMaxKind; 565 }; 566 567 /// This struct holds information about the memory runtime legality 568 /// check that a group of pointers do not overlap. 569 struct RuntimePointerCheck { 570 RuntimePointerCheck() : Need(false) {} 571 572 /// Reset the state of the pointer runtime information. 573 void reset() { 574 Need = false; 575 Pointers.clear(); 576 Starts.clear(); 577 Ends.clear(); 578 IsWritePtr.clear(); 579 DependencySetId.clear(); 580 } 581 582 /// Insert a pointer and calculate the start and end SCEVs. 583 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 584 unsigned DepSetId, ValueToValueMap &Strides); 585 586 /// This flag indicates if we need to add the runtime check. 587 bool Need; 588 /// Holds the pointers that we need to check. 589 SmallVector<TrackingVH<Value>, 2> Pointers; 590 /// Holds the pointer value at the beginning of the loop. 591 SmallVector<const SCEV*, 2> Starts; 592 /// Holds the pointer value at the end of the loop. 593 SmallVector<const SCEV*, 2> Ends; 594 /// Holds the information if this pointer is used for writing to memory. 595 SmallVector<bool, 2> IsWritePtr; 596 /// Holds the id of the set of pointers that could be dependent because of a 597 /// shared underlying object. 598 SmallVector<unsigned, 2> DependencySetId; 599 }; 600 601 /// A struct for saving information about induction variables. 602 struct InductionInfo { 603 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 604 InductionInfo() : StartValue(0), IK(IK_NoInduction) {} 605 /// Start value. 606 TrackingVH<Value> StartValue; 607 /// Induction kind. 608 InductionKind IK; 609 }; 610 611 /// ReductionList contains the reduction descriptors for all 612 /// of the reductions that were found in the loop. 613 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 614 615 /// InductionList saves induction variables and maps them to the 616 /// induction descriptor. 617 typedef MapVector<PHINode*, InductionInfo> InductionList; 618 619 /// Returns true if it is legal to vectorize this loop. 620 /// This does not mean that it is profitable to vectorize this 621 /// loop, only that it is legal to do so. 622 bool canVectorize(); 623 624 /// Returns the Induction variable. 625 PHINode *getInduction() { return Induction; } 626 627 /// Returns the reduction variables found in the loop. 628 ReductionList *getReductionVars() { return &Reductions; } 629 630 /// Returns the induction variables found in the loop. 631 InductionList *getInductionVars() { return &Inductions; } 632 633 /// Returns the widest induction type. 634 Type *getWidestInductionType() { return WidestIndTy; } 635 636 /// Returns True if V is an induction variable in this loop. 637 bool isInductionVariable(const Value *V); 638 639 /// Return true if the block BB needs to be predicated in order for the loop 640 /// to be vectorized. 641 bool blockNeedsPredication(BasicBlock *BB); 642 643 /// Check if this pointer is consecutive when vectorizing. This happens 644 /// when the last index of the GEP is the induction variable, or that the 645 /// pointer itself is an induction variable. 646 /// This check allows us to vectorize A[idx] into a wide load/store. 647 /// Returns: 648 /// 0 - Stride is unknown or non-consecutive. 649 /// 1 - Address is consecutive. 650 /// -1 - Address is consecutive, and decreasing. 651 int isConsecutivePtr(Value *Ptr); 652 653 /// Returns true if the value V is uniform within the loop. 654 bool isUniform(Value *V); 655 656 /// Returns true if this instruction will remain scalar after vectorization. 657 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 658 659 /// Returns the information that we collected about runtime memory check. 660 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 661 662 /// This function returns the identity element (or neutral element) for 663 /// the operation K. 664 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 665 666 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 667 668 bool hasStride(Value *V) { return StrideSet.count(V); } 669 bool mustCheckStrides() { return !StrideSet.empty(); } 670 SmallPtrSet<Value *, 8>::iterator strides_begin() { 671 return StrideSet.begin(); 672 } 673 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 674 675 private: 676 /// Check if a single basic block loop is vectorizable. 677 /// At this point we know that this is a loop with a constant trip count 678 /// and we only need to check individual instructions. 679 bool canVectorizeInstrs(); 680 681 /// When we vectorize loops we may change the order in which 682 /// we read and write from memory. This method checks if it is 683 /// legal to vectorize the code, considering only memory constrains. 684 /// Returns true if the loop is vectorizable 685 bool canVectorizeMemory(); 686 687 /// Return true if we can vectorize this loop using the IF-conversion 688 /// transformation. 689 bool canVectorizeWithIfConvert(); 690 691 /// Collect the variables that need to stay uniform after vectorization. 692 void collectLoopUniforms(); 693 694 /// Return true if all of the instructions in the block can be speculatively 695 /// executed. \p SafePtrs is a list of addresses that are known to be legal 696 /// and we know that we can read from them without segfault. 697 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs); 698 699 /// Returns True, if 'Phi' is the kind of reduction variable for type 700 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 701 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 702 /// Returns a struct describing if the instruction 'I' can be a reduction 703 /// variable of type 'Kind'. If the reduction is a min/max pattern of 704 /// select(icmp()) this function advances the instruction pointer 'I' from the 705 /// compare instruction to the select instruction and stores this pointer in 706 /// 'PatternLastInst' member of the returned struct. 707 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 708 ReductionInstDesc &Desc); 709 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 710 /// pattern corresponding to a min(X, Y) or max(X, Y). 711 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 712 ReductionInstDesc &Prev); 713 /// Returns the induction kind of Phi. This function may return NoInduction 714 /// if the PHI is not an induction variable. 715 InductionKind isInductionVariable(PHINode *Phi); 716 717 /// \brief Collect memory access with loop invariant strides. 718 /// 719 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 720 /// invariant. 721 void collectStridedAcccess(Value *LoadOrStoreInst); 722 723 /// The loop that we evaluate. 724 Loop *TheLoop; 725 /// Scev analysis. 726 ScalarEvolution *SE; 727 /// DataLayout analysis. 728 DataLayout *DL; 729 /// Dominators. 730 DominatorTree *DT; 731 /// Target Library Info. 732 TargetLibraryInfo *TLI; 733 734 // --- vectorization state --- // 735 736 /// Holds the integer induction variable. This is the counter of the 737 /// loop. 738 PHINode *Induction; 739 /// Holds the reduction variables. 740 ReductionList Reductions; 741 /// Holds all of the induction variables that we found in the loop. 742 /// Notice that inductions don't need to start at zero and that induction 743 /// variables can be pointers. 744 InductionList Inductions; 745 /// Holds the widest induction type encountered. 746 Type *WidestIndTy; 747 748 /// Allowed outside users. This holds the reduction 749 /// vars which can be accessed from outside the loop. 750 SmallPtrSet<Value*, 4> AllowedExit; 751 /// This set holds the variables which are known to be uniform after 752 /// vectorization. 753 SmallPtrSet<Instruction*, 4> Uniforms; 754 /// We need to check that all of the pointers in this list are disjoint 755 /// at runtime. 756 RuntimePointerCheck PtrRtCheck; 757 /// Can we assume the absence of NaNs. 758 bool HasFunNoNaNAttr; 759 760 unsigned MaxSafeDepDistBytes; 761 762 ValueToValueMap Strides; 763 SmallPtrSet<Value *, 8> StrideSet; 764 }; 765 766 /// LoopVectorizationCostModel - estimates the expected speedups due to 767 /// vectorization. 768 /// In many cases vectorization is not profitable. This can happen because of 769 /// a number of reasons. In this class we mainly attempt to predict the 770 /// expected speedup/slowdowns due to the supported instruction set. We use the 771 /// TargetTransformInfo to query the different backends for the cost of 772 /// different operations. 773 class LoopVectorizationCostModel { 774 public: 775 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 776 LoopVectorizationLegality *Legal, 777 const TargetTransformInfo &TTI, 778 DataLayout *DL, const TargetLibraryInfo *TLI) 779 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {} 780 781 /// Information about vectorization costs 782 struct VectorizationFactor { 783 unsigned Width; // Vector width with best cost 784 unsigned Cost; // Cost of the loop with that width 785 }; 786 /// \return The most profitable vectorization factor and the cost of that VF. 787 /// This method checks every power of two up to VF. If UserVF is not ZERO 788 /// then this vectorization factor will be selected if vectorization is 789 /// possible. 790 VectorizationFactor selectVectorizationFactor(bool OptForSize, 791 unsigned UserVF); 792 793 /// \return The size (in bits) of the widest type in the code that 794 /// needs to be vectorized. We ignore values that remain scalar such as 795 /// 64 bit loop indices. 796 unsigned getWidestType(); 797 798 /// \return The most profitable unroll factor. 799 /// If UserUF is non-zero then this method finds the best unroll-factor 800 /// based on register pressure and other parameters. 801 /// VF and LoopCost are the selected vectorization factor and the cost of the 802 /// selected VF. 803 unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF, 804 unsigned LoopCost); 805 806 /// \brief A struct that represents some properties of the register usage 807 /// of a loop. 808 struct RegisterUsage { 809 /// Holds the number of loop invariant values that are used in the loop. 810 unsigned LoopInvariantRegs; 811 /// Holds the maximum number of concurrent live intervals in the loop. 812 unsigned MaxLocalUsers; 813 /// Holds the number of instructions in the loop. 814 unsigned NumInstructions; 815 }; 816 817 /// \return information about the register usage of the loop. 818 RegisterUsage calculateRegisterUsage(); 819 820 private: 821 /// Returns the expected execution cost. The unit of the cost does 822 /// not matter because we use the 'cost' units to compare different 823 /// vector widths. The cost that is returned is *not* normalized by 824 /// the factor width. 825 unsigned expectedCost(unsigned VF); 826 827 /// Returns the execution time cost of an instruction for a given vector 828 /// width. Vector width of one means scalar. 829 unsigned getInstructionCost(Instruction *I, unsigned VF); 830 831 /// A helper function for converting Scalar types to vector types. 832 /// If the incoming type is void, we return void. If the VF is 1, we return 833 /// the scalar type. 834 static Type* ToVectorTy(Type *Scalar, unsigned VF); 835 836 /// Returns whether the instruction is a load or store and will be a emitted 837 /// as a vector operation. 838 bool isConsecutiveLoadOrStore(Instruction *I); 839 840 /// The loop that we evaluate. 841 Loop *TheLoop; 842 /// Scev analysis. 843 ScalarEvolution *SE; 844 /// Loop Info analysis. 845 LoopInfo *LI; 846 /// Vectorization legality. 847 LoopVectorizationLegality *Legal; 848 /// Vector target information. 849 const TargetTransformInfo &TTI; 850 /// Target data layout information. 851 DataLayout *DL; 852 /// Target Library Info. 853 const TargetLibraryInfo *TLI; 854 }; 855 856 /// Utility class for getting and setting loop vectorizer hints in the form 857 /// of loop metadata. 858 struct LoopVectorizeHints { 859 /// Vectorization width. 860 unsigned Width; 861 /// Vectorization unroll factor. 862 unsigned Unroll; 863 /// Vectorization forced (-1 not selected, 0 force disabled, 1 force enabled) 864 int Force; 865 866 LoopVectorizeHints(const Loop *L, bool DisableUnrolling) 867 : Width(VectorizationFactor) 868 , Unroll(DisableUnrolling ? 1 : VectorizationUnroll) 869 , Force(-1) 870 , LoopID(L->getLoopID()) { 871 getHints(L); 872 // The command line options override any loop metadata except for when 873 // width == 1 which is used to indicate the loop is already vectorized. 874 if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1) 875 Width = VectorizationFactor; 876 if (VectorizationUnroll.getNumOccurrences() > 0) 877 Unroll = VectorizationUnroll; 878 879 DEBUG(if (DisableUnrolling && Unroll == 1) 880 dbgs() << "LV: Unrolling disabled by the pass manager\n"); 881 } 882 883 /// Return the loop vectorizer metadata prefix. 884 static StringRef Prefix() { return "llvm.vectorizer."; } 885 886 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) { 887 SmallVector<Value*, 2> Vals; 888 Vals.push_back(MDString::get(Context, Name)); 889 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 890 return MDNode::get(Context, Vals); 891 } 892 893 /// Mark the loop L as already vectorized by setting the width to 1. 894 void setAlreadyVectorized(Loop *L) { 895 LLVMContext &Context = L->getHeader()->getContext(); 896 897 Width = 1; 898 899 // Create a new loop id with one more operand for the already_vectorized 900 // hint. If the loop already has a loop id then copy the existing operands. 901 SmallVector<Value*, 4> Vals(1); 902 if (LoopID) 903 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 904 Vals.push_back(LoopID->getOperand(i)); 905 906 Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width)); 907 Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1)); 908 909 MDNode *NewLoopID = MDNode::get(Context, Vals); 910 // Set operand 0 to refer to the loop id itself. 911 NewLoopID->replaceOperandWith(0, NewLoopID); 912 913 L->setLoopID(NewLoopID); 914 if (LoopID) 915 LoopID->replaceAllUsesWith(NewLoopID); 916 917 LoopID = NewLoopID; 918 } 919 920 private: 921 MDNode *LoopID; 922 923 /// Find hints specified in the loop metadata. 924 void getHints(const Loop *L) { 925 if (!LoopID) 926 return; 927 928 // First operand should refer to the loop id itself. 929 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 930 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 931 932 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 933 const MDString *S = 0; 934 SmallVector<Value*, 4> Args; 935 936 // The expected hint is either a MDString or a MDNode with the first 937 // operand a MDString. 938 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 939 if (!MD || MD->getNumOperands() == 0) 940 continue; 941 S = dyn_cast<MDString>(MD->getOperand(0)); 942 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 943 Args.push_back(MD->getOperand(i)); 944 } else { 945 S = dyn_cast<MDString>(LoopID->getOperand(i)); 946 assert(Args.size() == 0 && "too many arguments for MDString"); 947 } 948 949 if (!S) 950 continue; 951 952 // Check if the hint starts with the vectorizer prefix. 953 StringRef Hint = S->getString(); 954 if (!Hint.startswith(Prefix())) 955 continue; 956 // Remove the prefix. 957 Hint = Hint.substr(Prefix().size(), StringRef::npos); 958 959 if (Args.size() == 1) 960 getHint(Hint, Args[0]); 961 } 962 } 963 964 // Check string hint with one operand. 965 void getHint(StringRef Hint, Value *Arg) { 966 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 967 if (!C) return; 968 unsigned Val = C->getZExtValue(); 969 970 if (Hint == "width") { 971 if (isPowerOf2_32(Val) && Val <= MaxVectorWidth) 972 Width = Val; 973 else 974 DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n"); 975 } else if (Hint == "unroll") { 976 if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor) 977 Unroll = Val; 978 else 979 DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n"); 980 } else if (Hint == "enable") { 981 if (C->getBitWidth() == 1) 982 Force = Val; 983 else 984 DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n"); 985 } else { 986 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n'); 987 } 988 } 989 }; 990 991 static void addInnerLoop(Loop *L, SmallVectorImpl<Loop *> &V) { 992 if (L->empty()) 993 return V.push_back(L); 994 995 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 996 addInnerLoop(*I, V); 997 } 998 999 /// The LoopVectorize Pass. 1000 struct LoopVectorize : public FunctionPass { 1001 /// Pass identification, replacement for typeid 1002 static char ID; 1003 1004 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1005 : FunctionPass(ID), 1006 DisableUnrolling(NoUnrolling), 1007 AlwaysVectorize(AlwaysVectorize) { 1008 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1009 } 1010 1011 ScalarEvolution *SE; 1012 DataLayout *DL; 1013 LoopInfo *LI; 1014 TargetTransformInfo *TTI; 1015 DominatorTree *DT; 1016 BlockFrequencyInfo *BFI; 1017 TargetLibraryInfo *TLI; 1018 bool DisableUnrolling; 1019 bool AlwaysVectorize; 1020 1021 BlockFrequency ColdEntryFreq; 1022 1023 virtual bool runOnFunction(Function &F) { 1024 SE = &getAnalysis<ScalarEvolution>(); 1025 DL = getAnalysisIfAvailable<DataLayout>(); 1026 LI = &getAnalysis<LoopInfo>(); 1027 TTI = &getAnalysis<TargetTransformInfo>(); 1028 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1029 BFI = &getAnalysis<BlockFrequencyInfo>(); 1030 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1031 1032 // Compute some weights outside of the loop over the loops. Compute this 1033 // using a BranchProbability to re-use its scaling math. 1034 const BranchProbability ColdProb(1, 5); // 20% 1035 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1036 1037 // If the target claims to have no vector registers don't attempt 1038 // vectorization. 1039 if (!TTI->getNumberOfRegisters(true)) 1040 return false; 1041 1042 if (DL == NULL) { 1043 DEBUG(dbgs() << "LV: Not vectorizing: Missing data layout\n"); 1044 return false; 1045 } 1046 1047 // Build up a worklist of inner-loops to vectorize. This is necessary as 1048 // the act of vectorizing or partially unrolling a loop creates new loops 1049 // and can invalidate iterators across the loops. 1050 SmallVector<Loop *, 8> Worklist; 1051 1052 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 1053 addInnerLoop(*I, Worklist); 1054 1055 // Now walk the identified inner loops. 1056 bool Changed = false; 1057 while (!Worklist.empty()) 1058 Changed |= processLoop(Worklist.pop_back_val()); 1059 1060 // Process each loop nest in the function. 1061 return Changed; 1062 } 1063 1064 bool processLoop(Loop *L) { 1065 // We only handle inner loops, so if there are children just recurse. 1066 if (!L->empty()) { 1067 bool Changed = false; 1068 for (Loop::iterator I = L->begin(), E = L->begin(); I != E; ++I) 1069 Changed |= processLoop(*I); 1070 return Changed; 1071 } 1072 1073 DEBUG(dbgs() << "LV: Checking a loop in \"" << 1074 L->getHeader()->getParent()->getName() << "\"\n"); 1075 1076 LoopVectorizeHints Hints(L, DisableUnrolling); 1077 1078 if (Hints.Force == 0) { 1079 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1080 return false; 1081 } 1082 1083 if (!AlwaysVectorize && Hints.Force != 1) { 1084 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1085 return false; 1086 } 1087 1088 if (Hints.Width == 1 && Hints.Unroll == 1) { 1089 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1090 return false; 1091 } 1092 1093 // Check if it is legal to vectorize the loop. 1094 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI); 1095 if (!LVL.canVectorize()) { 1096 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1097 return false; 1098 } 1099 1100 // Use the cost model. 1101 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI); 1102 1103 // Check the function attributes to find out if this function should be 1104 // optimized for size. 1105 Function *F = L->getHeader()->getParent(); 1106 bool OptForSize = 1107 Hints.Force != 1 && F->hasFnAttribute(Attribute::OptimizeForSize); 1108 1109 // Compute the weighted frequency of this loop being executed and see if it 1110 // is less than 20% of the function entry baseline frequency. Note that we 1111 // always have a canonical loop here because we think we *can* vectoriez. 1112 // FIXME: This is hidden behind a flag due to pervasive problems with 1113 // exactly what block frequency models. 1114 if (LoopVectorizeWithBlockFrequency) { 1115 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1116 if (Hints.Force != 1 && LoopEntryFreq < ColdEntryFreq) 1117 OptForSize = true; 1118 } 1119 1120 // Check the function attributes to see if implicit floats are allowed.a 1121 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1122 // an integer loop and the vector instructions selected are purely integer 1123 // vector instructions? 1124 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1125 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1126 "attribute is used.\n"); 1127 return false; 1128 } 1129 1130 // Select the optimal vectorization factor. 1131 LoopVectorizationCostModel::VectorizationFactor VF; 1132 VF = CM.selectVectorizationFactor(OptForSize, Hints.Width); 1133 // Select the unroll factor. 1134 unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width, 1135 VF.Cost); 1136 1137 DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<< 1138 F->getParent()->getModuleIdentifier() << '\n'); 1139 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1140 1141 if (VF.Width == 1) { 1142 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1143 if (UF == 1) 1144 return false; 1145 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1146 // We decided not to vectorize, but we may want to unroll. 1147 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1148 Unroller.vectorize(&LVL); 1149 } else { 1150 // If we decided that it is *legal* to vectorize the loop then do it. 1151 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1152 LB.vectorize(&LVL); 1153 } 1154 1155 // Mark the loop as already vectorized to avoid vectorizing again. 1156 Hints.setAlreadyVectorized(L); 1157 1158 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1159 return true; 1160 } 1161 1162 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1163 AU.addRequiredID(LoopSimplifyID); 1164 AU.addRequiredID(LCSSAID); 1165 AU.addRequired<BlockFrequencyInfo>(); 1166 AU.addRequired<DominatorTreeWrapperPass>(); 1167 AU.addRequired<LoopInfo>(); 1168 AU.addRequired<ScalarEvolution>(); 1169 AU.addRequired<TargetTransformInfo>(); 1170 AU.addPreserved<LoopInfo>(); 1171 AU.addPreserved<DominatorTreeWrapperPass>(); 1172 } 1173 1174 }; 1175 1176 } // end anonymous namespace 1177 1178 //===----------------------------------------------------------------------===// 1179 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1180 // LoopVectorizationCostModel. 1181 //===----------------------------------------------------------------------===// 1182 1183 static Value *stripIntegerCast(Value *V) { 1184 if (CastInst *CI = dyn_cast<CastInst>(V)) 1185 if (CI->getOperand(0)->getType()->isIntegerTy()) 1186 return CI->getOperand(0); 1187 return V; 1188 } 1189 1190 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1191 /// 1192 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1193 /// \p Ptr. 1194 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1195 ValueToValueMap &PtrToStride, 1196 Value *Ptr, Value *OrigPtr = 0) { 1197 1198 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1199 1200 // If there is an entry in the map return the SCEV of the pointer with the 1201 // symbolic stride replaced by one. 1202 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1203 if (SI != PtrToStride.end()) { 1204 Value *StrideVal = SI->second; 1205 1206 // Strip casts. 1207 StrideVal = stripIntegerCast(StrideVal); 1208 1209 // Replace symbolic stride by one. 1210 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1211 ValueToValueMap RewriteMap; 1212 RewriteMap[StrideVal] = One; 1213 1214 const SCEV *ByOne = 1215 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1216 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1217 << "\n"); 1218 return ByOne; 1219 } 1220 1221 // Otherwise, just return the SCEV of the original pointer. 