1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 201 // that predication is preferred, and this lists all options. I.e., the 202 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 203 // and predicate the instructions accordingly. If tail-folding fails, there are 204 // different fallback strategies depending on these values: 205 namespace PreferPredicateTy { 206 enum Option { 207 ScalarEpilogue = 0, 208 PredicateElseScalarEpilogue, 209 PredicateOrDontVectorize 210 }; 211 } // namespace PreferPredicateTy 212 213 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 214 "prefer-predicate-over-epilogue", 215 cl::init(PreferPredicateTy::ScalarEpilogue), 216 cl::Hidden, 217 cl::desc("Tail-folding and predication preferences over creating a scalar " 218 "epilogue loop."), 219 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 220 "scalar-epilogue", 221 "Don't tail-predicate loops, create scalar epilogue"), 222 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 223 "predicate-else-scalar-epilogue", 224 "prefer tail-folding, create scalar epilogue if tail " 225 "folding fails."), 226 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 227 "predicate-dont-vectorize", 228 "prefers tail-folding, don't attempt vectorization if " 229 "tail-folding fails."))); 230 231 static cl::opt<bool> MaximizeBandwidth( 232 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 233 cl::desc("Maximize bandwidth when selecting vectorization factor which " 234 "will be determined by the smallest type in loop.")); 235 236 static cl::opt<bool> EnableInterleavedMemAccesses( 237 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 238 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 239 240 /// An interleave-group may need masking if it resides in a block that needs 241 /// predication, or in order to mask away gaps. 242 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 243 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 245 246 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 247 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 248 cl::desc("We don't interleave loops with a estimated constant trip count " 249 "below this number")); 250 251 static cl::opt<unsigned> ForceTargetNumScalarRegs( 252 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 253 cl::desc("A flag that overrides the target's number of scalar registers.")); 254 255 static cl::opt<unsigned> ForceTargetNumVectorRegs( 256 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 257 cl::desc("A flag that overrides the target's number of vector registers.")); 258 259 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 260 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 261 cl::desc("A flag that overrides the target's max interleave factor for " 262 "scalar loops.")); 263 264 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 265 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "vectorized loops.")); 268 269 static cl::opt<unsigned> ForceTargetInstructionCost( 270 "force-target-instruction-cost", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's expected cost for " 272 "an instruction to a single constant value. Mostly " 273 "useful for getting consistent testing.")); 274 275 static cl::opt<unsigned> SmallLoopCost( 276 "small-loop-cost", cl::init(20), cl::Hidden, 277 cl::desc( 278 "The cost of a loop that is considered 'small' by the interleaver.")); 279 280 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 281 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 282 cl::desc("Enable the use of the block frequency analysis to access PGO " 283 "heuristics minimizing code growth in cold regions and being more " 284 "aggressive in hot regions.")); 285 286 // Runtime interleave loops for load/store throughput. 287 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 288 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 289 cl::desc( 290 "Enable runtime interleaving until load/store ports are saturated")); 291 292 /// Interleave small loops with scalar reductions. 293 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 294 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 295 cl::desc("Enable interleaving for loops with small iteration counts that " 296 "contain scalar reductions to expose ILP.")); 297 298 /// The number of stores in a loop that are allowed to need predication. 299 static cl::opt<unsigned> NumberOfStoresToPredicate( 300 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 301 cl::desc("Max number of stores to be predicated behind an if.")); 302 303 static cl::opt<bool> EnableIndVarRegisterHeur( 304 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 305 cl::desc("Count the induction variable only once when interleaving")); 306 307 static cl::opt<bool> EnableCondStoresVectorization( 308 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 309 cl::desc("Enable if predication of stores during vectorization.")); 310 311 static cl::opt<unsigned> MaxNestedScalarReductionIC( 312 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 313 cl::desc("The maximum interleave count to use when interleaving a scalar " 314 "reduction in a nested loop.")); 315 316 static cl::opt<bool> 317 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 318 cl::Hidden, 319 cl::desc("Prefer in-loop vector reductions, " 320 "overriding the targets preference.")); 321 322 static cl::opt<bool> PreferPredicatedReductionSelect( 323 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 324 cl::desc( 325 "Prefer predicating a reduction operation over an after loop select.")); 326 327 cl::opt<bool> EnableVPlanNativePath( 328 "enable-vplan-native-path", cl::init(false), cl::Hidden, 329 cl::desc("Enable VPlan-native vectorization path with " 330 "support for outer loop vectorization.")); 331 332 // FIXME: Remove this switch once we have divergence analysis. Currently we 333 // assume divergent non-backedge branches when this switch is true. 334 cl::opt<bool> EnableVPlanPredication( 335 "enable-vplan-predication", cl::init(false), cl::Hidden, 336 cl::desc("Enable VPlan-native vectorization path predicator with " 337 "support for outer loop vectorization.")); 338 339 // This flag enables the stress testing of the VPlan H-CFG construction in the 340 // VPlan-native vectorization path. It must be used in conjuction with 341 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 342 // verification of the H-CFGs built. 343 static cl::opt<bool> VPlanBuildStressTest( 344 "vplan-build-stress-test", cl::init(false), cl::Hidden, 345 cl::desc( 346 "Build VPlan for every supported loop nest in the function and bail " 347 "out right after the build (stress test the VPlan H-CFG construction " 348 "in the VPlan-native vectorization path).")); 349 350 cl::opt<bool> llvm::EnableLoopInterleaving( 351 "interleave-loops", cl::init(true), cl::Hidden, 352 cl::desc("Enable loop interleaving in Loop vectorization passes")); 353 cl::opt<bool> llvm::EnableLoopVectorization( 354 "vectorize-loops", cl::init(true), cl::Hidden, 355 cl::desc("Run the Loop vectorization passes")); 356 357 /// A helper function that returns the type of loaded or stored value. 358 static Type *getMemInstValueType(Value *I) { 359 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 360 "Expected Load or Store instruction"); 361 if (auto *LI = dyn_cast<LoadInst>(I)) 362 return LI->getType(); 363 return cast<StoreInst>(I)->getValueOperand()->getType(); 364 } 365 366 /// A helper function that returns true if the given type is irregular. The 367 /// type is irregular if its allocated size doesn't equal the store size of an 368 /// element of the corresponding vector type at the given vectorization factor. 369 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 370 // Determine if an array of VF elements of type Ty is "bitcast compatible" 371 // with a <VF x Ty> vector. 372 if (VF.isVector()) { 373 auto *VectorTy = VectorType::get(Ty, VF); 374 return TypeSize::get(VF.getKnownMinValue() * 375 DL.getTypeAllocSize(Ty).getFixedValue(), 376 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 377 } 378 379 // If the vectorization factor is one, we just check if an array of type Ty 380 // requires padding between elements. 381 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 382 } 383 384 /// A helper function that returns the reciprocal of the block probability of 385 /// predicated blocks. If we return X, we are assuming the predicated block 386 /// will execute once for every X iterations of the loop header. 387 /// 388 /// TODO: We should use actual block probability here, if available. Currently, 389 /// we always assume predicated blocks have a 50% chance of executing. 390 static unsigned getReciprocalPredBlockProb() { return 2; } 391 392 /// A helper function that adds a 'fast' flag to floating-point operations. 393 static Value *addFastMathFlag(Value *V) { 394 if (isa<FPMathOperator>(V)) 395 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 396 return V; 397 } 398 399 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 400 if (isa<FPMathOperator>(V)) 401 cast<Instruction>(V)->setFastMathFlags(FMF); 402 return V; 403 } 404 405 /// A helper function that returns an integer or floating-point constant with 406 /// value C. 407 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 408 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 409 : ConstantFP::get(Ty, C); 410 } 411 412 /// Returns "best known" trip count for the specified loop \p L as defined by 413 /// the following procedure: 414 /// 1) Returns exact trip count if it is known. 415 /// 2) Returns expected trip count according to profile data if any. 416 /// 3) Returns upper bound estimate if it is known. 417 /// 4) Returns None if all of the above failed. 418 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 419 // Check if exact trip count is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 421 return ExpectedTC; 422 423 // Check if there is an expected trip count available from profile data. 424 if (LoopVectorizeWithBlockFrequency) 425 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 426 return EstimatedTC; 427 428 // Check if upper bound estimate is known. 429 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 430 return ExpectedTC; 431 432 return None; 433 } 434 435 namespace llvm { 436 437 /// InnerLoopVectorizer vectorizes loops which contain only one basic 438 /// block to a specified vectorization factor (VF). 439 /// This class performs the widening of scalars into vectors, or multiple 440 /// scalars. This class also implements the following features: 441 /// * It inserts an epilogue loop for handling loops that don't have iteration 442 /// counts that are known to be a multiple of the vectorization factor. 443 /// * It handles the code generation for reduction variables. 444 /// * Scalarization (implementation using scalars) of un-vectorizable 445 /// instructions. 446 /// InnerLoopVectorizer does not perform any vectorization-legality 447 /// checks, and relies on the caller to check for the different legality 448 /// aspects. The InnerLoopVectorizer relies on the 449 /// LoopVectorizationLegality class to provide information about the induction 450 /// and reduction variables that were found to a given vectorization factor. 451 class InnerLoopVectorizer { 452 public: 453 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 454 LoopInfo *LI, DominatorTree *DT, 455 const TargetLibraryInfo *TLI, 456 const TargetTransformInfo *TTI, AssumptionCache *AC, 457 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 458 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 459 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 460 ProfileSummaryInfo *PSI) 461 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 462 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 463 Builder(PSE.getSE()->getContext()), 464 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 465 BFI(BFI), PSI(PSI) { 466 // Query this against the original loop and save it here because the profile 467 // of the original loop header may change as the transformation happens. 468 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 469 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 470 } 471 472 virtual ~InnerLoopVectorizer() = default; 473 474 /// Create a new empty loop that will contain vectorized instructions later 475 /// on, while the old loop will be used as the scalar remainder. Control flow 476 /// is generated around the vectorized (and scalar epilogue) loops consisting 477 /// of various checks and bypasses. Return the pre-header block of the new 478 /// loop. 479 /// In the case of epilogue vectorization, this function is overriden to 480 /// handle the more complex control flow around the loops. 481 virtual BasicBlock *createVectorizedLoopSkeleton(); 482 483 /// Widen a single instruction within the innermost loop. 484 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 485 VPTransformState &State); 486 487 /// Widen a single call instruction within the innermost loop. 488 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 489 VPTransformState &State); 490 491 /// Widen a single select instruction within the innermost loop. 492 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 493 bool InvariantCond, VPTransformState &State); 494 495 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 496 void fixVectorizedLoop(); 497 498 // Return true if any runtime check is added. 499 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 500 501 /// A type for vectorized values in the new loop. Each value from the 502 /// original loop, when vectorized, is represented by UF vector values in the 503 /// new unrolled loop, where UF is the unroll factor. 504 using VectorParts = SmallVector<Value *, 2>; 505 506 /// Vectorize a single GetElementPtrInst based on information gathered and 507 /// decisions taken during planning. 508 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 509 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 510 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 511 512 /// Vectorize a single PHINode in a block. This method handles the induction 513 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 514 /// arbitrary length vectors. 515 void widenPHIInstruction(Instruction *PN, unsigned UF, ElementCount VF); 516 517 /// A helper function to scalarize a single Instruction in the innermost loop. 518 /// Generates a sequence of scalar instances for each lane between \p MinLane 519 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 520 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 521 /// Instr's operands. 522 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 523 const VPIteration &Instance, bool IfPredicateInstr, 524 VPTransformState &State); 525 526 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 527 /// is provided, the integer induction variable will first be truncated to 528 /// the corresponding type. 529 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 530 531 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 532 /// vector or scalar value on-demand if one is not yet available. When 533 /// vectorizing a loop, we visit the definition of an instruction before its 534 /// uses. When visiting the definition, we either vectorize or scalarize the 535 /// instruction, creating an entry for it in the corresponding map. (In some 536 /// cases, such as induction variables, we will create both vector and scalar 537 /// entries.) Then, as we encounter uses of the definition, we derive values 538 /// for each scalar or vector use unless such a value is already available. 539 /// For example, if we scalarize a definition and one of its uses is vector, 540 /// we build the required vector on-demand with an insertelement sequence 541 /// when visiting the use. Otherwise, if the use is scalar, we can use the 542 /// existing scalar definition. 543 /// 544 /// Return a value in the new loop corresponding to \p V from the original 545 /// loop at unroll index \p Part. If the value has already been vectorized, 546 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 547 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 548 /// a new vector value on-demand by inserting the scalar values into a vector 549 /// with an insertelement sequence. If the value has been neither vectorized 550 /// nor scalarized, it must be loop invariant, so we simply broadcast the 551 /// value into a vector. 552 Value *getOrCreateVectorValue(Value *V, unsigned Part); 553 554 void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 555 VectorLoopValueMap.setVectorValue(Scalar, Part, Vector); 556 } 557 558 /// Return a value in the new loop corresponding to \p V from the original 559 /// loop at unroll and vector indices \p Instance. If the value has been 560 /// vectorized but not scalarized, the necessary extractelement instruction 561 /// will be generated. 562 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 563 564 /// Construct the vector value of a scalarized value \p V one lane at a time. 565 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 566 567 /// Try to vectorize interleaved access group \p Group with the base address 568 /// given in \p Addr, optionally masking the vector operations if \p 569 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 570 /// values in the vectorized loop. 571 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 572 ArrayRef<VPValue *> VPDefs, 573 VPTransformState &State, VPValue *Addr, 574 ArrayRef<VPValue *> StoredValues, 575 VPValue *BlockInMask = nullptr); 576 577 /// Vectorize Load and Store instructions with the base address given in \p 578 /// Addr, optionally masking the vector operations if \p BlockInMask is 579 /// non-null. Use \p State to translate given VPValues to IR values in the 580 /// vectorized loop. 581 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 582 VPValue *Def, VPValue *Addr, 583 VPValue *StoredValue, VPValue *BlockInMask); 584 585 /// Set the debug location in the builder using the debug location in 586 /// the instruction. 587 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 588 589 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 590 void fixNonInductionPHIs(void); 591 592 protected: 593 friend class LoopVectorizationPlanner; 594 595 /// A small list of PHINodes. 596 using PhiVector = SmallVector<PHINode *, 4>; 597 598 /// A type for scalarized values in the new loop. Each value from the 599 /// original loop, when scalarized, is represented by UF x VF scalar values 600 /// in the new unrolled loop, where UF is the unroll factor and VF is the 601 /// vectorization factor. 602 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 603 604 /// Set up the values of the IVs correctly when exiting the vector loop. 605 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 606 Value *CountRoundDown, Value *EndValue, 607 BasicBlock *MiddleBlock); 608 609 /// Create a new induction variable inside L. 610 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 611 Value *Step, Instruction *DL); 612 613 /// Handle all cross-iteration phis in the header. 614 void fixCrossIterationPHIs(); 615 616 /// Fix a first-order recurrence. This is the second phase of vectorizing 617 /// this phi node. 618 void fixFirstOrderRecurrence(PHINode *Phi); 619 620 /// Fix a reduction cross-iteration phi. This is the second phase of 621 /// vectorizing this phi node. 622 void fixReduction(PHINode *Phi); 623 624 /// Clear NSW/NUW flags from reduction instructions if necessary. 625 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 626 627 /// The Loop exit block may have single value PHI nodes with some 628 /// incoming value. While vectorizing we only handled real values 629 /// that were defined inside the loop and we should have one value for 630 /// each predecessor of its parent basic block. See PR14725. 631 void fixLCSSAPHIs(); 632 633 /// Iteratively sink the scalarized operands of a predicated instruction into 634 /// the block that was created for it. 635 void sinkScalarOperands(Instruction *PredInst); 636 637 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 638 /// represented as. 639 void truncateToMinimalBitwidths(); 640 641 /// Create a broadcast instruction. This method generates a broadcast 642 /// instruction (shuffle) for loop invariant values and for the induction 643 /// value. If this is the induction variable then we extend it to N, N+1, ... 644 /// this is needed because each iteration in the loop corresponds to a SIMD 645 /// element. 646 virtual Value *getBroadcastInstrs(Value *V); 647 648 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 649 /// to each vector element of Val. The sequence starts at StartIndex. 650 /// \p Opcode is relevant for FP induction variable. 651 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 652 Instruction::BinaryOps Opcode = 653 Instruction::BinaryOpsEnd); 654 655 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 656 /// variable on which to base the steps, \p Step is the size of the step, and 657 /// \p EntryVal is the value from the original loop that maps to the steps. 658 /// Note that \p EntryVal doesn't have to be an induction variable - it 659 /// can also be a truncate instruction. 660 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 661 const InductionDescriptor &ID); 662 663 /// Create a vector induction phi node based on an existing scalar one. \p 664 /// EntryVal is the value from the original loop that maps to the vector phi 665 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 666 /// truncate instruction, instead of widening the original IV, we widen a 667 /// version of the IV truncated to \p EntryVal's type. 668 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 669 Value *Step, Instruction *EntryVal); 670 671 /// Returns true if an instruction \p I should be scalarized instead of 672 /// vectorized for the chosen vectorization factor. 673 bool shouldScalarizeInstruction(Instruction *I) const; 674 675 /// Returns true if we should generate a scalar version of \p IV. 676 bool needsScalarInduction(Instruction *IV) const; 677 678 /// If there is a cast involved in the induction variable \p ID, which should 679 /// be ignored in the vectorized loop body, this function records the 680 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 681 /// cast. We had already proved that the casted Phi is equal to the uncasted 682 /// Phi in the vectorized loop (under a runtime guard), and therefore 683 /// there is no need to vectorize the cast - the same value can be used in the 684 /// vector loop for both the Phi and the cast. 685 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 686 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 687 /// 688 /// \p EntryVal is the value from the original loop that maps to the vector 689 /// phi node and is used to distinguish what is the IV currently being 690 /// processed - original one (if \p EntryVal is a phi corresponding to the 691 /// original IV) or the "newly-created" one based on the proof mentioned above 692 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 693 /// latter case \p EntryVal is a TruncInst and we must not record anything for 694 /// that IV, but it's error-prone to expect callers of this routine to care 695 /// about that, hence this explicit parameter. 696 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 697 const Instruction *EntryVal, 698 Value *VectorLoopValue, 699 unsigned Part, 700 unsigned Lane = UINT_MAX); 701 702 /// Generate a shuffle sequence that will reverse the vector Vec. 703 virtual Value *reverseVector(Value *Vec); 704 705 /// Returns (and creates if needed) the original loop trip count. 706 Value *getOrCreateTripCount(Loop *NewLoop); 707 708 /// Returns (and creates if needed) the trip count of the widened loop. 709 Value *getOrCreateVectorTripCount(Loop *NewLoop); 710 711 /// Returns a bitcasted value to the requested vector type. 712 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 713 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 714 const DataLayout &DL); 715 716 /// Emit a bypass check to see if the vector trip count is zero, including if 717 /// it overflows. 718 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 719 720 /// Emit a bypass check to see if all of the SCEV assumptions we've 721 /// had to make are correct. 722 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 723 724 /// Emit bypass checks to check any memory assumptions we may have made. 725 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 726 727 /// Compute the transformed value of Index at offset StartValue using step 728 /// StepValue. 729 /// For integer induction, returns StartValue + Index * StepValue. 730 /// For pointer induction, returns StartValue[Index * StepValue]. 731 /// FIXME: The newly created binary instructions should contain nsw/nuw 732 /// flags, which can be found from the original scalar operations. 733 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 734 const DataLayout &DL, 735 const InductionDescriptor &ID) const; 736 737 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 738 /// vector loop preheader, middle block and scalar preheader. Also 739 /// allocate a loop object for the new vector loop and return it. 740 Loop *createVectorLoopSkeleton(StringRef Prefix); 741 742 /// Create new phi nodes for the induction variables to resume iteration count 743 /// in the scalar epilogue, from where the vectorized loop left off (given by 744 /// \p VectorTripCount). 745 /// In cases where the loop skeleton is more complicated (eg. epilogue 746 /// vectorization) and the resume values can come from an additional bypass 747 /// block, the \p AdditionalBypass pair provides information about the bypass 748 /// block and the end value on the edge from bypass to this loop. 749 void createInductionResumeValues( 750 Loop *L, Value *VectorTripCount, 751 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 752 753 /// Complete the loop skeleton by adding debug MDs, creating appropriate 754 /// conditional branches in the middle block, preparing the builder and 755 /// running the verifier. Take in the vector loop \p L as argument, and return 756 /// the preheader of the completed vector loop. 757 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 758 759 /// Add additional metadata to \p To that was not present on \p Orig. 760 /// 761 /// Currently this is used to add the noalias annotations based on the 762 /// inserted memchecks. Use this for instructions that are *cloned* into the 763 /// vector loop. 764 void addNewMetadata(Instruction *To, const Instruction *Orig); 765 766 /// Add metadata from one instruction to another. 767 /// 768 /// This includes both the original MDs from \p From and additional ones (\see 769 /// addNewMetadata). Use this for *newly created* instructions in the vector 770 /// loop. 771 void addMetadata(Instruction *To, Instruction *From); 772 773 /// Similar to the previous function but it adds the metadata to a 774 /// vector of instructions. 775 void addMetadata(ArrayRef<Value *> To, Instruction *From); 776 777 /// Allow subclasses to override and print debug traces before/after vplan 778 /// execution, when trace information is requested. 779 virtual void printDebugTracesAtStart(){}; 780 virtual void printDebugTracesAtEnd(){}; 781 782 /// The original loop. 783 Loop *OrigLoop; 784 785 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 786 /// dynamic knowledge to simplify SCEV expressions and converts them to a 787 /// more usable form. 788 PredicatedScalarEvolution &PSE; 789 790 /// Loop Info. 791 LoopInfo *LI; 792 793 /// Dominator Tree. 794 DominatorTree *DT; 795 796 /// Alias Analysis. 797 AAResults *AA; 798 799 /// Target Library Info. 800 const TargetLibraryInfo *TLI; 801 802 /// Target Transform Info. 803 const TargetTransformInfo *TTI; 804 805 /// Assumption Cache. 806 AssumptionCache *AC; 807 808 /// Interface to emit optimization remarks. 809 OptimizationRemarkEmitter *ORE; 810 811 /// LoopVersioning. It's only set up (non-null) if memchecks were 812 /// used. 813 /// 814 /// This is currently only used to add no-alias metadata based on the 815 /// memchecks. The actually versioning is performed manually. 816 std::unique_ptr<LoopVersioning> LVer; 817 818 /// The vectorization SIMD factor to use. Each vector will have this many 819 /// vector elements. 820 ElementCount VF; 821 822 /// The vectorization unroll factor to use. Each scalar is vectorized to this 823 /// many different vector instructions. 824 unsigned UF; 825 826 /// The builder that we use 827 IRBuilder<> Builder; 828 829 // --- Vectorization state --- 830 831 /// The vector-loop preheader. 832 BasicBlock *LoopVectorPreHeader; 833 834 /// The scalar-loop preheader. 835 BasicBlock *LoopScalarPreHeader; 836 837 /// Middle Block between the vector and the scalar. 838 BasicBlock *LoopMiddleBlock; 839 840 /// The ExitBlock of the scalar loop. 841 BasicBlock *LoopExitBlock; 842 843 /// The vector loop body. 844 BasicBlock *LoopVectorBody; 845 846 /// The scalar loop body. 847 BasicBlock *LoopScalarBody; 848 849 /// A list of all bypass blocks. The first block is the entry of the loop. 850 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 851 852 /// The new Induction variable which was added to the new block. 853 PHINode *Induction = nullptr; 854 855 /// The induction variable of the old basic block. 856 PHINode *OldInduction = nullptr; 857 858 /// Maps values from the original loop to their corresponding values in the 859 /// vectorized loop. A key value can map to either vector values, scalar 860 /// values or both kinds of values, depending on whether the key was 861 /// vectorized and scalarized. 862 VectorizerValueMap VectorLoopValueMap; 863 864 /// Store instructions that were predicated. 865 SmallVector<Instruction *, 4> PredicatedInstructions; 866 867 /// Trip count of the original loop. 868 Value *TripCount = nullptr; 869 870 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 871 Value *VectorTripCount = nullptr; 872 873 /// The legality analysis. 874 LoopVectorizationLegality *Legal; 875 876 /// The profitablity analysis. 877 LoopVectorizationCostModel *Cost; 878 879 // Record whether runtime checks are added. 880 bool AddedSafetyChecks = false; 881 882 // Holds the end values for each induction variable. We save the end values 883 // so we can later fix-up the external users of the induction variables. 884 DenseMap<PHINode *, Value *> IVEndValues; 885 886 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 887 // fixed up at the end of vector code generation. 888 SmallVector<PHINode *, 8> OrigPHIsToFix; 889 890 /// BFI and PSI are used to check for profile guided size optimizations. 891 BlockFrequencyInfo *BFI; 892 ProfileSummaryInfo *PSI; 893 894 // Whether this loop should be optimized for size based on profile guided size 895 // optimizatios. 896 bool OptForSizeBasedOnProfile; 897 }; 898 899 class InnerLoopUnroller : public InnerLoopVectorizer { 900 public: 901 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 902 LoopInfo *LI, DominatorTree *DT, 903 const TargetLibraryInfo *TLI, 904 const TargetTransformInfo *TTI, AssumptionCache *AC, 905 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 906 LoopVectorizationLegality *LVL, 907 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 908 ProfileSummaryInfo *PSI) 909 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 910 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 911 BFI, PSI) {} 912 913 private: 914 Value *getBroadcastInstrs(Value *V) override; 915 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 916 Instruction::BinaryOps Opcode = 917 Instruction::BinaryOpsEnd) override; 918 Value *reverseVector(Value *Vec) override; 919 }; 920 921 /// Encapsulate information regarding vectorization of a loop and its epilogue. 922 /// This information is meant to be updated and used across two stages of 923 /// epilogue vectorization. 924 struct EpilogueLoopVectorizationInfo { 925 ElementCount MainLoopVF = ElementCount::getFixed(0); 926 unsigned MainLoopUF = 0; 927 ElementCount EpilogueVF = ElementCount::getFixed(0); 928 unsigned EpilogueUF = 0; 929 BasicBlock *MainLoopIterationCountCheck = nullptr; 930 BasicBlock *EpilogueIterationCountCheck = nullptr; 931 BasicBlock *SCEVSafetyCheck = nullptr; 932 BasicBlock *MemSafetyCheck = nullptr; 933 Value *TripCount = nullptr; 934 Value *VectorTripCount = nullptr; 935 936 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 937 unsigned EUF) 938 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 939 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 940 assert(EUF == 1 && 941 "A high UF for the epilogue loop is likely not beneficial."); 942 } 943 }; 944 945 /// An extension of the inner loop vectorizer that creates a skeleton for a 946 /// vectorized loop that has its epilogue (residual) also vectorized. 947 /// The idea is to run the vplan on a given loop twice, firstly to setup the 948 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 949 /// from the first step and vectorize the epilogue. This is achieved by 950 /// deriving two concrete strategy classes from this base class and invoking 951 /// them in succession from the loop vectorizer planner. 952 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 953 public: 954 InnerLoopAndEpilogueVectorizer( 955 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 956 DominatorTree *DT, const TargetLibraryInfo *TLI, 957 const TargetTransformInfo *TTI, AssumptionCache *AC, 958 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 959 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 960 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 961 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 962 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI), 963 EPI(EPI) {} 964 965 // Override this function to handle the more complex control flow around the 966 // three loops. 967 BasicBlock *createVectorizedLoopSkeleton() final override { 968 return createEpilogueVectorizedLoopSkeleton(); 969 } 970 971 /// The interface for creating a vectorized skeleton using one of two 972 /// different strategies, each corresponding to one execution of the vplan 973 /// as described above. 974 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 975 976 /// Holds and updates state information required to vectorize the main loop 977 /// and its epilogue in two separate passes. This setup helps us avoid 978 /// regenerating and recomputing runtime safety checks. It also helps us to 979 /// shorten the iteration-count-check path length for the cases where the 980 /// iteration count of the loop is so small that the main vector loop is 981 /// completely skipped. 982 EpilogueLoopVectorizationInfo &EPI; 983 }; 984 985 /// A specialized derived class of inner loop vectorizer that performs 986 /// vectorization of *main* loops in the process of vectorizing loops and their 987 /// epilogues. 988 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 989 public: 990 EpilogueVectorizerMainLoop( 991 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 992 DominatorTree *DT, const TargetLibraryInfo *TLI, 993 const TargetTransformInfo *TTI, AssumptionCache *AC, 994 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 995 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 996 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 997 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 998 EPI, LVL, CM, BFI, PSI) {} 999 /// Implements the interface for creating a vectorized skeleton using the 1000 /// *main loop* strategy (ie the first pass of vplan execution). 1001 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1002 1003 protected: 1004 /// Emits an iteration count bypass check once for the main loop (when \p 1005 /// ForEpilogue is false) and once for the epilogue loop (when \p 1006 /// ForEpilogue is true). 1007 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 1008 bool ForEpilogue); 1009 void printDebugTracesAtStart() override; 1010 void printDebugTracesAtEnd() override; 1011 }; 1012 1013 // A specialized derived class of inner loop vectorizer that performs 1014 // vectorization of *epilogue* loops in the process of vectorizing loops and 1015 // their epilogues. 1016 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 1017 public: 1018 EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 1019 LoopInfo *LI, DominatorTree *DT, 1020 const TargetLibraryInfo *TLI, 1021 const TargetTransformInfo *TTI, AssumptionCache *AC, 1022 OptimizationRemarkEmitter *ORE, 1023 EpilogueLoopVectorizationInfo &EPI, 1024 LoopVectorizationLegality *LVL, 1025 llvm::LoopVectorizationCostModel *CM, 1026 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 1027 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1028 EPI, LVL, CM, BFI, PSI) {} 1029 /// Implements the interface for creating a vectorized skeleton using the 1030 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1031 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1032 1033 protected: 1034 /// Emits an iteration count bypass check after the main vector loop has 1035 /// finished to see if there are any iterations left to execute by either 1036 /// the vector epilogue or the scalar epilogue. 1037 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1038 BasicBlock *Bypass, 1039 BasicBlock *Insert); 1040 void printDebugTracesAtStart() override; 1041 void printDebugTracesAtEnd() override; 1042 }; 1043 } // end namespace llvm 1044 1045 /// Look for a meaningful debug location on the instruction or it's 1046 /// operands. 1047 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1048 if (!I) 1049 return I; 1050 1051 DebugLoc Empty; 1052 if (I->getDebugLoc() != Empty) 1053 return I; 1054 1055 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 1056 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 1057 if (OpInst->getDebugLoc() != Empty) 1058 return OpInst; 1059 } 1060 1061 return I; 1062 } 1063 1064 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1065 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1066 const DILocation *DIL = Inst->getDebugLoc(); 1067 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1068 !isa<DbgInfoIntrinsic>(Inst)) { 1069 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1070 auto NewDIL = 1071 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1072 if (NewDIL) 1073 B.SetCurrentDebugLocation(NewDIL.getValue()); 1074 else 1075 LLVM_DEBUG(dbgs() 1076 << "Failed to create new discriminator: " 1077 << DIL->getFilename() << " Line: " << DIL->getLine()); 1078 } 1079 else 1080 B.SetCurrentDebugLocation(DIL); 1081 } else 1082 B.SetCurrentDebugLocation(DebugLoc()); 1083 } 1084 1085 /// Write a record \p DebugMsg about vectorization failure to the debug 1086 /// output stream. If \p I is passed, it is an instruction that prevents 1087 /// vectorization. 1088 #ifndef NDEBUG 1089 static void debugVectorizationFailure(const StringRef DebugMsg, 1090 Instruction *I) { 1091 dbgs() << "LV: Not vectorizing: " << DebugMsg; 1092 if (I != nullptr) 1093 dbgs() << " " << *I; 1094 else 1095 dbgs() << '.'; 1096 dbgs() << '\n'; 1097 } 1098 #endif 1099 1100 /// Create an analysis remark that explains why vectorization failed 1101 /// 1102 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1103 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1104 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1105 /// the location of the remark. \return the remark object that can be 1106 /// streamed to. 1107 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1108 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1109 Value *CodeRegion = TheLoop->getHeader(); 1110 DebugLoc DL = TheLoop->getStartLoc(); 1111 1112 if (I) { 1113 CodeRegion = I->getParent(); 1114 // If there is no debug location attached to the instruction, revert back to 1115 // using the loop's. 1116 if (I->getDebugLoc()) 1117 DL = I->getDebugLoc(); 1118 } 1119 1120 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 1121 R << "loop not vectorized: "; 1122 return R; 1123 } 1124 1125 /// Return a value for Step multiplied by VF. 1126 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1127 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1128 Constant *StepVal = ConstantInt::get( 1129 Step->getType(), 1130 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1131 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1132 } 1133 1134 namespace llvm { 1135 1136 void reportVectorizationFailure(const StringRef DebugMsg, 1137 const StringRef OREMsg, const StringRef ORETag, 1138 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 1139 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 1140 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1141 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 1142 ORETag, TheLoop, I) << OREMsg); 1143 } 1144 1145 } // end namespace llvm 1146 1147 #ifndef NDEBUG 1148 /// \return string containing a file name and a line # for the given loop. 1149 static std::string getDebugLocString(const Loop *L) { 1150 std::string Result; 1151 if (L) { 1152 raw_string_ostream OS(Result); 1153 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1154 LoopDbgLoc.print(OS); 1155 else 1156 // Just print the module name. 1157 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1158 OS.flush(); 1159 } 1160 return Result; 1161 } 1162 #endif 1163 1164 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1165 const Instruction *Orig) { 1166 // If the loop was versioned with memchecks, add the corresponding no-alias 1167 // metadata. 1168 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1169 LVer->annotateInstWithNoAlias(To, Orig); 1170 } 1171 1172 void InnerLoopVectorizer::addMetadata(Instruction *To, 1173 Instruction *From) { 1174 propagateMetadata(To, From); 1175 addNewMetadata(To, From); 1176 } 1177 1178 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1179 Instruction *From) { 1180 for (Value *V : To) { 1181 if (Instruction *I = dyn_cast<Instruction>(V)) 1182 addMetadata(I, From); 1183 } 1184 } 1185 1186 namespace llvm { 1187 1188 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1189 // lowered. 1190 enum ScalarEpilogueLowering { 1191 1192 // The default: allowing scalar epilogues. 1193 CM_ScalarEpilogueAllowed, 1194 1195 // Vectorization with OptForSize: don't allow epilogues. 1196 CM_ScalarEpilogueNotAllowedOptSize, 1197 1198 // A special case of vectorisation with OptForSize: loops with a very small 1199 // trip count are considered for vectorization under OptForSize, thereby 1200 // making sure the cost of their loop body is dominant, free of runtime 1201 // guards and scalar iteration overheads. 1202 CM_ScalarEpilogueNotAllowedLowTripLoop, 1203 1204 // Loop hint predicate indicating an epilogue is undesired. 1205 CM_ScalarEpilogueNotNeededUsePredicate, 1206 1207 // Directive indicating we must either tail fold or not vectorize 1208 CM_ScalarEpilogueNotAllowedUsePredicate 1209 }; 1210 1211 /// LoopVectorizationCostModel - estimates the expected speedups due to 1212 /// vectorization. 1213 /// In many cases vectorization is not profitable. This can happen because of 1214 /// a number of reasons. In this class we mainly attempt to predict the 1215 /// expected speedup/slowdowns due to the supported instruction set. We use the 1216 /// TargetTransformInfo to query the different backends for the cost of 1217 /// different operations. 1218 class LoopVectorizationCostModel { 1219 public: 1220 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1221 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1222 LoopVectorizationLegality *Legal, 1223 const TargetTransformInfo &TTI, 1224 const TargetLibraryInfo *TLI, DemandedBits *DB, 1225 AssumptionCache *AC, 1226 OptimizationRemarkEmitter *ORE, const Function *F, 1227 const LoopVectorizeHints *Hints, 1228 InterleavedAccessInfo &IAI) 1229 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1230 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1231 Hints(Hints), InterleaveInfo(IAI) {} 1232 1233 /// \return An upper bound for the vectorization factor, or None if 1234 /// vectorization and interleaving should be avoided up front. 1235 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1236 1237 /// \return True if runtime checks are required for vectorization, and false 1238 /// otherwise. 1239 bool runtimeChecksRequired(); 1240 1241 /// \return The most profitable vectorization factor and the cost of that VF. 1242 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1243 /// then this vectorization factor will be selected if vectorization is 1244 /// possible. 1245 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1246 VectorizationFactor 1247 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1248 const LoopVectorizationPlanner &LVP); 1249 1250 /// Setup cost-based decisions for user vectorization factor. 1251 void selectUserVectorizationFactor(ElementCount UserVF) { 1252 collectUniformsAndScalars(UserVF); 1253 collectInstsToScalarize(UserVF); 1254 } 1255 1256 /// \return The size (in bits) of the smallest and widest types in the code 1257 /// that needs to be vectorized. We ignore values that remain scalar such as 1258 /// 64 bit loop indices. 1259 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1260 1261 /// \return The desired interleave count. 1262 /// If interleave count has been specified by metadata it will be returned. 1263 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1264 /// are the selected vectorization factor and the cost of the selected VF. 1265 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1266 1267 /// Memory access instruction may be vectorized in more than one way. 1268 /// Form of instruction after vectorization depends on cost. 1269 /// This function takes cost-based decisions for Load/Store instructions 1270 /// and collects them in a map. This decisions map is used for building 1271 /// the lists of loop-uniform and loop-scalar instructions. 1272 /// The calculated cost is saved with widening decision in order to 1273 /// avoid redundant calculations. 1274 void setCostBasedWideningDecision(ElementCount VF); 1275 1276 /// A struct that represents some properties of the register usage 1277 /// of a loop. 1278 struct RegisterUsage { 1279 /// Holds the number of loop invariant values that are used in the loop. 1280 /// The key is ClassID of target-provided register class. 