1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/SizeOpts.h" 141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 142 #include <algorithm> 143 #include <cassert> 144 #include <cstdint> 145 #include <cstdlib> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <memory> 150 #include <string> 151 #include <tuple> 152 #include <utility> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 /// @{ 160 /// Metadata attribute names 161 static const char *const LLVMLoopVectorizeFollowupAll = 162 "llvm.loop.vectorize.followup_all"; 163 static const char *const LLVMLoopVectorizeFollowupVectorized = 164 "llvm.loop.vectorize.followup_vectorized"; 165 static const char *const LLVMLoopVectorizeFollowupEpilogue = 166 "llvm.loop.vectorize.followup_epilogue"; 167 /// @} 168 169 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 170 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 171 172 /// Loops with a known constant trip count below this number are vectorized only 173 /// if no scalar iteration overheads are incurred. 174 static cl::opt<unsigned> TinyTripCountVectorThreshold( 175 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 176 cl::desc("Loops with a constant trip count that is smaller than this " 177 "value are vectorized only if no scalar iteration overheads " 178 "are incurred.")); 179 180 // Indicates that an epilogue is undesired, predication is preferred. 181 // This means that the vectorizer will try to fold the loop-tail (epilogue) 182 // into the loop and predicate the loop body accordingly. 183 static cl::opt<bool> PreferPredicateOverEpilog( 184 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 185 cl::desc("Indicate that an epilogue is undesired, predication should be " 186 "used instead.")); 187 188 static cl::opt<bool> MaximizeBandwidth( 189 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 190 cl::desc("Maximize bandwidth when selecting vectorization factor which " 191 "will be determined by the smallest type in loop.")); 192 193 static cl::opt<bool> EnableInterleavedMemAccesses( 194 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 195 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 196 197 /// An interleave-group may need masking if it resides in a block that needs 198 /// predication, or in order to mask away gaps. 199 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 200 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 201 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 202 203 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 204 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 205 cl::desc("We don't interleave loops with a estimated constant trip count " 206 "below this number")); 207 208 static cl::opt<unsigned> ForceTargetNumScalarRegs( 209 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 210 cl::desc("A flag that overrides the target's number of scalar registers.")); 211 212 static cl::opt<unsigned> ForceTargetNumVectorRegs( 213 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 214 cl::desc("A flag that overrides the target's number of vector registers.")); 215 216 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 217 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 218 cl::desc("A flag that overrides the target's max interleave factor for " 219 "scalar loops.")); 220 221 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 222 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 223 cl::desc("A flag that overrides the target's max interleave factor for " 224 "vectorized loops.")); 225 226 static cl::opt<unsigned> ForceTargetInstructionCost( 227 "force-target-instruction-cost", cl::init(0), cl::Hidden, 228 cl::desc("A flag that overrides the target's expected cost for " 229 "an instruction to a single constant value. Mostly " 230 "useful for getting consistent testing.")); 231 232 static cl::opt<unsigned> SmallLoopCost( 233 "small-loop-cost", cl::init(20), cl::Hidden, 234 cl::desc( 235 "The cost of a loop that is considered 'small' by the interleaver.")); 236 237 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 238 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 239 cl::desc("Enable the use of the block frequency analysis to access PGO " 240 "heuristics minimizing code growth in cold regions and being more " 241 "aggressive in hot regions.")); 242 243 // Runtime interleave loops for load/store throughput. 244 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 245 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 246 cl::desc( 247 "Enable runtime interleaving until load/store ports are saturated")); 248 249 /// The number of stores in a loop that are allowed to need predication. 250 static cl::opt<unsigned> NumberOfStoresToPredicate( 251 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 252 cl::desc("Max number of stores to be predicated behind an if.")); 253 254 static cl::opt<bool> EnableIndVarRegisterHeur( 255 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 256 cl::desc("Count the induction variable only once when interleaving")); 257 258 static cl::opt<bool> EnableCondStoresVectorization( 259 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 260 cl::desc("Enable if predication of stores during vectorization.")); 261 262 static cl::opt<unsigned> MaxNestedScalarReductionIC( 263 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 264 cl::desc("The maximum interleave count to use when interleaving a scalar " 265 "reduction in a nested loop.")); 266 267 cl::opt<bool> EnableVPlanNativePath( 268 "enable-vplan-native-path", cl::init(false), cl::Hidden, 269 cl::desc("Enable VPlan-native vectorization path with " 270 "support for outer loop vectorization.")); 271 272 // FIXME: Remove this switch once we have divergence analysis. Currently we 273 // assume divergent non-backedge branches when this switch is true. 274 cl::opt<bool> EnableVPlanPredication( 275 "enable-vplan-predication", cl::init(false), cl::Hidden, 276 cl::desc("Enable VPlan-native vectorization path predicator with " 277 "support for outer loop vectorization.")); 278 279 // This flag enables the stress testing of the VPlan H-CFG construction in the 280 // VPlan-native vectorization path. It must be used in conjuction with 281 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 282 // verification of the H-CFGs built. 283 static cl::opt<bool> VPlanBuildStressTest( 284 "vplan-build-stress-test", cl::init(false), cl::Hidden, 285 cl::desc( 286 "Build VPlan for every supported loop nest in the function and bail " 287 "out right after the build (stress test the VPlan H-CFG construction " 288 "in the VPlan-native vectorization path).")); 289 290 cl::opt<bool> llvm::EnableLoopInterleaving( 291 "interleave-loops", cl::init(true), cl::Hidden, 292 cl::desc("Enable loop interleaving in Loop vectorization passes")); 293 cl::opt<bool> llvm::EnableLoopVectorization( 294 "vectorize-loops", cl::init(true), cl::Hidden, 295 cl::desc("Run the Loop vectorization passes")); 296 297 /// A helper function for converting Scalar types to vector types. 298 /// If the incoming type is void, we return void. If the VF is 1, we return 299 /// the scalar type. 300 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 301 if (Scalar->isVoidTy() || VF == 1) 302 return Scalar; 303 return VectorType::get(Scalar, VF); 304 } 305 306 /// A helper function that returns the type of loaded or stored value. 307 static Type *getMemInstValueType(Value *I) { 308 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 309 "Expected Load or Store instruction"); 310 if (auto *LI = dyn_cast<LoadInst>(I)) 311 return LI->getType(); 312 return cast<StoreInst>(I)->getValueOperand()->getType(); 313 } 314 315 /// A helper function that returns true if the given type is irregular. The 316 /// type is irregular if its allocated size doesn't equal the store size of an 317 /// element of the corresponding vector type at the given vectorization factor. 318 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 319 // Determine if an array of VF elements of type Ty is "bitcast compatible" 320 // with a <VF x Ty> vector. 321 if (VF > 1) { 322 auto *VectorTy = VectorType::get(Ty, VF); 323 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 324 } 325 326 // If the vectorization factor is one, we just check if an array of type Ty 327 // requires padding between elements. 328 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 329 } 330 331 /// A helper function that returns the reciprocal of the block probability of 332 /// predicated blocks. If we return X, we are assuming the predicated block 333 /// will execute once for every X iterations of the loop header. 334 /// 335 /// TODO: We should use actual block probability here, if available. Currently, 336 /// we always assume predicated blocks have a 50% chance of executing. 337 static unsigned getReciprocalPredBlockProb() { return 2; } 338 339 /// A helper function that adds a 'fast' flag to floating-point operations. 340 static Value *addFastMathFlag(Value *V) { 341 if (isa<FPMathOperator>(V)) 342 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 343 return V; 344 } 345 346 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 347 if (isa<FPMathOperator>(V)) 348 cast<Instruction>(V)->setFastMathFlags(FMF); 349 return V; 350 } 351 352 /// A helper function that returns an integer or floating-point constant with 353 /// value C. 354 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 355 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 356 : ConstantFP::get(Ty, C); 357 } 358 359 /// Returns "best known" trip count for the specified loop \p L as defined by 360 /// the following procedure: 361 /// 1) Returns exact trip count if it is known. 362 /// 2) Returns expected trip count according to profile data if any. 363 /// 3) Returns upper bound estimate if it is known. 364 /// 4) Returns None if all of the above failed. 365 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 366 // Check if exact trip count is known. 367 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 368 return ExpectedTC; 369 370 // Check if there is an expected trip count available from profile data. 371 if (LoopVectorizeWithBlockFrequency) 372 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 373 return EstimatedTC; 374 375 // Check if upper bound estimate is known. 376 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 377 return ExpectedTC; 378 379 return None; 380 } 381 382 namespace llvm { 383 384 /// InnerLoopVectorizer vectorizes loops which contain only one basic 385 /// block to a specified vectorization factor (VF). 386 /// This class performs the widening of scalars into vectors, or multiple 387 /// scalars. This class also implements the following features: 388 /// * It inserts an epilogue loop for handling loops that don't have iteration 389 /// counts that are known to be a multiple of the vectorization factor. 390 /// * It handles the code generation for reduction variables. 391 /// * Scalarization (implementation using scalars) of un-vectorizable 392 /// instructions. 393 /// InnerLoopVectorizer does not perform any vectorization-legality 394 /// checks, and relies on the caller to check for the different legality 395 /// aspects. The InnerLoopVectorizer relies on the 396 /// LoopVectorizationLegality class to provide information about the induction 397 /// and reduction variables that were found to a given vectorization factor. 398 class InnerLoopVectorizer { 399 public: 400 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 401 LoopInfo *LI, DominatorTree *DT, 402 const TargetLibraryInfo *TLI, 403 const TargetTransformInfo *TTI, AssumptionCache *AC, 404 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 405 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 406 LoopVectorizationCostModel *CM) 407 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 408 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 409 Builder(PSE.getSE()->getContext()), 410 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 411 virtual ~InnerLoopVectorizer() = default; 412 413 /// Create a new empty loop. Unlink the old loop and connect the new one. 414 /// Return the pre-header block of the new loop. 415 BasicBlock *createVectorizedLoopSkeleton(); 416 417 /// Widen a single instruction within the innermost loop. 418 void widenInstruction(Instruction &I); 419 420 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 421 void fixVectorizedLoop(); 422 423 // Return true if any runtime check is added. 424 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 425 426 /// A type for vectorized values in the new loop. Each value from the 427 /// original loop, when vectorized, is represented by UF vector values in the 428 /// new unrolled loop, where UF is the unroll factor. 429 using VectorParts = SmallVector<Value *, 2>; 430 431 /// Vectorize a single GetElementPtrInst based on information gathered and 432 /// decisions taken during planning. 433 void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF, 434 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant); 435 436 /// Vectorize a single PHINode in a block. This method handles the induction 437 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 438 /// arbitrary length vectors. 439 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 440 441 /// A helper function to scalarize a single Instruction in the innermost loop. 442 /// Generates a sequence of scalar instances for each lane between \p MinLane 443 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 444 /// inclusive.. 445 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 446 bool IfPredicateInstr); 447 448 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 449 /// is provided, the integer induction variable will first be truncated to 450 /// the corresponding type. 451 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 452 453 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 454 /// vector or scalar value on-demand if one is not yet available. When 455 /// vectorizing a loop, we visit the definition of an instruction before its 456 /// uses. When visiting the definition, we either vectorize or scalarize the 457 /// instruction, creating an entry for it in the corresponding map. (In some 458 /// cases, such as induction variables, we will create both vector and scalar 459 /// entries.) Then, as we encounter uses of the definition, we derive values 460 /// for each scalar or vector use unless such a value is already available. 461 /// For example, if we scalarize a definition and one of its uses is vector, 462 /// we build the required vector on-demand with an insertelement sequence 463 /// when visiting the use. Otherwise, if the use is scalar, we can use the 464 /// existing scalar definition. 465 /// 466 /// Return a value in the new loop corresponding to \p V from the original 467 /// loop at unroll index \p Part. If the value has already been vectorized, 468 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 469 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 470 /// a new vector value on-demand by inserting the scalar values into a vector 471 /// with an insertelement sequence. If the value has been neither vectorized 472 /// nor scalarized, it must be loop invariant, so we simply broadcast the 473 /// value into a vector. 474 Value *getOrCreateVectorValue(Value *V, unsigned Part); 475 476 /// Return a value in the new loop corresponding to \p V from the original 477 /// loop at unroll and vector indices \p Instance. If the value has been 478 /// vectorized but not scalarized, the necessary extractelement instruction 479 /// will be generated. 480 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 481 482 /// Construct the vector value of a scalarized value \p V one lane at a time. 483 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 484 485 /// Try to vectorize the interleaved access group that \p Instr belongs to, 486 /// optionally masking the vector operations if \p BlockInMask is non-null. 487 void vectorizeInterleaveGroup(Instruction *Instr, 488 VectorParts *BlockInMask = nullptr); 489 490 /// Vectorize Load and Store instructions, optionally masking the vector 491 /// operations if \p BlockInMask is non-null. 492 void vectorizeMemoryInstruction(Instruction *Instr, 493 VectorParts *BlockInMask = nullptr); 494 495 /// Set the debug location in the builder using the debug location in 496 /// the instruction. 497 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 498 499 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 500 void fixNonInductionPHIs(void); 501 502 protected: 503 friend class LoopVectorizationPlanner; 504 505 /// A small list of PHINodes. 506 using PhiVector = SmallVector<PHINode *, 4>; 507 508 /// A type for scalarized values in the new loop. Each value from the 509 /// original loop, when scalarized, is represented by UF x VF scalar values 510 /// in the new unrolled loop, where UF is the unroll factor and VF is the 511 /// vectorization factor. 512 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 513 514 /// Set up the values of the IVs correctly when exiting the vector loop. 515 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 516 Value *CountRoundDown, Value *EndValue, 517 BasicBlock *MiddleBlock); 518 519 /// Create a new induction variable inside L. 520 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 521 Value *Step, Instruction *DL); 522 523 /// Handle all cross-iteration phis in the header. 524 void fixCrossIterationPHIs(); 525 526 /// Fix a first-order recurrence. This is the second phase of vectorizing 527 /// this phi node. 528 void fixFirstOrderRecurrence(PHINode *Phi); 529 530 /// Fix a reduction cross-iteration phi. This is the second phase of 531 /// vectorizing this phi node. 532 void fixReduction(PHINode *Phi); 533 534 /// Clear NSW/NUW flags from reduction instructions if necessary. 535 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 536 537 /// The Loop exit block may have single value PHI nodes with some 538 /// incoming value. While vectorizing we only handled real values 539 /// that were defined inside the loop and we should have one value for 540 /// each predecessor of its parent basic block. See PR14725. 541 void fixLCSSAPHIs(); 542 543 /// Iteratively sink the scalarized operands of a predicated instruction into 544 /// the block that was created for it. 545 void sinkScalarOperands(Instruction *PredInst); 546 547 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 548 /// represented as. 549 void truncateToMinimalBitwidths(); 550 551 /// Insert the new loop to the loop hierarchy and pass manager 552 /// and update the analysis passes. 553 void updateAnalysis(); 554 555 /// Create a broadcast instruction. This method generates a broadcast 556 /// instruction (shuffle) for loop invariant values and for the induction 557 /// value. If this is the induction variable then we extend it to N, N+1, ... 558 /// this is needed because each iteration in the loop corresponds to a SIMD 559 /// element. 560 virtual Value *getBroadcastInstrs(Value *V); 561 562 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 563 /// to each vector element of Val. The sequence starts at StartIndex. 564 /// \p Opcode is relevant for FP induction variable. 565 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 566 Instruction::BinaryOps Opcode = 567 Instruction::BinaryOpsEnd); 568 569 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 570 /// variable on which to base the steps, \p Step is the size of the step, and 571 /// \p EntryVal is the value from the original loop that maps to the steps. 572 /// Note that \p EntryVal doesn't have to be an induction variable - it 573 /// can also be a truncate instruction. 574 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 575 const InductionDescriptor &ID); 576 577 /// Create a vector induction phi node based on an existing scalar one. \p 578 /// EntryVal is the value from the original loop that maps to the vector phi 579 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 580 /// truncate instruction, instead of widening the original IV, we widen a 581 /// version of the IV truncated to \p EntryVal's type. 582 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 583 Value *Step, Instruction *EntryVal); 584 585 /// Returns true if an instruction \p I should be scalarized instead of 586 /// vectorized for the chosen vectorization factor. 587 bool shouldScalarizeInstruction(Instruction *I) const; 588 589 /// Returns true if we should generate a scalar version of \p IV. 590 bool needsScalarInduction(Instruction *IV) const; 591 592 /// If there is a cast involved in the induction variable \p ID, which should 593 /// be ignored in the vectorized loop body, this function records the 594 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 595 /// cast. We had already proved that the casted Phi is equal to the uncasted 596 /// Phi in the vectorized loop (under a runtime guard), and therefore 597 /// there is no need to vectorize the cast - the same value can be used in the 598 /// vector loop for both the Phi and the cast. 599 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 600 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 601 /// 602 /// \p EntryVal is the value from the original loop that maps to the vector 603 /// phi node and is used to distinguish what is the IV currently being 604 /// processed - original one (if \p EntryVal is a phi corresponding to the 605 /// original IV) or the "newly-created" one based on the proof mentioned above 606 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 607 /// latter case \p EntryVal is a TruncInst and we must not record anything for 608 /// that IV, but it's error-prone to expect callers of this routine to care 609 /// about that, hence this explicit parameter. 610 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 611 const Instruction *EntryVal, 612 Value *VectorLoopValue, 613 unsigned Part, 614 unsigned Lane = UINT_MAX); 615 616 /// Generate a shuffle sequence that will reverse the vector Vec. 617 virtual Value *reverseVector(Value *Vec); 618 619 /// Returns (and creates if needed) the original loop trip count. 620 Value *getOrCreateTripCount(Loop *NewLoop); 621 622 /// Returns (and creates if needed) the trip count of the widened loop. 623 Value *getOrCreateVectorTripCount(Loop *NewLoop); 624 625 /// Returns a bitcasted value to the requested vector type. 626 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 627 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 628 const DataLayout &DL); 629 630 /// Emit a bypass check to see if the vector trip count is zero, including if 631 /// it overflows. 632 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 633 634 /// Emit a bypass check to see if all of the SCEV assumptions we've 635 /// had to make are correct. 636 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 637 638 /// Emit bypass checks to check any memory assumptions we may have made. 639 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 640 641 /// Compute the transformed value of Index at offset StartValue using step 642 /// StepValue. 643 /// For integer induction, returns StartValue + Index * StepValue. 644 /// For pointer induction, returns StartValue[Index * StepValue]. 645 /// FIXME: The newly created binary instructions should contain nsw/nuw 646 /// flags, which can be found from the original scalar operations. 647 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 648 const DataLayout &DL, 649 const InductionDescriptor &ID) const; 650 651 /// Add additional metadata to \p To that was not present on \p Orig. 652 /// 653 /// Currently this is used to add the noalias annotations based on the 654 /// inserted memchecks. Use this for instructions that are *cloned* into the 655 /// vector loop. 656 void addNewMetadata(Instruction *To, const Instruction *Orig); 657 658 /// Add metadata from one instruction to another. 659 /// 660 /// This includes both the original MDs from \p From and additional ones (\see 661 /// addNewMetadata). Use this for *newly created* instructions in the vector 662 /// loop. 663 void addMetadata(Instruction *To, Instruction *From); 664 665 /// Similar to the previous function but it adds the metadata to a 666 /// vector of instructions. 667 void addMetadata(ArrayRef<Value *> To, Instruction *From); 668 669 /// The original loop. 670 Loop *OrigLoop; 671 672 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 673 /// dynamic knowledge to simplify SCEV expressions and converts them to a 674 /// more usable form. 675 PredicatedScalarEvolution &PSE; 676 677 /// Loop Info. 678 LoopInfo *LI; 679 680 /// Dominator Tree. 681 DominatorTree *DT; 682 683 /// Alias Analysis. 684 AliasAnalysis *AA; 685 686 /// Target Library Info. 687 const TargetLibraryInfo *TLI; 688 689 /// Target Transform Info. 690 const TargetTransformInfo *TTI; 691 692 /// Assumption Cache. 693 AssumptionCache *AC; 694 695 /// Interface to emit optimization remarks. 696 OptimizationRemarkEmitter *ORE; 697 698 /// LoopVersioning. It's only set up (non-null) if memchecks were 699 /// used. 700 /// 701 /// This is currently only used to add no-alias metadata based on the 702 /// memchecks. The actually versioning is performed manually. 703 std::unique_ptr<LoopVersioning> LVer; 704 705 /// The vectorization SIMD factor to use. Each vector will have this many 706 /// vector elements. 707 unsigned VF; 708 709 /// The vectorization unroll factor to use. Each scalar is vectorized to this 710 /// many different vector instructions. 711 unsigned UF; 712 713 /// The builder that we use 714 IRBuilder<> Builder; 715 716 // --- Vectorization state --- 717 718 /// The vector-loop preheader. 719 BasicBlock *LoopVectorPreHeader; 720 721 /// The scalar-loop preheader. 722 BasicBlock *LoopScalarPreHeader; 723 724 /// Middle Block between the vector and the scalar. 725 BasicBlock *LoopMiddleBlock; 726 727 /// The ExitBlock of the scalar loop. 728 BasicBlock *LoopExitBlock; 729 730 /// The vector loop body. 731 BasicBlock *LoopVectorBody; 732 733 /// The scalar loop body. 734 BasicBlock *LoopScalarBody; 735 736 /// A list of all bypass blocks. The first block is the entry of the loop. 737 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 738 739 /// The new Induction variable which was added to the new block. 740 PHINode *Induction = nullptr; 741 742 /// The induction variable of the old basic block. 743 PHINode *OldInduction = nullptr; 744 745 /// Maps values from the original loop to their corresponding values in the 746 /// vectorized loop. A key value can map to either vector values, scalar 747 /// values or both kinds of values, depending on whether the key was 748 /// vectorized and scalarized. 749 VectorizerValueMap VectorLoopValueMap; 750 751 /// Store instructions that were predicated. 752 SmallVector<Instruction *, 4> PredicatedInstructions; 753 754 /// Trip count of the original loop. 755 Value *TripCount = nullptr; 756 757 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 758 Value *VectorTripCount = nullptr; 759 760 /// The legality analysis. 761 LoopVectorizationLegality *Legal; 762 763 /// The profitablity analysis. 764 LoopVectorizationCostModel *Cost; 765 766 // Record whether runtime checks are added. 767 bool AddedSafetyChecks = false; 768 769 // Holds the end values for each induction variable. We save the end values 770 // so we can later fix-up the external users of the induction variables. 771 DenseMap<PHINode *, Value *> IVEndValues; 772 773 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 774 // fixed up at the end of vector code generation. 775 SmallVector<PHINode *, 8> OrigPHIsToFix; 776 }; 777 778 class InnerLoopUnroller : public InnerLoopVectorizer { 779 public: 780 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 781 LoopInfo *LI, DominatorTree *DT, 782 const TargetLibraryInfo *TLI, 783 const TargetTransformInfo *TTI, AssumptionCache *AC, 784 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 785 LoopVectorizationLegality *LVL, 786 LoopVectorizationCostModel *CM) 787 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 788 UnrollFactor, LVL, CM) {} 789 790 private: 791 Value *getBroadcastInstrs(Value *V) override; 792 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 793 Instruction::BinaryOps Opcode = 794 Instruction::BinaryOpsEnd) override; 795 Value *reverseVector(Value *Vec) override; 796 }; 797 798 } // end namespace llvm 799 800 /// Look for a meaningful debug location on the instruction or it's 801 /// operands. 802 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 803 if (!I) 804 return I; 805 806 DebugLoc Empty; 807 if (I->getDebugLoc() != Empty) 808 return I; 809 810 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 811 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 812 if (OpInst->getDebugLoc() != Empty) 813 return OpInst; 814 } 815 816 return I; 817 } 818 819 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 820 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 821 const DILocation *DIL = Inst->getDebugLoc(); 822 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 823 !isa<DbgInfoIntrinsic>(Inst)) { 824 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 825 if (NewDIL) 826 B.SetCurrentDebugLocation(NewDIL.getValue()); 827 else 828 LLVM_DEBUG(dbgs() 829 << "Failed to create new discriminator: " 830 << DIL->getFilename() << " Line: " << DIL->getLine()); 831 } 832 else 833 B.SetCurrentDebugLocation(DIL); 834 } else 835 B.SetCurrentDebugLocation(DebugLoc()); 836 } 837 838 /// Write a record \p DebugMsg about vectorization failure to the debug 839 /// output stream. If \p I is passed, it is an instruction that prevents 840 /// vectorization. 841 #ifndef NDEBUG 842 static void debugVectorizationFailure(const StringRef DebugMsg, 843 Instruction *I) { 844 dbgs() << "LV: Not vectorizing: " << DebugMsg; 845 if (I != nullptr) 846 dbgs() << " " << *I; 847 else 848 dbgs() << '.'; 849 dbgs() << '\n'; 850 } 851 #endif 852 853 /// Create an analysis remark that explains why vectorization failed 854 /// 855 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 856 /// RemarkName is the identifier for the remark. If \p I is passed it is an 857 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 858 /// the location of the remark. \return the remark object that can be 859 /// streamed to. 860 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 861 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 862 Value *CodeRegion = TheLoop->getHeader(); 863 DebugLoc DL = TheLoop->getStartLoc(); 864 865 if (I) { 866 CodeRegion = I->getParent(); 867 // If there is no debug location attached to the instruction, revert back to 868 // using the loop's. 869 if (I->getDebugLoc()) 870 DL = I->getDebugLoc(); 871 } 872 873 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 874 R << "loop not vectorized: "; 875 return R; 876 } 877 878 namespace llvm { 879 880 void reportVectorizationFailure(const StringRef DebugMsg, 881 const StringRef OREMsg, const StringRef ORETag, 882 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 883 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 884 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 885 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 886 ORETag, TheLoop, I) << OREMsg); 887 } 888 889 } // end namespace llvm 890 891 #ifndef NDEBUG 892 /// \return string containing a file name and a line # for the given loop. 893 static std::string getDebugLocString(const Loop *L) { 894 std::string Result; 895 if (L) { 896 raw_string_ostream OS(Result); 897 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 898 LoopDbgLoc.print(OS); 899 else 900 // Just print the module name. 901 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 902 OS.flush(); 903 } 904 return Result; 905 } 906 #endif 907 908 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 909 const Instruction *Orig) { 910 // If the loop was versioned with memchecks, add the corresponding no-alias 911 // metadata. 912 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 913 LVer->annotateInstWithNoAlias(To, Orig); 914 } 915 916 void InnerLoopVectorizer::addMetadata(Instruction *To, 917 Instruction *From) { 918 propagateMetadata(To, From); 919 addNewMetadata(To, From); 920 } 921 922 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 923 Instruction *From) { 924 for (Value *V : To) { 925 if (Instruction *I = dyn_cast<Instruction>(V)) 926 addMetadata(I, From); 927 } 928 } 929 930 namespace llvm { 931 932 // Loop vectorization cost-model hints how the scalar epilogue loop should be 933 // lowered. 934 enum ScalarEpilogueLowering { 935 936 // The default: allowing scalar epilogues. 937 CM_ScalarEpilogueAllowed, 938 939 // Vectorization with OptForSize: don't allow epilogues. 940 CM_ScalarEpilogueNotAllowedOptSize, 941 942 // A special case of vectorisation with OptForSize: loops with a very small 943 // trip count are considered for vectorization under OptForSize, thereby 944 // making sure the cost of their loop body is dominant, free of runtime 945 // guards and scalar iteration overheads. 946 CM_ScalarEpilogueNotAllowedLowTripLoop, 947 948 // Loop hint predicate indicating an epilogue is undesired. 949 CM_ScalarEpilogueNotNeededUsePredicate 950 }; 951 952 /// LoopVectorizationCostModel - estimates the expected speedups due to 953 /// vectorization. 954 /// In many cases vectorization is not profitable. This can happen because of 955 /// a number of reasons. In this class we mainly attempt to predict the 956 /// expected speedup/slowdowns due to the supported instruction set. We use the 957 /// TargetTransformInfo to query the different backends for the cost of 958 /// different operations. 959 class LoopVectorizationCostModel { 960 public: 961 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 962 PredicatedScalarEvolution &PSE, LoopInfo *LI, 963 LoopVectorizationLegality *Legal, 964 const TargetTransformInfo &TTI, 965 const TargetLibraryInfo *TLI, DemandedBits *DB, 966 AssumptionCache *AC, 967 OptimizationRemarkEmitter *ORE, const Function *F, 968 const LoopVectorizeHints *Hints, 969 InterleavedAccessInfo &IAI) 970 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 971 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 972 Hints(Hints), InterleaveInfo(IAI) {} 973 974 /// \return An upper bound for the vectorization factor, or None if 975 /// vectorization and interleaving should be avoided up front. 976 Optional<unsigned> computeMaxVF(); 977 978 /// \return True if runtime checks are required for vectorization, and false 979 /// otherwise. 980 bool runtimeChecksRequired(); 981 982 /// \return The most profitable vectorization factor and the cost of that VF. 983 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 984 /// then this vectorization factor will be selected if vectorization is 985 /// possible. 986 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 987 988 /// Setup cost-based decisions for user vectorization factor. 989 void selectUserVectorizationFactor(unsigned UserVF) { 990 collectUniformsAndScalars(UserVF); 991 collectInstsToScalarize(UserVF); 992 } 993 994 /// \return The size (in bits) of the smallest and widest types in the code 995 /// that needs to be vectorized. We ignore values that remain scalar such as 996 /// 64 bit loop indices. 997 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 998 999 /// \return The desired interleave count. 1000 /// If interleave count has been specified by metadata it will be returned. 1001 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1002 /// are the selected vectorization factor and the cost of the selected VF. 1003 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1004 1005 /// Memory access instruction may be vectorized in more than one way. 1006 /// Form of instruction after vectorization depends on cost. 1007 /// This function takes cost-based decisions for Load/Store instructions 1008 /// and collects them in a map. This decisions map is used for building 1009 /// the lists of loop-uniform and loop-scalar instructions. 1010 /// The calculated cost is saved with widening decision in order to 1011 /// avoid redundant calculations. 1012 void setCostBasedWideningDecision(unsigned VF); 1013 1014 /// A struct that represents some properties of the register usage 1015 /// of a loop. 1016 struct RegisterUsage { 1017 /// Holds the number of loop invariant values that are used in the loop. 1018 /// The key is ClassID of target-provided register class. 1019 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1020 /// Holds the maximum number of concurrent live intervals in the loop. 1021 /// The key is ClassID of target-provided register class. 1022 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1023 }; 1024 1025 /// \return Returns information about the register usages of the loop for the 1026 /// given vectorization factors. 1027 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1028 1029 /// Collect values we want to ignore in the cost model. 1030 void collectValuesToIgnore(); 1031 1032 /// \returns The smallest bitwidth each instruction can be represented with. 1033 /// The vector equivalents of these instructions should be truncated to this 1034 /// type. 1035 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1036 return MinBWs; 1037 } 1038 1039 /// \returns True if it is more profitable to scalarize instruction \p I for 1040 /// vectorization factor \p VF. 1041 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1042 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1043 1044 // Cost model is not run in the VPlan-native path - return conservative 1045 // result until this changes. 1046 if (EnableVPlanNativePath) 1047 return false; 1048 1049 auto Scalars = InstsToScalarize.find(VF); 1050 assert(Scalars != InstsToScalarize.end() && 1051 "VF not yet analyzed for scalarization profitability"); 1052 return Scalars->second.find(I) != Scalars->second.end(); 1053 } 1054 1055 /// Returns true if \p I is known to be uniform after vectorization. 1056 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1057 if (VF == 1) 1058 return true; 1059 1060 // Cost model is not run in the VPlan-native path - return conservative 1061 // result until this changes. 1062 if (EnableVPlanNativePath) 1063 return false; 1064 1065 auto UniformsPerVF = Uniforms.find(VF); 1066 assert(UniformsPerVF != Uniforms.end() && 1067 "VF not yet analyzed for uniformity"); 1068 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 1069 } 1070 1071 /// Returns true if \p I is known to be scalar after vectorization. 1072 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1073 if (VF == 1) 1074 return true; 1075 1076 // Cost model is not run in the VPlan-native path - return conservative 1077 // result until this changes. 1078 if (EnableVPlanNativePath) 1079 return false; 1080 1081 auto ScalarsPerVF = Scalars.find(VF); 1082 assert(ScalarsPerVF != Scalars.end() && 1083 "Scalar values are not calculated for VF"); 1084 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 1085 } 1086 1087 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1088 /// for vectorization factor \p VF. 1089 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1090 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1091 !isProfitableToScalarize(I, VF) && 1092 !isScalarAfterVectorization(I, VF); 1093 } 1094 1095 /// Decision that was taken during cost calculation for memory instruction. 