1222 return SE->getSCEV(Ptr); 1223 } 1224 1225 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1226 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1227 ValueToValueMap &Strides) { 1228 // Get the stride replaced scev. 1229 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1230 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1231 assert(AR && "Invalid addrec expression"); 1232 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1233 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1234 Pointers.push_back(Ptr); 1235 Starts.push_back(AR->getStart()); 1236 Ends.push_back(ScEnd); 1237 IsWritePtr.push_back(WritePtr); 1238 DependencySetId.push_back(DepSetId); 1239 } 1240 1241 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1242 // We need to place the broadcast of invariant variables outside the loop. 1243 Instruction *Instr = dyn_cast<Instruction>(V); 1244 bool NewInstr = 1245 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1246 Instr->getParent()) != LoopVectorBody.end()); 1247 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1248 1249 // Place the code for broadcasting invariant variables in the new preheader. 1250 IRBuilder<>::InsertPointGuard Guard(Builder); 1251 if (Invariant) 1252 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1253 1254 // Broadcast the scalar into all locations in the vector. 1255 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1256 1257 return Shuf; 1258 } 1259 1260 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1261 bool Negate) { 1262 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1263 assert(Val->getType()->getScalarType()->isIntegerTy() && 1264 "Elem must be an integer"); 1265 // Create the types. 1266 Type *ITy = Val->getType()->getScalarType(); 1267 VectorType *Ty = cast<VectorType>(Val->getType()); 1268 int VLen = Ty->getNumElements(); 1269 SmallVector<Constant*, 8> Indices; 1270 1271 // Create a vector of consecutive numbers from zero to VF. 1272 for (int i = 0; i < VLen; ++i) { 1273 int64_t Idx = Negate ? (-i) : i; 1274 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1275 } 1276 1277 // Add the consecutive indices to the vector value. 1278 Constant *Cv = ConstantVector::get(Indices); 1279 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1280 return Builder.CreateAdd(Val, Cv, "induction"); 1281 } 1282 1283 /// \brief Find the operand of the GEP that should be checked for consecutive 1284 /// stores. This ignores trailing indices that have no effect on the final 1285 /// pointer. 1286 static unsigned getGEPInductionOperand(DataLayout *DL, 1287 const GetElementPtrInst *Gep) { 1288 unsigned LastOperand = Gep->getNumOperands() - 1; 1289 unsigned GEPAllocSize = DL->getTypeAllocSize( 1290 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1291 1292 // Walk backwards and try to peel off zeros. 1293 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1294 // Find the type we're currently indexing into. 1295 gep_type_iterator GEPTI = gep_type_begin(Gep); 1296 std::advance(GEPTI, LastOperand - 1); 1297 1298 // If it's a type with the same allocation size as the result of the GEP we 1299 // can peel off the zero index. 1300 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1301 break; 1302 --LastOperand; 1303 } 1304 1305 return LastOperand; 1306 } 1307 1308 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1309 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1310 // Make sure that the pointer does not point to structs. 1311 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1312 return 0; 1313 1314 // If this value is a pointer induction variable we know it is consecutive. 1315 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1316 if (Phi && Inductions.count(Phi)) { 1317 InductionInfo II = Inductions[Phi]; 1318 if (IK_PtrInduction == II.IK) 1319 return 1; 1320 else if (IK_ReversePtrInduction == II.IK) 1321 return -1; 1322 } 1323 1324 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1325 if (!Gep) 1326 return 0; 1327 1328 unsigned NumOperands = Gep->getNumOperands(); 1329 Value *GpPtr = Gep->getPointerOperand(); 1330 // If this GEP value is a consecutive pointer induction variable and all of 1331 // the indices are constant then we know it is consecutive. We can 1332 Phi = dyn_cast<PHINode>(GpPtr); 1333 if (Phi && Inductions.count(Phi)) { 1334 1335 // Make sure that the pointer does not point to structs. 1336 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1337 if (GepPtrType->getElementType()->isAggregateType()) 1338 return 0; 1339 1340 // Make sure that all of the index operands are loop invariant. 1341 for (unsigned i = 1; i < NumOperands; ++i) 1342 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1343 return 0; 1344 1345 InductionInfo II = Inductions[Phi]; 1346 if (IK_PtrInduction == II.IK) 1347 return 1; 1348 else if (IK_ReversePtrInduction == II.IK) 1349 return -1; 1350 } 1351 1352 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1353 1354 // Check that all of the gep indices are uniform except for our induction 1355 // operand. 1356 for (unsigned i = 0; i != NumOperands; ++i) 1357 if (i != InductionOperand && 1358 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1359 return 0; 1360 1361 // We can emit wide load/stores only if the last non-zero index is the 1362 // induction variable. 1363 const SCEV *Last = 0; 1364 if (!Strides.count(Gep)) 1365 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1366 else { 1367 // Because of the multiplication by a stride we can have a s/zext cast. 1368 // We are going to replace this stride by 1 so the cast is safe to ignore. 1369 // 1370 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1371 // %0 = trunc i64 %indvars.iv to i32 1372 // %mul = mul i32 %0, %Stride1 1373 // %idxprom = zext i32 %mul to i64 << Safe cast. 1374 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1375 // 1376 Last = replaceSymbolicStrideSCEV(SE, Strides, 1377 Gep->getOperand(InductionOperand), Gep); 1378 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1379 Last = 1380 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1381 ? C->getOperand() 1382 : Last; 1383 } 1384 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1385 const SCEV *Step = AR->getStepRecurrence(*SE); 1386 1387 // The memory is consecutive because the last index is consecutive 1388 // and all other indices are loop invariant. 1389 if (Step->isOne()) 1390 return 1; 1391 if (Step->isAllOnesValue()) 1392 return -1; 1393 } 1394 1395 return 0; 1396 } 1397 1398 bool LoopVectorizationLegality::isUniform(Value *V) { 1399 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1400 } 1401 1402 InnerLoopVectorizer::VectorParts& 1403 InnerLoopVectorizer::getVectorValue(Value *V) { 1404 assert(V != Induction && "The new induction variable should not be used."); 1405 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1406 1407 // If we have a stride that is replaced by one, do it here. 1408 if (Legal->hasStride(V)) 1409 V = ConstantInt::get(V->getType(), 1); 1410 1411 // If we have this scalar in the map, return it. 1412 if (WidenMap.has(V)) 1413 return WidenMap.get(V); 1414 1415 // If this scalar is unknown, assume that it is a constant or that it is 1416 // loop invariant. Broadcast V and save the value for future uses. 1417 Value *B = getBroadcastInstrs(V); 1418 return WidenMap.splat(V, B); 1419 } 1420 1421 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1422 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1423 SmallVector<Constant*, 8> ShuffleMask; 1424 for (unsigned i = 0; i < VF; ++i) 1425 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1426 1427 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1428 ConstantVector::get(ShuffleMask), 1429 "reverse"); 1430 } 1431 1432 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1433 // Attempt to issue a wide load. 1434 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1435 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1436 1437 assert((LI || SI) && "Invalid Load/Store instruction"); 1438 1439 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1440 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1441 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1442 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1443 // An alignment of 0 means target abi alignment. We need to use the scalar's 1444 // target abi alignment in such a case. 1445 if (!Alignment) 1446 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1447 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1448 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1449 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1450 1451 if (SI && Legal->blockNeedsPredication(SI->getParent())) 1452 return scalarizeInstruction(Instr, true); 1453 1454 if (ScalarAllocatedSize != VectorElementSize) 1455 return scalarizeInstruction(Instr); 1456 1457 // If the pointer is loop invariant or if it is non-consecutive, 1458 // scalarize the load. 1459 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1460 bool Reverse = ConsecutiveStride < 0; 1461 bool UniformLoad = LI && Legal->isUniform(Ptr); 1462 if (!ConsecutiveStride || UniformLoad) 1463 return scalarizeInstruction(Instr); 1464 1465 Constant *Zero = Builder.getInt32(0); 1466 VectorParts &Entry = WidenMap.get(Instr); 1467 1468 // Handle consecutive loads/stores. 1469 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1470 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1471 setDebugLocFromInst(Builder, Gep); 1472 Value *PtrOperand = Gep->getPointerOperand(); 1473 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1474 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1475 1476 // Create the new GEP with the new induction variable. 1477 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1478 Gep2->setOperand(0, FirstBasePtr); 1479 Gep2->setName("gep.indvar.base"); 1480 Ptr = Builder.Insert(Gep2); 1481 } else if (Gep) { 1482 setDebugLocFromInst(Builder, Gep); 1483 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1484 OrigLoop) && "Base ptr must be invariant"); 1485 1486 // The last index does not have to be the induction. It can be 1487 // consecutive and be a function of the index. For example A[I+1]; 1488 unsigned NumOperands = Gep->getNumOperands(); 1489 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1490 // Create the new GEP with the new induction variable. 1491 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1492 1493 for (unsigned i = 0; i < NumOperands; ++i) { 1494 Value *GepOperand = Gep->getOperand(i); 1495 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1496 1497 // Update last index or loop invariant instruction anchored in loop. 1498 if (i == InductionOperand || 1499 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1500 assert((i == InductionOperand || 1501 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1502 "Must be last index or loop invariant"); 1503 1504 VectorParts &GEPParts = getVectorValue(GepOperand); 1505 Value *Index = GEPParts[0]; 1506 Index = Builder.CreateExtractElement(Index, Zero); 1507 Gep2->setOperand(i, Index); 1508 Gep2->setName("gep.indvar.idx"); 1509 } 1510 } 1511 Ptr = Builder.Insert(Gep2); 1512 } else { 1513 // Use the induction element ptr. 1514 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1515 setDebugLocFromInst(Builder, Ptr); 1516 VectorParts &PtrVal = getVectorValue(Ptr); 1517 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1518 } 1519 1520 // Handle Stores: 1521 if (SI) { 1522 assert(!Legal->isUniform(SI->getPointerOperand()) && 1523 "We do not allow storing to uniform addresses"); 1524 setDebugLocFromInst(Builder, SI); 1525 // We don't want to update the value in the map as it might be used in 1526 // another expression. So don't use a reference type for "StoredVal". 1527 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1528 1529 for (unsigned Part = 0; Part < UF; ++Part) { 1530 // Calculate the pointer for the specific unroll-part. 1531 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1532 1533 if (Reverse) { 1534 // If we store to reverse consecutive memory locations then we need 1535 // to reverse the order of elements in the stored value. 1536 StoredVal[Part] = reverseVector(StoredVal[Part]); 1537 // If the address is consecutive but reversed, then the 1538 // wide store needs to start at the last vector element. 1539 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1540 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1541 } 1542 1543 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1544 DataTy->getPointerTo(AddressSpace)); 1545 Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment); 1546 } 1547 return; 1548 } 1549 1550 // Handle loads. 1551 assert(LI && "Must have a load instruction"); 1552 setDebugLocFromInst(Builder, LI); 1553 for (unsigned Part = 0; Part < UF; ++Part) { 1554 // Calculate the pointer for the specific unroll-part. 1555 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1556 1557 if (Reverse) { 1558 // If the address is consecutive but reversed, then the 1559 // wide store needs to start at the last vector element. 1560 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1561 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1562 } 1563 1564 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1565 DataTy->getPointerTo(AddressSpace)); 1566 Value *LI = Builder.CreateLoad(VecPtr, "wide.load"); 1567 cast<LoadInst>(LI)->setAlignment(Alignment); 1568 Entry[Part] = Reverse ? reverseVector(LI) : LI; 1569 } 1570 } 1571 1572 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1573 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1574 // Holds vector parameters or scalars, in case of uniform vals. 1575 SmallVector<VectorParts, 4> Params; 1576 1577 setDebugLocFromInst(Builder, Instr); 1578 1579 // Find all of the vectorized parameters. 1580 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1581 Value *SrcOp = Instr->getOperand(op); 1582 1583 // If we are accessing the old induction variable, use the new one. 1584 if (SrcOp == OldInduction) { 1585 Params.push_back(getVectorValue(SrcOp)); 1586 continue; 1587 } 1588 1589 // Try using previously calculated values. 1590 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1591 1592 // If the src is an instruction that appeared earlier in the basic block 1593 // then it should already be vectorized. 1594 if (SrcInst && OrigLoop->contains(SrcInst)) { 1595 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1596 // The parameter is a vector value from earlier. 1597 Params.push_back(WidenMap.get(SrcInst)); 1598 } else { 1599 // The parameter is a scalar from outside the loop. Maybe even a constant. 1600 VectorParts Scalars; 1601 Scalars.append(UF, SrcOp); 1602 Params.push_back(Scalars); 1603 } 1604 } 1605 1606 assert(Params.size() == Instr->getNumOperands() && 1607 "Invalid number of operands"); 1608 1609 // Does this instruction return a value ? 1610 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1611 1612 Value *UndefVec = IsVoidRetTy ? 0 : 1613 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1614 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1615 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1616 1617 Instruction *InsertPt = Builder.GetInsertPoint(); 1618 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1619 BasicBlock *CondBlock = 0; 1620 1621 VectorParts Cond; 1622 Loop *VectorLp = 0; 1623 if (IfPredicateStore) { 1624 assert(Instr->getParent()->getSinglePredecessor() && 1625 "Only support single predecessor blocks"); 1626 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1627 Instr->getParent()); 1628 VectorLp = LI->getLoopFor(IfBlock); 1629 assert(VectorLp && "Must have a loop for this block"); 1630 } 1631 1632 // For each vector unroll 'part': 1633 for (unsigned Part = 0; Part < UF; ++Part) { 1634 // For each scalar that we create: 1635 for (unsigned Width = 0; Width < VF; ++Width) { 1636 1637 // Start if-block. 1638 Value *Cmp = 0; 1639 if (IfPredicateStore) { 1640 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1641 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1642 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1643 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 1644 // Update Builder with newly created basic block. 1645 Builder.SetInsertPoint(InsertPt); 1646 } 1647 1648 Instruction *Cloned = Instr->clone(); 1649 if (!IsVoidRetTy) 1650 Cloned->setName(Instr->getName() + ".cloned"); 1651 // Replace the operands of the cloned instructions with extracted scalars. 1652 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1653 Value *Op = Params[op][Part]; 1654 // Param is a vector. Need to extract the right lane. 1655 if (Op->getType()->isVectorTy()) 1656 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1657 Cloned->setOperand(op, Op); 1658 } 1659 1660 // Place the cloned scalar in the new loop. 1661 Builder.Insert(Cloned); 1662 1663 // If the original scalar returns a value we need to place it in a vector 1664 // so that future users will be able to use it. 1665 if (!IsVoidRetTy) 1666 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1667 Builder.getInt32(Width)); 1668 // End if-block. 1669 if (IfPredicateStore) { 1670 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1671 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 1672 Builder.SetInsertPoint(InsertPt); 1673 Instruction *OldBr = IfBlock->getTerminator(); 1674 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1675 OldBr->eraseFromParent(); 1676 IfBlock = NewIfBlock; 1677 } 1678 } 1679 } 1680 } 1681 1682 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1683 Instruction *Loc) { 1684 if (FirstInst) 1685 return FirstInst; 1686 if (Instruction *I = dyn_cast<Instruction>(V)) 1687 return I->getParent() == Loc->getParent() ? I : 0; 1688 return 0; 1689 } 1690 1691 std::pair<Instruction *, Instruction *> 1692 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1693 Instruction *tnullptr = 0; 1694 if (!Legal->mustCheckStrides()) 1695 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1696 1697 IRBuilder<> ChkBuilder(Loc); 1698 1699 // Emit checks. 1700 Value *Check = 0; 1701 Instruction *FirstInst = 0; 1702 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1703 SE = Legal->strides_end(); 1704 SI != SE; ++SI) { 1705 Value *Ptr = stripIntegerCast(*SI); 1706 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 1707 "stride.chk"); 1708 // Store the first instruction we create. 1709 FirstInst = getFirstInst(FirstInst, C, Loc); 1710 if (Check) 1711 Check = ChkBuilder.CreateOr(Check, C); 1712 else 1713 Check = C; 1714 } 1715 1716 // We have to do this trickery because the IRBuilder might fold the check to a 1717 // constant expression in which case there is no Instruction anchored in a 1718 // the block. 1719 LLVMContext &Ctx = Loc->getContext(); 1720 Instruction *TheCheck = 1721 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 1722 ChkBuilder.Insert(TheCheck, "stride.not.one"); 1723 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 1724 1725 return std::make_pair(FirstInst, TheCheck); 1726 } 1727 1728 std::pair<Instruction *, Instruction *> 1729 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 1730 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 1731 Legal->getRuntimePointerCheck(); 1732 1733 Instruction *tnullptr = 0; 1734 if (!PtrRtCheck->Need) 1735 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1736 1737 unsigned NumPointers = PtrRtCheck->Pointers.size(); 1738 SmallVector<TrackingVH<Value> , 2> Starts; 1739 SmallVector<TrackingVH<Value> , 2> Ends; 1740 1741 LLVMContext &Ctx = Loc->getContext(); 1742 SCEVExpander Exp(*SE, "induction"); 1743 Instruction *FirstInst = 0; 1744 1745 for (unsigned i = 0; i < NumPointers; ++i) { 1746 Value *Ptr = PtrRtCheck->Pointers[i]; 1747 const SCEV *Sc = SE->getSCEV(Ptr); 1748 1749 if (SE->isLoopInvariant(Sc, OrigLoop)) { 1750 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 1751 *Ptr <<"\n"); 1752 Starts.push_back(Ptr); 1753 Ends.push_back(Ptr); 1754 } else { 1755 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 1756 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1757 1758 // Use this type for pointer arithmetic. 1759 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1760 1761 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 1762 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 1763 Starts.push_back(Start); 1764 Ends.push_back(End); 1765 } 1766 } 1767 1768 IRBuilder<> ChkBuilder(Loc); 1769 // Our instructions might fold to a constant. 1770 Value *MemoryRuntimeCheck = 0; 1771 for (unsigned i = 0; i < NumPointers; ++i) { 1772 for (unsigned j = i+1; j < NumPointers; ++j) { 1773 // No need to check if two readonly pointers intersect. 1774 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 1775 continue; 1776 1777 // Only need to check pointers between two different dependency sets. 1778 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 1779 continue; 1780 1781 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1782 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1783 1784 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1785 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1786 "Trying to bounds check pointers with different address spaces"); 1787 1788 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1789 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1790 1791 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1792 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1793 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1794 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1795 1796 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1797 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1798 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1799 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1800 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1801 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1802 if (MemoryRuntimeCheck) { 1803 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1804 "conflict.rdx"); 1805 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1806 } 1807 MemoryRuntimeCheck = IsConflict; 1808 } 1809 } 1810 1811 // We have to do this trickery because the IRBuilder might fold the check to a 1812 // constant expression in which case there is no Instruction anchored in a 1813 // the block. 1814 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1815 ConstantInt::getTrue(Ctx)); 1816 ChkBuilder.Insert(Check, "memcheck.conflict"); 1817 FirstInst = getFirstInst(FirstInst, Check, Loc); 1818 return std::make_pair(FirstInst, Check); 1819 } 1820 1821 void InnerLoopVectorizer::createEmptyLoop() { 1822 /* 1823 In this function we generate a new loop. The new loop will contain 1824 the vectorized instructions while the old loop will continue to run the 1825 scalar remainder. 1826 1827 [ ] <-- vector loop bypass (may consist of multiple blocks). 1828 / | 1829 / v 1830 | [ ] <-- vector pre header. 1831 | | 1832 | v 1833 | [ ] \ 1834 | [ ]_| <-- vector loop. 1835 | | 1836 \ v 1837 >[ ] <--- middle-block. 1838 / | 1839 / v 1840 | [ ] <--- new preheader. 1841 | | 1842 | v 1843 | [ ] \ 1844 | [ ]_| <-- old scalar loop to handle remainder. 1845 \ | 1846 \ v 1847 >[ ] <-- exit block. 1848 ... 1849 */ 1850 1851 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 1852 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 1853 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 1854 assert(ExitBlock && "Must have an exit block"); 1855 1856 // Some loops have a single integer induction variable, while other loops 1857 // don't. One example is c++ iterators that often have multiple pointer 1858 // induction variables. In the code below we also support a case where we 1859 // don't have a single induction variable. 1860 OldInduction = Legal->getInduction(); 1861 Type *IdxTy = Legal->getWidestInductionType(); 1862 1863 // Find the loop boundaries. 