1281 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1282 /// Holds the maximum number of concurrent live intervals in the loop. 1283 /// The key is ClassID of target-provided register class. 1284 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1285 }; 1286 1287 /// \return Returns information about the register usages of the loop for the 1288 /// given vectorization factors. 1289 SmallVector<RegisterUsage, 8> 1290 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1291 1292 /// Collect values we want to ignore in the cost model. 1293 void collectValuesToIgnore(); 1294 1295 /// Split reductions into those that happen in the loop, and those that happen 1296 /// outside. In loop reductions are collected into InLoopReductionChains. 1297 void collectInLoopReductions(); 1298 1299 /// \returns The smallest bitwidth each instruction can be represented with. 1300 /// The vector equivalents of these instructions should be truncated to this 1301 /// type. 1302 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1303 return MinBWs; 1304 } 1305 1306 /// \returns True if it is more profitable to scalarize instruction \p I for 1307 /// vectorization factor \p VF. 1308 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1309 assert(VF.isVector() && 1310 "Profitable to scalarize relevant only for VF > 1."); 1311 1312 // Cost model is not run in the VPlan-native path - return conservative 1313 // result until this changes. 1314 if (EnableVPlanNativePath) 1315 return false; 1316 1317 auto Scalars = InstsToScalarize.find(VF); 1318 assert(Scalars != InstsToScalarize.end() && 1319 "VF not yet analyzed for scalarization profitability"); 1320 return Scalars->second.find(I) != Scalars->second.end(); 1321 } 1322 1323 /// Returns true if \p I is known to be uniform after vectorization. 1324 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1325 if (VF.isScalar()) 1326 return true; 1327 1328 // Cost model is not run in the VPlan-native path - return conservative 1329 // result until this changes. 1330 if (EnableVPlanNativePath) 1331 return false; 1332 1333 auto UniformsPerVF = Uniforms.find(VF); 1334 assert(UniformsPerVF != Uniforms.end() && 1335 "VF not yet analyzed for uniformity"); 1336 return UniformsPerVF->second.count(I); 1337 } 1338 1339 /// Returns true if \p I is known to be scalar after vectorization. 1340 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1341 if (VF.isScalar()) 1342 return true; 1343 1344 // Cost model is not run in the VPlan-native path - return conservative 1345 // result until this changes. 1346 if (EnableVPlanNativePath) 1347 return false; 1348 1349 auto ScalarsPerVF = Scalars.find(VF); 1350 assert(ScalarsPerVF != Scalars.end() && 1351 "Scalar values are not calculated for VF"); 1352 return ScalarsPerVF->second.count(I); 1353 } 1354 1355 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1356 /// for vectorization factor \p VF. 1357 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1358 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1359 !isProfitableToScalarize(I, VF) && 1360 !isScalarAfterVectorization(I, VF); 1361 } 1362 1363 /// Decision that was taken during cost calculation for memory instruction. 1364 enum InstWidening { 1365 CM_Unknown, 1366 CM_Widen, // For consecutive accesses with stride +1. 1367 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1368 CM_Interleave, 1369 CM_GatherScatter, 1370 CM_Scalarize 1371 }; 1372 1373 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1374 /// instruction \p I and vector width \p VF. 1375 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1376 unsigned Cost) { 1377 assert(VF.isVector() && "Expected VF >=2"); 1378 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1379 } 1380 1381 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1382 /// interleaving group \p Grp and vector width \p VF. 1383 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1384 ElementCount VF, InstWidening W, unsigned Cost) { 1385 assert(VF.isVector() && "Expected VF >=2"); 1386 /// Broadcast this decicion to all instructions inside the group. 1387 /// But the cost will be assigned to one instruction only. 1388 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1389 if (auto *I = Grp->getMember(i)) { 1390 if (Grp->getInsertPos() == I) 1391 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1392 else 1393 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1394 } 1395 } 1396 } 1397 1398 /// Return the cost model decision for the given instruction \p I and vector 1399 /// width \p VF. Return CM_Unknown if this instruction did not pass 1400 /// through the cost modeling. 1401 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1402 assert(VF.isVector() && "Expected VF to be a vector VF"); 1403 // Cost model is not run in the VPlan-native path - return conservative 1404 // result until this changes. 1405 if (EnableVPlanNativePath) 1406 return CM_GatherScatter; 1407 1408 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1409 auto Itr = WideningDecisions.find(InstOnVF); 1410 if (Itr == WideningDecisions.end()) 1411 return CM_Unknown; 1412 return Itr->second.first; 1413 } 1414 1415 /// Return the vectorization cost for the given instruction \p I and vector 1416 /// width \p VF. 1417 unsigned getWideningCost(Instruction *I, ElementCount VF) { 1418 assert(VF.isVector() && "Expected VF >=2"); 1419 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1420 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1421 "The cost is not calculated"); 1422 return WideningDecisions[InstOnVF].second; 1423 } 1424 1425 /// Return True if instruction \p I is an optimizable truncate whose operand 1426 /// is an induction variable. Such a truncate will be removed by adding a new 1427 /// induction variable with the destination type. 1428 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1429 // If the instruction is not a truncate, return false. 1430 auto *Trunc = dyn_cast<TruncInst>(I); 1431 if (!Trunc) 1432 return false; 1433 1434 // Get the source and destination types of the truncate. 1435 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1436 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1437 1438 // If the truncate is free for the given types, return false. Replacing a 1439 // free truncate with an induction variable would add an induction variable 1440 // update instruction to each iteration of the loop. We exclude from this 1441 // check the primary induction variable since it will need an update 1442 // instruction regardless. 1443 Value *Op = Trunc->getOperand(0); 1444 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1445 return false; 1446 1447 // If the truncated value is not an induction variable, return false. 1448 return Legal->isInductionPhi(Op); 1449 } 1450 1451 /// Collects the instructions to scalarize for each predicated instruction in 1452 /// the loop. 1453 void collectInstsToScalarize(ElementCount VF); 1454 1455 /// Collect Uniform and Scalar values for the given \p VF. 1456 /// The sets depend on CM decision for Load/Store instructions 1457 /// that may be vectorized as interleave, gather-scatter or scalarized. 1458 void collectUniformsAndScalars(ElementCount VF) { 1459 // Do the analysis once. 1460 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1461 return; 1462 setCostBasedWideningDecision(VF); 1463 collectLoopUniforms(VF); 1464 collectLoopScalars(VF); 1465 } 1466 1467 /// Returns true if the target machine supports masked store operation 1468 /// for the given \p DataType and kind of access to \p Ptr. 1469 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1470 return Legal->isConsecutivePtr(Ptr) && 1471 TTI.isLegalMaskedStore(DataType, Alignment); 1472 } 1473 1474 /// Returns true if the target machine supports masked load operation 1475 /// for the given \p DataType and kind of access to \p Ptr. 1476 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1477 return Legal->isConsecutivePtr(Ptr) && 1478 TTI.isLegalMaskedLoad(DataType, Alignment); 1479 } 1480 1481 /// Returns true if the target machine supports masked scatter operation 1482 /// for the given \p DataType. 1483 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1484 return TTI.isLegalMaskedScatter(DataType, Alignment); 1485 } 1486 1487 /// Returns true if the target machine supports masked gather operation 1488 /// for the given \p DataType. 1489 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1490 return TTI.isLegalMaskedGather(DataType, Alignment); 1491 } 1492 1493 /// Returns true if the target machine can represent \p V as a masked gather 1494 /// or scatter operation. 1495 bool isLegalGatherOrScatter(Value *V) { 1496 bool LI = isa<LoadInst>(V); 1497 bool SI = isa<StoreInst>(V); 1498 if (!LI && !SI) 1499 return false; 1500 auto *Ty = getMemInstValueType(V); 1501 Align Align = getLoadStoreAlignment(V); 1502 return (LI && isLegalMaskedGather(Ty, Align)) || 1503 (SI && isLegalMaskedScatter(Ty, Align)); 1504 } 1505 1506 /// Returns true if \p I is an instruction that will be scalarized with 1507 /// predication. Such instructions include conditional stores and 1508 /// instructions that may divide by zero. 1509 /// If a non-zero VF has been calculated, we check if I will be scalarized 1510 /// predication for that VF. 1511 bool isScalarWithPredication(Instruction *I, 1512 ElementCount VF = ElementCount::getFixed(1)); 1513 1514 // Returns true if \p I is an instruction that will be predicated either 1515 // through scalar predication or masked load/store or masked gather/scatter. 1516 // Superset of instructions that return true for isScalarWithPredication. 1517 bool isPredicatedInst(Instruction *I) { 1518 if (!blockNeedsPredication(I->getParent())) 1519 return false; 1520 // Loads and stores that need some form of masked operation are predicated 1521 // instructions. 1522 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1523 return Legal->isMaskRequired(I); 1524 return isScalarWithPredication(I); 1525 } 1526 1527 /// Returns true if \p I is a memory instruction with consecutive memory 1528 /// access that can be widened. 1529 bool 1530 memoryInstructionCanBeWidened(Instruction *I, 1531 ElementCount VF = ElementCount::getFixed(1)); 1532 1533 /// Returns true if \p I is a memory instruction in an interleaved-group 1534 /// of memory accesses that can be vectorized with wide vector loads/stores 1535 /// and shuffles. 1536 bool 1537 interleavedAccessCanBeWidened(Instruction *I, 1538 ElementCount VF = ElementCount::getFixed(1)); 1539 1540 /// Check if \p Instr belongs to any interleaved access group. 1541 bool isAccessInterleaved(Instruction *Instr) { 1542 return InterleaveInfo.isInterleaved(Instr); 1543 } 1544 1545 /// Get the interleaved access group that \p Instr belongs to. 1546 const InterleaveGroup<Instruction> * 1547 getInterleavedAccessGroup(Instruction *Instr) { 1548 return InterleaveInfo.getInterleaveGroup(Instr); 1549 } 1550 1551 /// Returns true if an interleaved group requires a scalar iteration 1552 /// to handle accesses with gaps, and there is nothing preventing us from 1553 /// creating a scalar epilogue. 1554 bool requiresScalarEpilogue() const { 1555 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1556 } 1557 1558 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1559 /// loop hint annotation. 1560 bool isScalarEpilogueAllowed() const { 1561 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1562 } 1563 1564 /// Returns true if all loop blocks should be masked to fold tail loop. 1565 bool foldTailByMasking() const { return FoldTailByMasking; } 1566 1567 bool blockNeedsPredication(BasicBlock *BB) { 1568 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1569 } 1570 1571 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1572 /// nodes to the chain of instructions representing the reductions. Uses a 1573 /// MapVector to ensure deterministic iteration order. 1574 using ReductionChainMap = 1575 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1576 1577 /// Return the chain of instructions representing an inloop reduction. 1578 const ReductionChainMap &getInLoopReductionChains() const { 1579 return InLoopReductionChains; 1580 } 1581 1582 /// Returns true if the Phi is part of an inloop reduction. 1583 bool isInLoopReduction(PHINode *Phi) const { 1584 return InLoopReductionChains.count(Phi); 1585 } 1586 1587 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1588 /// with factor VF. Return the cost of the instruction, including 1589 /// scalarization overhead if it's needed. 1590 unsigned getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1591 1592 /// Estimate cost of a call instruction CI if it were vectorized with factor 1593 /// VF. Return the cost of the instruction, including scalarization overhead 1594 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1595 /// scalarized - 1596 /// i.e. either vector version isn't available, or is too expensive. 1597 unsigned getVectorCallCost(CallInst *CI, ElementCount VF, 1598 bool &NeedToScalarize); 1599 1600 /// Invalidates decisions already taken by the cost model. 1601 void invalidateCostModelingDecisions() { 1602 WideningDecisions.clear(); 1603 Uniforms.clear(); 1604 Scalars.clear(); 1605 } 1606 1607 private: 1608 unsigned NumPredStores = 0; 1609 1610 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1611 /// than zero. One is returned if vectorization should best be avoided due 1612 /// to cost. 1613 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount, 1614 ElementCount UserVF); 1615 1616 /// The vectorization cost is a combination of the cost itself and a boolean 1617 /// indicating whether any of the contributing operations will actually 1618 /// operate on 1619 /// vector values after type legalization in the backend. If this latter value 1620 /// is 1621 /// false, then all operations will be scalarized (i.e. no vectorization has 1622 /// actually taken place). 1623 using VectorizationCostTy = std::pair<unsigned, bool>; 1624 1625 /// Returns the expected execution cost. The unit of the cost does 1626 /// not matter because we use the 'cost' units to compare different 1627 /// vector widths. The cost that is returned is *not* normalized by 1628 /// the factor width. 1629 VectorizationCostTy expectedCost(ElementCount VF); 1630 1631 /// Returns the execution time cost of an instruction for a given vector 1632 /// width. Vector width of one means scalar. 1633 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1634 1635 /// The cost-computation logic from getInstructionCost which provides 1636 /// the vector type as an output parameter. 1637 unsigned getInstructionCost(Instruction *I, ElementCount VF, Type *&VectorTy); 1638 1639 /// Calculate vectorization cost of memory instruction \p I. 1640 unsigned getMemoryInstructionCost(Instruction *I, ElementCount VF); 1641 1642 /// The cost computation for scalarized memory instruction. 1643 unsigned getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1644 1645 /// The cost computation for interleaving group of memory instructions. 1646 unsigned getInterleaveGroupCost(Instruction *I, ElementCount VF); 1647 1648 /// The cost computation for Gather/Scatter instruction. 1649 unsigned getGatherScatterCost(Instruction *I, ElementCount VF); 1650 1651 /// The cost computation for widening instruction \p I with consecutive 1652 /// memory access. 1653 unsigned getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1654 1655 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1656 /// Load: scalar load + broadcast. 1657 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1658 /// element) 1659 unsigned getUniformMemOpCost(Instruction *I, ElementCount VF); 1660 1661 /// Estimate the overhead of scalarizing an instruction. This is a 1662 /// convenience wrapper for the type-based getScalarizationOverhead API. 1663 unsigned getScalarizationOverhead(Instruction *I, ElementCount VF); 1664 1665 /// Returns whether the instruction is a load or store and will be a emitted 1666 /// as a vector operation. 1667 bool isConsecutiveLoadOrStore(Instruction *I); 1668 1669 /// Returns true if an artificially high cost for emulated masked memrefs 1670 /// should be used. 1671 bool useEmulatedMaskMemRefHack(Instruction *I); 1672 1673 /// Map of scalar integer values to the smallest bitwidth they can be legally 1674 /// represented as. The vector equivalents of these values should be truncated 1675 /// to this type. 1676 MapVector<Instruction *, uint64_t> MinBWs; 1677 1678 /// A type representing the costs for instructions if they were to be 1679 /// scalarized rather than vectorized. The entries are Instruction-Cost 1680 /// pairs. 1681 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1682 1683 /// A set containing all BasicBlocks that are known to present after 1684 /// vectorization as a predicated block. 1685 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1686 1687 /// Records whether it is allowed to have the original scalar loop execute at 1688 /// least once. This may be needed as a fallback loop in case runtime 1689 /// aliasing/dependence checks fail, or to handle the tail/remainder 1690 /// iterations when the trip count is unknown or doesn't divide by the VF, 1691 /// or as a peel-loop to handle gaps in interleave-groups. 1692 /// Under optsize and when the trip count is very small we don't allow any 1693 /// iterations to execute in the scalar loop. 1694 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1695 1696 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1697 bool FoldTailByMasking = false; 1698 1699 /// A map holding scalar costs for different vectorization factors. The 1700 /// presence of a cost for an instruction in the mapping indicates that the 1701 /// instruction will be scalarized when vectorizing with the associated 1702 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1703 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1704 1705 /// Holds the instructions known to be uniform after vectorization. 1706 /// The data is collected per VF. 1707 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1708 1709 /// Holds the instructions known to be scalar after vectorization. 1710 /// The data is collected per VF. 1711 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1712 1713 /// Holds the instructions (address computations) that are forced to be 1714 /// scalarized. 1715 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1716 1717 /// PHINodes of the reductions that should be expanded in-loop along with 1718 /// their associated chains of reduction operations, in program order from top 1719 /// (PHI) to bottom 1720 ReductionChainMap InLoopReductionChains; 1721 1722 /// Returns the expected difference in cost from scalarizing the expression 1723 /// feeding a predicated instruction \p PredInst. The instructions to 1724 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1725 /// non-negative return value implies the expression will be scalarized. 1726 /// Currently, only single-use chains are considered for scalarization. 1727 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1728 ElementCount VF); 1729 1730 /// Collect the instructions that are uniform after vectorization. An 1731 /// instruction is uniform if we represent it with a single scalar value in 1732 /// the vectorized loop corresponding to each vector iteration. Examples of 1733 /// uniform instructions include pointer operands of consecutive or 1734 /// interleaved memory accesses. Note that although uniformity implies an 1735 /// instruction will be scalar, the reverse is not true. In general, a 1736 /// scalarized instruction will be represented by VF scalar values in the 1737 /// vectorized loop, each corresponding to an iteration of the original 1738 /// scalar loop. 1739 void collectLoopUniforms(ElementCount VF); 1740 1741 /// Collect the instructions that are scalar after vectorization. An 1742 /// instruction is scalar if it is known to be uniform or will be scalarized 1743 /// during vectorization. Non-uniform scalarized instructions will be 1744 /// represented by VF values in the vectorized loop, each corresponding to an 1745 /// iteration of the original scalar loop. 1746 void collectLoopScalars(ElementCount VF); 1747 1748 /// Keeps cost model vectorization decision and cost for instructions. 1749 /// Right now it is used for memory instructions only. 1750 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1751 std::pair<InstWidening, unsigned>>; 1752 1753 DecisionList WideningDecisions; 1754 1755 /// Returns true if \p V is expected to be vectorized and it needs to be 1756 /// extracted. 1757 bool needsExtract(Value *V, ElementCount VF) const { 1758 Instruction *I = dyn_cast<Instruction>(V); 1759 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1760 TheLoop->isLoopInvariant(I)) 1761 return false; 1762 1763 // Assume we can vectorize V (and hence we need extraction) if the 1764 // scalars are not computed yet. This can happen, because it is called 1765 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1766 // the scalars are collected. That should be a safe assumption in most 1767 // cases, because we check if the operands have vectorizable types 1768 // beforehand in LoopVectorizationLegality. 1769 return Scalars.find(VF) == Scalars.end() || 1770 !isScalarAfterVectorization(I, VF); 1771 }; 1772 1773 /// Returns a range containing only operands needing to be extracted. 1774 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1775 ElementCount VF) { 1776 return SmallVector<Value *, 4>(make_filter_range( 1777 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1778 } 1779 1780 /// Determines if we have the infrastructure to vectorize loop \p L and its 1781 /// epilogue, assuming the main loop is vectorized by \p VF. 1782 bool isCandidateForEpilogueVectorization(const Loop &L, 1783 const ElementCount VF) const; 1784 1785 /// Returns true if epilogue vectorization is considered profitable, and 1786 /// false otherwise. 1787 /// \p VF is the vectorization factor chosen for the original loop. 1788 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1789 1790 public: 1791 /// The loop that we evaluate. 1792 Loop *TheLoop; 1793 1794 /// Predicated scalar evolution analysis. 1795 PredicatedScalarEvolution &PSE; 1796 1797 /// Loop Info analysis. 1798 LoopInfo *LI; 1799 1800 /// Vectorization legality. 1801 LoopVectorizationLegality *Legal; 1802 1803 /// Vector target information. 1804 const TargetTransformInfo &TTI; 1805 1806 /// Target Library Info. 1807 const TargetLibraryInfo *TLI; 1808 1809 /// Demanded bits analysis. 1810 DemandedBits *DB; 1811 1812 /// Assumption cache. 1813 AssumptionCache *AC; 1814 1815 /// Interface to emit optimization remarks. 1816 OptimizationRemarkEmitter *ORE; 1817 1818 const Function *TheFunction; 1819 1820 /// Loop Vectorize Hint. 1821 const LoopVectorizeHints *Hints; 1822 1823 /// The interleave access information contains groups of interleaved accesses 1824 /// with the same stride and close to each other. 1825 InterleavedAccessInfo &InterleaveInfo; 1826 1827 /// Values to ignore in the cost model. 1828 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1829 1830 /// Values to ignore in the cost model when VF > 1. 1831 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1832 1833 /// Profitable vector factors. 1834 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1835 }; 1836 1837 } // end namespace llvm 1838 1839 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1840 // vectorization. The loop needs to be annotated with #pragma omp simd 1841 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1842 // vector length information is not provided, vectorization is not considered 1843 // explicit. Interleave hints are not allowed either. These limitations will be 1844 // relaxed in the future. 1845 // Please, note that we are currently forced to abuse the pragma 'clang 1846 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1847 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1848 // provides *explicit vectorization hints* (LV can bypass legal checks and 1849 // assume that vectorization is legal). However, both hints are implemented 1850 // using the same metadata (llvm.loop.vectorize, processed by 1851 // LoopVectorizeHints). This will be fixed in the future when the native IR 1852 // representation for pragma 'omp simd' is introduced. 1853 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1854 OptimizationRemarkEmitter *ORE) { 1855 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1856 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1857 1858 // Only outer loops with an explicit vectorization hint are supported. 1859 // Unannotated outer loops are ignored. 1860 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1861 return false; 1862 1863 Function *Fn = OuterLp->getHeader()->getParent(); 1864 if (!Hints.allowVectorization(Fn, OuterLp, 1865 true /*VectorizeOnlyWhenForced*/)) { 1866 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1867 return false; 1868 } 1869 1870 if (Hints.getInterleave() > 1) { 1871 // TODO: Interleave support is future work. 1872 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1873 "outer loops.\n"); 1874 Hints.emitRemarkWithHints(); 1875 return false; 1876 } 1877 1878 return true; 1879 } 1880 1881 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1882 OptimizationRemarkEmitter *ORE, 1883 SmallVectorImpl<Loop *> &V) { 1884 // Collect inner loops and outer loops without irreducible control flow. For 1885 // now, only collect outer loops that have explicit vectorization hints. If we 1886 // are stress testing the VPlan H-CFG construction, we collect the outermost 1887 // loop of every loop nest. 1888 if (L.isInnermost() || VPlanBuildStressTest || 1889 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1890 LoopBlocksRPO RPOT(&L); 1891 RPOT.perform(LI); 1892 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1893 V.push_back(&L); 1894 // TODO: Collect inner loops inside marked outer loops in case 1895 // vectorization fails for the outer loop. Do not invoke 1896 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1897 // already known to be reducible. We can use an inherited attribute for 1898 // that. 1899 return; 1900 } 1901 } 1902 for (Loop *InnerL : L) 1903 collectSupportedLoops(*InnerL, LI, ORE, V); 1904 } 1905 1906 namespace { 1907 1908 /// The LoopVectorize Pass. 1909 struct LoopVectorize : public FunctionPass { 1910 /// Pass identification, replacement for typeid 1911 static char ID; 1912 1913 LoopVectorizePass Impl; 1914 1915 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1916 bool VectorizeOnlyWhenForced = false) 1917 : FunctionPass(ID), 1918 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1919 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1920 } 1921 1922 bool runOnFunction(Function &F) override { 1923 if (skipFunction(F)) 1924 return false; 1925 1926 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1927 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1928 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1929 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1930 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1931 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1932 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1933 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1934 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1935 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1936 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1937 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1938 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1939 1940 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1941 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1942 1943 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1944 GetLAA, *ORE, PSI).MadeAnyChange; 1945 } 1946 1947 void getAnalysisUsage(AnalysisUsage &AU) const override { 1948 AU.addRequired<AssumptionCacheTracker>(); 1949 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1950 AU.addRequired<DominatorTreeWrapperPass>(); 1951 AU.addRequired<LoopInfoWrapperPass>(); 1952 AU.addRequired<ScalarEvolutionWrapperPass>(); 1953 AU.addRequired<TargetTransformInfoWrapperPass>(); 1954 AU.addRequired<AAResultsWrapperPass>(); 1955 AU.addRequired<LoopAccessLegacyAnalysis>(); 1956 AU.addRequired<DemandedBitsWrapperPass>(); 1957 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1958 AU.addRequired<InjectTLIMappingsLegacy>(); 1959 1960 // We currently do not preserve loopinfo/dominator analyses with outer loop 1961 // vectorization. Until this is addressed, mark these analyses as preserved 1962 // only for non-VPlan-native path. 1963 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1964 if (!EnableVPlanNativePath) { 1965 AU.addPreserved<LoopInfoWrapperPass>(); 1966 AU.addPreserved<DominatorTreeWrapperPass>(); 1967 } 1968 1969 AU.addPreserved<BasicAAWrapperPass>(); 1970 AU.addPreserved<GlobalsAAWrapperPass>(); 1971 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1972 } 1973 }; 1974 1975 } // end anonymous namespace 1976 1977 //===----------------------------------------------------------------------===// 1978 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1979 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1980 //===----------------------------------------------------------------------===// 1981 1982 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1983 // We need to place the broadcast of invariant variables outside the loop, 1984 // but only if it's proven safe to do so. Else, broadcast will be inside 1985 // vector loop body. 1986 Instruction *Instr = dyn_cast<Instruction>(V); 1987 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1988 (!Instr || 1989 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1990 // Place the code for broadcasting invariant variables in the new preheader. 1991 IRBuilder<>::InsertPointGuard Guard(Builder); 1992 if (SafeToHoist) 1993 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1994 1995 // Broadcast the scalar into all locations in the vector. 1996 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1997 1998 return Shuf; 1999 } 2000 2001 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2002 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2003 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2004 "Expected either an induction phi-node or a truncate of it!"); 2005 Value *Start = II.getStartValue(); 2006 2007 // Construct the initial value of the vector IV in the vector loop preheader 2008 auto CurrIP = Builder.saveIP(); 2009 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2010 if (isa<TruncInst>(EntryVal)) { 2011 assert(Start->getType()->isIntegerTy() && 2012 "Truncation requires an integer type"); 2013 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2014 Step = Builder.CreateTrunc(Step, TruncType); 2015 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2016 } 2017 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2018 Value *SteppedStart = 2019 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2020 2021 // We create vector phi nodes for both integer and floating-point induction 2022 // variables. Here, we determine the kind of arithmetic we will perform. 2023 Instruction::BinaryOps AddOp; 2024 Instruction::BinaryOps MulOp; 2025 if (Step->getType()->isIntegerTy()) { 2026 AddOp = Instruction::Add; 2027 MulOp = Instruction::Mul; 2028 } else { 2029 AddOp = II.getInductionOpcode(); 2030 MulOp = Instruction::FMul; 2031 } 2032 2033 // Multiply the vectorization factor by the step using integer or 2034 // floating-point arithmetic as appropriate. 2035 Value *ConstVF = 2036 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 2037 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2038 2039 // Create a vector splat to use in the induction update. 2040 // 2041 // FIXME: If the step is non-constant, we create the vector splat with 2042 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2043 // handle a constant vector splat. 2044 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2045 Value *SplatVF = isa<Constant>(Mul) 2046 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2047 : Builder.CreateVectorSplat(VF, Mul); 2048 Builder.restoreIP(CurrIP); 2049 2050 // We may need to add the step a number of times, depending on the unroll 2051 // factor. The last of those goes into the PHI. 2052 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2053 &*LoopVectorBody->getFirstInsertionPt()); 2054 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2055 Instruction *LastInduction = VecInd; 2056 for (unsigned Part = 0; Part < UF; ++Part) { 2057 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2058 2059 if (isa<TruncInst>(EntryVal)) 2060 addMetadata(LastInduction, EntryVal); 2061 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 2062 2063 LastInduction = cast<Instruction>(addFastMathFlag( 2064 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2065 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2066 } 2067 2068 // Move the last step to the end of the latch block. This ensures consistent 2069 // placement of all induction updates. 2070 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2071 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2072 auto *ICmp = cast<Instruction>(Br->getCondition()); 2073 LastInduction->moveBefore(ICmp); 2074 LastInduction->setName("vec.ind.next"); 2075 2076 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2077 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2078 } 2079 2080 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2081 return Cost->isScalarAfterVectorization(I, VF) || 2082 Cost->isProfitableToScalarize(I, VF); 2083 } 2084 2085 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2086 if (shouldScalarizeInstruction(IV)) 2087 return true; 2088 auto isScalarInst = [&](User *U) -> bool { 2089 auto *I = cast<Instruction>(U); 2090 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2091 }; 2092 return llvm::any_of(IV->users(), isScalarInst); 2093 } 2094 2095 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2096 const InductionDescriptor &ID, const Instruction *EntryVal, 2097 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 2098 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2099 "Expected either an induction phi-node or a truncate of it!"); 2100 2101 // This induction variable is not the phi from the original loop but the 2102 // newly-created IV based on the proof that casted Phi is equal to the 2103 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2104 // re-uses the same InductionDescriptor that original IV uses but we don't 2105 // have to do any recording in this case - that is done when original IV is 2106 // processed. 2107 if (isa<TruncInst>(EntryVal)) 2108 return; 2109 2110 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2111 if (Casts.empty()) 2112 return; 2113 // Only the first Cast instruction in the Casts vector is of interest. 2114 // The rest of the Casts (if exist) have no uses outside the 2115 // induction update chain itself. 2116 Instruction *CastInst = *Casts.begin(); 2117 if (Lane < UINT_MAX) 2118 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 2119 else 2120 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 2121 } 2122 2123 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2124 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2125 "Primary induction variable must have an integer type"); 2126 2127 auto II = Legal->getInductionVars().find(IV); 2128 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2129 2130 auto ID = II->second; 2131 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2132 2133 // The value from the original loop to which we are mapping the new induction 2134 // variable. 2135 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2136 2137 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2138 2139 // Generate code for the induction step. Note that induction steps are 2140 // required to be loop-invariant 2141 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2142 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2143 "Induction step should be loop invariant"); 2144 if (PSE.getSE()->isSCEVable(IV->getType())) { 2145 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2146 return Exp.expandCodeFor(Step, Step->getType(), 2147 LoopVectorPreHeader->getTerminator()); 2148 } 2149 return cast<SCEVUnknown>(Step)->getValue(); 2150 }; 2151 2152 // The scalar value to broadcast. This is derived from the canonical 2153 // induction variable. If a truncation type is given, truncate the canonical 2154 // induction variable and step. Otherwise, derive these values from the 2155 // induction descriptor. 2156 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2157 Value *ScalarIV = Induction; 2158 if (IV != OldInduction) { 2159 ScalarIV = IV->getType()->isIntegerTy() 2160 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2161 : Builder.CreateCast(Instruction::SIToFP, Induction, 2162 IV->getType()); 2163 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2164 ScalarIV->setName("offset.idx"); 2165 } 2166 if (Trunc) { 2167 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2168 assert(Step->getType()->isIntegerTy() && 2169 "Truncation requires an integer step"); 2170 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2171 Step = Builder.CreateTrunc(Step, TruncType); 2172 } 2173 return ScalarIV; 2174 }; 2175 2176 // Create the vector values from the scalar IV, in the absence of creating a 2177 // vector IV. 2178 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2179 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2180 for (unsigned Part = 0; Part < UF; ++Part) { 2181 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2182 Value *EntryPart = 2183 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2184 ID.getInductionOpcode()); 2185 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2186 if (Trunc) 2187 addMetadata(EntryPart, Trunc); 2188 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 2189 } 2190 }; 2191 2192 // Now do the actual transformations, and start with creating the step value. 2193 Value *Step = CreateStepValue(ID.getStep()); 2194 if (VF.isZero() || VF.isScalar()) { 2195 Value *ScalarIV = CreateScalarIV(Step); 2196 CreateSplatIV(ScalarIV, Step); 2197 return; 2198 } 2199 2200 // Determine if we want a scalar version of the induction variable. This is 2201 // true if the induction variable itself is not widened, or if it has at 2202 // least one user in the loop that is not widened. 2203 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2204 if (!NeedsScalarIV) { 2205 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2206 return; 2207 } 2208 2209 // Try to create a new independent vector induction variable. If we can't 2210 // create the phi node, we will splat the scalar induction variable in each 2211 // loop iteration. 2212 if (!shouldScalarizeInstruction(EntryVal)) { 2213 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2214 Value *ScalarIV = CreateScalarIV(Step); 2215 // Create scalar steps that can be used by instructions we will later 2216 // scalarize. Note that the addition of the scalar steps will not increase 2217 // the number of instructions in the loop in the common case prior to 2218 // InstCombine. We will be trading one vector extract for each scalar step. 2219 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2220 return; 2221 } 2222 2223 // All IV users are scalar instructions, so only emit a scalar IV, not a 2224 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2225 // predicate used by the masked loads/stores. 2226 Value *ScalarIV = CreateScalarIV(Step); 2227 if (!Cost->isScalarEpilogueAllowed()) 2228 CreateSplatIV(ScalarIV, Step); 2229 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2230 } 2231 2232 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2233 Instruction::BinaryOps BinOp) { 2234 // Create and check the types. 2235 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2236 int VLen = ValVTy->getNumElements(); 2237 2238 Type *STy = Val->getType()->getScalarType(); 2239 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2240 "Induction Step must be an integer or FP"); 2241 assert(Step->getType() == STy && "Step has wrong type"); 2242 2243 SmallVector<Constant *, 8> Indices; 2244 2245 if (STy->isIntegerTy()) { 2246 // Create a vector of consecutive numbers from zero to VF. 2247 for (int i = 0; i < VLen; ++i) 2248 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2249 2250 // Add the consecutive indices to the vector value. 2251 Constant *Cv = ConstantVector::get(Indices); 2252 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2253 Step = Builder.CreateVectorSplat(VLen, Step); 2254 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2255 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2256 // which can be found from the original scalar operations. 2257 Step = Builder.CreateMul(Cv, Step); 2258 return Builder.CreateAdd(Val, Step, "induction"); 2259 } 2260 2261 // Floating point induction. 2262 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2263 "Binary Opcode should be specified for FP induction"); 2264 // Create a vector of consecutive numbers from zero to VF. 2265 for (int i = 0; i < VLen; ++i) 2266 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2267 2268 // Add the consecutive indices to the vector value. 2269 Constant *Cv = ConstantVector::get(Indices); 2270 2271 Step = Builder.CreateVectorSplat(VLen, Step); 2272 2273 // Floating point operations had to be 'fast' to enable the induction. 2274 FastMathFlags Flags; 2275 Flags.setFast(); 2276 2277 Value *MulOp = Builder.CreateFMul(Cv, Step); 2278 if (isa<Instruction>(MulOp)) 2279 // Have to check, MulOp may be a constant 2280 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2281 2282 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2283 if (isa<Instruction>(BOp)) 2284 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2285 return BOp; 2286 } 2287 2288 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2289 Instruction *EntryVal, 2290 const InductionDescriptor &ID) { 2291 // We shouldn't have to build scalar steps if we aren't vectorizing. 2292 assert(VF.isVector() && "VF should be greater than one"); 2293 // Get the value type and ensure it and the step have the same integer type. 2294 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2295 assert(ScalarIVTy == Step->getType() && 2296 "Val and Step should have the same type"); 2297 2298 // We build scalar steps for both integer and floating-point induction 2299 // variables. Here, we determine the kind of arithmetic we will perform. 2300 Instruction::BinaryOps AddOp; 2301 Instruction::BinaryOps MulOp; 2302 if (ScalarIVTy->isIntegerTy()) { 2303 AddOp = Instruction::Add; 2304 MulOp = Instruction::Mul; 2305 } else { 2306 AddOp = ID.getInductionOpcode(); 2307 MulOp = Instruction::FMul; 2308 } 2309 2310 // Determine the number of scalars we need to generate for each unroll 2311 // iteration. If EntryVal is uniform, we only need to generate the first 2312 // lane. Otherwise, we generate all VF values. 2313 unsigned Lanes = 2314 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2315 ? 1 2316 : VF.getKnownMinValue(); 2317 assert((!VF.isScalable() || Lanes == 1) && 2318 "Should never scalarize a scalable vector"); 2319 // Compute the scalar steps and save the results in VectorLoopValueMap. 2320 for (unsigned Part = 0; Part < UF; ++Part) { 2321 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2322 auto *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2323 ScalarIVTy->getScalarSizeInBits()); 2324 Value *StartIdx = 2325 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2326 if (ScalarIVTy->isFloatingPointTy()) 2327 StartIdx = Builder.CreateSIToFP(StartIdx, ScalarIVTy); 2328 StartIdx = addFastMathFlag(Builder.CreateBinOp( 2329 AddOp, StartIdx, getSignedIntOrFpConstant(ScalarIVTy, Lane))); 2330 // The step returned by `createStepForVF` is a runtime-evaluated value 2331 // when VF is scalable. Otherwise, it should be folded into a Constant. 2332 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2333 "Expected StartIdx to be folded to a constant when VF is not " 2334 "scalable"); 2335 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2336 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2337 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2338 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2339 } 2340 } 2341 } 2342 2343 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2344 assert(V != Induction && "The new induction variable should not be used."); 2345 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2346 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2347 2348 // If we have a stride that is replaced by one, do it here. Defer this for 2349 // the VPlan-native path until we start running Legal checks in that path. 2350 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2351 V = ConstantInt::get(V->getType(), 1); 2352 2353 // If we have a vector mapped to this value, return it. 2354 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2355 return VectorLoopValueMap.getVectorValue(V, Part); 2356 2357 // If the value has not been vectorized, check if it has been scalarized 2358 // instead. If it has been scalarized, and we actually need the value in 2359 // vector form, we will construct the vector values on demand. 2360 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2361 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2362 2363 // If we've scalarized a value, that value should be an instruction. 2364 auto *I = cast<Instruction>(V); 2365 2366 // If we aren't vectorizing, we can just copy the scalar map values over to 2367 // the vector map. 2368 if (VF.isScalar()) { 2369 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2370 return ScalarValue; 2371 } 2372 2373 // Get the last scalar instruction we generated for V and Part. If the value 2374 // is known to be uniform after vectorization, this corresponds to lane zero 2375 // of the Part unroll iteration. Otherwise, the last instruction is the one 2376 // we created for the last vector lane of the Part unroll iteration. 2377 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) 2378 ? 0 2379 : VF.getKnownMinValue() - 1; 2380 assert((!VF.isScalable() || LastLane == 0) && 2381 "Scalable vectorization can't lead to any scalarized values."); 2382 auto *LastInst = cast<Instruction>( 2383 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2384 2385 // Set the insert point after the last scalarized instruction. This ensures 2386 // the insertelement sequence will directly follow the scalar definitions. 