1096 enum InstWidening { 1097 CM_Unknown, 1098 CM_Widen, // For consecutive accesses with stride +1. 1099 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1100 CM_Interleave, 1101 CM_GatherScatter, 1102 CM_Scalarize 1103 }; 1104 1105 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1106 /// instruction \p I and vector width \p VF. 1107 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1108 unsigned Cost) { 1109 assert(VF >= 2 && "Expected VF >=2"); 1110 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1111 } 1112 1113 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1114 /// interleaving group \p Grp and vector width \p VF. 1115 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1116 InstWidening W, unsigned Cost) { 1117 assert(VF >= 2 && "Expected VF >=2"); 1118 /// Broadcast this decicion to all instructions inside the group. 1119 /// But the cost will be assigned to one instruction only. 1120 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1121 if (auto *I = Grp->getMember(i)) { 1122 if (Grp->getInsertPos() == I) 1123 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1124 else 1125 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1126 } 1127 } 1128 } 1129 1130 /// Return the cost model decision for the given instruction \p I and vector 1131 /// width \p VF. Return CM_Unknown if this instruction did not pass 1132 /// through the cost modeling. 1133 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1134 assert(VF >= 2 && "Expected VF >=2"); 1135 1136 // Cost model is not run in the VPlan-native path - return conservative 1137 // result until this changes. 1138 if (EnableVPlanNativePath) 1139 return CM_GatherScatter; 1140 1141 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1142 auto Itr = WideningDecisions.find(InstOnVF); 1143 if (Itr == WideningDecisions.end()) 1144 return CM_Unknown; 1145 return Itr->second.first; 1146 } 1147 1148 /// Return the vectorization cost for the given instruction \p I and vector 1149 /// width \p VF. 1150 unsigned getWideningCost(Instruction *I, unsigned VF) { 1151 assert(VF >= 2 && "Expected VF >=2"); 1152 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1153 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1154 "The cost is not calculated"); 1155 return WideningDecisions[InstOnVF].second; 1156 } 1157 1158 /// Return True if instruction \p I is an optimizable truncate whose operand 1159 /// is an induction variable. Such a truncate will be removed by adding a new 1160 /// induction variable with the destination type. 1161 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1162 // If the instruction is not a truncate, return false. 1163 auto *Trunc = dyn_cast<TruncInst>(I); 1164 if (!Trunc) 1165 return false; 1166 1167 // Get the source and destination types of the truncate. 1168 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1169 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1170 1171 // If the truncate is free for the given types, return false. Replacing a 1172 // free truncate with an induction variable would add an induction variable 1173 // update instruction to each iteration of the loop. We exclude from this 1174 // check the primary induction variable since it will need an update 1175 // instruction regardless. 1176 Value *Op = Trunc->getOperand(0); 1177 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1178 return false; 1179 1180 // If the truncated value is not an induction variable, return false. 1181 return Legal->isInductionPhi(Op); 1182 } 1183 1184 /// Collects the instructions to scalarize for each predicated instruction in 1185 /// the loop. 1186 void collectInstsToScalarize(unsigned VF); 1187 1188 /// Collect Uniform and Scalar values for the given \p VF. 1189 /// The sets depend on CM decision for Load/Store instructions 1190 /// that may be vectorized as interleave, gather-scatter or scalarized. 1191 void collectUniformsAndScalars(unsigned VF) { 1192 // Do the analysis once. 1193 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1194 return; 1195 setCostBasedWideningDecision(VF); 1196 collectLoopUniforms(VF); 1197 collectLoopScalars(VF); 1198 } 1199 1200 /// Returns true if the target machine supports masked store operation 1201 /// for the given \p DataType and kind of access to \p Ptr. 1202 bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1203 return Legal->isConsecutivePtr(Ptr) && 1204 TTI.isLegalMaskedStore(DataType, Alignment); 1205 } 1206 1207 /// Returns true if the target machine supports masked load operation 1208 /// for the given \p DataType and kind of access to \p Ptr. 1209 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1210 return Legal->isConsecutivePtr(Ptr) && 1211 TTI.isLegalMaskedLoad(DataType, Alignment); 1212 } 1213 1214 /// Returns true if the target machine supports masked scatter operation 1215 /// for the given \p DataType. 1216 bool isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) { 1217 return TTI.isLegalMaskedScatter(DataType, Alignment); 1218 } 1219 1220 /// Returns true if the target machine supports masked gather operation 1221 /// for the given \p DataType. 1222 bool isLegalMaskedGather(Type *DataType, MaybeAlign Alignment) { 1223 return TTI.isLegalMaskedGather(DataType, Alignment); 1224 } 1225 1226 /// Returns true if the target machine can represent \p V as a masked gather 1227 /// or scatter operation. 1228 bool isLegalGatherOrScatter(Value *V) { 1229 bool LI = isa<LoadInst>(V); 1230 bool SI = isa<StoreInst>(V); 1231 if (!LI && !SI) 1232 return false; 1233 auto *Ty = getMemInstValueType(V); 1234 MaybeAlign Align = getLoadStoreAlignment(V); 1235 return (LI && isLegalMaskedGather(Ty, Align)) || 1236 (SI && isLegalMaskedScatter(Ty, Align)); 1237 } 1238 1239 /// Returns true if \p I is an instruction that will be scalarized with 1240 /// predication. Such instructions include conditional stores and 1241 /// instructions that may divide by zero. 1242 /// If a non-zero VF has been calculated, we check if I will be scalarized 1243 /// predication for that VF. 1244 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1245 1246 // Returns true if \p I is an instruction that will be predicated either 1247 // through scalar predication or masked load/store or masked gather/scatter. 1248 // Superset of instructions that return true for isScalarWithPredication. 1249 bool isPredicatedInst(Instruction *I) { 1250 if (!blockNeedsPredication(I->getParent())) 1251 return false; 1252 // Loads and stores that need some form of masked operation are predicated 1253 // instructions. 1254 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1255 return Legal->isMaskRequired(I); 1256 return isScalarWithPredication(I); 1257 } 1258 1259 /// Returns true if \p I is a memory instruction with consecutive memory 1260 /// access that can be widened. 1261 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1262 1263 /// Returns true if \p I is a memory instruction in an interleaved-group 1264 /// of memory accesses that can be vectorized with wide vector loads/stores 1265 /// and shuffles. 1266 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1267 1268 /// Check if \p Instr belongs to any interleaved access group. 1269 bool isAccessInterleaved(Instruction *Instr) { 1270 return InterleaveInfo.isInterleaved(Instr); 1271 } 1272 1273 /// Get the interleaved access group that \p Instr belongs to. 1274 const InterleaveGroup<Instruction> * 1275 getInterleavedAccessGroup(Instruction *Instr) { 1276 return InterleaveInfo.getInterleaveGroup(Instr); 1277 } 1278 1279 /// Returns true if an interleaved group requires a scalar iteration 1280 /// to handle accesses with gaps, and there is nothing preventing us from 1281 /// creating a scalar epilogue. 1282 bool requiresScalarEpilogue() const { 1283 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1284 } 1285 1286 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1287 /// loop hint annotation. 1288 bool isScalarEpilogueAllowed() const { 1289 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1290 } 1291 1292 /// Returns true if all loop blocks should be masked to fold tail loop. 1293 bool foldTailByMasking() const { return FoldTailByMasking; } 1294 1295 bool blockNeedsPredication(BasicBlock *BB) { 1296 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1297 } 1298 1299 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1300 /// with factor VF. Return the cost of the instruction, including 1301 /// scalarization overhead if it's needed. 1302 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1303 1304 /// Estimate cost of a call instruction CI if it were vectorized with factor 1305 /// VF. Return the cost of the instruction, including scalarization overhead 1306 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1307 /// scalarized - 1308 /// i.e. either vector version isn't available, or is too expensive. 1309 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1310 1311 private: 1312 unsigned NumPredStores = 0; 1313 1314 /// \return An upper bound for the vectorization factor, larger than zero. 1315 /// One is returned if vectorization should best be avoided due to cost. 1316 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1317 1318 /// The vectorization cost is a combination of the cost itself and a boolean 1319 /// indicating whether any of the contributing operations will actually 1320 /// operate on 1321 /// vector values after type legalization in the backend. If this latter value 1322 /// is 1323 /// false, then all operations will be scalarized (i.e. no vectorization has 1324 /// actually taken place). 1325 using VectorizationCostTy = std::pair<unsigned, bool>; 1326 1327 /// Returns the expected execution cost. The unit of the cost does 1328 /// not matter because we use the 'cost' units to compare different 1329 /// vector widths. The cost that is returned is *not* normalized by 1330 /// the factor width. 1331 VectorizationCostTy expectedCost(unsigned VF); 1332 1333 /// Returns the execution time cost of an instruction for a given vector 1334 /// width. Vector width of one means scalar. 1335 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1336 1337 /// The cost-computation logic from getInstructionCost which provides 1338 /// the vector type as an output parameter. 1339 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1340 1341 /// Calculate vectorization cost of memory instruction \p I. 1342 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1343 1344 /// The cost computation for scalarized memory instruction. 1345 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1346 1347 /// The cost computation for interleaving group of memory instructions. 1348 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1349 1350 /// The cost computation for Gather/Scatter instruction. 1351 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1352 1353 /// The cost computation for widening instruction \p I with consecutive 1354 /// memory access. 1355 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1356 1357 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1358 /// Load: scalar load + broadcast. 1359 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1360 /// element) 1361 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1362 1363 /// Estimate the overhead of scalarizing an instruction. This is a 1364 /// convenience wrapper for the type-based getScalarizationOverhead API. 1365 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1366 1367 /// Returns whether the instruction is a load or store and will be a emitted 1368 /// as a vector operation. 1369 bool isConsecutiveLoadOrStore(Instruction *I); 1370 1371 /// Returns true if an artificially high cost for emulated masked memrefs 1372 /// should be used. 1373 bool useEmulatedMaskMemRefHack(Instruction *I); 1374 1375 /// Map of scalar integer values to the smallest bitwidth they can be legally 1376 /// represented as. The vector equivalents of these values should be truncated 1377 /// to this type. 1378 MapVector<Instruction *, uint64_t> MinBWs; 1379 1380 /// A type representing the costs for instructions if they were to be 1381 /// scalarized rather than vectorized. The entries are Instruction-Cost 1382 /// pairs. 1383 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1384 1385 /// A set containing all BasicBlocks that are known to present after 1386 /// vectorization as a predicated block. 1387 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1388 1389 /// Records whether it is allowed to have the original scalar loop execute at 1390 /// least once. This may be needed as a fallback loop in case runtime 1391 /// aliasing/dependence checks fail, or to handle the tail/remainder 1392 /// iterations when the trip count is unknown or doesn't divide by the VF, 1393 /// or as a peel-loop to handle gaps in interleave-groups. 1394 /// Under optsize and when the trip count is very small we don't allow any 1395 /// iterations to execute in the scalar loop. 1396 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1397 1398 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1399 bool FoldTailByMasking = false; 1400 1401 /// A map holding scalar costs for different vectorization factors. The 1402 /// presence of a cost for an instruction in the mapping indicates that the 1403 /// instruction will be scalarized when vectorizing with the associated 1404 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1405 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1406 1407 /// Holds the instructions known to be uniform after vectorization. 1408 /// The data is collected per VF. 1409 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1410 1411 /// Holds the instructions known to be scalar after vectorization. 1412 /// The data is collected per VF. 1413 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1414 1415 /// Holds the instructions (address computations) that are forced to be 1416 /// scalarized. 1417 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1418 1419 /// Returns the expected difference in cost from scalarizing the expression 1420 /// feeding a predicated instruction \p PredInst. The instructions to 1421 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1422 /// non-negative return value implies the expression will be scalarized. 1423 /// Currently, only single-use chains are considered for scalarization. 1424 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1425 unsigned VF); 1426 1427 /// Collect the instructions that are uniform after vectorization. An 1428 /// instruction is uniform if we represent it with a single scalar value in 1429 /// the vectorized loop corresponding to each vector iteration. Examples of 1430 /// uniform instructions include pointer operands of consecutive or 1431 /// interleaved memory accesses. Note that although uniformity implies an 1432 /// instruction will be scalar, the reverse is not true. In general, a 1433 /// scalarized instruction will be represented by VF scalar values in the 1434 /// vectorized loop, each corresponding to an iteration of the original 1435 /// scalar loop. 1436 void collectLoopUniforms(unsigned VF); 1437 1438 /// Collect the instructions that are scalar after vectorization. An 1439 /// instruction is scalar if it is known to be uniform or will be scalarized 1440 /// during vectorization. Non-uniform scalarized instructions will be 1441 /// represented by VF values in the vectorized loop, each corresponding to an 1442 /// iteration of the original scalar loop. 1443 void collectLoopScalars(unsigned VF); 1444 1445 /// Keeps cost model vectorization decision and cost for instructions. 1446 /// Right now it is used for memory instructions only. 1447 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1448 std::pair<InstWidening, unsigned>>; 1449 1450 DecisionList WideningDecisions; 1451 1452 /// Returns true if \p V is expected to be vectorized and it needs to be 1453 /// extracted. 1454 bool needsExtract(Value *V, unsigned VF) const { 1455 Instruction *I = dyn_cast<Instruction>(V); 1456 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1457 return false; 1458 1459 // Assume we can vectorize V (and hence we need extraction) if the 1460 // scalars are not computed yet. This can happen, because it is called 1461 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1462 // the scalars are collected. That should be a safe assumption in most 1463 // cases, because we check if the operands have vectorizable types 1464 // beforehand in LoopVectorizationLegality. 1465 return Scalars.find(VF) == Scalars.end() || 1466 !isScalarAfterVectorization(I, VF); 1467 }; 1468 1469 /// Returns a range containing only operands needing to be extracted. 1470 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1471 unsigned VF) { 1472 return SmallVector<Value *, 4>(make_filter_range( 1473 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1474 } 1475 1476 public: 1477 /// The loop that we evaluate. 1478 Loop *TheLoop; 1479 1480 /// Predicated scalar evolution analysis. 1481 PredicatedScalarEvolution &PSE; 1482 1483 /// Loop Info analysis. 1484 LoopInfo *LI; 1485 1486 /// Vectorization legality. 1487 LoopVectorizationLegality *Legal; 1488 1489 /// Vector target information. 1490 const TargetTransformInfo &TTI; 1491 1492 /// Target Library Info. 1493 const TargetLibraryInfo *TLI; 1494 1495 /// Demanded bits analysis. 1496 DemandedBits *DB; 1497 1498 /// Assumption cache. 1499 AssumptionCache *AC; 1500 1501 /// Interface to emit optimization remarks. 1502 OptimizationRemarkEmitter *ORE; 1503 1504 const Function *TheFunction; 1505 1506 /// Loop Vectorize Hint. 1507 const LoopVectorizeHints *Hints; 1508 1509 /// The interleave access information contains groups of interleaved accesses 1510 /// with the same stride and close to each other. 1511 InterleavedAccessInfo &InterleaveInfo; 1512 1513 /// Values to ignore in the cost model. 1514 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1515 1516 /// Values to ignore in the cost model when VF > 1. 1517 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1518 }; 1519 1520 } // end namespace llvm 1521 1522 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1523 // vectorization. The loop needs to be annotated with #pragma omp simd 1524 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1525 // vector length information is not provided, vectorization is not considered 1526 // explicit. Interleave hints are not allowed either. These limitations will be 1527 // relaxed in the future. 1528 // Please, note that we are currently forced to abuse the pragma 'clang 1529 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1530 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1531 // provides *explicit vectorization hints* (LV can bypass legal checks and 1532 // assume that vectorization is legal). However, both hints are implemented 1533 // using the same metadata (llvm.loop.vectorize, processed by 1534 // LoopVectorizeHints). This will be fixed in the future when the native IR 1535 // representation for pragma 'omp simd' is introduced. 1536 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1537 OptimizationRemarkEmitter *ORE) { 1538 assert(!OuterLp->empty() && "This is not an outer loop"); 1539 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1540 1541 // Only outer loops with an explicit vectorization hint are supported. 1542 // Unannotated outer loops are ignored. 1543 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1544 return false; 1545 1546 Function *Fn = OuterLp->getHeader()->getParent(); 1547 if (!Hints.allowVectorization(Fn, OuterLp, 1548 true /*VectorizeOnlyWhenForced*/)) { 1549 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1550 return false; 1551 } 1552 1553 if (Hints.getInterleave() > 1) { 1554 // TODO: Interleave support is future work. 1555 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1556 "outer loops.\n"); 1557 Hints.emitRemarkWithHints(); 1558 return false; 1559 } 1560 1561 return true; 1562 } 1563 1564 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1565 OptimizationRemarkEmitter *ORE, 1566 SmallVectorImpl<Loop *> &V) { 1567 // Collect inner loops and outer loops without irreducible control flow. For 1568 // now, only collect outer loops that have explicit vectorization hints. If we 1569 // are stress testing the VPlan H-CFG construction, we collect the outermost 1570 // loop of every loop nest. 1571 if (L.empty() || VPlanBuildStressTest || 1572 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1573 LoopBlocksRPO RPOT(&L); 1574 RPOT.perform(LI); 1575 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1576 V.push_back(&L); 1577 // TODO: Collect inner loops inside marked outer loops in case 1578 // vectorization fails for the outer loop. Do not invoke 1579 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1580 // already known to be reducible. We can use an inherited attribute for 1581 // that. 1582 return; 1583 } 1584 } 1585 for (Loop *InnerL : L) 1586 collectSupportedLoops(*InnerL, LI, ORE, V); 1587 } 1588 1589 namespace { 1590 1591 /// The LoopVectorize Pass. 1592 struct LoopVectorize : public FunctionPass { 1593 /// Pass identification, replacement for typeid 1594 static char ID; 1595 1596 LoopVectorizePass Impl; 1597 1598 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1599 bool VectorizeOnlyWhenForced = false) 1600 : FunctionPass(ID) { 1601 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1602 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1603 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1604 } 1605 1606 bool runOnFunction(Function &F) override { 1607 if (skipFunction(F)) 1608 return false; 1609 1610 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1611 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1612 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1613 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1614 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1615 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1616 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1617 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1618 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1619 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1620 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1621 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1622 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1623 1624 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1625 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1626 1627 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1628 GetLAA, *ORE, PSI); 1629 } 1630 1631 void getAnalysisUsage(AnalysisUsage &AU) const override { 1632 AU.addRequired<AssumptionCacheTracker>(); 1633 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1634 AU.addRequired<DominatorTreeWrapperPass>(); 1635 AU.addRequired<LoopInfoWrapperPass>(); 1636 AU.addRequired<ScalarEvolutionWrapperPass>(); 1637 AU.addRequired<TargetTransformInfoWrapperPass>(); 1638 AU.addRequired<AAResultsWrapperPass>(); 1639 AU.addRequired<LoopAccessLegacyAnalysis>(); 1640 AU.addRequired<DemandedBitsWrapperPass>(); 1641 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1642 1643 // We currently do not preserve loopinfo/dominator analyses with outer loop 1644 // vectorization. Until this is addressed, mark these analyses as preserved 1645 // only for non-VPlan-native path. 1646 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1647 if (!EnableVPlanNativePath) { 1648 AU.addPreserved<LoopInfoWrapperPass>(); 1649 AU.addPreserved<DominatorTreeWrapperPass>(); 1650 } 1651 1652 AU.addPreserved<BasicAAWrapperPass>(); 1653 AU.addPreserved<GlobalsAAWrapperPass>(); 1654 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1655 } 1656 }; 1657 1658 } // end anonymous namespace 1659 1660 //===----------------------------------------------------------------------===// 1661 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1662 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1663 //===----------------------------------------------------------------------===// 1664 1665 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1666 // We need to place the broadcast of invariant variables outside the loop, 1667 // but only if it's proven safe to do so. Else, broadcast will be inside 1668 // vector loop body. 1669 Instruction *Instr = dyn_cast<Instruction>(V); 1670 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1671 (!Instr || 1672 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1673 // Place the code for broadcasting invariant variables in the new preheader. 1674 IRBuilder<>::InsertPointGuard Guard(Builder); 1675 if (SafeToHoist) 1676 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1677 1678 // Broadcast the scalar into all locations in the vector. 1679 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1680 1681 return Shuf; 1682 } 1683 1684 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1685 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1686 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1687 "Expected either an induction phi-node or a truncate of it!"); 1688 Value *Start = II.getStartValue(); 1689 1690 // Construct the initial value of the vector IV in the vector loop preheader 1691 auto CurrIP = Builder.saveIP(); 1692 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1693 if (isa<TruncInst>(EntryVal)) { 1694 assert(Start->getType()->isIntegerTy() && 1695 "Truncation requires an integer type"); 1696 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1697 Step = Builder.CreateTrunc(Step, TruncType); 1698 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1699 } 1700 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1701 Value *SteppedStart = 1702 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1703 1704 // We create vector phi nodes for both integer and floating-point induction 1705 // variables. Here, we determine the kind of arithmetic we will perform. 1706 Instruction::BinaryOps AddOp; 1707 Instruction::BinaryOps MulOp; 1708 if (Step->getType()->isIntegerTy()) { 1709 AddOp = Instruction::Add; 1710 MulOp = Instruction::Mul; 1711 } else { 1712 AddOp = II.getInductionOpcode(); 1713 MulOp = Instruction::FMul; 1714 } 1715 1716 // Multiply the vectorization factor by the step using integer or 1717 // floating-point arithmetic as appropriate. 1718 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1719 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1720 1721 // Create a vector splat to use in the induction update. 1722 // 1723 // FIXME: If the step is non-constant, we create the vector splat with 1724 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1725 // handle a constant vector splat. 1726 Value *SplatVF = isa<Constant>(Mul) 1727 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1728 : Builder.CreateVectorSplat(VF, Mul); 1729 Builder.restoreIP(CurrIP); 1730 1731 // We may need to add the step a number of times, depending on the unroll 1732 // factor. The last of those goes into the PHI. 1733 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1734 &*LoopVectorBody->getFirstInsertionPt()); 1735 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1736 Instruction *LastInduction = VecInd; 1737 for (unsigned Part = 0; Part < UF; ++Part) { 1738 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1739 1740 if (isa<TruncInst>(EntryVal)) 1741 addMetadata(LastInduction, EntryVal); 1742 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1743 1744 LastInduction = cast<Instruction>(addFastMathFlag( 1745 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1746 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1747 } 1748 1749 // Move the last step to the end of the latch block. This ensures consistent 1750 // placement of all induction updates. 1751 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1752 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1753 auto *ICmp = cast<Instruction>(Br->getCondition()); 1754 LastInduction->moveBefore(ICmp); 1755 LastInduction->setName("vec.ind.next"); 1756 1757 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1758 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1759 } 1760 1761 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1762 return Cost->isScalarAfterVectorization(I, VF) || 1763 Cost->isProfitableToScalarize(I, VF); 1764 } 1765 1766 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1767 if (shouldScalarizeInstruction(IV)) 1768 return true; 1769 auto isScalarInst = [&](User *U) -> bool { 1770 auto *I = cast<Instruction>(U); 1771 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1772 }; 1773 return llvm::any_of(IV->users(), isScalarInst); 1774 } 1775 1776 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1777 const InductionDescriptor &ID, const Instruction *EntryVal, 1778 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1779 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1780 "Expected either an induction phi-node or a truncate of it!"); 1781 1782 // This induction variable is not the phi from the original loop but the 1783 // newly-created IV based on the proof that casted Phi is equal to the 1784 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1785 // re-uses the same InductionDescriptor that original IV uses but we don't 1786 // have to do any recording in this case - that is done when original IV is 1787 // processed. 1788 if (isa<TruncInst>(EntryVal)) 1789 return; 1790 1791 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1792 if (Casts.empty()) 1793 return; 1794 // Only the first Cast instruction in the Casts vector is of interest. 1795 // The rest of the Casts (if exist) have no uses outside the 1796 // induction update chain itself. 1797 Instruction *CastInst = *Casts.begin(); 1798 if (Lane < UINT_MAX) 1799 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1800 else 1801 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1802 } 1803 1804 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1805 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1806 "Primary induction variable must have an integer type"); 1807 1808 auto II = Legal->getInductionVars()->find(IV); 1809 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1810 1811 auto ID = II->second; 1812 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1813 1814 // The scalar value to broadcast. This will be derived from the canonical 1815 // induction variable. 1816 Value *ScalarIV = nullptr; 1817 1818 // The value from the original loop to which we are mapping the new induction 1819 // variable. 1820 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1821 1822 // True if we have vectorized the induction variable. 1823 auto VectorizedIV = false; 1824 1825 // Determine if we want a scalar version of the induction variable. This is 1826 // true if the induction variable itself is not widened, or if it has at 1827 // least one user in the loop that is not widened. 1828 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1829 1830 // Generate code for the induction step. Note that induction steps are 1831 // required to be loop-invariant 1832 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1833 "Induction step should be loop invariant"); 1834 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1835 Value *Step = nullptr; 1836 if (PSE.getSE()->isSCEVable(IV->getType())) { 1837 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1838 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1839 LoopVectorPreHeader->getTerminator()); 1840 } else { 1841 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1842 } 1843 1844 // Try to create a new independent vector induction variable. If we can't 1845 // create the phi node, we will splat the scalar induction variable in each 1846 // loop iteration. 1847 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1848 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1849 VectorizedIV = true; 1850 } 1851 1852 // If we haven't yet vectorized the induction variable, or if we will create 1853 // a scalar one, we need to define the scalar induction variable and step 1854 // values. If we were given a truncation type, truncate the canonical 1855 // induction variable and step. Otherwise, derive these values from the 1856 // induction descriptor. 1857 if (!VectorizedIV || NeedsScalarIV) { 1858 ScalarIV = Induction; 1859 if (IV != OldInduction) { 1860 ScalarIV = IV->getType()->isIntegerTy() 1861 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1862 : Builder.CreateCast(Instruction::SIToFP, Induction, 1863 IV->getType()); 1864 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1865 ScalarIV->setName("offset.idx"); 1866 } 1867 if (Trunc) { 1868 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1869 assert(Step->getType()->isIntegerTy() && 1870 "Truncation requires an integer step"); 1871 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1872 Step = Builder.CreateTrunc(Step, TruncType); 1873 } 1874 } 1875 1876 // If we haven't yet vectorized the induction variable, splat the scalar 1877 // induction variable, and build the necessary step vectors. 1878 // TODO: Don't do it unless the vectorized IV is really required. 1879 if (!VectorizedIV) { 1880 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1881 for (unsigned Part = 0; Part < UF; ++Part) { 1882 Value *EntryPart = 1883 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1884 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1885 if (Trunc) 1886 addMetadata(EntryPart, Trunc); 1887 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1888 } 1889 } 1890 1891 // If an induction variable is only used for counting loop iterations or 1892 // calculating addresses, it doesn't need to be widened. Create scalar steps 1893 // that can be used by instructions we will later scalarize. Note that the 1894 // addition of the scalar steps will not increase the number of instructions 1895 // in the loop in the common case prior to InstCombine. We will be trading 1896 // one vector extract for each scalar step. 1897 if (NeedsScalarIV) 1898 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1899 } 1900 1901 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1902 Instruction::BinaryOps BinOp) { 1903 // Create and check the types. 1904 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1905 int VLen = Val->getType()->getVectorNumElements(); 1906 1907 Type *STy = Val->getType()->getScalarType(); 1908 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1909 "Induction Step must be an integer or FP"); 1910 assert(Step->getType() == STy && "Step has wrong type"); 1911 1912 SmallVector<Constant *, 8> Indices; 1913 1914 if (STy->isIntegerTy()) { 1915 // Create a vector of consecutive numbers from zero to VF. 1916 for (int i = 0; i < VLen; ++i) 1917 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1918 1919 // Add the consecutive indices to the vector value. 1920 Constant *Cv = ConstantVector::get(Indices); 1921 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1922 Step = Builder.CreateVectorSplat(VLen, Step); 1923 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1924 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1925 // which can be found from the original scalar operations. 1926 Step = Builder.CreateMul(Cv, Step); 1927 return Builder.CreateAdd(Val, Step, "induction"); 1928 } 1929 1930 // Floating point induction. 1931 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1932 "Binary Opcode should be specified for FP induction"); 1933 // Create a vector of consecutive numbers from zero to VF. 1934 for (int i = 0; i < VLen; ++i) 1935 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1936 1937 // Add the consecutive indices to the vector value. 1938 Constant *Cv = ConstantVector::get(Indices); 1939 1940 Step = Builder.CreateVectorSplat(VLen, Step); 1941 1942 // Floating point operations had to be 'fast' to enable the induction. 1943 FastMathFlags Flags; 1944 Flags.setFast(); 1945 1946 Value *MulOp = Builder.CreateFMul(Cv, Step); 1947 if (isa<Instruction>(MulOp)) 1948 // Have to check, MulOp may be a constant 1949 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1950 1951 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1952 if (isa<Instruction>(BOp)) 1953 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1954 return BOp; 1955 } 1956 1957 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1958 Instruction *EntryVal, 1959 const InductionDescriptor &ID) { 1960 // We shouldn't have to build scalar steps if we aren't vectorizing. 1961 assert(VF > 1 && "VF should be greater than one"); 1962 1963 // Get the value type and ensure it and the step have the same integer type. 1964 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1965 assert(ScalarIVTy == Step->getType() && 1966 "Val and Step should have the same type"); 1967 1968 // We build scalar steps for both integer and floating-point induction 1969 // variables. Here, we determine the kind of arithmetic we will perform. 1970 Instruction::BinaryOps AddOp; 1971 Instruction::BinaryOps MulOp; 1972 if (ScalarIVTy->isIntegerTy()) { 1973 AddOp = Instruction::Add; 1974 MulOp = Instruction::Mul; 1975 } else { 1976 AddOp = ID.getInductionOpcode(); 1977 MulOp = Instruction::FMul; 1978 } 1979 1980 // Determine the number of scalars we need to generate for each unroll 1981 // iteration. If EntryVal is uniform, we only need to generate the first 1982 // lane. Otherwise, we generate all VF values. 1983 unsigned Lanes = 1984 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1985 : VF; 1986 // Compute the scalar steps and save the results in VectorLoopValueMap. 1987 for (unsigned Part = 0; Part < UF; ++Part) { 1988 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1989 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1990 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1991 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1992 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1993 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1994 } 1995 } 1996 } 1997 1998 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1999 assert(V != Induction && "The new induction variable should not be used."); 2000 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2001 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2002 2003 // If we have a stride that is replaced by one, do it here. Defer this for 2004 // the VPlan-native path until we start running Legal checks in that path. 2005 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2006 V = ConstantInt::get(V->getType(), 1); 2007 2008 // If we have a vector mapped to this value, return it. 2009 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2010 return VectorLoopValueMap.getVectorValue(V, Part); 2011 2012 // If the value has not been vectorized, check if it has been scalarized 2013 // instead. If it has been scalarized, and we actually need the value in 2014 // vector form, we will construct the vector values on demand. 2015 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2016 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2017 2018 // If we've scalarized a value, that value should be an instruction. 2019 auto *I = cast<Instruction>(V); 2020 2021 // If we aren't vectorizing, we can just copy the scalar map values over to 2022 // the vector map. 2023 if (VF == 1) { 2024 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2025 return ScalarValue; 2026 } 2027 2028 // Get the last scalar instruction we generated for V and Part. If the value 2029 // is known to be uniform after vectorization, this corresponds to lane zero 2030 // of the Part unroll iteration. Otherwise, the last instruction is the one 2031 // we created for the last vector lane of the Part unroll iteration. 