1864 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 1865 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 1866 1867 // The exit count might have the type of i64 while the phi is i32. This can 1868 // happen if we have an induction variable that is sign extended before the 1869 // compare. The only way that we get a backedge taken count is that the 1870 // induction variable was signed and as such will not overflow. In such a case 1871 // truncation is legal. 1872 if (ExitCount->getType()->getPrimitiveSizeInBits() > 1873 IdxTy->getPrimitiveSizeInBits()) 1874 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 1875 1876 ExitCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 1877 // Get the total trip count from the count by adding 1. 1878 ExitCount = SE->getAddExpr(ExitCount, 1879 SE->getConstant(ExitCount->getType(), 1)); 1880 1881 // Expand the trip count and place the new instructions in the preheader. 1882 // Notice that the pre-header does not change, only the loop body. 1883 SCEVExpander Exp(*SE, "induction"); 1884 1885 // Count holds the overall loop count (N). 1886 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 1887 BypassBlock->getTerminator()); 1888 1889 // The loop index does not have to start at Zero. Find the original start 1890 // value from the induction PHI node. If we don't have an induction variable 1891 // then we know that it starts at zero. 1892 Builder.SetInsertPoint(BypassBlock->getTerminator()); 1893 Value *StartIdx = ExtendedIdx = OldInduction ? 1894 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 1895 IdxTy): 1896 ConstantInt::get(IdxTy, 0); 1897 1898 assert(BypassBlock && "Invalid loop structure"); 1899 LoopBypassBlocks.push_back(BypassBlock); 1900 1901 // Split the single block loop into the two loop structure described above. 1902 BasicBlock *VectorPH = 1903 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 1904 BasicBlock *VecBody = 1905 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 1906 BasicBlock *MiddleBlock = 1907 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 1908 BasicBlock *ScalarPH = 1909 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 1910 1911 // Create and register the new vector loop. 1912 Loop* Lp = new Loop(); 1913 Loop *ParentLoop = OrigLoop->getParentLoop(); 1914 1915 // Insert the new loop into the loop nest and register the new basic blocks 1916 // before calling any utilities such as SCEV that require valid LoopInfo. 1917 if (ParentLoop) { 1918 ParentLoop->addChildLoop(Lp); 1919 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 1920 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 1921 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 1922 } else { 1923 LI->addTopLevelLoop(Lp); 1924 } 1925 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 1926 1927 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 1928 // inside the loop. 1929 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 1930 1931 // Generate the induction variable. 1932 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 1933 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 1934 // The loop step is equal to the vectorization factor (num of SIMD elements) 1935 // times the unroll factor (num of SIMD instructions). 1936 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 1937 1938 // This is the IR builder that we use to add all of the logic for bypassing 1939 // the new vector loop. 1940 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 1941 setDebugLocFromInst(BypassBuilder, 1942 getDebugLocFromInstOrOperands(OldInduction)); 1943 1944 // We may need to extend the index in case there is a type mismatch. 1945 // We know that the count starts at zero and does not overflow. 1946 if (Count->getType() != IdxTy) { 1947 // The exit count can be of pointer type. Convert it to the correct 1948 // integer type. 1949 if (ExitCount->getType()->isPointerTy()) 1950 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 1951 else 1952 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 1953 } 1954 1955 // Add the start index to the loop count to get the new end index. 1956 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 1957 1958 // Now we need to generate the expression for N - (N % VF), which is 1959 // the part that the vectorized body will execute. 1960 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 1961 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 1962 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 1963 "end.idx.rnd.down"); 1964 1965 // Now, compare the new count to zero. If it is zero skip the vector loop and 1966 // jump to the scalar loop. 1967 Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, 1968 "cmp.zero"); 1969 1970 BasicBlock *LastBypassBlock = BypassBlock; 1971 1972 // Generate the code to check that the strides we assumed to be one are really 1973 // one. We want the new basic block to start at the first instruction in a 1974 // sequence of instructions that form a check. 1975 Instruction *StrideCheck; 1976 Instruction *FirstCheckInst; 1977 tie(FirstCheckInst, StrideCheck) = 1978 addStrideCheck(BypassBlock->getTerminator()); 1979 if (StrideCheck) { 1980 // Create a new block containing the stride check. 1981 BasicBlock *CheckBlock = 1982 BypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 1983 if (ParentLoop) 1984 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 1985 LoopBypassBlocks.push_back(CheckBlock); 1986 1987 // Replace the branch into the memory check block with a conditional branch 1988 // for the "few elements case". 1989 Instruction *OldTerm = BypassBlock->getTerminator(); 1990 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 1991 OldTerm->eraseFromParent(); 1992 1993 Cmp = StrideCheck; 1994 LastBypassBlock = CheckBlock; 1995 } 1996 1997 // Generate the code that checks in runtime if arrays overlap. We put the 1998 // checks into a separate block to make the more common case of few elements 1999 // faster. 2000 Instruction *MemRuntimeCheck; 2001 tie(FirstCheckInst, MemRuntimeCheck) = 2002 addRuntimeCheck(LastBypassBlock->getTerminator()); 2003 if (MemRuntimeCheck) { 2004 // Create a new block containing the memory check. 2005 BasicBlock *CheckBlock = 2006 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2007 if (ParentLoop) 2008 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2009 LoopBypassBlocks.push_back(CheckBlock); 2010 2011 // Replace the branch into the memory check block with a conditional branch 2012 // for the "few elements case". 2013 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2014 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2015 OldTerm->eraseFromParent(); 2016 2017 Cmp = MemRuntimeCheck; 2018 LastBypassBlock = CheckBlock; 2019 } 2020 2021 LastBypassBlock->getTerminator()->eraseFromParent(); 2022 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2023 LastBypassBlock); 2024 2025 // We are going to resume the execution of the scalar loop. 2026 // Go over all of the induction variables that we found and fix the 2027 // PHIs that are left in the scalar version of the loop. 2028 // The starting values of PHI nodes depend on the counter of the last 2029 // iteration in the vectorized loop. 2030 // If we come from a bypass edge then we need to start from the original 2031 // start value. 2032 2033 // This variable saves the new starting index for the scalar loop. 2034 PHINode *ResumeIndex = 0; 2035 LoopVectorizationLegality::InductionList::iterator I, E; 2036 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2037 // Set builder to point to last bypass block. 2038 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2039 for (I = List->begin(), E = List->end(); I != E; ++I) { 2040 PHINode *OrigPhi = I->first; 2041 LoopVectorizationLegality::InductionInfo II = I->second; 2042 2043 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2044 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2045 MiddleBlock->getTerminator()); 2046 // We might have extended the type of the induction variable but we need a 2047 // truncated version for the scalar loop. 2048 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2049 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2050 MiddleBlock->getTerminator()) : 0; 2051 2052 Value *EndValue = 0; 2053 switch (II.IK) { 2054 case LoopVectorizationLegality::IK_NoInduction: 2055 llvm_unreachable("Unknown induction"); 2056 case LoopVectorizationLegality::IK_IntInduction: { 2057 // Handle the integer induction counter. 2058 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2059 2060 // We have the canonical induction variable. 2061 if (OrigPhi == OldInduction) { 2062 // Create a truncated version of the resume value for the scalar loop, 2063 // we might have promoted the type to a larger width. 2064 EndValue = 2065 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2066 // The new PHI merges the original incoming value, in case of a bypass, 2067 // or the value at the end of the vectorized loop. 2068 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2069 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2070 TruncResumeVal->addIncoming(EndValue, VecBody); 2071 2072 // We know what the end value is. 2073 EndValue = IdxEndRoundDown; 2074 // We also know which PHI node holds it. 2075 ResumeIndex = ResumeVal; 2076 break; 2077 } 2078 2079 // Not the canonical induction variable - add the vector loop count to the 2080 // start value. 2081 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2082 II.StartValue->getType(), 2083 "cast.crd"); 2084 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2085 break; 2086 } 2087 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2088 // Convert the CountRoundDown variable to the PHI size. 2089 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2090 II.StartValue->getType(), 2091 "cast.crd"); 2092 // Handle reverse integer induction counter. 2093 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2094 break; 2095 } 2096 case LoopVectorizationLegality::IK_PtrInduction: { 2097 // For pointer induction variables, calculate the offset using 2098 // the end index. 2099 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2100 "ptr.ind.end"); 2101 break; 2102 } 2103 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2104 // The value at the end of the loop for the reverse pointer is calculated 2105 // by creating a GEP with a negative index starting from the start value. 2106 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2107 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2108 "rev.ind.end"); 2109 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2110 "rev.ptr.ind.end"); 2111 break; 2112 } 2113 }// end of case 2114 2115 // The new PHI merges the original incoming value, in case of a bypass, 2116 // or the value at the end of the vectorized loop. 2117 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) { 2118 if (OrigPhi == OldInduction) 2119 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2120 else 2121 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2122 } 2123 ResumeVal->addIncoming(EndValue, VecBody); 2124 2125 // Fix the scalar body counter (PHI node). 2126 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2127 // The old inductions phi node in the scalar body needs the truncated value. 2128 if (OrigPhi == OldInduction) 2129 OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal); 2130 else 2131 OrigPhi->setIncomingValue(BlockIdx, ResumeVal); 2132 } 2133 2134 // If we are generating a new induction variable then we also need to 2135 // generate the code that calculates the exit value. This value is not 2136 // simply the end of the counter because we may skip the vectorized body 2137 // in case of a runtime check. 2138 if (!OldInduction){ 2139 assert(!ResumeIndex && "Unexpected resume value found"); 2140 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2141 MiddleBlock->getTerminator()); 2142 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2143 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2144 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2145 } 2146 2147 // Make sure that we found the index where scalar loop needs to continue. 2148 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2149 "Invalid resume Index"); 2150 2151 // Add a check in the middle block to see if we have completed 2152 // all of the iterations in the first vector loop. 2153 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2154 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2155 ResumeIndex, "cmp.n", 2156 MiddleBlock->getTerminator()); 2157 2158 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2159 // Remove the old terminator. 2160 MiddleBlock->getTerminator()->eraseFromParent(); 2161 2162 // Create i+1 and fill the PHINode. 2163 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2164 Induction->addIncoming(StartIdx, VectorPH); 2165 Induction->addIncoming(NextIdx, VecBody); 2166 // Create the compare. 2167 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2168 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2169 2170 // Now we have two terminators. Remove the old one from the block. 2171 VecBody->getTerminator()->eraseFromParent(); 2172 2173 // Get ready to start creating new instructions into the vectorized body. 2174 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2175 2176 // Save the state. 2177 LoopVectorPreHeader = VectorPH; 2178 LoopScalarPreHeader = ScalarPH; 2179 LoopMiddleBlock = MiddleBlock; 2180 LoopExitBlock = ExitBlock; 2181 LoopVectorBody.push_back(VecBody); 2182 LoopScalarBody = OldBasicBlock; 2183 2184 LoopVectorizeHints Hints(Lp, true); 2185 Hints.setAlreadyVectorized(Lp); 2186 } 2187 2188 /// This function returns the identity element (or neutral element) for 2189 /// the operation K. 2190 Constant* 2191 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2192 switch (K) { 2193 case RK_IntegerXor: 2194 case RK_IntegerAdd: 2195 case RK_IntegerOr: 2196 // Adding, Xoring, Oring zero to a number does not change it. 2197 return ConstantInt::get(Tp, 0); 2198 case RK_IntegerMult: 2199 // Multiplying a number by 1 does not change it. 2200 return ConstantInt::get(Tp, 1); 2201 case RK_IntegerAnd: 2202 // AND-ing a number with an all-1 value does not change it. 2203 return ConstantInt::get(Tp, -1, true); 2204 case RK_FloatMult: 2205 // Multiplying a number by 1 does not change it. 2206 return ConstantFP::get(Tp, 1.0L); 2207 case RK_FloatAdd: 2208 // Adding zero to a number does not change it. 2209 return ConstantFP::get(Tp, 0.0L); 2210 default: 2211 llvm_unreachable("Unknown reduction kind"); 2212 } 2213 } 2214 2215 static Intrinsic::ID checkUnaryFloatSignature(const CallInst &I, 2216 Intrinsic::ID ValidIntrinsicID) { 2217 if (I.getNumArgOperands() != 1 || 2218 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 2219 I.getType() != I.getArgOperand(0)->getType() || 2220 !I.onlyReadsMemory()) 2221 return Intrinsic::not_intrinsic; 2222 2223 return ValidIntrinsicID; 2224 } 2225 2226 static Intrinsic::ID checkBinaryFloatSignature(const CallInst &I, 2227 Intrinsic::ID ValidIntrinsicID) { 2228 if (I.getNumArgOperands() != 2 || 2229 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 2230 !I.getArgOperand(1)->getType()->isFloatingPointTy() || 2231 I.getType() != I.getArgOperand(0)->getType() || 2232 I.getType() != I.getArgOperand(1)->getType() || 2233 !I.onlyReadsMemory()) 2234 return Intrinsic::not_intrinsic; 2235 2236 return ValidIntrinsicID; 2237 } 2238 2239 2240 static Intrinsic::ID 2241 getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) { 2242 // If we have an intrinsic call, check if it is trivially vectorizable. 2243 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2244 switch (II->getIntrinsicID()) { 2245 case Intrinsic::sqrt: 2246 case Intrinsic::sin: 2247 case Intrinsic::cos: 2248 case Intrinsic::exp: 2249 case Intrinsic::exp2: 2250 case Intrinsic::log: 2251 case Intrinsic::log10: 2252 case Intrinsic::log2: 2253 case Intrinsic::fabs: 2254 case Intrinsic::copysign: 2255 case Intrinsic::floor: 2256 case Intrinsic::ceil: 2257 case Intrinsic::trunc: 2258 case Intrinsic::rint: 2259 case Intrinsic::nearbyint: 2260 case Intrinsic::round: 2261 case Intrinsic::pow: 2262 case Intrinsic::fma: 2263 case Intrinsic::fmuladd: 2264 case Intrinsic::lifetime_start: 2265 case Intrinsic::lifetime_end: 2266 return II->getIntrinsicID(); 2267 default: 2268 return Intrinsic::not_intrinsic; 2269 } 2270 } 2271 2272 if (!TLI) 2273 return Intrinsic::not_intrinsic; 2274 2275 LibFunc::Func Func; 2276 Function *F = CI->getCalledFunction(); 2277 // We're going to make assumptions on the semantics of the functions, check 2278 // that the target knows that it's available in this environment and it does 2279 // not have local linkage. 2280 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func)) 2281 return Intrinsic::not_intrinsic; 2282 2283 // Otherwise check if we have a call to a function that can be turned into a 2284 // vector intrinsic. 2285 switch (Func) { 2286 default: 2287 break; 2288 case LibFunc::sin: 2289 case LibFunc::sinf: 2290 case LibFunc::sinl: 2291 return checkUnaryFloatSignature(*CI, Intrinsic::sin); 2292 case LibFunc::cos: 2293 case LibFunc::cosf: 2294 case LibFunc::cosl: 2295 return checkUnaryFloatSignature(*CI, Intrinsic::cos); 2296 case LibFunc::exp: 2297 case LibFunc::expf: 2298 case LibFunc::expl: 2299 return checkUnaryFloatSignature(*CI, Intrinsic::exp); 2300 case LibFunc::exp2: 2301 case LibFunc::exp2f: 2302 case LibFunc::exp2l: 2303 return checkUnaryFloatSignature(*CI, Intrinsic::exp2); 2304 case LibFunc::log: 2305 case LibFunc::logf: 2306 case LibFunc::logl: 2307 return checkUnaryFloatSignature(*CI, Intrinsic::log); 2308 case LibFunc::log10: 2309 case LibFunc::log10f: 2310 case LibFunc::log10l: 2311 return checkUnaryFloatSignature(*CI, Intrinsic::log10); 2312 case LibFunc::log2: 2313 case LibFunc::log2f: 2314 case LibFunc::log2l: 2315 return checkUnaryFloatSignature(*CI, Intrinsic::log2); 2316 case LibFunc::fabs: 2317 case LibFunc::fabsf: 2318 case LibFunc::fabsl: 2319 return checkUnaryFloatSignature(*CI, Intrinsic::fabs); 2320 case LibFunc::copysign: 2321 case LibFunc::copysignf: 2322 case LibFunc::copysignl: 2323 return checkBinaryFloatSignature(*CI, Intrinsic::copysign); 2324 case LibFunc::floor: 2325 case LibFunc::floorf: 2326 case LibFunc::floorl: 2327 return checkUnaryFloatSignature(*CI, Intrinsic::floor); 2328 case LibFunc::ceil: 2329 case LibFunc::ceilf: 2330 case LibFunc::ceill: 2331 return checkUnaryFloatSignature(*CI, Intrinsic::ceil); 2332 case LibFunc::trunc: 2333 case LibFunc::truncf: 2334 case LibFunc::truncl: 2335 return checkUnaryFloatSignature(*CI, Intrinsic::trunc); 2336 case LibFunc::rint: 2337 case LibFunc::rintf: 2338 case LibFunc::rintl: 2339 return checkUnaryFloatSignature(*CI, Intrinsic::rint); 2340 case LibFunc::nearbyint: 2341 case LibFunc::nearbyintf: 2342 case LibFunc::nearbyintl: 2343 return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint); 2344 case LibFunc::round: 2345 case LibFunc::roundf: 2346 case LibFunc::roundl: 2347 return checkUnaryFloatSignature(*CI, Intrinsic::round); 2348 case LibFunc::pow: 2349 case LibFunc::powf: 2350 case LibFunc::powl: 2351 return checkBinaryFloatSignature(*CI, Intrinsic::pow); 2352 } 2353 2354 return Intrinsic::not_intrinsic; 2355 } 2356 2357 /// This function translates the reduction kind to an LLVM binary operator. 2358 static unsigned 2359 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2360 switch (Kind) { 2361 case LoopVectorizationLegality::RK_IntegerAdd: 2362 return Instruction::Add; 2363 case LoopVectorizationLegality::RK_IntegerMult: 2364 return Instruction::Mul; 2365 case LoopVectorizationLegality::RK_IntegerOr: 2366 return Instruction::Or; 2367 case LoopVectorizationLegality::RK_IntegerAnd: 2368 return Instruction::And; 2369 case LoopVectorizationLegality::RK_IntegerXor: 2370 return Instruction::Xor; 2371 case LoopVectorizationLegality::RK_FloatMult: 2372 return Instruction::FMul; 2373 case LoopVectorizationLegality::RK_FloatAdd: 2374 return Instruction::FAdd; 2375 case LoopVectorizationLegality::RK_IntegerMinMax: 2376 return Instruction::ICmp; 2377 case LoopVectorizationLegality::RK_FloatMinMax: 2378 return Instruction::FCmp; 2379 default: 2380 llvm_unreachable("Unknown reduction operation"); 2381 } 2382 } 2383 2384 Value *createMinMaxOp(IRBuilder<> &Builder, 2385 LoopVectorizationLegality::MinMaxReductionKind RK, 2386 Value *Left, 2387 Value *Right) { 2388 CmpInst::Predicate P = CmpInst::ICMP_NE; 2389 switch (RK) { 2390 default: 2391 llvm_unreachable("Unknown min/max reduction kind"); 2392 case LoopVectorizationLegality::MRK_UIntMin: 2393 P = CmpInst::ICMP_ULT; 2394 break; 2395 case LoopVectorizationLegality::MRK_UIntMax: 2396 P = CmpInst::ICMP_UGT; 2397 break; 2398 case LoopVectorizationLegality::MRK_SIntMin: 2399 P = CmpInst::ICMP_SLT; 2400 break; 2401 case LoopVectorizationLegality::MRK_SIntMax: 2402 P = CmpInst::ICMP_SGT; 2403 break; 2404 case LoopVectorizationLegality::MRK_FloatMin: 2405 P = CmpInst::FCMP_OLT; 2406 break; 2407 case LoopVectorizationLegality::MRK_FloatMax: 2408 P = CmpInst::FCMP_OGT; 2409 break; 2410 } 2411 2412 Value *Cmp; 2413 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2414 RK == LoopVectorizationLegality::MRK_FloatMax) 2415 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2416 else 2417 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2418 2419 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2420 return Select; 2421 } 2422 2423 namespace { 2424 struct CSEDenseMapInfo { 2425 static bool canHandle(Instruction *I) { 2426 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2427 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2428 } 2429 static inline Instruction *getEmptyKey() { 2430 return DenseMapInfo<Instruction *>::getEmptyKey(); 2431 } 2432 static inline Instruction *getTombstoneKey() { 2433 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2434 } 2435 static unsigned getHashValue(Instruction *I) { 2436 assert(canHandle(I) && "Unknown instruction!"); 2437 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2438 I->value_op_end())); 2439 } 2440 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2441 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2442 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2443 return LHS == RHS; 2444 return LHS->isIdenticalTo(RHS); 2445 } 2446 }; 2447 } 2448 2449 /// \brief Check whether this block is a predicated block. 2450 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2451 /// = ...; " blocks. We start with one vectorized basic block. For every 2452 /// conditional block we split this vectorized block. Therefore, every second 2453 /// block will be a predicated one. 2454 static bool isPredicatedBlock(unsigned BlockNum) { 2455 return BlockNum % 2; 2456 } 2457 2458 ///\brief Perform cse of induction variable instructions. 2459 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2460 // Perform simple cse. 2461 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2462 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2463 BasicBlock *BB = BBs[i]; 2464 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2465 Instruction *In = I++; 2466 2467 if (!CSEDenseMapInfo::canHandle(In)) 2468 continue; 2469 2470 // Check if we can replace this instruction with any of the 2471 // visited instructions. 2472 if (Instruction *V = CSEMap.lookup(In)) { 2473 In->replaceAllUsesWith(V); 2474 In->eraseFromParent(); 2475 continue; 2476 } 2477 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2478 // ...;" blocks for predicated stores. Every second block is a predicated 2479 // block. 2480 if (isPredicatedBlock(i)) 2481 continue; 2482 2483 CSEMap[In] = In; 2484 } 2485 } 2486 } 2487 2488 void InnerLoopVectorizer::vectorizeLoop() { 2489 //===------------------------------------------------===// 2490 // 2491 // Notice: any optimization or new instruction that go 2492 // into the code below should be also be implemented in 2493 // the cost-model. 