2387 auto OldIP = Builder.saveIP(); 2388 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2389 Builder.SetInsertPoint(&*NewIP); 2390 2391 // However, if we are vectorizing, we need to construct the vector values. 2392 // If the value is known to be uniform after vectorization, we can just 2393 // broadcast the scalar value corresponding to lane zero for each unroll 2394 // iteration. Otherwise, we construct the vector values using insertelement 2395 // instructions. Since the resulting vectors are stored in 2396 // VectorLoopValueMap, we will only generate the insertelements once. 2397 Value *VectorValue = nullptr; 2398 if (Cost->isUniformAfterVectorization(I, VF)) { 2399 VectorValue = getBroadcastInstrs(ScalarValue); 2400 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2401 } else { 2402 // Initialize packing with insertelements to start from undef. 2403 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2404 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2405 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2406 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 2407 packScalarIntoVectorValue(V, {Part, Lane}); 2408 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2409 } 2410 Builder.restoreIP(OldIP); 2411 return VectorValue; 2412 } 2413 2414 // If this scalar is unknown, assume that it is a constant or that it is 2415 // loop invariant. Broadcast V and save the value for future uses. 2416 Value *B = getBroadcastInstrs(V); 2417 VectorLoopValueMap.setVectorValue(V, Part, B); 2418 return B; 2419 } 2420 2421 Value * 2422 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2423 const VPIteration &Instance) { 2424 // If the value is not an instruction contained in the loop, it should 2425 // already be scalar. 2426 if (OrigLoop->isLoopInvariant(V)) 2427 return V; 2428 2429 assert(Instance.Lane > 0 2430 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2431 : true && "Uniform values only have lane zero"); 2432 2433 // If the value from the original loop has not been vectorized, it is 2434 // represented by UF x VF scalar values in the new loop. Return the requested 2435 // scalar value. 2436 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2437 return VectorLoopValueMap.getScalarValue(V, Instance); 2438 2439 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2440 // for the given unroll part. If this entry is not a vector type (i.e., the 2441 // vectorization factor is one), there is no need to generate an 2442 // extractelement instruction. 2443 auto *U = getOrCreateVectorValue(V, Instance.Part); 2444 if (!U->getType()->isVectorTy()) { 2445 assert(VF.isScalar() && "Value not scalarized has non-vector type"); 2446 return U; 2447 } 2448 2449 // Otherwise, the value from the original loop has been vectorized and is 2450 // represented by UF vector values. Extract and return the requested scalar 2451 // value from the appropriate vector lane. 2452 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2453 } 2454 2455 void InnerLoopVectorizer::packScalarIntoVectorValue( 2456 Value *V, const VPIteration &Instance) { 2457 assert(V != Induction && "The new induction variable should not be used."); 2458 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2459 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2460 2461 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2462 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2463 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2464 Builder.getInt32(Instance.Lane)); 2465 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2466 } 2467 2468 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2469 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2470 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2471 SmallVector<int, 8> ShuffleMask; 2472 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2473 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2474 2475 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2476 } 2477 2478 // Return whether we allow using masked interleave-groups (for dealing with 2479 // strided loads/stores that reside in predicated blocks, or for dealing 2480 // with gaps). 2481 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2482 // If an override option has been passed in for interleaved accesses, use it. 2483 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2484 return EnableMaskedInterleavedMemAccesses; 2485 2486 return TTI.enableMaskedInterleavedAccessVectorization(); 2487 } 2488 2489 // Try to vectorize the interleave group that \p Instr belongs to. 2490 // 2491 // E.g. Translate following interleaved load group (factor = 3): 2492 // for (i = 0; i < N; i+=3) { 2493 // R = Pic[i]; // Member of index 0 2494 // G = Pic[i+1]; // Member of index 1 2495 // B = Pic[i+2]; // Member of index 2 2496 // ... // do something to R, G, B 2497 // } 2498 // To: 2499 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2500 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2501 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2502 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2503 // 2504 // Or translate following interleaved store group (factor = 3): 2505 // for (i = 0; i < N; i+=3) { 2506 // ... do something to R, G, B 2507 // Pic[i] = R; // Member of index 0 2508 // Pic[i+1] = G; // Member of index 1 2509 // Pic[i+2] = B; // Member of index 2 2510 // } 2511 // To: 2512 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2513 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2514 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2515 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2516 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2517 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2518 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2519 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2520 VPValue *BlockInMask) { 2521 Instruction *Instr = Group->getInsertPos(); 2522 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2523 2524 // Prepare for the vector type of the interleaved load/store. 2525 Type *ScalarTy = getMemInstValueType(Instr); 2526 unsigned InterleaveFactor = Group->getFactor(); 2527 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2528 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2529 2530 // Prepare for the new pointers. 2531 SmallVector<Value *, 2> AddrParts; 2532 unsigned Index = Group->getIndex(Instr); 2533 2534 // TODO: extend the masked interleaved-group support to reversed access. 2535 assert((!BlockInMask || !Group->isReverse()) && 2536 "Reversed masked interleave-group not supported."); 2537 2538 // If the group is reverse, adjust the index to refer to the last vector lane 2539 // instead of the first. We adjust the index from the first vector lane, 2540 // rather than directly getting the pointer for lane VF - 1, because the 2541 // pointer operand of the interleaved access is supposed to be uniform. For 2542 // uniform instructions, we're only required to generate a value for the 2543 // first vector lane in each unroll iteration. 2544 assert(!VF.isScalable() && 2545 "scalable vector reverse operation is not implemented"); 2546 if (Group->isReverse()) 2547 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2548 2549 for (unsigned Part = 0; Part < UF; Part++) { 2550 Value *AddrPart = State.get(Addr, {Part, 0}); 2551 setDebugLocFromInst(Builder, AddrPart); 2552 2553 // Notice current instruction could be any index. Need to adjust the address 2554 // to the member of index 0. 2555 // 2556 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2557 // b = A[i]; // Member of index 0 2558 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2559 // 2560 // E.g. A[i+1] = a; // Member of index 1 2561 // A[i] = b; // Member of index 0 2562 // A[i+2] = c; // Member of index 2 (Current instruction) 2563 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2564 2565 bool InBounds = false; 2566 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2567 InBounds = gep->isInBounds(); 2568 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2569 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2570 2571 // Cast to the vector pointer type. 2572 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2573 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2574 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2575 } 2576 2577 setDebugLocFromInst(Builder, Instr); 2578 Value *UndefVec = UndefValue::get(VecTy); 2579 2580 Value *MaskForGaps = nullptr; 2581 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2582 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2583 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2584 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2585 } 2586 2587 // Vectorize the interleaved load group. 2588 if (isa<LoadInst>(Instr)) { 2589 // For each unroll part, create a wide load for the group. 2590 SmallVector<Value *, 2> NewLoads; 2591 for (unsigned Part = 0; Part < UF; Part++) { 2592 Instruction *NewLoad; 2593 if (BlockInMask || MaskForGaps) { 2594 assert(useMaskedInterleavedAccesses(*TTI) && 2595 "masked interleaved groups are not allowed."); 2596 Value *GroupMask = MaskForGaps; 2597 if (BlockInMask) { 2598 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2599 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2600 Value *ShuffledMask = Builder.CreateShuffleVector( 2601 BlockInMaskPart, 2602 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2603 "interleaved.mask"); 2604 GroupMask = MaskForGaps 2605 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2606 MaskForGaps) 2607 : ShuffledMask; 2608 } 2609 NewLoad = 2610 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2611 GroupMask, UndefVec, "wide.masked.vec"); 2612 } 2613 else 2614 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2615 Group->getAlign(), "wide.vec"); 2616 Group->addMetadata(NewLoad); 2617 NewLoads.push_back(NewLoad); 2618 } 2619 2620 // For each member in the group, shuffle out the appropriate data from the 2621 // wide loads. 2622 unsigned J = 0; 2623 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2624 Instruction *Member = Group->getMember(I); 2625 2626 // Skip the gaps in the group. 2627 if (!Member) 2628 continue; 2629 2630 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2631 auto StrideMask = 2632 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2633 for (unsigned Part = 0; Part < UF; Part++) { 2634 Value *StridedVec = Builder.CreateShuffleVector( 2635 NewLoads[Part], StrideMask, "strided.vec"); 2636 2637 // If this member has different type, cast the result type. 2638 if (Member->getType() != ScalarTy) { 2639 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2640 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2641 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2642 } 2643 2644 if (Group->isReverse()) 2645 StridedVec = reverseVector(StridedVec); 2646 2647 State.set(VPDefs[J], Member, StridedVec, Part); 2648 } 2649 ++J; 2650 } 2651 return; 2652 } 2653 2654 // The sub vector type for current instruction. 2655 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2656 auto *SubVT = VectorType::get(ScalarTy, VF); 2657 2658 // Vectorize the interleaved store group. 2659 for (unsigned Part = 0; Part < UF; Part++) { 2660 // Collect the stored vector from each member. 2661 SmallVector<Value *, 4> StoredVecs; 2662 for (unsigned i = 0; i < InterleaveFactor; i++) { 2663 // Interleaved store group doesn't allow a gap, so each index has a member 2664 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2665 2666 Value *StoredVec = State.get(StoredValues[i], Part); 2667 2668 if (Group->isReverse()) 2669 StoredVec = reverseVector(StoredVec); 2670 2671 // If this member has different type, cast it to a unified type. 2672 2673 if (StoredVec->getType() != SubVT) 2674 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2675 2676 StoredVecs.push_back(StoredVec); 2677 } 2678 2679 // Concatenate all vectors into a wide vector. 2680 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2681 2682 // Interleave the elements in the wide vector. 2683 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2684 Value *IVec = Builder.CreateShuffleVector( 2685 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2686 "interleaved.vec"); 2687 2688 Instruction *NewStoreInstr; 2689 if (BlockInMask) { 2690 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2691 Value *ShuffledMask = Builder.CreateShuffleVector( 2692 BlockInMaskPart, 2693 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2694 "interleaved.mask"); 2695 NewStoreInstr = Builder.CreateMaskedStore( 2696 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2697 } 2698 else 2699 NewStoreInstr = 2700 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2701 2702 Group->addMetadata(NewStoreInstr); 2703 } 2704 } 2705 2706 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2707 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2708 VPValue *StoredValue, VPValue *BlockInMask) { 2709 // Attempt to issue a wide load. 2710 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2711 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2712 2713 assert((LI || SI) && "Invalid Load/Store instruction"); 2714 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2715 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2716 2717 LoopVectorizationCostModel::InstWidening Decision = 2718 Cost->getWideningDecision(Instr, VF); 2719 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2720 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2721 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2722 "CM decision is not to widen the memory instruction"); 2723 2724 Type *ScalarDataTy = getMemInstValueType(Instr); 2725 2726 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2727 const Align Alignment = getLoadStoreAlignment(Instr); 2728 2729 // Determine if the pointer operand of the access is either consecutive or 2730 // reverse consecutive. 2731 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2732 bool ConsecutiveStride = 2733 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2734 bool CreateGatherScatter = 2735 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2736 2737 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2738 // gather/scatter. Otherwise Decision should have been to Scalarize. 2739 assert((ConsecutiveStride || CreateGatherScatter) && 2740 "The instruction should be scalarized"); 2741 (void)ConsecutiveStride; 2742 2743 VectorParts BlockInMaskParts(UF); 2744 bool isMaskRequired = BlockInMask; 2745 if (isMaskRequired) 2746 for (unsigned Part = 0; Part < UF; ++Part) 2747 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2748 2749 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2750 // Calculate the pointer for the specific unroll-part. 2751 GetElementPtrInst *PartPtr = nullptr; 2752 2753 bool InBounds = false; 2754 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2755 InBounds = gep->isInBounds(); 2756 2757 if (Reverse) { 2758 assert(!VF.isScalable() && 2759 "Reversing vectors is not yet supported for scalable vectors."); 2760 2761 // If the address is consecutive but reversed, then the 2762 // wide store needs to start at the last vector element. 2763 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2764 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2765 PartPtr->setIsInBounds(InBounds); 2766 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2767 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2768 PartPtr->setIsInBounds(InBounds); 2769 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2770 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2771 } else { 2772 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2773 PartPtr = cast<GetElementPtrInst>( 2774 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2775 PartPtr->setIsInBounds(InBounds); 2776 } 2777 2778 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2779 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2780 }; 2781 2782 // Handle Stores: 2783 if (SI) { 2784 setDebugLocFromInst(Builder, SI); 2785 2786 for (unsigned Part = 0; Part < UF; ++Part) { 2787 Instruction *NewSI = nullptr; 2788 Value *StoredVal = State.get(StoredValue, Part); 2789 if (CreateGatherScatter) { 2790 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2791 Value *VectorGep = State.get(Addr, Part); 2792 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2793 MaskPart); 2794 } else { 2795 if (Reverse) { 2796 // If we store to reverse consecutive memory locations, then we need 2797 // to reverse the order of elements in the stored value. 2798 StoredVal = reverseVector(StoredVal); 2799 // We don't want to update the value in the map as it might be used in 2800 // another expression. So don't call resetVectorValue(StoredVal). 2801 } 2802 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2803 if (isMaskRequired) 2804 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2805 BlockInMaskParts[Part]); 2806 else 2807 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2808 } 2809 addMetadata(NewSI, SI); 2810 } 2811 return; 2812 } 2813 2814 // Handle loads. 2815 assert(LI && "Must have a load instruction"); 2816 setDebugLocFromInst(Builder, LI); 2817 for (unsigned Part = 0; Part < UF; ++Part) { 2818 Value *NewLI; 2819 if (CreateGatherScatter) { 2820 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2821 Value *VectorGep = State.get(Addr, Part); 2822 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2823 nullptr, "wide.masked.gather"); 2824 addMetadata(NewLI, LI); 2825 } else { 2826 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2827 if (isMaskRequired) 2828 NewLI = Builder.CreateMaskedLoad( 2829 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2830 "wide.masked.load"); 2831 else 2832 NewLI = 2833 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2834 2835 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2836 addMetadata(NewLI, LI); 2837 if (Reverse) 2838 NewLI = reverseVector(NewLI); 2839 } 2840 2841 State.set(Def, Instr, NewLI, Part); 2842 } 2843 } 2844 2845 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2846 const VPIteration &Instance, 2847 bool IfPredicateInstr, 2848 VPTransformState &State) { 2849 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2850 2851 setDebugLocFromInst(Builder, Instr); 2852 2853 // Does this instruction return a value ? 2854 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2855 2856 Instruction *Cloned = Instr->clone(); 2857 if (!IsVoidRetTy) 2858 Cloned->setName(Instr->getName() + ".cloned"); 2859 2860 // Replace the operands of the cloned instructions with their scalar 2861 // equivalents in the new loop. 2862 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2863 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 2864 auto InputInstance = Instance; 2865 if (!Operand || !OrigLoop->contains(Operand) || 2866 (Cost->isUniformAfterVectorization(Operand, State.VF))) 2867 InputInstance.Lane = 0; 2868 auto *NewOp = State.get(User.getOperand(op), InputInstance); 2869 Cloned->setOperand(op, NewOp); 2870 } 2871 addNewMetadata(Cloned, Instr); 2872 2873 // Place the cloned scalar in the new loop. 2874 Builder.Insert(Cloned); 2875 2876 // TODO: Set result for VPValue of VPReciplicateRecipe. This requires 2877 // representing scalar values in VPTransformState. Add the cloned scalar to 2878 // the scalar map entry. 2879 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2880 2881 // If we just cloned a new assumption, add it the assumption cache. 2882 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2883 if (II->getIntrinsicID() == Intrinsic::assume) 2884 AC->registerAssumption(II); 2885 2886 // End if-block. 2887 if (IfPredicateInstr) 2888 PredicatedInstructions.push_back(Cloned); 2889 } 2890 2891 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2892 Value *End, Value *Step, 2893 Instruction *DL) { 2894 BasicBlock *Header = L->getHeader(); 2895 BasicBlock *Latch = L->getLoopLatch(); 2896 // As we're just creating this loop, it's possible no latch exists 2897 // yet. If so, use the header as this will be a single block loop. 2898 if (!Latch) 2899 Latch = Header; 2900 2901 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2902 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2903 setDebugLocFromInst(Builder, OldInst); 2904 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2905 2906 Builder.SetInsertPoint(Latch->getTerminator()); 2907 setDebugLocFromInst(Builder, OldInst); 2908 2909 // Create i+1 and fill the PHINode. 2910 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2911 Induction->addIncoming(Start, L->getLoopPreheader()); 2912 Induction->addIncoming(Next, Latch); 2913 // Create the compare. 2914 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2915 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2916 2917 // Now we have two terminators. Remove the old one from the block. 2918 Latch->getTerminator()->eraseFromParent(); 2919 2920 return Induction; 2921 } 2922 2923 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2924 if (TripCount) 2925 return TripCount; 2926 2927 assert(L && "Create Trip Count for null loop."); 2928 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2929 // Find the loop boundaries. 2930 ScalarEvolution *SE = PSE.getSE(); 2931 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2932 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2933 "Invalid loop count"); 2934 2935 Type *IdxTy = Legal->getWidestInductionType(); 2936 assert(IdxTy && "No type for induction"); 2937 2938 // The exit count might have the type of i64 while the phi is i32. This can 2939 // happen if we have an induction variable that is sign extended before the 2940 // compare. The only way that we get a backedge taken count is that the 2941 // induction variable was signed and as such will not overflow. In such a case 2942 // truncation is legal. 2943 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2944 IdxTy->getPrimitiveSizeInBits()) 2945 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2946 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2947 2948 // Get the total trip count from the count by adding 1. 2949 const SCEV *ExitCount = SE->getAddExpr( 2950 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2951 2952 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2953 2954 // Expand the trip count and place the new instructions in the preheader. 2955 // Notice that the pre-header does not change, only the loop body. 2956 SCEVExpander Exp(*SE, DL, "induction"); 2957 2958 // Count holds the overall loop count (N). 2959 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2960 L->getLoopPreheader()->getTerminator()); 2961 2962 if (TripCount->getType()->isPointerTy()) 2963 TripCount = 2964 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2965 L->getLoopPreheader()->getTerminator()); 2966 2967 return TripCount; 2968 } 2969 2970 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2971 if (VectorTripCount) 2972 return VectorTripCount; 2973 2974 Value *TC = getOrCreateTripCount(L); 2975 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2976 2977 Type *Ty = TC->getType(); 2978 // This is where we can make the step a runtime constant. 2979 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 2980 2981 // If the tail is to be folded by masking, round the number of iterations N 2982 // up to a multiple of Step instead of rounding down. This is done by first 2983 // adding Step-1 and then rounding down. Note that it's ok if this addition 2984 // overflows: the vector induction variable will eventually wrap to zero given 2985 // that it starts at zero and its Step is a power of two; the loop will then 2986 // exit, with the last early-exit vector comparison also producing all-true. 2987 if (Cost->foldTailByMasking()) { 2988 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2989 "VF*UF must be a power of 2 when folding tail by masking"); 2990 assert(!VF.isScalable() && 2991 "Tail folding not yet supported for scalable vectors"); 2992 TC = Builder.CreateAdd( 2993 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 2994 } 2995 2996 // Now we need to generate the expression for the part of the loop that the 2997 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2998 // iterations are not required for correctness, or N - Step, otherwise. Step 2999 // is equal to the vectorization factor (number of SIMD elements) times the 3000 // unroll factor (number of SIMD instructions). 3001 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3002 3003 // If there is a non-reversed interleaved group that may speculatively access 3004 // memory out-of-bounds, we need to ensure that there will be at least one 3005 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3006 // the trip count, we set the remainder to be equal to the step. If the step 3007 // does not evenly divide the trip count, no adjustment is necessary since 3008 // there will already be scalar iterations. Note that the minimum iterations 3009 // check ensures that N >= Step. 3010 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 3011 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3012 R = Builder.CreateSelect(IsZero, Step, R); 3013 } 3014 3015 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3016 3017 return VectorTripCount; 3018 } 3019 3020 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3021 const DataLayout &DL) { 3022 // Verify that V is a vector type with same number of elements as DstVTy. 3023 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3024 unsigned VF = DstFVTy->getNumElements(); 3025 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3026 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3027 Type *SrcElemTy = SrcVecTy->getElementType(); 3028 Type *DstElemTy = DstFVTy->getElementType(); 3029 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3030 "Vector elements must have same size"); 3031 3032 // Do a direct cast if element types are castable. 3033 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3034 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3035 } 3036 // V cannot be directly casted to desired vector type. 3037 // May happen when V is a floating point vector but DstVTy is a vector of 3038 // pointers or vice-versa. Handle this using a two-step bitcast using an 3039 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3040 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3041 "Only one type should be a pointer type"); 3042 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3043 "Only one type should be a floating point type"); 3044 Type *IntTy = 3045 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3046 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3047 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3048 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3049 } 3050 3051 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3052 BasicBlock *Bypass) { 3053 Value *Count = getOrCreateTripCount(L); 3054 // Reuse existing vector loop preheader for TC checks. 3055 // Note that new preheader block is generated for vector loop. 3056 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3057 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3058 3059 // Generate code to check if the loop's trip count is less than VF * UF, or 3060 // equal to it in case a scalar epilogue is required; this implies that the 3061 // vector trip count is zero. This check also covers the case where adding one 3062 // to the backedge-taken count overflowed leading to an incorrect trip count 3063 // of zero. In this case we will also jump to the scalar loop. 3064 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3065 : ICmpInst::ICMP_ULT; 3066 3067 // If tail is to be folded, vector loop takes care of all iterations. 3068 Value *CheckMinIters = Builder.getFalse(); 3069 if (!Cost->foldTailByMasking()) { 3070 Value *Step = 3071 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3072 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3073 } 3074 // Create new preheader for vector loop. 3075 LoopVectorPreHeader = 3076 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3077 "vector.ph"); 3078 3079 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3080 DT->getNode(Bypass)->getIDom()) && 3081 "TC check is expected to dominate Bypass"); 3082 3083 // Update dominator for Bypass & LoopExit. 3084 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3085 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3086 3087 ReplaceInstWithInst( 3088 TCCheckBlock->getTerminator(), 3089 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3090 LoopBypassBlocks.push_back(TCCheckBlock); 3091 } 3092 3093 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3094 // Reuse existing vector loop preheader for SCEV checks. 3095 // Note that new preheader block is generated for vector loop. 3096 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 3097 3098 // Generate the code to check that the SCEV assumptions that we made. 3099 // We want the new basic block to start at the first instruction in a 3100 // sequence of instructions that form a check. 3101 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3102 "scev.check"); 3103 Value *SCEVCheck = Exp.expandCodeForPredicate( 3104 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 3105 3106 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3107 if (C->isZero()) 3108 return; 3109 3110 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3111 (OptForSizeBasedOnProfile && 3112 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3113 "Cannot SCEV check stride or overflow when optimizing for size"); 3114 3115 SCEVCheckBlock->setName("vector.scevcheck"); 3116 // Create new preheader for vector loop. 3117 LoopVectorPreHeader = 3118 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 3119 nullptr, "vector.ph"); 3120 3121 // Update dominator only if this is first RT check. 3122 if (LoopBypassBlocks.empty()) { 3123 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3124 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3125 } 3126 3127 ReplaceInstWithInst( 3128 SCEVCheckBlock->getTerminator(), 3129 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 3130 LoopBypassBlocks.push_back(SCEVCheckBlock); 3131 AddedSafetyChecks = true; 3132 } 3133 3134 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3135 // VPlan-native path does not do any analysis for runtime checks currently. 3136 if (EnableVPlanNativePath) 3137 return; 3138 3139 // Reuse existing vector loop preheader for runtime memory checks. 3140 // Note that new preheader block is generated for vector loop. 3141 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 3142 3143 // Generate the code that checks in runtime if arrays overlap. We put the 3144 // checks into a separate block to make the more common case of few elements 3145 // faster. 3146 auto *LAI = Legal->getLAI(); 3147 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 3148 if (!RtPtrChecking.Need) 3149 return; 3150 3151 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3152 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3153 "Cannot emit memory checks when optimizing for size, unless forced " 3154 "to vectorize."); 3155 ORE->emit([&]() { 3156 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3157 L->getStartLoc(), L->getHeader()) 3158 << "Code-size may be reduced by not forcing " 3159 "vectorization, or by source-code modifications " 3160 "eliminating the need for runtime checks " 3161 "(e.g., adding 'restrict')."; 3162 }); 3163 } 3164 3165 MemCheckBlock->setName("vector.memcheck"); 3166 // Create new preheader for vector loop. 3167 LoopVectorPreHeader = 3168 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 3169 "vector.ph"); 3170 3171 auto *CondBranch = cast<BranchInst>( 3172 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 3173 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 3174 LoopBypassBlocks.push_back(MemCheckBlock); 3175 AddedSafetyChecks = true; 3176 3177 // Update dominator only if this is first RT check. 3178 if (LoopBypassBlocks.empty()) { 3179 DT->changeImmediateDominator(Bypass, MemCheckBlock); 3180 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 3181 } 3182 3183 Instruction *FirstCheckInst; 3184 Instruction *MemRuntimeCheck; 3185 std::tie(FirstCheckInst, MemRuntimeCheck) = 3186 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 3187 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 3188 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 3189 "claimed checks are required"); 3190 CondBranch->setCondition(MemRuntimeCheck); 3191 3192 // We currently don't use LoopVersioning for the actual loop cloning but we 3193 // still use it to add the noalias metadata. 3194 LVer = std::make_unique<LoopVersioning>( 3195 *Legal->getLAI(), 3196 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3197 DT, PSE.getSE()); 3198 LVer->prepareNoAliasMetadata(); 3199 } 3200 3201 Value *InnerLoopVectorizer::emitTransformedIndex( 3202 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3203 const InductionDescriptor &ID) const { 3204 3205 SCEVExpander Exp(*SE, DL, "induction"); 3206 auto Step = ID.getStep(); 3207 auto StartValue = ID.getStartValue(); 3208 assert(Index->getType() == Step->getType() && 3209 "Index type does not match StepValue type"); 3210 3211 // Note: the IR at this point is broken. We cannot use SE to create any new 3212 // SCEV and then expand it, hoping that SCEV's simplification will give us 3213 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3214 // lead to various SCEV crashes. So all we can do is to use builder and rely 3215 // on InstCombine for future simplifications. Here we handle some trivial 3216 // cases only. 3217 auto CreateAdd = [&B](Value *X, Value *Y) { 3218 assert(X->getType() == Y->getType() && "Types don't match!"); 3219 if (auto *CX = dyn_cast<ConstantInt>(X)) 3220 if (CX->isZero()) 3221 return Y; 3222 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3223 if (CY->isZero()) 3224 return X; 3225 return B.CreateAdd(X, Y); 3226 }; 3227 3228 auto CreateMul = [&B](Value *X, Value *Y) { 3229 assert(X->getType() == Y->getType() && "Types don't match!"); 3230 if (auto *CX = dyn_cast<ConstantInt>(X)) 3231 if (CX->isOne()) 3232 return Y; 3233 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3234 if (CY->isOne()) 3235 return X; 3236 return B.CreateMul(X, Y); 3237 }; 3238 3239 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3240 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3241 // the DomTree is not kept up-to-date for additional blocks generated in the 3242 // vector loop. By using the header as insertion point, we guarantee that the 3243 // expanded instructions dominate all their uses. 3244 auto GetInsertPoint = [this, &B]() { 3245 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3246 if (InsertBB != LoopVectorBody && 3247 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3248 return LoopVectorBody->getTerminator(); 3249 return &*B.GetInsertPoint(); 3250 }; 3251 switch (ID.getKind()) { 3252 case InductionDescriptor::IK_IntInduction: { 3253 assert(Index->getType() == StartValue->getType() && 3254 "Index type does not match StartValue type"); 3255 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3256 return B.CreateSub(StartValue, Index); 3257 auto *Offset = CreateMul( 3258 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3259 return CreateAdd(StartValue, Offset); 3260 } 3261 case InductionDescriptor::IK_PtrInduction: { 3262 assert(isa<SCEVConstant>(Step) && 3263 "Expected constant step for pointer induction"); 3264 return B.CreateGEP( 3265 StartValue->getType()->getPointerElementType(), StartValue, 3266 CreateMul(Index, 3267 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3268 } 3269 case InductionDescriptor::IK_FpInduction: { 3270 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3271 auto InductionBinOp = ID.getInductionBinOp(); 3272 assert(InductionBinOp && 3273 (InductionBinOp->getOpcode() == Instruction::FAdd || 3274 InductionBinOp->getOpcode() == Instruction::FSub) && 3275 "Original bin op should be defined for FP induction"); 3276 3277 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3278 3279 // Floating point operations had to be 'fast' to enable the induction. 3280 FastMathFlags Flags; 3281 Flags.setFast(); 3282 3283 Value *MulExp = B.CreateFMul(StepValue, Index); 3284 if (isa<Instruction>(MulExp)) 3285 // We have to check, the MulExp may be a constant. 3286 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3287 3288 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3289 "induction"); 3290 if (isa<Instruction>(BOp)) 3291 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3292 3293 return BOp; 3294 } 3295 case InductionDescriptor::IK_NoInduction: 3296 return nullptr; 3297 } 3298 llvm_unreachable("invalid enum"); 3299 } 3300 3301 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3302 LoopScalarBody = OrigLoop->getHeader(); 3303 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3304 LoopExitBlock = OrigLoop->getExitBlock(); 3305 assert(LoopExitBlock && "Must have an exit block"); 3306 assert(LoopVectorPreHeader && "Invalid loop structure"); 3307 3308 LoopMiddleBlock = 3309 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3310 LI, nullptr, Twine(Prefix) + "middle.block"); 3311 LoopScalarPreHeader = 3312 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3313 nullptr, Twine(Prefix) + "scalar.ph"); 3314 // We intentionally don't let SplitBlock to update LoopInfo since 3315 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3316 // LoopVectorBody is explicitly added to the correct place few lines later. 3317 LoopVectorBody = 3318 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3319 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3320 3321 // Update dominator for loop exit. 3322 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3323 3324 // Create and register the new vector loop. 3325 Loop *Lp = LI->AllocateLoop(); 3326 Loop *ParentLoop = OrigLoop->getParentLoop(); 3327 3328 // Insert the new loop into the loop nest and register the new basic blocks 3329 // before calling any utilities such as SCEV that require valid LoopInfo. 3330 if (ParentLoop) { 3331 ParentLoop->addChildLoop(Lp); 3332 } else { 3333 LI->addTopLevelLoop(Lp); 3334 } 3335 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3336 return Lp; 3337 } 3338 3339 void InnerLoopVectorizer::createInductionResumeValues( 3340 Loop *L, Value *VectorTripCount, 3341 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3342 assert(VectorTripCount && L && "Expected valid arguments"); 3343 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3344 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3345 "Inconsistent information about additional bypass."); 3346 // We are going to resume the execution of the scalar loop. 3347 // Go over all of the induction variables that we found and fix the 3348 // PHIs that are left in the scalar version of the loop. 3349 // The starting values of PHI nodes depend on the counter of the last 3350 // iteration in the vectorized loop. 3351 // If we come from a bypass edge then we need to start from the original 3352 // start value. 3353 for (auto &InductionEntry : Legal->getInductionVars()) { 3354 PHINode *OrigPhi = InductionEntry.first; 3355 InductionDescriptor II = InductionEntry.second; 3356 3357 // Create phi nodes to merge from the backedge-taken check block. 3358 PHINode *BCResumeVal = 3359 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3360 LoopScalarPreHeader->getTerminator()); 3361 // Copy original phi DL over to the new one. 3362 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3363 Value *&EndValue = IVEndValues[OrigPhi]; 3364 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3365 if (OrigPhi == OldInduction) { 3366 // We know what the end value is. 3367 EndValue = VectorTripCount; 3368 } else { 3369 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3370 Type *StepType = II.getStep()->getType(); 3371 Instruction::CastOps CastOp = 3372 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3373 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3374 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3375 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3376 EndValue->setName("ind.end"); 3377 3378 // Compute the end value for the additional bypass (if applicable). 3379 if (AdditionalBypass.first) { 3380 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3381 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3382 StepType, true); 3383 CRD = 3384 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3385 EndValueFromAdditionalBypass = 3386 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3387 EndValueFromAdditionalBypass->setName("ind.end"); 3388 } 3389 } 3390 // The new PHI merges the original incoming value, in case of a bypass, 3391 // or the value at the end of the vectorized loop. 3392 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3393 3394 // Fix the scalar body counter (PHI node). 3395 // The old induction's phi node in the scalar body needs the truncated 3396 // value. 3397 for (BasicBlock *BB : LoopBypassBlocks) 3398 BCResumeVal->addIncoming(II.getStartValue(), BB); 3399 3400 if (AdditionalBypass.first) 3401 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3402 EndValueFromAdditionalBypass); 3403 3404 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3405 } 3406 } 3407 3408 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3409 MDNode *OrigLoopID) { 3410 assert(L && "Expected valid loop."); 3411 3412 // The trip counts should be cached by now. 3413 Value *Count = getOrCreateTripCount(L); 3414 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3415 3416 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3417 3418 // Add a check in the middle block to see if we have completed 3419 // all of the iterations in the first vector loop. 3420 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3421 // If tail is to be folded, we know we don't need to run the remainder. 3422 Value *CmpN = Builder.getTrue(); 3423 if (!Cost->foldTailByMasking()) { 3424 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3425 VectorTripCount, "cmp.n", 3426 LoopMiddleBlock->getTerminator()); 3427 3428 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3429 // of the corresponding compare because they may have ended up with 3430 // different line numbers and we want to avoid awkward line stepping while 3431 // debugging. Eg. if the compare has got a line number inside the loop. 3432 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3433 } 3434 3435 BranchInst *BrInst = 3436 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3437 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3438 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3439 3440 // Get ready to start creating new instructions into the vectorized body. 3441 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3442 "Inconsistent vector loop preheader"); 3443 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3444 3445 Optional<MDNode *> VectorizedLoopID = 3446 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3447 LLVMLoopVectorizeFollowupVectorized}); 3448 if (VectorizedLoopID.hasValue()) { 3449 L->setLoopID(VectorizedLoopID.getValue()); 3450 3451 // Do not setAlreadyVectorized if loop attributes have been defined 3452 // explicitly. 3453 return LoopVectorPreHeader; 3454 } 3455 3456 // Keep all loop hints from the original loop on the vector loop (we'll 3457 // replace the vectorizer-specific hints below). 3458 if (MDNode *LID = OrigLoop->getLoopID()) 3459 L->setLoopID(LID); 3460 3461 LoopVectorizeHints Hints(L, true, *ORE); 3462 Hints.setAlreadyVectorized(); 3463 3464 #ifdef EXPENSIVE_CHECKS 3465 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3466 LI->verify(*DT); 3467 #endif 3468 3469 return LoopVectorPreHeader; 3470 } 3471 3472 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3473 /* 3474 In this function we generate a new loop. The new loop will contain 3475 the vectorized instructions while the old loop will continue to run the 3476 scalar remainder. 3477 3478 [ ] <-- loop iteration number check. 3479 / | 3480 / v 3481 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3482 | / | 3483 | / v 3484 || [ ] <-- vector pre header. 3485 |/ | 3486 | v 3487 | [ ] \ 3488 | [ ]_| <-- vector loop. 3489 | | 3490 | v 3491 | -[ ] <--- middle-block. 3492 | / | 3493 | / v 3494 -|- >[ ] <--- new preheader. 3495 | | 3496 | v 3497 | [ ] \ 3498 | [ ]_| <-- old scalar loop to handle remainder. 3499 \ | 3500 \ v 3501 >[ ] <-- exit block. 3502 ... 3503 */ 3504 3505 // Get the metadata of the original loop before it gets modified. 3506 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3507 3508 // Create an empty vector loop, and prepare basic blocks for the runtime 3509 // checks. 3510 Loop *Lp = createVectorLoopSkeleton(""); 3511 3512 // Now, compare the new count to zero. If it is zero skip the vector loop and 3513 // jump to the scalar loop. This check also covers the case where the 3514 // backedge-taken count is uint##_max: adding one to it will overflow leading 3515 // to an incorrect trip count of zero. In this (rare) case we will also jump 3516 // to the scalar loop. 3517 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3518 3519 // Generate the code to check any assumptions that we've made for SCEV 3520 // expressions. 3521 emitSCEVChecks(Lp, LoopScalarPreHeader); 3522 3523 // Generate the code that checks in runtime if arrays overlap. We put the 3524 // checks into a separate block to make the more common case of few elements 3525 // faster. 3526 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3527 3528 // Some loops have a single integer induction variable, while other loops 3529 // don't. One example is c++ iterators that often have multiple pointer 3530 // induction variables. In the code below we also support a case where we 3531 // don't have a single induction variable. 3532 // 3533 // We try to obtain an induction variable from the original loop as hard 3534 // as possible. However if we don't find one that: 3535 // - is an integer 3536 // - counts from zero, stepping by one 3537 // - is the size of the widest induction variable type 3538 // then we create a new one. 3539 OldInduction = Legal->getPrimaryInduction(); 3540 Type *IdxTy = Legal->getWidestInductionType(); 3541 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3542 // The loop step is equal to the vectorization factor (num of SIMD elements) 3543 // times the unroll factor (num of SIMD instructions). 