2032 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2033 auto *LastInst = cast<Instruction>( 2034 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2035 2036 // Set the insert point after the last scalarized instruction. This ensures 2037 // the insertelement sequence will directly follow the scalar definitions. 2038 auto OldIP = Builder.saveIP(); 2039 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2040 Builder.SetInsertPoint(&*NewIP); 2041 2042 // However, if we are vectorizing, we need to construct the vector values. 2043 // If the value is known to be uniform after vectorization, we can just 2044 // broadcast the scalar value corresponding to lane zero for each unroll 2045 // iteration. Otherwise, we construct the vector values using insertelement 2046 // instructions. Since the resulting vectors are stored in 2047 // VectorLoopValueMap, we will only generate the insertelements once. 2048 Value *VectorValue = nullptr; 2049 if (Cost->isUniformAfterVectorization(I, VF)) { 2050 VectorValue = getBroadcastInstrs(ScalarValue); 2051 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2052 } else { 2053 // Initialize packing with insertelements to start from undef. 2054 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2055 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2056 for (unsigned Lane = 0; Lane < VF; ++Lane) 2057 packScalarIntoVectorValue(V, {Part, Lane}); 2058 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2059 } 2060 Builder.restoreIP(OldIP); 2061 return VectorValue; 2062 } 2063 2064 // If this scalar is unknown, assume that it is a constant or that it is 2065 // loop invariant. Broadcast V and save the value for future uses. 2066 Value *B = getBroadcastInstrs(V); 2067 VectorLoopValueMap.setVectorValue(V, Part, B); 2068 return B; 2069 } 2070 2071 Value * 2072 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2073 const VPIteration &Instance) { 2074 // If the value is not an instruction contained in the loop, it should 2075 // already be scalar. 2076 if (OrigLoop->isLoopInvariant(V)) 2077 return V; 2078 2079 assert(Instance.Lane > 0 2080 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2081 : true && "Uniform values only have lane zero"); 2082 2083 // If the value from the original loop has not been vectorized, it is 2084 // represented by UF x VF scalar values in the new loop. Return the requested 2085 // scalar value. 2086 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2087 return VectorLoopValueMap.getScalarValue(V, Instance); 2088 2089 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2090 // for the given unroll part. If this entry is not a vector type (i.e., the 2091 // vectorization factor is one), there is no need to generate an 2092 // extractelement instruction. 2093 auto *U = getOrCreateVectorValue(V, Instance.Part); 2094 if (!U->getType()->isVectorTy()) { 2095 assert(VF == 1 && "Value not scalarized has non-vector type"); 2096 return U; 2097 } 2098 2099 // Otherwise, the value from the original loop has been vectorized and is 2100 // represented by UF vector values. Extract and return the requested scalar 2101 // value from the appropriate vector lane. 2102 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2103 } 2104 2105 void InnerLoopVectorizer::packScalarIntoVectorValue( 2106 Value *V, const VPIteration &Instance) { 2107 assert(V != Induction && "The new induction variable should not be used."); 2108 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2109 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2110 2111 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2112 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2113 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2114 Builder.getInt32(Instance.Lane)); 2115 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2116 } 2117 2118 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2119 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2120 SmallVector<Constant *, 8> ShuffleMask; 2121 for (unsigned i = 0; i < VF; ++i) 2122 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2123 2124 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2125 ConstantVector::get(ShuffleMask), 2126 "reverse"); 2127 } 2128 2129 // Return whether we allow using masked interleave-groups (for dealing with 2130 // strided loads/stores that reside in predicated blocks, or for dealing 2131 // with gaps). 2132 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2133 // If an override option has been passed in for interleaved accesses, use it. 2134 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2135 return EnableMaskedInterleavedMemAccesses; 2136 2137 return TTI.enableMaskedInterleavedAccessVectorization(); 2138 } 2139 2140 // Try to vectorize the interleave group that \p Instr belongs to. 2141 // 2142 // E.g. Translate following interleaved load group (factor = 3): 2143 // for (i = 0; i < N; i+=3) { 2144 // R = Pic[i]; // Member of index 0 2145 // G = Pic[i+1]; // Member of index 1 2146 // B = Pic[i+2]; // Member of index 2 2147 // ... // do something to R, G, B 2148 // } 2149 // To: 2150 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2151 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2152 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2153 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2154 // 2155 // Or translate following interleaved store group (factor = 3): 2156 // for (i = 0; i < N; i+=3) { 2157 // ... do something to R, G, B 2158 // Pic[i] = R; // Member of index 0 2159 // Pic[i+1] = G; // Member of index 1 2160 // Pic[i+2] = B; // Member of index 2 2161 // } 2162 // To: 2163 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2164 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2165 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2166 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2167 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2168 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2169 VectorParts *BlockInMask) { 2170 const InterleaveGroup<Instruction> *Group = 2171 Cost->getInterleavedAccessGroup(Instr); 2172 assert(Group && "Fail to get an interleaved access group."); 2173 2174 // Skip if current instruction is not the insert position. 2175 if (Instr != Group->getInsertPos()) 2176 return; 2177 2178 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2179 Value *Ptr = getLoadStorePointerOperand(Instr); 2180 2181 // Prepare for the vector type of the interleaved load/store. 2182 Type *ScalarTy = getMemInstValueType(Instr); 2183 unsigned InterleaveFactor = Group->getFactor(); 2184 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2185 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2186 2187 // Prepare for the new pointers. 2188 setDebugLocFromInst(Builder, Ptr); 2189 SmallVector<Value *, 2> NewPtrs; 2190 unsigned Index = Group->getIndex(Instr); 2191 2192 VectorParts Mask; 2193 bool IsMaskForCondRequired = BlockInMask; 2194 if (IsMaskForCondRequired) { 2195 Mask = *BlockInMask; 2196 // TODO: extend the masked interleaved-group support to reversed access. 2197 assert(!Group->isReverse() && "Reversed masked interleave-group " 2198 "not supported."); 2199 } 2200 2201 // If the group is reverse, adjust the index to refer to the last vector lane 2202 // instead of the first. We adjust the index from the first vector lane, 2203 // rather than directly getting the pointer for lane VF - 1, because the 2204 // pointer operand of the interleaved access is supposed to be uniform. For 2205 // uniform instructions, we're only required to generate a value for the 2206 // first vector lane in each unroll iteration. 2207 if (Group->isReverse()) 2208 Index += (VF - 1) * Group->getFactor(); 2209 2210 bool InBounds = false; 2211 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2212 InBounds = gep->isInBounds(); 2213 2214 for (unsigned Part = 0; Part < UF; Part++) { 2215 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2216 2217 // Notice current instruction could be any index. Need to adjust the address 2218 // to the member of index 0. 2219 // 2220 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2221 // b = A[i]; // Member of index 0 2222 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2223 // 2224 // E.g. A[i+1] = a; // Member of index 1 2225 // A[i] = b; // Member of index 0 2226 // A[i+2] = c; // Member of index 2 (Current instruction) 2227 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2228 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2229 if (InBounds) 2230 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2231 2232 // Cast to the vector pointer type. 2233 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2234 } 2235 2236 setDebugLocFromInst(Builder, Instr); 2237 Value *UndefVec = UndefValue::get(VecTy); 2238 2239 Value *MaskForGaps = nullptr; 2240 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2241 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2242 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2243 } 2244 2245 // Vectorize the interleaved load group. 2246 if (isa<LoadInst>(Instr)) { 2247 // For each unroll part, create a wide load for the group. 2248 SmallVector<Value *, 2> NewLoads; 2249 for (unsigned Part = 0; Part < UF; Part++) { 2250 Instruction *NewLoad; 2251 if (IsMaskForCondRequired || MaskForGaps) { 2252 assert(useMaskedInterleavedAccesses(*TTI) && 2253 "masked interleaved groups are not allowed."); 2254 Value *GroupMask = MaskForGaps; 2255 if (IsMaskForCondRequired) { 2256 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2257 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2258 Value *ShuffledMask = Builder.CreateShuffleVector( 2259 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2260 GroupMask = MaskForGaps 2261 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2262 MaskForGaps) 2263 : ShuffledMask; 2264 } 2265 NewLoad = 2266 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2267 GroupMask, UndefVec, "wide.masked.vec"); 2268 } 2269 else 2270 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2271 Group->getAlignment(), "wide.vec"); 2272 Group->addMetadata(NewLoad); 2273 NewLoads.push_back(NewLoad); 2274 } 2275 2276 // For each member in the group, shuffle out the appropriate data from the 2277 // wide loads. 2278 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2279 Instruction *Member = Group->getMember(I); 2280 2281 // Skip the gaps in the group. 2282 if (!Member) 2283 continue; 2284 2285 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2286 for (unsigned Part = 0; Part < UF; Part++) { 2287 Value *StridedVec = Builder.CreateShuffleVector( 2288 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2289 2290 // If this member has different type, cast the result type. 2291 if (Member->getType() != ScalarTy) { 2292 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2293 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2294 } 2295 2296 if (Group->isReverse()) 2297 StridedVec = reverseVector(StridedVec); 2298 2299 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2300 } 2301 } 2302 return; 2303 } 2304 2305 // The sub vector type for current instruction. 2306 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2307 2308 // Vectorize the interleaved store group. 2309 for (unsigned Part = 0; Part < UF; Part++) { 2310 // Collect the stored vector from each member. 2311 SmallVector<Value *, 4> StoredVecs; 2312 for (unsigned i = 0; i < InterleaveFactor; i++) { 2313 // Interleaved store group doesn't allow a gap, so each index has a member 2314 Instruction *Member = Group->getMember(i); 2315 assert(Member && "Fail to get a member from an interleaved store group"); 2316 2317 Value *StoredVec = getOrCreateVectorValue( 2318 cast<StoreInst>(Member)->getValueOperand(), Part); 2319 if (Group->isReverse()) 2320 StoredVec = reverseVector(StoredVec); 2321 2322 // If this member has different type, cast it to a unified type. 2323 2324 if (StoredVec->getType() != SubVT) 2325 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2326 2327 StoredVecs.push_back(StoredVec); 2328 } 2329 2330 // Concatenate all vectors into a wide vector. 2331 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2332 2333 // Interleave the elements in the wide vector. 2334 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2335 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2336 "interleaved.vec"); 2337 2338 Instruction *NewStoreInstr; 2339 if (IsMaskForCondRequired) { 2340 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2341 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2342 Value *ShuffledMask = Builder.CreateShuffleVector( 2343 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2344 NewStoreInstr = Builder.CreateMaskedStore( 2345 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2346 } 2347 else 2348 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2349 Group->getAlignment()); 2350 2351 Group->addMetadata(NewStoreInstr); 2352 } 2353 } 2354 2355 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2356 VectorParts *BlockInMask) { 2357 // Attempt to issue a wide load. 2358 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2359 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2360 2361 assert((LI || SI) && "Invalid Load/Store instruction"); 2362 2363 LoopVectorizationCostModel::InstWidening Decision = 2364 Cost->getWideningDecision(Instr, VF); 2365 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2366 "CM decision should be taken at this point"); 2367 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2368 return vectorizeInterleaveGroup(Instr); 2369 2370 Type *ScalarDataTy = getMemInstValueType(Instr); 2371 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2372 Value *Ptr = getLoadStorePointerOperand(Instr); 2373 // An alignment of 0 means target abi alignment. We need to use the scalar's 2374 // target abi alignment in such a case. 2375 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2376 const Align Alignment = 2377 DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy); 2378 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2379 2380 // Determine if the pointer operand of the access is either consecutive or 2381 // reverse consecutive. 2382 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2383 bool ConsecutiveStride = 2384 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2385 bool CreateGatherScatter = 2386 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2387 2388 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2389 // gather/scatter. Otherwise Decision should have been to Scalarize. 2390 assert((ConsecutiveStride || CreateGatherScatter) && 2391 "The instruction should be scalarized"); 2392 2393 // Handle consecutive loads/stores. 2394 if (ConsecutiveStride) 2395 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2396 2397 VectorParts Mask; 2398 bool isMaskRequired = BlockInMask; 2399 if (isMaskRequired) 2400 Mask = *BlockInMask; 2401 2402 bool InBounds = false; 2403 if (auto *gep = dyn_cast<GetElementPtrInst>( 2404 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2405 InBounds = gep->isInBounds(); 2406 2407 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2408 // Calculate the pointer for the specific unroll-part. 2409 GetElementPtrInst *PartPtr = nullptr; 2410 2411 if (Reverse) { 2412 // If the address is consecutive but reversed, then the 2413 // wide store needs to start at the last vector element. 2414 PartPtr = cast<GetElementPtrInst>( 2415 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2416 PartPtr->setIsInBounds(InBounds); 2417 PartPtr = cast<GetElementPtrInst>( 2418 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2419 PartPtr->setIsInBounds(InBounds); 2420 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2421 Mask[Part] = reverseVector(Mask[Part]); 2422 } else { 2423 PartPtr = cast<GetElementPtrInst>( 2424 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2425 PartPtr->setIsInBounds(InBounds); 2426 } 2427 2428 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2429 }; 2430 2431 // Handle Stores: 2432 if (SI) { 2433 setDebugLocFromInst(Builder, SI); 2434 2435 for (unsigned Part = 0; Part < UF; ++Part) { 2436 Instruction *NewSI = nullptr; 2437 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2438 if (CreateGatherScatter) { 2439 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2440 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2441 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, 2442 Alignment.value(), MaskPart); 2443 } else { 2444 if (Reverse) { 2445 // If we store to reverse consecutive memory locations, then we need 2446 // to reverse the order of elements in the stored value. 2447 StoredVal = reverseVector(StoredVal); 2448 // We don't want to update the value in the map as it might be used in 2449 // another expression. So don't call resetVectorValue(StoredVal). 2450 } 2451 auto *VecPtr = CreateVecPtr(Part, Ptr); 2452 if (isMaskRequired) 2453 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, 2454 Alignment.value(), Mask[Part]); 2455 else 2456 NewSI = 2457 Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment.value()); 2458 } 2459 addMetadata(NewSI, SI); 2460 } 2461 return; 2462 } 2463 2464 // Handle loads. 2465 assert(LI && "Must have a load instruction"); 2466 setDebugLocFromInst(Builder, LI); 2467 for (unsigned Part = 0; Part < UF; ++Part) { 2468 Value *NewLI; 2469 if (CreateGatherScatter) { 2470 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2471 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2472 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment.value(), MaskPart, 2473 nullptr, "wide.masked.gather"); 2474 addMetadata(NewLI, LI); 2475 } else { 2476 auto *VecPtr = CreateVecPtr(Part, Ptr); 2477 if (isMaskRequired) 2478 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment.value(), Mask[Part], 2479 UndefValue::get(DataTy), 2480 "wide.masked.load"); 2481 else 2482 NewLI = Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment.value(), 2483 "wide.load"); 2484 2485 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2486 addMetadata(NewLI, LI); 2487 if (Reverse) 2488 NewLI = reverseVector(NewLI); 2489 } 2490 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2491 } 2492 } 2493 2494 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2495 const VPIteration &Instance, 2496 bool IfPredicateInstr) { 2497 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2498 2499 setDebugLocFromInst(Builder, Instr); 2500 2501 // Does this instruction return a value ? 2502 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2503 2504 Instruction *Cloned = Instr->clone(); 2505 if (!IsVoidRetTy) 2506 Cloned->setName(Instr->getName() + ".cloned"); 2507 2508 // Replace the operands of the cloned instructions with their scalar 2509 // equivalents in the new loop. 2510 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2511 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2512 Cloned->setOperand(op, NewOp); 2513 } 2514 addNewMetadata(Cloned, Instr); 2515 2516 // Place the cloned scalar in the new loop. 2517 Builder.Insert(Cloned); 2518 2519 // Add the cloned scalar to the scalar map entry. 2520 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2521 2522 // If we just cloned a new assumption, add it the assumption cache. 2523 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2524 if (II->getIntrinsicID() == Intrinsic::assume) 2525 AC->registerAssumption(II); 2526 2527 // End if-block. 2528 if (IfPredicateInstr) 2529 PredicatedInstructions.push_back(Cloned); 2530 } 2531 2532 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2533 Value *End, Value *Step, 2534 Instruction *DL) { 2535 BasicBlock *Header = L->getHeader(); 2536 BasicBlock *Latch = L->getLoopLatch(); 2537 // As we're just creating this loop, it's possible no latch exists 2538 // yet. If so, use the header as this will be a single block loop. 2539 if (!Latch) 2540 Latch = Header; 2541 2542 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2543 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2544 setDebugLocFromInst(Builder, OldInst); 2545 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2546 2547 Builder.SetInsertPoint(Latch->getTerminator()); 2548 setDebugLocFromInst(Builder, OldInst); 2549 2550 // Create i+1 and fill the PHINode. 2551 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2552 Induction->addIncoming(Start, L->getLoopPreheader()); 2553 Induction->addIncoming(Next, Latch); 2554 // Create the compare. 2555 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2556 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2557 2558 // Now we have two terminators. Remove the old one from the block. 2559 Latch->getTerminator()->eraseFromParent(); 2560 2561 return Induction; 2562 } 2563 2564 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2565 if (TripCount) 2566 return TripCount; 2567 2568 assert(L && "Create Trip Count for null loop."); 2569 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2570 // Find the loop boundaries. 2571 ScalarEvolution *SE = PSE.getSE(); 2572 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2573 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2574 "Invalid loop count"); 2575 2576 Type *IdxTy = Legal->getWidestInductionType(); 2577 assert(IdxTy && "No type for induction"); 2578 2579 // The exit count might have the type of i64 while the phi is i32. This can 2580 // happen if we have an induction variable that is sign extended before the 2581 // compare. The only way that we get a backedge taken count is that the 2582 // induction variable was signed and as such will not overflow. In such a case 2583 // truncation is legal. 2584 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2585 IdxTy->getPrimitiveSizeInBits()) 2586 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2587 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2588 2589 // Get the total trip count from the count by adding 1. 2590 const SCEV *ExitCount = SE->getAddExpr( 2591 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2592 2593 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2594 2595 // Expand the trip count and place the new instructions in the preheader. 2596 // Notice that the pre-header does not change, only the loop body. 2597 SCEVExpander Exp(*SE, DL, "induction"); 2598 2599 // Count holds the overall loop count (N). 2600 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2601 L->getLoopPreheader()->getTerminator()); 2602 2603 if (TripCount->getType()->isPointerTy()) 2604 TripCount = 2605 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2606 L->getLoopPreheader()->getTerminator()); 2607 2608 return TripCount; 2609 } 2610 2611 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2612 if (VectorTripCount) 2613 return VectorTripCount; 2614 2615 Value *TC = getOrCreateTripCount(L); 2616 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2617 2618 Type *Ty = TC->getType(); 2619 Constant *Step = ConstantInt::get(Ty, VF * UF); 2620 2621 // If the tail is to be folded by masking, round the number of iterations N 2622 // up to a multiple of Step instead of rounding down. This is done by first 2623 // adding Step-1 and then rounding down. Note that it's ok if this addition 2624 // overflows: the vector induction variable will eventually wrap to zero given 2625 // that it starts at zero and its Step is a power of two; the loop will then 2626 // exit, with the last early-exit vector comparison also producing all-true. 2627 if (Cost->foldTailByMasking()) { 2628 assert(isPowerOf2_32(VF * UF) && 2629 "VF*UF must be a power of 2 when folding tail by masking"); 2630 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2631 } 2632 2633 // Now we need to generate the expression for the part of the loop that the 2634 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2635 // iterations are not required for correctness, or N - Step, otherwise. Step 2636 // is equal to the vectorization factor (number of SIMD elements) times the 2637 // unroll factor (number of SIMD instructions). 2638 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2639 2640 // If there is a non-reversed interleaved group that may speculatively access 2641 // memory out-of-bounds, we need to ensure that there will be at least one 2642 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2643 // the trip count, we set the remainder to be equal to the step. If the step 2644 // does not evenly divide the trip count, no adjustment is necessary since 2645 // there will already be scalar iterations. Note that the minimum iterations 2646 // check ensures that N >= Step. 2647 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2648 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2649 R = Builder.CreateSelect(IsZero, Step, R); 2650 } 2651 2652 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2653 2654 return VectorTripCount; 2655 } 2656 2657 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2658 const DataLayout &DL) { 2659 // Verify that V is a vector type with same number of elements as DstVTy. 2660 unsigned VF = DstVTy->getNumElements(); 2661 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2662 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2663 Type *SrcElemTy = SrcVecTy->getElementType(); 2664 Type *DstElemTy = DstVTy->getElementType(); 2665 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2666 "Vector elements must have same size"); 2667 2668 // Do a direct cast if element types are castable. 2669 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2670 return Builder.CreateBitOrPointerCast(V, DstVTy); 2671 } 2672 // V cannot be directly casted to desired vector type. 2673 // May happen when V is a floating point vector but DstVTy is a vector of 2674 // pointers or vice-versa. Handle this using a two-step bitcast using an 2675 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2676 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2677 "Only one type should be a pointer type"); 2678 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2679 "Only one type should be a floating point type"); 2680 Type *IntTy = 2681 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2682 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2683 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2684 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2685 } 2686 2687 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2688 BasicBlock *Bypass) { 2689 Value *Count = getOrCreateTripCount(L); 2690 BasicBlock *BB = L->getLoopPreheader(); 2691 IRBuilder<> Builder(BB->getTerminator()); 2692 2693 // Generate code to check if the loop's trip count is less than VF * UF, or 2694 // equal to it in case a scalar epilogue is required; this implies that the 2695 // vector trip count is zero. This check also covers the case where adding one 2696 // to the backedge-taken count overflowed leading to an incorrect trip count 2697 // of zero. In this case we will also jump to the scalar loop. 2698 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2699 : ICmpInst::ICMP_ULT; 2700 2701 // If tail is to be folded, vector loop takes care of all iterations. 2702 Value *CheckMinIters = Builder.getFalse(); 2703 if (!Cost->foldTailByMasking()) 2704 CheckMinIters = Builder.CreateICmp( 2705 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2706 "min.iters.check"); 2707 2708 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2709 // Update dominator tree immediately if the generated block is a 2710 // LoopBypassBlock because SCEV expansions to generate loop bypass 2711 // checks may query it before the current function is finished. 2712 DT->addNewBlock(NewBB, BB); 2713 if (L->getParentLoop()) 2714 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2715 ReplaceInstWithInst(BB->getTerminator(), 2716 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2717 LoopBypassBlocks.push_back(BB); 2718 } 2719 2720 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2721 BasicBlock *BB = L->getLoopPreheader(); 2722 2723 // Generate the code to check that the SCEV assumptions that we made. 2724 // We want the new basic block to start at the first instruction in a 2725 // sequence of instructions that form a check. 2726 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2727 "scev.check"); 2728 Value *SCEVCheck = 2729 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2730 2731 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2732 if (C->isZero()) 2733 return; 2734 2735 assert(!BB->getParent()->hasOptSize() && 2736 "Cannot SCEV check stride or overflow when optimizing for size"); 2737 2738 // Create a new block containing the stride check. 2739 BB->setName("vector.scevcheck"); 2740 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2741 // Update dominator tree immediately if the generated block is a 2742 // LoopBypassBlock because SCEV expansions to generate loop bypass 2743 // checks may query it before the current function is finished. 2744 DT->addNewBlock(NewBB, BB); 2745 if (L->getParentLoop()) 2746 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2747 ReplaceInstWithInst(BB->getTerminator(), 2748 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2749 LoopBypassBlocks.push_back(BB); 2750 AddedSafetyChecks = true; 2751 } 2752 2753 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2754 // VPlan-native path does not do any analysis for runtime checks currently. 2755 if (EnableVPlanNativePath) 2756 return; 2757 2758 BasicBlock *BB = L->getLoopPreheader(); 2759 2760 // Generate the code that checks in runtime if arrays overlap. We put the 2761 // checks into a separate block to make the more common case of few elements 2762 // faster. 2763 Instruction *FirstCheckInst; 2764 Instruction *MemRuntimeCheck; 2765 std::tie(FirstCheckInst, MemRuntimeCheck) = 2766 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2767 if (!MemRuntimeCheck) 2768 return; 2769 2770 if (BB->getParent()->hasOptSize()) { 2771 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2772 "Cannot emit memory checks when optimizing for size, unless forced " 2773 "to vectorize."); 2774 ORE->emit([&]() { 2775 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2776 L->getStartLoc(), L->getHeader()) 2777 << "Code-size may be reduced by not forcing " 2778 "vectorization, or by source-code modifications " 2779 "eliminating the need for runtime checks " 2780 "(e.g., adding 'restrict')."; 2781 }); 2782 } 2783 2784 // Create a new block containing the memory check. 2785 BB->setName("vector.memcheck"); 2786 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2787 // Update dominator tree immediately if the generated block is a 2788 // LoopBypassBlock because SCEV expansions to generate loop bypass 2789 // checks may query it before the current function is finished. 2790 DT->addNewBlock(NewBB, BB); 2791 if (L->getParentLoop()) 2792 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2793 ReplaceInstWithInst(BB->getTerminator(), 2794 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2795 LoopBypassBlocks.push_back(BB); 2796 AddedSafetyChecks = true; 2797 2798 // We currently don't use LoopVersioning for the actual loop cloning but we 2799 // still use it to add the noalias metadata. 2800 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2801 PSE.getSE()); 2802 LVer->prepareNoAliasMetadata(); 2803 } 2804 2805 Value *InnerLoopVectorizer::emitTransformedIndex( 2806 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2807 const InductionDescriptor &ID) const { 2808 2809 SCEVExpander Exp(*SE, DL, "induction"); 2810 auto Step = ID.getStep(); 2811 auto StartValue = ID.getStartValue(); 2812 assert(Index->getType() == Step->getType() && 2813 "Index type does not match StepValue type"); 2814 2815 // Note: the IR at this point is broken. We cannot use SE to create any new 2816 // SCEV and then expand it, hoping that SCEV's simplification will give us 2817 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2818 // lead to various SCEV crashes. So all we can do is to use builder and rely 2819 // on InstCombine for future simplifications. Here we handle some trivial 2820 // cases only. 2821 auto CreateAdd = [&B](Value *X, Value *Y) { 2822 assert(X->getType() == Y->getType() && "Types don't match!"); 2823 if (auto *CX = dyn_cast<ConstantInt>(X)) 2824 if (CX->isZero()) 2825 return Y; 2826 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2827 if (CY->isZero()) 2828 return X; 2829 return B.CreateAdd(X, Y); 2830 }; 2831 2832 auto CreateMul = [&B](Value *X, Value *Y) { 2833 assert(X->getType() == Y->getType() && "Types don't match!"); 2834 if (auto *CX = dyn_cast<ConstantInt>(X)) 2835 if (CX->isOne()) 2836 return Y; 2837 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2838 if (CY->isOne()) 2839 return X; 2840 return B.CreateMul(X, Y); 2841 }; 2842 2843 switch (ID.getKind()) { 2844 case InductionDescriptor::IK_IntInduction: { 2845 assert(Index->getType() == StartValue->getType() && 2846 "Index type does not match StartValue type"); 2847 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2848 return B.CreateSub(StartValue, Index); 2849 auto *Offset = CreateMul( 2850 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2851 return CreateAdd(StartValue, Offset); 2852 } 2853 case InductionDescriptor::IK_PtrInduction: { 2854 assert(isa<SCEVConstant>(Step) && 2855 "Expected constant step for pointer induction"); 2856 return B.CreateGEP( 2857 StartValue->getType()->getPointerElementType(), StartValue, 2858 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2859 &*B.GetInsertPoint()))); 2860 } 2861 case InductionDescriptor::IK_FpInduction: { 2862 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2863 auto InductionBinOp = ID.getInductionBinOp(); 2864 assert(InductionBinOp && 2865 (InductionBinOp->getOpcode() == Instruction::FAdd || 2866 InductionBinOp->getOpcode() == Instruction::FSub) && 2867 "Original bin op should be defined for FP induction"); 2868 2869 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2870 2871 // Floating point operations had to be 'fast' to enable the induction. 2872 FastMathFlags Flags; 2873 Flags.setFast(); 2874 2875 Value *MulExp = B.CreateFMul(StepValue, Index); 2876 if (isa<Instruction>(MulExp)) 2877 // We have to check, the MulExp may be a constant. 2878 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2879 2880 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2881 "induction"); 2882 if (isa<Instruction>(BOp)) 2883 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2884 2885 return BOp; 2886 } 2887 case InductionDescriptor::IK_NoInduction: 2888 return nullptr; 2889 } 2890 llvm_unreachable("invalid enum"); 2891 } 2892 2893 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2894 /* 2895 In this function we generate a new loop. The new loop will contain 2896 the vectorized instructions while the old loop will continue to run the 2897 scalar remainder. 2898 2899 [ ] <-- loop iteration number check. 2900 / | 2901 / v 2902 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2903 | / | 2904 | / v 2905 || [ ] <-- vector pre header. 2906 |/ | 2907 | v 2908 | [ ] \ 2909 | [ ]_| <-- vector loop. 2910 | | 2911 | v 2912 | -[ ] <--- middle-block. 2913 | / | 2914 | / v 2915 -|- >[ ] <--- new preheader. 2916 | | 2917 | v 2918 | [ ] \ 2919 | [ ]_| <-- old scalar loop to handle remainder. 2920 \ | 2921 \ v 2922 >[ ] <-- exit block. 2923 ... 2924 */ 2925 2926 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2927 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2928 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2929 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2930 assert(VectorPH && "Invalid loop structure"); 2931 assert(ExitBlock && "Must have an exit block"); 2932 2933 // Some loops have a single integer induction variable, while other loops 2934 // don't. One example is c++ iterators that often have multiple pointer 2935 // induction variables. In the code below we also support a case where we 2936 // don't have a single induction variable. 2937 // 2938 // We try to obtain an induction variable from the original loop as hard 2939 // as possible. However if we don't find one that: 2940 // - is an integer 2941 // - counts from zero, stepping by one 2942 // - is the size of the widest induction variable type 2943 // then we create a new one. 2944 OldInduction = Legal->getPrimaryInduction(); 2945 Type *IdxTy = Legal->getWidestInductionType(); 2946 2947 // Split the single block loop into the two loop structure described above. 2948 BasicBlock *VecBody = 2949 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2950 BasicBlock *MiddleBlock = 2951 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2952 BasicBlock *ScalarPH = 2953 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2954 2955 // Create and register the new vector loop. 2956 Loop *Lp = LI->AllocateLoop(); 2957 Loop *ParentLoop = OrigLoop->getParentLoop(); 2958 2959 // Insert the new loop into the loop nest and register the new basic blocks 2960 // before calling any utilities such as SCEV that require valid LoopInfo. 2961 if (ParentLoop) { 2962 ParentLoop->addChildLoop(Lp); 2963 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2964 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2965 } else { 2966 LI->addTopLevelLoop(Lp); 2967 } 2968 Lp->addBasicBlockToLoop(VecBody, *LI); 2969 2970 // Find the loop boundaries. 2971 Value *Count = getOrCreateTripCount(Lp); 2972 2973 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2974 2975 // Now, compare the new count to zero. If it is zero skip the vector loop and 2976 // jump to the scalar loop. This check also covers the case where the 2977 // backedge-taken count is uint##_max: adding one to it will overflow leading 2978 // to an incorrect trip count of zero. In this (rare) case we will also jump 2979 // to the scalar loop. 2980 emitMinimumIterationCountCheck(Lp, ScalarPH); 2981 2982 // Generate the code to check any assumptions that we've made for SCEV 2983 // expressions. 2984 emitSCEVChecks(Lp, ScalarPH); 2985 2986 // Generate the code that checks in runtime if arrays overlap. We put the 2987 // checks into a separate block to make the more common case of few elements 2988 // faster. 2989 emitMemRuntimeChecks(Lp, ScalarPH); 2990 2991 // Generate the induction variable. 2992 // The loop step is equal to the vectorization factor (num of SIMD elements) 2993 // times the unroll factor (num of SIMD instructions). 2994 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2995 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2996 Induction = 2997 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2998 getDebugLocFromInstOrOperands(OldInduction)); 2999 3000 // We are going to resume the execution of the scalar loop. 3001 // Go over all of the induction variables that we found and fix the 3002 // PHIs that are left in the scalar version of the loop. 3003 // The starting values of PHI nodes depend on the counter of the last 3004 // iteration in the vectorized loop. 3005 // If we come from a bypass edge then we need to start from the original 3006 // start value. 3007 3008 // This variable saves the new starting index for the scalar loop. It is used 3009 // to test if there are any tail iterations left once the vector loop has 3010 // completed. 