2494 // 2495 //===------------------------------------------------===// 2496 Constant *Zero = Builder.getInt32(0); 2497 2498 // In order to support reduction variables we need to be able to vectorize 2499 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2500 // stages. First, we create a new vector PHI node with no incoming edges. 2501 // We use this value when we vectorize all of the instructions that use the 2502 // PHI. Next, after all of the instructions in the block are complete we 2503 // add the new incoming edges to the PHI. At this point all of the 2504 // instructions in the basic block are vectorized, so we can use them to 2505 // construct the PHI. 2506 PhiVector RdxPHIsToFix; 2507 2508 // Scan the loop in a topological order to ensure that defs are vectorized 2509 // before users. 2510 LoopBlocksDFS DFS(OrigLoop); 2511 DFS.perform(LI); 2512 2513 // Vectorize all of the blocks in the original loop. 2514 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2515 be = DFS.endRPO(); bb != be; ++bb) 2516 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2517 2518 // At this point every instruction in the original loop is widened to 2519 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2520 // that we vectorized. The PHI nodes are currently empty because we did 2521 // not want to introduce cycles. Notice that the remaining PHI nodes 2522 // that we need to fix are reduction variables. 2523 2524 // Create the 'reduced' values for each of the induction vars. 2525 // The reduced values are the vector values that we scalarize and combine 2526 // after the loop is finished. 2527 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2528 it != e; ++it) { 2529 PHINode *RdxPhi = *it; 2530 assert(RdxPhi && "Unable to recover vectorized PHI"); 2531 2532 // Find the reduction variable descriptor. 2533 assert(Legal->getReductionVars()->count(RdxPhi) && 2534 "Unable to find the reduction variable"); 2535 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2536 (*Legal->getReductionVars())[RdxPhi]; 2537 2538 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2539 2540 // We need to generate a reduction vector from the incoming scalar. 2541 // To do so, we need to generate the 'identity' vector and override 2542 // one of the elements with the incoming scalar reduction. We need 2543 // to do it in the vector-loop preheader. 2544 Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator()); 2545 2546 // This is the vector-clone of the value that leaves the loop. 2547 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2548 Type *VecTy = VectorExit[0]->getType(); 2549 2550 // Find the reduction identity variable. Zero for addition, or, xor, 2551 // one for multiplication, -1 for And. 2552 Value *Identity; 2553 Value *VectorStart; 2554 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2555 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2556 // MinMax reduction have the start value as their identify. 2557 if (VF == 1) { 2558 VectorStart = Identity = RdxDesc.StartValue; 2559 } else { 2560 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2561 RdxDesc.StartValue, 2562 "minmax.ident"); 2563 } 2564 } else { 2565 // Handle other reduction kinds: 2566 Constant *Iden = 2567 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2568 VecTy->getScalarType()); 2569 if (VF == 1) { 2570 Identity = Iden; 2571 // This vector is the Identity vector where the first element is the 2572 // incoming scalar reduction. 2573 VectorStart = RdxDesc.StartValue; 2574 } else { 2575 Identity = ConstantVector::getSplat(VF, Iden); 2576 2577 // This vector is the Identity vector where the first element is the 2578 // incoming scalar reduction. 2579 VectorStart = Builder.CreateInsertElement(Identity, 2580 RdxDesc.StartValue, Zero); 2581 } 2582 } 2583 2584 // Fix the vector-loop phi. 2585 // We created the induction variable so we know that the 2586 // preheader is the first entry. 2587 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2588 2589 // Reductions do not have to start at zero. They can start with 2590 // any loop invariant values. 2591 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2592 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2593 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2594 VectorParts &Val = getVectorValue(LoopVal); 2595 for (unsigned part = 0; part < UF; ++part) { 2596 // Make sure to add the reduction stat value only to the 2597 // first unroll part. 2598 Value *StartVal = (part == 0) ? VectorStart : Identity; 2599 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2600 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2601 LoopVectorBody.back()); 2602 } 2603 2604 // Before each round, move the insertion point right between 2605 // the PHIs and the values we are going to write. 2606 // This allows us to write both PHINodes and the extractelement 2607 // instructions. 2608 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2609 2610 VectorParts RdxParts; 2611 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2612 for (unsigned part = 0; part < UF; ++part) { 2613 // This PHINode contains the vectorized reduction variable, or 2614 // the initial value vector, if we bypass the vector loop. 2615 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2616 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2617 Value *StartVal = (part == 0) ? VectorStart : Identity; 2618 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2619 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2620 NewPhi->addIncoming(RdxExitVal[part], 2621 LoopVectorBody.back()); 2622 RdxParts.push_back(NewPhi); 2623 } 2624 2625 // Reduce all of the unrolled parts into a single vector. 2626 Value *ReducedPartRdx = RdxParts[0]; 2627 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2628 setDebugLocFromInst(Builder, ReducedPartRdx); 2629 for (unsigned part = 1; part < UF; ++part) { 2630 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2631 ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op, 2632 RdxParts[part], ReducedPartRdx, 2633 "bin.rdx"); 2634 else 2635 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2636 ReducedPartRdx, RdxParts[part]); 2637 } 2638 2639 if (VF > 1) { 2640 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2641 // and vector ops, reducing the set of values being computed by half each 2642 // round. 2643 assert(isPowerOf2_32(VF) && 2644 "Reduction emission only supported for pow2 vectors!"); 2645 Value *TmpVec = ReducedPartRdx; 2646 SmallVector<Constant*, 32> ShuffleMask(VF, 0); 2647 for (unsigned i = VF; i != 1; i >>= 1) { 2648 // Move the upper half of the vector to the lower half. 2649 for (unsigned j = 0; j != i/2; ++j) 2650 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2651 2652 // Fill the rest of the mask with undef. 2653 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2654 UndefValue::get(Builder.getInt32Ty())); 2655 2656 Value *Shuf = 2657 Builder.CreateShuffleVector(TmpVec, 2658 UndefValue::get(TmpVec->getType()), 2659 ConstantVector::get(ShuffleMask), 2660 "rdx.shuf"); 2661 2662 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2663 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 2664 "bin.rdx"); 2665 else 2666 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2667 } 2668 2669 // The result is in the first element of the vector. 2670 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2671 Builder.getInt32(0)); 2672 } 2673 2674 // Now, we need to fix the users of the reduction variable 2675 // inside and outside of the scalar remainder loop. 2676 // We know that the loop is in LCSSA form. We need to update the 2677 // PHI nodes in the exit blocks. 2678 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2679 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2680 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2681 if (!LCSSAPhi) break; 2682 2683 // All PHINodes need to have a single entry edge, or two if 2684 // we already fixed them. 2685 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2686 2687 // We found our reduction value exit-PHI. Update it with the 2688 // incoming bypass edge. 2689 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2690 // Add an edge coming from the bypass. 2691 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2692 break; 2693 } 2694 }// end of the LCSSA phi scan. 2695 2696 // Fix the scalar loop reduction variable with the incoming reduction sum 2697 // from the vector body and from the backedge value. 2698 int IncomingEdgeBlockIdx = 2699 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2700 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2701 // Pick the other block. 2702 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2703 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx); 2704 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2705 }// end of for each redux variable. 2706 2707 fixLCSSAPHIs(); 2708 2709 // Remove redundant induction instructions. 2710 cse(LoopVectorBody); 2711 } 2712 2713 void InnerLoopVectorizer::fixLCSSAPHIs() { 2714 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2715 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2716 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2717 if (!LCSSAPhi) break; 2718 if (LCSSAPhi->getNumIncomingValues() == 1) 2719 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2720 LoopMiddleBlock); 2721 } 2722 } 2723 2724 InnerLoopVectorizer::VectorParts 2725 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2726 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2727 "Invalid edge"); 2728 2729 // Look for cached value. 2730 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2731 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2732 if (ECEntryIt != MaskCache.end()) 2733 return ECEntryIt->second; 2734 2735 VectorParts SrcMask = createBlockInMask(Src); 2736 2737 // The terminator has to be a branch inst! 2738 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2739 assert(BI && "Unexpected terminator found"); 2740 2741 if (BI->isConditional()) { 2742 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2743 2744 if (BI->getSuccessor(0) != Dst) 2745 for (unsigned part = 0; part < UF; ++part) 2746 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2747 2748 for (unsigned part = 0; part < UF; ++part) 2749 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2750 2751 MaskCache[Edge] = EdgeMask; 2752 return EdgeMask; 2753 } 2754 2755 MaskCache[Edge] = SrcMask; 2756 return SrcMask; 2757 } 2758 2759 InnerLoopVectorizer::VectorParts 2760 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2761 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2762 2763 // Loop incoming mask is all-one. 2764 if (OrigLoop->getHeader() == BB) { 2765 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2766 return getVectorValue(C); 2767 } 2768 2769 // This is the block mask. We OR all incoming edges, and with zero. 2770 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2771 VectorParts BlockMask = getVectorValue(Zero); 2772 2773 // For each pred: 2774 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2775 VectorParts EM = createEdgeMask(*it, BB); 2776 for (unsigned part = 0; part < UF; ++part) 2777 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2778 } 2779 2780 return BlockMask; 2781 } 2782 2783 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2784 InnerLoopVectorizer::VectorParts &Entry, 2785 unsigned UF, unsigned VF, PhiVector *PV) { 2786 PHINode* P = cast<PHINode>(PN); 2787 // Handle reduction variables: 2788 if (Legal->getReductionVars()->count(P)) { 2789 for (unsigned part = 0; part < UF; ++part) { 2790 // This is phase one of vectorizing PHIs. 2791 Type *VecTy = (VF == 1) ? PN->getType() : 2792 VectorType::get(PN->getType(), VF); 2793 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2794 LoopVectorBody.back()-> getFirstInsertionPt()); 2795 } 2796 PV->push_back(P); 2797 return; 2798 } 2799 2800 setDebugLocFromInst(Builder, P); 2801 // Check for PHI nodes that are lowered to vector selects. 2802 if (P->getParent() != OrigLoop->getHeader()) { 2803 // We know that all PHIs in non-header blocks are converted into 2804 // selects, so we don't have to worry about the insertion order and we 2805 // can just use the builder. 2806 // At this point we generate the predication tree. There may be 2807 // duplications since this is a simple recursive scan, but future 2808 // optimizations will clean it up. 2809 2810 unsigned NumIncoming = P->getNumIncomingValues(); 2811 2812 // Generate a sequence of selects of the form: 2813 // SELECT(Mask3, In3, 2814 // SELECT(Mask2, In2, 2815 // ( ...))) 2816 for (unsigned In = 0; In < NumIncoming; In++) { 2817 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2818 P->getParent()); 2819 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2820 2821 for (unsigned part = 0; part < UF; ++part) { 2822 // We might have single edge PHIs (blocks) - use an identity 2823 // 'select' for the first PHI operand. 2824 if (In == 0) 2825 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2826 In0[part]); 2827 else 2828 // Select between the current value and the previous incoming edge 2829 // based on the incoming mask. 2830 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2831 Entry[part], "predphi"); 2832 } 2833 } 2834 return; 2835 } 2836 2837 // This PHINode must be an induction variable. 2838 // Make sure that we know about it. 2839 assert(Legal->getInductionVars()->count(P) && 2840 "Not an induction variable"); 2841 2842 LoopVectorizationLegality::InductionInfo II = 2843 Legal->getInductionVars()->lookup(P); 2844 2845 switch (II.IK) { 2846 case LoopVectorizationLegality::IK_NoInduction: 2847 llvm_unreachable("Unknown induction"); 2848 case LoopVectorizationLegality::IK_IntInduction: { 2849 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2850 Type *PhiTy = P->getType(); 2851 Value *Broadcasted; 2852 if (P == OldInduction) { 2853 // Handle the canonical induction variable. We might have had to 2854 // extend the type. 2855 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2856 } else { 2857 // Handle other induction variables that are now based on the 2858 // canonical one. 2859 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2860 "normalized.idx"); 2861 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2862 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 2863 "offset.idx"); 2864 } 2865 Broadcasted = getBroadcastInstrs(Broadcasted); 2866 // After broadcasting the induction variable we need to make the vector 2867 // consecutive by adding 0, 1, 2, etc. 2868 for (unsigned part = 0; part < UF; ++part) 2869 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 2870 return; 2871 } 2872 case LoopVectorizationLegality::IK_ReverseIntInduction: 2873 case LoopVectorizationLegality::IK_PtrInduction: 2874 case LoopVectorizationLegality::IK_ReversePtrInduction: 2875 // Handle reverse integer and pointer inductions. 2876 Value *StartIdx = ExtendedIdx; 2877 // This is the normalized GEP that starts counting at zero. 2878 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 2879 "normalized.idx"); 2880 2881 // Handle the reverse integer induction variable case. 2882 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 2883 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 2884 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 2885 "resize.norm.idx"); 2886 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 2887 "reverse.idx"); 2888 2889 // This is a new value so do not hoist it out. 2890 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 2891 // After broadcasting the induction variable we need to make the 2892 // vector consecutive by adding ... -3, -2, -1, 0. 2893 for (unsigned part = 0; part < UF; ++part) 2894 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 2895 true); 2896 return; 2897 } 2898 2899 // Handle the pointer induction variable case. 2900 assert(P->getType()->isPointerTy() && "Unexpected type."); 2901 2902 // Is this a reverse induction ptr or a consecutive induction ptr. 2903 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 2904 II.IK); 2905 2906 // This is the vector of results. Notice that we don't generate 2907 // vector geps because scalar geps result in better code. 2908 for (unsigned part = 0; part < UF; ++part) { 2909 if (VF == 1) { 2910 int EltIndex = (part) * (Reverse ? -1 : 1); 2911 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2912 Value *GlobalIdx; 2913 if (Reverse) 2914 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 2915 else 2916 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 2917 2918 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 2919 "next.gep"); 2920 Entry[part] = SclrGep; 2921 continue; 2922 } 2923 2924 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 2925 for (unsigned int i = 0; i < VF; ++i) { 2926 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 2927 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2928 Value *GlobalIdx; 2929 if (!Reverse) 2930 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 2931 else 2932 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 2933 2934 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 2935 "next.gep"); 2936 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 2937 Builder.getInt32(i), 2938 "insert.gep"); 2939 } 2940 Entry[part] = VecVal; 2941 } 2942 return; 2943 } 2944 } 2945 2946 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 2947 // For each instruction in the old loop. 2948 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 2949 VectorParts &Entry = WidenMap.get(it); 2950 switch (it->getOpcode()) { 2951 case Instruction::Br: 2952 // Nothing to do for PHIs and BR, since we already took care of the 2953 // loop control flow instructions. 2954 continue; 2955 case Instruction::PHI:{ 2956 // Vectorize PHINodes. 2957 widenPHIInstruction(it, Entry, UF, VF, PV); 2958 continue; 2959 }// End of PHI. 2960 2961 case Instruction::Add: 2962 case Instruction::FAdd: 2963 case Instruction::Sub: 2964 case Instruction::FSub: 2965 case Instruction::Mul: 2966 case Instruction::FMul: 2967 case Instruction::UDiv: 2968 case Instruction::SDiv: 2969 case Instruction::FDiv: 2970 case Instruction::URem: 2971 case Instruction::SRem: 2972 case Instruction::FRem: 2973 case Instruction::Shl: 2974 case Instruction::LShr: 2975 case Instruction::AShr: 2976 case Instruction::And: 2977 case Instruction::Or: 2978 case Instruction::Xor: { 2979 // Just widen binops. 2980 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 2981 setDebugLocFromInst(Builder, BinOp); 2982 VectorParts &A = getVectorValue(it->getOperand(0)); 2983 VectorParts &B = getVectorValue(it->getOperand(1)); 2984 2985 // Use this vector value for all users of the original instruction. 2986 for (unsigned Part = 0; Part < UF; ++Part) { 2987 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 2988 2989 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef. 2990 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V); 2991 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) { 2992 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); 2993 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); 2994 } 2995 if (VecOp && isa<PossiblyExactOperator>(VecOp)) 2996 VecOp->setIsExact(BinOp->isExact()); 2997 2998 Entry[Part] = V; 2999 } 3000 break; 3001 } 3002 case Instruction::Select: { 3003 // Widen selects. 3004 // If the selector is loop invariant we can create a select 3005 // instruction with a scalar condition. Otherwise, use vector-select. 3006 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3007 OrigLoop); 3008 setDebugLocFromInst(Builder, it); 3009 3010 // The condition can be loop invariant but still defined inside the 3011 // loop. This means that we can't just use the original 'cond' value. 3012 // We have to take the 'vectorized' value and pick the first lane. 3013 // Instcombine will make this a no-op. 3014 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3015 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3016 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3017 3018 Value *ScalarCond = (VF == 1) ? Cond[0] : 3019 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3020 3021 for (unsigned Part = 0; Part < UF; ++Part) { 3022 Entry[Part] = Builder.CreateSelect( 3023 InvariantCond ? ScalarCond : Cond[Part], 3024 Op0[Part], 3025 Op1[Part]); 3026 } 3027 break; 3028 } 3029 3030 case Instruction::ICmp: 3031 case Instruction::FCmp: { 3032 // Widen compares. Generate vector compares. 3033 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3034 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3035 setDebugLocFromInst(Builder, it); 3036 VectorParts &A = getVectorValue(it->getOperand(0)); 3037 VectorParts &B = getVectorValue(it->getOperand(1)); 3038 for (unsigned Part = 0; Part < UF; ++Part) { 3039 Value *C = 0; 3040 if (FCmp) 3041 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3042 else 3043 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3044 Entry[Part] = C; 3045 } 3046 break; 3047 } 3048 3049 case Instruction::Store: 3050 case Instruction::Load: 3051 vectorizeMemoryInstruction(it); 3052 break; 3053 case Instruction::ZExt: 3054 case Instruction::SExt: 3055 case Instruction::FPToUI: 3056 case Instruction::FPToSI: 3057 case Instruction::FPExt: 3058 case Instruction::PtrToInt: 3059 case Instruction::IntToPtr: 3060 case Instruction::SIToFP: 3061 case Instruction::UIToFP: 3062 case Instruction::Trunc: 3063 case Instruction::FPTrunc: 3064 case Instruction::BitCast: { 3065 CastInst *CI = dyn_cast<CastInst>(it); 3066 setDebugLocFromInst(Builder, it); 3067 /// Optimize the special case where the source is the induction 3068 /// variable. Notice that we can only optimize the 'trunc' case 3069 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3070 /// c. other casts depend on pointer size. 3071 if (CI->getOperand(0) == OldInduction && 3072 it->getOpcode() == Instruction::Trunc) { 3073 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3074 CI->getType()); 3075 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3076 for (unsigned Part = 0; Part < UF; ++Part) 3077 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3078 break; 3079 } 3080 /// Vectorize casts. 3081 Type *DestTy = (VF == 1) ? CI->getType() : 3082 VectorType::get(CI->getType(), VF); 3083 3084 VectorParts &A = getVectorValue(it->getOperand(0)); 3085 for (unsigned Part = 0; Part < UF; ++Part) 3086 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3087 break; 3088 } 3089 3090 case Instruction::Call: { 3091 // Ignore dbg intrinsics. 3092 if (isa<DbgInfoIntrinsic>(it)) 3093 break; 3094 setDebugLocFromInst(Builder, it); 3095 3096 Module *M = BB->getParent()->getParent(); 3097 CallInst *CI = cast<CallInst>(it); 3098 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3099 assert(ID && "Not an intrinsic call!"); 3100 switch (ID) { 3101 case Intrinsic::lifetime_end: 3102 case Intrinsic::lifetime_start: 3103 scalarizeInstruction(it); 3104 break; 3105 default: 3106 for (unsigned Part = 0; Part < UF; ++Part) { 3107 SmallVector<Value *, 4> Args; 3108 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3109 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3110 Args.push_back(Arg[Part]); 3111 } 3112 Type *Tys[] = {CI->getType()}; 3113 if (VF > 1) 3114 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3115 3116 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3117 Entry[Part] = Builder.CreateCall(F, Args); 3118 } 3119 break; 3120 } 3121 break; 3122 } 3123 3124 default: 3125 // All other instructions are unsupported. Scalarize them. 3126 scalarizeInstruction(it); 3127 break; 3128 }// end of switch. 3129 }// end of for_each instr. 3130 } 3131 3132 void InnerLoopVectorizer::updateAnalysis() { 3133 // Forget the original basic block. 3134 SE->forgetLoop(OrigLoop); 3135 3136 // Update the dominator tree information. 