3544 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3545 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3546 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3547 Induction = 3548 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3549 getDebugLocFromInstOrOperands(OldInduction)); 3550 3551 // Emit phis for the new starting index of the scalar loop. 3552 createInductionResumeValues(Lp, CountRoundDown); 3553 3554 return completeLoopSkeleton(Lp, OrigLoopID); 3555 } 3556 3557 // Fix up external users of the induction variable. At this point, we are 3558 // in LCSSA form, with all external PHIs that use the IV having one input value, 3559 // coming from the remainder loop. We need those PHIs to also have a correct 3560 // value for the IV when arriving directly from the middle block. 3561 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3562 const InductionDescriptor &II, 3563 Value *CountRoundDown, Value *EndValue, 3564 BasicBlock *MiddleBlock) { 3565 // There are two kinds of external IV usages - those that use the value 3566 // computed in the last iteration (the PHI) and those that use the penultimate 3567 // value (the value that feeds into the phi from the loop latch). 3568 // We allow both, but they, obviously, have different values. 3569 3570 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3571 3572 DenseMap<Value *, Value *> MissingVals; 3573 3574 // An external user of the last iteration's value should see the value that 3575 // the remainder loop uses to initialize its own IV. 3576 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3577 for (User *U : PostInc->users()) { 3578 Instruction *UI = cast<Instruction>(U); 3579 if (!OrigLoop->contains(UI)) { 3580 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3581 MissingVals[UI] = EndValue; 3582 } 3583 } 3584 3585 // An external user of the penultimate value need to see EndValue - Step. 3586 // The simplest way to get this is to recompute it from the constituent SCEVs, 3587 // that is Start + (Step * (CRD - 1)). 3588 for (User *U : OrigPhi->users()) { 3589 auto *UI = cast<Instruction>(U); 3590 if (!OrigLoop->contains(UI)) { 3591 const DataLayout &DL = 3592 OrigLoop->getHeader()->getModule()->getDataLayout(); 3593 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3594 3595 IRBuilder<> B(MiddleBlock->getTerminator()); 3596 Value *CountMinusOne = B.CreateSub( 3597 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3598 Value *CMO = 3599 !II.getStep()->getType()->isIntegerTy() 3600 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3601 II.getStep()->getType()) 3602 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3603 CMO->setName("cast.cmo"); 3604 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3605 Escape->setName("ind.escape"); 3606 MissingVals[UI] = Escape; 3607 } 3608 } 3609 3610 for (auto &I : MissingVals) { 3611 PHINode *PHI = cast<PHINode>(I.first); 3612 // One corner case we have to handle is two IVs "chasing" each-other, 3613 // that is %IV2 = phi [...], [ %IV1, %latch ] 3614 // In this case, if IV1 has an external use, we need to avoid adding both 3615 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3616 // don't already have an incoming value for the middle block. 3617 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3618 PHI->addIncoming(I.second, MiddleBlock); 3619 } 3620 } 3621 3622 namespace { 3623 3624 struct CSEDenseMapInfo { 3625 static bool canHandle(const Instruction *I) { 3626 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3627 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3628 } 3629 3630 static inline Instruction *getEmptyKey() { 3631 return DenseMapInfo<Instruction *>::getEmptyKey(); 3632 } 3633 3634 static inline Instruction *getTombstoneKey() { 3635 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3636 } 3637 3638 static unsigned getHashValue(const Instruction *I) { 3639 assert(canHandle(I) && "Unknown instruction!"); 3640 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3641 I->value_op_end())); 3642 } 3643 3644 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3645 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3646 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3647 return LHS == RHS; 3648 return LHS->isIdenticalTo(RHS); 3649 } 3650 }; 3651 3652 } // end anonymous namespace 3653 3654 ///Perform cse of induction variable instructions. 3655 static void cse(BasicBlock *BB) { 3656 // Perform simple cse. 3657 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3658 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3659 Instruction *In = &*I++; 3660 3661 if (!CSEDenseMapInfo::canHandle(In)) 3662 continue; 3663 3664 // Check if we can replace this instruction with any of the 3665 // visited instructions. 3666 if (Instruction *V = CSEMap.lookup(In)) { 3667 In->replaceAllUsesWith(V); 3668 In->eraseFromParent(); 3669 continue; 3670 } 3671 3672 CSEMap[In] = In; 3673 } 3674 } 3675 3676 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3677 ElementCount VF, 3678 bool &NeedToScalarize) { 3679 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3680 Function *F = CI->getCalledFunction(); 3681 Type *ScalarRetTy = CI->getType(); 3682 SmallVector<Type *, 4> Tys, ScalarTys; 3683 for (auto &ArgOp : CI->arg_operands()) 3684 ScalarTys.push_back(ArgOp->getType()); 3685 3686 // Estimate cost of scalarized vector call. The source operands are assumed 3687 // to be vectors, so we need to extract individual elements from there, 3688 // execute VF scalar calls, and then gather the result into the vector return 3689 // value. 3690 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3691 TTI::TCK_RecipThroughput); 3692 if (VF.isScalar()) 3693 return ScalarCallCost; 3694 3695 // Compute corresponding vector type for return value and arguments. 3696 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3697 for (Type *ScalarTy : ScalarTys) 3698 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3699 3700 // Compute costs of unpacking argument values for the scalar calls and 3701 // packing the return values to a vector. 3702 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3703 3704 unsigned Cost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3705 3706 // If we can't emit a vector call for this function, then the currently found 3707 // cost is the cost we need to return. 3708 NeedToScalarize = true; 3709 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3710 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3711 3712 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3713 return Cost; 3714 3715 // If the corresponding vector cost is cheaper, return its cost. 3716 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3717 TTI::TCK_RecipThroughput); 3718 if (VectorCallCost < Cost) { 3719 NeedToScalarize = false; 3720 return VectorCallCost; 3721 } 3722 return Cost; 3723 } 3724 3725 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3726 ElementCount VF) { 3727 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3728 assert(ID && "Expected intrinsic call!"); 3729 3730 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3731 return TTI.getIntrinsicInstrCost(CostAttrs, 3732 TargetTransformInfo::TCK_RecipThroughput); 3733 } 3734 3735 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3736 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3737 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3738 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3739 } 3740 3741 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3742 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3743 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3744 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3745 } 3746 3747 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3748 // For every instruction `I` in MinBWs, truncate the operands, create a 3749 // truncated version of `I` and reextend its result. InstCombine runs 3750 // later and will remove any ext/trunc pairs. 3751 SmallPtrSet<Value *, 4> Erased; 3752 for (const auto &KV : Cost->getMinimalBitwidths()) { 3753 // If the value wasn't vectorized, we must maintain the original scalar 3754 // type. The absence of the value from VectorLoopValueMap indicates that it 3755 // wasn't vectorized. 3756 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3757 continue; 3758 for (unsigned Part = 0; Part < UF; ++Part) { 3759 Value *I = getOrCreateVectorValue(KV.first, Part); 3760 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3761 continue; 3762 Type *OriginalTy = I->getType(); 3763 Type *ScalarTruncatedTy = 3764 IntegerType::get(OriginalTy->getContext(), KV.second); 3765 auto *TruncatedTy = FixedVectorType::get( 3766 ScalarTruncatedTy, 3767 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3768 if (TruncatedTy == OriginalTy) 3769 continue; 3770 3771 IRBuilder<> B(cast<Instruction>(I)); 3772 auto ShrinkOperand = [&](Value *V) -> Value * { 3773 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3774 if (ZI->getSrcTy() == TruncatedTy) 3775 return ZI->getOperand(0); 3776 return B.CreateZExtOrTrunc(V, TruncatedTy); 3777 }; 3778 3779 // The actual instruction modification depends on the instruction type, 3780 // unfortunately. 3781 Value *NewI = nullptr; 3782 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3783 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3784 ShrinkOperand(BO->getOperand(1))); 3785 3786 // Any wrapping introduced by shrinking this operation shouldn't be 3787 // considered undefined behavior. So, we can't unconditionally copy 3788 // arithmetic wrapping flags to NewI. 3789 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3790 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3791 NewI = 3792 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3793 ShrinkOperand(CI->getOperand(1))); 3794 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3795 NewI = B.CreateSelect(SI->getCondition(), 3796 ShrinkOperand(SI->getTrueValue()), 3797 ShrinkOperand(SI->getFalseValue())); 3798 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3799 switch (CI->getOpcode()) { 3800 default: 3801 llvm_unreachable("Unhandled cast!"); 3802 case Instruction::Trunc: 3803 NewI = ShrinkOperand(CI->getOperand(0)); 3804 break; 3805 case Instruction::SExt: 3806 NewI = B.CreateSExtOrTrunc( 3807 CI->getOperand(0), 3808 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3809 break; 3810 case Instruction::ZExt: 3811 NewI = B.CreateZExtOrTrunc( 3812 CI->getOperand(0), 3813 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3814 break; 3815 } 3816 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3817 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3818 ->getNumElements(); 3819 auto *O0 = B.CreateZExtOrTrunc( 3820 SI->getOperand(0), 3821 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3822 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3823 ->getNumElements(); 3824 auto *O1 = B.CreateZExtOrTrunc( 3825 SI->getOperand(1), 3826 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3827 3828 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3829 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3830 // Don't do anything with the operands, just extend the result. 3831 continue; 3832 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3833 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3834 ->getNumElements(); 3835 auto *O0 = B.CreateZExtOrTrunc( 3836 IE->getOperand(0), 3837 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3838 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3839 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3840 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3841 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3842 ->getNumElements(); 3843 auto *O0 = B.CreateZExtOrTrunc( 3844 EE->getOperand(0), 3845 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3846 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3847 } else { 3848 // If we don't know what to do, be conservative and don't do anything. 3849 continue; 3850 } 3851 3852 // Lastly, extend the result. 3853 NewI->takeName(cast<Instruction>(I)); 3854 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3855 I->replaceAllUsesWith(Res); 3856 cast<Instruction>(I)->eraseFromParent(); 3857 Erased.insert(I); 3858 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3859 } 3860 } 3861 3862 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3863 for (const auto &KV : Cost->getMinimalBitwidths()) { 3864 // If the value wasn't vectorized, we must maintain the original scalar 3865 // type. The absence of the value from VectorLoopValueMap indicates that it 3866 // wasn't vectorized. 3867 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3868 continue; 3869 for (unsigned Part = 0; Part < UF; ++Part) { 3870 Value *I = getOrCreateVectorValue(KV.first, Part); 3871 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3872 if (Inst && Inst->use_empty()) { 3873 Value *NewI = Inst->getOperand(0); 3874 Inst->eraseFromParent(); 3875 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3876 } 3877 } 3878 } 3879 } 3880 3881 void InnerLoopVectorizer::fixVectorizedLoop() { 3882 // Insert truncates and extends for any truncated instructions as hints to 3883 // InstCombine. 3884 if (VF.isVector()) 3885 truncateToMinimalBitwidths(); 3886 3887 // Fix widened non-induction PHIs by setting up the PHI operands. 3888 if (OrigPHIsToFix.size()) { 3889 assert(EnableVPlanNativePath && 3890 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3891 fixNonInductionPHIs(); 3892 } 3893 3894 // At this point every instruction in the original loop is widened to a 3895 // vector form. Now we need to fix the recurrences in the loop. These PHI 3896 // nodes are currently empty because we did not want to introduce cycles. 3897 // This is the second stage of vectorizing recurrences. 3898 fixCrossIterationPHIs(); 3899 3900 // Forget the original basic block. 3901 PSE.getSE()->forgetLoop(OrigLoop); 3902 3903 // Fix-up external users of the induction variables. 3904 for (auto &Entry : Legal->getInductionVars()) 3905 fixupIVUsers(Entry.first, Entry.second, 3906 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3907 IVEndValues[Entry.first], LoopMiddleBlock); 3908 3909 fixLCSSAPHIs(); 3910 for (Instruction *PI : PredicatedInstructions) 3911 sinkScalarOperands(&*PI); 3912 3913 // Remove redundant induction instructions. 3914 cse(LoopVectorBody); 3915 3916 // Set/update profile weights for the vector and remainder loops as original 3917 // loop iterations are now distributed among them. Note that original loop 3918 // represented by LoopScalarBody becomes remainder loop after vectorization. 3919 // 3920 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3921 // end up getting slightly roughened result but that should be OK since 3922 // profile is not inherently precise anyway. Note also possible bypass of 3923 // vector code caused by legality checks is ignored, assigning all the weight 3924 // to the vector loop, optimistically. 3925 // 3926 // For scalable vectorization we can't know at compile time how many iterations 3927 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3928 // vscale of '1'. 3929 setProfileInfoAfterUnrolling( 3930 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3931 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3932 } 3933 3934 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3935 // In order to support recurrences we need to be able to vectorize Phi nodes. 3936 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3937 // stage #2: We now need to fix the recurrences by adding incoming edges to 3938 // the currently empty PHI nodes. At this point every instruction in the 3939 // original loop is widened to a vector form so we can use them to construct 3940 // the incoming edges. 3941 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3942 // Handle first-order recurrences and reductions that need to be fixed. 3943 if (Legal->isFirstOrderRecurrence(&Phi)) 3944 fixFirstOrderRecurrence(&Phi); 3945 else if (Legal->isReductionVariable(&Phi)) 3946 fixReduction(&Phi); 3947 } 3948 } 3949 3950 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3951 // This is the second phase of vectorizing first-order recurrences. An 3952 // overview of the transformation is described below. Suppose we have the 3953 // following loop. 3954 // 3955 // for (int i = 0; i < n; ++i) 3956 // b[i] = a[i] - a[i - 1]; 3957 // 3958 // There is a first-order recurrence on "a". For this loop, the shorthand 3959 // scalar IR looks like: 3960 // 3961 // scalar.ph: 3962 // s_init = a[-1] 3963 // br scalar.body 3964 // 3965 // scalar.body: 3966 // i = phi [0, scalar.ph], [i+1, scalar.body] 3967 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3968 // s2 = a[i] 3969 // b[i] = s2 - s1 3970 // br cond, scalar.body, ... 3971 // 3972 // In this example, s1 is a recurrence because it's value depends on the 3973 // previous iteration. In the first phase of vectorization, we created a 3974 // temporary value for s1. We now complete the vectorization and produce the 3975 // shorthand vector IR shown below (for VF = 4, UF = 1). 3976 // 3977 // vector.ph: 3978 // v_init = vector(..., ..., ..., a[-1]) 3979 // br vector.body 3980 // 3981 // vector.body 3982 // i = phi [0, vector.ph], [i+4, vector.body] 3983 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3984 // v2 = a[i, i+1, i+2, i+3]; 3985 // v3 = vector(v1(3), v2(0, 1, 2)) 3986 // b[i, i+1, i+2, i+3] = v2 - v3 3987 // br cond, vector.body, middle.block 3988 // 3989 // middle.block: 3990 // x = v2(3) 3991 // br scalar.ph 3992 // 3993 // scalar.ph: 3994 // s_init = phi [x, middle.block], [a[-1], otherwise] 3995 // br scalar.body 3996 // 3997 // After execution completes the vector loop, we extract the next value of 3998 // the recurrence (x) to use as the initial value in the scalar loop. 3999 4000 // Get the original loop preheader and single loop latch. 4001 auto *Preheader = OrigLoop->getLoopPreheader(); 4002 auto *Latch = OrigLoop->getLoopLatch(); 4003 4004 // Get the initial and previous values of the scalar recurrence. 4005 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4006 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4007 4008 // Create a vector from the initial value. 4009 auto *VectorInit = ScalarInit; 4010 if (VF.isVector()) { 4011 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4012 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4013 VectorInit = Builder.CreateInsertElement( 4014 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4015 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 4016 } 4017 4018 // We constructed a temporary phi node in the first phase of vectorization. 4019 // This phi node will eventually be deleted. 4020 Builder.SetInsertPoint( 4021 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4022 4023 // Create a phi node for the new recurrence. The current value will either be 4024 // the initial value inserted into a vector or loop-varying vector value. 4025 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4026 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4027 4028 // Get the vectorized previous value of the last part UF - 1. It appears last 4029 // among all unrolled iterations, due to the order of their construction. 4030 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4031 4032 // Find and set the insertion point after the previous value if it is an 4033 // instruction. 4034 BasicBlock::iterator InsertPt; 4035 // Note that the previous value may have been constant-folded so it is not 4036 // guaranteed to be an instruction in the vector loop. 4037 // FIXME: Loop invariant values do not form recurrences. We should deal with 4038 // them earlier. 4039 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4040 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4041 else { 4042 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4043 if (isa<PHINode>(PreviousLastPart)) 4044 // If the previous value is a phi node, we should insert after all the phi 4045 // nodes in the block containing the PHI to avoid breaking basic block 4046 // verification. Note that the basic block may be different to 4047 // LoopVectorBody, in case we predicate the loop. 4048 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4049 else 4050 InsertPt = ++PreviousInst->getIterator(); 4051 } 4052 Builder.SetInsertPoint(&*InsertPt); 4053 4054 // We will construct a vector for the recurrence by combining the values for 4055 // the current and previous iterations. This is the required shuffle mask. 4056 assert(!VF.isScalable()); 4057 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 4058 ShuffleMask[0] = VF.getKnownMinValue() - 1; 4059 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 4060 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 4061 4062 // The vector from which to take the initial value for the current iteration 4063 // (actual or unrolled). Initially, this is the vector phi node. 4064 Value *Incoming = VecPhi; 4065 4066 // Shuffle the current and previous vector and update the vector parts. 4067 for (unsigned Part = 0; Part < UF; ++Part) { 4068 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4069 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4070 auto *Shuffle = 4071 VF.isVector() 4072 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 4073 : Incoming; 4074 PhiPart->replaceAllUsesWith(Shuffle); 4075 cast<Instruction>(PhiPart)->eraseFromParent(); 4076 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4077 Incoming = PreviousPart; 4078 } 4079 4080 // Fix the latch value of the new recurrence in the vector loop. 4081 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4082 4083 // Extract the last vector element in the middle block. This will be the 4084 // initial value for the recurrence when jumping to the scalar loop. 4085 auto *ExtractForScalar = Incoming; 4086 if (VF.isVector()) { 4087 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4088 ExtractForScalar = Builder.CreateExtractElement( 4089 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 4090 "vector.recur.extract"); 4091 } 4092 // Extract the second last element in the middle block if the 4093 // Phi is used outside the loop. We need to extract the phi itself 4094 // and not the last element (the phi update in the current iteration). This 4095 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4096 // when the scalar loop is not run at all. 4097 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4098 if (VF.isVector()) 4099 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4100 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 4101 "vector.recur.extract.for.phi"); 4102 // When loop is unrolled without vectorizing, initialize 4103 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4104 // `Incoming`. This is analogous to the vectorized case above: extracting the 4105 // second last element when VF > 1. 4106 else if (UF > 1) 4107 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4108 4109 // Fix the initial value of the original recurrence in the scalar loop. 4110 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4111 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4112 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4113 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4114 Start->addIncoming(Incoming, BB); 4115 } 4116 4117 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4118 Phi->setName("scalar.recur"); 4119 4120 // Finally, fix users of the recurrence outside the loop. The users will need 4121 // either the last value of the scalar recurrence or the last value of the 4122 // vector recurrence we extracted in the middle block. Since the loop is in 4123 // LCSSA form, we just need to find all the phi nodes for the original scalar 4124 // recurrence in the exit block, and then add an edge for the middle block. 4125 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4126 if (LCSSAPhi.getIncomingValue(0) == Phi) { 4127 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4128 } 4129 } 4130 } 4131 4132 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4133 Constant *Zero = Builder.getInt32(0); 4134 4135 // Get it's reduction variable descriptor. 4136 assert(Legal->isReductionVariable(Phi) && 4137 "Unable to find the reduction variable"); 4138 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4139 4140 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4141 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4142 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4143 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4144 RdxDesc.getMinMaxRecurrenceKind(); 4145 setDebugLocFromInst(Builder, ReductionStartValue); 4146 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 4147 4148 // We need to generate a reduction vector from the incoming scalar. 4149 // To do so, we need to generate the 'identity' vector and override 4150 // one of the elements with the incoming scalar reduction. We need 4151 // to do it in the vector-loop preheader. 4152 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4153 4154 // This is the vector-clone of the value that leaves the loop. 4155 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4156 4157 // Find the reduction identity variable. Zero for addition, or, xor, 4158 // one for multiplication, -1 for And. 4159 Value *Identity; 4160 Value *VectorStart; 4161 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4162 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4163 // MinMax reduction have the start value as their identify. 4164 if (VF.isScalar() || IsInLoopReductionPhi) { 4165 VectorStart = Identity = ReductionStartValue; 4166 } else { 4167 VectorStart = Identity = 4168 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4169 } 4170 } else { 4171 // Handle other reduction kinds: 4172 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4173 RK, MinMaxKind, VecTy->getScalarType()); 4174 if (VF.isScalar() || IsInLoopReductionPhi) { 4175 Identity = Iden; 4176 // This vector is the Identity vector where the first element is the 4177 // incoming scalar reduction. 4178 VectorStart = ReductionStartValue; 4179 } else { 4180 Identity = ConstantVector::getSplat(VF, Iden); 4181 4182 // This vector is the Identity vector where the first element is the 4183 // incoming scalar reduction. 4184 VectorStart = 4185 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4186 } 4187 } 4188 4189 // Wrap flags are in general invalid after vectorization, clear them. 4190 clearReductionWrapFlags(RdxDesc); 4191 4192 // Fix the vector-loop phi. 4193 4194 // Reductions do not have to start at zero. They can start with 4195 // any loop invariant values. 4196 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4197 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4198 4199 for (unsigned Part = 0; Part < UF; ++Part) { 4200 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4201 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4202 // Make sure to add the reduction start value only to the 4203 // first unroll part. 4204 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4205 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4206 cast<PHINode>(VecRdxPhi) 4207 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4208 } 4209 4210 // Before each round, move the insertion point right between 4211 // the PHIs and the values we are going to write. 4212 // This allows us to write both PHINodes and the extractelement 4213 // instructions. 4214 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4215 4216 setDebugLocFromInst(Builder, LoopExitInst); 4217 4218 // If tail is folded by masking, the vector value to leave the loop should be 4219 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4220 // instead of the former. For an inloop reduction the reduction will already 4221 // be predicated, and does not need to be handled here. 4222 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4223 for (unsigned Part = 0; Part < UF; ++Part) { 4224 Value *VecLoopExitInst = 4225 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4226 Value *Sel = nullptr; 4227 for (User *U : VecLoopExitInst->users()) { 4228 if (isa<SelectInst>(U)) { 4229 assert(!Sel && "Reduction exit feeding two selects"); 4230 Sel = U; 4231 } else 4232 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4233 } 4234 assert(Sel && "Reduction exit feeds no select"); 4235 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 4236 4237 // If the target can create a predicated operator for the reduction at no 4238 // extra cost in the loop (for example a predicated vadd), it can be 4239 // cheaper for the select to remain in the loop than be sunk out of it, 4240 // and so use the select value for the phi instead of the old 4241 // LoopExitValue. 4242 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4243 if (PreferPredicatedReductionSelect || 4244 TTI->preferPredicatedReductionSelect( 4245 RdxDesc.getRecurrenceBinOp(), Phi->getType(), 4246 TargetTransformInfo::ReductionFlags())) { 4247 auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part)); 4248 VecRdxPhi->setIncomingValueForBlock( 4249 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4250 } 4251 } 4252 } 4253 4254 // If the vector reduction can be performed in a smaller type, we truncate 4255 // then extend the loop exit value to enable InstCombine to evaluate the 4256 // entire expression in the smaller type. 4257 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4258 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4259 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4260 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4261 Builder.SetInsertPoint( 4262 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4263 VectorParts RdxParts(UF); 4264 for (unsigned Part = 0; Part < UF; ++Part) { 4265 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4266 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4267 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4268 : Builder.CreateZExt(Trunc, VecTy); 4269 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4270 UI != RdxParts[Part]->user_end();) 4271 if (*UI != Trunc) { 4272 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4273 RdxParts[Part] = Extnd; 4274 } else { 4275 ++UI; 4276 } 4277 } 4278 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4279 for (unsigned Part = 0; Part < UF; ++Part) { 4280 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4281 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4282 } 4283 } 4284 4285 // Reduce all of the unrolled parts into a single vector. 4286 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4287 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4288 4289 // The middle block terminator has already been assigned a DebugLoc here (the 4290 // OrigLoop's single latch terminator). We want the whole middle block to 4291 // appear to execute on this line because: (a) it is all compiler generated, 4292 // (b) these instructions are always executed after evaluating the latch 4293 // conditional branch, and (c) other passes may add new predecessors which 4294 // terminate on this line. This is the easiest way to ensure we don't 4295 // accidentally cause an extra step back into the loop while debugging. 4296 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4297 for (unsigned Part = 1; Part < UF; ++Part) { 4298 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4299 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4300 // Floating point operations had to be 'fast' to enable the reduction. 4301 ReducedPartRdx = addFastMathFlag( 4302 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4303 ReducedPartRdx, "bin.rdx"), 4304 RdxDesc.getFastMathFlags()); 4305 else 4306 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 4307 RdxPart); 4308 } 4309 4310 // Create the reduction after the loop. Note that inloop reductions create the 4311 // target reduction in the loop using a Reduction recipe. 4312 if (VF.isVector() && !IsInLoopReductionPhi) { 4313 bool NoNaN = Legal->hasFunNoNaNAttr(); 4314 ReducedPartRdx = 4315 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4316 // If the reduction can be performed in a smaller type, we need to extend 4317 // the reduction to the wider type before we branch to the original loop. 4318 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4319 ReducedPartRdx = 4320 RdxDesc.isSigned() 4321 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4322 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4323 } 4324 4325 // Create a phi node that merges control-flow from the backedge-taken check 4326 // block and the middle block. 4327 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4328 LoopScalarPreHeader->getTerminator()); 4329 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4330 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4331 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4332 4333 // Now, we need to fix the users of the reduction variable 4334 // inside and outside of the scalar remainder loop. 4335 // We know that the loop is in LCSSA form. We need to update the 4336 // PHI nodes in the exit blocks. 4337 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4338 // All PHINodes need to have a single entry edge, or two if 4339 // we already fixed them. 4340 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4341 4342 // We found a reduction value exit-PHI. Update it with the 4343 // incoming bypass edge. 4344 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4345 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4346 } // end of the LCSSA phi scan. 4347 4348 // Fix the scalar loop reduction variable with the incoming reduction sum 4349 // from the vector body and from the backedge value. 4350 int IncomingEdgeBlockIdx = 4351 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4352 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4353 // Pick the other block. 4354 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4355 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4356 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4357 } 4358 4359 void InnerLoopVectorizer::clearReductionWrapFlags( 4360 RecurrenceDescriptor &RdxDesc) { 4361 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4362 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 4363 RK != RecurrenceDescriptor::RK_IntegerMult) 4364 return; 4365 4366 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4367 assert(LoopExitInstr && "null loop exit instruction"); 4368 SmallVector<Instruction *, 8> Worklist; 4369 SmallPtrSet<Instruction *, 8> Visited; 4370 Worklist.push_back(LoopExitInstr); 4371 Visited.insert(LoopExitInstr); 4372 4373 while (!Worklist.empty()) { 4374 Instruction *Cur = Worklist.pop_back_val(); 4375 if (isa<OverflowingBinaryOperator>(Cur)) 4376 for (unsigned Part = 0; Part < UF; ++Part) { 4377 Value *V = getOrCreateVectorValue(Cur, Part); 4378 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4379 } 4380 4381 for (User *U : Cur->users()) { 4382 Instruction *UI = cast<Instruction>(U); 4383 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4384 Visited.insert(UI).second) 4385 Worklist.push_back(UI); 4386 } 4387 } 4388 } 4389 4390 void InnerLoopVectorizer::fixLCSSAPHIs() { 4391 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4392 if (LCSSAPhi.getNumIncomingValues() == 1) { 4393 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4394 // Non-instruction incoming values will have only one value. 4395 unsigned LastLane = 0; 4396 if (isa<Instruction>(IncomingValue)) 4397 LastLane = Cost->isUniformAfterVectorization( 4398 cast<Instruction>(IncomingValue), VF) 4399 ? 0 4400 : VF.getKnownMinValue() - 1; 4401 assert((!VF.isScalable() || LastLane == 0) && 4402 "scalable vectors dont support non-uniform scalars yet"); 4403 // Can be a loop invariant incoming value or the last scalar value to be 4404 // extracted from the vectorized loop. 4405 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4406 Value *lastIncomingValue = 4407 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 4408 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4409 } 4410 } 4411 } 4412 4413 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4414 // The basic block and loop containing the predicated instruction. 4415 auto *PredBB = PredInst->getParent(); 4416 auto *VectorLoop = LI->getLoopFor(PredBB); 4417 4418 // Initialize a worklist with the operands of the predicated instruction. 4419 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4420 4421 // Holds instructions that we need to analyze again. An instruction may be 4422 // reanalyzed if we don't yet know if we can sink it or not. 4423 SmallVector<Instruction *, 8> InstsToReanalyze; 4424 4425 // Returns true if a given use occurs in the predicated block. Phi nodes use 4426 // their operands in their corresponding predecessor blocks. 4427 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4428 auto *I = cast<Instruction>(U.getUser()); 4429 BasicBlock *BB = I->getParent(); 4430 if (auto *Phi = dyn_cast<PHINode>(I)) 4431 BB = Phi->getIncomingBlock( 4432 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4433 return BB == PredBB; 4434 }; 4435 4436 // Iteratively sink the scalarized operands of the predicated instruction 4437 // into the block we created for it. When an instruction is sunk, it's 4438 // operands are then added to the worklist. The algorithm ends after one pass 4439 // through the worklist doesn't sink a single instruction. 4440 bool Changed; 4441 do { 4442 // Add the instructions that need to be reanalyzed to the worklist, and 4443 // reset the changed indicator. 4444 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4445 InstsToReanalyze.clear(); 4446 Changed = false; 4447 4448 while (!Worklist.empty()) { 4449 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4450 4451 // We can't sink an instruction if it is a phi node, is already in the 4452 // predicated block, is not in the loop, or may have side effects. 4453 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4454 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4455 continue; 4456 4457 // It's legal to sink the instruction if all its uses occur in the 4458 // predicated block. Otherwise, there's nothing to do yet, and we may 4459 // need to reanalyze the instruction. 4460 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4461 InstsToReanalyze.push_back(I); 4462 continue; 4463 } 4464 4465 // Move the instruction to the beginning of the predicated block, and add 4466 // it's operands to the worklist. 4467 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4468 Worklist.insert(I->op_begin(), I->op_end()); 4469 4470 // The sinking may have enabled other instructions to be sunk, so we will 4471 // need to iterate. 4472 Changed = true; 4473 } 4474 } while (Changed); 4475 } 4476 4477 void InnerLoopVectorizer::fixNonInductionPHIs() { 4478 for (PHINode *OrigPhi : OrigPHIsToFix) { 4479 PHINode *NewPhi = 4480 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4481 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4482 4483 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4484 predecessors(OrigPhi->getParent())); 4485 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4486 predecessors(NewPhi->getParent())); 4487 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4488 "Scalar and Vector BB should have the same number of predecessors"); 4489 4490 // The insertion point in Builder may be invalidated by the time we get 4491 // here. Force the Builder insertion point to something valid so that we do 4492 // not run into issues during insertion point restore in 4493 // getOrCreateVectorValue calls below. 4494 Builder.SetInsertPoint(NewPhi); 4495 4496 // The predecessor order is preserved and we can rely on mapping between 4497 // scalar and vector block predecessors. 4498 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4499 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4500 4501 // When looking up the new scalar/vector values to fix up, use incoming 4502 // values from original phi. 4503 Value *ScIncV = 4504 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4505 4506 // Scalar incoming value may need a broadcast 4507 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4508 NewPhi->addIncoming(NewIncV, NewPredBB); 4509 } 4510 } 4511 } 4512 4513 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4514 VPUser &Operands, unsigned UF, 4515 ElementCount VF, bool IsPtrLoopInvariant, 4516 SmallBitVector &IsIndexLoopInvariant, 4517 VPTransformState &State) { 4518 // Construct a vector GEP by widening the operands of the scalar GEP as 4519 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4520 // results in a vector of pointers when at least one operand of the GEP 4521 // is vector-typed. Thus, to keep the representation compact, we only use 4522 // vector-typed operands for loop-varying values. 4523 4524 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4525 // If we are vectorizing, but the GEP has only loop-invariant operands, 4526 // the GEP we build (by only using vector-typed operands for 4527 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4528 // produce a vector of pointers, we need to either arbitrarily pick an 4529 // operand to broadcast, or broadcast a clone of the original GEP. 4530 // Here, we broadcast a clone of the original. 4531 // 4532 // TODO: If at some point we decide to scalarize instructions having 4533 // loop-invariant operands, this special case will no longer be 4534 // required. We would add the scalarization decision to 4535 // collectLoopScalars() and teach getVectorValue() to broadcast 4536 // the lane-zero scalar value. 4537 auto *Clone = Builder.Insert(GEP->clone()); 4538 for (unsigned Part = 0; Part < UF; ++Part) { 4539 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4540 State.set(VPDef, GEP, EntryPart, Part); 4541 addMetadata(EntryPart, GEP); 4542 } 4543 } else { 4544 // If the GEP has at least one loop-varying operand, we are sure to 4545 // produce a vector of pointers. But if we are only unrolling, we want 4546 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4547 // produce with the code below will be scalar (if VF == 1) or vector 4548 // (otherwise). Note that for the unroll-only case, we still maintain 4549 // values in the vector mapping with initVector, as we do for other 4550 // instructions. 4551 for (unsigned Part = 0; Part < UF; ++Part) { 4552 // The pointer operand of the new GEP. If it's loop-invariant, we 4553 // won't broadcast it. 4554 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4555 : State.get(Operands.getOperand(0), Part); 4556 4557 // Collect all the indices for the new GEP. If any index is 4558 // loop-invariant, we won't broadcast it. 4559 SmallVector<Value *, 4> Indices; 4560 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4561 VPValue *Operand = Operands.getOperand(I); 4562 if (IsIndexLoopInvariant[I - 1]) 4563 Indices.push_back(State.get(Operand, {0, 0})); 4564 else 4565 Indices.push_back(State.get(Operand, Part)); 4566 } 4567 4568 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4569 // but it should be a vector, otherwise. 4570 auto *NewGEP = 4571 GEP->isInBounds() 4572 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4573 Indices) 4574 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4575 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4576 "NewGEP is not a pointer vector"); 4577 State.set(VPDef, GEP, NewGEP, Part); 4578 addMetadata(NewGEP, GEP); 4579 } 4580 } 4581 } 4582 4583 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4584 ElementCount VF) { 4585 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4586 PHINode *P = cast<PHINode>(PN); 4587 if (EnableVPlanNativePath) { 4588 // Currently we enter here in the VPlan-native path for non-induction 4589 // PHIs where all control flow is uniform. We simply widen these PHIs. 4590 // Create a vector phi with no operands - the vector phi operands will be 4591 // set at the end of vector code generation. 4592 Type *VecTy = 4593 (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF); 4594 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4595 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4596 OrigPHIsToFix.push_back(P); 4597 4598 return; 4599 } 4600 4601 assert(PN->getParent() == OrigLoop->getHeader() && 4602 "Non-header phis should have been handled elsewhere"); 4603 4604 // In order to support recurrences we need to be able to vectorize Phi nodes. 4605 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4606 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4607 // this value when we vectorize all of the instructions that use the PHI. 4608 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4609 for (unsigned Part = 0; Part < UF; ++Part) { 4610 // This is phase one of vectorizing PHIs. 4611 bool ScalarPHI = 4612 (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4613 Type *VecTy = 4614 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF); 4615 Value *EntryPart = PHINode::Create( 4616 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4617 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4618 } 4619 return; 4620 } 4621 4622 setDebugLocFromInst(Builder, P); 4623 4624 // This PHINode must be an induction variable. 4625 // Make sure that we know about it. 4626 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4627 4628 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4629 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4630 4631 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4632 // which can be found from the original scalar operations. 4633 switch (II.getKind()) { 4634 case InductionDescriptor::IK_NoInduction: 4635 llvm_unreachable("Unknown induction"); 4636 case InductionDescriptor::IK_IntInduction: 4637 case InductionDescriptor::IK_FpInduction: 4638 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4639 case InductionDescriptor::IK_PtrInduction: { 4640 // Handle the pointer induction variable case. 4641 assert(P->getType()->isPointerTy() && "Unexpected type."); 4642 4643 if (Cost->isScalarAfterVectorization(P, VF)) { 4644 // This is the normalized GEP that starts counting at zero. 4645 Value *PtrInd = 4646 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4647 // Determine the number of scalars we need to generate for each unroll 4648 // iteration. If the instruction is uniform, we only need to generate the 4649 // first lane. Otherwise, we generate all VF values. 