3011 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3012 for (auto &InductionEntry : *List) { 3013 PHINode *OrigPhi = InductionEntry.first; 3014 InductionDescriptor II = InductionEntry.second; 3015 3016 // Create phi nodes to merge from the backedge-taken check block. 3017 PHINode *BCResumeVal = PHINode::Create( 3018 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3019 // Copy original phi DL over to the new one. 3020 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3021 Value *&EndValue = IVEndValues[OrigPhi]; 3022 if (OrigPhi == OldInduction) { 3023 // We know what the end value is. 3024 EndValue = CountRoundDown; 3025 } else { 3026 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3027 Type *StepType = II.getStep()->getType(); 3028 Instruction::CastOps CastOp = 3029 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3030 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3031 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3032 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3033 EndValue->setName("ind.end"); 3034 } 3035 3036 // The new PHI merges the original incoming value, in case of a bypass, 3037 // or the value at the end of the vectorized loop. 3038 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3039 3040 // Fix the scalar body counter (PHI node). 3041 // The old induction's phi node in the scalar body needs the truncated 3042 // value. 3043 for (BasicBlock *BB : LoopBypassBlocks) 3044 BCResumeVal->addIncoming(II.getStartValue(), BB); 3045 OrigPhi->setIncomingValueForBlock(ScalarPH, BCResumeVal); 3046 } 3047 3048 // We need the OrigLoop (scalar loop part) latch terminator to help 3049 // produce correct debug info for the middle block BB instructions. 3050 // The legality check stage guarantees that the loop will have a single 3051 // latch. 3052 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3053 "Scalar loop latch terminator isn't a branch"); 3054 BranchInst *ScalarLatchBr = 3055 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3056 3057 // Add a check in the middle block to see if we have completed 3058 // all of the iterations in the first vector loop. 3059 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3060 // If tail is to be folded, we know we don't need to run the remainder. 3061 Value *CmpN = Builder.getTrue(); 3062 if (!Cost->foldTailByMasking()) { 3063 CmpN = 3064 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3065 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3066 3067 // Here we use the same DebugLoc as the scalar loop latch branch instead 3068 // of the corresponding compare because they may have ended up with 3069 // different line numbers and we want to avoid awkward line stepping while 3070 // debugging. Eg. if the compare has got a line number inside the loop. 3071 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3072 } 3073 3074 BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN); 3075 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3076 ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst); 3077 3078 // Get ready to start creating new instructions into the vectorized body. 3079 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3080 3081 // Save the state. 3082 LoopVectorPreHeader = Lp->getLoopPreheader(); 3083 LoopScalarPreHeader = ScalarPH; 3084 LoopMiddleBlock = MiddleBlock; 3085 LoopExitBlock = ExitBlock; 3086 LoopVectorBody = VecBody; 3087 LoopScalarBody = OldBasicBlock; 3088 3089 Optional<MDNode *> VectorizedLoopID = 3090 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3091 LLVMLoopVectorizeFollowupVectorized}); 3092 if (VectorizedLoopID.hasValue()) { 3093 Lp->setLoopID(VectorizedLoopID.getValue()); 3094 3095 // Do not setAlreadyVectorized if loop attributes have been defined 3096 // explicitly. 3097 return LoopVectorPreHeader; 3098 } 3099 3100 // Keep all loop hints from the original loop on the vector loop (we'll 3101 // replace the vectorizer-specific hints below). 3102 if (MDNode *LID = OrigLoop->getLoopID()) 3103 Lp->setLoopID(LID); 3104 3105 LoopVectorizeHints Hints(Lp, true, *ORE); 3106 Hints.setAlreadyVectorized(); 3107 3108 return LoopVectorPreHeader; 3109 } 3110 3111 // Fix up external users of the induction variable. At this point, we are 3112 // in LCSSA form, with all external PHIs that use the IV having one input value, 3113 // coming from the remainder loop. We need those PHIs to also have a correct 3114 // value for the IV when arriving directly from the middle block. 3115 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3116 const InductionDescriptor &II, 3117 Value *CountRoundDown, Value *EndValue, 3118 BasicBlock *MiddleBlock) { 3119 // There are two kinds of external IV usages - those that use the value 3120 // computed in the last iteration (the PHI) and those that use the penultimate 3121 // value (the value that feeds into the phi from the loop latch). 3122 // We allow both, but they, obviously, have different values. 3123 3124 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3125 3126 DenseMap<Value *, Value *> MissingVals; 3127 3128 // An external user of the last iteration's value should see the value that 3129 // the remainder loop uses to initialize its own IV. 3130 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3131 for (User *U : PostInc->users()) { 3132 Instruction *UI = cast<Instruction>(U); 3133 if (!OrigLoop->contains(UI)) { 3134 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3135 MissingVals[UI] = EndValue; 3136 } 3137 } 3138 3139 // An external user of the penultimate value need to see EndValue - Step. 3140 // The simplest way to get this is to recompute it from the constituent SCEVs, 3141 // that is Start + (Step * (CRD - 1)). 3142 for (User *U : OrigPhi->users()) { 3143 auto *UI = cast<Instruction>(U); 3144 if (!OrigLoop->contains(UI)) { 3145 const DataLayout &DL = 3146 OrigLoop->getHeader()->getModule()->getDataLayout(); 3147 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3148 3149 IRBuilder<> B(MiddleBlock->getTerminator()); 3150 Value *CountMinusOne = B.CreateSub( 3151 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3152 Value *CMO = 3153 !II.getStep()->getType()->isIntegerTy() 3154 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3155 II.getStep()->getType()) 3156 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3157 CMO->setName("cast.cmo"); 3158 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3159 Escape->setName("ind.escape"); 3160 MissingVals[UI] = Escape; 3161 } 3162 } 3163 3164 for (auto &I : MissingVals) { 3165 PHINode *PHI = cast<PHINode>(I.first); 3166 // One corner case we have to handle is two IVs "chasing" each-other, 3167 // that is %IV2 = phi [...], [ %IV1, %latch ] 3168 // In this case, if IV1 has an external use, we need to avoid adding both 3169 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3170 // don't already have an incoming value for the middle block. 3171 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3172 PHI->addIncoming(I.second, MiddleBlock); 3173 } 3174 } 3175 3176 namespace { 3177 3178 struct CSEDenseMapInfo { 3179 static bool canHandle(const Instruction *I) { 3180 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3181 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3182 } 3183 3184 static inline Instruction *getEmptyKey() { 3185 return DenseMapInfo<Instruction *>::getEmptyKey(); 3186 } 3187 3188 static inline Instruction *getTombstoneKey() { 3189 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3190 } 3191 3192 static unsigned getHashValue(const Instruction *I) { 3193 assert(canHandle(I) && "Unknown instruction!"); 3194 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3195 I->value_op_end())); 3196 } 3197 3198 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3199 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3200 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3201 return LHS == RHS; 3202 return LHS->isIdenticalTo(RHS); 3203 } 3204 }; 3205 3206 } // end anonymous namespace 3207 3208 ///Perform cse of induction variable instructions. 3209 static void cse(BasicBlock *BB) { 3210 // Perform simple cse. 3211 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3212 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3213 Instruction *In = &*I++; 3214 3215 if (!CSEDenseMapInfo::canHandle(In)) 3216 continue; 3217 3218 // Check if we can replace this instruction with any of the 3219 // visited instructions. 3220 if (Instruction *V = CSEMap.lookup(In)) { 3221 In->replaceAllUsesWith(V); 3222 In->eraseFromParent(); 3223 continue; 3224 } 3225 3226 CSEMap[In] = In; 3227 } 3228 } 3229 3230 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3231 unsigned VF, 3232 bool &NeedToScalarize) { 3233 Function *F = CI->getCalledFunction(); 3234 StringRef FnName = CI->getCalledFunction()->getName(); 3235 Type *ScalarRetTy = CI->getType(); 3236 SmallVector<Type *, 4> Tys, ScalarTys; 3237 for (auto &ArgOp : CI->arg_operands()) 3238 ScalarTys.push_back(ArgOp->getType()); 3239 3240 // Estimate cost of scalarized vector call. The source operands are assumed 3241 // to be vectors, so we need to extract individual elements from there, 3242 // execute VF scalar calls, and then gather the result into the vector return 3243 // value. 3244 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3245 if (VF == 1) 3246 return ScalarCallCost; 3247 3248 // Compute corresponding vector type for return value and arguments. 3249 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3250 for (Type *ScalarTy : ScalarTys) 3251 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3252 3253 // Compute costs of unpacking argument values for the scalar calls and 3254 // packing the return values to a vector. 3255 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3256 3257 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3258 3259 // If we can't emit a vector call for this function, then the currently found 3260 // cost is the cost we need to return. 3261 NeedToScalarize = true; 3262 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3263 return Cost; 3264 3265 // If the corresponding vector cost is cheaper, return its cost. 3266 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3267 if (VectorCallCost < Cost) { 3268 NeedToScalarize = false; 3269 return VectorCallCost; 3270 } 3271 return Cost; 3272 } 3273 3274 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3275 unsigned VF) { 3276 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3277 assert(ID && "Expected intrinsic call!"); 3278 3279 FastMathFlags FMF; 3280 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3281 FMF = FPMO->getFastMathFlags(); 3282 3283 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3284 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3285 } 3286 3287 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3288 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3289 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3290 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3291 } 3292 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3293 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3294 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3295 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3296 } 3297 3298 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3299 // For every instruction `I` in MinBWs, truncate the operands, create a 3300 // truncated version of `I` and reextend its result. InstCombine runs 3301 // later and will remove any ext/trunc pairs. 3302 SmallPtrSet<Value *, 4> Erased; 3303 for (const auto &KV : Cost->getMinimalBitwidths()) { 3304 // If the value wasn't vectorized, we must maintain the original scalar 3305 // type. The absence of the value from VectorLoopValueMap indicates that it 3306 // wasn't vectorized. 3307 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3308 continue; 3309 for (unsigned Part = 0; Part < UF; ++Part) { 3310 Value *I = getOrCreateVectorValue(KV.first, Part); 3311 if (Erased.find(I) != Erased.end() || I->use_empty() || 3312 !isa<Instruction>(I)) 3313 continue; 3314 Type *OriginalTy = I->getType(); 3315 Type *ScalarTruncatedTy = 3316 IntegerType::get(OriginalTy->getContext(), KV.second); 3317 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3318 OriginalTy->getVectorNumElements()); 3319 if (TruncatedTy == OriginalTy) 3320 continue; 3321 3322 IRBuilder<> B(cast<Instruction>(I)); 3323 auto ShrinkOperand = [&](Value *V) -> Value * { 3324 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3325 if (ZI->getSrcTy() == TruncatedTy) 3326 return ZI->getOperand(0); 3327 return B.CreateZExtOrTrunc(V, TruncatedTy); 3328 }; 3329 3330 // The actual instruction modification depends on the instruction type, 3331 // unfortunately. 3332 Value *NewI = nullptr; 3333 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3334 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3335 ShrinkOperand(BO->getOperand(1))); 3336 3337 // Any wrapping introduced by shrinking this operation shouldn't be 3338 // considered undefined behavior. So, we can't unconditionally copy 3339 // arithmetic wrapping flags to NewI. 3340 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3341 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3342 NewI = 3343 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3344 ShrinkOperand(CI->getOperand(1))); 3345 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3346 NewI = B.CreateSelect(SI->getCondition(), 3347 ShrinkOperand(SI->getTrueValue()), 3348 ShrinkOperand(SI->getFalseValue())); 3349 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3350 switch (CI->getOpcode()) { 3351 default: 3352 llvm_unreachable("Unhandled cast!"); 3353 case Instruction::Trunc: 3354 NewI = ShrinkOperand(CI->getOperand(0)); 3355 break; 3356 case Instruction::SExt: 3357 NewI = B.CreateSExtOrTrunc( 3358 CI->getOperand(0), 3359 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3360 break; 3361 case Instruction::ZExt: 3362 NewI = B.CreateZExtOrTrunc( 3363 CI->getOperand(0), 3364 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3365 break; 3366 } 3367 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3368 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3369 auto *O0 = B.CreateZExtOrTrunc( 3370 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3371 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3372 auto *O1 = B.CreateZExtOrTrunc( 3373 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3374 3375 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3376 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3377 // Don't do anything with the operands, just extend the result. 3378 continue; 3379 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3380 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3381 auto *O0 = B.CreateZExtOrTrunc( 3382 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3383 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3384 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3385 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3386 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3387 auto *O0 = B.CreateZExtOrTrunc( 3388 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3389 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3390 } else { 3391 // If we don't know what to do, be conservative and don't do anything. 3392 continue; 3393 } 3394 3395 // Lastly, extend the result. 3396 NewI->takeName(cast<Instruction>(I)); 3397 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3398 I->replaceAllUsesWith(Res); 3399 cast<Instruction>(I)->eraseFromParent(); 3400 Erased.insert(I); 3401 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3402 } 3403 } 3404 3405 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3406 for (const auto &KV : Cost->getMinimalBitwidths()) { 3407 // If the value wasn't vectorized, we must maintain the original scalar 3408 // type. The absence of the value from VectorLoopValueMap indicates that it 3409 // wasn't vectorized. 3410 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3411 continue; 3412 for (unsigned Part = 0; Part < UF; ++Part) { 3413 Value *I = getOrCreateVectorValue(KV.first, Part); 3414 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3415 if (Inst && Inst->use_empty()) { 3416 Value *NewI = Inst->getOperand(0); 3417 Inst->eraseFromParent(); 3418 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3419 } 3420 } 3421 } 3422 } 3423 3424 void InnerLoopVectorizer::fixVectorizedLoop() { 3425 // Insert truncates and extends for any truncated instructions as hints to 3426 // InstCombine. 3427 if (VF > 1) 3428 truncateToMinimalBitwidths(); 3429 3430 // Fix widened non-induction PHIs by setting up the PHI operands. 3431 if (OrigPHIsToFix.size()) { 3432 assert(EnableVPlanNativePath && 3433 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3434 fixNonInductionPHIs(); 3435 } 3436 3437 // At this point every instruction in the original loop is widened to a 3438 // vector form. Now we need to fix the recurrences in the loop. These PHI 3439 // nodes are currently empty because we did not want to introduce cycles. 3440 // This is the second stage of vectorizing recurrences. 3441 fixCrossIterationPHIs(); 3442 3443 // Update the dominator tree. 3444 // 3445 // FIXME: After creating the structure of the new loop, the dominator tree is 3446 // no longer up-to-date, and it remains that way until we update it 3447 // here. An out-of-date dominator tree is problematic for SCEV, 3448 // because SCEVExpander uses it to guide code generation. The 3449 // vectorizer use SCEVExpanders in several places. Instead, we should 3450 // keep the dominator tree up-to-date as we go. 3451 updateAnalysis(); 3452 3453 // Fix-up external users of the induction variables. 3454 for (auto &Entry : *Legal->getInductionVars()) 3455 fixupIVUsers(Entry.first, Entry.second, 3456 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3457 IVEndValues[Entry.first], LoopMiddleBlock); 3458 3459 fixLCSSAPHIs(); 3460 for (Instruction *PI : PredicatedInstructions) 3461 sinkScalarOperands(&*PI); 3462 3463 // Remove redundant induction instructions. 3464 cse(LoopVectorBody); 3465 } 3466 3467 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3468 // In order to support recurrences we need to be able to vectorize Phi nodes. 3469 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3470 // stage #2: We now need to fix the recurrences by adding incoming edges to 3471 // the currently empty PHI nodes. At this point every instruction in the 3472 // original loop is widened to a vector form so we can use them to construct 3473 // the incoming edges. 3474 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3475 // Handle first-order recurrences and reductions that need to be fixed. 3476 if (Legal->isFirstOrderRecurrence(&Phi)) 3477 fixFirstOrderRecurrence(&Phi); 3478 else if (Legal->isReductionVariable(&Phi)) 3479 fixReduction(&Phi); 3480 } 3481 } 3482 3483 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3484 // This is the second phase of vectorizing first-order recurrences. An 3485 // overview of the transformation is described below. Suppose we have the 3486 // following loop. 3487 // 3488 // for (int i = 0; i < n; ++i) 3489 // b[i] = a[i] - a[i - 1]; 3490 // 3491 // There is a first-order recurrence on "a". For this loop, the shorthand 3492 // scalar IR looks like: 3493 // 3494 // scalar.ph: 3495 // s_init = a[-1] 3496 // br scalar.body 3497 // 3498 // scalar.body: 3499 // i = phi [0, scalar.ph], [i+1, scalar.body] 3500 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3501 // s2 = a[i] 3502 // b[i] = s2 - s1 3503 // br cond, scalar.body, ... 3504 // 3505 // In this example, s1 is a recurrence because it's value depends on the 3506 // previous iteration. In the first phase of vectorization, we created a 3507 // temporary value for s1. We now complete the vectorization and produce the 3508 // shorthand vector IR shown below (for VF = 4, UF = 1). 3509 // 3510 // vector.ph: 3511 // v_init = vector(..., ..., ..., a[-1]) 3512 // br vector.body 3513 // 3514 // vector.body 3515 // i = phi [0, vector.ph], [i+4, vector.body] 3516 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3517 // v2 = a[i, i+1, i+2, i+3]; 3518 // v3 = vector(v1(3), v2(0, 1, 2)) 3519 // b[i, i+1, i+2, i+3] = v2 - v3 3520 // br cond, vector.body, middle.block 3521 // 3522 // middle.block: 3523 // x = v2(3) 3524 // br scalar.ph 3525 // 3526 // scalar.ph: 3527 // s_init = phi [x, middle.block], [a[-1], otherwise] 3528 // br scalar.body 3529 // 3530 // After execution completes the vector loop, we extract the next value of 3531 // the recurrence (x) to use as the initial value in the scalar loop. 3532 3533 // Get the original loop preheader and single loop latch. 3534 auto *Preheader = OrigLoop->getLoopPreheader(); 3535 auto *Latch = OrigLoop->getLoopLatch(); 3536 3537 // Get the initial and previous values of the scalar recurrence. 3538 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3539 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3540 3541 // Create a vector from the initial value. 3542 auto *VectorInit = ScalarInit; 3543 if (VF > 1) { 3544 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3545 VectorInit = Builder.CreateInsertElement( 3546 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3547 Builder.getInt32(VF - 1), "vector.recur.init"); 3548 } 3549 3550 // We constructed a temporary phi node in the first phase of vectorization. 3551 // This phi node will eventually be deleted. 3552 Builder.SetInsertPoint( 3553 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3554 3555 // Create a phi node for the new recurrence. The current value will either be 3556 // the initial value inserted into a vector or loop-varying vector value. 3557 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3558 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3559 3560 // Get the vectorized previous value of the last part UF - 1. It appears last 3561 // among all unrolled iterations, due to the order of their construction. 3562 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3563 3564 // Find and set the insertion point after the previous value if it is an 3565 // instruction. 3566 BasicBlock::iterator InsertPt; 3567 // Note that the previous value may have been constant-folded so it is not 3568 // guaranteed to be an instruction in the vector loop. 3569 // FIXME: Loop invariant values do not form recurrences. We should deal with 3570 // them earlier. 3571 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3572 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3573 else { 3574 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3575 if (isa<PHINode>(PreviousLastPart)) 3576 // If the previous value is a phi node, we should insert after all the phi 3577 // nodes in the block containing the PHI to avoid breaking basic block 3578 // verification. Note that the basic block may be different to 3579 // LoopVectorBody, in case we predicate the loop. 3580 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3581 else 3582 InsertPt = ++PreviousInst->getIterator(); 3583 } 3584 Builder.SetInsertPoint(&*InsertPt); 3585 3586 // We will construct a vector for the recurrence by combining the values for 3587 // the current and previous iterations. This is the required shuffle mask. 3588 SmallVector<Constant *, 8> ShuffleMask(VF); 3589 ShuffleMask[0] = Builder.getInt32(VF - 1); 3590 for (unsigned I = 1; I < VF; ++I) 3591 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3592 3593 // The vector from which to take the initial value for the current iteration 3594 // (actual or unrolled). Initially, this is the vector phi node. 3595 Value *Incoming = VecPhi; 3596 3597 // Shuffle the current and previous vector and update the vector parts. 3598 for (unsigned Part = 0; Part < UF; ++Part) { 3599 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3600 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3601 auto *Shuffle = 3602 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3603 ConstantVector::get(ShuffleMask)) 3604 : Incoming; 3605 PhiPart->replaceAllUsesWith(Shuffle); 3606 cast<Instruction>(PhiPart)->eraseFromParent(); 3607 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3608 Incoming = PreviousPart; 3609 } 3610 3611 // Fix the latch value of the new recurrence in the vector loop. 3612 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3613 3614 // Extract the last vector element in the middle block. This will be the 3615 // initial value for the recurrence when jumping to the scalar loop. 3616 auto *ExtractForScalar = Incoming; 3617 if (VF > 1) { 3618 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3619 ExtractForScalar = Builder.CreateExtractElement( 3620 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3621 } 3622 // Extract the second last element in the middle block if the 3623 // Phi is used outside the loop. We need to extract the phi itself 3624 // and not the last element (the phi update in the current iteration). This 3625 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3626 // when the scalar loop is not run at all. 3627 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3628 if (VF > 1) 3629 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3630 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3631 // When loop is unrolled without vectorizing, initialize 3632 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3633 // `Incoming`. This is analogous to the vectorized case above: extracting the 3634 // second last element when VF > 1. 3635 else if (UF > 1) 3636 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3637 3638 // Fix the initial value of the original recurrence in the scalar loop. 3639 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3640 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3641 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3642 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3643 Start->addIncoming(Incoming, BB); 3644 } 3645 3646 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3647 Phi->setName("scalar.recur"); 3648 3649 // Finally, fix users of the recurrence outside the loop. The users will need 3650 // either the last value of the scalar recurrence or the last value of the 3651 // vector recurrence we extracted in the middle block. Since the loop is in 3652 // LCSSA form, we just need to find all the phi nodes for the original scalar 3653 // recurrence in the exit block, and then add an edge for the middle block. 3654 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3655 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3656 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3657 } 3658 } 3659 } 3660 3661 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3662 Constant *Zero = Builder.getInt32(0); 3663 3664 // Get it's reduction variable descriptor. 3665 assert(Legal->isReductionVariable(Phi) && 3666 "Unable to find the reduction variable"); 3667 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3668 3669 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3670 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3671 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3672 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3673 RdxDesc.getMinMaxRecurrenceKind(); 3674 setDebugLocFromInst(Builder, ReductionStartValue); 3675 3676 // We need to generate a reduction vector from the incoming scalar. 3677 // To do so, we need to generate the 'identity' vector and override 3678 // one of the elements with the incoming scalar reduction. We need 3679 // to do it in the vector-loop preheader. 3680 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3681 3682 // This is the vector-clone of the value that leaves the loop. 3683 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3684 3685 // Find the reduction identity variable. Zero for addition, or, xor, 3686 // one for multiplication, -1 for And. 3687 Value *Identity; 3688 Value *VectorStart; 3689 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3690 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3691 // MinMax reduction have the start value as their identify. 3692 if (VF == 1) { 3693 VectorStart = Identity = ReductionStartValue; 3694 } else { 3695 VectorStart = Identity = 3696 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3697 } 3698 } else { 3699 // Handle other reduction kinds: 3700 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3701 RK, VecTy->getScalarType()); 3702 if (VF == 1) { 3703 Identity = Iden; 3704 // This vector is the Identity vector where the first element is the 3705 // incoming scalar reduction. 3706 VectorStart = ReductionStartValue; 3707 } else { 3708 Identity = ConstantVector::getSplat(VF, Iden); 3709 3710 // This vector is the Identity vector where the first element is the 3711 // incoming scalar reduction. 3712 VectorStart = 3713 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3714 } 3715 } 3716 3717 // Wrap flags are in general invalid after vectorization, clear them. 3718 clearReductionWrapFlags(RdxDesc); 3719 3720 // Fix the vector-loop phi. 3721 3722 // Reductions do not have to start at zero. They can start with 3723 // any loop invariant values. 3724 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3725 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3726 3727 for (unsigned Part = 0; Part < UF; ++Part) { 3728 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3729 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3730 // Make sure to add the reduction start value only to the 3731 // first unroll part. 3732 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3733 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3734 cast<PHINode>(VecRdxPhi) 3735 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3736 } 3737 3738 // Before each round, move the insertion point right between 3739 // the PHIs and the values we are going to write. 3740 // This allows us to write both PHINodes and the extractelement 3741 // instructions. 3742 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3743 3744 setDebugLocFromInst(Builder, LoopExitInst); 3745 3746 // If tail is folded by masking, the vector value to leave the loop should be 3747 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3748 // instead of the former. 3749 if (Cost->foldTailByMasking()) { 3750 for (unsigned Part = 0; Part < UF; ++Part) { 3751 Value *VecLoopExitInst = 3752 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3753 Value *Sel = nullptr; 3754 for (User *U : VecLoopExitInst->users()) { 3755 if (isa<SelectInst>(U)) { 3756 assert(!Sel && "Reduction exit feeding two selects"); 3757 Sel = U; 3758 } else 3759 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3760 } 3761 assert(Sel && "Reduction exit feeds no select"); 3762 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3763 } 3764 } 3765 3766 // If the vector reduction can be performed in a smaller type, we truncate 3767 // then extend the loop exit value to enable InstCombine to evaluate the 3768 // entire expression in the smaller type. 3769 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3770 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3771 Builder.SetInsertPoint( 3772 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3773 VectorParts RdxParts(UF); 3774 for (unsigned Part = 0; Part < UF; ++Part) { 3775 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3776 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3777 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3778 : Builder.CreateZExt(Trunc, VecTy); 3779 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3780 UI != RdxParts[Part]->user_end();) 3781 if (*UI != Trunc) { 3782 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3783 RdxParts[Part] = Extnd; 3784 } else { 3785 ++UI; 3786 } 3787 } 3788 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3789 for (unsigned Part = 0; Part < UF; ++Part) { 3790 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3791 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3792 } 3793 } 3794 3795 // Reduce all of the unrolled parts into a single vector. 3796 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3797 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3798 3799 // The middle block terminator has already been assigned a DebugLoc here (the 3800 // OrigLoop's single latch terminator). We want the whole middle block to 3801 // appear to execute on this line because: (a) it is all compiler generated, 3802 // (b) these instructions are always executed after evaluating the latch 3803 // conditional branch, and (c) other passes may add new predecessors which 3804 // terminate on this line. This is the easiest way to ensure we don't 3805 // accidentally cause an extra step back into the loop while debugging. 3806 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3807 for (unsigned Part = 1; Part < UF; ++Part) { 3808 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3809 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3810 // Floating point operations had to be 'fast' to enable the reduction. 3811 ReducedPartRdx = addFastMathFlag( 3812 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3813 ReducedPartRdx, "bin.rdx"), 3814 RdxDesc.getFastMathFlags()); 3815 else 3816 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3817 RdxPart); 3818 } 3819 3820 if (VF > 1) { 3821 bool NoNaN = Legal->hasFunNoNaNAttr(); 3822 ReducedPartRdx = 3823 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3824 // If the reduction can be performed in a smaller type, we need to extend 3825 // the reduction to the wider type before we branch to the original loop. 3826 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3827 ReducedPartRdx = 3828 RdxDesc.isSigned() 3829 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3830 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3831 } 3832 3833 // Create a phi node that merges control-flow from the backedge-taken check 3834 // block and the middle block. 3835 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3836 LoopScalarPreHeader->getTerminator()); 3837 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3838 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3839 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3840 3841 // Now, we need to fix the users of the reduction variable 3842 // inside and outside of the scalar remainder loop. 3843 // We know that the loop is in LCSSA form. We need to update the 3844 // PHI nodes in the exit blocks. 3845 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3846 // All PHINodes need to have a single entry edge, or two if 3847 // we already fixed them. 3848 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3849 3850 // We found a reduction value exit-PHI. Update it with the 3851 // incoming bypass edge. 3852 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3853 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3854 } // end of the LCSSA phi scan. 3855 3856 // Fix the scalar loop reduction variable with the incoming reduction sum 3857 // from the vector body and from the backedge value. 3858 int IncomingEdgeBlockIdx = 3859 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3860 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3861 // Pick the other block. 3862 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3863 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3864 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3865 } 3866 3867 void InnerLoopVectorizer::clearReductionWrapFlags( 3868 RecurrenceDescriptor &RdxDesc) { 3869 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3870 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3871 RK != RecurrenceDescriptor::RK_IntegerMult) 3872 return; 3873 3874 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3875 assert(LoopExitInstr && "null loop exit instruction"); 3876 SmallVector<Instruction *, 8> Worklist; 3877 SmallPtrSet<Instruction *, 8> Visited; 3878 Worklist.push_back(LoopExitInstr); 3879 Visited.insert(LoopExitInstr); 3880 3881 while (!Worklist.empty()) { 3882 Instruction *Cur = Worklist.pop_back_val(); 3883 if (isa<OverflowingBinaryOperator>(Cur)) 3884 for (unsigned Part = 0; Part < UF; ++Part) { 3885 Value *V = getOrCreateVectorValue(Cur, Part); 3886 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3887 } 3888 3889 for (User *U : Cur->users()) { 3890 Instruction *UI = cast<Instruction>(U); 3891 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3892 Visited.insert(UI).second) 3893 Worklist.push_back(UI); 3894 } 3895 } 3896 } 3897 3898 void InnerLoopVectorizer::fixLCSSAPHIs() { 3899 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3900 if (LCSSAPhi.getNumIncomingValues() == 1) { 3901 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3902 // Non-instruction incoming values will have only one value. 3903 unsigned LastLane = 0; 3904 if (isa<Instruction>(IncomingValue)) 3905 LastLane = Cost->isUniformAfterVectorization( 3906 cast<Instruction>(IncomingValue), VF) 3907 ? 0 3908 : VF - 1; 3909 // Can be a loop invariant incoming value or the last scalar value to be 3910 // extracted from the vectorized loop. 3911 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3912 Value *lastIncomingValue = 3913 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3914 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3915 } 3916 } 3917 } 3918 3919 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3920 // The basic block and loop containing the predicated instruction. 3921 auto *PredBB = PredInst->getParent(); 3922 auto *VectorLoop = LI->getLoopFor(PredBB); 3923 3924 // Initialize a worklist with the operands of the predicated instruction. 3925 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3926 3927 // Holds instructions that we need to analyze again. An instruction may be 3928 // reanalyzed if we don't yet know if we can sink it or not. 3929 SmallVector<Instruction *, 8> InstsToReanalyze; 3930 3931 // Returns true if a given use occurs in the predicated block. Phi nodes use 3932 // their operands in their corresponding predecessor blocks. 3933 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3934 auto *I = cast<Instruction>(U.getUser()); 3935 BasicBlock *BB = I->getParent(); 3936 if (auto *Phi = dyn_cast<PHINode>(I)) 3937 BB = Phi->getIncomingBlock( 3938 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3939 return BB == PredBB; 3940 }; 3941 3942 // Iteratively sink the scalarized operands of the predicated instruction 3943 // into the block we created for it. When an instruction is sunk, it's 3944 // operands are then added to the worklist. The algorithm ends after one pass 3945 // through the worklist doesn't sink a single instruction. 3946 bool Changed; 3947 do { 3948 // Add the instructions that need to be reanalyzed to the worklist, and 3949 // reset the changed indicator. 3950 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3951 InstsToReanalyze.clear(); 3952 Changed = false; 3953 3954 while (!Worklist.empty()) { 3955 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3956 3957 // We can't sink an instruction if it is a phi node, is already in the 3958 // predicated block, is not in the loop, or may have side effects. 3959 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3960 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3961 continue; 3962 3963 // It's legal to sink the instruction if all its uses occur in the 3964 // predicated block. Otherwise, there's nothing to do yet, and we may 3965 // need to reanalyze the instruction. 