3137 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3138 "Entry does not dominate exit."); 3139 3140 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3141 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3142 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3143 3144 // Due to if predication of stores we might create a sequence of "if(pred) 3145 // a[i] = ...; " blocks. 3146 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3147 if (i == 0) 3148 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3149 else if (isPredicatedBlock(i)) { 3150 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3151 } else { 3152 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3153 } 3154 } 3155 3156 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front()); 3157 DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock); 3158 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3159 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3160 3161 DEBUG(DT->verifyDomTree()); 3162 } 3163 3164 /// \brief Check whether it is safe to if-convert this phi node. 3165 /// 3166 /// Phi nodes with constant expressions that can trap are not safe to if 3167 /// convert. 3168 static bool canIfConvertPHINodes(BasicBlock *BB) { 3169 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3170 PHINode *Phi = dyn_cast<PHINode>(I); 3171 if (!Phi) 3172 return true; 3173 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3174 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3175 if (C->canTrap()) 3176 return false; 3177 } 3178 return true; 3179 } 3180 3181 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3182 if (!EnableIfConversion) 3183 return false; 3184 3185 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3186 3187 // A list of pointers that we can safely read and write to. 3188 SmallPtrSet<Value *, 8> SafePointes; 3189 3190 // Collect safe addresses. 3191 for (Loop::block_iterator BI = TheLoop->block_begin(), 3192 BE = TheLoop->block_end(); BI != BE; ++BI) { 3193 BasicBlock *BB = *BI; 3194 3195 if (blockNeedsPredication(BB)) 3196 continue; 3197 3198 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3199 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3200 SafePointes.insert(LI->getPointerOperand()); 3201 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3202 SafePointes.insert(SI->getPointerOperand()); 3203 } 3204 } 3205 3206 // Collect the blocks that need predication. 3207 BasicBlock *Header = TheLoop->getHeader(); 3208 for (Loop::block_iterator BI = TheLoop->block_begin(), 3209 BE = TheLoop->block_end(); BI != BE; ++BI) { 3210 BasicBlock *BB = *BI; 3211 3212 // We don't support switch statements inside loops. 3213 if (!isa<BranchInst>(BB->getTerminator())) 3214 return false; 3215 3216 // We must be able to predicate all blocks that need to be predicated. 3217 if (blockNeedsPredication(BB)) { 3218 if (!blockCanBePredicated(BB, SafePointes)) 3219 return false; 3220 } else if (BB != Header && !canIfConvertPHINodes(BB)) 3221 return false; 3222 3223 } 3224 3225 // We can if-convert this loop. 3226 return true; 3227 } 3228 3229 bool LoopVectorizationLegality::canVectorize() { 3230 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3231 // be canonicalized. 3232 if (!TheLoop->getLoopPreheader()) 3233 return false; 3234 3235 // We can only vectorize innermost loops. 3236 if (TheLoop->getSubLoopsVector().size()) 3237 return false; 3238 3239 // We must have a single backedge. 3240 if (TheLoop->getNumBackEdges() != 1) 3241 return false; 3242 3243 // We must have a single exiting block. 3244 if (!TheLoop->getExitingBlock()) 3245 return false; 3246 3247 // We need to have a loop header. 3248 DEBUG(dbgs() << "LV: Found a loop: " << 3249 TheLoop->getHeader()->getName() << '\n'); 3250 3251 // Check if we can if-convert non-single-bb loops. 3252 unsigned NumBlocks = TheLoop->getNumBlocks(); 3253 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3254 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3255 return false; 3256 } 3257 3258 // ScalarEvolution needs to be able to find the exit count. 3259 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3260 if (ExitCount == SE->getCouldNotCompute()) { 3261 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3262 return false; 3263 } 3264 3265 // Do not loop-vectorize loops with a tiny trip count. 3266 BasicBlock *Latch = TheLoop->getLoopLatch(); 3267 unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch); 3268 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 3269 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " << 3270 "This loop is not worth vectorizing.\n"); 3271 return false; 3272 } 3273 3274 // Check if we can vectorize the instructions and CFG in this loop. 3275 if (!canVectorizeInstrs()) { 3276 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3277 return false; 3278 } 3279 3280 // Go over each instruction and look at memory deps. 3281 if (!canVectorizeMemory()) { 3282 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3283 return false; 3284 } 3285 3286 // Collect all of the variables that remain uniform after vectorization. 3287 collectLoopUniforms(); 3288 3289 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3290 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3291 <<"!\n"); 3292 3293 // Okay! We can vectorize. At this point we don't have any other mem analysis 3294 // which may limit our maximum vectorization factor, so just return true with 3295 // no restrictions. 3296 return true; 3297 } 3298 3299 static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) { 3300 if (Ty->isPointerTy()) 3301 return DL.getIntPtrType(Ty); 3302 3303 // It is possible that char's or short's overflow when we ask for the loop's 3304 // trip count, work around this by changing the type size. 3305 if (Ty->getScalarSizeInBits() < 32) 3306 return Type::getInt32Ty(Ty->getContext()); 3307 3308 return Ty; 3309 } 3310 3311 static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) { 3312 Ty0 = convertPointerToIntegerType(DL, Ty0); 3313 Ty1 = convertPointerToIntegerType(DL, Ty1); 3314 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3315 return Ty0; 3316 return Ty1; 3317 } 3318 3319 /// \brief Check that the instruction has outside loop users and is not an 3320 /// identified reduction variable. 3321 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3322 SmallPtrSet<Value *, 4> &Reductions) { 3323 // Reduction instructions are allowed to have exit users. All other 3324 // instructions must not have external users. 3325 if (!Reductions.count(Inst)) 3326 //Check that all of the users of the loop are inside the BB. 3327 for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end(); 3328 I != E; ++I) { 3329 Instruction *U = cast<Instruction>(*I); 3330 // This user may be a reduction exit value. 3331 if (!TheLoop->contains(U)) { 3332 DEBUG(dbgs() << "LV: Found an outside user for : " << *U << '\n'); 3333 return true; 3334 } 3335 } 3336 return false; 3337 } 3338 3339 bool LoopVectorizationLegality::canVectorizeInstrs() { 3340 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3341 BasicBlock *Header = TheLoop->getHeader(); 3342 3343 // Look for the attribute signaling the absence of NaNs. 3344 Function &F = *Header->getParent(); 3345 if (F.hasFnAttribute("no-nans-fp-math")) 3346 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3347 AttributeSet::FunctionIndex, 3348 "no-nans-fp-math").getValueAsString() == "true"; 3349 3350 // For each block in the loop. 3351 for (Loop::block_iterator bb = TheLoop->block_begin(), 3352 be = TheLoop->block_end(); bb != be; ++bb) { 3353 3354 // Scan the instructions in the block and look for hazards. 3355 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3356 ++it) { 3357 3358 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3359 Type *PhiTy = Phi->getType(); 3360 // Check that this PHI type is allowed. 3361 if (!PhiTy->isIntegerTy() && 3362 !PhiTy->isFloatingPointTy() && 3363 !PhiTy->isPointerTy()) { 3364 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3365 return false; 3366 } 3367 3368 // If this PHINode is not in the header block, then we know that we 3369 // can convert it to select during if-conversion. No need to check if 3370 // the PHIs in this block are induction or reduction variables. 3371 if (*bb != Header) { 3372 // Check that this instruction has no outside users or is an 3373 // identified reduction value with an outside user. 3374 if(!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3375 continue; 3376 return false; 3377 } 3378 3379 // We only allow if-converted PHIs with more than two incoming values. 3380 if (Phi->getNumIncomingValues() != 2) { 3381 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3382 return false; 3383 } 3384 3385 // This is the value coming from the preheader. 3386 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3387 // Check if this is an induction variable. 3388 InductionKind IK = isInductionVariable(Phi); 3389 3390 if (IK_NoInduction != IK) { 3391 // Get the widest type. 3392 if (!WidestIndTy) 3393 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3394 else 3395 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3396 3397 // Int inductions are special because we only allow one IV. 3398 if (IK == IK_IntInduction) { 3399 // Use the phi node with the widest type as induction. Use the last 3400 // one if there are multiple (no good reason for doing this other 3401 // than it is expedient). 3402 if (!Induction || PhiTy == WidestIndTy) 3403 Induction = Phi; 3404 } 3405 3406 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3407 Inductions[Phi] = InductionInfo(StartValue, IK); 3408 3409 // Until we explicitly handle the case of an induction variable with 3410 // an outside loop user we have to give up vectorizing this loop. 3411 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3412 return false; 3413 3414 continue; 3415 } 3416 3417 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3418 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3419 continue; 3420 } 3421 if (AddReductionVar(Phi, RK_IntegerMult)) { 3422 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3423 continue; 3424 } 3425 if (AddReductionVar(Phi, RK_IntegerOr)) { 3426 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3427 continue; 3428 } 3429 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3430 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3431 continue; 3432 } 3433 if (AddReductionVar(Phi, RK_IntegerXor)) { 3434 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3435 continue; 3436 } 3437 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3438 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3439 continue; 3440 } 3441 if (AddReductionVar(Phi, RK_FloatMult)) { 3442 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3443 continue; 3444 } 3445 if (AddReductionVar(Phi, RK_FloatAdd)) { 3446 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3447 continue; 3448 } 3449 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3450 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3451 "\n"); 3452 continue; 3453 } 3454 3455 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3456 return false; 3457 }// end of PHI handling 3458 3459 // We still don't handle functions. However, we can ignore dbg intrinsic 3460 // calls and we do handle certain intrinsic and libm functions. 3461 CallInst *CI = dyn_cast<CallInst>(it); 3462 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3463 DEBUG(dbgs() << "LV: Found a call site.\n"); 3464 return false; 3465 } 3466 3467 // Check that the instruction return type is vectorizable. 3468 // Also, we can't vectorize extractelement instructions. 3469 if ((!VectorType::isValidElementType(it->getType()) && 3470 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3471 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3472 return false; 3473 } 3474 3475 // Check that the stored type is vectorizable. 3476 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3477 Type *T = ST->getValueOperand()->getType(); 3478 if (!VectorType::isValidElementType(T)) 3479 return false; 3480 if (EnableMemAccessVersioning) 3481 collectStridedAcccess(ST); 3482 } 3483 3484 if (EnableMemAccessVersioning) 3485 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3486 collectStridedAcccess(LI); 3487 3488 // Reduction instructions are allowed to have exit users. 3489 // All other instructions must not have external users. 3490 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3491 return false; 3492 3493 } // next instr. 3494 3495 } 3496 3497 if (!Induction) { 3498 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3499 if (Inductions.empty()) 3500 return false; 3501 } 3502 3503 return true; 3504 } 3505 3506 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3507 /// return the induction operand of the gep pointer. 3508 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3509 DataLayout *DL, Loop *Lp) { 3510 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3511 if (!GEP) 3512 return Ptr; 3513 3514 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3515 3516 // Check that all of the gep indices are uniform except for our induction 3517 // operand. 3518 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3519 if (i != InductionOperand && 3520 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3521 return Ptr; 3522 return GEP->getOperand(InductionOperand); 3523 } 3524 3525 ///\brief Look for a cast use of the passed value. 3526 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3527 Value *UniqueCast = 0; 3528 for (Value::use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end(); UI != UE; 3529 ++UI) { 3530 CastInst *CI = dyn_cast<CastInst>(*UI); 3531 if (CI && CI->getType() == Ty) { 3532 if (!UniqueCast) 3533 UniqueCast = CI; 3534 else 3535 return 0; 3536 } 3537 } 3538 return UniqueCast; 3539 } 3540 3541 ///\brief Get the stride of a pointer access in a loop. 3542 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3543 /// pointer to the Value, or null otherwise. 3544 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3545 DataLayout *DL, Loop *Lp) { 3546 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3547 if (!PtrTy || PtrTy->isAggregateType()) 3548 return 0; 3549 3550 // Try to remove a gep instruction to make the pointer (actually index at this 3551 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3552 // pointer, otherwise, we are analyzing the index. 3553 Value *OrigPtr = Ptr; 3554 3555 // The size of the pointer access. 3556 int64_t PtrAccessSize = 1; 3557 3558 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3559 const SCEV *V = SE->getSCEV(Ptr); 3560 3561 if (Ptr != OrigPtr) 3562 // Strip off casts. 3563 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3564 V = C->getOperand(); 3565 3566 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3567 if (!S) 3568 return 0; 3569 3570 V = S->getStepRecurrence(*SE); 3571 if (!V) 3572 return 0; 3573 3574 // Strip off the size of access multiplication if we are still analyzing the 3575 // pointer. 3576 if (OrigPtr == Ptr) { 3577 DL->getTypeAllocSize(PtrTy->getElementType()); 3578 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3579 if (M->getOperand(0)->getSCEVType() != scConstant) 3580 return 0; 3581 3582 const APInt &APStepVal = 3583 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3584 3585 // Huge step value - give up. 3586 if (APStepVal.getBitWidth() > 64) 3587 return 0; 3588 3589 int64_t StepVal = APStepVal.getSExtValue(); 3590 if (PtrAccessSize != StepVal) 3591 return 0; 3592 V = M->getOperand(1); 3593 } 3594 } 3595 3596 // Strip off casts. 3597 Type *StripedOffRecurrenceCast = 0; 3598 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3599 StripedOffRecurrenceCast = C->getType(); 3600 V = C->getOperand(); 3601 } 3602 3603 // Look for the loop invariant symbolic value. 3604 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3605 if (!U) 3606 return 0; 3607 3608 Value *Stride = U->getValue(); 3609 if (!Lp->isLoopInvariant(Stride)) 3610 return 0; 3611 3612 // If we have stripped off the recurrence cast we have to make sure that we 3613 // return the value that is used in this loop so that we can replace it later. 3614 if (StripedOffRecurrenceCast) 3615 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3616 3617 return Stride; 3618 } 3619 3620 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 3621 Value *Ptr = 0; 3622 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3623 Ptr = LI->getPointerOperand(); 3624 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3625 Ptr = SI->getPointerOperand(); 3626 else 3627 return; 3628 3629 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3630 if (!Stride) 3631 return; 3632 3633 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3634 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3635 Strides[Ptr] = Stride; 3636 StrideSet.insert(Stride); 3637 } 3638 3639 void LoopVectorizationLegality::collectLoopUniforms() { 3640 // We now know that the loop is vectorizable! 3641 // Collect variables that will remain uniform after vectorization. 3642 std::vector<Value*> Worklist; 3643 BasicBlock *Latch = TheLoop->getLoopLatch(); 3644 3645 // Start with the conditional branch and walk up the block. 3646 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3647 3648 while (Worklist.size()) { 3649 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3650 Worklist.pop_back(); 3651 3652 // Look at instructions inside this loop. 3653 // Stop when reaching PHI nodes. 3654 // TODO: we need to follow values all over the loop, not only in this block. 3655 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3656 continue; 3657 3658 // This is a known uniform. 3659 Uniforms.insert(I); 3660 3661 // Insert all operands. 3662 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3663 } 3664 } 3665 3666 namespace { 3667 /// \brief Analyses memory accesses in a loop. 3668 /// 3669 /// Checks whether run time pointer checks are needed and builds sets for data 3670 /// dependence checking. 3671 class AccessAnalysis { 3672 public: 3673 /// \brief Read or write access location. 3674 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3675 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3676 3677 /// \brief Set of potential dependent memory accesses. 3678 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 3679 3680 AccessAnalysis(DataLayout *Dl, DepCandidates &DA) : 3681 DL(Dl), DepCands(DA), AreAllWritesIdentified(true), 3682 AreAllReadsIdentified(true), IsRTCheckNeeded(false) {} 3683 3684 /// \brief Register a load and whether it is only read from. 3685 void addLoad(Value *Ptr, bool IsReadOnly) { 3686 Accesses.insert(MemAccessInfo(Ptr, false)); 3687 if (IsReadOnly) 3688 ReadOnlyPtr.insert(Ptr); 3689 } 3690 3691 /// \brief Register a store. 3692 void addStore(Value *Ptr) { 3693 Accesses.insert(MemAccessInfo(Ptr, true)); 3694 } 3695 3696 /// \brief Check whether we can check the pointers at runtime for 3697 /// non-intersection. 3698 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3699 unsigned &NumComparisons, ScalarEvolution *SE, 3700 Loop *TheLoop, ValueToValueMap &Strides, 3701 bool ShouldCheckStride = false); 3702 3703 /// \brief Goes over all memory accesses, checks whether a RT check is needed 3704 /// and builds sets of dependent accesses. 3705 void buildDependenceSets() { 3706 // Process read-write pointers first. 3707 processMemAccesses(false); 3708 // Next, process read pointers. 3709 processMemAccesses(true); 3710 } 3711 3712 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 3713 3714 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 3715 void resetDepChecks() { CheckDeps.clear(); } 3716 3717 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 3718 3719 private: 3720 typedef SetVector<MemAccessInfo> PtrAccessSet; 3721 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 3722 3723 /// \brief Go over all memory access or only the deferred ones if 3724 /// \p UseDeferred is true and check whether runtime pointer checks are needed 3725 /// and build sets of dependency check candidates. 3726 void processMemAccesses(bool UseDeferred); 3727 3728 /// Set of all accesses. 3729 PtrAccessSet Accesses; 3730 3731 /// Set of access to check after all writes have been processed. 3732 PtrAccessSet DeferredAccesses; 3733 3734 /// Map of pointers to last access encountered. 3735 UnderlyingObjToAccessMap ObjToLastAccess; 3736 3737 /// Set of accesses that need a further dependence check. 3738 MemAccessInfoSet CheckDeps; 3739 3740 /// Set of pointers that are read only. 3741 SmallPtrSet<Value*, 16> ReadOnlyPtr; 3742 3743 /// Set of underlying objects already written to. 3744 SmallPtrSet<Value*, 16> WriteObjects; 3745 3746 DataLayout *DL; 3747 3748 /// Sets of potentially dependent accesses - members of one set share an 3749 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 3750 /// dependence check. 3751 DepCandidates &DepCands; 3752 3753 bool AreAllWritesIdentified; 3754 bool AreAllReadsIdentified; 3755 bool IsRTCheckNeeded; 3756 }; 3757 3758 } // end anonymous namespace 3759 3760 /// \brief Check whether a pointer can participate in a runtime bounds check. 3761 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 3762 Value *Ptr) { 3763 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 3764 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 3765 if (!AR) 3766 return false; 3767 3768 return AR->isAffine(); 3769 } 3770 3771 /// \brief Check the stride of the pointer and ensure that it does not wrap in 3772 /// the address space. 3773 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr, 3774 const Loop *Lp, ValueToValueMap &StridesMap); 3775 3776 bool AccessAnalysis::canCheckPtrAtRT( 3777 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3778 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 3779 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 3780 // Find pointers with computable bounds. We are going to use this information 3781 // to place a runtime bound check. 3782 unsigned NumReadPtrChecks = 0; 3783 unsigned NumWritePtrChecks = 0; 3784 bool CanDoRT = true; 3785 3786 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 3787 // We assign consecutive id to access from different dependence sets. 3788 // Accesses within the same set don't need a runtime check. 3789 unsigned RunningDepId = 1; 3790 DenseMap<Value *, unsigned> DepSetId; 3791 3792 for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end(); 3793 AI != AE; ++AI) { 3794 const MemAccessInfo &Access = *AI; 3795 Value *Ptr = Access.getPointer(); 3796 bool IsWrite = Access.getInt(); 3797 3798 // Just add write checks if we have both. 3799 if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true))) 3800 continue; 3801 3802 if (IsWrite) 3803 ++NumWritePtrChecks; 3804 else 3805 ++NumReadPtrChecks; 3806 3807 if (hasComputableBounds(SE, StridesMap, Ptr) && 3808 // When we run after a failing dependency check we have to make sure we 3809 // don't have wrapping pointers. 3810 (!ShouldCheckStride || 3811 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 3812 // The id of the dependence set. 3813 unsigned DepId; 3814 3815 if (IsDepCheckNeeded) { 3816 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 3817 unsigned &LeaderId = DepSetId[Leader]; 3818 if (!LeaderId) 3819 LeaderId = RunningDepId++; 3820 DepId = LeaderId; 3821 } else 3822 // Each access has its own dependence set. 3823 DepId = RunningDepId++; 3824 3825 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, StridesMap); 3826 3827 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 3828 } else { 3829 CanDoRT = false; 3830 } 3831 } 3832 3833 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 3834 NumComparisons = 0; // Only one dependence set. 3835 else { 3836 NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks + 3837 NumWritePtrChecks - 1)); 3838 } 3839 3840 // If the pointers that we would use for the bounds comparison have different 3841 // address spaces, assume the values aren't directly comparable, so we can't 3842 // use them for the runtime check. We also have to assume they could 3843 // overlap. In the future there should be metadata for whether address spaces 3844 // are disjoint. 