4650 unsigned Lanes = 4651 Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue(); 4652 for (unsigned Part = 0; Part < UF; ++Part) { 4653 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4654 Constant *Idx = ConstantInt::get(PtrInd->getType(), 4655 Lane + Part * VF.getKnownMinValue()); 4656 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4657 Value *SclrGep = 4658 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4659 SclrGep->setName("next.gep"); 4660 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4661 } 4662 } 4663 return; 4664 } 4665 assert(isa<SCEVConstant>(II.getStep()) && 4666 "Induction step not a SCEV constant!"); 4667 Type *PhiType = II.getStep()->getType(); 4668 4669 // Build a pointer phi 4670 Value *ScalarStartValue = II.getStartValue(); 4671 Type *ScStValueType = ScalarStartValue->getType(); 4672 PHINode *NewPointerPhi = 4673 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4674 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4675 4676 // A pointer induction, performed by using a gep 4677 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4678 Instruction *InductionLoc = LoopLatch->getTerminator(); 4679 const SCEV *ScalarStep = II.getStep(); 4680 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4681 Value *ScalarStepValue = 4682 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4683 Value *InductionGEP = GetElementPtrInst::Create( 4684 ScStValueType->getPointerElementType(), NewPointerPhi, 4685 Builder.CreateMul( 4686 ScalarStepValue, 4687 ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)), 4688 "ptr.ind", InductionLoc); 4689 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4690 4691 // Create UF many actual address geps that use the pointer 4692 // phi as base and a vectorized version of the step value 4693 // (<step*0, ..., step*N>) as offset. 4694 for (unsigned Part = 0; Part < UF; ++Part) { 4695 SmallVector<Constant *, 8> Indices; 4696 // Create a vector of consecutive numbers from zero to VF. 4697 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 4698 Indices.push_back( 4699 ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue())); 4700 Constant *StartOffset = ConstantVector::get(Indices); 4701 4702 Value *GEP = Builder.CreateGEP( 4703 ScStValueType->getPointerElementType(), NewPointerPhi, 4704 Builder.CreateMul( 4705 StartOffset, 4706 Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue), 4707 "vector.gep")); 4708 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4709 } 4710 } 4711 } 4712 } 4713 4714 /// A helper function for checking whether an integer division-related 4715 /// instruction may divide by zero (in which case it must be predicated if 4716 /// executed conditionally in the scalar code). 4717 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4718 /// Non-zero divisors that are non compile-time constants will not be 4719 /// converted into multiplication, so we will still end up scalarizing 4720 /// the division, but can do so w/o predication. 4721 static bool mayDivideByZero(Instruction &I) { 4722 assert((I.getOpcode() == Instruction::UDiv || 4723 I.getOpcode() == Instruction::SDiv || 4724 I.getOpcode() == Instruction::URem || 4725 I.getOpcode() == Instruction::SRem) && 4726 "Unexpected instruction"); 4727 Value *Divisor = I.getOperand(1); 4728 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4729 return !CInt || CInt->isZero(); 4730 } 4731 4732 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4733 VPUser &User, 4734 VPTransformState &State) { 4735 switch (I.getOpcode()) { 4736 case Instruction::Call: 4737 case Instruction::Br: 4738 case Instruction::PHI: 4739 case Instruction::GetElementPtr: 4740 case Instruction::Select: 4741 llvm_unreachable("This instruction is handled by a different recipe."); 4742 case Instruction::UDiv: 4743 case Instruction::SDiv: 4744 case Instruction::SRem: 4745 case Instruction::URem: 4746 case Instruction::Add: 4747 case Instruction::FAdd: 4748 case Instruction::Sub: 4749 case Instruction::FSub: 4750 case Instruction::FNeg: 4751 case Instruction::Mul: 4752 case Instruction::FMul: 4753 case Instruction::FDiv: 4754 case Instruction::FRem: 4755 case Instruction::Shl: 4756 case Instruction::LShr: 4757 case Instruction::AShr: 4758 case Instruction::And: 4759 case Instruction::Or: 4760 case Instruction::Xor: { 4761 // Just widen unops and binops. 4762 setDebugLocFromInst(Builder, &I); 4763 4764 for (unsigned Part = 0; Part < UF; ++Part) { 4765 SmallVector<Value *, 2> Ops; 4766 for (VPValue *VPOp : User.operands()) 4767 Ops.push_back(State.get(VPOp, Part)); 4768 4769 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4770 4771 if (auto *VecOp = dyn_cast<Instruction>(V)) 4772 VecOp->copyIRFlags(&I); 4773 4774 // Use this vector value for all users of the original instruction. 4775 State.set(Def, &I, V, Part); 4776 addMetadata(V, &I); 4777 } 4778 4779 break; 4780 } 4781 case Instruction::ICmp: 4782 case Instruction::FCmp: { 4783 // Widen compares. Generate vector compares. 4784 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4785 auto *Cmp = cast<CmpInst>(&I); 4786 setDebugLocFromInst(Builder, Cmp); 4787 for (unsigned Part = 0; Part < UF; ++Part) { 4788 Value *A = State.get(User.getOperand(0), Part); 4789 Value *B = State.get(User.getOperand(1), Part); 4790 Value *C = nullptr; 4791 if (FCmp) { 4792 // Propagate fast math flags. 4793 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4794 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4795 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4796 } else { 4797 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4798 } 4799 State.set(Def, &I, C, Part); 4800 addMetadata(C, &I); 4801 } 4802 4803 break; 4804 } 4805 4806 case Instruction::ZExt: 4807 case Instruction::SExt: 4808 case Instruction::FPToUI: 4809 case Instruction::FPToSI: 4810 case Instruction::FPExt: 4811 case Instruction::PtrToInt: 4812 case Instruction::IntToPtr: 4813 case Instruction::SIToFP: 4814 case Instruction::UIToFP: 4815 case Instruction::Trunc: 4816 case Instruction::FPTrunc: 4817 case Instruction::BitCast: { 4818 auto *CI = cast<CastInst>(&I); 4819 setDebugLocFromInst(Builder, CI); 4820 4821 /// Vectorize casts. 4822 Type *DestTy = 4823 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4824 4825 for (unsigned Part = 0; Part < UF; ++Part) { 4826 Value *A = State.get(User.getOperand(0), Part); 4827 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4828 State.set(Def, &I, Cast, Part); 4829 addMetadata(Cast, &I); 4830 } 4831 break; 4832 } 4833 default: 4834 // This instruction is not vectorized by simple widening. 4835 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4836 llvm_unreachable("Unhandled instruction!"); 4837 } // end of switch. 4838 } 4839 4840 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4841 VPUser &ArgOperands, 4842 VPTransformState &State) { 4843 assert(!isa<DbgInfoIntrinsic>(I) && 4844 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4845 setDebugLocFromInst(Builder, &I); 4846 4847 Module *M = I.getParent()->getParent()->getParent(); 4848 auto *CI = cast<CallInst>(&I); 4849 4850 SmallVector<Type *, 4> Tys; 4851 for (Value *ArgOperand : CI->arg_operands()) 4852 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4853 4854 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4855 4856 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4857 // version of the instruction. 4858 // Is it beneficial to perform intrinsic call compared to lib call? 4859 bool NeedToScalarize = false; 4860 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4861 bool UseVectorIntrinsic = 4862 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4863 assert((UseVectorIntrinsic || !NeedToScalarize) && 4864 "Instruction should be scalarized elsewhere."); 4865 4866 for (unsigned Part = 0; Part < UF; ++Part) { 4867 SmallVector<Value *, 4> Args; 4868 for (auto &I : enumerate(ArgOperands.operands())) { 4869 // Some intrinsics have a scalar argument - don't replace it with a 4870 // vector. 4871 Value *Arg; 4872 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4873 Arg = State.get(I.value(), Part); 4874 else 4875 Arg = State.get(I.value(), {0, 0}); 4876 Args.push_back(Arg); 4877 } 4878 4879 Function *VectorF; 4880 if (UseVectorIntrinsic) { 4881 // Use vector version of the intrinsic. 4882 Type *TysForDecl[] = {CI->getType()}; 4883 if (VF.isVector()) { 4884 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4885 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4886 } 4887 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4888 assert(VectorF && "Can't retrieve vector intrinsic."); 4889 } else { 4890 // Use vector version of the function call. 4891 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4892 #ifndef NDEBUG 4893 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4894 "Can't create vector function."); 4895 #endif 4896 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4897 } 4898 SmallVector<OperandBundleDef, 1> OpBundles; 4899 CI->getOperandBundlesAsDefs(OpBundles); 4900 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4901 4902 if (isa<FPMathOperator>(V)) 4903 V->copyFastMathFlags(CI); 4904 4905 State.set(Def, &I, V, Part); 4906 addMetadata(V, &I); 4907 } 4908 } 4909 4910 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 4911 VPUser &Operands, 4912 bool InvariantCond, 4913 VPTransformState &State) { 4914 setDebugLocFromInst(Builder, &I); 4915 4916 // The condition can be loop invariant but still defined inside the 4917 // loop. This means that we can't just use the original 'cond' value. 4918 // We have to take the 'vectorized' value and pick the first lane. 4919 // Instcombine will make this a no-op. 4920 auto *InvarCond = 4921 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4922 4923 for (unsigned Part = 0; Part < UF; ++Part) { 4924 Value *Cond = 4925 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4926 Value *Op0 = State.get(Operands.getOperand(1), Part); 4927 Value *Op1 = State.get(Operands.getOperand(2), Part); 4928 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4929 State.set(VPDef, &I, Sel, Part); 4930 addMetadata(Sel, &I); 4931 } 4932 } 4933 4934 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4935 // We should not collect Scalars more than once per VF. Right now, this 4936 // function is called from collectUniformsAndScalars(), which already does 4937 // this check. Collecting Scalars for VF=1 does not make any sense. 4938 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4939 "This function should not be visited twice for the same VF"); 4940 4941 SmallSetVector<Instruction *, 8> Worklist; 4942 4943 // These sets are used to seed the analysis with pointers used by memory 4944 // accesses that will remain scalar. 4945 SmallSetVector<Instruction *, 8> ScalarPtrs; 4946 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4947 auto *Latch = TheLoop->getLoopLatch(); 4948 4949 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4950 // The pointer operands of loads and stores will be scalar as long as the 4951 // memory access is not a gather or scatter operation. The value operand of a 4952 // store will remain scalar if the store is scalarized. 4953 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4954 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4955 assert(WideningDecision != CM_Unknown && 4956 "Widening decision should be ready at this moment"); 4957 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4958 if (Ptr == Store->getValueOperand()) 4959 return WideningDecision == CM_Scalarize; 4960 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4961 "Ptr is neither a value or pointer operand"); 4962 return WideningDecision != CM_GatherScatter; 4963 }; 4964 4965 // A helper that returns true if the given value is a bitcast or 4966 // getelementptr instruction contained in the loop. 4967 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4968 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4969 isa<GetElementPtrInst>(V)) && 4970 !TheLoop->isLoopInvariant(V); 4971 }; 4972 4973 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4974 if (!isa<PHINode>(Ptr) || 4975 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4976 return false; 4977 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4978 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4979 return false; 4980 return isScalarUse(MemAccess, Ptr); 4981 }; 4982 4983 // A helper that evaluates a memory access's use of a pointer. If the 4984 // pointer is actually the pointer induction of a loop, it is being 4985 // inserted into Worklist. If the use will be a scalar use, and the 4986 // pointer is only used by memory accesses, we place the pointer in 4987 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4988 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4989 if (isScalarPtrInduction(MemAccess, Ptr)) { 4990 Worklist.insert(cast<Instruction>(Ptr)); 4991 Instruction *Update = cast<Instruction>( 4992 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4993 Worklist.insert(Update); 4994 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4995 << "\n"); 4996 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4997 << "\n"); 4998 return; 4999 } 5000 // We only care about bitcast and getelementptr instructions contained in 5001 // the loop. 5002 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5003 return; 5004 5005 // If the pointer has already been identified as scalar (e.g., if it was 5006 // also identified as uniform), there's nothing to do. 5007 auto *I = cast<Instruction>(Ptr); 5008 if (Worklist.count(I)) 5009 return; 5010 5011 // If the use of the pointer will be a scalar use, and all users of the 5012 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5013 // place the pointer in PossibleNonScalarPtrs. 5014 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5015 return isa<LoadInst>(U) || isa<StoreInst>(U); 5016 })) 5017 ScalarPtrs.insert(I); 5018 else 5019 PossibleNonScalarPtrs.insert(I); 5020 }; 5021 5022 // We seed the scalars analysis with three classes of instructions: (1) 5023 // instructions marked uniform-after-vectorization and (2) bitcast, 5024 // getelementptr and (pointer) phi instructions used by memory accesses 5025 // requiring a scalar use. 5026 // 5027 // (1) Add to the worklist all instructions that have been identified as 5028 // uniform-after-vectorization. 5029 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5030 5031 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5032 // memory accesses requiring a scalar use. The pointer operands of loads and 5033 // stores will be scalar as long as the memory accesses is not a gather or 5034 // scatter operation. The value operand of a store will remain scalar if the 5035 // store is scalarized. 5036 for (auto *BB : TheLoop->blocks()) 5037 for (auto &I : *BB) { 5038 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5039 evaluatePtrUse(Load, Load->getPointerOperand()); 5040 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5041 evaluatePtrUse(Store, Store->getPointerOperand()); 5042 evaluatePtrUse(Store, Store->getValueOperand()); 5043 } 5044 } 5045 for (auto *I : ScalarPtrs) 5046 if (!PossibleNonScalarPtrs.count(I)) { 5047 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5048 Worklist.insert(I); 5049 } 5050 5051 // Insert the forced scalars. 5052 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5053 // induction variable when the PHI user is scalarized. 5054 auto ForcedScalar = ForcedScalars.find(VF); 5055 if (ForcedScalar != ForcedScalars.end()) 5056 for (auto *I : ForcedScalar->second) 5057 Worklist.insert(I); 5058 5059 // Expand the worklist by looking through any bitcasts and getelementptr 5060 // instructions we've already identified as scalar. This is similar to the 5061 // expansion step in collectLoopUniforms(); however, here we're only 5062 // expanding to include additional bitcasts and getelementptr instructions. 5063 unsigned Idx = 0; 5064 while (Idx != Worklist.size()) { 5065 Instruction *Dst = Worklist[Idx++]; 5066 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5067 continue; 5068 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5069 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5070 auto *J = cast<Instruction>(U); 5071 return !TheLoop->contains(J) || Worklist.count(J) || 5072 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5073 isScalarUse(J, Src)); 5074 })) { 5075 Worklist.insert(Src); 5076 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5077 } 5078 } 5079 5080 // An induction variable will remain scalar if all users of the induction 5081 // variable and induction variable update remain scalar. 5082 for (auto &Induction : Legal->getInductionVars()) { 5083 auto *Ind = Induction.first; 5084 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5085 5086 // If tail-folding is applied, the primary induction variable will be used 5087 // to feed a vector compare. 5088 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5089 continue; 5090 5091 // Determine if all users of the induction variable are scalar after 5092 // vectorization. 5093 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5094 auto *I = cast<Instruction>(U); 5095 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5096 }); 5097 if (!ScalarInd) 5098 continue; 5099 5100 // Determine if all users of the induction variable update instruction are 5101 // scalar after vectorization. 5102 auto ScalarIndUpdate = 5103 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5104 auto *I = cast<Instruction>(U); 5105 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5106 }); 5107 if (!ScalarIndUpdate) 5108 continue; 5109 5110 // The induction variable and its update instruction will remain scalar. 5111 Worklist.insert(Ind); 5112 Worklist.insert(IndUpdate); 5113 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5114 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5115 << "\n"); 5116 } 5117 5118 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5119 } 5120 5121 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 5122 ElementCount VF) { 5123 if (!blockNeedsPredication(I->getParent())) 5124 return false; 5125 switch(I->getOpcode()) { 5126 default: 5127 break; 5128 case Instruction::Load: 5129 case Instruction::Store: { 5130 if (!Legal->isMaskRequired(I)) 5131 return false; 5132 auto *Ptr = getLoadStorePointerOperand(I); 5133 auto *Ty = getMemInstValueType(I); 5134 // We have already decided how to vectorize this instruction, get that 5135 // result. 5136 if (VF.isVector()) { 5137 InstWidening WideningDecision = getWideningDecision(I, VF); 5138 assert(WideningDecision != CM_Unknown && 5139 "Widening decision should be ready at this moment"); 5140 return WideningDecision == CM_Scalarize; 5141 } 5142 const Align Alignment = getLoadStoreAlignment(I); 5143 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5144 isLegalMaskedGather(Ty, Alignment)) 5145 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5146 isLegalMaskedScatter(Ty, Alignment)); 5147 } 5148 case Instruction::UDiv: 5149 case Instruction::SDiv: 5150 case Instruction::SRem: 5151 case Instruction::URem: 5152 return mayDivideByZero(*I); 5153 } 5154 return false; 5155 } 5156 5157 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5158 Instruction *I, ElementCount VF) { 5159 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5160 assert(getWideningDecision(I, VF) == CM_Unknown && 5161 "Decision should not be set yet."); 5162 auto *Group = getInterleavedAccessGroup(I); 5163 assert(Group && "Must have a group."); 5164 5165 // If the instruction's allocated size doesn't equal it's type size, it 5166 // requires padding and will be scalarized. 5167 auto &DL = I->getModule()->getDataLayout(); 5168 auto *ScalarTy = getMemInstValueType(I); 5169 if (hasIrregularType(ScalarTy, DL, VF)) 5170 return false; 5171 5172 // Check if masking is required. 5173 // A Group may need masking for one of two reasons: it resides in a block that 5174 // needs predication, or it was decided to use masking to deal with gaps. 5175 bool PredicatedAccessRequiresMasking = 5176 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5177 bool AccessWithGapsRequiresMasking = 5178 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5179 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5180 return true; 5181 5182 // If masked interleaving is required, we expect that the user/target had 5183 // enabled it, because otherwise it either wouldn't have been created or 5184 // it should have been invalidated by the CostModel. 5185 assert(useMaskedInterleavedAccesses(TTI) && 5186 "Masked interleave-groups for predicated accesses are not enabled."); 5187 5188 auto *Ty = getMemInstValueType(I); 5189 const Align Alignment = getLoadStoreAlignment(I); 5190 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5191 : TTI.isLegalMaskedStore(Ty, Alignment); 5192 } 5193 5194 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5195 Instruction *I, ElementCount VF) { 5196 // Get and ensure we have a valid memory instruction. 5197 LoadInst *LI = dyn_cast<LoadInst>(I); 5198 StoreInst *SI = dyn_cast<StoreInst>(I); 5199 assert((LI || SI) && "Invalid memory instruction"); 5200 5201 auto *Ptr = getLoadStorePointerOperand(I); 5202 5203 // In order to be widened, the pointer should be consecutive, first of all. 5204 if (!Legal->isConsecutivePtr(Ptr)) 5205 return false; 5206 5207 // If the instruction is a store located in a predicated block, it will be 5208 // scalarized. 5209 if (isScalarWithPredication(I)) 5210 return false; 5211 5212 // If the instruction's allocated size doesn't equal it's type size, it 5213 // requires padding and will be scalarized. 5214 auto &DL = I->getModule()->getDataLayout(); 5215 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5216 if (hasIrregularType(ScalarTy, DL, VF)) 5217 return false; 5218 5219 return true; 5220 } 5221 5222 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5223 // We should not collect Uniforms more than once per VF. Right now, 5224 // this function is called from collectUniformsAndScalars(), which 5225 // already does this check. Collecting Uniforms for VF=1 does not make any 5226 // sense. 5227 5228 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5229 "This function should not be visited twice for the same VF"); 5230 5231 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5232 // not analyze again. Uniforms.count(VF) will return 1. 5233 Uniforms[VF].clear(); 5234 5235 // We now know that the loop is vectorizable! 5236 // Collect instructions inside the loop that will remain uniform after 5237 // vectorization. 5238 5239 // Global values, params and instructions outside of current loop are out of 5240 // scope. 5241 auto isOutOfScope = [&](Value *V) -> bool { 5242 Instruction *I = dyn_cast<Instruction>(V); 5243 return (!I || !TheLoop->contains(I)); 5244 }; 5245 5246 SetVector<Instruction *> Worklist; 5247 BasicBlock *Latch = TheLoop->getLoopLatch(); 5248 5249 // Instructions that are scalar with predication must not be considered 5250 // uniform after vectorization, because that would create an erroneous 5251 // replicating region where only a single instance out of VF should be formed. 5252 // TODO: optimize such seldom cases if found important, see PR40816. 5253 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5254 if (isOutOfScope(I)) { 5255 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5256 << *I << "\n"); 5257 return; 5258 } 5259 if (isScalarWithPredication(I, VF)) { 5260 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5261 << *I << "\n"); 5262 return; 5263 } 5264 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5265 Worklist.insert(I); 5266 }; 5267 5268 // Start with the conditional branch. If the branch condition is an 5269 // instruction contained in the loop that is only used by the branch, it is 5270 // uniform. 5271 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5272 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5273 addToWorklistIfAllowed(Cmp); 5274 5275 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5276 InstWidening WideningDecision = getWideningDecision(I, VF); 5277 assert(WideningDecision != CM_Unknown && 5278 "Widening decision should be ready at this moment"); 5279 5280 // A uniform memory op is itself uniform. We exclude uniform stores 5281 // here as they demand the last lane, not the first one. 5282 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5283 assert(WideningDecision == CM_Scalarize); 5284 return true; 5285 } 5286 5287 return (WideningDecision == CM_Widen || 5288 WideningDecision == CM_Widen_Reverse || 5289 WideningDecision == CM_Interleave); 5290 }; 5291 5292 5293 // Returns true if Ptr is the pointer operand of a memory access instruction 5294 // I, and I is known to not require scalarization. 5295 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5296 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5297 }; 5298 5299 // Holds a list of values which are known to have at least one uniform use. 5300 // Note that there may be other uses which aren't uniform. A "uniform use" 5301 // here is something which only demands lane 0 of the unrolled iterations; 5302 // it does not imply that all lanes produce the same value (e.g. this is not 5303 // the usual meaning of uniform) 5304 SmallPtrSet<Value *, 8> HasUniformUse; 5305 5306 // Scan the loop for instructions which are either a) known to have only 5307 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5308 for (auto *BB : TheLoop->blocks()) 5309 for (auto &I : *BB) { 5310 // If there's no pointer operand, there's nothing to do. 5311 auto *Ptr = getLoadStorePointerOperand(&I); 5312 if (!Ptr) 5313 continue; 5314 5315 // A uniform memory op is itself uniform. We exclude uniform stores 5316 // here as they demand the last lane, not the first one. 5317 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5318 addToWorklistIfAllowed(&I); 5319 5320 if (isUniformDecision(&I, VF)) { 5321 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5322 HasUniformUse.insert(Ptr); 5323 } 5324 } 5325 5326 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5327 // demanding) users. Since loops are assumed to be in LCSSA form, this 5328 // disallows uses outside the loop as well. 5329 for (auto *V : HasUniformUse) { 5330 if (isOutOfScope(V)) 5331 continue; 5332 auto *I = cast<Instruction>(V); 5333 auto UsersAreMemAccesses = 5334 llvm::all_of(I->users(), [&](User *U) -> bool { 5335 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5336 }); 5337 if (UsersAreMemAccesses) 5338 addToWorklistIfAllowed(I); 5339 } 5340 5341 // Expand Worklist in topological order: whenever a new instruction 5342 // is added , its users should be already inside Worklist. It ensures 5343 // a uniform instruction will only be used by uniform instructions. 5344 unsigned idx = 0; 5345 while (idx != Worklist.size()) { 5346 Instruction *I = Worklist[idx++]; 5347 5348 for (auto OV : I->operand_values()) { 5349 // isOutOfScope operands cannot be uniform instructions. 5350 if (isOutOfScope(OV)) 5351 continue; 5352 // First order recurrence Phi's should typically be considered 5353 // non-uniform. 5354 auto *OP = dyn_cast<PHINode>(OV); 5355 if (OP && Legal->isFirstOrderRecurrence(OP)) 5356 continue; 5357 // If all the users of the operand are uniform, then add the 5358 // operand into the uniform worklist. 5359 auto *OI = cast<Instruction>(OV); 5360 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5361 auto *J = cast<Instruction>(U); 5362 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5363 })) 5364 addToWorklistIfAllowed(OI); 5365 } 5366 } 5367 5368 // For an instruction to be added into Worklist above, all its users inside 5369 // the loop should also be in Worklist. However, this condition cannot be 5370 // true for phi nodes that form a cyclic dependence. We must process phi 5371 // nodes separately. An induction variable will remain uniform if all users 5372 // of the induction variable and induction variable update remain uniform. 5373 // The code below handles both pointer and non-pointer induction variables. 5374 for (auto &Induction : Legal->getInductionVars()) { 5375 auto *Ind = Induction.first; 5376 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5377 5378 // Determine if all users of the induction variable are uniform after 5379 // vectorization. 5380 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5381 auto *I = cast<Instruction>(U); 5382 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5383 isVectorizedMemAccessUse(I, Ind); 5384 }); 5385 if (!UniformInd) 5386 continue; 5387 5388 // Determine if all users of the induction variable update instruction are 5389 // uniform after vectorization. 5390 auto UniformIndUpdate = 5391 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5392 auto *I = cast<Instruction>(U); 5393 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5394 isVectorizedMemAccessUse(I, IndUpdate); 5395 }); 5396 if (!UniformIndUpdate) 5397 continue; 5398 5399 // The induction variable and its update instruction will remain uniform. 5400 addToWorklistIfAllowed(Ind); 5401 addToWorklistIfAllowed(IndUpdate); 5402 } 5403 5404 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5405 } 5406 5407 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5408 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5409 5410 if (Legal->getRuntimePointerChecking()->Need) { 5411 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5412 "runtime pointer checks needed. Enable vectorization of this " 5413 "loop with '#pragma clang loop vectorize(enable)' when " 5414 "compiling with -Os/-Oz", 5415 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5416 return true; 5417 } 5418 5419 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5420 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5421 "runtime SCEV checks needed. Enable vectorization of this " 5422 "loop with '#pragma clang loop vectorize(enable)' when " 5423 "compiling with -Os/-Oz", 5424 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5425 return true; 5426 } 5427 5428 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5429 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5430 reportVectorizationFailure("Runtime stride check for small trip count", 5431 "runtime stride == 1 checks needed. Enable vectorization of " 5432 "this loop without such check by compiling with -Os/-Oz", 5433 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5434 return true; 5435 } 5436 5437 return false; 5438 } 5439 5440 Optional<ElementCount> 5441 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5442 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5443 // TODO: It may by useful to do since it's still likely to be dynamically 5444 // uniform if the target can skip. 5445 reportVectorizationFailure( 5446 "Not inserting runtime ptr check for divergent target", 5447 "runtime pointer checks needed. Not enabled for divergent target", 5448 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5449 return None; 5450 } 5451 5452 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5453 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5454 if (TC == 1) { 5455 reportVectorizationFailure("Single iteration (non) loop", 5456 "loop trip count is one, irrelevant for vectorization", 5457 "SingleIterationLoop", ORE, TheLoop); 5458 return None; 5459 } 5460 5461 ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF); 5462 5463 switch (ScalarEpilogueStatus) { 5464 case CM_ScalarEpilogueAllowed: 5465 return MaxVF; 5466 case CM_ScalarEpilogueNotAllowedUsePredicate: 5467 LLVM_FALLTHROUGH; 5468 case CM_ScalarEpilogueNotNeededUsePredicate: 5469 LLVM_DEBUG( 5470 dbgs() << "LV: vector predicate hint/switch found.\n" 5471 << "LV: Not allowing scalar epilogue, creating predicated " 5472 << "vector loop.\n"); 5473 break; 5474 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5475 // fallthrough as a special case of OptForSize 5476 case CM_ScalarEpilogueNotAllowedOptSize: 5477 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5478 LLVM_DEBUG( 5479 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5480 else 5481 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5482 << "count.\n"); 5483 5484 // Bail if runtime checks are required, which are not good when optimising 5485 // for size. 5486 if (runtimeChecksRequired()) 5487 return None; 5488 break; 5489 } 5490 5491 // Now try the tail folding 5492 5493 // Invalidate interleave groups that require an epilogue if we can't mask 5494 // the interleave-group. 5495 if (!useMaskedInterleavedAccesses(TTI)) { 5496 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5497 "No decisions should have been taken at this point"); 5498 // Note: There is no need to invalidate any cost modeling decisions here, as 5499 // non where taken so far. 5500 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5501 } 5502 5503 assert(!MaxVF.isScalable() && 5504 "Scalable vectors do not yet support tail folding"); 5505 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5506 "MaxVF must be a power of 2"); 5507 unsigned MaxVFtimesIC = 5508 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5509 // Avoid tail folding if the trip count is known to be a multiple of any VF we 5510 // chose. 5511 ScalarEvolution *SE = PSE.getSE(); 5512 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5513 const SCEV *ExitCount = SE->getAddExpr( 5514 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5515 const SCEV *Rem = SE->getURemExpr( 5516 ExitCount, SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5517 if (Rem->isZero()) { 5518 // Accept MaxVF if we do not have a tail. 5519 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5520 return MaxVF; 5521 } 5522 5523 // If we don't know the precise trip count, or if the trip count that we 5524 // found modulo the vectorization factor is not zero, try to fold the tail 5525 // by masking. 5526 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5527 if (Legal->prepareToFoldTailByMasking()) { 5528 FoldTailByMasking = true; 5529 return MaxVF; 5530 } 5531 5532 // If there was a tail-folding hint/switch, but we can't fold the tail by 5533 // masking, fallback to a vectorization with a scalar epilogue. 5534 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5535 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5536 "scalar epilogue instead.\n"); 5537 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5538 return MaxVF; 5539 } 5540 5541 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5542 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5543 return None; 5544 } 5545 5546 if (TC == 0) { 5547 reportVectorizationFailure( 5548 "Unable to calculate the loop count due to complex control flow", 5549 "unable to calculate the loop count due to complex control flow", 5550 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5551 return None; 5552 } 5553 5554 reportVectorizationFailure( 5555 "Cannot optimize for size and vectorize at the same time.", 5556 "cannot optimize for size and vectorize at the same time. " 5557 "Enable vectorization of this loop with '#pragma clang loop " 5558 "vectorize(enable)' when compiling with -Os/-Oz", 5559 "NoTailLoopWithOptForSize", ORE, TheLoop); 5560 return None; 5561 } 5562 5563 ElementCount 5564 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5565 ElementCount UserVF) { 5566 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5567 unsigned SmallestType, WidestType; 5568 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5569 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5570 5571 // Get the maximum safe dependence distance in bits computed by LAA. 5572 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5573 // the memory accesses that is most restrictive (involved in the smallest 5574 // dependence distance). 5575 unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits(); 5576 5577 if (UserVF.isNonZero()) { 5578 // For now, don't verify legality of scalable vectors. 5579 // This will be addressed properly in https://reviews.llvm.org/D91718. 5580 if (UserVF.isScalable()) 5581 return UserVF; 5582 5583 // If legally unsafe, clamp the user vectorization factor to a safe value. 5584 unsigned MaxSafeVF = PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType); 5585 if (UserVF.getFixedValue() <= MaxSafeVF) 5586 return UserVF; 5587 5588 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5589 << " is unsafe, clamping to max safe VF=" << MaxSafeVF 5590 << ".\n"); 5591 ORE->emit([&]() { 5592 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5593 TheLoop->getStartLoc(), 5594 TheLoop->getHeader()) 5595 << "User-specified vectorization factor " 5596 << ore::NV("UserVectorizationFactor", UserVF) 5597 << " is unsafe, clamping to maximum safe vectorization factor " 5598 << ore::NV("VectorizationFactor", MaxSafeVF); 5599 }); 5600 return ElementCount::getFixed(MaxSafeVF); 5601 } 5602 5603 WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits); 5604 5605 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5606 // Note that both WidestRegister and WidestType may not be a powers of 2. 5607 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5608 5609 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5610 << " / " << WidestType << " bits.\n"); 5611 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5612 << WidestRegister << " bits.\n"); 5613 5614 assert(MaxVectorSize <= WidestRegister && 5615 "Did not expect to pack so many elements" 5616 " into one vector!"); 5617 if (MaxVectorSize == 0) { 5618 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5619 MaxVectorSize = 1; 5620 return ElementCount::getFixed(MaxVectorSize); 5621 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5622 isPowerOf2_32(ConstTripCount)) { 5623 // We need to clamp the VF to be the ConstTripCount. There is no point in 5624 // choosing a higher viable VF as done in the loop below. 5625 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5626 << ConstTripCount << "\n"); 5627 MaxVectorSize = ConstTripCount; 5628 return ElementCount::getFixed(MaxVectorSize); 5629 } 5630 5631 unsigned MaxVF = MaxVectorSize; 5632 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5633 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5634 // Collect all viable vectorization factors larger than the default MaxVF 5635 // (i.e. MaxVectorSize). 5636 SmallVector<ElementCount, 8> VFs; 5637 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5638 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5639 VFs.push_back(ElementCount::getFixed(VS)); 5640 5641 // For each VF calculate its register usage. 5642 auto RUs = calculateRegisterUsage(VFs); 5643 5644 // Select the largest VF which doesn't require more registers than existing 5645 // ones. 5646 for (int i = RUs.size() - 1; i >= 0; --i) { 5647 bool Selected = true; 5648 for (auto& pair : RUs[i].MaxLocalUsers) { 5649 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5650 if (pair.second > TargetNumRegisters) 5651 Selected = false; 5652 } 5653 if (Selected) { 5654 MaxVF = VFs[i].getKnownMinValue(); 5655 break; 5656 } 5657 } 5658 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5659 if (MaxVF < MinVF) { 5660 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5661 << ") with target's minimum: " << MinVF << '\n'); 5662 MaxVF = MinVF; 5663 } 5664 } 5665 } 5666 return ElementCount::getFixed(MaxVF); 5667 } 5668 5669 VectorizationFactor 5670 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5671 // FIXME: This can be fixed for scalable vectors later, because at this stage 5672 // the LoopVectorizer will only consider vectorizing a loop with scalable 5673 // vectors when the loop has a hint to enable vectorization for a given VF. 5674 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5675 5676 float Cost = expectedCost(ElementCount::getFixed(1)).first; 5677 const float ScalarCost = Cost; 5678 unsigned Width = 1; 5679 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5680 5681 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5682 if (ForceVectorization && MaxVF.isVector()) { 5683 // Ignore scalar width, because the user explicitly wants vectorization. 5684 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5685 // evaluation. 5686 Cost = std::numeric_limits<float>::max(); 5687 } 5688 5689 for (unsigned i = 2; i <= MaxVF.getFixedValue(); i *= 2) { 5690 // Notice that the vector loop needs to be executed less times, so 5691 // we need to divide the cost of the vector loops by the width of 5692 // the vector elements. 5693 VectorizationCostTy C = expectedCost(ElementCount::getFixed(i)); 5694 float VectorCost = C.first / (float)i; 5695 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5696 << " costs: " << (int)VectorCost << ".\n"); 5697 if (!C.second && !ForceVectorization) { 5698 LLVM_DEBUG( 5699 dbgs() << "LV: Not considering vector loop of width " << i 5700 << " because it will not generate any vector instructions.\n"); 5701 continue; 5702 } 5703 5704 // If profitable add it to ProfitableVF list. 5705 if (VectorCost < ScalarCost) { 5706 ProfitableVFs.push_back(VectorizationFactor( 5707 {ElementCount::getFixed(i), (unsigned)VectorCost})); 5708 } 5709 5710 if (VectorCost < Cost) { 5711 Cost = VectorCost; 5712 Width = i; 5713 } 5714 } 5715 5716 if (!EnableCondStoresVectorization && NumPredStores) { 5717 reportVectorizationFailure("There are conditional stores.", 5718 "store that is conditionally executed prevents vectorization", 5719 "ConditionalStore", ORE, TheLoop); 5720 Width = 1; 5721 Cost = ScalarCost; 5722 } 5723 5724 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5725 << "LV: Vectorization seems to be not beneficial, " 5726 << "but was forced by a user.\n"); 5727 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5728 VectorizationFactor Factor = {ElementCount::getFixed(Width), 5729 (unsigned)(Width * Cost)}; 5730 return Factor; 5731 } 5732 5733 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5734 const Loop &L, ElementCount VF) const { 5735 // Cross iteration phis such as reductions need special handling and are 5736 // currently unsupported. 5737 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5738 return Legal->isFirstOrderRecurrence(&Phi) || 5739 Legal->isReductionVariable(&Phi); 5740 })) 5741 return false; 5742 5743 // Phis with uses outside of the loop require special handling and are 5744 // currently unsupported. 5745 for (auto &Entry : Legal->getInductionVars()) { 5746 // Look for uses of the value of the induction at the last iteration. 5747 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5748 for (User *U : PostInc->users()) 5749 if (!L.contains(cast<Instruction>(U))) 5750 return false; 5751 // Look for uses of penultimate value of the induction. 5752 for (User *U : Entry.first->users()) 5753 if (!L.contains(cast<Instruction>(U))) 5754 return false; 5755 } 5756 5757 // Induction variables that are widened require special handling that is 5758 // currently not supported. 5759 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5760 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5761 this->isProfitableToScalarize(Entry.first, VF)); 5762 })) 5763 return false; 5764 5765 return true; 5766 } 5767 5768 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5769 const ElementCount VF) const { 5770 // FIXME: We need a much better cost-model to take different parameters such 5771 // as register pressure, code size increase and cost of extra branches into 5772 // account. For now we apply a very crude heuristic and only consider loops 5773 // with vectorization factors larger than a certain value. 5774 // We also consider epilogue vectorization unprofitable for targets that don't 5775 // consider interleaving beneficial (eg. MVE). 5776 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5777 return false; 5778 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5779 return true; 5780 return false; 5781 } 5782 5783 VectorizationFactor 5784 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5785 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5786 VectorizationFactor Result = VectorizationFactor::Disabled(); 5787 if (!EnableEpilogueVectorization) { 5788 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5789 return Result; 5790 } 5791 5792 if (!isScalarEpilogueAllowed()) { 5793 LLVM_DEBUG( 5794 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5795 "allowed.\n";); 5796 return Result; 5797 } 5798 5799 // FIXME: This can be fixed for scalable vectors later, because at this stage 5800 // the LoopVectorizer will only consider vectorizing a loop with scalable 5801 // vectors when the loop has a hint to enable vectorization for a given VF. 5802 if (MainLoopVF.isScalable()) { 5803 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 5804 "yet supported.\n"); 5805 return Result; 5806 } 5807 5808 // Not really a cost consideration, but check for unsupported cases here to 5809 // simplify the logic. 5810 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5811 LLVM_DEBUG( 5812 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5813 "not a supported candidate.\n";); 5814 return Result; 5815 } 5816 5817 if (EpilogueVectorizationForceVF > 1) { 5818 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5819 if (LVP.hasPlanWithVFs( 5820 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 5821 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 5822 else { 5823 LLVM_DEBUG( 5824 dbgs() 5825 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5826 return Result; 5827 } 5828 } 5829 5830 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5831 TheLoop->getHeader()->getParent()->hasMinSize()) { 5832 LLVM_DEBUG( 5833 dbgs() 5834 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5835 return Result; 5836 } 5837 5838 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 5839 return Result; 5840 5841 for (auto &NextVF : ProfitableVFs) 5842 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 5843 (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) && 5844 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 5845 Result = NextVF; 5846 5847 if (Result != VectorizationFactor::Disabled()) 5848 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5849 << Result.Width.getFixedValue() << "\n";); 5850 return Result; 5851 } 5852 5853 std::pair<unsigned, unsigned> 5854 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5855 unsigned MinWidth = -1U; 5856 unsigned MaxWidth = 8; 5857 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5858 5859 // For each block. 