3966 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3967 InstsToReanalyze.push_back(I); 3968 continue; 3969 } 3970 3971 // Move the instruction to the beginning of the predicated block, and add 3972 // it's operands to the worklist. 3973 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3974 Worklist.insert(I->op_begin(), I->op_end()); 3975 3976 // The sinking may have enabled other instructions to be sunk, so we will 3977 // need to iterate. 3978 Changed = true; 3979 } 3980 } while (Changed); 3981 } 3982 3983 void InnerLoopVectorizer::fixNonInductionPHIs() { 3984 for (PHINode *OrigPhi : OrigPHIsToFix) { 3985 PHINode *NewPhi = 3986 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3987 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3988 3989 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3990 predecessors(OrigPhi->getParent())); 3991 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3992 predecessors(NewPhi->getParent())); 3993 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3994 "Scalar and Vector BB should have the same number of predecessors"); 3995 3996 // The insertion point in Builder may be invalidated by the time we get 3997 // here. Force the Builder insertion point to something valid so that we do 3998 // not run into issues during insertion point restore in 3999 // getOrCreateVectorValue calls below. 4000 Builder.SetInsertPoint(NewPhi); 4001 4002 // The predecessor order is preserved and we can rely on mapping between 4003 // scalar and vector block predecessors. 4004 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4005 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4006 4007 // When looking up the new scalar/vector values to fix up, use incoming 4008 // values from original phi. 4009 Value *ScIncV = 4010 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4011 4012 // Scalar incoming value may need a broadcast 4013 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4014 NewPhi->addIncoming(NewIncV, NewPredBB); 4015 } 4016 } 4017 } 4018 4019 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF, 4020 unsigned VF, bool IsPtrLoopInvariant, 4021 SmallBitVector &IsIndexLoopInvariant) { 4022 // Construct a vector GEP by widening the operands of the scalar GEP as 4023 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4024 // results in a vector of pointers when at least one operand of the GEP 4025 // is vector-typed. Thus, to keep the representation compact, we only use 4026 // vector-typed operands for loop-varying values. 4027 4028 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4029 // If we are vectorizing, but the GEP has only loop-invariant operands, 4030 // the GEP we build (by only using vector-typed operands for 4031 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4032 // produce a vector of pointers, we need to either arbitrarily pick an 4033 // operand to broadcast, or broadcast a clone of the original GEP. 4034 // Here, we broadcast a clone of the original. 4035 // 4036 // TODO: If at some point we decide to scalarize instructions having 4037 // loop-invariant operands, this special case will no longer be 4038 // required. We would add the scalarization decision to 4039 // collectLoopScalars() and teach getVectorValue() to broadcast 4040 // the lane-zero scalar value. 4041 auto *Clone = Builder.Insert(GEP->clone()); 4042 for (unsigned Part = 0; Part < UF; ++Part) { 4043 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4044 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4045 addMetadata(EntryPart, GEP); 4046 } 4047 } else { 4048 // If the GEP has at least one loop-varying operand, we are sure to 4049 // produce a vector of pointers. But if we are only unrolling, we want 4050 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4051 // produce with the code below will be scalar (if VF == 1) or vector 4052 // (otherwise). Note that for the unroll-only case, we still maintain 4053 // values in the vector mapping with initVector, as we do for other 4054 // instructions. 4055 for (unsigned Part = 0; Part < UF; ++Part) { 4056 // The pointer operand of the new GEP. If it's loop-invariant, we 4057 // won't broadcast it. 4058 auto *Ptr = IsPtrLoopInvariant 4059 ? GEP->getPointerOperand() 4060 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4061 4062 // Collect all the indices for the new GEP. If any index is 4063 // loop-invariant, we won't broadcast it. 4064 SmallVector<Value *, 4> Indices; 4065 for (auto Index : enumerate(GEP->indices())) { 4066 Value *User = Index.value().get(); 4067 if (IsIndexLoopInvariant[Index.index()]) 4068 Indices.push_back(User); 4069 else 4070 Indices.push_back(getOrCreateVectorValue(User, Part)); 4071 } 4072 4073 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4074 // but it should be a vector, otherwise. 4075 auto *NewGEP = 4076 GEP->isInBounds() 4077 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4078 Indices) 4079 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4080 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4081 "NewGEP is not a pointer vector"); 4082 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4083 addMetadata(NewGEP, GEP); 4084 } 4085 } 4086 } 4087 4088 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4089 unsigned VF) { 4090 PHINode *P = cast<PHINode>(PN); 4091 if (EnableVPlanNativePath) { 4092 // Currently we enter here in the VPlan-native path for non-induction 4093 // PHIs where all control flow is uniform. We simply widen these PHIs. 4094 // Create a vector phi with no operands - the vector phi operands will be 4095 // set at the end of vector code generation. 4096 Type *VecTy = 4097 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4098 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4099 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4100 OrigPHIsToFix.push_back(P); 4101 4102 return; 4103 } 4104 4105 assert(PN->getParent() == OrigLoop->getHeader() && 4106 "Non-header phis should have been handled elsewhere"); 4107 4108 // In order to support recurrences we need to be able to vectorize Phi nodes. 4109 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4110 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4111 // this value when we vectorize all of the instructions that use the PHI. 4112 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4113 for (unsigned Part = 0; Part < UF; ++Part) { 4114 // This is phase one of vectorizing PHIs. 4115 Type *VecTy = 4116 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4117 Value *EntryPart = PHINode::Create( 4118 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4119 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4120 } 4121 return; 4122 } 4123 4124 setDebugLocFromInst(Builder, P); 4125 4126 // This PHINode must be an induction variable. 4127 // Make sure that we know about it. 4128 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4129 4130 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4131 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4132 4133 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4134 // which can be found from the original scalar operations. 4135 switch (II.getKind()) { 4136 case InductionDescriptor::IK_NoInduction: 4137 llvm_unreachable("Unknown induction"); 4138 case InductionDescriptor::IK_IntInduction: 4139 case InductionDescriptor::IK_FpInduction: 4140 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4141 case InductionDescriptor::IK_PtrInduction: { 4142 // Handle the pointer induction variable case. 4143 assert(P->getType()->isPointerTy() && "Unexpected type."); 4144 // This is the normalized GEP that starts counting at zero. 4145 Value *PtrInd = Induction; 4146 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4147 // Determine the number of scalars we need to generate for each unroll 4148 // iteration. If the instruction is uniform, we only need to generate the 4149 // first lane. Otherwise, we generate all VF values. 4150 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4151 // These are the scalar results. Notice that we don't generate vector GEPs 4152 // because scalar GEPs result in better code. 4153 for (unsigned Part = 0; Part < UF; ++Part) { 4154 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4155 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4156 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4157 Value *SclrGep = 4158 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4159 SclrGep->setName("next.gep"); 4160 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4161 } 4162 } 4163 return; 4164 } 4165 } 4166 } 4167 4168 /// A helper function for checking whether an integer division-related 4169 /// instruction may divide by zero (in which case it must be predicated if 4170 /// executed conditionally in the scalar code). 4171 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4172 /// Non-zero divisors that are non compile-time constants will not be 4173 /// converted into multiplication, so we will still end up scalarizing 4174 /// the division, but can do so w/o predication. 4175 static bool mayDivideByZero(Instruction &I) { 4176 assert((I.getOpcode() == Instruction::UDiv || 4177 I.getOpcode() == Instruction::SDiv || 4178 I.getOpcode() == Instruction::URem || 4179 I.getOpcode() == Instruction::SRem) && 4180 "Unexpected instruction"); 4181 Value *Divisor = I.getOperand(1); 4182 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4183 return !CInt || CInt->isZero(); 4184 } 4185 4186 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4187 switch (I.getOpcode()) { 4188 case Instruction::Br: 4189 case Instruction::PHI: 4190 case Instruction::GetElementPtr: 4191 llvm_unreachable("This instruction is handled by a different recipe."); 4192 case Instruction::UDiv: 4193 case Instruction::SDiv: 4194 case Instruction::SRem: 4195 case Instruction::URem: 4196 case Instruction::Add: 4197 case Instruction::FAdd: 4198 case Instruction::Sub: 4199 case Instruction::FSub: 4200 case Instruction::FNeg: 4201 case Instruction::Mul: 4202 case Instruction::FMul: 4203 case Instruction::FDiv: 4204 case Instruction::FRem: 4205 case Instruction::Shl: 4206 case Instruction::LShr: 4207 case Instruction::AShr: 4208 case Instruction::And: 4209 case Instruction::Or: 4210 case Instruction::Xor: { 4211 // Just widen unops and binops. 4212 setDebugLocFromInst(Builder, &I); 4213 4214 for (unsigned Part = 0; Part < UF; ++Part) { 4215 SmallVector<Value *, 2> Ops; 4216 for (Value *Op : I.operands()) 4217 Ops.push_back(getOrCreateVectorValue(Op, Part)); 4218 4219 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4220 4221 if (auto *VecOp = dyn_cast<Instruction>(V)) 4222 VecOp->copyIRFlags(&I); 4223 4224 // Use this vector value for all users of the original instruction. 4225 VectorLoopValueMap.setVectorValue(&I, Part, V); 4226 addMetadata(V, &I); 4227 } 4228 4229 break; 4230 } 4231 case Instruction::Select: { 4232 // Widen selects. 4233 // If the selector is loop invariant we can create a select 4234 // instruction with a scalar condition. Otherwise, use vector-select. 4235 auto *SE = PSE.getSE(); 4236 bool InvariantCond = 4237 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4238 setDebugLocFromInst(Builder, &I); 4239 4240 // The condition can be loop invariant but still defined inside the 4241 // loop. This means that we can't just use the original 'cond' value. 4242 // We have to take the 'vectorized' value and pick the first lane. 4243 // Instcombine will make this a no-op. 4244 4245 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4246 4247 for (unsigned Part = 0; Part < UF; ++Part) { 4248 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4249 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4250 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4251 Value *Sel = 4252 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4253 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4254 addMetadata(Sel, &I); 4255 } 4256 4257 break; 4258 } 4259 4260 case Instruction::ICmp: 4261 case Instruction::FCmp: { 4262 // Widen compares. Generate vector compares. 4263 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4264 auto *Cmp = cast<CmpInst>(&I); 4265 setDebugLocFromInst(Builder, Cmp); 4266 for (unsigned Part = 0; Part < UF; ++Part) { 4267 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4268 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4269 Value *C = nullptr; 4270 if (FCmp) { 4271 // Propagate fast math flags. 4272 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4273 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4274 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4275 } else { 4276 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4277 } 4278 VectorLoopValueMap.setVectorValue(&I, Part, C); 4279 addMetadata(C, &I); 4280 } 4281 4282 break; 4283 } 4284 4285 case Instruction::ZExt: 4286 case Instruction::SExt: 4287 case Instruction::FPToUI: 4288 case Instruction::FPToSI: 4289 case Instruction::FPExt: 4290 case Instruction::PtrToInt: 4291 case Instruction::IntToPtr: 4292 case Instruction::SIToFP: 4293 case Instruction::UIToFP: 4294 case Instruction::Trunc: 4295 case Instruction::FPTrunc: 4296 case Instruction::BitCast: { 4297 auto *CI = cast<CastInst>(&I); 4298 setDebugLocFromInst(Builder, CI); 4299 4300 /// Vectorize casts. 4301 Type *DestTy = 4302 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4303 4304 for (unsigned Part = 0; Part < UF; ++Part) { 4305 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4306 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4307 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4308 addMetadata(Cast, &I); 4309 } 4310 break; 4311 } 4312 4313 case Instruction::Call: { 4314 // Ignore dbg intrinsics. 4315 if (isa<DbgInfoIntrinsic>(I)) 4316 break; 4317 setDebugLocFromInst(Builder, &I); 4318 4319 Module *M = I.getParent()->getParent()->getParent(); 4320 auto *CI = cast<CallInst>(&I); 4321 4322 StringRef FnName = CI->getCalledFunction()->getName(); 4323 Function *F = CI->getCalledFunction(); 4324 Type *RetTy = ToVectorTy(CI->getType(), VF); 4325 SmallVector<Type *, 4> Tys; 4326 for (Value *ArgOperand : CI->arg_operands()) 4327 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4328 4329 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4330 4331 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4332 // version of the instruction. 4333 // Is it beneficial to perform intrinsic call compared to lib call? 4334 bool NeedToScalarize; 4335 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4336 bool UseVectorIntrinsic = 4337 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4338 assert((UseVectorIntrinsic || !NeedToScalarize) && 4339 "Instruction should be scalarized elsewhere."); 4340 4341 for (unsigned Part = 0; Part < UF; ++Part) { 4342 SmallVector<Value *, 4> Args; 4343 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4344 Value *Arg = CI->getArgOperand(i); 4345 // Some intrinsics have a scalar argument - don't replace it with a 4346 // vector. 4347 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4348 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4349 Args.push_back(Arg); 4350 } 4351 4352 Function *VectorF; 4353 if (UseVectorIntrinsic) { 4354 // Use vector version of the intrinsic. 4355 Type *TysForDecl[] = {CI->getType()}; 4356 if (VF > 1) 4357 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4358 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4359 } else { 4360 // Use vector version of the library call. 4361 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4362 assert(!VFnName.empty() && "Vector function name is empty."); 4363 VectorF = M->getFunction(VFnName); 4364 if (!VectorF) { 4365 // Generate a declaration 4366 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4367 VectorF = 4368 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4369 VectorF->copyAttributesFrom(F); 4370 } 4371 } 4372 assert(VectorF && "Can't create vector function."); 4373 4374 SmallVector<OperandBundleDef, 1> OpBundles; 4375 CI->getOperandBundlesAsDefs(OpBundles); 4376 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4377 4378 if (isa<FPMathOperator>(V)) 4379 V->copyFastMathFlags(CI); 4380 4381 VectorLoopValueMap.setVectorValue(&I, Part, V); 4382 addMetadata(V, &I); 4383 } 4384 4385 break; 4386 } 4387 4388 default: 4389 // This instruction is not vectorized by simple widening. 4390 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4391 llvm_unreachable("Unhandled instruction!"); 4392 } // end of switch. 4393 } 4394 4395 void InnerLoopVectorizer::updateAnalysis() { 4396 // Forget the original basic block. 4397 PSE.getSE()->forgetLoop(OrigLoop); 4398 4399 // DT is not kept up-to-date for outer loop vectorization 4400 if (EnableVPlanNativePath) 4401 return; 4402 4403 // Update the dominator tree information. 4404 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4405 "Entry does not dominate exit."); 4406 4407 DT->addNewBlock(LoopMiddleBlock, 4408 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4409 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4410 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4411 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4412 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4413 } 4414 4415 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4416 // We should not collect Scalars more than once per VF. Right now, this 4417 // function is called from collectUniformsAndScalars(), which already does 4418 // this check. Collecting Scalars for VF=1 does not make any sense. 4419 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4420 "This function should not be visited twice for the same VF"); 4421 4422 SmallSetVector<Instruction *, 8> Worklist; 4423 4424 // These sets are used to seed the analysis with pointers used by memory 4425 // accesses that will remain scalar. 4426 SmallSetVector<Instruction *, 8> ScalarPtrs; 4427 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4428 4429 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4430 // The pointer operands of loads and stores will be scalar as long as the 4431 // memory access is not a gather or scatter operation. The value operand of a 4432 // store will remain scalar if the store is scalarized. 4433 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4434 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4435 assert(WideningDecision != CM_Unknown && 4436 "Widening decision should be ready at this moment"); 4437 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4438 if (Ptr == Store->getValueOperand()) 4439 return WideningDecision == CM_Scalarize; 4440 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4441 "Ptr is neither a value or pointer operand"); 4442 return WideningDecision != CM_GatherScatter; 4443 }; 4444 4445 // A helper that returns true if the given value is a bitcast or 4446 // getelementptr instruction contained in the loop. 4447 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4448 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4449 isa<GetElementPtrInst>(V)) && 4450 !TheLoop->isLoopInvariant(V); 4451 }; 4452 4453 // A helper that evaluates a memory access's use of a pointer. If the use 4454 // will be a scalar use, and the pointer is only used by memory accesses, we 4455 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4456 // PossibleNonScalarPtrs. 4457 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4458 // We only care about bitcast and getelementptr instructions contained in 4459 // the loop. 4460 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4461 return; 4462 4463 // If the pointer has already been identified as scalar (e.g., if it was 4464 // also identified as uniform), there's nothing to do. 4465 auto *I = cast<Instruction>(Ptr); 4466 if (Worklist.count(I)) 4467 return; 4468 4469 // If the use of the pointer will be a scalar use, and all users of the 4470 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4471 // place the pointer in PossibleNonScalarPtrs. 4472 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4473 return isa<LoadInst>(U) || isa<StoreInst>(U); 4474 })) 4475 ScalarPtrs.insert(I); 4476 else 4477 PossibleNonScalarPtrs.insert(I); 4478 }; 4479 4480 // We seed the scalars analysis with three classes of instructions: (1) 4481 // instructions marked uniform-after-vectorization, (2) bitcast and 4482 // getelementptr instructions used by memory accesses requiring a scalar use, 4483 // and (3) pointer induction variables and their update instructions (we 4484 // currently only scalarize these). 4485 // 4486 // (1) Add to the worklist all instructions that have been identified as 4487 // uniform-after-vectorization. 4488 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4489 4490 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4491 // memory accesses requiring a scalar use. The pointer operands of loads and 4492 // stores will be scalar as long as the memory accesses is not a gather or 4493 // scatter operation. The value operand of a store will remain scalar if the 4494 // store is scalarized. 4495 for (auto *BB : TheLoop->blocks()) 4496 for (auto &I : *BB) { 4497 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4498 evaluatePtrUse(Load, Load->getPointerOperand()); 4499 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4500 evaluatePtrUse(Store, Store->getPointerOperand()); 4501 evaluatePtrUse(Store, Store->getValueOperand()); 4502 } 4503 } 4504 for (auto *I : ScalarPtrs) 4505 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4506 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4507 Worklist.insert(I); 4508 } 4509 4510 // (3) Add to the worklist all pointer induction variables and their update 4511 // instructions. 4512 // 4513 // TODO: Once we are able to vectorize pointer induction variables we should 4514 // no longer insert them into the worklist here. 4515 auto *Latch = TheLoop->getLoopLatch(); 4516 for (auto &Induction : *Legal->getInductionVars()) { 4517 auto *Ind = Induction.first; 4518 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4519 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4520 continue; 4521 Worklist.insert(Ind); 4522 Worklist.insert(IndUpdate); 4523 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4524 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4525 << "\n"); 4526 } 4527 4528 // Insert the forced scalars. 4529 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4530 // induction variable when the PHI user is scalarized. 4531 auto ForcedScalar = ForcedScalars.find(VF); 4532 if (ForcedScalar != ForcedScalars.end()) 4533 for (auto *I : ForcedScalar->second) 4534 Worklist.insert(I); 4535 4536 // Expand the worklist by looking through any bitcasts and getelementptr 4537 // instructions we've already identified as scalar. This is similar to the 4538 // expansion step in collectLoopUniforms(); however, here we're only 4539 // expanding to include additional bitcasts and getelementptr instructions. 4540 unsigned Idx = 0; 4541 while (Idx != Worklist.size()) { 4542 Instruction *Dst = Worklist[Idx++]; 4543 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4544 continue; 4545 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4546 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4547 auto *J = cast<Instruction>(U); 4548 return !TheLoop->contains(J) || Worklist.count(J) || 4549 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4550 isScalarUse(J, Src)); 4551 })) { 4552 Worklist.insert(Src); 4553 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4554 } 4555 } 4556 4557 // An induction variable will remain scalar if all users of the induction 4558 // variable and induction variable update remain scalar. 4559 for (auto &Induction : *Legal->getInductionVars()) { 4560 auto *Ind = Induction.first; 4561 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4562 4563 // We already considered pointer induction variables, so there's no reason 4564 // to look at their users again. 4565 // 4566 // TODO: Once we are able to vectorize pointer induction variables we 4567 // should no longer skip over them here. 4568 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4569 continue; 4570 4571 // Determine if all users of the induction variable are scalar after 4572 // vectorization. 4573 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4574 auto *I = cast<Instruction>(U); 4575 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4576 }); 4577 if (!ScalarInd) 4578 continue; 4579 4580 // Determine if all users of the induction variable update instruction are 4581 // scalar after vectorization. 4582 auto ScalarIndUpdate = 4583 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4584 auto *I = cast<Instruction>(U); 4585 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4586 }); 4587 if (!ScalarIndUpdate) 4588 continue; 4589 4590 // The induction variable and its update instruction will remain scalar. 4591 Worklist.insert(Ind); 4592 Worklist.insert(IndUpdate); 4593 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4594 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4595 << "\n"); 4596 } 4597 4598 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4599 } 4600 4601 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4602 if (!blockNeedsPredication(I->getParent())) 4603 return false; 4604 switch(I->getOpcode()) { 4605 default: 4606 break; 4607 case Instruction::Load: 4608 case Instruction::Store: { 4609 if (!Legal->isMaskRequired(I)) 4610 return false; 4611 auto *Ptr = getLoadStorePointerOperand(I); 4612 auto *Ty = getMemInstValueType(I); 4613 // We have already decided how to vectorize this instruction, get that 4614 // result. 4615 if (VF > 1) { 4616 InstWidening WideningDecision = getWideningDecision(I, VF); 4617 assert(WideningDecision != CM_Unknown && 4618 "Widening decision should be ready at this moment"); 4619 return WideningDecision == CM_Scalarize; 4620 } 4621 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4622 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4623 isLegalMaskedGather(Ty, Alignment)) 4624 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4625 isLegalMaskedScatter(Ty, Alignment)); 4626 } 4627 case Instruction::UDiv: 4628 case Instruction::SDiv: 4629 case Instruction::SRem: 4630 case Instruction::URem: 4631 return mayDivideByZero(*I); 4632 } 4633 return false; 4634 } 4635 4636 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4637 unsigned VF) { 4638 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4639 assert(getWideningDecision(I, VF) == CM_Unknown && 4640 "Decision should not be set yet."); 4641 auto *Group = getInterleavedAccessGroup(I); 4642 assert(Group && "Must have a group."); 4643 4644 // If the instruction's allocated size doesn't equal it's type size, it 4645 // requires padding and will be scalarized. 4646 auto &DL = I->getModule()->getDataLayout(); 4647 auto *ScalarTy = getMemInstValueType(I); 4648 if (hasIrregularType(ScalarTy, DL, VF)) 4649 return false; 4650 4651 // Check if masking is required. 4652 // A Group may need masking for one of two reasons: it resides in a block that 4653 // needs predication, or it was decided to use masking to deal with gaps. 4654 bool PredicatedAccessRequiresMasking = 4655 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4656 bool AccessWithGapsRequiresMasking = 4657 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4658 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4659 return true; 4660 4661 // If masked interleaving is required, we expect that the user/target had 4662 // enabled it, because otherwise it either wouldn't have been created or 4663 // it should have been invalidated by the CostModel. 4664 assert(useMaskedInterleavedAccesses(TTI) && 4665 "Masked interleave-groups for predicated accesses are not enabled."); 4666 4667 auto *Ty = getMemInstValueType(I); 4668 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4669 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4670 : TTI.isLegalMaskedStore(Ty, Alignment); 4671 } 4672 4673 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4674 unsigned VF) { 4675 // Get and ensure we have a valid memory instruction. 4676 LoadInst *LI = dyn_cast<LoadInst>(I); 4677 StoreInst *SI = dyn_cast<StoreInst>(I); 4678 assert((LI || SI) && "Invalid memory instruction"); 4679 4680 auto *Ptr = getLoadStorePointerOperand(I); 4681 4682 // In order to be widened, the pointer should be consecutive, first of all. 4683 if (!Legal->isConsecutivePtr(Ptr)) 4684 return false; 4685 4686 // If the instruction is a store located in a predicated block, it will be 4687 // scalarized. 4688 if (isScalarWithPredication(I)) 4689 return false; 4690 4691 // If the instruction's allocated size doesn't equal it's type size, it 4692 // requires padding and will be scalarized. 4693 auto &DL = I->getModule()->getDataLayout(); 4694 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4695 if (hasIrregularType(ScalarTy, DL, VF)) 4696 return false; 4697 4698 return true; 4699 } 4700 4701 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4702 // We should not collect Uniforms more than once per VF. Right now, 4703 // this function is called from collectUniformsAndScalars(), which 4704 // already does this check. Collecting Uniforms for VF=1 does not make any 4705 // sense. 4706 4707 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4708 "This function should not be visited twice for the same VF"); 4709 4710 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4711 // not analyze again. Uniforms.count(VF) will return 1. 4712 Uniforms[VF].clear(); 4713 4714 // We now know that the loop is vectorizable! 4715 // Collect instructions inside the loop that will remain uniform after 4716 // vectorization. 4717 4718 // Global values, params and instructions outside of current loop are out of 4719 // scope. 4720 auto isOutOfScope = [&](Value *V) -> bool { 4721 Instruction *I = dyn_cast<Instruction>(V); 4722 return (!I || !TheLoop->contains(I)); 4723 }; 4724 4725 SetVector<Instruction *> Worklist; 4726 BasicBlock *Latch = TheLoop->getLoopLatch(); 4727 4728 // Instructions that are scalar with predication must not be considered 4729 // uniform after vectorization, because that would create an erroneous 4730 // replicating region where only a single instance out of VF should be formed. 4731 // TODO: optimize such seldom cases if found important, see PR40816. 4732 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4733 if (isScalarWithPredication(I, VF)) { 4734 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4735 << *I << "\n"); 4736 return; 4737 } 4738 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4739 Worklist.insert(I); 4740 }; 4741 4742 // Start with the conditional branch. If the branch condition is an 4743 // instruction contained in the loop that is only used by the branch, it is 4744 // uniform. 4745 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4746 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4747 addToWorklistIfAllowed(Cmp); 4748 4749 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4750 // are pointers that are treated like consecutive pointers during 4751 // vectorization. The pointer operands of interleaved accesses are an 4752 // example. 4753 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4754 4755 // Holds pointer operands of instructions that are possibly non-uniform. 4756 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4757 4758 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4759 InstWidening WideningDecision = getWideningDecision(I, VF); 4760 assert(WideningDecision != CM_Unknown && 4761 "Widening decision should be ready at this moment"); 4762 4763 return (WideningDecision == CM_Widen || 4764 WideningDecision == CM_Widen_Reverse || 4765 WideningDecision == CM_Interleave); 4766 }; 4767 // Iterate over the instructions in the loop, and collect all 4768 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4769 // that a consecutive-like pointer operand will be scalarized, we collect it 4770 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4771 // getelementptr instruction can be used by both vectorized and scalarized 4772 // memory instructions. For example, if a loop loads and stores from the same 4773 // location, but the store is conditional, the store will be scalarized, and 4774 // the getelementptr won't remain uniform. 4775 for (auto *BB : TheLoop->blocks()) 4776 for (auto &I : *BB) { 4777 // If there's no pointer operand, there's nothing to do. 4778 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4779 if (!Ptr) 4780 continue; 4781 4782 // True if all users of Ptr are memory accesses that have Ptr as their 4783 // pointer operand. 4784 auto UsersAreMemAccesses = 4785 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4786 return getLoadStorePointerOperand(U) == Ptr; 4787 }); 4788 4789 // Ensure the memory instruction will not be scalarized or used by 4790 // gather/scatter, making its pointer operand non-uniform. If the pointer 4791 // operand is used by any instruction other than a memory access, we 4792 // conservatively assume the pointer operand may be non-uniform. 4793 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4794 PossibleNonUniformPtrs.insert(Ptr); 4795 4796 // If the memory instruction will be vectorized and its pointer operand 4797 // is consecutive-like, or interleaving - the pointer operand should 4798 // remain uniform. 4799 else 4800 ConsecutiveLikePtrs.insert(Ptr); 4801 } 4802 4803 // Add to the Worklist all consecutive and consecutive-like pointers that 4804 // aren't also identified as possibly non-uniform. 4805 for (auto *V : ConsecutiveLikePtrs) 4806 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) 4807 addToWorklistIfAllowed(V); 4808 4809 // Expand Worklist in topological order: whenever a new instruction 4810 // is added , its users should be already inside Worklist. It ensures 4811 // a uniform instruction will only be used by uniform instructions. 4812 unsigned idx = 0; 4813 while (idx != Worklist.size()) { 4814 Instruction *I = Worklist[idx++]; 4815 4816 for (auto OV : I->operand_values()) { 4817 // isOutOfScope operands cannot be uniform instructions. 4818 if (isOutOfScope(OV)) 4819 continue; 4820 // First order recurrence Phi's should typically be considered 4821 // non-uniform. 4822 auto *OP = dyn_cast<PHINode>(OV); 4823 if (OP && Legal->isFirstOrderRecurrence(OP)) 4824 continue; 4825 // If all the users of the operand are uniform, then add the 4826 // operand into the uniform worklist. 4827 auto *OI = cast<Instruction>(OV); 4828 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4829 auto *J = cast<Instruction>(U); 4830 return Worklist.count(J) || 4831 (OI == getLoadStorePointerOperand(J) && 4832 isUniformDecision(J, VF)); 4833 })) 4834 addToWorklistIfAllowed(OI); 4835 } 4836 } 4837 4838 // Returns true if Ptr is the pointer operand of a memory access instruction 4839 // I, and I is known to not require scalarization. 4840 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4841 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4842 }; 4843 4844 // For an instruction to be added into Worklist above, all its users inside 4845 // the loop should also be in Worklist. However, this condition cannot be 4846 // true for phi nodes that form a cyclic dependence. We must process phi 4847 // nodes separately. An induction variable will remain uniform if all users 4848 // of the induction variable and induction variable update remain uniform. 4849 // The code below handles both pointer and non-pointer induction variables. 4850 for (auto &Induction : *Legal->getInductionVars()) { 4851 auto *Ind = Induction.first; 4852 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4853 4854 // Determine if all users of the induction variable are uniform after 4855 // vectorization. 4856 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4857 auto *I = cast<Instruction>(U); 4858 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4859 isVectorizedMemAccessUse(I, Ind); 4860 }); 4861 if (!UniformInd) 4862 continue; 4863 4864 // Determine if all users of the induction variable update instruction are 4865 // uniform after vectorization. 4866 auto UniformIndUpdate = 4867 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4868 auto *I = cast<Instruction>(U); 4869 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4870 isVectorizedMemAccessUse(I, IndUpdate); 4871 }); 4872 if (!UniformIndUpdate) 4873 continue; 4874 4875 // The induction variable and its update instruction will remain uniform. 4876 addToWorklistIfAllowed(Ind); 4877 addToWorklistIfAllowed(IndUpdate); 4878 } 4879 4880 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4881 } 4882 4883 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4884 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4885 4886 if (Legal->getRuntimePointerChecking()->Need) { 4887 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4888 "runtime pointer checks needed. Enable vectorization of this " 4889 "loop with '#pragma clang loop vectorize(enable)' when " 4890 "compiling with -Os/-Oz", 4891 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4892 return true; 4893 } 4894 4895 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4896 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4897 "runtime SCEV checks needed. Enable vectorization of this " 4898 "loop with '#pragma clang loop vectorize(enable)' when " 4899 "compiling with -Os/-Oz", 4900 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4901 return true; 4902 } 4903 4904 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4905 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4906 reportVectorizationFailure("Runtime stride check is required with -Os/-Oz", 4907 "runtime stride == 1 checks needed. Enable vectorization of " 4908 "this loop with '#pragma clang loop vectorize(enable)' when " 4909 "compiling with -Os/-Oz", 4910 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4911 return true; 4912 } 4913 4914 return false; 4915 } 4916 4917 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() { 4918 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4919 // TODO: It may by useful to do since it's still likely to be dynamically 4920 // uniform if the target can skip. 4921 reportVectorizationFailure( 4922 "Not inserting runtime ptr check for divergent target", 4923 "runtime pointer checks needed. Not enabled for divergent target", 4924 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4925 return None; 4926 } 4927 4928 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4929 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4930 if (TC == 1) { 4931 reportVectorizationFailure("Single iteration (non) loop", 4932 "loop trip count is one, irrelevant for vectorization", 4933 "SingleIterationLoop", ORE, TheLoop); 4934 return None; 4935 } 4936 4937 switch (ScalarEpilogueStatus) { 4938 case CM_ScalarEpilogueAllowed: 4939 return computeFeasibleMaxVF(TC); 4940 case CM_ScalarEpilogueNotNeededUsePredicate: 4941 LLVM_DEBUG( 4942 dbgs() << "LV: vector predicate hint/switch found.\n" 4943 << "LV: Not allowing scalar epilogue, creating predicated " 4944 << "vector loop.\n"); 4945 break; 4946 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4947 // fallthrough as a special case of OptForSize 4948 case CM_ScalarEpilogueNotAllowedOptSize: 4949 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4950 LLVM_DEBUG( 4951 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4952 else 4953 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4954 << "count.