3845 unsigned NumPointers = RtCheck.Pointers.size(); 3846 for (unsigned i = 0; i < NumPointers; ++i) { 3847 for (unsigned j = i + 1; j < NumPointers; ++j) { 3848 // Only need to check pointers between two different dependency sets. 3849 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 3850 continue; 3851 3852 Value *PtrI = RtCheck.Pointers[i]; 3853 Value *PtrJ = RtCheck.Pointers[j]; 3854 3855 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 3856 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 3857 if (ASi != ASj) { 3858 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 3859 " different address spaces\n"); 3860 return false; 3861 } 3862 } 3863 } 3864 3865 return CanDoRT; 3866 } 3867 3868 static bool isFunctionScopeIdentifiedObject(Value *Ptr) { 3869 return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr); 3870 } 3871 3872 void AccessAnalysis::processMemAccesses(bool UseDeferred) { 3873 // We process the set twice: first we process read-write pointers, last we 3874 // process read-only pointers. This allows us to skip dependence tests for 3875 // read-only pointers. 3876 3877 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 3878 for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) { 3879 const MemAccessInfo &Access = *AI; 3880 Value *Ptr = Access.getPointer(); 3881 bool IsWrite = Access.getInt(); 3882 3883 DepCands.insert(Access); 3884 3885 // Memorize read-only pointers for later processing and skip them in the 3886 // first round (they need to be checked after we have seen all write 3887 // pointers). Note: we also mark pointer that are not consecutive as 3888 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the 3889 // second check for "!IsWrite". 3890 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 3891 if (!UseDeferred && IsReadOnlyPtr) { 3892 DeferredAccesses.insert(Access); 3893 continue; 3894 } 3895 3896 bool NeedDepCheck = false; 3897 // Check whether there is the possibility of dependency because of 3898 // underlying objects being the same. 3899 typedef SmallVector<Value*, 16> ValueVector; 3900 ValueVector TempObjects; 3901 GetUnderlyingObjects(Ptr, TempObjects, DL); 3902 for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end(); 3903 UI != UE; ++UI) { 3904 Value *UnderlyingObj = *UI; 3905 3906 // If this is a write then it needs to be an identified object. If this a 3907 // read and all writes (so far) are identified function scope objects we 3908 // don't need an identified underlying object but only an Argument (the 3909 // next write is going to invalidate this assumption if it is 3910 // unidentified). 3911 // This is a micro-optimization for the case where all writes are 3912 // identified and we have one argument pointer. 3913 // Otherwise, we do need a runtime check. 3914 if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) || 3915 (!IsWrite && (!AreAllWritesIdentified || 3916 !isa<Argument>(UnderlyingObj)) && 3917 !isIdentifiedObject(UnderlyingObj))) { 3918 DEBUG(dbgs() << "LV: Found an unidentified " << 3919 (IsWrite ? "write" : "read" ) << " ptr: " << *UnderlyingObj << 3920 "\n"); 3921 IsRTCheckNeeded = (IsRTCheckNeeded || 3922 !isIdentifiedObject(UnderlyingObj) || 3923 !AreAllReadsIdentified); 3924 3925 if (IsWrite) 3926 AreAllWritesIdentified = false; 3927 if (!IsWrite) 3928 AreAllReadsIdentified = false; 3929 } 3930 3931 // If this is a write - check other reads and writes for conflicts. If 3932 // this is a read only check other writes for conflicts (but only if there 3933 // is no other write to the ptr - this is an optimization to catch "a[i] = 3934 // a[i] + " without having to do a dependence check). 3935 if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj)) 3936 NeedDepCheck = true; 3937 3938 if (IsWrite) 3939 WriteObjects.insert(UnderlyingObj); 3940 3941 // Create sets of pointers connected by shared underlying objects. 3942 UnderlyingObjToAccessMap::iterator Prev = 3943 ObjToLastAccess.find(UnderlyingObj); 3944 if (Prev != ObjToLastAccess.end()) 3945 DepCands.unionSets(Access, Prev->second); 3946 3947 ObjToLastAccess[UnderlyingObj] = Access; 3948 } 3949 3950 if (NeedDepCheck) 3951 CheckDeps.insert(Access); 3952 } 3953 } 3954 3955 namespace { 3956 /// \brief Checks memory dependences among accesses to the same underlying 3957 /// object to determine whether there vectorization is legal or not (and at 3958 /// which vectorization factor). 3959 /// 3960 /// This class works under the assumption that we already checked that memory 3961 /// locations with different underlying pointers are "must-not alias". 3962 /// We use the ScalarEvolution framework to symbolically evalutate access 3963 /// functions pairs. Since we currently don't restructure the loop we can rely 3964 /// on the program order of memory accesses to determine their safety. 3965 /// At the moment we will only deem accesses as safe for: 3966 /// * A negative constant distance assuming program order. 3967 /// 3968 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 3969 /// a[i] = tmp; y = a[i]; 3970 /// 3971 /// The latter case is safe because later checks guarantuee that there can't 3972 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 3973 /// the same variable: a header phi can only be an induction or a reduction, a 3974 /// reduction can't have a memory sink, an induction can't have a memory 3975 /// source). This is important and must not be violated (or we have to 3976 /// resort to checking for cycles through memory). 3977 /// 3978 /// * A positive constant distance assuming program order that is bigger 3979 /// than the biggest memory access. 3980 /// 3981 /// tmp = a[i] OR b[i] = x 3982 /// a[i+2] = tmp y = b[i+2]; 3983 /// 3984 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 3985 /// 3986 /// * Zero distances and all accesses have the same size. 3987 /// 3988 class MemoryDepChecker { 3989 public: 3990 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3991 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3992 3993 MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L) 3994 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 3995 ShouldRetryWithRuntimeCheck(false) {} 3996 3997 /// \brief Register the location (instructions are given increasing numbers) 3998 /// of a write access. 3999 void addAccess(StoreInst *SI) { 4000 Value *Ptr = SI->getPointerOperand(); 4001 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 4002 InstMap.push_back(SI); 4003 ++AccessIdx; 4004 } 4005 4006 /// \brief Register the location (instructions are given increasing numbers) 4007 /// of a write access. 4008 void addAccess(LoadInst *LI) { 4009 Value *Ptr = LI->getPointerOperand(); 4010 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 4011 InstMap.push_back(LI); 4012 ++AccessIdx; 4013 } 4014 4015 /// \brief Check whether the dependencies between the accesses are safe. 4016 /// 4017 /// Only checks sets with elements in \p CheckDeps. 4018 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4019 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 4020 4021 /// \brief The maximum number of bytes of a vector register we can vectorize 4022 /// the accesses safely with. 4023 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 4024 4025 /// \brief In same cases when the dependency check fails we can still 4026 /// vectorize the loop with a dynamic array access check. 4027 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 4028 4029 private: 4030 ScalarEvolution *SE; 4031 DataLayout *DL; 4032 const Loop *InnermostLoop; 4033 4034 /// \brief Maps access locations (ptr, read/write) to program order. 4035 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 4036 4037 /// \brief Memory access instructions in program order. 4038 SmallVector<Instruction *, 16> InstMap; 4039 4040 /// \brief The program order index to be used for the next instruction. 4041 unsigned AccessIdx; 4042 4043 // We can access this many bytes in parallel safely. 4044 unsigned MaxSafeDepDistBytes; 4045 4046 /// \brief If we see a non-constant dependence distance we can still try to 4047 /// vectorize this loop with runtime checks. 4048 bool ShouldRetryWithRuntimeCheck; 4049 4050 /// \brief Check whether there is a plausible dependence between the two 4051 /// accesses. 4052 /// 4053 /// Access \p A must happen before \p B in program order. The two indices 4054 /// identify the index into the program order map. 4055 /// 4056 /// This function checks whether there is a plausible dependence (or the 4057 /// absence of such can't be proved) between the two accesses. If there is a 4058 /// plausible dependence but the dependence distance is bigger than one 4059 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4060 /// distance is smaller than any other distance encountered so far). 4061 /// Otherwise, this function returns true signaling a possible dependence. 4062 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4063 const MemAccessInfo &B, unsigned BIdx, 4064 ValueToValueMap &Strides); 4065 4066 /// \brief Check whether the data dependence could prevent store-load 4067 /// forwarding. 4068 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4069 }; 4070 4071 } // end anonymous namespace 4072 4073 static bool isInBoundsGep(Value *Ptr) { 4074 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4075 return GEP->isInBounds(); 4076 return false; 4077 } 4078 4079 /// \brief Check whether the access through \p Ptr has a constant stride. 4080 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr, 4081 const Loop *Lp, ValueToValueMap &StridesMap) { 4082 const Type *Ty = Ptr->getType(); 4083 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4084 4085 // Make sure that the pointer does not point to aggregate types. 4086 const PointerType *PtrTy = cast<PointerType>(Ty); 4087 if (PtrTy->getElementType()->isAggregateType()) { 4088 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4089 "\n"); 4090 return 0; 4091 } 4092 4093 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4094 4095 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4096 if (!AR) { 4097 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4098 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4099 return 0; 4100 } 4101 4102 // The accesss function must stride over the innermost loop. 4103 if (Lp != AR->getLoop()) { 4104 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4105 *Ptr << " SCEV: " << *PtrScev << "\n"); 4106 } 4107 4108 // The address calculation must not wrap. Otherwise, a dependence could be 4109 // inverted. 4110 // An inbounds getelementptr that is a AddRec with a unit stride 4111 // cannot wrap per definition. The unit stride requirement is checked later. 4112 // An getelementptr without an inbounds attribute and unit stride would have 4113 // to access the pointer value "0" which is undefined behavior in address 4114 // space 0, therefore we can also vectorize this case. 4115 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4116 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4117 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4118 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4119 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4120 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4121 return 0; 4122 } 4123 4124 // Check the step is constant. 4125 const SCEV *Step = AR->getStepRecurrence(*SE); 4126 4127 // Calculate the pointer stride and check if it is consecutive. 4128 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4129 if (!C) { 4130 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4131 " SCEV: " << *PtrScev << "\n"); 4132 return 0; 4133 } 4134 4135 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4136 const APInt &APStepVal = C->getValue()->getValue(); 4137 4138 // Huge step value - give up. 4139 if (APStepVal.getBitWidth() > 64) 4140 return 0; 4141 4142 int64_t StepVal = APStepVal.getSExtValue(); 4143 4144 // Strided access. 4145 int64_t Stride = StepVal / Size; 4146 int64_t Rem = StepVal % Size; 4147 if (Rem) 4148 return 0; 4149 4150 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4151 // know we can't "wrap around the address space". In case of address space 4152 // zero we know that this won't happen without triggering undefined behavior. 4153 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4154 Stride != 1 && Stride != -1) 4155 return 0; 4156 4157 return Stride; 4158 } 4159 4160 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4161 unsigned TypeByteSize) { 4162 // If loads occur at a distance that is not a multiple of a feasible vector 4163 // factor store-load forwarding does not take place. 4164 // Positive dependences might cause troubles because vectorizing them might 4165 // prevent store-load forwarding making vectorized code run a lot slower. 4166 // a[i] = a[i-3] ^ a[i-8]; 4167 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4168 // hence on your typical architecture store-load forwarding does not take 4169 // place. Vectorizing in such cases does not make sense. 4170 // Store-load forwarding distance. 4171 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4172 // Maximum vector factor. 4173 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4174 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4175 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4176 4177 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4178 vf *= 2) { 4179 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4180 MaxVFWithoutSLForwardIssues = (vf >>=1); 4181 break; 4182 } 4183 } 4184 4185 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4186 DEBUG(dbgs() << "LV: Distance " << Distance << 4187 " that could cause a store-load forwarding conflict\n"); 4188 return true; 4189 } 4190 4191 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4192 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4193 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4194 return false; 4195 } 4196 4197 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4198 const MemAccessInfo &B, unsigned BIdx, 4199 ValueToValueMap &Strides) { 4200 assert (AIdx < BIdx && "Must pass arguments in program order"); 4201 4202 Value *APtr = A.getPointer(); 4203 Value *BPtr = B.getPointer(); 4204 bool AIsWrite = A.getInt(); 4205 bool BIsWrite = B.getInt(); 4206 4207 // Two reads are independent. 4208 if (!AIsWrite && !BIsWrite) 4209 return false; 4210 4211 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4212 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4213 4214 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4215 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4216 4217 const SCEV *Src = AScev; 4218 const SCEV *Sink = BScev; 4219 4220 // If the induction step is negative we have to invert source and sink of the 4221 // dependence. 4222 if (StrideAPtr < 0) { 4223 //Src = BScev; 4224 //Sink = AScev; 4225 std::swap(APtr, BPtr); 4226 std::swap(Src, Sink); 4227 std::swap(AIsWrite, BIsWrite); 4228 std::swap(AIdx, BIdx); 4229 std::swap(StrideAPtr, StrideBPtr); 4230 } 4231 4232 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4233 4234 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4235 << "(Induction step: " << StrideAPtr << ")\n"); 4236 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4237 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4238 4239 // Need consecutive accesses. We don't want to vectorize 4240 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4241 // the address space. 4242 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4243 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4244 return true; 4245 } 4246 4247 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4248 if (!C) { 4249 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4250 ShouldRetryWithRuntimeCheck = true; 4251 return true; 4252 } 4253 4254 Type *ATy = APtr->getType()->getPointerElementType(); 4255 Type *BTy = BPtr->getType()->getPointerElementType(); 4256 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4257 4258 // Negative distances are not plausible dependencies. 4259 const APInt &Val = C->getValue()->getValue(); 4260 if (Val.isNegative()) { 4261 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4262 if (IsTrueDataDependence && 4263 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4264 ATy != BTy)) 4265 return true; 4266 4267 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4268 return false; 4269 } 4270 4271 // Write to the same location with the same size. 4272 // Could be improved to assert type sizes are the same (i32 == float, etc). 4273 if (Val == 0) { 4274 if (ATy == BTy) 4275 return false; 4276 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4277 return true; 4278 } 4279 4280 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4281 4282 // Positive distance bigger than max vectorization factor. 4283 if (ATy != BTy) { 4284 DEBUG(dbgs() << 4285 "LV: ReadWrite-Write positive dependency with different types\n"); 4286 return false; 4287 } 4288 4289 unsigned Distance = (unsigned) Val.getZExtValue(); 4290 4291 // Bail out early if passed-in parameters make vectorization not feasible. 4292 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4293 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1; 4294 4295 // The distance must be bigger than the size needed for a vectorized version 4296 // of the operation and the size of the vectorized operation must not be 4297 // bigger than the currrent maximum size. 4298 if (Distance < 2*TypeByteSize || 4299 2*TypeByteSize > MaxSafeDepDistBytes || 4300 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4301 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4302 << Val.getSExtValue() << '\n'); 4303 return true; 4304 } 4305 4306 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4307 Distance : MaxSafeDepDistBytes; 4308 4309 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4310 if (IsTrueDataDependence && 4311 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4312 return true; 4313 4314 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4315 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4316 4317 return false; 4318 } 4319 4320 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4321 MemAccessInfoSet &CheckDeps, 4322 ValueToValueMap &Strides) { 4323 4324 MaxSafeDepDistBytes = -1U; 4325 while (!CheckDeps.empty()) { 4326 MemAccessInfo CurAccess = *CheckDeps.begin(); 4327 4328 // Get the relevant memory access set. 4329 EquivalenceClasses<MemAccessInfo>::iterator I = 4330 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4331 4332 // Check accesses within this set. 4333 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4334 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4335 4336 // Check every access pair. 4337 while (AI != AE) { 4338 CheckDeps.erase(*AI); 4339 EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI); 4340 while (OI != AE) { 4341 // Check every accessing instruction pair in program order. 4342 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4343 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4344 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4345 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4346 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4347 return false; 4348 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4349 return false; 4350 } 4351 ++OI; 4352 } 4353 AI++; 4354 } 4355 } 4356 return true; 4357 } 4358 4359 bool LoopVectorizationLegality::canVectorizeMemory() { 4360 4361 typedef SmallVector<Value*, 16> ValueVector; 4362 typedef SmallPtrSet<Value*, 16> ValueSet; 4363 4364 // Holds the Load and Store *instructions*. 4365 ValueVector Loads; 4366 ValueVector Stores; 4367 4368 // Holds all the different accesses in the loop. 4369 unsigned NumReads = 0; 4370 unsigned NumReadWrites = 0; 4371 4372 PtrRtCheck.Pointers.clear(); 4373 PtrRtCheck.Need = false; 4374 4375 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4376 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4377 4378 // For each block. 4379 for (Loop::block_iterator bb = TheLoop->block_begin(), 4380 be = TheLoop->block_end(); bb != be; ++bb) { 4381 4382 // Scan the BB and collect legal loads and stores. 4383 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4384 ++it) { 4385 4386 // If this is a load, save it. If this instruction can read from memory 4387 // but is not a load, then we quit. Notice that we don't handle function 4388 // calls that read or write. 4389 if (it->mayReadFromMemory()) { 4390 // Many math library functions read the rounding mode. We will only 4391 // vectorize a loop if it contains known function calls that don't set 4392 // the flag. Therefore, it is safe to ignore this read from memory. 4393 CallInst *Call = dyn_cast<CallInst>(it); 4394 if (Call && getIntrinsicIDForCall(Call, TLI)) 4395 continue; 4396 4397 LoadInst *Ld = dyn_cast<LoadInst>(it); 4398 if (!Ld) return false; 4399 if (!Ld->isSimple() && !IsAnnotatedParallel) { 4400 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4401 return false; 4402 } 4403 NumLoads++; 4404 Loads.push_back(Ld); 4405 DepChecker.addAccess(Ld); 4406 continue; 4407 } 4408 4409 // Save 'store' instructions. Abort if other instructions write to memory. 4410 if (it->mayWriteToMemory()) { 4411 StoreInst *St = dyn_cast<StoreInst>(it); 4412 if (!St) return false; 4413 if (!St->isSimple() && !IsAnnotatedParallel) { 4414 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4415 return false; 4416 } 4417 NumStores++; 4418 Stores.push_back(St); 4419 DepChecker.addAccess(St); 4420 } 4421 } // Next instr. 4422 } // Next block. 4423 4424 // Now we have two lists that hold the loads and the stores. 4425 // Next, we find the pointers that they use. 4426 4427 // Check if we see any stores. If there are no stores, then we don't 4428 // care if the pointers are *restrict*. 4429 if (!Stores.size()) { 4430 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4431 return true; 4432 } 4433 4434 AccessAnalysis::DepCandidates DependentAccesses; 4435 AccessAnalysis Accesses(DL, DependentAccesses); 4436 4437 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4438 // multiple times on the same object. If the ptr is accessed twice, once 4439 // for read and once for write, it will only appear once (on the write 4440 // list). This is okay, since we are going to check for conflicts between 4441 // writes and between reads and writes, but not between reads and reads. 4442 ValueSet Seen; 4443 4444 ValueVector::iterator I, IE; 4445 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4446 StoreInst *ST = cast<StoreInst>(*I); 4447 Value* Ptr = ST->getPointerOperand(); 4448 4449 if (isUniform(Ptr)) { 4450 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4451 return false; 4452 } 4453 4454 // If we did *not* see this pointer before, insert it to the read-write 4455 // list. At this phase it is only a 'write' list. 4456 if (Seen.insert(Ptr)) { 4457 ++NumReadWrites; 4458 Accesses.addStore(Ptr); 4459 } 4460 } 4461 4462 if (IsAnnotatedParallel) { 4463 DEBUG(dbgs() 4464 << "LV: A loop annotated parallel, ignore memory dependency " 4465 << "checks.\n"); 4466 return true; 4467 } 4468 4469 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4470 LoadInst *LD = cast<LoadInst>(*I); 4471 Value* Ptr = LD->getPointerOperand(); 4472 // If we did *not* see this pointer before, insert it to the 4473 // read list. If we *did* see it before, then it is already in 4474 // the read-write list. This allows us to vectorize expressions 4475 // such as A[i] += x; Because the address of A[i] is a read-write 4476 // pointer. This only works if the index of A[i] is consecutive. 4477 // If the address of i is unknown (for example A[B[i]]) then we may 4478 // read a few words, modify, and write a few words, and some of the 4479 // words may be written to the same address. 