5860 for (BasicBlock *BB : TheLoop->blocks()) { 5861 // For each instruction in the loop. 5862 for (Instruction &I : BB->instructionsWithoutDebug()) { 5863 Type *T = I.getType(); 5864 5865 // Skip ignored values. 5866 if (ValuesToIgnore.count(&I)) 5867 continue; 5868 5869 // Only examine Loads, Stores and PHINodes. 5870 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5871 continue; 5872 5873 // Examine PHI nodes that are reduction variables. Update the type to 5874 // account for the recurrence type. 5875 if (auto *PN = dyn_cast<PHINode>(&I)) { 5876 if (!Legal->isReductionVariable(PN)) 5877 continue; 5878 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5879 T = RdxDesc.getRecurrenceType(); 5880 } 5881 5882 // Examine the stored values. 5883 if (auto *ST = dyn_cast<StoreInst>(&I)) 5884 T = ST->getValueOperand()->getType(); 5885 5886 // Ignore loaded pointer types and stored pointer types that are not 5887 // vectorizable. 5888 // 5889 // FIXME: The check here attempts to predict whether a load or store will 5890 // be vectorized. We only know this for certain after a VF has 5891 // been selected. Here, we assume that if an access can be 5892 // vectorized, it will be. We should also look at extending this 5893 // optimization to non-pointer types. 5894 // 5895 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5896 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5897 continue; 5898 5899 MinWidth = std::min(MinWidth, 5900 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5901 MaxWidth = std::max(MaxWidth, 5902 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5903 } 5904 } 5905 5906 return {MinWidth, MaxWidth}; 5907 } 5908 5909 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5910 unsigned LoopCost) { 5911 // -- The interleave heuristics -- 5912 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5913 // There are many micro-architectural considerations that we can't predict 5914 // at this level. For example, frontend pressure (on decode or fetch) due to 5915 // code size, or the number and capabilities of the execution ports. 5916 // 5917 // We use the following heuristics to select the interleave count: 5918 // 1. If the code has reductions, then we interleave to break the cross 5919 // iteration dependency. 5920 // 2. If the loop is really small, then we interleave to reduce the loop 5921 // overhead. 5922 // 3. We don't interleave if we think that we will spill registers to memory 5923 // due to the increased register pressure. 5924 5925 if (!isScalarEpilogueAllowed()) 5926 return 1; 5927 5928 // We used the distance for the interleave count. 5929 if (Legal->getMaxSafeDepDistBytes() != -1U) 5930 return 1; 5931 5932 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5933 const bool HasReductions = !Legal->getReductionVars().empty(); 5934 // Do not interleave loops with a relatively small known or estimated trip 5935 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5936 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5937 // because with the above conditions interleaving can expose ILP and break 5938 // cross iteration dependences for reductions. 5939 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5940 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5941 return 1; 5942 5943 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5944 // We divide by these constants so assume that we have at least one 5945 // instruction that uses at least one register. 5946 for (auto& pair : R.MaxLocalUsers) { 5947 pair.second = std::max(pair.second, 1U); 5948 } 5949 5950 // We calculate the interleave count using the following formula. 5951 // Subtract the number of loop invariants from the number of available 5952 // registers. These registers are used by all of the interleaved instances. 5953 // Next, divide the remaining registers by the number of registers that is 5954 // required by the loop, in order to estimate how many parallel instances 5955 // fit without causing spills. All of this is rounded down if necessary to be 5956 // a power of two. We want power of two interleave count to simplify any 5957 // addressing operations or alignment considerations. 5958 // We also want power of two interleave counts to ensure that the induction 5959 // variable of the vector loop wraps to zero, when tail is folded by masking; 5960 // this currently happens when OptForSize, in which case IC is set to 1 above. 5961 unsigned IC = UINT_MAX; 5962 5963 for (auto& pair : R.MaxLocalUsers) { 5964 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5965 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5966 << " registers of " 5967 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5968 if (VF.isScalar()) { 5969 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5970 TargetNumRegisters = ForceTargetNumScalarRegs; 5971 } else { 5972 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5973 TargetNumRegisters = ForceTargetNumVectorRegs; 5974 } 5975 unsigned MaxLocalUsers = pair.second; 5976 unsigned LoopInvariantRegs = 0; 5977 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5978 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5979 5980 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5981 // Don't count the induction variable as interleaved. 5982 if (EnableIndVarRegisterHeur) { 5983 TmpIC = 5984 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5985 std::max(1U, (MaxLocalUsers - 1))); 5986 } 5987 5988 IC = std::min(IC, TmpIC); 5989 } 5990 5991 // Clamp the interleave ranges to reasonable counts. 5992 unsigned MaxInterleaveCount = 5993 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5994 5995 // Check if the user has overridden the max. 5996 if (VF.isScalar()) { 5997 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5998 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5999 } else { 6000 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6001 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6002 } 6003 6004 // If trip count is known or estimated compile time constant, limit the 6005 // interleave count to be less than the trip count divided by VF, provided it 6006 // is at least 1. 6007 // 6008 // For scalable vectors we can't know if interleaving is beneficial. It may 6009 // not be beneficial for small loops if none of the lanes in the second vector 6010 // iterations is enabled. However, for larger loops, there is likely to be a 6011 // similar benefit as for fixed-width vectors. For now, we choose to leave 6012 // the InterleaveCount as if vscale is '1', although if some information about 6013 // the vector is known (e.g. min vector size), we can make a better decision. 6014 if (BestKnownTC) { 6015 MaxInterleaveCount = 6016 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6017 // Make sure MaxInterleaveCount is greater than 0. 6018 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6019 } 6020 6021 assert(MaxInterleaveCount > 0 && 6022 "Maximum interleave count must be greater than 0"); 6023 6024 // Clamp the calculated IC to be between the 1 and the max interleave count 6025 // that the target and trip count allows. 6026 if (IC > MaxInterleaveCount) 6027 IC = MaxInterleaveCount; 6028 else 6029 // Make sure IC is greater than 0. 6030 IC = std::max(1u, IC); 6031 6032 assert(IC > 0 && "Interleave count must be greater than 0."); 6033 6034 // If we did not calculate the cost for VF (because the user selected the VF) 6035 // then we calculate the cost of VF here. 6036 if (LoopCost == 0) 6037 LoopCost = expectedCost(VF).first; 6038 6039 assert(LoopCost && "Non-zero loop cost expected"); 6040 6041 // Interleave if we vectorized this loop and there is a reduction that could 6042 // benefit from interleaving. 6043 if (VF.isVector() && HasReductions) { 6044 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6045 return IC; 6046 } 6047 6048 // Note that if we've already vectorized the loop we will have done the 6049 // runtime check and so interleaving won't require further checks. 6050 bool InterleavingRequiresRuntimePointerCheck = 6051 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6052 6053 // We want to interleave small loops in order to reduce the loop overhead and 6054 // potentially expose ILP opportunities. 6055 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6056 << "LV: IC is " << IC << '\n' 6057 << "LV: VF is " << VF << '\n'); 6058 const bool AggressivelyInterleaveReductions = 6059 TTI.enableAggressiveInterleaving(HasReductions); 6060 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6061 // We assume that the cost overhead is 1 and we use the cost model 6062 // to estimate the cost of the loop and interleave until the cost of the 6063 // loop overhead is about 5% of the cost of the loop. 6064 unsigned SmallIC = 6065 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6066 6067 // Interleave until store/load ports (estimated by max interleave count) are 6068 // saturated. 6069 unsigned NumStores = Legal->getNumStores(); 6070 unsigned NumLoads = Legal->getNumLoads(); 6071 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6072 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6073 6074 // If we have a scalar reduction (vector reductions are already dealt with 6075 // by this point), we can increase the critical path length if the loop 6076 // we're interleaving is inside another loop. Limit, by default to 2, so the 6077 // critical path only gets increased by one reduction operation. 6078 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6079 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6080 SmallIC = std::min(SmallIC, F); 6081 StoresIC = std::min(StoresIC, F); 6082 LoadsIC = std::min(LoadsIC, F); 6083 } 6084 6085 if (EnableLoadStoreRuntimeInterleave && 6086 std::max(StoresIC, LoadsIC) > SmallIC) { 6087 LLVM_DEBUG( 6088 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6089 return std::max(StoresIC, LoadsIC); 6090 } 6091 6092 // If there are scalar reductions and TTI has enabled aggressive 6093 // interleaving for reductions, we will interleave to expose ILP. 6094 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6095 AggressivelyInterleaveReductions) { 6096 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6097 // Interleave no less than SmallIC but not as aggressive as the normal IC 6098 // to satisfy the rare situation when resources are too limited. 6099 return std::max(IC / 2, SmallIC); 6100 } else { 6101 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6102 return SmallIC; 6103 } 6104 } 6105 6106 // Interleave if this is a large loop (small loops are already dealt with by 6107 // this point) that could benefit from interleaving. 6108 if (AggressivelyInterleaveReductions) { 6109 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6110 return IC; 6111 } 6112 6113 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6114 return 1; 6115 } 6116 6117 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6118 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6119 // This function calculates the register usage by measuring the highest number 6120 // of values that are alive at a single location. Obviously, this is a very 6121 // rough estimation. We scan the loop in a topological order in order and 6122 // assign a number to each instruction. We use RPO to ensure that defs are 6123 // met before their users. We assume that each instruction that has in-loop 6124 // users starts an interval. We record every time that an in-loop value is 6125 // used, so we have a list of the first and last occurrences of each 6126 // instruction. Next, we transpose this data structure into a multi map that 6127 // holds the list of intervals that *end* at a specific location. This multi 6128 // map allows us to perform a linear search. We scan the instructions linearly 6129 // and record each time that a new interval starts, by placing it in a set. 6130 // If we find this value in the multi-map then we remove it from the set. 6131 // The max register usage is the maximum size of the set. 6132 // We also search for instructions that are defined outside the loop, but are 6133 // used inside the loop. We need this number separately from the max-interval 6134 // usage number because when we unroll, loop-invariant values do not take 6135 // more register. 6136 LoopBlocksDFS DFS(TheLoop); 6137 DFS.perform(LI); 6138 6139 RegisterUsage RU; 6140 6141 // Each 'key' in the map opens a new interval. The values 6142 // of the map are the index of the 'last seen' usage of the 6143 // instruction that is the key. 6144 using IntervalMap = DenseMap<Instruction *, unsigned>; 6145 6146 // Maps instruction to its index. 6147 SmallVector<Instruction *, 64> IdxToInstr; 6148 // Marks the end of each interval. 6149 IntervalMap EndPoint; 6150 // Saves the list of instruction indices that are used in the loop. 6151 SmallPtrSet<Instruction *, 8> Ends; 6152 // Saves the list of values that are used in the loop but are 6153 // defined outside the loop, such as arguments and constants. 6154 SmallPtrSet<Value *, 8> LoopInvariants; 6155 6156 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6157 for (Instruction &I : BB->instructionsWithoutDebug()) { 6158 IdxToInstr.push_back(&I); 6159 6160 // Save the end location of each USE. 6161 for (Value *U : I.operands()) { 6162 auto *Instr = dyn_cast<Instruction>(U); 6163 6164 // Ignore non-instruction values such as arguments, constants, etc. 6165 if (!Instr) 6166 continue; 6167 6168 // If this instruction is outside the loop then record it and continue. 6169 if (!TheLoop->contains(Instr)) { 6170 LoopInvariants.insert(Instr); 6171 continue; 6172 } 6173 6174 // Overwrite previous end points. 6175 EndPoint[Instr] = IdxToInstr.size(); 6176 Ends.insert(Instr); 6177 } 6178 } 6179 } 6180 6181 // Saves the list of intervals that end with the index in 'key'. 6182 using InstrList = SmallVector<Instruction *, 2>; 6183 DenseMap<unsigned, InstrList> TransposeEnds; 6184 6185 // Transpose the EndPoints to a list of values that end at each index. 6186 for (auto &Interval : EndPoint) 6187 TransposeEnds[Interval.second].push_back(Interval.first); 6188 6189 SmallPtrSet<Instruction *, 8> OpenIntervals; 6190 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6191 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6192 6193 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6194 6195 // A lambda that gets the register usage for the given type and VF. 6196 const auto &TTICapture = TTI; 6197 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6198 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6199 return 0U; 6200 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 6201 }; 6202 6203 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6204 Instruction *I = IdxToInstr[i]; 6205 6206 // Remove all of the instructions that end at this location. 6207 InstrList &List = TransposeEnds[i]; 6208 for (Instruction *ToRemove : List) 6209 OpenIntervals.erase(ToRemove); 6210 6211 // Ignore instructions that are never used within the loop. 6212 if (!Ends.count(I)) 6213 continue; 6214 6215 // Skip ignored values. 6216 if (ValuesToIgnore.count(I)) 6217 continue; 6218 6219 // For each VF find the maximum usage of registers. 6220 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6221 // Count the number of live intervals. 6222 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6223 6224 if (VFs[j].isScalar()) { 6225 for (auto Inst : OpenIntervals) { 6226 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6227 if (RegUsage.find(ClassID) == RegUsage.end()) 6228 RegUsage[ClassID] = 1; 6229 else 6230 RegUsage[ClassID] += 1; 6231 } 6232 } else { 6233 collectUniformsAndScalars(VFs[j]); 6234 for (auto Inst : OpenIntervals) { 6235 // Skip ignored values for VF > 1. 6236 if (VecValuesToIgnore.count(Inst)) 6237 continue; 6238 if (isScalarAfterVectorization(Inst, VFs[j])) { 6239 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6240 if (RegUsage.find(ClassID) == RegUsage.end()) 6241 RegUsage[ClassID] = 1; 6242 else 6243 RegUsage[ClassID] += 1; 6244 } else { 6245 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6246 if (RegUsage.find(ClassID) == RegUsage.end()) 6247 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6248 else 6249 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6250 } 6251 } 6252 } 6253 6254 for (auto& pair : RegUsage) { 6255 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6256 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6257 else 6258 MaxUsages[j][pair.first] = pair.second; 6259 } 6260 } 6261 6262 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6263 << OpenIntervals.size() << '\n'); 6264 6265 // Add the current instruction to the list of open intervals. 6266 OpenIntervals.insert(I); 6267 } 6268 6269 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6270 SmallMapVector<unsigned, unsigned, 4> Invariant; 6271 6272 for (auto Inst : LoopInvariants) { 6273 unsigned Usage = 6274 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6275 unsigned ClassID = 6276 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6277 if (Invariant.find(ClassID) == Invariant.end()) 6278 Invariant[ClassID] = Usage; 6279 else 6280 Invariant[ClassID] += Usage; 6281 } 6282 6283 LLVM_DEBUG({ 6284 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6285 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6286 << " item\n"; 6287 for (const auto &pair : MaxUsages[i]) { 6288 dbgs() << "LV(REG): RegisterClass: " 6289 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6290 << " registers\n"; 6291 } 6292 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6293 << " item\n"; 6294 for (const auto &pair : Invariant) { 6295 dbgs() << "LV(REG): RegisterClass: " 6296 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6297 << " registers\n"; 6298 } 6299 }); 6300 6301 RU.LoopInvariantRegs = Invariant; 6302 RU.MaxLocalUsers = MaxUsages[i]; 6303 RUs[i] = RU; 6304 } 6305 6306 return RUs; 6307 } 6308 6309 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6310 // TODO: Cost model for emulated masked load/store is completely 6311 // broken. This hack guides the cost model to use an artificially 6312 // high enough value to practically disable vectorization with such 6313 // operations, except where previously deployed legality hack allowed 6314 // using very low cost values. This is to avoid regressions coming simply 6315 // from moving "masked load/store" check from legality to cost model. 6316 // Masked Load/Gather emulation was previously never allowed. 6317 // Limited number of Masked Store/Scatter emulation was allowed. 6318 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 6319 return isa<LoadInst>(I) || 6320 (isa<StoreInst>(I) && 6321 NumPredStores > NumberOfStoresToPredicate); 6322 } 6323 6324 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6325 // If we aren't vectorizing the loop, or if we've already collected the 6326 // instructions to scalarize, there's nothing to do. Collection may already 6327 // have occurred if we have a user-selected VF and are now computing the 6328 // expected cost for interleaving. 6329 if (VF.isScalar() || VF.isZero() || 6330 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6331 return; 6332 6333 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6334 // not profitable to scalarize any instructions, the presence of VF in the 6335 // map will indicate that we've analyzed it already. 6336 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6337 6338 // Find all the instructions that are scalar with predication in the loop and 6339 // determine if it would be better to not if-convert the blocks they are in. 6340 // If so, we also record the instructions to scalarize. 6341 for (BasicBlock *BB : TheLoop->blocks()) { 6342 if (!blockNeedsPredication(BB)) 6343 continue; 6344 for (Instruction &I : *BB) 6345 if (isScalarWithPredication(&I)) { 6346 ScalarCostsTy ScalarCosts; 6347 // Do not apply discount logic if hacked cost is needed 6348 // for emulated masked memrefs. 6349 if (!useEmulatedMaskMemRefHack(&I) && 6350 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6351 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6352 // Remember that BB will remain after vectorization. 6353 PredicatedBBsAfterVectorization.insert(BB); 6354 } 6355 } 6356 } 6357 6358 int LoopVectorizationCostModel::computePredInstDiscount( 6359 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6360 ElementCount VF) { 6361 assert(!isUniformAfterVectorization(PredInst, VF) && 6362 "Instruction marked uniform-after-vectorization will be predicated"); 6363 6364 // Initialize the discount to zero, meaning that the scalar version and the 6365 // vector version cost the same. 6366 int Discount = 0; 6367 6368 // Holds instructions to analyze. The instructions we visit are mapped in 6369 // ScalarCosts. Those instructions are the ones that would be scalarized if 6370 // we find that the scalar version costs less. 6371 SmallVector<Instruction *, 8> Worklist; 6372 6373 // Returns true if the given instruction can be scalarized. 6374 auto canBeScalarized = [&](Instruction *I) -> bool { 6375 // We only attempt to scalarize instructions forming a single-use chain 6376 // from the original predicated block that would otherwise be vectorized. 6377 // Although not strictly necessary, we give up on instructions we know will 6378 // already be scalar to avoid traversing chains that are unlikely to be 6379 // beneficial. 6380 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6381 isScalarAfterVectorization(I, VF)) 6382 return false; 6383 6384 // If the instruction is scalar with predication, it will be analyzed 6385 // separately. We ignore it within the context of PredInst. 6386 if (isScalarWithPredication(I)) 6387 return false; 6388 6389 // If any of the instruction's operands are uniform after vectorization, 6390 // the instruction cannot be scalarized. This prevents, for example, a 6391 // masked load from being scalarized. 6392 // 6393 // We assume we will only emit a value for lane zero of an instruction 6394 // marked uniform after vectorization, rather than VF identical values. 6395 // Thus, if we scalarize an instruction that uses a uniform, we would 6396 // create uses of values corresponding to the lanes we aren't emitting code 6397 // for. This behavior can be changed by allowing getScalarValue to clone 6398 // the lane zero values for uniforms rather than asserting. 6399 for (Use &U : I->operands()) 6400 if (auto *J = dyn_cast<Instruction>(U.get())) 6401 if (isUniformAfterVectorization(J, VF)) 6402 return false; 6403 6404 // Otherwise, we can scalarize the instruction. 6405 return true; 6406 }; 6407 6408 // Compute the expected cost discount from scalarizing the entire expression 6409 // feeding the predicated instruction. We currently only consider expressions 6410 // that are single-use instruction chains. 6411 Worklist.push_back(PredInst); 6412 while (!Worklist.empty()) { 6413 Instruction *I = Worklist.pop_back_val(); 6414 6415 // If we've already analyzed the instruction, there's nothing to do. 6416 if (ScalarCosts.find(I) != ScalarCosts.end()) 6417 continue; 6418 6419 // Compute the cost of the vector instruction. Note that this cost already 6420 // includes the scalarization overhead of the predicated instruction. 6421 unsigned VectorCost = getInstructionCost(I, VF).first; 6422 6423 // Compute the cost of the scalarized instruction. This cost is the cost of 6424 // the instruction as if it wasn't if-converted and instead remained in the 6425 // predicated block. We will scale this cost by block probability after 6426 // computing the scalarization overhead. 6427 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6428 unsigned ScalarCost = 6429 VF.getKnownMinValue() * 6430 getInstructionCost(I, ElementCount::getFixed(1)).first; 6431 6432 // Compute the scalarization overhead of needed insertelement instructions 6433 // and phi nodes. 6434 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6435 ScalarCost += TTI.getScalarizationOverhead( 6436 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6437 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6438 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6439 ScalarCost += 6440 VF.getKnownMinValue() * 6441 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6442 } 6443 6444 // Compute the scalarization overhead of needed extractelement 6445 // instructions. For each of the instruction's operands, if the operand can 6446 // be scalarized, add it to the worklist; otherwise, account for the 6447 // overhead. 6448 for (Use &U : I->operands()) 6449 if (auto *J = dyn_cast<Instruction>(U.get())) { 6450 assert(VectorType::isValidElementType(J->getType()) && 6451 "Instruction has non-scalar type"); 6452 if (canBeScalarized(J)) 6453 Worklist.push_back(J); 6454 else if (needsExtract(J, VF)) { 6455 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6456 ScalarCost += TTI.getScalarizationOverhead( 6457 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6458 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6459 } 6460 } 6461 6462 // Scale the total scalar cost by block probability. 6463 ScalarCost /= getReciprocalPredBlockProb(); 6464 6465 // Compute the discount. A non-negative discount means the vector version 6466 // of the instruction costs more, and scalarizing would be beneficial. 6467 Discount += VectorCost - ScalarCost; 6468 ScalarCosts[I] = ScalarCost; 6469 } 6470 6471 return Discount; 6472 } 6473 6474 LoopVectorizationCostModel::VectorizationCostTy 6475 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6476 VectorizationCostTy Cost; 6477 6478 // For each block. 6479 for (BasicBlock *BB : TheLoop->blocks()) { 6480 VectorizationCostTy BlockCost; 6481 6482 // For each instruction in the old loop. 6483 for (Instruction &I : BB->instructionsWithoutDebug()) { 6484 // Skip ignored values. 6485 if (ValuesToIgnore.count(&I) || 6486 (VF.isVector() && VecValuesToIgnore.count(&I))) 6487 continue; 6488 6489 VectorizationCostTy C = getInstructionCost(&I, VF); 6490 6491 // Check if we should override the cost. 6492 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6493 C.first = ForceTargetInstructionCost; 6494 6495 BlockCost.first += C.first; 6496 BlockCost.second |= C.second; 6497 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6498 << " for VF " << VF << " For instruction: " << I 6499 << '\n'); 6500 } 6501 6502 // If we are vectorizing a predicated block, it will have been 6503 // if-converted. This means that the block's instructions (aside from 6504 // stores and instructions that may divide by zero) will now be 6505 // unconditionally executed. For the scalar case, we may not always execute 6506 // the predicated block, if it is an if-else block. Thus, scale the block's 6507 // cost by the probability of executing it. blockNeedsPredication from 6508 // Legal is used so as to not include all blocks in tail folded loops. 6509 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6510 BlockCost.first /= getReciprocalPredBlockProb(); 6511 6512 Cost.first += BlockCost.first; 6513 Cost.second |= BlockCost.second; 6514 } 6515 6516 return Cost; 6517 } 6518 6519 /// Gets Address Access SCEV after verifying that the access pattern 6520 /// is loop invariant except the induction variable dependence. 6521 /// 6522 /// This SCEV can be sent to the Target in order to estimate the address 6523 /// calculation cost. 6524 static const SCEV *getAddressAccessSCEV( 6525 Value *Ptr, 6526 LoopVectorizationLegality *Legal, 6527 PredicatedScalarEvolution &PSE, 6528 const Loop *TheLoop) { 6529 6530 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6531 if (!Gep) 6532 return nullptr; 6533 6534 // We are looking for a gep with all loop invariant indices except for one 6535 // which should be an induction variable. 6536 auto SE = PSE.getSE(); 6537 unsigned NumOperands = Gep->getNumOperands(); 6538 for (unsigned i = 1; i < NumOperands; ++i) { 6539 Value *Opd = Gep->getOperand(i); 6540 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6541 !Legal->isInductionVariable(Opd)) 6542 return nullptr; 6543 } 6544 6545 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6546 return PSE.getSCEV(Ptr); 6547 } 6548 6549 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6550 return Legal->hasStride(I->getOperand(0)) || 6551 Legal->hasStride(I->getOperand(1)); 6552 } 6553 6554 unsigned 6555 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6556 ElementCount VF) { 6557 assert(VF.isVector() && 6558 "Scalarization cost of instruction implies vectorization."); 6559 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6560 Type *ValTy = getMemInstValueType(I); 6561 auto SE = PSE.getSE(); 6562 6563 unsigned AS = getLoadStoreAddressSpace(I); 6564 Value *Ptr = getLoadStorePointerOperand(I); 6565 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6566 6567 // Figure out whether the access is strided and get the stride value 6568 // if it's known in compile time 6569 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6570 6571 // Get the cost of the scalar memory instruction and address computation. 6572 unsigned Cost = 6573 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6574 6575 // Don't pass *I here, since it is scalar but will actually be part of a 6576 // vectorized loop where the user of it is a vectorized instruction. 6577 const Align Alignment = getLoadStoreAlignment(I); 6578 Cost += VF.getKnownMinValue() * 6579 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6580 AS, TTI::TCK_RecipThroughput); 6581 6582 // Get the overhead of the extractelement and insertelement instructions 6583 // we might create due to scalarization. 6584 Cost += getScalarizationOverhead(I, VF); 6585 6586 // If we have a predicated store, it may not be executed for each vector 6587 // lane. Scale the cost by the probability of executing the predicated 6588 // block. 6589 if (isPredicatedInst(I)) { 6590 Cost /= getReciprocalPredBlockProb(); 6591 6592 if (useEmulatedMaskMemRefHack(I)) 6593 // Artificially setting to a high enough value to practically disable 6594 // vectorization with such operations. 6595 Cost = 3000000; 6596 } 6597 6598 return Cost; 6599 } 6600 6601 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6602 ElementCount VF) { 6603 Type *ValTy = getMemInstValueType(I); 6604 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6605 Value *Ptr = getLoadStorePointerOperand(I); 6606 unsigned AS = getLoadStoreAddressSpace(I); 6607 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6608 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6609 6610 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6611 "Stride should be 1 or -1 for consecutive memory access"); 6612 const Align Alignment = getLoadStoreAlignment(I); 6613 unsigned Cost = 0; 6614 if (Legal->isMaskRequired(I)) 6615 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6616 CostKind); 6617 else 6618 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6619 CostKind, I); 6620 6621 bool Reverse = ConsecutiveStride < 0; 6622 if (Reverse) 6623 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6624 return Cost; 6625 } 6626 6627 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6628 ElementCount VF) { 6629 assert(Legal->isUniformMemOp(*I)); 6630 6631 Type *ValTy = getMemInstValueType(I); 6632 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6633 const Align Alignment = getLoadStoreAlignment(I); 6634 unsigned AS = getLoadStoreAddressSpace(I); 6635 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6636 if (isa<LoadInst>(I)) { 6637 return TTI.getAddressComputationCost(ValTy) + 6638 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6639 CostKind) + 6640 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6641 } 6642 StoreInst *SI = cast<StoreInst>(I); 6643 6644 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6645 return TTI.getAddressComputationCost(ValTy) + 6646 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6647 CostKind) + 6648 (isLoopInvariantStoreValue 6649 ? 0 6650 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6651 VF.getKnownMinValue() - 1)); 6652 } 6653 6654 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6655 ElementCount VF) { 6656 Type *ValTy = getMemInstValueType(I); 6657 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6658 const Align Alignment = getLoadStoreAlignment(I); 6659 const Value *Ptr = getLoadStorePointerOperand(I); 6660 6661 return TTI.getAddressComputationCost(VectorTy) + 6662 TTI.getGatherScatterOpCost( 6663 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6664 TargetTransformInfo::TCK_RecipThroughput, I); 6665 } 6666 6667 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6668 ElementCount VF) { 6669 Type *ValTy = getMemInstValueType(I); 6670 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6671 unsigned AS = getLoadStoreAddressSpace(I); 6672 6673 auto Group = getInterleavedAccessGroup(I); 6674 assert(Group && "Fail to get an interleaved access group."); 6675 6676 unsigned InterleaveFactor = Group->getFactor(); 6677 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6678 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6679 6680 // Holds the indices of existing members in an interleaved load group. 6681 // An interleaved store group doesn't need this as it doesn't allow gaps. 6682 SmallVector<unsigned, 4> Indices; 6683 if (isa<LoadInst>(I)) { 6684 for (unsigned i = 0; i < InterleaveFactor; i++) 6685 if (Group->getMember(i)) 6686 Indices.push_back(i); 6687 } 6688 6689 // Calculate the cost of the whole interleaved group. 6690 bool UseMaskForGaps = 6691 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6692 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6693 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6694 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6695 6696 if (Group->isReverse()) { 6697 // TODO: Add support for reversed masked interleaved access. 6698 assert(!Legal->isMaskRequired(I) && 6699 "Reverse masked interleaved access not supported."); 6700 Cost += Group->getNumMembers() * 6701 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6702 } 6703 return Cost; 6704 } 6705 6706 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6707 ElementCount VF) { 6708 // Calculate scalar cost only. Vectorization cost should be ready at this 6709 // moment. 6710 if (VF.isScalar()) { 6711 Type *ValTy = getMemInstValueType(I); 6712 const Align Alignment = getLoadStoreAlignment(I); 6713 unsigned AS = getLoadStoreAddressSpace(I); 6714 6715 return TTI.getAddressComputationCost(ValTy) + 6716 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6717 TTI::TCK_RecipThroughput, I); 6718 } 6719 return getWideningCost(I, VF); 6720 } 6721 6722 LoopVectorizationCostModel::VectorizationCostTy 6723 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6724 ElementCount VF) { 6725 // If we know that this instruction will remain uniform, check the cost of 6726 // the scalar version. 6727 if (isUniformAfterVectorization(I, VF)) 6728 VF = ElementCount::getFixed(1); 6729 6730 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6731 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6732 6733 // Forced scalars do not have any scalarization overhead. 6734 auto ForcedScalar = ForcedScalars.find(VF); 6735 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6736 auto InstSet = ForcedScalar->second; 6737 if (InstSet.count(I)) 6738 return VectorizationCostTy( 6739 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6740 VF.getKnownMinValue()), 6741 false); 6742 } 6743 6744 Type *VectorTy; 6745 unsigned C = getInstructionCost(I, VF, VectorTy); 6746 6747 bool TypeNotScalarized = 6748 VF.isVector() && VectorTy->isVectorTy() && 6749 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 6750 return VectorizationCostTy(C, TypeNotScalarized); 6751 } 6752 6753 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6754 ElementCount VF) { 6755 6756 assert(!VF.isScalable() && 6757 "cannot compute scalarization overhead for scalable vectorization"); 6758 if (VF.isScalar()) 6759 return 0; 6760 6761 unsigned Cost = 0; 6762 Type *RetTy = ToVectorTy(I->getType(), VF); 6763 if (!RetTy->isVoidTy() && 6764 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6765 Cost += TTI.getScalarizationOverhead( 6766 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 6767 true, false); 6768 6769 // Some targets keep addresses scalar. 6770 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6771 return Cost; 6772 6773 // Some targets support efficient element stores. 6774 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6775 return Cost; 6776 6777 // Collect operands to consider. 6778 CallInst *CI = dyn_cast<CallInst>(I); 6779 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6780 6781 // Skip operands that do not require extraction/scalarization and do not incur 6782 // any overhead. 6783 return Cost + TTI.getOperandsScalarizationOverhead( 6784 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 6785 } 6786 6787 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6788 if (VF.isScalar()) 6789 return; 6790 NumPredStores = 0; 6791 for (BasicBlock *BB : TheLoop->blocks()) { 6792 // For each instruction in the old loop. 6793 for (Instruction &I : *BB) { 6794 Value *Ptr = getLoadStorePointerOperand(&I); 6795 if (!Ptr) 6796 continue; 6797 6798 // TODO: We should generate better code and update the cost model for 6799 // predicated uniform stores. Today they are treated as any other 6800 // predicated store (see added test cases in 6801 // invariant-store-vectorization.ll). 6802 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6803 NumPredStores++; 6804 6805 if (Legal->isUniformMemOp(I)) { 6806 // TODO: Avoid replicating loads and stores instead of 6807 // relying on instcombine to remove them. 6808 // Load: Scalar load + broadcast 6809 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6810 unsigned Cost = getUniformMemOpCost(&I, VF); 6811 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6812 continue; 6813 } 6814 6815 // We assume that widening is the best solution when possible. 6816 if (memoryInstructionCanBeWidened(&I, VF)) { 6817 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6818 int ConsecutiveStride = 6819 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6820 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6821 "Expected consecutive stride."); 6822 InstWidening Decision = 6823 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6824 setWideningDecision(&I, VF, Decision, Cost); 6825 continue; 6826 } 6827 6828 // Choose between Interleaving, Gather/Scatter or Scalarization. 6829 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6830 unsigned NumAccesses = 1; 6831 if (isAccessInterleaved(&I)) { 6832 auto Group = getInterleavedAccessGroup(&I); 6833 assert(Group && "Fail to get an interleaved access group."); 6834 6835 // Make one decision for the whole group. 6836 if (getWideningDecision(&I, VF) != CM_Unknown) 6837 continue; 6838 6839 NumAccesses = Group->getNumMembers(); 6840 if (interleavedAccessCanBeWidened(&I, VF)) 6841 InterleaveCost = getInterleaveGroupCost(&I, VF); 6842 } 6843 6844 unsigned GatherScatterCost = 6845 isLegalGatherOrScatter(&I) 6846 ? getGatherScatterCost(&I, VF) * NumAccesses 6847 : std::numeric_limits<unsigned>::max(); 6848 6849 unsigned ScalarizationCost = 6850 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6851 6852 // Choose better solution for the current VF, 6853 // write down this decision and use it during vectorization. 6854 unsigned Cost; 6855 InstWidening Decision; 6856 if (InterleaveCost <= GatherScatterCost && 6857 InterleaveCost < ScalarizationCost) { 6858 Decision = CM_Interleave; 6859 Cost = InterleaveCost; 6860 } else if (GatherScatterCost < ScalarizationCost) { 6861 Decision = CM_GatherScatter; 6862 Cost = GatherScatterCost; 6863 } else { 6864 Decision = CM_Scalarize; 6865 Cost = ScalarizationCost; 6866 } 6867 // If the instructions belongs to an interleave group, the whole group 6868 // receives the same decision. The whole group receives the cost, but 6869 // the cost will actually be assigned to one instruction. 6870 if (auto Group = getInterleavedAccessGroup(&I)) 6871 setWideningDecision(Group, VF, Decision, Cost); 6872 else 6873 setWideningDecision(&I, VF, Decision, Cost); 6874 } 6875 } 6876 6877 // Make sure that any load of address and any other address computation 6878 // remains scalar unless there is gather/scatter support. This avoids 6879 // inevitable extracts into address registers, and also has the benefit of 6880 // activating LSR more, since that pass can't optimize vectorized 6881 // addresses. 6882 if (TTI.prefersVectorizedAddressing()) 6883 return; 6884 6885 // Start with all scalar pointer uses. 6886 SmallPtrSet<Instruction *, 8> AddrDefs; 6887 for (BasicBlock *BB : TheLoop->blocks()) 6888 for (Instruction &I : *BB) { 6889 Instruction *PtrDef = 6890 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6891 if (PtrDef && TheLoop->contains(PtrDef) && 6892 getWideningDecision(&I, VF) != CM_GatherScatter) 6893 AddrDefs.insert(PtrDef); 6894 } 6895 6896 // Add all instructions used to generate the addresses. 6897 SmallVector<Instruction *, 4> Worklist; 6898 for (auto *I : AddrDefs) 6899 Worklist.push_back(I); 6900 while (!Worklist.empty()) { 6901 Instruction *I = Worklist.pop_back_val(); 6902 for (auto &Op : I->operands()) 6903 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6904 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6905 AddrDefs.insert(InstOp).second) 6906 Worklist.push_back(InstOp); 6907 } 6908 6909 for (auto *I : AddrDefs) { 6910 if (isa<LoadInst>(I)) { 6911 // Setting the desired widening decision should ideally be handled in 6912 // by cost functions, but since this involves the task of finding out 6913 // if the loaded register is involved in an address computation, it is 6914 // instead changed here when we know this is the case. 6915 InstWidening Decision = getWideningDecision(I, VF); 6916 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6917 // Scalarize a widened load of address. 6918 setWideningDecision( 6919 I, VF, CM_Scalarize, 6920 (VF.getKnownMinValue() * 6921 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6922 else if (auto Group = getInterleavedAccessGroup(I)) { 6923 // Scalarize an interleave group of address loads. 6924 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6925 if (Instruction *Member = Group->getMember(I)) 6926 setWideningDecision( 6927 Member, VF, CM_Scalarize, 6928 (VF.getKnownMinValue() * 6929 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6930 } 6931 } 6932 } else 6933 // Make sure I gets scalarized and a cost estimate without 6934 // scalarization overhead. 6935 ForcedScalars[VF].insert(I); 6936 } 6937 } 6938 6939 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6940 ElementCount VF, 6941 Type *&VectorTy) { 6942 Type *RetTy = I->getType(); 6943 if (canTruncateToMinimalBitwidth(I, VF)) 6944 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6945 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6946 auto SE = PSE.getSE(); 6947 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6948 6949 // TODO: We need to estimate the cost of intrinsic calls. 6950 switch (I->getOpcode()) { 6951 case Instruction::GetElementPtr: 6952 // We mark this instruction as zero-cost because the cost of GEPs in 6953 // vectorized code depends on whether the corresponding memory instruction 6954 // is scalarized or not. Therefore, we handle GEPs with the memory 6955 // instruction cost. 6956 return 0; 6957 case Instruction::Br: { 6958 // In cases of scalarized and predicated instructions, there will be VF 6959 // predicated blocks in the vectorized loop. Each branch around these 6960 // blocks requires also an extract of its vector compare i1 element. 6961 bool ScalarPredicatedBB = false; 6962 BranchInst *BI = cast<BranchInst>(I); 6963 if (VF.isVector() && BI->isConditional() && 6964 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6965 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6966 ScalarPredicatedBB = true; 6967 6968 if (ScalarPredicatedBB) { 6969 // Return cost for branches around scalarized and predicated blocks. 6970 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6971 auto *Vec_i1Ty = 6972 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6973 return (TTI.getScalarizationOverhead( 6974 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6975 false, true) + 6976 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 6977 VF.getKnownMinValue())); 6978 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6979 // The back-edge branch will remain, as will all scalar branches. 6980 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6981 else 6982 // This branch will be eliminated by if-conversion. 6983 return 0; 6984 // Note: We currently assume zero cost for an unconditional branch inside 6985 // a predicated block since it will become a fall-through, although we 6986 // may decide in the future to call TTI for all branches. 6987 } 6988 case Instruction::PHI: { 6989 auto *Phi = cast<PHINode>(I); 6990 6991 // First-order recurrences are replaced by vector shuffles inside the loop. 6992 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6993 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 6994 return TTI.getShuffleCost( 6995 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 6996 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 6997 6998 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6999 // converted into select instructions. We require N - 1 selects per phi 7000 // node, where N is the number of incoming values. 7001 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7002 return (Phi->getNumIncomingValues() - 1) * 7003 TTI.getCmpSelInstrCost( 7004 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7005 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7006 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7007 7008 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7009 } 7010 case Instruction::UDiv: 7011 case Instruction::SDiv: 7012 case Instruction::URem: 7013 case Instruction::SRem: 7014 // If we have a predicated instruction, it may not be executed for each 7015 // vector lane. Get the scalarization cost and scale this amount by the 7016 // probability of executing the predicated block. If the instruction is not 7017 // predicated, we fall through to the next case. 7018 if (VF.isVector() && isScalarWithPredication(I)) { 7019 unsigned Cost = 0; 7020 7021 // These instructions have a non-void type, so account for the phi nodes 7022 // that we will create. This cost is likely to be zero. The phi node 7023 // cost, if any, should be scaled by the block probability because it 7024 // models a copy at the end of each predicated block. 