\n"); 4955 4956 // Bail if runtime checks are required, which are not good when optimising 4957 // for size. 4958 if (runtimeChecksRequired()) 4959 return None; 4960 break; 4961 } 4962 4963 // Now try the tail folding 4964 4965 // Invalidate interleave groups that require an epilogue if we can't mask 4966 // the interleave-group. 4967 if (!useMaskedInterleavedAccesses(TTI)) 4968 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4969 4970 unsigned MaxVF = computeFeasibleMaxVF(TC); 4971 if (TC > 0 && TC % MaxVF == 0) { 4972 // Accept MaxVF if we do not have a tail. 4973 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4974 return MaxVF; 4975 } 4976 4977 // If we don't know the precise trip count, or if the trip count that we 4978 // found modulo the vectorization factor is not zero, try to fold the tail 4979 // by masking. 4980 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4981 if (Legal->prepareToFoldTailByMasking()) { 4982 FoldTailByMasking = true; 4983 return MaxVF; 4984 } 4985 4986 if (TC == 0) { 4987 reportVectorizationFailure( 4988 "Unable to calculate the loop count due to complex control flow", 4989 "unable to calculate the loop count due to complex control flow", 4990 "UnknownLoopCountComplexCFG", ORE, TheLoop); 4991 return None; 4992 } 4993 4994 reportVectorizationFailure( 4995 "Cannot optimize for size and vectorize at the same time.", 4996 "cannot optimize for size and vectorize at the same time. " 4997 "Enable vectorization of this loop with '#pragma clang loop " 4998 "vectorize(enable)' when compiling with -Os/-Oz", 4999 "NoTailLoopWithOptForSize", ORE, TheLoop); 5000 return None; 5001 } 5002 5003 unsigned 5004 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5005 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5006 unsigned SmallestType, WidestType; 5007 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5008 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5009 5010 // Get the maximum safe dependence distance in bits computed by LAA. 5011 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5012 // the memory accesses that is most restrictive (involved in the smallest 5013 // dependence distance). 5014 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5015 5016 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5017 5018 unsigned MaxVectorSize = WidestRegister / WidestType; 5019 5020 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5021 << " / " << WidestType << " bits.\n"); 5022 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5023 << WidestRegister << " bits.\n"); 5024 5025 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5026 " into one vector!"); 5027 if (MaxVectorSize == 0) { 5028 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5029 MaxVectorSize = 1; 5030 return MaxVectorSize; 5031 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5032 isPowerOf2_32(ConstTripCount)) { 5033 // We need to clamp the VF to be the ConstTripCount. There is no point in 5034 // choosing a higher viable VF as done in the loop below. 5035 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5036 << ConstTripCount << "\n"); 5037 MaxVectorSize = ConstTripCount; 5038 return MaxVectorSize; 5039 } 5040 5041 unsigned MaxVF = MaxVectorSize; 5042 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5043 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5044 // Collect all viable vectorization factors larger than the default MaxVF 5045 // (i.e. MaxVectorSize). 5046 SmallVector<unsigned, 8> VFs; 5047 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5048 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5049 VFs.push_back(VS); 5050 5051 // For each VF calculate its register usage. 5052 auto RUs = calculateRegisterUsage(VFs); 5053 5054 // Select the largest VF which doesn't require more registers than existing 5055 // ones. 5056 for (int i = RUs.size() - 1; i >= 0; --i) { 5057 bool Selected = true; 5058 for (auto& pair : RUs[i].MaxLocalUsers) { 5059 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5060 if (pair.second > TargetNumRegisters) 5061 Selected = false; 5062 } 5063 if (Selected) { 5064 MaxVF = VFs[i]; 5065 break; 5066 } 5067 } 5068 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5069 if (MaxVF < MinVF) { 5070 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5071 << ") with target's minimum: " << MinVF << '\n'); 5072 MaxVF = MinVF; 5073 } 5074 } 5075 } 5076 return MaxVF; 5077 } 5078 5079 VectorizationFactor 5080 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5081 float Cost = expectedCost(1).first; 5082 const float ScalarCost = Cost; 5083 unsigned Width = 1; 5084 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5085 5086 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5087 if (ForceVectorization && MaxVF > 1) { 5088 // Ignore scalar width, because the user explicitly wants vectorization. 5089 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5090 // evaluation. 5091 Cost = std::numeric_limits<float>::max(); 5092 } 5093 5094 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5095 // Notice that the vector loop needs to be executed less times, so 5096 // we need to divide the cost of the vector loops by the width of 5097 // the vector elements. 5098 VectorizationCostTy C = expectedCost(i); 5099 float VectorCost = C.first / (float)i; 5100 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5101 << " costs: " << (int)VectorCost << ".\n"); 5102 if (!C.second && !ForceVectorization) { 5103 LLVM_DEBUG( 5104 dbgs() << "LV: Not considering vector loop of width " << i 5105 << " because it will not generate any vector instructions.\n"); 5106 continue; 5107 } 5108 if (VectorCost < Cost) { 5109 Cost = VectorCost; 5110 Width = i; 5111 } 5112 } 5113 5114 if (!EnableCondStoresVectorization && NumPredStores) { 5115 reportVectorizationFailure("There are conditional stores.", 5116 "store that is conditionally executed prevents vectorization", 5117 "ConditionalStore", ORE, TheLoop); 5118 Width = 1; 5119 Cost = ScalarCost; 5120 } 5121 5122 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5123 << "LV: Vectorization seems to be not beneficial, " 5124 << "but was forced by a user.\n"); 5125 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5126 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5127 return Factor; 5128 } 5129 5130 std::pair<unsigned, unsigned> 5131 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5132 unsigned MinWidth = -1U; 5133 unsigned MaxWidth = 8; 5134 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5135 5136 // For each block. 5137 for (BasicBlock *BB : TheLoop->blocks()) { 5138 // For each instruction in the loop. 5139 for (Instruction &I : BB->instructionsWithoutDebug()) { 5140 Type *T = I.getType(); 5141 5142 // Skip ignored values. 5143 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 5144 continue; 5145 5146 // Only examine Loads, Stores and PHINodes. 5147 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5148 continue; 5149 5150 // Examine PHI nodes that are reduction variables. Update the type to 5151 // account for the recurrence type. 5152 if (auto *PN = dyn_cast<PHINode>(&I)) { 5153 if (!Legal->isReductionVariable(PN)) 5154 continue; 5155 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5156 T = RdxDesc.getRecurrenceType(); 5157 } 5158 5159 // Examine the stored values. 5160 if (auto *ST = dyn_cast<StoreInst>(&I)) 5161 T = ST->getValueOperand()->getType(); 5162 5163 // Ignore loaded pointer types and stored pointer types that are not 5164 // vectorizable. 5165 // 5166 // FIXME: The check here attempts to predict whether a load or store will 5167 // be vectorized. We only know this for certain after a VF has 5168 // been selected. Here, we assume that if an access can be 5169 // vectorized, it will be. We should also look at extending this 5170 // optimization to non-pointer types. 5171 // 5172 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5173 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5174 continue; 5175 5176 MinWidth = std::min(MinWidth, 5177 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5178 MaxWidth = std::max(MaxWidth, 5179 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5180 } 5181 } 5182 5183 return {MinWidth, MaxWidth}; 5184 } 5185 5186 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5187 unsigned LoopCost) { 5188 // -- The interleave heuristics -- 5189 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5190 // There are many micro-architectural considerations that we can't predict 5191 // at this level. For example, frontend pressure (on decode or fetch) due to 5192 // code size, or the number and capabilities of the execution ports. 5193 // 5194 // We use the following heuristics to select the interleave count: 5195 // 1. If the code has reductions, then we interleave to break the cross 5196 // iteration dependency. 5197 // 2. If the loop is really small, then we interleave to reduce the loop 5198 // overhead. 5199 // 3. We don't interleave if we think that we will spill registers to memory 5200 // due to the increased register pressure. 5201 5202 if (!isScalarEpilogueAllowed()) 5203 return 1; 5204 5205 // We used the distance for the interleave count. 5206 if (Legal->getMaxSafeDepDistBytes() != -1U) 5207 return 1; 5208 5209 // Do not interleave loops with a relatively small known or estimated trip 5210 // count. 5211 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5212 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5213 return 1; 5214 5215 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5216 // We divide by these constants so assume that we have at least one 5217 // instruction that uses at least one register. 5218 for (auto& pair : R.MaxLocalUsers) { 5219 pair.second = std::max(pair.second, 1U); 5220 } 5221 5222 // We calculate the interleave count using the following formula. 5223 // Subtract the number of loop invariants from the number of available 5224 // registers. These registers are used by all of the interleaved instances. 5225 // Next, divide the remaining registers by the number of registers that is 5226 // required by the loop, in order to estimate how many parallel instances 5227 // fit without causing spills. All of this is rounded down if necessary to be 5228 // a power of two. We want power of two interleave count to simplify any 5229 // addressing operations or alignment considerations. 5230 // We also want power of two interleave counts to ensure that the induction 5231 // variable of the vector loop wraps to zero, when tail is folded by masking; 5232 // this currently happens when OptForSize, in which case IC is set to 1 above. 5233 unsigned IC = UINT_MAX; 5234 5235 for (auto& pair : R.MaxLocalUsers) { 5236 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5237 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5238 << " registers of " 5239 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5240 if (VF == 1) { 5241 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5242 TargetNumRegisters = ForceTargetNumScalarRegs; 5243 } else { 5244 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5245 TargetNumRegisters = ForceTargetNumVectorRegs; 5246 } 5247 unsigned MaxLocalUsers = pair.second; 5248 unsigned LoopInvariantRegs = 0; 5249 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5250 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5251 5252 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5253 // Don't count the induction variable as interleaved. 5254 if (EnableIndVarRegisterHeur) { 5255 TmpIC = 5256 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5257 std::max(1U, (MaxLocalUsers - 1))); 5258 } 5259 5260 IC = std::min(IC, TmpIC); 5261 } 5262 5263 // Clamp the interleave ranges to reasonable counts. 5264 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5265 5266 // Check if the user has overridden the max. 5267 if (VF == 1) { 5268 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5269 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5270 } else { 5271 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5272 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5273 } 5274 5275 // If trip count is known or estimated compile time constant, limit the 5276 // interleave count to be less than the trip count divided by VF. 5277 if (BestKnownTC) { 5278 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5279 } 5280 5281 // If we did not calculate the cost for VF (because the user selected the VF) 5282 // then we calculate the cost of VF here. 5283 if (LoopCost == 0) 5284 LoopCost = expectedCost(VF).first; 5285 5286 assert(LoopCost && "Non-zero loop cost expected"); 5287 5288 // Clamp the calculated IC to be between the 1 and the max interleave count 5289 // that the target and trip count allows. 5290 if (IC > MaxInterleaveCount) 5291 IC = MaxInterleaveCount; 5292 else if (IC < 1) 5293 IC = 1; 5294 5295 // Interleave if we vectorized this loop and there is a reduction that could 5296 // benefit from interleaving. 5297 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5298 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5299 return IC; 5300 } 5301 5302 // Note that if we've already vectorized the loop we will have done the 5303 // runtime check and so interleaving won't require further checks. 5304 bool InterleavingRequiresRuntimePointerCheck = 5305 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5306 5307 // We want to interleave small loops in order to reduce the loop overhead and 5308 // potentially expose ILP opportunities. 5309 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5310 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5311 // We assume that the cost overhead is 1 and we use the cost model 5312 // to estimate the cost of the loop and interleave until the cost of the 5313 // loop overhead is about 5% of the cost of the loop. 5314 unsigned SmallIC = 5315 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5316 5317 // Interleave until store/load ports (estimated by max interleave count) are 5318 // saturated. 5319 unsigned NumStores = Legal->getNumStores(); 5320 unsigned NumLoads = Legal->getNumLoads(); 5321 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5322 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5323 5324 // If we have a scalar reduction (vector reductions are already dealt with 5325 // by this point), we can increase the critical path length if the loop 5326 // we're interleaving is inside another loop. Limit, by default to 2, so the 5327 // critical path only gets increased by one reduction operation. 5328 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5329 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5330 SmallIC = std::min(SmallIC, F); 5331 StoresIC = std::min(StoresIC, F); 5332 LoadsIC = std::min(LoadsIC, F); 5333 } 5334 5335 if (EnableLoadStoreRuntimeInterleave && 5336 std::max(StoresIC, LoadsIC) > SmallIC) { 5337 LLVM_DEBUG( 5338 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5339 return std::max(StoresIC, LoadsIC); 5340 } 5341 5342 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5343 return SmallIC; 5344 } 5345 5346 // Interleave if this is a large loop (small loops are already dealt with by 5347 // this point) that could benefit from interleaving. 5348 bool HasReductions = !Legal->getReductionVars()->empty(); 5349 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5350 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5351 return IC; 5352 } 5353 5354 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5355 return 1; 5356 } 5357 5358 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5359 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5360 // This function calculates the register usage by measuring the highest number 5361 // of values that are alive at a single location. Obviously, this is a very 5362 // rough estimation. We scan the loop in a topological order in order and 5363 // assign a number to each instruction. We use RPO to ensure that defs are 5364 // met before their users. We assume that each instruction that has in-loop 5365 // users starts an interval. We record every time that an in-loop value is 5366 // used, so we have a list of the first and last occurrences of each 5367 // instruction. Next, we transpose this data structure into a multi map that 5368 // holds the list of intervals that *end* at a specific location. This multi 5369 // map allows us to perform a linear search. We scan the instructions linearly 5370 // and record each time that a new interval starts, by placing it in a set. 5371 // If we find this value in the multi-map then we remove it from the set. 5372 // The max register usage is the maximum size of the set. 5373 // We also search for instructions that are defined outside the loop, but are 5374 // used inside the loop. We need this number separately from the max-interval 5375 // usage number because when we unroll, loop-invariant values do not take 5376 // more register. 5377 LoopBlocksDFS DFS(TheLoop); 5378 DFS.perform(LI); 5379 5380 RegisterUsage RU; 5381 5382 // Each 'key' in the map opens a new interval. The values 5383 // of the map are the index of the 'last seen' usage of the 5384 // instruction that is the key. 5385 using IntervalMap = DenseMap<Instruction *, unsigned>; 5386 5387 // Maps instruction to its index. 5388 SmallVector<Instruction *, 64> IdxToInstr; 5389 // Marks the end of each interval. 5390 IntervalMap EndPoint; 5391 // Saves the list of instruction indices that are used in the loop. 5392 SmallPtrSet<Instruction *, 8> Ends; 5393 // Saves the list of values that are used in the loop but are 5394 // defined outside the loop, such as arguments and constants. 5395 SmallPtrSet<Value *, 8> LoopInvariants; 5396 5397 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5398 for (Instruction &I : BB->instructionsWithoutDebug()) { 5399 IdxToInstr.push_back(&I); 5400 5401 // Save the end location of each USE. 5402 for (Value *U : I.operands()) { 5403 auto *Instr = dyn_cast<Instruction>(U); 5404 5405 // Ignore non-instruction values such as arguments, constants, etc. 5406 if (!Instr) 5407 continue; 5408 5409 // If this instruction is outside the loop then record it and continue. 5410 if (!TheLoop->contains(Instr)) { 5411 LoopInvariants.insert(Instr); 5412 continue; 5413 } 5414 5415 // Overwrite previous end points. 5416 EndPoint[Instr] = IdxToInstr.size(); 5417 Ends.insert(Instr); 5418 } 5419 } 5420 } 5421 5422 // Saves the list of intervals that end with the index in 'key'. 5423 using InstrList = SmallVector<Instruction *, 2>; 5424 DenseMap<unsigned, InstrList> TransposeEnds; 5425 5426 // Transpose the EndPoints to a list of values that end at each index. 5427 for (auto &Interval : EndPoint) 5428 TransposeEnds[Interval.second].push_back(Interval.first); 5429 5430 SmallPtrSet<Instruction *, 8> OpenIntervals; 5431 5432 // Get the size of the widest register. 5433 unsigned MaxSafeDepDist = -1U; 5434 if (Legal->getMaxSafeDepDistBytes() != -1U) 5435 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5436 unsigned WidestRegister = 5437 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5438 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5439 5440 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5441 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5442 5443 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5444 5445 // A lambda that gets the register usage for the given type and VF. 5446 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5447 if (Ty->isTokenTy()) 5448 return 0U; 5449 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5450 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5451 }; 5452 5453 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5454 Instruction *I = IdxToInstr[i]; 5455 5456 // Remove all of the instructions that end at this location. 5457 InstrList &List = TransposeEnds[i]; 5458 for (Instruction *ToRemove : List) 5459 OpenIntervals.erase(ToRemove); 5460 5461 // Ignore instructions that are never used within the loop. 5462 if (Ends.find(I) == Ends.end()) 5463 continue; 5464 5465 // Skip ignored values. 5466 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5467 continue; 5468 5469 // For each VF find the maximum usage of registers. 5470 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5471 // Count the number of live intervals. 5472 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5473 5474 if (VFs[j] == 1) { 5475 for (auto Inst : OpenIntervals) { 5476 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5477 if (RegUsage.find(ClassID) == RegUsage.end()) 5478 RegUsage[ClassID] = 1; 5479 else 5480 RegUsage[ClassID] += 1; 5481 } 5482 } else { 5483 collectUniformsAndScalars(VFs[j]); 5484 for (auto Inst : OpenIntervals) { 5485 // Skip ignored values for VF > 1. 5486 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end()) 5487 continue; 5488 if (isScalarAfterVectorization(Inst, VFs[j])) { 5489 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5490 if (RegUsage.find(ClassID) == RegUsage.end()) 5491 RegUsage[ClassID] = 1; 5492 else 5493 RegUsage[ClassID] += 1; 5494 } else { 5495 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5496 if (RegUsage.find(ClassID) == RegUsage.end()) 5497 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5498 else 5499 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5500 } 5501 } 5502 } 5503 5504 for (auto& pair : RegUsage) { 5505 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5506 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5507 else 5508 MaxUsages[j][pair.first] = pair.second; 5509 } 5510 } 5511 5512 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5513 << OpenIntervals.size() << '\n'); 5514 5515 // Add the current instruction to the list of open intervals. 5516 OpenIntervals.insert(I); 5517 } 5518 5519 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5520 SmallMapVector<unsigned, unsigned, 4> Invariant; 5521 5522 for (auto Inst : LoopInvariants) { 5523 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5524 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5525 if (Invariant.find(ClassID) == Invariant.end()) 5526 Invariant[ClassID] = Usage; 5527 else 5528 Invariant[ClassID] += Usage; 5529 } 5530 5531 LLVM_DEBUG({ 5532 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5533 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5534 << " item\n"; 5535 for (const auto &pair : MaxUsages[i]) { 5536 dbgs() << "LV(REG): RegisterClass: " 5537 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5538 << " registers\n"; 5539 } 5540 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5541 << " item\n"; 5542 for (const auto &pair : Invariant) { 5543 dbgs() << "LV(REG): RegisterClass: " 5544 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5545 << " registers\n"; 5546 } 5547 }); 5548 5549 RU.LoopInvariantRegs = Invariant; 5550 RU.MaxLocalUsers = MaxUsages[i]; 5551 RUs[i] = RU; 5552 } 5553 5554 return RUs; 5555 } 5556 5557 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5558 // TODO: Cost model for emulated masked load/store is completely 5559 // broken. This hack guides the cost model to use an artificially 5560 // high enough value to practically disable vectorization with such 5561 // operations, except where previously deployed legality hack allowed 5562 // using very low cost values. This is to avoid regressions coming simply 5563 // from moving "masked load/store" check from legality to cost model. 5564 // Masked Load/Gather emulation was previously never allowed. 5565 // Limited number of Masked Store/Scatter emulation was allowed. 5566 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5567 return isa<LoadInst>(I) || 5568 (isa<StoreInst>(I) && 5569 NumPredStores > NumberOfStoresToPredicate); 5570 } 5571 5572 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5573 // If we aren't vectorizing the loop, or if we've already collected the 5574 // instructions to scalarize, there's nothing to do. Collection may already 5575 // have occurred if we have a user-selected VF and are now computing the 5576 // expected cost for interleaving. 5577 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5578 return; 5579 5580 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5581 // not profitable to scalarize any instructions, the presence of VF in the 5582 // map will indicate that we've analyzed it already. 5583 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5584 5585 // Find all the instructions that are scalar with predication in the loop and 5586 // determine if it would be better to not if-convert the blocks they are in. 5587 // If so, we also record the instructions to scalarize. 5588 for (BasicBlock *BB : TheLoop->blocks()) { 5589 if (!blockNeedsPredication(BB)) 5590 continue; 5591 for (Instruction &I : *BB) 5592 if (isScalarWithPredication(&I)) { 5593 ScalarCostsTy ScalarCosts; 5594 // Do not apply discount logic if hacked cost is needed 5595 // for emulated masked memrefs. 5596 if (!useEmulatedMaskMemRefHack(&I) && 5597 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5598 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5599 // Remember that BB will remain after vectorization. 5600 PredicatedBBsAfterVectorization.insert(BB); 5601 } 5602 } 5603 } 5604 5605 int LoopVectorizationCostModel::computePredInstDiscount( 5606 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5607 unsigned VF) { 5608 assert(!isUniformAfterVectorization(PredInst, VF) && 5609 "Instruction marked uniform-after-vectorization will be predicated"); 5610 5611 // Initialize the discount to zero, meaning that the scalar version and the 5612 // vector version cost the same. 5613 int Discount = 0; 5614 5615 // Holds instructions to analyze. The instructions we visit are mapped in 5616 // ScalarCosts. Those instructions are the ones that would be scalarized if 5617 // we find that the scalar version costs less. 5618 SmallVector<Instruction *, 8> Worklist; 5619 5620 // Returns true if the given instruction can be scalarized. 5621 auto canBeScalarized = [&](Instruction *I) -> bool { 5622 // We only attempt to scalarize instructions forming a single-use chain 5623 // from the original predicated block that would otherwise be vectorized. 5624 // Although not strictly necessary, we give up on instructions we know will 5625 // already be scalar to avoid traversing chains that are unlikely to be 5626 // beneficial. 5627 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5628 isScalarAfterVectorization(I, VF)) 5629 return false; 5630 5631 // If the instruction is scalar with predication, it will be analyzed 5632 // separately. We ignore it within the context of PredInst. 5633 if (isScalarWithPredication(I)) 5634 return false; 5635 5636 // If any of the instruction's operands are uniform after vectorization, 5637 // the instruction cannot be scalarized. This prevents, for example, a 5638 // masked load from being scalarized. 5639 // 5640 // We assume we will only emit a value for lane zero of an instruction 5641 // marked uniform after vectorization, rather than VF identical values. 5642 // Thus, if we scalarize an instruction that uses a uniform, we would 5643 // create uses of values corresponding to the lanes we aren't emitting code 5644 // for. This behavior can be changed by allowing getScalarValue to clone 5645 // the lane zero values for uniforms rather than asserting. 5646 for (Use &U : I->operands()) 5647 if (auto *J = dyn_cast<Instruction>(U.get())) 5648 if (isUniformAfterVectorization(J, VF)) 5649 return false; 5650 5651 // Otherwise, we can scalarize the instruction. 5652 return true; 5653 }; 5654 5655 // Compute the expected cost discount from scalarizing the entire expression 5656 // feeding the predicated instruction. We currently only consider expressions 5657 // that are single-use instruction chains. 5658 Worklist.push_back(PredInst); 5659 while (!Worklist.empty()) { 5660 Instruction *I = Worklist.pop_back_val(); 5661 5662 // If we've already analyzed the instruction, there's nothing to do. 5663 if (ScalarCosts.find(I) != ScalarCosts.end()) 5664 continue; 5665 5666 // Compute the cost of the vector instruction. Note that this cost already 5667 // includes the scalarization overhead of the predicated instruction. 5668 unsigned VectorCost = getInstructionCost(I, VF).first; 5669 5670 // Compute the cost of the scalarized instruction. This cost is the cost of 5671 // the instruction as if it wasn't if-converted and instead remained in the 5672 // predicated block. We will scale this cost by block probability after 5673 // computing the scalarization overhead. 5674 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5675 5676 // Compute the scalarization overhead of needed insertelement instructions 5677 // and phi nodes. 5678 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5679 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5680 true, false); 5681 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5682 } 5683 5684 // Compute the scalarization overhead of needed extractelement 5685 // instructions. For each of the instruction's operands, if the operand can 5686 // be scalarized, add it to the worklist; otherwise, account for the 5687 // overhead. 5688 for (Use &U : I->operands()) 5689 if (auto *J = dyn_cast<Instruction>(U.get())) { 5690 assert(VectorType::isValidElementType(J->getType()) && 5691 "Instruction has non-scalar type"); 5692 if (canBeScalarized(J)) 5693 Worklist.push_back(J); 5694 else if (needsExtract(J, VF)) 5695 ScalarCost += TTI.getScalarizationOverhead( 5696 ToVectorTy(J->getType(),VF), false, true); 5697 } 5698 5699 // Scale the total scalar cost by block probability. 5700 ScalarCost /= getReciprocalPredBlockProb(); 5701 5702 // Compute the discount. A non-negative discount means the vector version 5703 // of the instruction costs more, and scalarizing would be beneficial. 5704 Discount += VectorCost - ScalarCost; 5705 ScalarCosts[I] = ScalarCost; 5706 } 5707 5708 return Discount; 5709 } 5710 5711 LoopVectorizationCostModel::VectorizationCostTy 5712 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5713 VectorizationCostTy Cost; 5714 5715 // For each block. 5716 for (BasicBlock *BB : TheLoop->blocks()) { 5717 VectorizationCostTy BlockCost; 5718 5719 // For each instruction in the old loop. 5720 for (Instruction &I : BB->instructionsWithoutDebug()) { 5721 // Skip ignored values. 5722 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5723 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5724 continue; 5725 5726 VectorizationCostTy C = getInstructionCost(&I, VF); 5727 5728 // Check if we should override the cost. 5729 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5730 C.first = ForceTargetInstructionCost; 5731 5732 BlockCost.first += C.first; 5733 BlockCost.second |= C.second; 5734 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5735 << " for VF " << VF << " For instruction: " << I 5736 << '\n'); 5737 } 5738 5739 // If we are vectorizing a predicated block, it will have been 5740 // if-converted. This means that the block's instructions (aside from 5741 // stores and instructions that may divide by zero) will now be 5742 // unconditionally executed. For the scalar case, we may not always execute 5743 // the predicated block. Thus, scale the block's cost by the probability of 5744 // executing it. 5745 if (VF == 1 && blockNeedsPredication(BB)) 5746 BlockCost.first /= getReciprocalPredBlockProb(); 5747 5748 Cost.first += BlockCost.first; 5749 Cost.second |= BlockCost.second; 5750 } 5751 5752 return Cost; 5753 } 5754 5755 /// Gets Address Access SCEV after verifying that the access pattern 5756 /// is loop invariant except the induction variable dependence. 5757 /// 5758 /// This SCEV can be sent to the Target in order to estimate the address 5759 /// calculation cost. 5760 static const SCEV *getAddressAccessSCEV( 5761 Value *Ptr, 5762 LoopVectorizationLegality *Legal, 5763 PredicatedScalarEvolution &PSE, 5764 const Loop *TheLoop) { 5765 5766 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5767 if (!Gep) 5768 return nullptr; 5769 5770 // We are looking for a gep with all loop invariant indices except for one 5771 // which should be an induction variable. 5772 auto SE = PSE.getSE(); 5773 unsigned NumOperands = Gep->getNumOperands(); 5774 for (unsigned i = 1; i < NumOperands; ++i) { 5775 Value *Opd = Gep->getOperand(i); 5776 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5777 !Legal->isInductionVariable(Opd)) 5778 return nullptr; 5779 } 5780 5781 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5782 return PSE.getSCEV(Ptr); 5783 } 5784 5785 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5786 return Legal->hasStride(I->getOperand(0)) || 5787 Legal->hasStride(I->getOperand(1)); 5788 } 5789 5790 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5791 unsigned VF) { 5792 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5793 Type *ValTy = getMemInstValueType(I); 5794 auto SE = PSE.getSE(); 5795 5796 unsigned AS = getLoadStoreAddressSpace(I); 5797 Value *Ptr = getLoadStorePointerOperand(I); 5798 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5799 5800 // Figure out whether the access is strided and get the stride value 5801 // if it's known in compile time 5802 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5803 5804 // Get the cost of the scalar memory instruction and address computation. 5805 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5806 5807 // Don't pass *I here, since it is scalar but will actually be part of a 5808 // vectorized loop where the user of it is a vectorized instruction. 5809 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5810 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5811 Alignment, AS); 5812 5813 // Get the overhead of the extractelement and insertelement instructions 5814 // we might create due to scalarization. 5815 Cost += getScalarizationOverhead(I, VF); 5816 5817 // If we have a predicated store, it may not be executed for each vector 5818 // lane. Scale the cost by the probability of executing the predicated 5819 // block. 5820 if (isPredicatedInst(I)) { 5821 Cost /= getReciprocalPredBlockProb(); 5822 5823 if (useEmulatedMaskMemRefHack(I)) 5824 // Artificially setting to a high enough value to practically disable 5825 // vectorization with such operations. 5826 Cost = 3000000; 5827 } 5828 5829 return Cost; 5830 } 5831 5832 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5833 unsigned VF) { 5834 Type *ValTy = getMemInstValueType(I); 5835 Type *VectorTy = ToVectorTy(ValTy, VF); 5836 Value *Ptr = getLoadStorePointerOperand(I); 5837 unsigned AS = getLoadStoreAddressSpace(I); 5838 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5839 5840 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5841 "Stride should be 1 or -1 for consecutive memory access"); 5842 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5843 unsigned Cost = 0; 5844 if (Legal->isMaskRequired(I)) 5845 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, 5846 Alignment ? Alignment->value() : 0, AS); 5847 else 5848 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5849 5850 bool Reverse = ConsecutiveStride < 0; 5851 if (Reverse) 5852 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5853 return Cost; 5854 } 5855 5856 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5857 unsigned VF) { 5858 Type *ValTy = getMemInstValueType(I); 5859 Type *VectorTy = ToVectorTy(ValTy, VF); 5860 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5861 unsigned AS = getLoadStoreAddressSpace(I); 5862 if (isa<LoadInst>(I)) { 5863 return TTI.getAddressComputationCost(ValTy) + 5864 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5865 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5866 } 5867 StoreInst *SI = cast<StoreInst>(I); 5868 5869 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5870 return TTI.getAddressComputationCost(ValTy) + 5871 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5872 (isLoopInvariantStoreValue 5873 ? 0 5874 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5875 VF - 1)); 5876 } 5877 5878 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5879 unsigned VF) { 5880 Type *ValTy = getMemInstValueType(I); 5881 Type *VectorTy = ToVectorTy(ValTy, VF); 5882 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5883 Value *Ptr = getLoadStorePointerOperand(I); 5884 5885 return TTI.getAddressComputationCost(VectorTy) + 5886 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5887 Legal->isMaskRequired(I), 5888 Alignment ? Alignment->value() : 0); 5889 } 5890 5891 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5892 unsigned VF) { 5893 Type *ValTy = getMemInstValueType(I); 5894 Type *VectorTy = ToVectorTy(ValTy, VF); 5895 unsigned AS = getLoadStoreAddressSpace(I); 5896 5897 auto Group = getInterleavedAccessGroup(I); 5898 assert(Group && "Fail to get an interleaved access group."); 5899 5900 unsigned InterleaveFactor = Group->getFactor(); 5901 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5902 5903 // Holds the indices of existing members in an interleaved load group. 5904 // An interleaved store group doesn't need this as it doesn't allow gaps. 5905 SmallVector<unsigned, 4> Indices; 5906 if (isa<LoadInst>(I)) { 5907 for (unsigned i = 0; i < InterleaveFactor; i++) 5908 if (Group->getMember(i)) 5909 Indices.push_back(i); 5910 } 5911 5912 // Calculate the cost of the whole interleaved group. 5913 bool UseMaskForGaps = 5914 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5915 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5916 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5917 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5918 5919 if (Group->isReverse()) { 5920 // TODO: Add support for reversed masked interleaved access. 5921 assert(!Legal->isMaskRequired(I) && 5922 "Reverse masked interleaved access not supported."); 5923 Cost += Group->getNumMembers() * 5924 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5925 } 5926 return Cost; 5927 } 5928 5929 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5930 unsigned VF) { 5931 // Calculate scalar cost only. Vectorization cost should be ready at this 5932 // moment. 5933 if (VF == 1) { 5934 Type *ValTy = getMemInstValueType(I); 5935 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5936 unsigned AS = getLoadStoreAddressSpace(I); 5937 5938 return TTI.getAddressComputationCost(ValTy) + 5939 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5940 } 5941 return getWideningCost(I, VF); 5942 } 5943 5944 LoopVectorizationCostModel::VectorizationCostTy 5945 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5946 // If we know that this instruction will remain uniform, check the cost of 5947 // the scalar version. 5948 if (isUniformAfterVectorization(I, VF)) 5949 VF = 1; 5950 5951 if (VF > 1 && isProfitableToScalarize(I, VF)) 5952 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5953 5954 // Forced scalars do not have any scalarization overhead. 