4480 bool IsReadOnlyPtr = false; 4481 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4482 ++NumReads; 4483 IsReadOnlyPtr = true; 4484 } 4485 Accesses.addLoad(Ptr, IsReadOnlyPtr); 4486 } 4487 4488 // If we write (or read-write) to a single destination and there are no 4489 // other reads in this loop then is it safe to vectorize. 4490 if (NumReadWrites == 1 && NumReads == 0) { 4491 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4492 return true; 4493 } 4494 4495 // Build dependence sets and check whether we need a runtime pointer bounds 4496 // check. 4497 Accesses.buildDependenceSets(); 4498 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4499 4500 // Find pointers with computable bounds. We are going to use this information 4501 // to place a runtime bound check. 4502 unsigned NumComparisons = 0; 4503 bool CanDoRT = false; 4504 if (NeedRTCheck) 4505 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4506 Strides); 4507 4508 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4509 " pointer comparisons.\n"); 4510 4511 // If we only have one set of dependences to check pointers among we don't 4512 // need a runtime check. 4513 if (NumComparisons == 0 && NeedRTCheck) 4514 NeedRTCheck = false; 4515 4516 // Check that we did not collect too many pointers or found an unsizeable 4517 // pointer. 4518 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4519 PtrRtCheck.reset(); 4520 CanDoRT = false; 4521 } 4522 4523 if (CanDoRT) { 4524 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4525 } 4526 4527 if (NeedRTCheck && !CanDoRT) { 4528 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4529 "the array bounds.\n"); 4530 PtrRtCheck.reset(); 4531 return false; 4532 } 4533 4534 PtrRtCheck.Need = NeedRTCheck; 4535 4536 bool CanVecMem = true; 4537 if (Accesses.isDependencyCheckNeeded()) { 4538 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4539 CanVecMem = DepChecker.areDepsSafe( 4540 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4541 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4542 4543 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4544 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4545 NeedRTCheck = true; 4546 4547 // Clear the dependency checks. We assume they are not needed. 4548 Accesses.resetDepChecks(); 4549 4550 PtrRtCheck.reset(); 4551 PtrRtCheck.Need = true; 4552 4553 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4554 TheLoop, Strides, true); 4555 // Check that we did not collect too many pointers or found an unsizeable 4556 // pointer. 4557 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4558 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4559 PtrRtCheck.reset(); 4560 return false; 4561 } 4562 4563 CanVecMem = true; 4564 } 4565 } 4566 4567 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4568 " need a runtime memory check.\n"); 4569 4570 return CanVecMem; 4571 } 4572 4573 static bool hasMultipleUsesOf(Instruction *I, 4574 SmallPtrSet<Instruction *, 8> &Insts) { 4575 unsigned NumUses = 0; 4576 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 4577 if (Insts.count(dyn_cast<Instruction>(*Use))) 4578 ++NumUses; 4579 if (NumUses > 1) 4580 return true; 4581 } 4582 4583 return false; 4584 } 4585 4586 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) { 4587 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4588 if (!Set.count(dyn_cast<Instruction>(*Use))) 4589 return false; 4590 return true; 4591 } 4592 4593 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 4594 ReductionKind Kind) { 4595 if (Phi->getNumIncomingValues() != 2) 4596 return false; 4597 4598 // Reduction variables are only found in the loop header block. 4599 if (Phi->getParent() != TheLoop->getHeader()) 4600 return false; 4601 4602 // Obtain the reduction start value from the value that comes from the loop 4603 // preheader. 4604 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 4605 4606 // ExitInstruction is the single value which is used outside the loop. 4607 // We only allow for a single reduction value to be used outside the loop. 4608 // This includes users of the reduction, variables (which form a cycle 4609 // which ends in the phi node). 4610 Instruction *ExitInstruction = 0; 4611 // Indicates that we found a reduction operation in our scan. 4612 bool FoundReduxOp = false; 4613 4614 // We start with the PHI node and scan for all of the users of this 4615 // instruction. All users must be instructions that can be used as reduction 4616 // variables (such as ADD). We must have a single out-of-block user. The cycle 4617 // must include the original PHI. 4618 bool FoundStartPHI = false; 4619 4620 // To recognize min/max patterns formed by a icmp select sequence, we store 4621 // the number of instruction we saw from the recognized min/max pattern, 4622 // to make sure we only see exactly the two instructions. 4623 unsigned NumCmpSelectPatternInst = 0; 4624 ReductionInstDesc ReduxDesc(false, 0); 4625 4626 SmallPtrSet<Instruction *, 8> VisitedInsts; 4627 SmallVector<Instruction *, 8> Worklist; 4628 Worklist.push_back(Phi); 4629 VisitedInsts.insert(Phi); 4630 4631 // A value in the reduction can be used: 4632 // - By the reduction: 4633 // - Reduction operation: 4634 // - One use of reduction value (safe). 4635 // - Multiple use of reduction value (not safe). 4636 // - PHI: 4637 // - All uses of the PHI must be the reduction (safe). 4638 // - Otherwise, not safe. 4639 // - By one instruction outside of the loop (safe). 4640 // - By further instructions outside of the loop (not safe). 4641 // - By an instruction that is not part of the reduction (not safe). 4642 // This is either: 4643 // * An instruction type other than PHI or the reduction operation. 4644 // * A PHI in the header other than the initial PHI. 4645 while (!Worklist.empty()) { 4646 Instruction *Cur = Worklist.back(); 4647 Worklist.pop_back(); 4648 4649 // No Users. 4650 // If the instruction has no users then this is a broken chain and can't be 4651 // a reduction variable. 4652 if (Cur->use_empty()) 4653 return false; 4654 4655 bool IsAPhi = isa<PHINode>(Cur); 4656 4657 // A header PHI use other than the original PHI. 4658 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 4659 return false; 4660 4661 // Reductions of instructions such as Div, and Sub is only possible if the 4662 // LHS is the reduction variable. 4663 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 4664 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 4665 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 4666 return false; 4667 4668 // Any reduction instruction must be of one of the allowed kinds. 4669 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 4670 if (!ReduxDesc.IsReduction) 4671 return false; 4672 4673 // A reduction operation must only have one use of the reduction value. 4674 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 4675 hasMultipleUsesOf(Cur, VisitedInsts)) 4676 return false; 4677 4678 // All inputs to a PHI node must be a reduction value. 4679 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 4680 return false; 4681 4682 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 4683 isa<SelectInst>(Cur))) 4684 ++NumCmpSelectPatternInst; 4685 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 4686 isa<SelectInst>(Cur))) 4687 ++NumCmpSelectPatternInst; 4688 4689 // Check whether we found a reduction operator. 4690 FoundReduxOp |= !IsAPhi; 4691 4692 // Process users of current instruction. Push non-PHI nodes after PHI nodes 4693 // onto the stack. This way we are going to have seen all inputs to PHI 4694 // nodes once we get to them. 4695 SmallVector<Instruction *, 8> NonPHIs; 4696 SmallVector<Instruction *, 8> PHIs; 4697 for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E; 4698 ++UI) { 4699 Instruction *Usr = cast<Instruction>(*UI); 4700 4701 // Check if we found the exit user. 4702 BasicBlock *Parent = Usr->getParent(); 4703 if (!TheLoop->contains(Parent)) { 4704 // Exit if you find multiple outside users or if the header phi node is 4705 // being used. In this case the user uses the value of the previous 4706 // iteration, in which case we would loose "VF-1" iterations of the 4707 // reduction operation if we vectorize. 4708 if (ExitInstruction != 0 || Cur == Phi) 4709 return false; 4710 4711 // The instruction used by an outside user must be the last instruction 4712 // before we feed back to the reduction phi. Otherwise, we loose VF-1 4713 // operations on the value. 4714 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 4715 return false; 4716 4717 ExitInstruction = Cur; 4718 continue; 4719 } 4720 4721 // Process instructions only once (termination). Each reduction cycle 4722 // value must only be used once, except by phi nodes and min/max 4723 // reductions which are represented as a cmp followed by a select. 4724 ReductionInstDesc IgnoredVal(false, 0); 4725 if (VisitedInsts.insert(Usr)) { 4726 if (isa<PHINode>(Usr)) 4727 PHIs.push_back(Usr); 4728 else 4729 NonPHIs.push_back(Usr); 4730 } else if (!isa<PHINode>(Usr) && 4731 ((!isa<FCmpInst>(Usr) && 4732 !isa<ICmpInst>(Usr) && 4733 !isa<SelectInst>(Usr)) || 4734 !isMinMaxSelectCmpPattern(Usr, IgnoredVal).IsReduction)) 4735 return false; 4736 4737 // Remember that we completed the cycle. 4738 if (Usr == Phi) 4739 FoundStartPHI = true; 4740 } 4741 Worklist.append(PHIs.begin(), PHIs.end()); 4742 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 4743 } 4744 4745 // This means we have seen one but not the other instruction of the 4746 // pattern or more than just a select and cmp. 4747 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 4748 NumCmpSelectPatternInst != 2) 4749 return false; 4750 4751 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 4752 return false; 4753 4754 // We found a reduction var if we have reached the original phi node and we 4755 // only have a single instruction with out-of-loop users. 4756 4757 // This instruction is allowed to have out-of-loop users. 4758 AllowedExit.insert(ExitInstruction); 4759 4760 // Save the description of this reduction variable. 4761 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 4762 ReduxDesc.MinMaxKind); 4763 Reductions[Phi] = RD; 4764 // We've ended the cycle. This is a reduction variable if we have an 4765 // outside user and it has a binary op. 4766 4767 return true; 4768 } 4769 4770 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 4771 /// pattern corresponding to a min(X, Y) or max(X, Y). 4772 LoopVectorizationLegality::ReductionInstDesc 4773 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 4774 ReductionInstDesc &Prev) { 4775 4776 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 4777 "Expect a select instruction"); 4778 Instruction *Cmp = 0; 4779 SelectInst *Select = 0; 4780 4781 // We must handle the select(cmp()) as a single instruction. Advance to the 4782 // select. 4783 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 4784 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin()))) 4785 return ReductionInstDesc(false, I); 4786 return ReductionInstDesc(Select, Prev.MinMaxKind); 4787 } 4788 4789 // Only handle single use cases for now. 4790 if (!(Select = dyn_cast<SelectInst>(I))) 4791 return ReductionInstDesc(false, I); 4792 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 4793 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 4794 return ReductionInstDesc(false, I); 4795 if (!Cmp->hasOneUse()) 4796 return ReductionInstDesc(false, I); 4797 4798 Value *CmpLeft; 4799 Value *CmpRight; 4800 4801 // Look for a min/max pattern. 4802 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4803 return ReductionInstDesc(Select, MRK_UIntMin); 4804 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4805 return ReductionInstDesc(Select, MRK_UIntMax); 4806 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4807 return ReductionInstDesc(Select, MRK_SIntMax); 4808 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4809 return ReductionInstDesc(Select, MRK_SIntMin); 4810 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4811 return ReductionInstDesc(Select, MRK_FloatMin); 4812 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4813 return ReductionInstDesc(Select, MRK_FloatMax); 4814 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4815 return ReductionInstDesc(Select, MRK_FloatMin); 4816 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4817 return ReductionInstDesc(Select, MRK_FloatMax); 4818 4819 return ReductionInstDesc(false, I); 4820 } 4821 4822 LoopVectorizationLegality::ReductionInstDesc 4823 LoopVectorizationLegality::isReductionInstr(Instruction *I, 4824 ReductionKind Kind, 4825 ReductionInstDesc &Prev) { 4826 bool FP = I->getType()->isFloatingPointTy(); 4827 bool FastMath = (FP && I->isCommutative() && I->isAssociative()); 4828 switch (I->getOpcode()) { 4829 default: 4830 return ReductionInstDesc(false, I); 4831 case Instruction::PHI: 4832 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 4833 Kind != RK_FloatMinMax)) 4834 return ReductionInstDesc(false, I); 4835 return ReductionInstDesc(I, Prev.MinMaxKind); 4836 case Instruction::Sub: 4837 case Instruction::Add: 4838 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 4839 case Instruction::Mul: 4840 return ReductionInstDesc(Kind == RK_IntegerMult, I); 4841 case Instruction::And: 4842 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 4843 case Instruction::Or: 4844 return ReductionInstDesc(Kind == RK_IntegerOr, I); 4845 case Instruction::Xor: 4846 return ReductionInstDesc(Kind == RK_IntegerXor, I); 4847 case Instruction::FMul: 4848 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 4849 case Instruction::FAdd: 4850 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 4851 case Instruction::FCmp: 4852 case Instruction::ICmp: 4853 case Instruction::Select: 4854 if (Kind != RK_IntegerMinMax && 4855 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 4856 return ReductionInstDesc(false, I); 4857 return isMinMaxSelectCmpPattern(I, Prev); 4858 } 4859 } 4860 4861 LoopVectorizationLegality::InductionKind 4862 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 4863 Type *PhiTy = Phi->getType(); 4864 // We only handle integer and pointer inductions variables. 4865 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 4866 return IK_NoInduction; 4867 4868 // Check that the PHI is consecutive. 4869 const SCEV *PhiScev = SE->getSCEV(Phi); 4870 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 4871 if (!AR) { 4872 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 4873 return IK_NoInduction; 4874 } 4875 const SCEV *Step = AR->getStepRecurrence(*SE); 4876 4877 // Integer inductions need to have a stride of one. 4878 if (PhiTy->isIntegerTy()) { 4879 if (Step->isOne()) 4880 return IK_IntInduction; 4881 if (Step->isAllOnesValue()) 4882 return IK_ReverseIntInduction; 4883 return IK_NoInduction; 4884 } 4885 4886 // Calculate the pointer stride and check if it is consecutive. 4887 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4888 if (!C) 4889 return IK_NoInduction; 4890 4891 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 4892 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 4893 if (C->getValue()->equalsInt(Size)) 4894 return IK_PtrInduction; 4895 else if (C->getValue()->equalsInt(0 - Size)) 4896 return IK_ReversePtrInduction; 4897 4898 return IK_NoInduction; 4899 } 4900 4901 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4902 Value *In0 = const_cast<Value*>(V); 4903 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4904 if (!PN) 4905 return false; 4906 4907 return Inductions.count(PN); 4908 } 4909 4910 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4911 assert(TheLoop->contains(BB) && "Unknown block used"); 4912 4913 // Blocks that do not dominate the latch need predication. 4914 BasicBlock* Latch = TheLoop->getLoopLatch(); 4915 return !DT->dominates(BB, Latch); 4916 } 4917 4918 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4919 SmallPtrSet<Value *, 8>& SafePtrs) { 4920 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4921 // We might be able to hoist the load. 4922 if (it->mayReadFromMemory()) { 4923 LoadInst *LI = dyn_cast<LoadInst>(it); 4924 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 4925 return false; 4926 } 4927 4928 // We don't predicate stores at the moment. 4929 if (it->mayWriteToMemory()) { 4930 StoreInst *SI = dyn_cast<StoreInst>(it); 4931 // We only support predication of stores in basic blocks with one 4932 // predecessor. 4933 if (!SI || ++NumPredStores > NumberOfStoresToPredicate || 4934 !SafePtrs.count(SI->getPointerOperand()) || 4935 !SI->getParent()->getSinglePredecessor()) 4936 return false; 4937 } 4938 if (it->mayThrow()) 4939 return false; 4940 4941 // Check that we don't have a constant expression that can trap as operand. 4942 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4943 OI != OE; ++OI) { 4944 if (Constant *C = dyn_cast<Constant>(*OI)) 4945 if (C->canTrap()) 4946 return false; 4947 } 4948 4949 // The instructions below can trap. 4950 switch (it->getOpcode()) { 4951 default: continue; 4952 case Instruction::UDiv: 4953 case Instruction::SDiv: 4954 case Instruction::URem: 4955 case Instruction::SRem: 4956 return false; 4957 } 4958 } 4959 4960 return true; 4961 } 4962 4963 LoopVectorizationCostModel::VectorizationFactor 4964 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize, 4965 unsigned UserVF) { 4966 // Width 1 means no vectorize 4967 VectorizationFactor Factor = { 1U, 0U }; 4968 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4969 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4970 return Factor; 4971 } 4972 4973 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 4974 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4975 return Factor; 4976 } 4977 4978 // Find the trip count. 4979 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 4980 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4981 4982 unsigned WidestType = getWidestType(); 4983 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4984 unsigned MaxSafeDepDist = -1U; 4985 if (Legal->getMaxSafeDepDistBytes() != -1U) 4986 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4987 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4988 WidestRegister : MaxSafeDepDist); 4989 unsigned MaxVectorSize = WidestRegister / WidestType; 4990 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4991 DEBUG(dbgs() << "LV: The Widest register is: " 4992 << WidestRegister << " bits.\n"); 4993 4994 if (MaxVectorSize == 0) { 4995 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4996 MaxVectorSize = 1; 4997 } 4998 4999 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 5000 " into one vector!"); 5001 5002 unsigned VF = MaxVectorSize; 5003 5004 // If we optimize the program for size, avoid creating the tail loop. 5005 if (OptForSize) { 5006 // If we are unable to calculate the trip count then don't try to vectorize. 5007 if (TC < 2) { 5008 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5009 return Factor; 5010 } 5011 5012 // Find the maximum SIMD width that can fit within the trip count. 5013 VF = TC % MaxVectorSize; 5014 5015 if (VF == 0) 5016 VF = MaxVectorSize; 5017 5018 // If the trip count that we found modulo the vectorization factor is not 5019 // zero then we require a tail. 5020 if (VF < 2) { 5021 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5022 return Factor; 5023 } 5024 } 5025 5026 if (UserVF != 0) { 5027 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5028 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5029 5030 Factor.Width = UserVF; 5031 return Factor; 5032 } 5033 5034 float Cost = expectedCost(1); 5035 unsigned Width = 1; 5036 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)Cost << ".\n"); 5037 for (unsigned i=2; i <= VF; i*=2) { 5038 // Notice that the vector loop needs to be executed less times, so 5039 // we need to divide the cost of the vector loops by the width of 5040 // the vector elements. 5041 float VectorCost = expectedCost(i) / (float)i; 5042 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5043 (int)VectorCost << ".\n"); 5044 if (VectorCost < Cost) { 5045 Cost = VectorCost; 5046 Width = i; 5047 } 5048 } 5049 5050 DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n"); 5051 Factor.Width = Width; 5052 Factor.Cost = Width * Cost; 5053 return Factor; 5054 } 5055 5056 unsigned LoopVectorizationCostModel::getWidestType() { 5057 unsigned MaxWidth = 8; 5058 5059 // For each block. 5060 for (Loop::block_iterator bb = TheLoop->block_begin(), 5061 be = TheLoop->block_end(); bb != be; ++bb) { 5062 BasicBlock *BB = *bb; 5063 5064 // For each instruction in the loop. 5065 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5066 Type *T = it->getType(); 5067 5068 // Only examine Loads, Stores and PHINodes. 5069 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5070 continue; 5071 5072 // Examine PHI nodes that are reduction variables. 5073 if (PHINode *PN = dyn_cast<PHINode>(it)) 5074 if (!Legal->getReductionVars()->count(PN)) 5075 continue; 5076 5077 // Examine the stored values. 5078 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5079 T = ST->getValueOperand()->getType(); 5080 5081 // Ignore loaded pointer types and stored pointer types that are not 5082 // consecutive. However, we do want to take consecutive stores/loads of 5083 // pointer vectors into account. 5084 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5085 continue; 5086 5087 MaxWidth = std::max(MaxWidth, 5088 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5089 } 5090 } 5091 5092 return MaxWidth; 5093 } 5094 5095 unsigned 5096 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5097 unsigned UserUF, 5098 unsigned VF, 5099 unsigned LoopCost) { 5100 5101 // -- The unroll heuristics -- 5102 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5103 // There are many micro-architectural considerations that we can't predict 5104 // at this level. For example frontend pressure (on decode or fetch) due to 5105 // code size, or the number and capabilities of the execution ports. 5106 // 5107 // We use the following heuristics to select the unroll factor: 5108 // 1. If the code has reductions the we unroll in order to break the cross 5109 // iteration dependency. 5110 // 2. If the loop is really small then we unroll in order to reduce the loop 5111 // overhead. 5112 // 3. We don't unroll if we think that we will spill registers to memory due 5113 // to the increased register pressure. 5114 5115 // Use the user preference, unless 'auto' is selected. 5116 if (UserUF != 0) 5117 return UserUF; 5118 5119 // When we optimize for size we don't unroll. 5120 if (OptForSize) 5121 return 1; 5122 5123 // We used the distance for the unroll factor. 5124 if (Legal->getMaxSafeDepDistBytes() != -1U) 5125 return 1; 5126 5127 // Do not unroll loops with a relatively small trip count. 5128 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 5129 TheLoop->getLoopLatch()); 5130 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5131 return 1; 5132 5133 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5134 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5135 " registers\n"); 5136 5137 if (VF == 1) { 5138 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5139 TargetNumRegisters = ForceTargetNumScalarRegs; 5140 } else { 5141 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5142 TargetNumRegisters = ForceTargetNumVectorRegs; 5143 } 5144 5145 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5146 // We divide by these constants so assume that we have at least one 5147 // instruction that uses at least one register. 5148 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5149 R.NumInstructions = std::max(R.NumInstructions, 1U); 5150 5151 // We calculate the unroll factor using the following formula. 5152 // Subtract the number of loop invariants from the number of available 5153 // registers. These registers are used by all of the unrolled instances. 