7025 Cost += VF.getKnownMinValue() * 7026 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7027 7028 // The cost of the non-predicated instruction. 7029 Cost += VF.getKnownMinValue() * 7030 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7031 7032 // The cost of insertelement and extractelement instructions needed for 7033 // scalarization. 7034 Cost += getScalarizationOverhead(I, VF); 7035 7036 // Scale the cost by the probability of executing the predicated blocks. 7037 // This assumes the predicated block for each vector lane is equally 7038 // likely. 7039 return Cost / getReciprocalPredBlockProb(); 7040 } 7041 LLVM_FALLTHROUGH; 7042 case Instruction::Add: 7043 case Instruction::FAdd: 7044 case Instruction::Sub: 7045 case Instruction::FSub: 7046 case Instruction::Mul: 7047 case Instruction::FMul: 7048 case Instruction::FDiv: 7049 case Instruction::FRem: 7050 case Instruction::Shl: 7051 case Instruction::LShr: 7052 case Instruction::AShr: 7053 case Instruction::And: 7054 case Instruction::Or: 7055 case Instruction::Xor: { 7056 // Since we will replace the stride by 1 the multiplication should go away. 7057 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7058 return 0; 7059 // Certain instructions can be cheaper to vectorize if they have a constant 7060 // second vector operand. One example of this are shifts on x86. 7061 Value *Op2 = I->getOperand(1); 7062 TargetTransformInfo::OperandValueProperties Op2VP; 7063 TargetTransformInfo::OperandValueKind Op2VK = 7064 TTI.getOperandInfo(Op2, Op2VP); 7065 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7066 Op2VK = TargetTransformInfo::OK_UniformValue; 7067 7068 SmallVector<const Value *, 4> Operands(I->operand_values()); 7069 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7070 return N * TTI.getArithmeticInstrCost( 7071 I->getOpcode(), VectorTy, CostKind, 7072 TargetTransformInfo::OK_AnyValue, 7073 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7074 } 7075 case Instruction::FNeg: { 7076 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 7077 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7078 return N * TTI.getArithmeticInstrCost( 7079 I->getOpcode(), VectorTy, CostKind, 7080 TargetTransformInfo::OK_AnyValue, 7081 TargetTransformInfo::OK_AnyValue, 7082 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 7083 I->getOperand(0), I); 7084 } 7085 case Instruction::Select: { 7086 SelectInst *SI = cast<SelectInst>(I); 7087 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7088 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7089 Type *CondTy = SI->getCondition()->getType(); 7090 if (!ScalarCond) { 7091 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 7092 CondTy = VectorType::get(CondTy, VF); 7093 } 7094 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7095 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7096 } 7097 case Instruction::ICmp: 7098 case Instruction::FCmp: { 7099 Type *ValTy = I->getOperand(0)->getType(); 7100 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7101 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7102 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7103 VectorTy = ToVectorTy(ValTy, VF); 7104 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7105 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7106 } 7107 case Instruction::Store: 7108 case Instruction::Load: { 7109 ElementCount Width = VF; 7110 if (Width.isVector()) { 7111 InstWidening Decision = getWideningDecision(I, Width); 7112 assert(Decision != CM_Unknown && 7113 "CM decision should be taken at this point"); 7114 if (Decision == CM_Scalarize) 7115 Width = ElementCount::getFixed(1); 7116 } 7117 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7118 return getMemoryInstructionCost(I, VF); 7119 } 7120 case Instruction::ZExt: 7121 case Instruction::SExt: 7122 case Instruction::FPToUI: 7123 case Instruction::FPToSI: 7124 case Instruction::FPExt: 7125 case Instruction::PtrToInt: 7126 case Instruction::IntToPtr: 7127 case Instruction::SIToFP: 7128 case Instruction::UIToFP: 7129 case Instruction::Trunc: 7130 case Instruction::FPTrunc: 7131 case Instruction::BitCast: { 7132 // Computes the CastContextHint from a Load/Store instruction. 7133 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7134 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7135 "Expected a load or a store!"); 7136 7137 if (VF.isScalar() || !TheLoop->contains(I)) 7138 return TTI::CastContextHint::Normal; 7139 7140 switch (getWideningDecision(I, VF)) { 7141 case LoopVectorizationCostModel::CM_GatherScatter: 7142 return TTI::CastContextHint::GatherScatter; 7143 case LoopVectorizationCostModel::CM_Interleave: 7144 return TTI::CastContextHint::Interleave; 7145 case LoopVectorizationCostModel::CM_Scalarize: 7146 case LoopVectorizationCostModel::CM_Widen: 7147 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7148 : TTI::CastContextHint::Normal; 7149 case LoopVectorizationCostModel::CM_Widen_Reverse: 7150 return TTI::CastContextHint::Reversed; 7151 case LoopVectorizationCostModel::CM_Unknown: 7152 llvm_unreachable("Instr did not go through cost modelling?"); 7153 } 7154 7155 llvm_unreachable("Unhandled case!"); 7156 }; 7157 7158 unsigned Opcode = I->getOpcode(); 7159 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7160 // For Trunc, the context is the only user, which must be a StoreInst. 7161 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7162 if (I->hasOneUse()) 7163 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7164 CCH = ComputeCCH(Store); 7165 } 7166 // For Z/Sext, the context is the operand, which must be a LoadInst. 7167 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7168 Opcode == Instruction::FPExt) { 7169 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7170 CCH = ComputeCCH(Load); 7171 } 7172 7173 // We optimize the truncation of induction variables having constant 7174 // integer steps. The cost of these truncations is the same as the scalar 7175 // operation. 7176 if (isOptimizableIVTruncate(I, VF)) { 7177 auto *Trunc = cast<TruncInst>(I); 7178 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7179 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7180 } 7181 7182 Type *SrcScalarTy = I->getOperand(0)->getType(); 7183 Type *SrcVecTy = 7184 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7185 if (canTruncateToMinimalBitwidth(I, VF)) { 7186 // This cast is going to be shrunk. This may remove the cast or it might 7187 // turn it into slightly different cast. For example, if MinBW == 16, 7188 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7189 // 7190 // Calculate the modified src and dest types. 7191 Type *MinVecTy = VectorTy; 7192 if (Opcode == Instruction::Trunc) { 7193 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7194 VectorTy = 7195 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7196 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7197 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7198 VectorTy = 7199 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7200 } 7201 } 7202 7203 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 7204 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7205 return N * 7206 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7207 } 7208 case Instruction::Call: { 7209 bool NeedToScalarize; 7210 CallInst *CI = cast<CallInst>(I); 7211 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7212 if (getVectorIntrinsicIDForCall(CI, TLI)) 7213 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 7214 return CallCost; 7215 } 7216 case Instruction::ExtractValue: { 7217 InstructionCost ExtractCost = 7218 TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7219 assert(ExtractCost.isValid() && "Invalid cost for ExtractValue"); 7220 return *(ExtractCost.getValue()); 7221 } 7222 default: 7223 // The cost of executing VF copies of the scalar instruction. This opcode 7224 // is unknown. Assume that it is the same as 'mul'. 7225 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 7226 Instruction::Mul, VectorTy, CostKind) + 7227 getScalarizationOverhead(I, VF); 7228 } // end of switch. 7229 } 7230 7231 char LoopVectorize::ID = 0; 7232 7233 static const char lv_name[] = "Loop Vectorization"; 7234 7235 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7236 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7237 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7238 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7239 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7240 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7241 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7242 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7243 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7244 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7245 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7246 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7247 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7248 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7249 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7250 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7251 7252 namespace llvm { 7253 7254 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7255 7256 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7257 bool VectorizeOnlyWhenForced) { 7258 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7259 } 7260 7261 } // end namespace llvm 7262 7263 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7264 // Check if the pointer operand of a load or store instruction is 7265 // consecutive. 7266 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7267 return Legal->isConsecutivePtr(Ptr); 7268 return false; 7269 } 7270 7271 void LoopVectorizationCostModel::collectValuesToIgnore() { 7272 // Ignore ephemeral values. 7273 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7274 7275 // Ignore type-promoting instructions we identified during reduction 7276 // detection. 7277 for (auto &Reduction : Legal->getReductionVars()) { 7278 RecurrenceDescriptor &RedDes = Reduction.second; 7279 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7280 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7281 } 7282 // Ignore type-casting instructions we identified during induction 7283 // detection. 7284 for (auto &Induction : Legal->getInductionVars()) { 7285 InductionDescriptor &IndDes = Induction.second; 7286 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7287 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7288 } 7289 } 7290 7291 void LoopVectorizationCostModel::collectInLoopReductions() { 7292 for (auto &Reduction : Legal->getReductionVars()) { 7293 PHINode *Phi = Reduction.first; 7294 RecurrenceDescriptor &RdxDesc = Reduction.second; 7295 7296 // We don't collect reductions that are type promoted (yet). 7297 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7298 continue; 7299 7300 // If the target would prefer this reduction to happen "in-loop", then we 7301 // want to record it as such. 7302 unsigned Opcode = RdxDesc.getRecurrenceBinOp(); 7303 if (!PreferInLoopReductions && 7304 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7305 TargetTransformInfo::ReductionFlags())) 7306 continue; 7307 7308 // Check that we can correctly put the reductions into the loop, by 7309 // finding the chain of operations that leads from the phi to the loop 7310 // exit value. 7311 SmallVector<Instruction *, 4> ReductionOperations = 7312 RdxDesc.getReductionOpChain(Phi, TheLoop); 7313 bool InLoop = !ReductionOperations.empty(); 7314 if (InLoop) 7315 InLoopReductionChains[Phi] = ReductionOperations; 7316 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7317 << " reduction for phi: " << *Phi << "\n"); 7318 } 7319 } 7320 7321 // TODO: we could return a pair of values that specify the max VF and 7322 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7323 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7324 // doesn't have a cost model that can choose which plan to execute if 7325 // more than one is generated. 7326 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7327 LoopVectorizationCostModel &CM) { 7328 unsigned WidestType; 7329 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7330 return WidestVectorRegBits / WidestType; 7331 } 7332 7333 VectorizationFactor 7334 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7335 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7336 ElementCount VF = UserVF; 7337 // Outer loop handling: They may require CFG and instruction level 7338 // transformations before even evaluating whether vectorization is profitable. 7339 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7340 // the vectorization pipeline. 7341 if (!OrigLoop->isInnermost()) { 7342 // If the user doesn't provide a vectorization factor, determine a 7343 // reasonable one. 7344 if (UserVF.isZero()) { 7345 VF = ElementCount::getFixed( 7346 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 7347 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7348 7349 // Make sure we have a VF > 1 for stress testing. 7350 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7351 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7352 << "overriding computed VF.\n"); 7353 VF = ElementCount::getFixed(4); 7354 } 7355 } 7356 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7357 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7358 "VF needs to be a power of two"); 7359 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7360 << "VF " << VF << " to build VPlans.\n"); 7361 buildVPlans(VF, VF); 7362 7363 // For VPlan build stress testing, we bail out after VPlan construction. 7364 if (VPlanBuildStressTest) 7365 return VectorizationFactor::Disabled(); 7366 7367 return {VF, 0 /*Cost*/}; 7368 } 7369 7370 LLVM_DEBUG( 7371 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7372 "VPlan-native path.\n"); 7373 return VectorizationFactor::Disabled(); 7374 } 7375 7376 Optional<VectorizationFactor> 7377 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7378 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7379 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7380 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7381 return None; 7382 7383 // Invalidate interleave groups if all blocks of loop will be predicated. 7384 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7385 !useMaskedInterleavedAccesses(*TTI)) { 7386 LLVM_DEBUG( 7387 dbgs() 7388 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7389 "which requires masked-interleaved support.\n"); 7390 if (CM.InterleaveInfo.invalidateGroups()) 7391 // Invalidating interleave groups also requires invalidating all decisions 7392 // based on them, which includes widening decisions and uniform and scalar 7393 // values. 7394 CM.invalidateCostModelingDecisions(); 7395 } 7396 7397 ElementCount MaxVF = MaybeMaxVF.getValue(); 7398 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7399 7400 if (!UserVF.isZero() && ElementCount::isKnownLE(UserVF, MaxVF)) { 7401 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7402 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7403 "VF needs to be a power of two"); 7404 // Collect the instructions (and their associated costs) that will be more 7405 // profitable to scalarize. 7406 CM.selectUserVectorizationFactor(UserVF); 7407 CM.collectInLoopReductions(); 7408 buildVPlansWithVPRecipes(UserVF, UserVF); 7409 LLVM_DEBUG(printPlans(dbgs())); 7410 return {{UserVF, 0}}; 7411 } 7412 7413 assert(!MaxVF.isScalable() && 7414 "Scalable vectors not yet supported beyond this point"); 7415 7416 for (ElementCount VF = ElementCount::getFixed(1); 7417 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7418 // Collect Uniform and Scalar instructions after vectorization with VF. 7419 CM.collectUniformsAndScalars(VF); 7420 7421 // Collect the instructions (and their associated costs) that will be more 7422 // profitable to scalarize. 7423 if (VF.isVector()) 7424 CM.collectInstsToScalarize(VF); 7425 } 7426 7427 CM.collectInLoopReductions(); 7428 7429 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7430 LLVM_DEBUG(printPlans(dbgs())); 7431 if (MaxVF.isScalar()) 7432 return VectorizationFactor::Disabled(); 7433 7434 // Select the optimal vectorization factor. 7435 return CM.selectVectorizationFactor(MaxVF); 7436 } 7437 7438 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7439 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7440 << '\n'); 7441 BestVF = VF; 7442 BestUF = UF; 7443 7444 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7445 return !Plan->hasVF(VF); 7446 }); 7447 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7448 } 7449 7450 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7451 DominatorTree *DT) { 7452 // Perform the actual loop transformation. 7453 7454 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7455 VPCallbackILV CallbackILV(ILV); 7456 7457 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7458 7459 VPTransformState State{*BestVF, BestUF, LI, 7460 DT, ILV.Builder, ILV.VectorLoopValueMap, 7461 &ILV, CallbackILV}; 7462 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7463 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7464 State.CanonicalIV = ILV.Induction; 7465 7466 ILV.printDebugTracesAtStart(); 7467 7468 //===------------------------------------------------===// 7469 // 7470 // Notice: any optimization or new instruction that go 7471 // into the code below should also be implemented in 7472 // the cost-model. 7473 // 7474 //===------------------------------------------------===// 7475 7476 // 2. Copy and widen instructions from the old loop into the new loop. 7477 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7478 VPlans.front()->execute(&State); 7479 7480 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7481 // predication, updating analyses. 7482 ILV.fixVectorizedLoop(); 7483 7484 ILV.printDebugTracesAtEnd(); 7485 } 7486 7487 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7488 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7489 7490 // We create new control-flow for the vectorized loop, so the original exit 7491 // conditions will be dead after vectorization if it's only used by the 7492 // terminator 7493 SmallVector<BasicBlock*> ExitingBlocks; 7494 OrigLoop->getExitingBlocks(ExitingBlocks); 7495 for (auto *BB : ExitingBlocks) { 7496 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7497 if (!Cmp || !Cmp->hasOneUse()) 7498 continue; 7499 7500 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7501 if (!DeadInstructions.insert(Cmp).second) 7502 continue; 7503 7504 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7505 // TODO: can recurse through operands in general 7506 for (Value *Op : Cmp->operands()) { 7507 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7508 DeadInstructions.insert(cast<Instruction>(Op)); 7509 } 7510 } 7511 7512 // We create new "steps" for induction variable updates to which the original 7513 // induction variables map. An original update instruction will be dead if 7514 // all its users except the induction variable are dead. 7515 auto *Latch = OrigLoop->getLoopLatch(); 7516 for (auto &Induction : Legal->getInductionVars()) { 7517 PHINode *Ind = Induction.first; 7518 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7519 7520 // If the tail is to be folded by masking, the primary induction variable, 7521 // if exists, isn't dead: it will be used for masking. Don't kill it. 7522 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7523 continue; 7524 7525 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7526 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7527 })) 7528 DeadInstructions.insert(IndUpdate); 7529 7530 // We record as "Dead" also the type-casting instructions we had identified 7531 // during induction analysis. We don't need any handling for them in the 7532 // vectorized loop because we have proven that, under a proper runtime 7533 // test guarding the vectorized loop, the value of the phi, and the casted 7534 // value of the phi, are the same. The last instruction in this casting chain 7535 // will get its scalar/vector/widened def from the scalar/vector/widened def 7536 // of the respective phi node. Any other casts in the induction def-use chain 7537 // have no other uses outside the phi update chain, and will be ignored. 7538 InductionDescriptor &IndDes = Induction.second; 7539 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7540 DeadInstructions.insert(Casts.begin(), Casts.end()); 7541 } 7542 } 7543 7544 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7545 7546 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7547 7548 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7549 Instruction::BinaryOps BinOp) { 7550 // When unrolling and the VF is 1, we only need to add a simple scalar. 7551 Type *Ty = Val->getType(); 7552 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7553 7554 if (Ty->isFloatingPointTy()) { 7555 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7556 7557 // Floating point operations had to be 'fast' to enable the unrolling. 7558 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7559 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7560 } 7561 Constant *C = ConstantInt::get(Ty, StartIdx); 7562 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7563 } 7564 7565 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7566 SmallVector<Metadata *, 4> MDs; 7567 // Reserve first location for self reference to the LoopID metadata node. 7568 MDs.push_back(nullptr); 7569 bool IsUnrollMetadata = false; 7570 MDNode *LoopID = L->getLoopID(); 7571 if (LoopID) { 7572 // First find existing loop unrolling disable metadata. 7573 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7574 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7575 if (MD) { 7576 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7577 IsUnrollMetadata = 7578 S && S->getString().startswith("llvm.loop.unroll.disable"); 7579 } 7580 MDs.push_back(LoopID->getOperand(i)); 7581 } 7582 } 7583 7584 if (!IsUnrollMetadata) { 7585 // Add runtime unroll disable metadata. 7586 LLVMContext &Context = L->getHeader()->getContext(); 7587 SmallVector<Metadata *, 1> DisableOperands; 7588 DisableOperands.push_back( 7589 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7590 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7591 MDs.push_back(DisableNode); 7592 MDNode *NewLoopID = MDNode::get(Context, MDs); 7593 // Set operand 0 to refer to the loop id itself. 7594 NewLoopID->replaceOperandWith(0, NewLoopID); 7595 L->setLoopID(NewLoopID); 7596 } 7597 } 7598 7599 //===--------------------------------------------------------------------===// 7600 // EpilogueVectorizerMainLoop 7601 //===--------------------------------------------------------------------===// 7602 7603 /// This function is partially responsible for generating the control flow 7604 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7605 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7606 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7607 Loop *Lp = createVectorLoopSkeleton(""); 7608 7609 // Generate the code to check the minimum iteration count of the vector 7610 // epilogue (see below). 7611 EPI.EpilogueIterationCountCheck = 7612 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 7613 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7614 7615 // Generate the code to check any assumptions that we've made for SCEV 7616 // expressions. 7617 BasicBlock *SavedPreHeader = LoopVectorPreHeader; 7618 emitSCEVChecks(Lp, LoopScalarPreHeader); 7619 7620 // If a safety check was generated save it. 7621 if (SavedPreHeader != LoopVectorPreHeader) 7622 EPI.SCEVSafetyCheck = SavedPreHeader; 7623 7624 // Generate the code that checks at runtime if arrays overlap. We put the 7625 // checks into a separate block to make the more common case of few elements 7626 // faster. 7627 SavedPreHeader = LoopVectorPreHeader; 7628 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 7629 7630 // If a safety check was generated save/overwite it. 7631 if (SavedPreHeader != LoopVectorPreHeader) 7632 EPI.MemSafetyCheck = SavedPreHeader; 7633 7634 // Generate the iteration count check for the main loop, *after* the check 7635 // for the epilogue loop, so that the path-length is shorter for the case 7636 // that goes directly through the vector epilogue. The longer-path length for 7637 // the main loop is compensated for, by the gain from vectorizing the larger 7638 // trip count. Note: the branch will get updated later on when we vectorize 7639 // the epilogue. 7640 EPI.MainLoopIterationCountCheck = 7641 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 7642 7643 // Generate the induction variable. 7644 OldInduction = Legal->getPrimaryInduction(); 7645 Type *IdxTy = Legal->getWidestInductionType(); 7646 Value *StartIdx = ConstantInt::get(IdxTy, 0); 7647 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 7648 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7649 EPI.VectorTripCount = CountRoundDown; 7650 Induction = 7651 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 7652 getDebugLocFromInstOrOperands(OldInduction)); 7653 7654 // Skip induction resume value creation here because they will be created in 7655 // the second pass. If we created them here, they wouldn't be used anyway, 7656 // because the vplan in the second pass still contains the inductions from the 7657 // original loop. 7658 7659 return completeLoopSkeleton(Lp, OrigLoopID); 7660 } 7661 7662 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7663 LLVM_DEBUG({ 7664 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7665 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 7666 << ", Main Loop UF:" << EPI.MainLoopUF 7667 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 7668 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7669 }); 7670 } 7671 7672 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7673 DEBUG_WITH_TYPE(VerboseDebug, { 7674 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 7675 }); 7676 } 7677 7678 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 7679 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 7680 assert(L && "Expected valid Loop."); 7681 assert(Bypass && "Expected valid bypass basic block."); 7682 unsigned VFactor = 7683 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 7684 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7685 Value *Count = getOrCreateTripCount(L); 7686 // Reuse existing vector loop preheader for TC checks. 7687 // Note that new preheader block is generated for vector loop. 7688 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7689 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7690 7691 // Generate code to check if the loop's trip count is less than VF * UF of the 7692 // main vector loop. 7693 auto P = 7694 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7695 7696 Value *CheckMinIters = Builder.CreateICmp( 7697 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 7698 "min.iters.check"); 7699 7700 if (!ForEpilogue) 7701 TCCheckBlock->setName("vector.main.loop.iter.check"); 7702 7703 // Create new preheader for vector loop. 7704 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7705 DT, LI, nullptr, "vector.ph"); 7706 7707 if (ForEpilogue) { 7708 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7709 DT->getNode(Bypass)->getIDom()) && 7710 "TC check is expected to dominate Bypass"); 7711 7712 // Update dominator for Bypass & LoopExit. 7713 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7714 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7715 7716 LoopBypassBlocks.push_back(TCCheckBlock); 7717 7718 // Save the trip count so we don't have to regenerate it in the 7719 // vec.epilog.iter.check. This is safe to do because the trip count 7720 // generated here dominates the vector epilog iter check. 7721 EPI.TripCount = Count; 7722 } 7723 7724 ReplaceInstWithInst( 7725 TCCheckBlock->getTerminator(), 7726 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7727 7728 return TCCheckBlock; 7729 } 7730 7731 //===--------------------------------------------------------------------===// 7732 // EpilogueVectorizerEpilogueLoop 7733 //===--------------------------------------------------------------------===// 7734 7735 /// This function is partially responsible for generating the control flow 7736 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7737 BasicBlock * 7738 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7739 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7740 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 7741 7742 // Now, compare the remaining count and if there aren't enough iterations to 7743 // execute the vectorized epilogue skip to the scalar part. 7744 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7745 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7746 LoopVectorPreHeader = 7747 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7748 LI, nullptr, "vec.epilog.ph"); 7749 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 7750 VecEpilogueIterationCountCheck); 7751 7752 // Adjust the control flow taking the state info from the main loop 7753 // vectorization into account. 7754 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7755 "expected this to be saved from the previous pass."); 7756 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7757 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7758 7759 DT->changeImmediateDominator(LoopVectorPreHeader, 7760 EPI.MainLoopIterationCountCheck); 7761 7762 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7763 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7764 7765 if (EPI.SCEVSafetyCheck) 7766 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7767 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7768 if (EPI.MemSafetyCheck) 7769 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7770 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7771 7772 DT->changeImmediateDominator( 7773 VecEpilogueIterationCountCheck, 7774 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7775 7776 DT->changeImmediateDominator(LoopScalarPreHeader, 7777 EPI.EpilogueIterationCountCheck); 7778 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 7779 7780 // Keep track of bypass blocks, as they feed start values to the induction 7781 // phis in the scalar loop preheader. 7782 if (EPI.SCEVSafetyCheck) 7783 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7784 if (EPI.MemSafetyCheck) 7785 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7786 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7787 7788 // Generate a resume induction for the vector epilogue and put it in the 7789 // vector epilogue preheader 7790 Type *IdxTy = Legal->getWidestInductionType(); 7791 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7792 LoopVectorPreHeader->getFirstNonPHI()); 7793 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7794 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7795 EPI.MainLoopIterationCountCheck); 7796 7797 // Generate the induction variable. 7798 OldInduction = Legal->getPrimaryInduction(); 7799 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7800 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 7801 Value *StartIdx = EPResumeVal; 7802 Induction = 7803 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 7804 getDebugLocFromInstOrOperands(OldInduction)); 7805 7806 // Generate induction resume values. These variables save the new starting 7807 // indexes for the scalar loop. They are used to test if there are any tail 7808 // iterations left once the vector loop has completed. 7809 // Note that when the vectorized epilogue is skipped due to iteration count 7810 // check, then the resume value for the induction variable comes from 7811 // the trip count of the main vector loop, hence passing the AdditionalBypass 7812 // argument. 7813 createInductionResumeValues(Lp, CountRoundDown, 7814 {VecEpilogueIterationCountCheck, 7815 EPI.VectorTripCount} /* AdditionalBypass */); 7816 7817 AddRuntimeUnrollDisableMetaData(Lp); 7818 return completeLoopSkeleton(Lp, OrigLoopID); 7819 } 7820 7821 BasicBlock * 7822 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7823 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 7824 7825 assert(EPI.TripCount && 7826 "Expected trip count to have been safed in the first pass."); 7827 assert( 7828 (!isa<Instruction>(EPI.TripCount) || 7829 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7830 "saved trip count does not dominate insertion point."); 7831 Value *TC = EPI.TripCount; 7832 IRBuilder<> Builder(Insert->getTerminator()); 7833 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7834 7835 // Generate code to check if the loop's trip count is less than VF * UF of the 7836 // vector epilogue loop. 7837 auto P = 7838 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7839 7840 Value *CheckMinIters = Builder.CreateICmp( 7841 P, Count, 7842 ConstantInt::get(Count->getType(), 7843 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 7844 "min.epilog.iters.check"); 7845 7846 ReplaceInstWithInst( 7847 Insert->getTerminator(), 7848 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7849 7850 LoopBypassBlocks.push_back(Insert); 7851 return Insert; 7852 } 7853 7854 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7855 LLVM_DEBUG({ 7856 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7857 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 7858 << ", Main Loop UF:" << EPI.MainLoopUF 7859 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 7860 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7861 }); 7862 } 7863 7864 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7865 DEBUG_WITH_TYPE(VerboseDebug, { 7866 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 7867 }); 7868 } 7869 7870 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7871 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7872 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7873 bool PredicateAtRangeStart = Predicate(Range.Start); 7874 7875 for (ElementCount TmpVF = Range.Start * 2; 7876 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7877 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7878 Range.End = TmpVF; 7879 break; 7880 } 7881 7882 return PredicateAtRangeStart; 7883 } 7884 7885 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7886 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7887 /// of VF's starting at a given VF and extending it as much as possible. Each 7888 /// vectorization decision can potentially shorten this sub-range during 7889 /// buildVPlan(). 7890 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7891 ElementCount MaxVF) { 7892 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7893 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7894 VFRange SubRange = {VF, MaxVFPlusOne}; 7895 VPlans.push_back(buildVPlan(SubRange)); 7896 VF = SubRange.End; 7897 } 7898 } 7899 7900 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7901 VPlanPtr &Plan) { 7902 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7903 7904 // Look for cached value. 7905 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7906 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7907 if (ECEntryIt != EdgeMaskCache.end()) 7908 return ECEntryIt->second; 7909 7910 VPValue *SrcMask = createBlockInMask(Src, Plan); 7911 7912 // The terminator has to be a branch inst! 7913 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7914 assert(BI && "Unexpected terminator found"); 7915 7916 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7917 return EdgeMaskCache[Edge] = SrcMask; 7918 7919 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 7920 assert(EdgeMask && "No Edge Mask found for condition"); 7921 7922 if (BI->getSuccessor(0) != Dst) 7923 EdgeMask = Builder.createNot(EdgeMask); 7924 7925 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7926 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7927 7928 return EdgeMaskCache[Edge] = EdgeMask; 7929 } 7930 7931 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 7932 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7933 7934 // Look for cached value. 7935 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7936 if (BCEntryIt != BlockMaskCache.end()) 7937 return BCEntryIt->second; 7938 7939 // All-one mask is modelled as no-mask following the convention for masked 7940 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7941 VPValue *BlockMask = nullptr; 7942 7943 if (OrigLoop->getHeader() == BB) { 7944 if (!CM.blockNeedsPredication(BB)) 7945 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 7946 7947 // Create the block in mask as the first non-phi instruction in the block. 7948 VPBuilder::InsertPointGuard Guard(Builder); 7949 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 7950 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 7951 7952 // Introduce the early-exit compare IV <= BTC to form header block mask. 7953 // This is used instead of IV < TC because TC may wrap, unlike BTC. 7954 // Start by constructing the desired canonical IV. 7955 VPValue *IV = nullptr; 7956 if (Legal->getPrimaryInduction()) 7957 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 7958 else { 7959 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 7960 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 7961 IV = IVRecipe->getVPValue(); 7962 } 7963 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 7964 bool TailFolded = !CM.isScalarEpilogueAllowed(); 7965 7966 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 7967 // While ActiveLaneMask is a binary op that consumes the loop tripcount 7968 // as a second argument, we only pass the IV here and extract the 7969 // tripcount from the transform state where codegen of the VP instructions 7970 // happen. 7971 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 7972 } else { 7973 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 7974 } 7975 return BlockMaskCache[BB] = BlockMask; 7976 } 7977 7978 // This is the block mask. We OR all incoming edges. 7979 for (auto *Predecessor : predecessors(BB)) { 7980 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7981 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7982 return BlockMaskCache[BB] = EdgeMask; 7983 7984 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7985 BlockMask = EdgeMask; 7986 continue; 7987 } 7988 7989 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7990 } 7991 7992 return BlockMaskCache[BB] = BlockMask; 7993 } 7994 7995 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 7996 VPlanPtr &Plan) { 7997 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7998 "Must be called with either a load or store"); 7999 8000 auto willWiden = [&](ElementCount VF) -> bool { 8001 if (VF.isScalar()) 8002 return false; 8003 LoopVectorizationCostModel::InstWidening Decision = 8004 CM.getWideningDecision(I, VF); 8005 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8006 "CM decision should be taken at this point."); 8007 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8008 return true; 8009 if (CM.isScalarAfterVectorization(I, VF) || 8010 CM.isProfitableToScalarize(I, VF)) 8011 return false; 8012 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8013 }; 8014 8015 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8016 return nullptr; 8017 8018 VPValue *Mask = nullptr; 8019 if (Legal->isMaskRequired(I)) 8020 Mask = createBlockInMask(I->getParent(), Plan); 8021 8022 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 8023 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8024 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 8025 8026 StoreInst *Store = cast<StoreInst>(I); 8027 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 8028 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 8029 } 8030 8031 VPWidenIntOrFpInductionRecipe * 8032 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 8033 // Check if this is an integer or fp induction. If so, build the recipe that 8034 // produces its scalar and vector values. 8035 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8036 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8037 II.getKind() == InductionDescriptor::IK_FpInduction) 8038 return new VPWidenIntOrFpInductionRecipe(Phi); 8039 8040 return nullptr; 8041 } 8042 8043 VPWidenIntOrFpInductionRecipe * 8044 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 8045 VFRange &Range) const { 8046 // Optimize the special case where the source is a constant integer 8047 // induction variable. Notice that we can only optimize the 'trunc' case 8048 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8049 // (c) other casts depend on pointer size. 8050 8051 // Determine whether \p K is a truncation based on an induction variable that 8052 // can be optimized. 8053 auto isOptimizableIVTruncate = 8054 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8055 return [=](ElementCount VF) -> bool { 8056 return CM.isOptimizableIVTruncate(K, VF); 8057 }; 8058 }; 8059 8060 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8061 isOptimizableIVTruncate(I), Range)) 8062 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8063 I); 8064 return nullptr; 8065 } 8066 8067 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 8068 // We know that all PHIs in non-header blocks are converted into selects, so 8069 // we don't have to worry about the insertion order and we can just use the 8070 // builder. At this point we generate the predication tree. There may be 8071 // duplications since this is a simple recursive scan, but future 8072 // optimizations will clean it up. 8073 8074 SmallVector<VPValue *, 2> Operands; 8075 unsigned NumIncoming = Phi->getNumIncomingValues(); 8076 for (unsigned In = 0; In < NumIncoming; In++) { 8077 VPValue *EdgeMask = 8078 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8079 assert((EdgeMask || NumIncoming == 1) && 8080 "Multiple predecessors with one having a full mask"); 8081 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 8082 if (EdgeMask) 8083 Operands.push_back(EdgeMask); 8084 } 8085 return new VPBlendRecipe(Phi, Operands); 8086 } 8087 8088 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 8089 VPlan &Plan) const { 8090 8091 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8092 [this, CI](ElementCount VF) { 8093 return CM.isScalarWithPredication(CI, VF); 8094 }, 8095 Range); 8096 8097 if (IsPredicated) 8098 return nullptr; 8099 8100 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8101 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8102 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8103 ID == Intrinsic::pseudoprobe)) 8104 return nullptr; 8105 8106 auto willWiden = [&](ElementCount VF) -> bool { 8107 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8108 // The following case may be scalarized depending on the VF. 8109 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8110 // version of the instruction. 8111 // Is it beneficial to perform intrinsic call compared to lib call? 8112 bool NeedToScalarize = false; 8113 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8114 bool UseVectorIntrinsic = 8115 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 8116 return UseVectorIntrinsic || !NeedToScalarize; 8117 }; 8118 8119 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8120 return nullptr; 8121 8122 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 8123 } 8124 8125 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8126 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8127 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8128 // Instruction should be widened, unless it is scalar after vectorization, 8129 // scalarization is profitable or it is predicated. 8130 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8131 return CM.isScalarAfterVectorization(I, VF) || 8132 CM.isProfitableToScalarize(I, VF) || 8133 CM.isScalarWithPredication(I, VF); 8134 }; 8135 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8136 Range); 8137 } 8138 8139 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 8140 auto IsVectorizableOpcode = [](unsigned Opcode) { 8141 switch (Opcode) { 8142 case Instruction::Add: 8143 case Instruction::And: 8144 case Instruction::AShr: 8145 case Instruction::BitCast: 8146 case Instruction::FAdd: 8147 case Instruction::FCmp: 8148 case Instruction::FDiv: 8149 case Instruction::FMul: 8150 case Instruction::FNeg: 8151 case Instruction::FPExt: 8152 case Instruction::FPToSI: 8153 case Instruction::FPToUI: 8154 case Instruction::FPTrunc: 8155 case Instruction::FRem: 8156 case Instruction::FSub: 8157 case Instruction::ICmp: 8158 case Instruction::IntToPtr: 8159 case Instruction::LShr: 8160 case Instruction::Mul: 8161 case Instruction::Or: 8162 case Instruction::PtrToInt: 8163 case Instruction::SDiv: 8164 case Instruction::Select: 8165 case Instruction::SExt: 8166 case Instruction::Shl: 8167 case Instruction::SIToFP: 8168 case Instruction::SRem: 8169 case Instruction::Sub: 8170 case Instruction::Trunc: 8171 case Instruction::UDiv: 8172 case Instruction::UIToFP: 8173 case Instruction::URem: 8174 case Instruction::Xor: 8175 case Instruction::ZExt: 8176 return true; 8177 } 8178 return false; 8179 }; 8180 8181 if (!IsVectorizableOpcode(I->getOpcode())) 8182 return nullptr; 8183 8184 // Success: widen this instruction. 8185 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 8186 } 8187 8188 VPBasicBlock *VPRecipeBuilder::handleReplication( 8189 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8190 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 8191 VPlanPtr &Plan) { 8192 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8193 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8194 Range); 8195 8196 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8197 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 8198 Range); 8199 8200 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8201 IsUniform, IsPredicated); 8202 setRecipe(I, Recipe); 8203 Plan->addVPValue(I, Recipe); 8204 8205 // Find if I uses a predicated instruction. If so, it will use its scalar 8206 // value. Avoid hoisting the insert-element which packs the scalar value into 8207 // a vector value, as that happens iff all users use the vector value. 