5955 auto ForcedScalar = ForcedScalars.find(VF); 5956 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5957 auto InstSet = ForcedScalar->second; 5958 if (InstSet.find(I) != InstSet.end()) 5959 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5960 } 5961 5962 Type *VectorTy; 5963 unsigned C = getInstructionCost(I, VF, VectorTy); 5964 5965 bool TypeNotScalarized = 5966 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5967 return VectorizationCostTy(C, TypeNotScalarized); 5968 } 5969 5970 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5971 unsigned VF) { 5972 5973 if (VF == 1) 5974 return 0; 5975 5976 unsigned Cost = 0; 5977 Type *RetTy = ToVectorTy(I->getType(), VF); 5978 if (!RetTy->isVoidTy() && 5979 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5980 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 5981 5982 // Some targets keep addresses scalar. 5983 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 5984 return Cost; 5985 5986 // Some targets support efficient element stores. 5987 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 5988 return Cost; 5989 5990 // Collect operands to consider. 5991 CallInst *CI = dyn_cast<CallInst>(I); 5992 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 5993 5994 // Skip operands that do not require extraction/scalarization and do not incur 5995 // any overhead. 5996 return Cost + TTI.getOperandsScalarizationOverhead( 5997 filterExtractingOperands(Ops, VF), VF); 5998 } 5999 6000 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6001 if (VF == 1) 6002 return; 6003 NumPredStores = 0; 6004 for (BasicBlock *BB : TheLoop->blocks()) { 6005 // For each instruction in the old loop. 6006 for (Instruction &I : *BB) { 6007 Value *Ptr = getLoadStorePointerOperand(&I); 6008 if (!Ptr) 6009 continue; 6010 6011 // TODO: We should generate better code and update the cost model for 6012 // predicated uniform stores. Today they are treated as any other 6013 // predicated store (see added test cases in 6014 // invariant-store-vectorization.ll). 6015 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6016 NumPredStores++; 6017 6018 if (Legal->isUniform(Ptr) && 6019 // Conditional loads and stores should be scalarized and predicated. 6020 // isScalarWithPredication cannot be used here since masked 6021 // gather/scatters are not considered scalar with predication. 6022 !Legal->blockNeedsPredication(I.getParent())) { 6023 // TODO: Avoid replicating loads and stores instead of 6024 // relying on instcombine to remove them. 6025 // Load: Scalar load + broadcast 6026 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6027 unsigned Cost = getUniformMemOpCost(&I, VF); 6028 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6029 continue; 6030 } 6031 6032 // We assume that widening is the best solution when possible. 6033 if (memoryInstructionCanBeWidened(&I, VF)) { 6034 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6035 int ConsecutiveStride = 6036 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6037 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6038 "Expected consecutive stride."); 6039 InstWidening Decision = 6040 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6041 setWideningDecision(&I, VF, Decision, Cost); 6042 continue; 6043 } 6044 6045 // Choose between Interleaving, Gather/Scatter or Scalarization. 6046 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6047 unsigned NumAccesses = 1; 6048 if (isAccessInterleaved(&I)) { 6049 auto Group = getInterleavedAccessGroup(&I); 6050 assert(Group && "Fail to get an interleaved access group."); 6051 6052 // Make one decision for the whole group. 6053 if (getWideningDecision(&I, VF) != CM_Unknown) 6054 continue; 6055 6056 NumAccesses = Group->getNumMembers(); 6057 if (interleavedAccessCanBeWidened(&I, VF)) 6058 InterleaveCost = getInterleaveGroupCost(&I, VF); 6059 } 6060 6061 unsigned GatherScatterCost = 6062 isLegalGatherOrScatter(&I) 6063 ? getGatherScatterCost(&I, VF) * NumAccesses 6064 : std::numeric_limits<unsigned>::max(); 6065 6066 unsigned ScalarizationCost = 6067 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6068 6069 // Choose better solution for the current VF, 6070 // write down this decision and use it during vectorization. 6071 unsigned Cost; 6072 InstWidening Decision; 6073 if (InterleaveCost <= GatherScatterCost && 6074 InterleaveCost < ScalarizationCost) { 6075 Decision = CM_Interleave; 6076 Cost = InterleaveCost; 6077 } else if (GatherScatterCost < ScalarizationCost) { 6078 Decision = CM_GatherScatter; 6079 Cost = GatherScatterCost; 6080 } else { 6081 Decision = CM_Scalarize; 6082 Cost = ScalarizationCost; 6083 } 6084 // If the instructions belongs to an interleave group, the whole group 6085 // receives the same decision. The whole group receives the cost, but 6086 // the cost will actually be assigned to one instruction. 6087 if (auto Group = getInterleavedAccessGroup(&I)) 6088 setWideningDecision(Group, VF, Decision, Cost); 6089 else 6090 setWideningDecision(&I, VF, Decision, Cost); 6091 } 6092 } 6093 6094 // Make sure that any load of address and any other address computation 6095 // remains scalar unless there is gather/scatter support. This avoids 6096 // inevitable extracts into address registers, and also has the benefit of 6097 // activating LSR more, since that pass can't optimize vectorized 6098 // addresses. 6099 if (TTI.prefersVectorizedAddressing()) 6100 return; 6101 6102 // Start with all scalar pointer uses. 6103 SmallPtrSet<Instruction *, 8> AddrDefs; 6104 for (BasicBlock *BB : TheLoop->blocks()) 6105 for (Instruction &I : *BB) { 6106 Instruction *PtrDef = 6107 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6108 if (PtrDef && TheLoop->contains(PtrDef) && 6109 getWideningDecision(&I, VF) != CM_GatherScatter) 6110 AddrDefs.insert(PtrDef); 6111 } 6112 6113 // Add all instructions used to generate the addresses. 6114 SmallVector<Instruction *, 4> Worklist; 6115 for (auto *I : AddrDefs) 6116 Worklist.push_back(I); 6117 while (!Worklist.empty()) { 6118 Instruction *I = Worklist.pop_back_val(); 6119 for (auto &Op : I->operands()) 6120 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6121 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6122 AddrDefs.insert(InstOp).second) 6123 Worklist.push_back(InstOp); 6124 } 6125 6126 for (auto *I : AddrDefs) { 6127 if (isa<LoadInst>(I)) { 6128 // Setting the desired widening decision should ideally be handled in 6129 // by cost functions, but since this involves the task of finding out 6130 // if the loaded register is involved in an address computation, it is 6131 // instead changed here when we know this is the case. 6132 InstWidening Decision = getWideningDecision(I, VF); 6133 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6134 // Scalarize a widened load of address. 6135 setWideningDecision(I, VF, CM_Scalarize, 6136 (VF * getMemoryInstructionCost(I, 1))); 6137 else if (auto Group = getInterleavedAccessGroup(I)) { 6138 // Scalarize an interleave group of address loads. 6139 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6140 if (Instruction *Member = Group->getMember(I)) 6141 setWideningDecision(Member, VF, CM_Scalarize, 6142 (VF * getMemoryInstructionCost(Member, 1))); 6143 } 6144 } 6145 } else 6146 // Make sure I gets scalarized and a cost estimate without 6147 // scalarization overhead. 6148 ForcedScalars[VF].insert(I); 6149 } 6150 } 6151 6152 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6153 unsigned VF, 6154 Type *&VectorTy) { 6155 Type *RetTy = I->getType(); 6156 if (canTruncateToMinimalBitwidth(I, VF)) 6157 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6158 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6159 auto SE = PSE.getSE(); 6160 6161 // TODO: We need to estimate the cost of intrinsic calls. 6162 switch (I->getOpcode()) { 6163 case Instruction::GetElementPtr: 6164 // We mark this instruction as zero-cost because the cost of GEPs in 6165 // vectorized code depends on whether the corresponding memory instruction 6166 // is scalarized or not. Therefore, we handle GEPs with the memory 6167 // instruction cost. 6168 return 0; 6169 case Instruction::Br: { 6170 // In cases of scalarized and predicated instructions, there will be VF 6171 // predicated blocks in the vectorized loop. Each branch around these 6172 // blocks requires also an extract of its vector compare i1 element. 6173 bool ScalarPredicatedBB = false; 6174 BranchInst *BI = cast<BranchInst>(I); 6175 if (VF > 1 && BI->isConditional() && 6176 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 6177 PredicatedBBsAfterVectorization.end() || 6178 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 6179 PredicatedBBsAfterVectorization.end())) 6180 ScalarPredicatedBB = true; 6181 6182 if (ScalarPredicatedBB) { 6183 // Return cost for branches around scalarized and predicated blocks. 6184 Type *Vec_i1Ty = 6185 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6186 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 6187 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6188 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6189 // The back-edge branch will remain, as will all scalar branches. 6190 return TTI.getCFInstrCost(Instruction::Br); 6191 else 6192 // This branch will be eliminated by if-conversion. 6193 return 0; 6194 // Note: We currently assume zero cost for an unconditional branch inside 6195 // a predicated block since it will become a fall-through, although we 6196 // may decide in the future to call TTI for all branches. 6197 } 6198 case Instruction::PHI: { 6199 auto *Phi = cast<PHINode>(I); 6200 6201 // First-order recurrences are replaced by vector shuffles inside the loop. 6202 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6203 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6204 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6205 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 6206 6207 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6208 // converted into select instructions. We require N - 1 selects per phi 6209 // node, where N is the number of incoming values. 6210 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6211 return (Phi->getNumIncomingValues() - 1) * 6212 TTI.getCmpSelInstrCost( 6213 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6214 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 6215 6216 return TTI.getCFInstrCost(Instruction::PHI); 6217 } 6218 case Instruction::UDiv: 6219 case Instruction::SDiv: 6220 case Instruction::URem: 6221 case Instruction::SRem: 6222 // If we have a predicated instruction, it may not be executed for each 6223 // vector lane. Get the scalarization cost and scale this amount by the 6224 // probability of executing the predicated block. If the instruction is not 6225 // predicated, we fall through to the next case. 6226 if (VF > 1 && isScalarWithPredication(I)) { 6227 unsigned Cost = 0; 6228 6229 // These instructions have a non-void type, so account for the phi nodes 6230 // that we will create. This cost is likely to be zero. The phi node 6231 // cost, if any, should be scaled by the block probability because it 6232 // models a copy at the end of each predicated block. 6233 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6234 6235 // The cost of the non-predicated instruction. 6236 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6237 6238 // The cost of insertelement and extractelement instructions needed for 6239 // scalarization. 6240 Cost += getScalarizationOverhead(I, VF); 6241 6242 // Scale the cost by the probability of executing the predicated blocks. 6243 // This assumes the predicated block for each vector lane is equally 6244 // likely. 6245 return Cost / getReciprocalPredBlockProb(); 6246 } 6247 LLVM_FALLTHROUGH; 6248 case Instruction::Add: 6249 case Instruction::FAdd: 6250 case Instruction::Sub: 6251 case Instruction::FSub: 6252 case Instruction::Mul: 6253 case Instruction::FMul: 6254 case Instruction::FDiv: 6255 case Instruction::FRem: 6256 case Instruction::Shl: 6257 case Instruction::LShr: 6258 case Instruction::AShr: 6259 case Instruction::And: 6260 case Instruction::Or: 6261 case Instruction::Xor: { 6262 // Since we will replace the stride by 1 the multiplication should go away. 6263 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6264 return 0; 6265 // Certain instructions can be cheaper to vectorize if they have a constant 6266 // second vector operand. One example of this are shifts on x86. 6267 Value *Op2 = I->getOperand(1); 6268 TargetTransformInfo::OperandValueProperties Op2VP; 6269 TargetTransformInfo::OperandValueKind Op2VK = 6270 TTI.getOperandInfo(Op2, Op2VP); 6271 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6272 Op2VK = TargetTransformInfo::OK_UniformValue; 6273 6274 SmallVector<const Value *, 4> Operands(I->operand_values()); 6275 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6276 return N * TTI.getArithmeticInstrCost( 6277 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6278 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6279 } 6280 case Instruction::FNeg: { 6281 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6282 return N * TTI.getArithmeticInstrCost( 6283 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6284 TargetTransformInfo::OK_AnyValue, 6285 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6286 I->getOperand(0), I); 6287 } 6288 case Instruction::Select: { 6289 SelectInst *SI = cast<SelectInst>(I); 6290 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6291 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6292 Type *CondTy = SI->getCondition()->getType(); 6293 if (!ScalarCond) 6294 CondTy = VectorType::get(CondTy, VF); 6295 6296 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6297 } 6298 case Instruction::ICmp: 6299 case Instruction::FCmp: { 6300 Type *ValTy = I->getOperand(0)->getType(); 6301 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6302 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6303 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6304 VectorTy = ToVectorTy(ValTy, VF); 6305 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6306 } 6307 case Instruction::Store: 6308 case Instruction::Load: { 6309 unsigned Width = VF; 6310 if (Width > 1) { 6311 InstWidening Decision = getWideningDecision(I, Width); 6312 assert(Decision != CM_Unknown && 6313 "CM decision should be taken at this point"); 6314 if (Decision == CM_Scalarize) 6315 Width = 1; 6316 } 6317 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6318 return getMemoryInstructionCost(I, VF); 6319 } 6320 case Instruction::ZExt: 6321 case Instruction::SExt: 6322 case Instruction::FPToUI: 6323 case Instruction::FPToSI: 6324 case Instruction::FPExt: 6325 case Instruction::PtrToInt: 6326 case Instruction::IntToPtr: 6327 case Instruction::SIToFP: 6328 case Instruction::UIToFP: 6329 case Instruction::Trunc: 6330 case Instruction::FPTrunc: 6331 case Instruction::BitCast: { 6332 // We optimize the truncation of induction variables having constant 6333 // integer steps. The cost of these truncations is the same as the scalar 6334 // operation. 6335 if (isOptimizableIVTruncate(I, VF)) { 6336 auto *Trunc = cast<TruncInst>(I); 6337 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6338 Trunc->getSrcTy(), Trunc); 6339 } 6340 6341 Type *SrcScalarTy = I->getOperand(0)->getType(); 6342 Type *SrcVecTy = 6343 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6344 if (canTruncateToMinimalBitwidth(I, VF)) { 6345 // This cast is going to be shrunk. This may remove the cast or it might 6346 // turn it into slightly different cast. For example, if MinBW == 16, 6347 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6348 // 6349 // Calculate the modified src and dest types. 6350 Type *MinVecTy = VectorTy; 6351 if (I->getOpcode() == Instruction::Trunc) { 6352 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6353 VectorTy = 6354 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6355 } else if (I->getOpcode() == Instruction::ZExt || 6356 I->getOpcode() == Instruction::SExt) { 6357 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6358 VectorTy = 6359 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6360 } 6361 } 6362 6363 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6364 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6365 } 6366 case Instruction::Call: { 6367 bool NeedToScalarize; 6368 CallInst *CI = cast<CallInst>(I); 6369 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6370 if (getVectorIntrinsicIDForCall(CI, TLI)) 6371 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6372 return CallCost; 6373 } 6374 default: 6375 // The cost of executing VF copies of the scalar instruction. This opcode 6376 // is unknown. Assume that it is the same as 'mul'. 6377 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6378 getScalarizationOverhead(I, VF); 6379 } // end of switch. 6380 } 6381 6382 char LoopVectorize::ID = 0; 6383 6384 static const char lv_name[] = "Loop Vectorization"; 6385 6386 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6387 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6388 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6389 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6390 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6391 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6392 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6393 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6394 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6395 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6396 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6397 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6398 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6399 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6400 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6401 6402 namespace llvm { 6403 6404 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6405 6406 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6407 bool VectorizeOnlyWhenForced) { 6408 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6409 } 6410 6411 } // end namespace llvm 6412 6413 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6414 // Check if the pointer operand of a load or store instruction is 6415 // consecutive. 6416 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6417 return Legal->isConsecutivePtr(Ptr); 6418 return false; 6419 } 6420 6421 void LoopVectorizationCostModel::collectValuesToIgnore() { 6422 // Ignore ephemeral values. 6423 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6424 6425 // Ignore type-promoting instructions we identified during reduction 6426 // detection. 6427 for (auto &Reduction : *Legal->getReductionVars()) { 6428 RecurrenceDescriptor &RedDes = Reduction.second; 6429 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6430 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6431 } 6432 // Ignore type-casting instructions we identified during induction 6433 // detection. 6434 for (auto &Induction : *Legal->getInductionVars()) { 6435 InductionDescriptor &IndDes = Induction.second; 6436 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6437 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6438 } 6439 } 6440 6441 // TODO: we could return a pair of values that specify the max VF and 6442 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6443 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6444 // doesn't have a cost model that can choose which plan to execute if 6445 // more than one is generated. 6446 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6447 LoopVectorizationCostModel &CM) { 6448 unsigned WidestType; 6449 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6450 return WidestVectorRegBits / WidestType; 6451 } 6452 6453 VectorizationFactor 6454 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6455 unsigned VF = UserVF; 6456 // Outer loop handling: They may require CFG and instruction level 6457 // transformations before even evaluating whether vectorization is profitable. 6458 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6459 // the vectorization pipeline. 6460 if (!OrigLoop->empty()) { 6461 // If the user doesn't provide a vectorization factor, determine a 6462 // reasonable one. 6463 if (!UserVF) { 6464 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6465 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6466 6467 // Make sure we have a VF > 1 for stress testing. 6468 if (VPlanBuildStressTest && VF < 2) { 6469 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6470 << "overriding computed VF.\n"); 6471 VF = 4; 6472 } 6473 } 6474 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6475 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6476 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6477 << " to build VPlans.\n"); 6478 buildVPlans(VF, VF); 6479 6480 // For VPlan build stress testing, we bail out after VPlan construction. 6481 if (VPlanBuildStressTest) 6482 return VectorizationFactor::Disabled(); 6483 6484 return {VF, 0}; 6485 } 6486 6487 LLVM_DEBUG( 6488 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6489 "VPlan-native path.\n"); 6490 return VectorizationFactor::Disabled(); 6491 } 6492 6493 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) { 6494 assert(OrigLoop->empty() && "Inner loop expected."); 6495 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(); 6496 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6497 return None; 6498 6499 // Invalidate interleave groups if all blocks of loop will be predicated. 6500 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6501 !useMaskedInterleavedAccesses(*TTI)) { 6502 LLVM_DEBUG( 6503 dbgs() 6504 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6505 "which requires masked-interleaved support.\n"); 6506 CM.InterleaveInfo.reset(); 6507 } 6508 6509 if (UserVF) { 6510 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6511 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6512 // Collect the instructions (and their associated costs) that will be more 6513 // profitable to scalarize. 6514 CM.selectUserVectorizationFactor(UserVF); 6515 buildVPlansWithVPRecipes(UserVF, UserVF); 6516 LLVM_DEBUG(printPlans(dbgs())); 6517 return {{UserVF, 0}}; 6518 } 6519 6520 unsigned MaxVF = MaybeMaxVF.getValue(); 6521 assert(MaxVF != 0 && "MaxVF is zero."); 6522 6523 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6524 // Collect Uniform and Scalar instructions after vectorization with VF. 6525 CM.collectUniformsAndScalars(VF); 6526 6527 // Collect the instructions (and their associated costs) that will be more 6528 // profitable to scalarize. 6529 if (VF > 1) 6530 CM.collectInstsToScalarize(VF); 6531 } 6532 6533 buildVPlansWithVPRecipes(1, MaxVF); 6534 LLVM_DEBUG(printPlans(dbgs())); 6535 if (MaxVF == 1) 6536 return VectorizationFactor::Disabled(); 6537 6538 // Select the optimal vectorization factor. 6539 return CM.selectVectorizationFactor(MaxVF); 6540 } 6541 6542 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6543 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6544 << '\n'); 6545 BestVF = VF; 6546 BestUF = UF; 6547 6548 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6549 return !Plan->hasVF(VF); 6550 }); 6551 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6552 } 6553 6554 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6555 DominatorTree *DT) { 6556 // Perform the actual loop transformation. 6557 6558 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6559 VPCallbackILV CallbackILV(ILV); 6560 6561 VPTransformState State{BestVF, BestUF, LI, 6562 DT, ILV.Builder, ILV.VectorLoopValueMap, 6563 &ILV, CallbackILV}; 6564 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6565 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6566 6567 //===------------------------------------------------===// 6568 // 6569 // Notice: any optimization or new instruction that go 6570 // into the code below should also be implemented in 6571 // the cost-model. 6572 // 6573 //===------------------------------------------------===// 6574 6575 // 2. Copy and widen instructions from the old loop into the new loop. 6576 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6577 VPlans.front()->execute(&State); 6578 6579 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6580 // predication, updating analyses. 6581 ILV.fixVectorizedLoop(); 6582 } 6583 6584 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6585 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6586 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6587 6588 // We create new control-flow for the vectorized loop, so the original 6589 // condition will be dead after vectorization if it's only used by the 6590 // branch. 6591 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6592 if (Cmp && Cmp->hasOneUse()) 6593 DeadInstructions.insert(Cmp); 6594 6595 // We create new "steps" for induction variable updates to which the original 6596 // induction variables map. An original update instruction will be dead if 6597 // all its users except the induction variable are dead. 6598 for (auto &Induction : *Legal->getInductionVars()) { 6599 PHINode *Ind = Induction.first; 6600 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6601 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6602 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6603 DeadInstructions.end(); 6604 })) 6605 DeadInstructions.insert(IndUpdate); 6606 6607 // We record as "Dead" also the type-casting instructions we had identified 6608 // during induction analysis. We don't need any handling for them in the 6609 // vectorized loop because we have proven that, under a proper runtime 6610 // test guarding the vectorized loop, the value of the phi, and the casted 6611 // value of the phi, are the same. The last instruction in this casting chain 6612 // will get its scalar/vector/widened def from the scalar/vector/widened def 6613 // of the respective phi node. Any other casts in the induction def-use chain 6614 // have no other uses outside the phi update chain, and will be ignored. 6615 InductionDescriptor &IndDes = Induction.second; 6616 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6617 DeadInstructions.insert(Casts.begin(), Casts.end()); 6618 } 6619 } 6620 6621 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6622 6623 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6624 6625 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6626 Instruction::BinaryOps BinOp) { 6627 // When unrolling and the VF is 1, we only need to add a simple scalar. 6628 Type *Ty = Val->getType(); 6629 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6630 6631 if (Ty->isFloatingPointTy()) { 6632 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6633 6634 // Floating point operations had to be 'fast' to enable the unrolling. 6635 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6636 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6637 } 6638 Constant *C = ConstantInt::get(Ty, StartIdx); 6639 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6640 } 6641 6642 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6643 SmallVector<Metadata *, 4> MDs; 6644 // Reserve first location for self reference to the LoopID metadata node. 6645 MDs.push_back(nullptr); 6646 bool IsUnrollMetadata = false; 6647 MDNode *LoopID = L->getLoopID(); 6648 if (LoopID) { 6649 // First find existing loop unrolling disable metadata. 6650 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6651 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6652 if (MD) { 6653 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6654 IsUnrollMetadata = 6655 S && S->getString().startswith("llvm.loop.unroll.disable"); 6656 } 6657 MDs.push_back(LoopID->getOperand(i)); 6658 } 6659 } 6660 6661 if (!IsUnrollMetadata) { 6662 // Add runtime unroll disable metadata. 6663 LLVMContext &Context = L->getHeader()->getContext(); 6664 SmallVector<Metadata *, 1> DisableOperands; 6665 DisableOperands.push_back( 6666 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6667 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6668 MDs.push_back(DisableNode); 6669 MDNode *NewLoopID = MDNode::get(Context, MDs); 6670 // Set operand 0 to refer to the loop id itself. 6671 NewLoopID->replaceOperandWith(0, NewLoopID); 6672 L->setLoopID(NewLoopID); 6673 } 6674 } 6675 6676 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6677 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6678 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6679 bool PredicateAtRangeStart = Predicate(Range.Start); 6680 6681 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6682 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6683 Range.End = TmpVF; 6684 break; 6685 } 6686 6687 return PredicateAtRangeStart; 6688 } 6689 6690 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6691 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6692 /// of VF's starting at a given VF and extending it as much as possible. Each 6693 /// vectorization decision can potentially shorten this sub-range during 6694 /// buildVPlan(). 6695 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6696 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6697 VFRange SubRange = {VF, MaxVF + 1}; 6698 VPlans.push_back(buildVPlan(SubRange)); 6699 VF = SubRange.End; 6700 } 6701 } 6702 6703 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6704 VPlanPtr &Plan) { 6705 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6706 6707 // Look for cached value. 6708 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6709 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6710 if (ECEntryIt != EdgeMaskCache.end()) 6711 return ECEntryIt->second; 6712 6713 VPValue *SrcMask = createBlockInMask(Src, Plan); 6714 6715 // The terminator has to be a branch inst! 6716 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6717 assert(BI && "Unexpected terminator found"); 6718 6719 if (!BI->isConditional()) 6720 return EdgeMaskCache[Edge] = SrcMask; 6721 6722 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6723 assert(EdgeMask && "No Edge Mask found for condition"); 6724 6725 if (BI->getSuccessor(0) != Dst) 6726 EdgeMask = Builder.createNot(EdgeMask); 6727 6728 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6729 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6730 6731 return EdgeMaskCache[Edge] = EdgeMask; 6732 } 6733 6734 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6735 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6736 6737 // Look for cached value. 6738 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6739 if (BCEntryIt != BlockMaskCache.end()) 6740 return BCEntryIt->second; 6741 6742 // All-one mask is modelled as no-mask following the convention for masked 6743 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6744 VPValue *BlockMask = nullptr; 6745 6746 if (OrigLoop->getHeader() == BB) { 6747 if (!CM.blockNeedsPredication(BB)) 6748 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6749 6750 // Introduce the early-exit compare IV <= BTC to form header block mask. 6751 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6752 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6753 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6754 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6755 return BlockMaskCache[BB] = BlockMask; 6756 } 6757 6758 // This is the block mask. We OR all incoming edges. 6759 for (auto *Predecessor : predecessors(BB)) { 6760 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6761 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6762 return BlockMaskCache[BB] = EdgeMask; 6763 6764 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6765 BlockMask = EdgeMask; 6766 continue; 6767 } 6768 6769 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6770 } 6771 6772 return BlockMaskCache[BB] = BlockMask; 6773 } 6774 6775 VPWidenMemoryInstructionRecipe * 6776 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6777 VPlanPtr &Plan) { 6778 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6779 return nullptr; 6780 6781 auto willWiden = [&](unsigned VF) -> bool { 6782 if (VF == 1) 6783 return false; 6784 LoopVectorizationCostModel::InstWidening Decision = 6785 CM.getWideningDecision(I, VF); 6786 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6787 "CM decision should be taken at this point."); 6788 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6789 return true; 6790 if (CM.isScalarAfterVectorization(I, VF) || 6791 CM.isProfitableToScalarize(I, VF)) 6792 return false; 6793 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6794 }; 6795 6796 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6797 return nullptr; 6798 6799 VPValue *Mask = nullptr; 6800 if (Legal->isMaskRequired(I)) 6801 Mask = createBlockInMask(I->getParent(), Plan); 6802 6803 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6804 } 6805 6806 VPWidenIntOrFpInductionRecipe * 6807 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6808 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6809 // Check if this is an integer or fp induction. If so, build the recipe that 6810 // produces its scalar and vector values. 6811 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6812 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6813 II.getKind() == InductionDescriptor::IK_FpInduction) 6814 return new VPWidenIntOrFpInductionRecipe(Phi); 6815 6816 return nullptr; 6817 } 6818 6819 // Optimize the special case where the source is a constant integer 6820 // induction variable. Notice that we can only optimize the 'trunc' case 6821 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6822 // (c) other casts depend on pointer size. 6823 6824 // Determine whether \p K is a truncation based on an induction variable that 6825 // can be optimized. 6826 auto isOptimizableIVTruncate = 6827 [&](Instruction *K) -> std::function<bool(unsigned)> { 6828 return 6829 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6830 }; 6831 6832 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6833 isOptimizableIVTruncate(I), Range)) 6834 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6835 cast<TruncInst>(I)); 6836 return nullptr; 6837 } 6838 6839 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6840 PHINode *Phi = dyn_cast<PHINode>(I); 6841 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6842 return nullptr; 6843 6844 // We know that all PHIs in non-header blocks are converted into selects, so 6845 // we don't have to worry about the insertion order and we can just use the 6846 // builder. At this point we generate the predication tree. There may be 6847 // duplications since this is a simple recursive scan, but future 6848 // optimizations will clean it up. 6849 6850 SmallVector<VPValue *, 2> Masks; 6851 unsigned NumIncoming = Phi->getNumIncomingValues(); 6852 for (unsigned In = 0; In < NumIncoming; In++) { 6853 VPValue *EdgeMask = 6854 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6855 assert((EdgeMask || NumIncoming == 1) && 6856 "Multiple predecessors with one having a full mask"); 6857 if (EdgeMask) 6858 Masks.push_back(EdgeMask); 6859 } 6860 return new VPBlendRecipe(Phi, Masks); 6861 } 6862 6863 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6864 VFRange &Range) { 6865 6866 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6867 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6868 6869 if (IsPredicated) 6870 return false; 6871 6872 auto IsVectorizableOpcode = [](unsigned Opcode) { 6873 switch (Opcode) { 6874 case Instruction::Add: 6875 case Instruction::And: 6876 case Instruction::AShr: 6877 case Instruction::BitCast: 6878 case Instruction::Br: 6879 case Instruction::Call: 6880 case Instruction::FAdd: 6881 case Instruction::FCmp: 6882 case Instruction::FDiv: 6883 case Instruction::FMul: 6884 case Instruction::FNeg: 6885 case Instruction::FPExt: 6886 case Instruction::FPToSI: 6887 case Instruction::FPToUI: 6888 case Instruction::FPTrunc: 6889 case Instruction::FRem: 6890 case Instruction::FSub: 6891 case Instruction::ICmp: 6892 case Instruction::IntToPtr: 6893 case Instruction::Load: 6894 case Instruction::LShr: 6895 case Instruction::Mul: 6896 case Instruction::Or: 6897 case Instruction::PHI: 6898 case Instruction::PtrToInt: 6899 case Instruction::SDiv: 6900 case Instruction::Select: 6901 case Instruction::SExt: 6902 case Instruction::Shl: 6903 case Instruction::SIToFP: 6904 case Instruction::SRem: 6905 case Instruction::Store: 6906 case Instruction::Sub: 6907 case Instruction::Trunc: 6908 case Instruction::UDiv: 6909 case Instruction::UIToFP: 6910 case Instruction::URem: 6911 case Instruction::Xor: 6912 case Instruction::ZExt: 6913 return true; 6914 } 6915 return false; 6916 }; 6917 6918 if (!IsVectorizableOpcode(I->getOpcode())) 6919 return false; 6920 6921 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6922 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6923 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6924 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6925 return false; 6926 } 6927 6928 auto willWiden = [&](unsigned VF) -> bool { 6929 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6930 CM.isProfitableToScalarize(I, VF))) 6931 return false; 6932 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6933 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6934 // The following case may be scalarized depending on the VF. 6935 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6936 // version of the instruction. 6937 // Is it beneficial to perform intrinsic call compared to lib call? 6938 bool NeedToScalarize; 6939 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6940 bool UseVectorIntrinsic = 6941 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6942 return UseVectorIntrinsic || !NeedToScalarize; 6943 } 6944 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6945 assert(CM.getWideningDecision(I, VF) == 6946 LoopVectorizationCostModel::CM_Scalarize && 6947 "Memory widening decisions should have been taken care by now"); 6948 return false; 6949 } 6950 return true; 6951 }; 6952 6953 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6954 return false; 6955 // If this ingredient's recipe is to be recorded, keep its recipe a singleton 6956 // to avoid having to split recipes later. 6957 bool IsSingleton = Ingredient2Recipe.count(I); 6958 6959 // Success: widen this instruction. 6960 6961 // Use the default widening recipe. We optimize the common case where 6962 // consecutive instructions can be represented by a single recipe. 6963 if (!IsSingleton && !VPBB->empty() && LastExtensibleRecipe == &VPBB->back() && 6964 LastExtensibleRecipe->appendInstruction(I)) 6965 return true; 6966 6967 VPWidenRecipe *WidenRecipe = new VPWidenRecipe(I); 6968 if (!IsSingleton) 6969 LastExtensibleRecipe = WidenRecipe; 6970 setRecipe(I, WidenRecipe); 6971 VPBB->appendRecipe(WidenRecipe); 6972 return true; 6973 } 6974 6975 VPBasicBlock *VPRecipeBuilder::handleReplication( 6976 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6977 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6978 VPlanPtr &Plan) { 6979 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6980 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6981 Range); 6982 6983 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6984 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6985 6986 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6987 setRecipe(I, Recipe); 6988 6989 // Find if I uses a predicated instruction. If so, it will use its scalar 6990 // value. Avoid hoisting the insert-element which packs the scalar value into 6991 // a vector value, as that happens iff all users use the vector value. 