5154 // Next, divide the remaining registers by the number of registers that is 5155 // required by the loop, in order to estimate how many parallel instances 5156 // fit without causing spills. All of this is rounded down if necessary to be 5157 // a power of two. We want power of two unroll factors to simplify any 5158 // addressing operations or alignment considerations. 5159 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5160 R.MaxLocalUsers); 5161 5162 // Don't count the induction variable as unrolled. 5163 if (EnableIndVarRegisterHeur) 5164 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5165 std::max(1U, (R.MaxLocalUsers - 1))); 5166 5167 // Clamp the unroll factor ranges to reasonable factors. 5168 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); 5169 5170 // Check if the user has overridden the unroll max. 5171 if (VF == 1) { 5172 if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0) 5173 MaxUnrollSize = ForceTargetMaxScalarUnrollFactor; 5174 } else { 5175 if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0) 5176 MaxUnrollSize = ForceTargetMaxVectorUnrollFactor; 5177 } 5178 5179 // If we did not calculate the cost for VF (because the user selected the VF) 5180 // then we calculate the cost of VF here. 5181 if (LoopCost == 0) 5182 LoopCost = expectedCost(VF); 5183 5184 // Clamp the calculated UF to be between the 1 and the max unroll factor 5185 // that the target allows. 5186 if (UF > MaxUnrollSize) 5187 UF = MaxUnrollSize; 5188 else if (UF < 1) 5189 UF = 1; 5190 5191 // Unroll if we vectorized this loop and there is a reduction that could 5192 // benefit from unrolling. 5193 if (VF > 1 && Legal->getReductionVars()->size()) { 5194 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5195 return UF; 5196 } 5197 5198 // Note that if we've already vectorized the loop we will have done the 5199 // runtime check and so unrolling won't require further checks. 5200 bool UnrollingRequiresRuntimePointerCheck = 5201 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5202 5203 // We want to unroll small loops in order to reduce the loop overhead and 5204 // potentially expose ILP opportunities. 5205 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5206 if (!UnrollingRequiresRuntimePointerCheck && 5207 LoopCost < SmallLoopCost) { 5208 // We assume that the cost overhead is 1 and we use the cost model 5209 // to estimate the cost of the loop and unroll until the cost of the 5210 // loop overhead is about 5% of the cost of the loop. 5211 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5212 5213 // Unroll until store/load ports (estimated by max unroll factor) are 5214 // saturated. 5215 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5216 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5217 5218 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5219 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5220 return std::max(StoresUF, LoadsUF); 5221 } 5222 5223 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5224 return SmallUF; 5225 } 5226 5227 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5228 return 1; 5229 } 5230 5231 LoopVectorizationCostModel::RegisterUsage 5232 LoopVectorizationCostModel::calculateRegisterUsage() { 5233 // This function calculates the register usage by measuring the highest number 5234 // of values that are alive at a single location. Obviously, this is a very 5235 // rough estimation. We scan the loop in a topological order in order and 5236 // assign a number to each instruction. We use RPO to ensure that defs are 5237 // met before their users. We assume that each instruction that has in-loop 5238 // users starts an interval. We record every time that an in-loop value is 5239 // used, so we have a list of the first and last occurrences of each 5240 // instruction. Next, we transpose this data structure into a multi map that 5241 // holds the list of intervals that *end* at a specific location. This multi 5242 // map allows us to perform a linear search. We scan the instructions linearly 5243 // and record each time that a new interval starts, by placing it in a set. 5244 // If we find this value in the multi-map then we remove it from the set. 5245 // The max register usage is the maximum size of the set. 5246 // We also search for instructions that are defined outside the loop, but are 5247 // used inside the loop. We need this number separately from the max-interval 5248 // usage number because when we unroll, loop-invariant values do not take 5249 // more register. 5250 LoopBlocksDFS DFS(TheLoop); 5251 DFS.perform(LI); 5252 5253 RegisterUsage R; 5254 R.NumInstructions = 0; 5255 5256 // Each 'key' in the map opens a new interval. The values 5257 // of the map are the index of the 'last seen' usage of the 5258 // instruction that is the key. 5259 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5260 // Maps instruction to its index. 5261 DenseMap<unsigned, Instruction*> IdxToInstr; 5262 // Marks the end of each interval. 5263 IntervalMap EndPoint; 5264 // Saves the list of instruction indices that are used in the loop. 5265 SmallSet<Instruction*, 8> Ends; 5266 // Saves the list of values that are used in the loop but are 5267 // defined outside the loop, such as arguments and constants. 5268 SmallPtrSet<Value*, 8> LoopInvariants; 5269 5270 unsigned Index = 0; 5271 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5272 be = DFS.endRPO(); bb != be; ++bb) { 5273 R.NumInstructions += (*bb)->size(); 5274 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5275 ++it) { 5276 Instruction *I = it; 5277 IdxToInstr[Index++] = I; 5278 5279 // Save the end location of each USE. 5280 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5281 Value *U = I->getOperand(i); 5282 Instruction *Instr = dyn_cast<Instruction>(U); 5283 5284 // Ignore non-instruction values such as arguments, constants, etc. 5285 if (!Instr) continue; 5286 5287 // If this instruction is outside the loop then record it and continue. 5288 if (!TheLoop->contains(Instr)) { 5289 LoopInvariants.insert(Instr); 5290 continue; 5291 } 5292 5293 // Overwrite previous end points. 5294 EndPoint[Instr] = Index; 5295 Ends.insert(Instr); 5296 } 5297 } 5298 } 5299 5300 // Saves the list of intervals that end with the index in 'key'. 5301 typedef SmallVector<Instruction*, 2> InstrList; 5302 DenseMap<unsigned, InstrList> TransposeEnds; 5303 5304 // Transpose the EndPoints to a list of values that end at each index. 5305 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5306 it != e; ++it) 5307 TransposeEnds[it->second].push_back(it->first); 5308 5309 SmallSet<Instruction*, 8> OpenIntervals; 5310 unsigned MaxUsage = 0; 5311 5312 5313 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5314 for (unsigned int i = 0; i < Index; ++i) { 5315 Instruction *I = IdxToInstr[i]; 5316 // Ignore instructions that are never used within the loop. 5317 if (!Ends.count(I)) continue; 5318 5319 // Remove all of the instructions that end at this location. 5320 InstrList &List = TransposeEnds[i]; 5321 for (unsigned int j=0, e = List.size(); j < e; ++j) 5322 OpenIntervals.erase(List[j]); 5323 5324 // Count the number of live interals. 5325 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5326 5327 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5328 OpenIntervals.size() << '\n'); 5329 5330 // Add the current instruction to the list of open intervals. 5331 OpenIntervals.insert(I); 5332 } 5333 5334 unsigned Invariant = LoopInvariants.size(); 5335 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5336 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5337 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5338 5339 R.LoopInvariantRegs = Invariant; 5340 R.MaxLocalUsers = MaxUsage; 5341 return R; 5342 } 5343 5344 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5345 unsigned Cost = 0; 5346 5347 // For each block. 5348 for (Loop::block_iterator bb = TheLoop->block_begin(), 5349 be = TheLoop->block_end(); bb != be; ++bb) { 5350 unsigned BlockCost = 0; 5351 BasicBlock *BB = *bb; 5352 5353 // For each instruction in the old loop. 5354 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5355 // Skip dbg intrinsics. 5356 if (isa<DbgInfoIntrinsic>(it)) 5357 continue; 5358 5359 unsigned C = getInstructionCost(it, VF); 5360 5361 // Check if we should override the cost. 5362 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5363 C = ForceTargetInstructionCost; 5364 5365 BlockCost += C; 5366 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5367 VF << " For instruction: " << *it << '\n'); 5368 } 5369 5370 // We assume that if-converted blocks have a 50% chance of being executed. 5371 // When the code is scalar then some of the blocks are avoided due to CF. 5372 // When the code is vectorized we execute all code paths. 5373 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5374 BlockCost /= 2; 5375 5376 Cost += BlockCost; 5377 } 5378 5379 return Cost; 5380 } 5381 5382 /// \brief Check whether the address computation for a non-consecutive memory 5383 /// access looks like an unlikely candidate for being merged into the indexing 5384 /// mode. 5385 /// 5386 /// We look for a GEP which has one index that is an induction variable and all 5387 /// other indices are loop invariant. If the stride of this access is also 5388 /// within a small bound we decide that this address computation can likely be 5389 /// merged into the addressing mode. 5390 /// In all other cases, we identify the address computation as complex. 5391 static bool isLikelyComplexAddressComputation(Value *Ptr, 5392 LoopVectorizationLegality *Legal, 5393 ScalarEvolution *SE, 5394 const Loop *TheLoop) { 5395 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5396 if (!Gep) 5397 return true; 5398 5399 // We are looking for a gep with all loop invariant indices except for one 5400 // which should be an induction variable. 5401 unsigned NumOperands = Gep->getNumOperands(); 5402 for (unsigned i = 1; i < NumOperands; ++i) { 5403 Value *Opd = Gep->getOperand(i); 5404 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5405 !Legal->isInductionVariable(Opd)) 5406 return true; 5407 } 5408 5409 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5410 // can likely be merged into the address computation. 5411 unsigned MaxMergeDistance = 64; 5412 5413 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5414 if (!AddRec) 5415 return true; 5416 5417 // Check the step is constant. 5418 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5419 // Calculate the pointer stride and check if it is consecutive. 5420 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5421 if (!C) 5422 return true; 5423 5424 const APInt &APStepVal = C->getValue()->getValue(); 5425 5426 // Huge step value - give up. 5427 if (APStepVal.getBitWidth() > 64) 5428 return true; 5429 5430 int64_t StepVal = APStepVal.getSExtValue(); 5431 5432 return StepVal > MaxMergeDistance; 5433 } 5434 5435 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5436 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5437 return true; 5438 return false; 5439 } 5440 5441 unsigned 5442 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5443 // If we know that this instruction will remain uniform, check the cost of 5444 // the scalar version. 5445 if (Legal->isUniformAfterVectorization(I)) 5446 VF = 1; 5447 5448 Type *RetTy = I->getType(); 5449 Type *VectorTy = ToVectorTy(RetTy, VF); 5450 5451 // TODO: We need to estimate the cost of intrinsic calls. 5452 switch (I->getOpcode()) { 5453 case Instruction::GetElementPtr: 5454 // We mark this instruction as zero-cost because the cost of GEPs in 5455 // vectorized code depends on whether the corresponding memory instruction 5456 // is scalarized or not. Therefore, we handle GEPs with the memory 5457 // instruction cost. 5458 return 0; 5459 case Instruction::Br: { 5460 return TTI.getCFInstrCost(I->getOpcode()); 5461 } 5462 case Instruction::PHI: 5463 //TODO: IF-converted IFs become selects. 5464 return 0; 5465 case Instruction::Add: 5466 case Instruction::FAdd: 5467 case Instruction::Sub: 5468 case Instruction::FSub: 5469 case Instruction::Mul: 5470 case Instruction::FMul: 5471 case Instruction::UDiv: 5472 case Instruction::SDiv: 5473 case Instruction::FDiv: 5474 case Instruction::URem: 5475 case Instruction::SRem: 5476 case Instruction::FRem: 5477 case Instruction::Shl: 5478 case Instruction::LShr: 5479 case Instruction::AShr: 5480 case Instruction::And: 5481 case Instruction::Or: 5482 case Instruction::Xor: { 5483 // Since we will replace the stride by 1 the multiplication should go away. 5484 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5485 return 0; 5486 // Certain instructions can be cheaper to vectorize if they have a constant 5487 // second vector operand. One example of this are shifts on x86. 5488 TargetTransformInfo::OperandValueKind Op1VK = 5489 TargetTransformInfo::OK_AnyValue; 5490 TargetTransformInfo::OperandValueKind Op2VK = 5491 TargetTransformInfo::OK_AnyValue; 5492 5493 if (isa<ConstantInt>(I->getOperand(1))) 5494 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5495 5496 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK); 5497 } 5498 case Instruction::Select: { 5499 SelectInst *SI = cast<SelectInst>(I); 5500 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5501 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5502 Type *CondTy = SI->getCondition()->getType(); 5503 if (!ScalarCond) 5504 CondTy = VectorType::get(CondTy, VF); 5505 5506 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5507 } 5508 case Instruction::ICmp: 5509 case Instruction::FCmp: { 5510 Type *ValTy = I->getOperand(0)->getType(); 5511 VectorTy = ToVectorTy(ValTy, VF); 5512 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5513 } 5514 case Instruction::Store: 5515 case Instruction::Load: { 5516 StoreInst *SI = dyn_cast<StoreInst>(I); 5517 LoadInst *LI = dyn_cast<LoadInst>(I); 5518 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5519 LI->getType()); 5520 VectorTy = ToVectorTy(ValTy, VF); 5521 5522 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5523 unsigned AS = SI ? SI->getPointerAddressSpace() : 5524 LI->getPointerAddressSpace(); 5525 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5526 // We add the cost of address computation here instead of with the gep 5527 // instruction because only here we know whether the operation is 5528 // scalarized. 5529 if (VF == 1) 5530 return TTI.getAddressComputationCost(VectorTy) + 5531 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5532 5533 // Scalarized loads/stores. 5534 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5535 bool Reverse = ConsecutiveStride < 0; 5536 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 5537 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 5538 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5539 bool IsComplexComputation = 5540 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5541 unsigned Cost = 0; 5542 // The cost of extracting from the value vector and pointer vector. 5543 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5544 for (unsigned i = 0; i < VF; ++i) { 5545 // The cost of extracting the pointer operand. 5546 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5547 // In case of STORE, the cost of ExtractElement from the vector. 5548 // In case of LOAD, the cost of InsertElement into the returned 5549 // vector. 5550 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5551 Instruction::InsertElement, 5552 VectorTy, i); 5553 } 5554 5555 // The cost of the scalar loads/stores. 5556 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5557 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5558 Alignment, AS); 5559 return Cost; 5560 } 5561 5562 // Wide load/stores. 5563 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5564 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5565 5566 if (Reverse) 5567 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5568 VectorTy, 0); 5569 return Cost; 5570 } 5571 case Instruction::ZExt: 5572 case Instruction::SExt: 5573 case Instruction::FPToUI: 5574 case Instruction::FPToSI: 5575 case Instruction::FPExt: 5576 case Instruction::PtrToInt: 5577 case Instruction::IntToPtr: 5578 case Instruction::SIToFP: 5579 case Instruction::UIToFP: 5580 case Instruction::Trunc: 5581 case Instruction::FPTrunc: 5582 case Instruction::BitCast: { 5583 // We optimize the truncation of induction variable. 5584 // The cost of these is the same as the scalar operation. 5585 if (I->getOpcode() == Instruction::Trunc && 5586 Legal->isInductionVariable(I->getOperand(0))) 5587 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5588 I->getOperand(0)->getType()); 5589 5590 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5591 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5592 } 5593 case Instruction::Call: { 5594 CallInst *CI = cast<CallInst>(I); 5595 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 5596 assert(ID && "Not an intrinsic call!"); 5597 Type *RetTy = ToVectorTy(CI->getType(), VF); 5598 SmallVector<Type*, 4> Tys; 5599 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 5600 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 5601 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 5602 } 5603 default: { 5604 // We are scalarizing the instruction. Return the cost of the scalar 5605 // instruction, plus the cost of insert and extract into vector 5606 // elements, times the vector width. 5607 unsigned Cost = 0; 5608 5609 if (!RetTy->isVoidTy() && VF != 1) { 5610 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5611 VectorTy); 5612 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5613 VectorTy); 5614 5615 // The cost of inserting the results plus extracting each one of the 5616 // operands. 5617 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5618 } 5619 5620 // The cost of executing VF copies of the scalar instruction. This opcode 5621 // is unknown. Assume that it is the same as 'mul'. 5622 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5623 return Cost; 5624 } 5625 }// end of switch. 5626 } 5627 5628 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 5629 if (Scalar->isVoidTy() || VF == 1) 5630 return Scalar; 5631 return VectorType::get(Scalar, VF); 5632 } 5633 5634 char LoopVectorize::ID = 0; 5635 static const char lv_name[] = "Loop Vectorization"; 5636 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5637 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 5638 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5639 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5640 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5641 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5642 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 5643 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5644 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5645 5646 namespace llvm { 5647 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5648 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5649 } 5650 } 5651 5652 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5653 // Check for a store. 5654 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5655 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5656 5657 // Check for a load. 5658 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5659 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5660 5661 return false; 5662 } 5663 5664 5665 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5666 bool IfPredicateStore) { 5667 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5668 // Holds vector parameters or scalars, in case of uniform vals. 5669 SmallVector<VectorParts, 4> Params; 5670 5671 setDebugLocFromInst(Builder, Instr); 5672 5673 // Find all of the vectorized parameters. 5674 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5675 Value *SrcOp = Instr->getOperand(op); 5676 5677 // If we are accessing the old induction variable, use the new one. 5678 if (SrcOp == OldInduction) { 5679 Params.push_back(getVectorValue(SrcOp)); 5680 continue; 5681 } 5682 5683 // Try using previously calculated values. 5684 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5685 5686 // If the src is an instruction that appeared earlier in the basic block 5687 // then it should already be vectorized. 5688 if (SrcInst && OrigLoop->contains(SrcInst)) { 5689 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5690 // The parameter is a vector value from earlier. 5691 Params.push_back(WidenMap.get(SrcInst)); 5692 } else { 5693 // The parameter is a scalar from outside the loop. Maybe even a constant. 5694 VectorParts Scalars; 5695 Scalars.append(UF, SrcOp); 5696 Params.push_back(Scalars); 5697 } 5698 } 5699 5700 assert(Params.size() == Instr->getNumOperands() && 5701 "Invalid number of operands"); 5702 5703 // Does this instruction return a value ? 5704 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5705 5706 Value *UndefVec = IsVoidRetTy ? 0 : 5707 UndefValue::get(Instr->getType()); 5708 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5709 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5710 5711 Instruction *InsertPt = Builder.GetInsertPoint(); 5712 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5713 BasicBlock *CondBlock = 0; 5714 5715 VectorParts Cond; 5716 Loop *VectorLp = 0; 5717 if (IfPredicateStore) { 5718 assert(Instr->getParent()->getSinglePredecessor() && 5719 "Only support single predecessor blocks"); 5720 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5721 Instr->getParent()); 5722 VectorLp = LI->getLoopFor(IfBlock); 5723 assert(VectorLp && "Must have a loop for this block"); 5724 } 5725 5726 // For each vector unroll 'part': 5727 for (unsigned Part = 0; Part < UF; ++Part) { 5728 // For each scalar that we create: 5729 5730 // Start an "if (pred) a[i] = ..." block. 5731 Value *Cmp = 0; 5732 if (IfPredicateStore) { 5733 if (Cond[Part]->getType()->isVectorTy()) 5734 Cond[Part] = 5735 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5736 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5737 ConstantInt::get(Cond[Part]->getType(), 1)); 5738 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5739 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 5740 // Update Builder with newly created basic block. 5741 Builder.SetInsertPoint(InsertPt); 5742 } 5743 5744 Instruction *Cloned = Instr->clone(); 5745 if (!IsVoidRetTy) 5746 Cloned->setName(Instr->getName() + ".cloned"); 5747 // Replace the operands of the cloned instructions with extracted scalars. 5748 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5749 Value *Op = Params[op][Part]; 5750 Cloned->setOperand(op, Op); 5751 } 5752 5753 // Place the cloned scalar in the new loop. 5754 Builder.Insert(Cloned); 5755 5756 // If the original scalar returns a value we need to place it in a vector 5757 // so that future users will be able to use it. 5758 if (!IsVoidRetTy) 5759 VecResults[Part] = Cloned; 5760 5761 // End if-block. 5762 if (IfPredicateStore) { 5763 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5764 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 5765 Builder.SetInsertPoint(InsertPt); 5766 Instruction *OldBr = IfBlock->getTerminator(); 5767 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 5768 OldBr->eraseFromParent(); 5769 IfBlock = NewIfBlock; 5770 } 5771 } 5772 } 5773 5774 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5775 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5776 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5777 5778 return scalarizeInstruction(Instr, IfPredicateStore); 5779 } 5780 5781 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5782 return Vec; 5783 } 5784 5785 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5786 return V; 5787 } 5788 5789 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 5790 bool Negate) { 5791 // When unrolling and the VF is 1, we only need to add a simple scalar. 5792 Type *ITy = Val->getType(); 5793 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5794 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 5795 return Builder.CreateAdd(Val, C, "induction"); 5796 } 5797 5798