6992 for (auto &Op : I->operands()) 6993 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6994 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6995 PredInst2Recipe[PredInst]->setAlsoPack(false); 6996 6997 // Finalize the recipe for Instr, first if it is not predicated. 6998 if (!IsPredicated) { 6999 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7000 VPBB->appendRecipe(Recipe); 7001 return VPBB; 7002 } 7003 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7004 assert(VPBB->getSuccessors().empty() && 7005 "VPBB has successors when handling predicated replication."); 7006 // Record predicated instructions for above packing optimizations. 7007 PredInst2Recipe[I] = Recipe; 7008 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7009 VPBlockUtils::insertBlockAfter(Region, VPBB); 7010 auto *RegSucc = new VPBasicBlock(); 7011 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7012 return RegSucc; 7013 } 7014 7015 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7016 VPRecipeBase *PredRecipe, 7017 VPlanPtr &Plan) { 7018 // Instructions marked for predication are replicated and placed under an 7019 // if-then construct to prevent side-effects. 7020 7021 // Generate recipes to compute the block mask for this region. 7022 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7023 7024 // Build the triangular if-then region. 7025 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7026 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7027 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7028 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7029 auto *PHIRecipe = 7030 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7031 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7032 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7033 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7034 7035 // Note: first set Entry as region entry and then connect successors starting 7036 // from it in order, to propagate the "parent" of each VPBasicBlock. 7037 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7038 VPBlockUtils::connectBlocks(Pred, Exit); 7039 7040 return Region; 7041 } 7042 7043 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 7044 VPlanPtr &Plan, VPBasicBlock *VPBB) { 7045 VPRecipeBase *Recipe = nullptr; 7046 7047 // First, check for specific widening recipes that deal with memory 7048 // operations, inductions and Phi nodes. 7049 if ((Recipe = tryToWidenMemory(Instr, Range, Plan)) || 7050 (Recipe = tryToOptimizeInduction(Instr, Range)) || 7051 (Recipe = tryToBlend(Instr, Plan)) || 7052 (isa<PHINode>(Instr) && 7053 (Recipe = new VPWidenPHIRecipe(cast<PHINode>(Instr))))) { 7054 setRecipe(Instr, Recipe); 7055 VPBB->appendRecipe(Recipe); 7056 return true; 7057 } 7058 7059 // Handle GEP widening. 7060 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 7061 auto Scalarize = [&](unsigned VF) { 7062 return CM.isScalarWithPredication(Instr, VF) || 7063 CM.isScalarAfterVectorization(Instr, VF) || 7064 CM.isProfitableToScalarize(Instr, VF); 7065 }; 7066 if (LoopVectorizationPlanner::getDecisionAndClampRange(Scalarize, Range)) 7067 return false; 7068 VPWidenGEPRecipe *Recipe = new VPWidenGEPRecipe(GEP, OrigLoop); 7069 setRecipe(Instr, Recipe); 7070 VPBB->appendRecipe(Recipe); 7071 return true; 7072 } 7073 7074 // Check if Instr is to be widened by a general VPWidenRecipe, after 7075 // having first checked for specific widening recipes. 7076 if (tryToWiden(Instr, VPBB, Range)) 7077 return true; 7078 7079 return false; 7080 } 7081 7082 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7083 unsigned MaxVF) { 7084 assert(OrigLoop->empty() && "Inner loop expected."); 7085 7086 // Collect conditions feeding internal conditional branches; they need to be 7087 // represented in VPlan for it to model masking. 7088 SmallPtrSet<Value *, 1> NeedDef; 7089 7090 auto *Latch = OrigLoop->getLoopLatch(); 7091 for (BasicBlock *BB : OrigLoop->blocks()) { 7092 if (BB == Latch) 7093 continue; 7094 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7095 if (Branch && Branch->isConditional()) 7096 NeedDef.insert(Branch->getCondition()); 7097 } 7098 7099 // If the tail is to be folded by masking, the primary induction variable 7100 // needs to be represented in VPlan for it to model early-exit masking. 7101 // Also, both the Phi and the live-out instruction of each reduction are 7102 // required in order to introduce a select between them in VPlan. 7103 if (CM.foldTailByMasking()) { 7104 NeedDef.insert(Legal->getPrimaryInduction()); 7105 for (auto &Reduction : *Legal->getReductionVars()) { 7106 NeedDef.insert(Reduction.first); 7107 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7108 } 7109 } 7110 7111 // Collect instructions from the original loop that will become trivially dead 7112 // in the vectorized loop. We don't need to vectorize these instructions. For 7113 // example, original induction update instructions can become dead because we 7114 // separately emit induction "steps" when generating code for the new loop. 7115 // Similarly, we create a new latch condition when setting up the structure 7116 // of the new loop, so the old one can become dead. 7117 SmallPtrSet<Instruction *, 4> DeadInstructions; 7118 collectTriviallyDeadInstructions(DeadInstructions); 7119 7120 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7121 VFRange SubRange = {VF, MaxVF + 1}; 7122 VPlans.push_back( 7123 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 7124 VF = SubRange.End; 7125 } 7126 } 7127 7128 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7129 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7130 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7131 7132 // Hold a mapping from predicated instructions to their recipes, in order to 7133 // fix their AlsoPack behavior if a user is determined to replicate and use a 7134 // scalar instead of vector value. 7135 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7136 7137 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7138 7139 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7140 7141 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder); 7142 7143 // --------------------------------------------------------------------------- 7144 // Pre-construction: record ingredients whose recipes we'll need to further 7145 // process after constructing the initial VPlan. 7146 // --------------------------------------------------------------------------- 7147 7148 // Mark instructions we'll need to sink later and their targets as 7149 // ingredients whose recipe we'll need to record. 7150 for (auto &Entry : SinkAfter) { 7151 RecipeBuilder.recordRecipeOf(Entry.first); 7152 RecipeBuilder.recordRecipeOf(Entry.second); 7153 } 7154 7155 // For each interleave group which is relevant for this (possibly trimmed) 7156 // Range, add it to the set of groups to be later applied to the VPlan and add 7157 // placeholders for its members' Recipes which we'll be replacing with a 7158 // single VPInterleaveRecipe. 7159 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7160 auto applyIG = [IG, this](unsigned VF) -> bool { 7161 return (VF >= 2 && // Query is illegal for VF == 1 7162 CM.getWideningDecision(IG->getInsertPos(), VF) == 7163 LoopVectorizationCostModel::CM_Interleave); 7164 }; 7165 if (!getDecisionAndClampRange(applyIG, Range)) 7166 continue; 7167 InterleaveGroups.insert(IG); 7168 for (unsigned i = 0; i < IG->getFactor(); i++) 7169 if (Instruction *Member = IG->getMember(i)) 7170 RecipeBuilder.recordRecipeOf(Member); 7171 }; 7172 7173 // --------------------------------------------------------------------------- 7174 // Build initial VPlan: Scan the body of the loop in a topological order to 7175 // visit each basic block after having visited its predecessor basic blocks. 7176 // --------------------------------------------------------------------------- 7177 7178 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7179 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7180 auto Plan = std::make_unique<VPlan>(VPBB); 7181 7182 // Represent values that will have defs inside VPlan. 7183 for (Value *V : NeedDef) 7184 Plan->addVPValue(V); 7185 7186 // Scan the body of the loop in a topological order to visit each basic block 7187 // after having visited its predecessor basic blocks. 7188 LoopBlocksDFS DFS(OrigLoop); 7189 DFS.perform(LI); 7190 7191 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7192 // Relevant instructions from basic block BB will be grouped into VPRecipe 7193 // ingredients and fill a new VPBasicBlock. 7194 unsigned VPBBsForBB = 0; 7195 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7196 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7197 VPBB = FirstVPBBForBB; 7198 Builder.setInsertPoint(VPBB); 7199 7200 // Introduce each ingredient into VPlan. 7201 for (Instruction &I : BB->instructionsWithoutDebug()) { 7202 Instruction *Instr = &I; 7203 7204 // First filter out irrelevant instructions, to ensure no recipes are 7205 // built for them. 7206 if (isa<BranchInst>(Instr) || 7207 DeadInstructions.find(Instr) != DeadInstructions.end()) 7208 continue; 7209 7210 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 7211 continue; 7212 7213 // Otherwise, if all widening options failed, Instruction is to be 7214 // replicated. This may create a successor for VPBB. 7215 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7216 Instr, Range, VPBB, PredInst2Recipe, Plan); 7217 if (NextVPBB != VPBB) { 7218 VPBB = NextVPBB; 7219 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7220 : ""); 7221 } 7222 } 7223 } 7224 7225 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7226 // may also be empty, such as the last one VPBB, reflecting original 7227 // basic-blocks with no recipes. 7228 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7229 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7230 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7231 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7232 delete PreEntry; 7233 7234 // --------------------------------------------------------------------------- 7235 // Transform initial VPlan: Apply previously taken decisions, in order, to 7236 // bring the VPlan to its final state. 7237 // --------------------------------------------------------------------------- 7238 7239 // Apply Sink-After legal constraints. 7240 for (auto &Entry : SinkAfter) { 7241 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7242 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7243 Sink->moveAfter(Target); 7244 } 7245 7246 // Interleave memory: for each Interleave Group we marked earlier as relevant 7247 // for this VPlan, replace the Recipes widening its memory instructions with a 7248 // single VPInterleaveRecipe at its insertion point. 7249 for (auto IG : InterleaveGroups) { 7250 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7251 RecipeBuilder.getRecipe(IG->getInsertPos())); 7252 (new VPInterleaveRecipe(IG, Recipe->getMask()))->insertBefore(Recipe); 7253 7254 for (unsigned i = 0; i < IG->getFactor(); ++i) 7255 if (Instruction *Member = IG->getMember(i)) { 7256 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7257 } 7258 } 7259 7260 // Finally, if tail is folded by masking, introduce selects between the phi 7261 // and the live-out instruction of each reduction, at the end of the latch. 7262 if (CM.foldTailByMasking()) { 7263 Builder.setInsertPoint(VPBB); 7264 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7265 for (auto &Reduction : *Legal->getReductionVars()) { 7266 VPValue *Phi = Plan->getVPValue(Reduction.first); 7267 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7268 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7269 } 7270 } 7271 7272 std::string PlanName; 7273 raw_string_ostream RSO(PlanName); 7274 unsigned VF = Range.Start; 7275 Plan->addVF(VF); 7276 RSO << "Initial VPlan for VF={" << VF; 7277 for (VF *= 2; VF < Range.End; VF *= 2) { 7278 Plan->addVF(VF); 7279 RSO << "," << VF; 7280 } 7281 RSO << "},UF>=1"; 7282 RSO.flush(); 7283 Plan->setName(PlanName); 7284 7285 return Plan; 7286 } 7287 7288 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7289 // Outer loop handling: They may require CFG and instruction level 7290 // transformations before even evaluating whether vectorization is profitable. 7291 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7292 // the vectorization pipeline. 7293 assert(!OrigLoop->empty()); 7294 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7295 7296 // Create new empty VPlan 7297 auto Plan = std::make_unique<VPlan>(); 7298 7299 // Build hierarchical CFG 7300 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7301 HCFGBuilder.buildHierarchicalCFG(); 7302 7303 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7304 Plan->addVF(VF); 7305 7306 if (EnableVPlanPredication) { 7307 VPlanPredicator VPP(*Plan); 7308 VPP.predicate(); 7309 7310 // Avoid running transformation to recipes until masked code generation in 7311 // VPlan-native path is in place. 7312 return Plan; 7313 } 7314 7315 SmallPtrSet<Instruction *, 1> DeadInstructions; 7316 VPlanTransforms::VPInstructionsToVPRecipes( 7317 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7318 return Plan; 7319 } 7320 7321 Value* LoopVectorizationPlanner::VPCallbackILV:: 7322 getOrCreateVectorValues(Value *V, unsigned Part) { 7323 return ILV.getOrCreateVectorValue(V, Part); 7324 } 7325 7326 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7327 O << " +\n" 7328 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7329 IG->getInsertPos()->printAsOperand(O, false); 7330 if (User) { 7331 O << ", "; 7332 User->getOperand(0)->printAsOperand(O); 7333 } 7334 O << "\\l\""; 7335 for (unsigned i = 0; i < IG->getFactor(); ++i) 7336 if (Instruction *I = IG->getMember(i)) 7337 O << " +\n" 7338 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7339 } 7340 7341 void VPWidenRecipe::execute(VPTransformState &State) { 7342 for (auto &Instr : make_range(Begin, End)) 7343 State.ILV->widenInstruction(Instr); 7344 } 7345 7346 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7347 State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant, 7348 IsIndexLoopInvariant); 7349 } 7350 7351 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7352 assert(!State.Instance && "Int or FP induction being replicated."); 7353 State.ILV->widenIntOrFpInduction(IV, Trunc); 7354 } 7355 7356 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7357 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7358 } 7359 7360 void VPBlendRecipe::execute(VPTransformState &State) { 7361 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7362 // We know that all PHIs in non-header blocks are converted into 7363 // selects, so we don't have to worry about the insertion order and we 7364 // can just use the builder. 7365 // At this point we generate the predication tree. There may be 7366 // duplications since this is a simple recursive scan, but future 7367 // optimizations will clean it up. 7368 7369 unsigned NumIncoming = Phi->getNumIncomingValues(); 7370 7371 assert((User || NumIncoming == 1) && 7372 "Multiple predecessors with predecessors having a full mask"); 7373 // Generate a sequence of selects of the form: 7374 // SELECT(Mask3, In3, 7375 // SELECT(Mask2, In2, 7376 // ( ...))) 7377 InnerLoopVectorizer::VectorParts Entry(State.UF); 7378 for (unsigned In = 0; In < NumIncoming; ++In) { 7379 for (unsigned Part = 0; Part < State.UF; ++Part) { 7380 // We might have single edge PHIs (blocks) - use an identity 7381 // 'select' for the first PHI operand. 7382 Value *In0 = 7383 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7384 if (In == 0) 7385 Entry[Part] = In0; // Initialize with the first incoming value. 7386 else { 7387 // Select between the current value and the previous incoming edge 7388 // based on the incoming mask. 7389 Value *Cond = State.get(User->getOperand(In), Part); 7390 Entry[Part] = 7391 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7392 } 7393 } 7394 } 7395 for (unsigned Part = 0; Part < State.UF; ++Part) 7396 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7397 } 7398 7399 void VPInterleaveRecipe::execute(VPTransformState &State) { 7400 assert(!State.Instance && "Interleave group being replicated."); 7401 if (!User) 7402 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7403 7404 // Last (and currently only) operand is a mask. 7405 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7406 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7407 for (unsigned Part = 0; Part < State.UF; ++Part) 7408 MaskValues[Part] = State.get(Mask, Part); 7409 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7410 } 7411 7412 void VPReplicateRecipe::execute(VPTransformState &State) { 7413 if (State.Instance) { // Generate a single instance. 7414 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7415 // Insert scalar instance packing it into a vector. 7416 if (AlsoPack && State.VF > 1) { 7417 // If we're constructing lane 0, initialize to start from undef. 7418 if (State.Instance->Lane == 0) { 7419 Value *Undef = 7420 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7421 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7422 } 7423 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7424 } 7425 return; 7426 } 7427 7428 // Generate scalar instances for all VF lanes of all UF parts, unless the 7429 // instruction is uniform inwhich case generate only the first lane for each 7430 // of the UF parts. 7431 unsigned EndLane = IsUniform ? 1 : State.VF; 7432 for (unsigned Part = 0; Part < State.UF; ++Part) 7433 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7434 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7435 } 7436 7437 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7438 assert(State.Instance && "Branch on Mask works only on single instance."); 7439 7440 unsigned Part = State.Instance->Part; 7441 unsigned Lane = State.Instance->Lane; 7442 7443 Value *ConditionBit = nullptr; 7444 if (!User) // Block in mask is all-one. 7445 ConditionBit = State.Builder.getTrue(); 7446 else { 7447 VPValue *BlockInMask = User->getOperand(0); 7448 ConditionBit = State.get(BlockInMask, Part); 7449 if (ConditionBit->getType()->isVectorTy()) 7450 ConditionBit = State.Builder.CreateExtractElement( 7451 ConditionBit, State.Builder.getInt32(Lane)); 7452 } 7453 7454 // Replace the temporary unreachable terminator with a new conditional branch, 7455 // whose two destinations will be set later when they are created. 7456 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7457 assert(isa<UnreachableInst>(CurrentTerminator) && 7458 "Expected to replace unreachable terminator with conditional branch."); 7459 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7460 CondBr->setSuccessor(0, nullptr); 7461 ReplaceInstWithInst(CurrentTerminator, CondBr); 7462 } 7463 7464 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7465 assert(State.Instance && "Predicated instruction PHI works per instance."); 7466 Instruction *ScalarPredInst = cast<Instruction>( 7467 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7468 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7469 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7470 assert(PredicatingBB && "Predicated block has no single predecessor."); 7471 7472 // By current pack/unpack logic we need to generate only a single phi node: if 7473 // a vector value for the predicated instruction exists at this point it means 7474 // the instruction has vector users only, and a phi for the vector value is 7475 // needed. In this case the recipe of the predicated instruction is marked to 7476 // also do that packing, thereby "hoisting" the insert-element sequence. 7477 // Otherwise, a phi node for the scalar value is needed. 7478 unsigned Part = State.Instance->Part; 7479 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7480 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7481 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7482 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7483 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7484 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7485 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7486 } else { 7487 Type *PredInstType = PredInst->getType(); 7488 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7489 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7490 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7491 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7492 } 7493 } 7494 7495 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7496 VPValue *Mask = getMask(); 7497 if (!Mask) 7498 return State.ILV->vectorizeMemoryInstruction(&Instr); 7499 7500 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7501 for (unsigned Part = 0; Part < State.UF; ++Part) 7502 MaskValues[Part] = State.get(Mask, Part); 7503 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7504 } 7505 7506 static ScalarEpilogueLowering 7507 getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, 7508 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, 7509 TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7510 AssumptionCache *AC, LoopInfo *LI, 7511 ScalarEvolution *SE, DominatorTree *DT, 7512 const LoopAccessInfo *LAI) { 7513 ScalarEpilogueLowering SEL = CM_ScalarEpilogueAllowed; 7514 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7515 !PreferPredicateOverEpilog; 7516 7517 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7518 (F->hasOptSize() || 7519 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7520 PGSOQueryType::IRPass))) 7521 SEL = CM_ScalarEpilogueNotAllowedOptSize; 7522 else if (PreferPredicateOverEpilog || 7523 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7524 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, LAI) && 7525 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled && 7526 !PredicateOptDisabled)) 7527 SEL = CM_ScalarEpilogueNotNeededUsePredicate; 7528 7529 return SEL; 7530 } 7531 7532 // Process the loop in the VPlan-native vectorization path. This path builds 7533 // VPlan upfront in the vectorization pipeline, which allows to apply 7534 // VPlan-to-VPlan transformations from the very beginning without modifying the 7535 // input LLVM IR. 7536 static bool processLoopInVPlanNativePath( 7537 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7538 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7539 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7540 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7541 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7542 7543 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7544 Function *F = L->getHeader()->getParent(); 7545 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7546 7547 ScalarEpilogueLowering SEL = 7548 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, 7549 PSE.getSE(), DT, LVL->getLAI()); 7550 7551 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7552 &Hints, IAI); 7553 // Use the planner for outer loop vectorization. 7554 // TODO: CM is not used at this point inside the planner. Turn CM into an 7555 // optional argument if we don't need it in the future. 7556 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI); 7557 7558 // Get user vectorization factor. 7559 const unsigned UserVF = Hints.getWidth(); 7560 7561 // Plan how to best vectorize, return the best VF and its cost. 7562 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7563 7564 // If we are stress testing VPlan builds, do not attempt to generate vector 7565 // code. Masked vector code generation support will follow soon. 7566 // Also, do not attempt to vectorize if no vector code will be produced. 7567 if (VPlanBuildStressTest || EnableVPlanPredication || 7568 VectorizationFactor::Disabled() == VF) 7569 return false; 7570 7571 LVP.setBestPlan(VF.Width, 1); 7572 7573 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7574 &CM); 7575 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7576 << L->getHeader()->getParent()->getName() << "\"\n"); 7577 LVP.executePlan(LB, DT); 7578 7579 // Mark the loop as already vectorized to avoid vectorizing again. 7580 Hints.setAlreadyVectorized(); 7581 7582 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7583 return true; 7584 } 7585 7586 bool LoopVectorizePass::processLoop(Loop *L) { 7587 assert((EnableVPlanNativePath || L->empty()) && 7588 "VPlan-native path is not enabled. Only process inner loops."); 7589 7590 #ifndef NDEBUG 7591 const std::string DebugLocStr = getDebugLocString(L); 7592 #endif /* NDEBUG */ 7593 7594 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7595 << L->getHeader()->getParent()->getName() << "\" from " 7596 << DebugLocStr << "\n"); 7597 7598 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7599 7600 LLVM_DEBUG( 7601 dbgs() << "LV: Loop hints:" 7602 << " force=" 7603 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7604 ? "disabled" 7605 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7606 ? "enabled" 7607 : "?")) 7608 << " width=" << Hints.getWidth() 7609 << " unroll=" << Hints.getInterleave() << "\n"); 7610 7611 // Function containing loop 7612 Function *F = L->getHeader()->getParent(); 7613 7614 // Looking at the diagnostic output is the only way to determine if a loop 7615 // was vectorized (other than looking at the IR or machine code), so it 7616 // is important to generate an optimization remark for each loop. Most of 7617 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7618 // generated as OptimizationRemark and OptimizationRemarkMissed are 7619 // less verbose reporting vectorized loops and unvectorized loops that may 7620 // benefit from vectorization, respectively. 7621 7622 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7623 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7624 return false; 7625 } 7626 7627 PredicatedScalarEvolution PSE(*SE, *L); 7628 7629 // Check if it is legal to vectorize the loop. 7630 LoopVectorizationRequirements Requirements(*ORE); 7631 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7632 &Requirements, &Hints, DB, AC); 7633 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7634 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7635 Hints.emitRemarkWithHints(); 7636 return false; 7637 } 7638 7639 // Check the function attributes and profiles to find out if this function 7640 // should be optimized for size. 7641 ScalarEpilogueLowering SEL = 7642 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, 7643 PSE.getSE(), DT, LVL.getLAI()); 7644 7645 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7646 // here. They may require CFG and instruction level transformations before 7647 // even evaluating whether vectorization is profitable. Since we cannot modify 7648 // the incoming IR, we need to build VPlan upfront in the vectorization 7649 // pipeline. 7650 if (!L->empty()) 7651 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7652 ORE, BFI, PSI, Hints); 7653 7654 assert(L->empty() && "Inner loop expected."); 7655 7656 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7657 // count by optimizing for size, to minimize overheads. 7658 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7659 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7660 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7661 << "This loop is worth vectorizing only if no scalar " 7662 << "iteration overheads are incurred."); 7663 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7664 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7665 else { 7666 LLVM_DEBUG(dbgs() << "\n"); 7667 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7668 } 7669 } 7670 7671 // Check the function attributes to see if implicit floats are allowed. 7672 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7673 // an integer loop and the vector instructions selected are purely integer 7674 // vector instructions? 7675 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7676 reportVectorizationFailure( 7677 "Can't vectorize when the NoImplicitFloat attribute is used", 7678 "loop not vectorized due to NoImplicitFloat attribute", 7679 "NoImplicitFloat", ORE, L); 7680 Hints.emitRemarkWithHints(); 7681 return false; 7682 } 7683 7684 // Check if the target supports potentially unsafe FP vectorization. 7685 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7686 // for the target we're vectorizing for, to make sure none of the 7687 // additional fp-math flags can help. 7688 if (Hints.isPotentiallyUnsafe() && 7689 TTI->isFPVectorizationPotentiallyUnsafe()) { 7690 reportVectorizationFailure( 7691 "Potentially unsafe FP op prevents vectorization", 7692 "loop not vectorized due to unsafe FP support.", 7693 "UnsafeFP", ORE, L); 7694 Hints.emitRemarkWithHints(); 7695 return false; 7696 } 7697 7698 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7699 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7700 7701 // If an override option has been passed in for interleaved accesses, use it. 7702 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7703 UseInterleaved = EnableInterleavedMemAccesses; 7704 7705 // Analyze interleaved memory accesses. 7706 if (UseInterleaved) { 7707 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7708 } 7709 7710 // Use the cost model. 7711 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7712 F, &Hints, IAI); 7713 CM.collectValuesToIgnore(); 7714 7715 // Use the planner for vectorization. 7716 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI); 7717 7718 // Get user vectorization factor. 7719 unsigned UserVF = Hints.getWidth(); 7720 7721 // Plan how to best vectorize, return the best VF and its cost. 7722 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF); 7723 7724 VectorizationFactor VF = VectorizationFactor::Disabled(); 7725 unsigned IC = 1; 7726 unsigned UserIC = Hints.getInterleave(); 7727 7728 if (MaybeVF) { 7729 VF = *MaybeVF; 7730 // Select the interleave count. 7731 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7732 } 7733 7734 // Identify the diagnostic messages that should be produced. 7735 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7736 bool VectorizeLoop = true, InterleaveLoop = true; 7737 if (Requirements.doesNotMeet(F, L, Hints)) { 7738 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7739 "requirements.\n"); 7740 Hints.emitRemarkWithHints(); 7741 return false; 7742 } 7743 7744 if (VF.Width == 1) { 7745 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7746 VecDiagMsg = std::make_pair( 7747 "VectorizationNotBeneficial", 7748 "the cost-model indicates that vectorization is not beneficial"); 7749 VectorizeLoop = false; 7750 } 7751 7752 if (!MaybeVF && UserIC > 1) { 7753 // Tell the user interleaving was avoided up-front, despite being explicitly 7754 // requested. 7755 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7756 "interleaving should be avoided up front\n"); 7757 IntDiagMsg = std::make_pair( 7758 "InterleavingAvoided", 7759 "Ignoring UserIC, because interleaving was avoided up front"); 7760 InterleaveLoop = false; 7761 } else if (IC == 1 && UserIC <= 1) { 7762 // Tell the user interleaving is not beneficial. 7763 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7764 IntDiagMsg = std::make_pair( 7765 "InterleavingNotBeneficial", 7766 "the cost-model indicates that interleaving is not beneficial"); 7767 InterleaveLoop = false; 7768 if (UserIC == 1) { 7769 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7770 IntDiagMsg.second += 7771 " and is explicitly disabled or interleave count is set to 1"; 7772 } 7773 } else if (IC > 1 && UserIC == 1) { 7774 // Tell the user interleaving is beneficial, but it explicitly disabled. 7775 LLVM_DEBUG( 7776 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7777 IntDiagMsg = std::make_pair( 7778 "InterleavingBeneficialButDisabled", 7779 "the cost-model indicates that interleaving is beneficial " 7780 "but is explicitly disabled or interleave count is set to 1"); 7781 InterleaveLoop = false; 7782 } 7783 7784 // Override IC if user provided an interleave count. 7785 IC = UserIC > 0 ? UserIC : IC; 7786 7787 // Emit diagnostic messages, if any. 7788 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7789 if (!VectorizeLoop && !InterleaveLoop) { 7790 // Do not vectorize or interleaving the loop. 7791 ORE->emit([&]() { 7792 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7793 L->getStartLoc(), L->getHeader()) 7794 << VecDiagMsg.second; 7795 }); 7796 ORE->emit([&]() { 7797 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7798 L->getStartLoc(), L->getHeader()) 7799 << IntDiagMsg.second; 7800 }); 7801 return false; 7802 } else if (!VectorizeLoop && InterleaveLoop) { 7803 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7804 ORE->emit([&]() { 7805 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7806 L->getStartLoc(), L->getHeader()) 7807 << VecDiagMsg.second; 7808 }); 7809 } else if (VectorizeLoop && !InterleaveLoop) { 7810 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7811 << ") in " << DebugLocStr << '\n'); 7812 ORE->emit([&]() { 7813 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7814 L->getStartLoc(), L->getHeader()) 7815 << IntDiagMsg.second; 7816 }); 7817 } else if (VectorizeLoop && InterleaveLoop) { 7818 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7819 << ") in " << DebugLocStr << '\n'); 7820 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7821 } 7822 7823 LVP.setBestPlan(VF.Width, IC); 7824 7825 using namespace ore; 7826 bool DisableRuntimeUnroll = false; 7827 MDNode *OrigLoopID = L->getLoopID(); 7828 7829 if (!VectorizeLoop) { 7830 assert(IC > 1 && "interleave count should not be 1 or 0"); 7831 // If we decided that it is not legal to vectorize the loop, then 7832 // interleave it. 7833 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7834 &CM); 7835 LVP.executePlan(Unroller, DT); 7836 7837 ORE->emit([&]() { 7838 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7839 L->getHeader()) 7840 << "interleaved loop (interleaved count: " 7841 << NV("InterleaveCount", IC) << ")"; 7842 }); 7843 } else { 7844 // If we decided that it is *legal* to vectorize the loop, then do it. 7845 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7846 &LVL, &CM); 7847 LVP.executePlan(LB, DT); 7848 ++LoopsVectorized; 7849 7850 // Add metadata to disable runtime unrolling a scalar loop when there are 7851 // no runtime checks about strides and memory. A scalar loop that is 7852 // rarely used is not worth unrolling. 7853 if (!LB.areSafetyChecksAdded()) 7854 DisableRuntimeUnroll = true; 7855 7856 // Report the vectorization decision. 7857 ORE->emit([&]() { 7858 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7859 L->getHeader()) 7860 << "vectorized loop (vectorization width: " 7861 << NV("VectorizationFactor", VF.Width) 7862 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7863 }); 7864 } 7865 7866 Optional<MDNode *> RemainderLoopID = 7867 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7868 LLVMLoopVectorizeFollowupEpilogue}); 7869 if (RemainderLoopID.hasValue()) { 7870 L->setLoopID(RemainderLoopID.getValue()); 7871 } else { 7872 if (DisableRuntimeUnroll) 7873 AddRuntimeUnrollDisableMetaData(L); 7874 7875 // Mark the loop as already vectorized to avoid vectorizing again. 7876 Hints.setAlreadyVectorized(); 7877 } 7878 7879 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7880 return true; 7881 } 7882 7883 bool LoopVectorizePass::runImpl( 7884 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7885 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7886 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7887 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7888 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7889 SE = &SE_; 7890 LI = &LI_; 7891 TTI = &TTI_; 7892 DT = &DT_; 7893 BFI = &BFI_; 7894 TLI = TLI_; 7895 AA = &AA_; 7896 AC = &AC_; 7897 GetLAA = &GetLAA_; 7898 DB = &DB_; 7899 ORE = &ORE_; 7900 PSI = PSI_; 7901 7902 // Don't attempt if 7903 // 1. the target claims to have no vector registers, and 7904 // 2. interleaving won't help ILP. 7905 // 7906 // The second condition is necessary because, even if the target has no 7907 // vector registers, loop vectorization may still enable scalar 7908 // interleaving. 7909 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 7910 TTI->getMaxInterleaveFactor(1) < 2) 7911 return false; 7912 7913 bool Changed = false; 7914 7915 // The vectorizer requires loops to be in simplified form. 7916 // Since simplification may add new inner loops, it has to run before the 7917 // legality and profitability checks. This means running the loop vectorizer 7918 // will simplify all loops, regardless of whether anything end up being 7919 // vectorized. 7920 for (auto &L : *LI) 7921 Changed |= 7922 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 7923 7924 // Build up a worklist of inner-loops to vectorize. This is necessary as 7925 // the act of vectorizing or partially unrolling a loop creates new loops 7926 // and can invalidate iterators across the loops. 7927 SmallVector<Loop *, 8> Worklist; 7928 7929 for (Loop *L : *LI) 7930 collectSupportedLoops(*L, LI, ORE, Worklist); 7931 7932 LoopsAnalyzed += Worklist.size(); 7933 7934 // Now walk the identified inner loops. 7935 while (!Worklist.empty()) { 7936 Loop *L = Worklist.pop_back_val(); 7937 7938 // For the inner loops we actually process, form LCSSA to simplify the 7939 // transform. 7940 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7941 7942 Changed |= processLoop(L); 7943 } 7944 7945 // Process each loop nest in the function. 7946 return Changed; 7947 } 7948 7949 PreservedAnalyses LoopVectorizePass::run(Function &F, 7950 FunctionAnalysisManager &AM) { 7951 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7952 auto &LI = AM.getResult<LoopAnalysis>(F); 7953 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7954 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7955 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7956 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7957 auto &AA = AM.getResult<AAManager>(F); 7958 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7959 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7960 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7961 MemorySSA *MSSA = EnableMSSALoopDependency 7962 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7963 : nullptr; 7964 7965 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7966 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7967 [&](Loop &L) -> const LoopAccessInfo & { 7968 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7969 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7970 }; 7971 const ModuleAnalysisManager &MAM = 7972 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 7973 ProfileSummaryInfo *PSI = 7974 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 7975 bool Changed = 7976 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 7977 if (!Changed) 7978 return PreservedAnalyses::all(); 7979 PreservedAnalyses PA; 7980 7981 // We currently do not preserve loopinfo/dominator analyses with outer loop 7982 // vectorization. Until this is addressed, mark these analyses as preserved 7983 // only for non-VPlan-native path. 7984 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7985 if (!EnableVPlanNativePath) { 7986 PA.preserve<LoopAnalysis>(); 7987 PA.preserve<DominatorTreeAnalysis>(); 7988 } 7989 PA.preserve<BasicAA>(); 7990 PA.preserve<GlobalsAA>(); 7991 return PA; 7992 } 7993