8208 for (auto &Op : I->operands()) 8209 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8210 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8211 PredInst2Recipe[PredInst]->setAlsoPack(false); 8212 8213 // Finalize the recipe for Instr, first if it is not predicated. 8214 if (!IsPredicated) { 8215 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8216 VPBB->appendRecipe(Recipe); 8217 return VPBB; 8218 } 8219 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8220 assert(VPBB->getSuccessors().empty() && 8221 "VPBB has successors when handling predicated replication."); 8222 // Record predicated instructions for above packing optimizations. 8223 PredInst2Recipe[I] = Recipe; 8224 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8225 VPBlockUtils::insertBlockAfter(Region, VPBB); 8226 auto *RegSucc = new VPBasicBlock(); 8227 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8228 return RegSucc; 8229 } 8230 8231 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8232 VPRecipeBase *PredRecipe, 8233 VPlanPtr &Plan) { 8234 // Instructions marked for predication are replicated and placed under an 8235 // if-then construct to prevent side-effects. 8236 8237 // Generate recipes to compute the block mask for this region. 8238 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8239 8240 // Build the triangular if-then region. 8241 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8242 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8243 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8244 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8245 auto *PHIRecipe = Instr->getType()->isVoidTy() 8246 ? nullptr 8247 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8248 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8249 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8250 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8251 8252 // Note: first set Entry as region entry and then connect successors starting 8253 // from it in order, to propagate the "parent" of each VPBasicBlock. 8254 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8255 VPBlockUtils::connectBlocks(Pred, Exit); 8256 8257 return Region; 8258 } 8259 8260 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8261 VFRange &Range, 8262 VPlanPtr &Plan) { 8263 // First, check for specific widening recipes that deal with calls, memory 8264 // operations, inductions and Phi nodes. 8265 if (auto *CI = dyn_cast<CallInst>(Instr)) 8266 return tryToWidenCall(CI, Range, *Plan); 8267 8268 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8269 return tryToWidenMemory(Instr, Range, Plan); 8270 8271 VPRecipeBase *Recipe; 8272 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8273 if (Phi->getParent() != OrigLoop->getHeader()) 8274 return tryToBlend(Phi, Plan); 8275 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 8276 return Recipe; 8277 return new VPWidenPHIRecipe(Phi); 8278 } 8279 8280 if (isa<TruncInst>(Instr) && 8281 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 8282 return Recipe; 8283 8284 if (!shouldWiden(Instr, Range)) 8285 return nullptr; 8286 8287 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8288 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 8289 OrigLoop); 8290 8291 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8292 bool InvariantCond = 8293 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8294 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 8295 InvariantCond); 8296 } 8297 8298 return tryToWiden(Instr, *Plan); 8299 } 8300 8301 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8302 ElementCount MaxVF) { 8303 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8304 8305 // Collect instructions from the original loop that will become trivially dead 8306 // in the vectorized loop. We don't need to vectorize these instructions. For 8307 // example, original induction update instructions can become dead because we 8308 // separately emit induction "steps" when generating code for the new loop. 8309 // Similarly, we create a new latch condition when setting up the structure 8310 // of the new loop, so the old one can become dead. 8311 SmallPtrSet<Instruction *, 4> DeadInstructions; 8312 collectTriviallyDeadInstructions(DeadInstructions); 8313 8314 // Add assume instructions we need to drop to DeadInstructions, to prevent 8315 // them from being added to the VPlan. 8316 // TODO: We only need to drop assumes in blocks that get flattend. If the 8317 // control flow is preserved, we should keep them. 8318 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8319 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8320 8321 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8322 // Dead instructions do not need sinking. Remove them from SinkAfter. 8323 for (Instruction *I : DeadInstructions) 8324 SinkAfter.erase(I); 8325 8326 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8327 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8328 VFRange SubRange = {VF, MaxVFPlusOne}; 8329 VPlans.push_back( 8330 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8331 VF = SubRange.End; 8332 } 8333 } 8334 8335 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8336 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8337 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 8338 8339 // Hold a mapping from predicated instructions to their recipes, in order to 8340 // fix their AlsoPack behavior if a user is determined to replicate and use a 8341 // scalar instead of vector value. 8342 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8343 8344 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8345 8346 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8347 8348 // --------------------------------------------------------------------------- 8349 // Pre-construction: record ingredients whose recipes we'll need to further 8350 // process after constructing the initial VPlan. 8351 // --------------------------------------------------------------------------- 8352 8353 // Mark instructions we'll need to sink later and their targets as 8354 // ingredients whose recipe we'll need to record. 8355 for (auto &Entry : SinkAfter) { 8356 RecipeBuilder.recordRecipeOf(Entry.first); 8357 RecipeBuilder.recordRecipeOf(Entry.second); 8358 } 8359 for (auto &Reduction : CM.getInLoopReductionChains()) { 8360 PHINode *Phi = Reduction.first; 8361 RecurrenceDescriptor::RecurrenceKind Kind = 8362 Legal->getReductionVars()[Phi].getRecurrenceKind(); 8363 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8364 8365 RecipeBuilder.recordRecipeOf(Phi); 8366 for (auto &R : ReductionOperations) { 8367 RecipeBuilder.recordRecipeOf(R); 8368 // For min/max reducitons, where we have a pair of icmp/select, we also 8369 // need to record the ICmp recipe, so it can be removed later. 8370 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8371 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8372 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8373 } 8374 } 8375 } 8376 8377 // For each interleave group which is relevant for this (possibly trimmed) 8378 // Range, add it to the set of groups to be later applied to the VPlan and add 8379 // placeholders for its members' Recipes which we'll be replacing with a 8380 // single VPInterleaveRecipe. 8381 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8382 auto applyIG = [IG, this](ElementCount VF) -> bool { 8383 return (VF.isVector() && // Query is illegal for VF == 1 8384 CM.getWideningDecision(IG->getInsertPos(), VF) == 8385 LoopVectorizationCostModel::CM_Interleave); 8386 }; 8387 if (!getDecisionAndClampRange(applyIG, Range)) 8388 continue; 8389 InterleaveGroups.insert(IG); 8390 for (unsigned i = 0; i < IG->getFactor(); i++) 8391 if (Instruction *Member = IG->getMember(i)) 8392 RecipeBuilder.recordRecipeOf(Member); 8393 }; 8394 8395 // --------------------------------------------------------------------------- 8396 // Build initial VPlan: Scan the body of the loop in a topological order to 8397 // visit each basic block after having visited its predecessor basic blocks. 8398 // --------------------------------------------------------------------------- 8399 8400 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8401 auto Plan = std::make_unique<VPlan>(); 8402 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8403 Plan->setEntry(VPBB); 8404 8405 // Scan the body of the loop in a topological order to visit each basic block 8406 // after having visited its predecessor basic blocks. 8407 LoopBlocksDFS DFS(OrigLoop); 8408 DFS.perform(LI); 8409 8410 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8411 // Relevant instructions from basic block BB will be grouped into VPRecipe 8412 // ingredients and fill a new VPBasicBlock. 8413 unsigned VPBBsForBB = 0; 8414 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8415 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 8416 VPBB = FirstVPBBForBB; 8417 Builder.setInsertPoint(VPBB); 8418 8419 // Introduce each ingredient into VPlan. 8420 // TODO: Model and preserve debug instrinsics in VPlan. 8421 for (Instruction &I : BB->instructionsWithoutDebug()) { 8422 Instruction *Instr = &I; 8423 8424 // First filter out irrelevant instructions, to ensure no recipes are 8425 // built for them. 8426 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8427 continue; 8428 8429 if (auto Recipe = 8430 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 8431 for (auto *Def : Recipe->definedValues()) { 8432 auto *UV = Def->getUnderlyingValue(); 8433 Plan->addVPValue(UV, Def); 8434 } 8435 8436 RecipeBuilder.setRecipe(Instr, Recipe); 8437 VPBB->appendRecipe(Recipe); 8438 continue; 8439 } 8440 8441 // Otherwise, if all widening options failed, Instruction is to be 8442 // replicated. This may create a successor for VPBB. 8443 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 8444 Instr, Range, VPBB, PredInst2Recipe, Plan); 8445 if (NextVPBB != VPBB) { 8446 VPBB = NextVPBB; 8447 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8448 : ""); 8449 } 8450 } 8451 } 8452 8453 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8454 // may also be empty, such as the last one VPBB, reflecting original 8455 // basic-blocks with no recipes. 8456 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8457 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8458 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8459 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 8460 delete PreEntry; 8461 8462 // --------------------------------------------------------------------------- 8463 // Transform initial VPlan: Apply previously taken decisions, in order, to 8464 // bring the VPlan to its final state. 8465 // --------------------------------------------------------------------------- 8466 8467 // Apply Sink-After legal constraints. 8468 for (auto &Entry : SinkAfter) { 8469 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8470 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8471 Sink->moveAfter(Target); 8472 } 8473 8474 // Interleave memory: for each Interleave Group we marked earlier as relevant 8475 // for this VPlan, replace the Recipes widening its memory instructions with a 8476 // single VPInterleaveRecipe at its insertion point. 8477 for (auto IG : InterleaveGroups) { 8478 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8479 RecipeBuilder.getRecipe(IG->getInsertPos())); 8480 SmallVector<VPValue *, 4> StoredValues; 8481 for (unsigned i = 0; i < IG->getFactor(); ++i) 8482 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 8483 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 8484 8485 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8486 Recipe->getMask()); 8487 VPIG->insertBefore(Recipe); 8488 unsigned J = 0; 8489 for (unsigned i = 0; i < IG->getFactor(); ++i) 8490 if (Instruction *Member = IG->getMember(i)) { 8491 if (!Member->getType()->isVoidTy()) { 8492 VPValue *OriginalV = Plan->getVPValue(Member); 8493 Plan->removeVPValueFor(Member); 8494 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 8495 J++; 8496 } 8497 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 8498 } 8499 } 8500 8501 // Adjust the recipes for any inloop reductions. 8502 if (Range.Start.isVector()) 8503 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 8504 8505 // Finally, if tail is folded by masking, introduce selects between the phi 8506 // and the live-out instruction of each reduction, at the end of the latch. 8507 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 8508 Builder.setInsertPoint(VPBB); 8509 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 8510 for (auto &Reduction : Legal->getReductionVars()) { 8511 if (CM.isInLoopReduction(Reduction.first)) 8512 continue; 8513 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 8514 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 8515 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 8516 } 8517 } 8518 8519 std::string PlanName; 8520 raw_string_ostream RSO(PlanName); 8521 ElementCount VF = Range.Start; 8522 Plan->addVF(VF); 8523 RSO << "Initial VPlan for VF={" << VF; 8524 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 8525 Plan->addVF(VF); 8526 RSO << "," << VF; 8527 } 8528 RSO << "},UF>=1"; 8529 RSO.flush(); 8530 Plan->setName(PlanName); 8531 8532 return Plan; 8533 } 8534 8535 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8536 // Outer loop handling: They may require CFG and instruction level 8537 // transformations before even evaluating whether vectorization is profitable. 8538 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8539 // the vectorization pipeline. 8540 assert(!OrigLoop->isInnermost()); 8541 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8542 8543 // Create new empty VPlan 8544 auto Plan = std::make_unique<VPlan>(); 8545 8546 // Build hierarchical CFG 8547 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 8548 HCFGBuilder.buildHierarchicalCFG(); 8549 8550 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 8551 VF *= 2) 8552 Plan->addVF(VF); 8553 8554 if (EnableVPlanPredication) { 8555 VPlanPredicator VPP(*Plan); 8556 VPP.predicate(); 8557 8558 // Avoid running transformation to recipes until masked code generation in 8559 // VPlan-native path is in place. 8560 return Plan; 8561 } 8562 8563 SmallPtrSet<Instruction *, 1> DeadInstructions; 8564 VPlanTransforms::VPInstructionsToVPRecipes( 8565 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 8566 return Plan; 8567 } 8568 8569 // Adjust the recipes for any inloop reductions. The chain of instructions 8570 // leading from the loop exit instr to the phi need to be converted to 8571 // reductions, with one operand being vector and the other being the scalar 8572 // reduction chain. 8573 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 8574 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 8575 for (auto &Reduction : CM.getInLoopReductionChains()) { 8576 PHINode *Phi = Reduction.first; 8577 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8578 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8579 8580 // ReductionOperations are orders top-down from the phi's use to the 8581 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 8582 // which of the two operands will remain scalar and which will be reduced. 8583 // For minmax the chain will be the select instructions. 8584 Instruction *Chain = Phi; 8585 for (Instruction *R : ReductionOperations) { 8586 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 8587 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc.getRecurrenceKind(); 8588 8589 VPValue *ChainOp = Plan->getVPValue(Chain); 8590 unsigned FirstOpId; 8591 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8592 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8593 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 8594 "Expected to replace a VPWidenSelectSC"); 8595 FirstOpId = 1; 8596 } else { 8597 assert(isa<VPWidenRecipe>(WidenRecipe) && 8598 "Expected to replace a VPWidenSC"); 8599 FirstOpId = 0; 8600 } 8601 unsigned VecOpId = 8602 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 8603 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 8604 8605 auto *CondOp = CM.foldTailByMasking() 8606 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 8607 : nullptr; 8608 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 8609 &RdxDesc, R, ChainOp, VecOp, CondOp, Legal->hasFunNoNaNAttr(), TTI); 8610 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8611 Plan->removeVPValueFor(R); 8612 Plan->addVPValue(R, RedRecipe); 8613 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 8614 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8615 WidenRecipe->eraseFromParent(); 8616 8617 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8618 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8619 VPRecipeBase *CompareRecipe = 8620 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 8621 assert(isa<VPWidenRecipe>(CompareRecipe) && 8622 "Expected to replace a VPWidenSC"); 8623 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 8624 "Expected no remaining users"); 8625 CompareRecipe->eraseFromParent(); 8626 } 8627 Chain = R; 8628 } 8629 } 8630 } 8631 8632 Value* LoopVectorizationPlanner::VPCallbackILV:: 8633 getOrCreateVectorValues(Value *V, unsigned Part) { 8634 return ILV.getOrCreateVectorValue(V, Part); 8635 } 8636 8637 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 8638 Value *V, const VPIteration &Instance) { 8639 return ILV.getOrCreateScalarValue(V, Instance); 8640 } 8641 8642 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 8643 VPSlotTracker &SlotTracker) const { 8644 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8645 IG->getInsertPos()->printAsOperand(O, false); 8646 O << ", "; 8647 getAddr()->printAsOperand(O, SlotTracker); 8648 VPValue *Mask = getMask(); 8649 if (Mask) { 8650 O << ", "; 8651 Mask->printAsOperand(O, SlotTracker); 8652 } 8653 for (unsigned i = 0; i < IG->getFactor(); ++i) 8654 if (Instruction *I = IG->getMember(i)) 8655 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 8656 } 8657 8658 void VPWidenCallRecipe::execute(VPTransformState &State) { 8659 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 8660 *this, State); 8661 } 8662 8663 void VPWidenSelectRecipe::execute(VPTransformState &State) { 8664 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 8665 this, *this, InvariantCond, State); 8666 } 8667 8668 void VPWidenRecipe::execute(VPTransformState &State) { 8669 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 8670 } 8671 8672 void VPWidenGEPRecipe::execute(VPTransformState &State) { 8673 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 8674 *this, State.UF, State.VF, IsPtrLoopInvariant, 8675 IsIndexLoopInvariant, State); 8676 } 8677 8678 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8679 assert(!State.Instance && "Int or FP induction being replicated."); 8680 State.ILV->widenIntOrFpInduction(IV, Trunc); 8681 } 8682 8683 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8684 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8685 } 8686 8687 void VPBlendRecipe::execute(VPTransformState &State) { 8688 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8689 // We know that all PHIs in non-header blocks are converted into 8690 // selects, so we don't have to worry about the insertion order and we 8691 // can just use the builder. 8692 // At this point we generate the predication tree. There may be 8693 // duplications since this is a simple recursive scan, but future 8694 // optimizations will clean it up. 8695 8696 unsigned NumIncoming = getNumIncomingValues(); 8697 8698 // Generate a sequence of selects of the form: 8699 // SELECT(Mask3, In3, 8700 // SELECT(Mask2, In2, 8701 // SELECT(Mask1, In1, 8702 // In0))) 8703 // Note that Mask0 is never used: lanes for which no path reaches this phi and 8704 // are essentially undef are taken from In0. 8705 InnerLoopVectorizer::VectorParts Entry(State.UF); 8706 for (unsigned In = 0; In < NumIncoming; ++In) { 8707 for (unsigned Part = 0; Part < State.UF; ++Part) { 8708 // We might have single edge PHIs (blocks) - use an identity 8709 // 'select' for the first PHI operand. 8710 Value *In0 = State.get(getIncomingValue(In), Part); 8711 if (In == 0) 8712 Entry[Part] = In0; // Initialize with the first incoming value. 8713 else { 8714 // Select between the current value and the previous incoming edge 8715 // based on the incoming mask. 8716 Value *Cond = State.get(getMask(In), Part); 8717 Entry[Part] = 8718 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8719 } 8720 } 8721 } 8722 for (unsigned Part = 0; Part < State.UF; ++Part) 8723 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8724 } 8725 8726 void VPInterleaveRecipe::execute(VPTransformState &State) { 8727 assert(!State.Instance && "Interleave group being replicated."); 8728 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 8729 getStoredValues(), getMask()); 8730 } 8731 8732 void VPReductionRecipe::execute(VPTransformState &State) { 8733 assert(!State.Instance && "Reduction being replicated."); 8734 for (unsigned Part = 0; Part < State.UF; ++Part) { 8735 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc->getRecurrenceKind(); 8736 Value *NewVecOp = State.get(getVecOp(), Part); 8737 if (VPValue *Cond = getCondOp()) { 8738 Value *NewCond = State.get(Cond, Part); 8739 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 8740 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 8741 Kind, RdxDesc->getMinMaxRecurrenceKind(), VecTy->getElementType()); 8742 Constant *IdenVec = 8743 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 8744 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 8745 NewVecOp = Select; 8746 } 8747 Value *NewRed = 8748 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp, NoNaN); 8749 Value *PrevInChain = State.get(getChainOp(), Part); 8750 Value *NextInChain; 8751 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8752 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8753 NextInChain = 8754 createMinMaxOp(State.Builder, RdxDesc->getMinMaxRecurrenceKind(), 8755 NewRed, PrevInChain); 8756 } else { 8757 NextInChain = State.Builder.CreateBinOp( 8758 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 8759 PrevInChain); 8760 } 8761 State.set(this, getUnderlyingInstr(), NextInChain, Part); 8762 } 8763 } 8764 8765 void VPReplicateRecipe::execute(VPTransformState &State) { 8766 if (State.Instance) { // Generate a single instance. 8767 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 8768 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, 8769 *State.Instance, IsPredicated, State); 8770 // Insert scalar instance packing it into a vector. 8771 if (AlsoPack && State.VF.isVector()) { 8772 // If we're constructing lane 0, initialize to start from undef. 8773 if (State.Instance->Lane == 0) { 8774 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 8775 Value *Undef = UndefValue::get( 8776 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 8777 State.ValueMap.setVectorValue(getUnderlyingInstr(), 8778 State.Instance->Part, Undef); 8779 } 8780 State.ILV->packScalarIntoVectorValue(getUnderlyingInstr(), 8781 *State.Instance); 8782 } 8783 return; 8784 } 8785 8786 // Generate scalar instances for all VF lanes of all UF parts, unless the 8787 // instruction is uniform inwhich case generate only the first lane for each 8788 // of the UF parts. 8789 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 8790 assert((!State.VF.isScalable() || IsUniform) && 8791 "Can't scalarize a scalable vector"); 8792 for (unsigned Part = 0; Part < State.UF; ++Part) 8793 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8794 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, {Part, Lane}, 8795 IsPredicated, State); 8796 } 8797 8798 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8799 assert(State.Instance && "Branch on Mask works only on single instance."); 8800 8801 unsigned Part = State.Instance->Part; 8802 unsigned Lane = State.Instance->Lane; 8803 8804 Value *ConditionBit = nullptr; 8805 VPValue *BlockInMask = getMask(); 8806 if (BlockInMask) { 8807 ConditionBit = State.get(BlockInMask, Part); 8808 if (ConditionBit->getType()->isVectorTy()) 8809 ConditionBit = State.Builder.CreateExtractElement( 8810 ConditionBit, State.Builder.getInt32(Lane)); 8811 } else // Block in mask is all-one. 8812 ConditionBit = State.Builder.getTrue(); 8813 8814 // Replace the temporary unreachable terminator with a new conditional branch, 8815 // whose two destinations will be set later when they are created. 8816 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8817 assert(isa<UnreachableInst>(CurrentTerminator) && 8818 "Expected to replace unreachable terminator with conditional branch."); 8819 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8820 CondBr->setSuccessor(0, nullptr); 8821 ReplaceInstWithInst(CurrentTerminator, CondBr); 8822 } 8823 8824 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8825 assert(State.Instance && "Predicated instruction PHI works per instance."); 8826 Instruction *ScalarPredInst = 8827 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 8828 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8829 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8830 assert(PredicatingBB && "Predicated block has no single predecessor."); 8831 8832 // By current pack/unpack logic we need to generate only a single phi node: if 8833 // a vector value for the predicated instruction exists at this point it means 8834 // the instruction has vector users only, and a phi for the vector value is 8835 // needed. In this case the recipe of the predicated instruction is marked to 8836 // also do that packing, thereby "hoisting" the insert-element sequence. 8837 // Otherwise, a phi node for the scalar value is needed. 8838 unsigned Part = State.Instance->Part; 8839 Instruction *PredInst = 8840 cast<Instruction>(getOperand(0)->getUnderlyingValue()); 8841 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8842 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8843 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8844 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8845 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8846 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8847 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8848 } else { 8849 Type *PredInstType = PredInst->getType(); 8850 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8851 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8852 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8853 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8854 } 8855 } 8856 8857 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8858 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 8859 State.ILV->vectorizeMemoryInstruction(&Ingredient, State, 8860 StoredValue ? nullptr : getVPValue(), 8861 getAddr(), StoredValue, getMask()); 8862 } 8863 8864 // Determine how to lower the scalar epilogue, which depends on 1) optimising 8865 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 8866 // predication, and 4) a TTI hook that analyses whether the loop is suitable 8867 // for predication. 8868 static ScalarEpilogueLowering getScalarEpilogueLowering( 8869 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 8870 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 8871 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 8872 LoopVectorizationLegality &LVL) { 8873 // 1) OptSize takes precedence over all other options, i.e. if this is set, 8874 // don't look at hints or options, and don't request a scalar epilogue. 8875 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 8876 // LoopAccessInfo (due to code dependency and not being able to reliably get 8877 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 8878 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 8879 // versioning when the vectorization is forced, unlike hasOptSize. So revert 8880 // back to the old way and vectorize with versioning when forced. See D81345.) 8881 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 8882 PGSOQueryType::IRPass) && 8883 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 8884 return CM_ScalarEpilogueNotAllowedOptSize; 8885 8886 // 2) If set, obey the directives 8887 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 8888 switch (PreferPredicateOverEpilogue) { 8889 case PreferPredicateTy::ScalarEpilogue: 8890 return CM_ScalarEpilogueAllowed; 8891 case PreferPredicateTy::PredicateElseScalarEpilogue: 8892 return CM_ScalarEpilogueNotNeededUsePredicate; 8893 case PreferPredicateTy::PredicateOrDontVectorize: 8894 return CM_ScalarEpilogueNotAllowedUsePredicate; 8895 }; 8896 } 8897 8898 // 3) If set, obey the hints 8899 switch (Hints.getPredicate()) { 8900 case LoopVectorizeHints::FK_Enabled: 8901 return CM_ScalarEpilogueNotNeededUsePredicate; 8902 case LoopVectorizeHints::FK_Disabled: 8903 return CM_ScalarEpilogueAllowed; 8904 }; 8905 8906 // 4) if the TTI hook indicates this is profitable, request predication. 8907 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 8908 LVL.getLAI())) 8909 return CM_ScalarEpilogueNotNeededUsePredicate; 8910 8911 return CM_ScalarEpilogueAllowed; 8912 } 8913 8914 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 8915 unsigned Part) { 8916 set(Def, V, Part); 8917 ILV->setVectorValue(IRDef, Part, V); 8918 } 8919 8920 // Process the loop in the VPlan-native vectorization path. This path builds 8921 // VPlan upfront in the vectorization pipeline, which allows to apply 8922 // VPlan-to-VPlan transformations from the very beginning without modifying the 8923 // input LLVM IR. 8924 static bool processLoopInVPlanNativePath( 8925 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 8926 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 8927 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 8928 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 8929 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 8930 8931 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 8932 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 8933 return false; 8934 } 8935 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 8936 Function *F = L->getHeader()->getParent(); 8937 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 8938 8939 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8940 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 8941 8942 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 8943 &Hints, IAI); 8944 // Use the planner for outer loop vectorization. 8945 // TODO: CM is not used at this point inside the planner. Turn CM into an 8946 // optional argument if we don't need it in the future. 8947 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 8948 8949 // Get user vectorization factor. 8950 ElementCount UserVF = Hints.getWidth(); 8951 8952 // Plan how to best vectorize, return the best VF and its cost. 8953 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 8954 8955 // If we are stress testing VPlan builds, do not attempt to generate vector 8956 // code. Masked vector code generation support will follow soon. 8957 // Also, do not attempt to vectorize if no vector code will be produced. 8958 if (VPlanBuildStressTest || EnableVPlanPredication || 8959 VectorizationFactor::Disabled() == VF) 8960 return false; 8961 8962 LVP.setBestPlan(VF.Width, 1); 8963 8964 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 8965 &CM, BFI, PSI); 8966 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 8967 << L->getHeader()->getParent()->getName() << "\"\n"); 8968 LVP.executePlan(LB, DT); 8969 8970 // Mark the loop as already vectorized to avoid vectorizing again. 8971 Hints.setAlreadyVectorized(); 8972 8973 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8974 return true; 8975 } 8976 8977 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 8978 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 8979 !EnableLoopInterleaving), 8980 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 8981 !EnableLoopVectorization) {} 8982 8983 bool LoopVectorizePass::processLoop(Loop *L) { 8984 assert((EnableVPlanNativePath || L->isInnermost()) && 8985 "VPlan-native path is not enabled. Only process inner loops."); 8986 8987 #ifndef NDEBUG 8988 const std::string DebugLocStr = getDebugLocString(L); 8989 #endif /* NDEBUG */ 8990 8991 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8992 << L->getHeader()->getParent()->getName() << "\" from " 8993 << DebugLocStr << "\n"); 8994 8995 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 8996 8997 LLVM_DEBUG( 8998 dbgs() << "LV: Loop hints:" 8999 << " force=" 9000 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9001 ? "disabled" 9002 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9003 ? "enabled" 9004 : "?")) 9005 << " width=" << Hints.getWidth() 9006 << " unroll=" << Hints.getInterleave() << "\n"); 9007 9008 // Function containing loop 9009 Function *F = L->getHeader()->getParent(); 9010 9011 // Looking at the diagnostic output is the only way to determine if a loop 9012 // was vectorized (other than looking at the IR or machine code), so it 9013 // is important to generate an optimization remark for each loop. Most of 9014 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9015 // generated as OptimizationRemark and OptimizationRemarkMissed are 9016 // less verbose reporting vectorized loops and unvectorized loops that may 9017 // benefit from vectorization, respectively. 9018 9019 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9020 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9021 return false; 9022 } 9023 9024 PredicatedScalarEvolution PSE(*SE, *L); 9025 9026 // Check if it is legal to vectorize the loop. 9027 LoopVectorizationRequirements Requirements(*ORE); 9028 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9029 &Requirements, &Hints, DB, AC, BFI, PSI); 9030 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9031 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9032 Hints.emitRemarkWithHints(); 9033 return false; 9034 } 9035 9036 // Check the function attributes and profiles to find out if this function 9037 // should be optimized for size. 9038 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9039 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9040 9041 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9042 // here. They may require CFG and instruction level transformations before 9043 // even evaluating whether vectorization is profitable. Since we cannot modify 9044 // the incoming IR, we need to build VPlan upfront in the vectorization 9045 // pipeline. 9046 if (!L->isInnermost()) 9047 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9048 ORE, BFI, PSI, Hints); 9049 9050 assert(L->isInnermost() && "Inner loop expected."); 9051 9052 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9053 // count by optimizing for size, to minimize overheads. 9054 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9055 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9056 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9057 << "This loop is worth vectorizing only if no scalar " 9058 << "iteration overheads are incurred."); 9059 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9060 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9061 else { 9062 LLVM_DEBUG(dbgs() << "\n"); 9063 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9064 } 9065 } 9066 9067 // Check the function attributes to see if implicit floats are allowed. 9068 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9069 // an integer loop and the vector instructions selected are purely integer 9070 // vector instructions? 9071 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9072 reportVectorizationFailure( 9073 "Can't vectorize when the NoImplicitFloat attribute is used", 9074 "loop not vectorized due to NoImplicitFloat attribute", 9075 "NoImplicitFloat", ORE, L); 9076 Hints.emitRemarkWithHints(); 9077 return false; 9078 } 9079 9080 // Check if the target supports potentially unsafe FP vectorization. 9081 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9082 // for the target we're vectorizing for, to make sure none of the 9083 // additional fp-math flags can help. 9084 if (Hints.isPotentiallyUnsafe() && 9085 TTI->isFPVectorizationPotentiallyUnsafe()) { 9086 reportVectorizationFailure( 9087 "Potentially unsafe FP op prevents vectorization", 9088 "loop not vectorized due to unsafe FP support.", 9089 "UnsafeFP", ORE, L); 9090 Hints.emitRemarkWithHints(); 9091 return false; 9092 } 9093 9094 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 9095 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 9096 9097 // If an override option has been passed in for interleaved accesses, use it. 9098 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 9099 UseInterleaved = EnableInterleavedMemAccesses; 9100 9101 // Analyze interleaved memory accesses. 9102 if (UseInterleaved) { 9103 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 9104 } 9105 9106 // Use the cost model. 9107 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 9108 F, &Hints, IAI); 9109 CM.collectValuesToIgnore(); 9110 9111 // Use the planner for vectorization. 9112 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 9113 9114 // Get user vectorization factor and interleave count. 9115 ElementCount UserVF = Hints.getWidth(); 9116 unsigned UserIC = Hints.getInterleave(); 9117 9118 // Plan how to best vectorize, return the best VF and its cost. 9119 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 9120 9121 VectorizationFactor VF = VectorizationFactor::Disabled(); 9122 unsigned IC = 1; 9123 9124 if (MaybeVF) { 9125 VF = *MaybeVF; 9126 // Select the interleave count. 9127 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 9128 } 9129 9130 // Identify the diagnostic messages that should be produced. 9131 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 9132 bool VectorizeLoop = true, InterleaveLoop = true; 9133 if (Requirements.doesNotMeet(F, L, Hints)) { 9134 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 9135 "requirements.\n"); 9136 Hints.emitRemarkWithHints(); 9137 return false; 9138 } 9139 9140 if (VF.Width.isScalar()) { 9141 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 9142 VecDiagMsg = std::make_pair( 9143 "VectorizationNotBeneficial", 9144 "the cost-model indicates that vectorization is not beneficial"); 9145 VectorizeLoop = false; 9146 } 9147 9148 if (!MaybeVF && UserIC > 1) { 9149 // Tell the user interleaving was avoided up-front, despite being explicitly 9150 // requested. 9151 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 9152 "interleaving should be avoided up front\n"); 9153 IntDiagMsg = std::make_pair( 9154 "InterleavingAvoided", 9155 "Ignoring UserIC, because interleaving was avoided up front"); 9156 InterleaveLoop = false; 9157 } else if (IC == 1 && UserIC <= 1) { 9158 // Tell the user interleaving is not beneficial. 9159 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 9160 IntDiagMsg = std::make_pair( 9161 "InterleavingNotBeneficial", 9162 "the cost-model indicates that interleaving is not beneficial"); 9163 InterleaveLoop = false; 9164 if (UserIC == 1) { 9165 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 9166 IntDiagMsg.second += 9167 " and is explicitly disabled or interleave count is set to 1"; 9168 } 9169 } else if (IC > 1 && UserIC == 1) { 9170 // Tell the user interleaving is beneficial, but it explicitly disabled. 9171 LLVM_DEBUG( 9172 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 9173 IntDiagMsg = std::make_pair( 9174 "InterleavingBeneficialButDisabled", 9175 "the cost-model indicates that interleaving is beneficial " 9176 "but is explicitly disabled or interleave count is set to 1"); 9177 InterleaveLoop = false; 9178 } 9179 9180 // Override IC if user provided an interleave count. 9181 IC = UserIC > 0 ? UserIC : IC; 9182 9183 // Emit diagnostic messages, if any. 9184 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 9185 if (!VectorizeLoop && !InterleaveLoop) { 9186 // Do not vectorize or interleaving the loop. 9187 ORE->emit([&]() { 9188 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 9189 L->getStartLoc(), L->getHeader()) 9190 << VecDiagMsg.second; 9191 }); 9192 ORE->emit([&]() { 9193 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 9194 L->getStartLoc(), L->getHeader()) 9195 << IntDiagMsg.second; 9196 }); 9197 return false; 9198 } else if (!VectorizeLoop && InterleaveLoop) { 9199 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9200 ORE->emit([&]() { 9201 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 9202 L->getStartLoc(), L->getHeader()) 9203 << VecDiagMsg.second; 9204 }); 9205 } else if (VectorizeLoop && !InterleaveLoop) { 9206 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9207 << ") in " << DebugLocStr << '\n'); 9208 ORE->emit([&]() { 9209 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 9210 L->getStartLoc(), L->getHeader()) 9211 << IntDiagMsg.second; 9212 }); 9213 } else if (VectorizeLoop && InterleaveLoop) { 9214 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9215 << ") in " << DebugLocStr << '\n'); 9216 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9217 } 9218 9219 LVP.setBestPlan(VF.Width, IC); 9220 9221 using namespace ore; 9222 bool DisableRuntimeUnroll = false; 9223 MDNode *OrigLoopID = L->getLoopID(); 9224 9225 if (!VectorizeLoop) { 9226 assert(IC > 1 && "interleave count should not be 1 or 0"); 9227 // If we decided that it is not legal to vectorize the loop, then 9228 // interleave it. 9229 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 9230 BFI, PSI); 9231 LVP.executePlan(Unroller, DT); 9232 9233 ORE->emit([&]() { 9234 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 9235 L->getHeader()) 9236 << "interleaved loop (interleaved count: " 9237 << NV("InterleaveCount", IC) << ")"; 9238 }); 9239 } else { 9240 // If we decided that it is *legal* to vectorize the loop, then do it. 9241 9242 // Consider vectorizing the epilogue too if it's profitable. 9243 VectorizationFactor EpilogueVF = 9244 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 9245 if (EpilogueVF.Width.isVector()) { 9246 9247 // The first pass vectorizes the main loop and creates a scalar epilogue 9248 // to be vectorized by executing the plan (potentially with a different 9249 // factor) again shortly afterwards. 9250 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 9251 EpilogueVF.Width.getKnownMinValue(), 1); 9252 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, EPI, 9253 &LVL, &CM, BFI, PSI); 9254 9255 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 9256 LVP.executePlan(MainILV, DT); 9257 ++LoopsVectorized; 9258 9259 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9260 formLCSSARecursively(*L, *DT, LI, SE); 9261 9262 // Second pass vectorizes the epilogue and adjusts the control flow 9263 // edges from the first pass. 9264 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 9265 EPI.MainLoopVF = EPI.EpilogueVF; 9266 EPI.MainLoopUF = EPI.EpilogueUF; 9267 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 9268 ORE, EPI, &LVL, &CM, BFI, PSI); 9269 LVP.executePlan(EpilogILV, DT); 9270 ++LoopsEpilogueVectorized; 9271 9272 if (!MainILV.areSafetyChecksAdded()) 9273 DisableRuntimeUnroll = true; 9274 } else { 9275 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 9276 &LVL, &CM, BFI, PSI); 9277 LVP.executePlan(LB, DT); 9278 ++LoopsVectorized; 9279 9280 // Add metadata to disable runtime unrolling a scalar loop when there are 9281 // no runtime checks about strides and memory. A scalar loop that is 9282 // rarely used is not worth unrolling. 9283 if (!LB.areSafetyChecksAdded()) 9284 DisableRuntimeUnroll = true; 9285 } 9286 9287 // Report the vectorization decision. 9288 ORE->emit([&]() { 9289 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 9290 L->getHeader()) 9291 << "vectorized loop (vectorization width: " 9292 << NV("VectorizationFactor", VF.Width) 9293 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 9294 }); 9295 } 9296 9297 Optional<MDNode *> RemainderLoopID = 9298 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 9299 LLVMLoopVectorizeFollowupEpilogue}); 9300 if (RemainderLoopID.hasValue()) { 9301 L->setLoopID(RemainderLoopID.getValue()); 9302 } else { 9303 if (DisableRuntimeUnroll) 9304 AddRuntimeUnrollDisableMetaData(L); 9305 9306 // Mark the loop as already vectorized to avoid vectorizing again. 9307 Hints.setAlreadyVectorized(); 9308 } 9309 9310 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9311 return true; 9312 } 9313 9314 LoopVectorizeResult LoopVectorizePass::runImpl( 9315 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 9316 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 9317 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 9318 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 9319 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 9320 SE = &SE_; 9321 LI = &LI_; 9322 TTI = &TTI_; 9323 DT = &DT_; 9324 BFI = &BFI_; 9325 TLI = TLI_; 9326 AA = &AA_; 9327 AC = &AC_; 9328 GetLAA = &GetLAA_; 9329 DB = &DB_; 9330 ORE = &ORE_; 9331 PSI = PSI_; 9332 9333 // Don't attempt if 9334 // 1. the target claims to have no vector registers, and 9335 // 2. interleaving won't help ILP. 9336 // 9337 // The second condition is necessary because, even if the target has no 9338 // vector registers, loop vectorization may still enable scalar 9339 // interleaving. 9340 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 9341 TTI->getMaxInterleaveFactor(1) < 2) 9342 return LoopVectorizeResult(false, false); 9343 9344 bool Changed = false, CFGChanged = false; 9345 9346 // The vectorizer requires loops to be in simplified form. 9347 // Since simplification may add new inner loops, it has to run before the 9348 // legality and profitability checks. This means running the loop vectorizer 9349 // will simplify all loops, regardless of whether anything end up being 9350 // vectorized. 9351 for (auto &L : *LI) 9352 Changed |= CFGChanged |= 9353 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9354 9355 // Build up a worklist of inner-loops to vectorize. This is necessary as 9356 // the act of vectorizing or partially unrolling a loop creates new loops 9357 // and can invalidate iterators across the loops. 9358 SmallVector<Loop *, 8> Worklist; 9359 9360 for (Loop *L : *LI) 9361 collectSupportedLoops(*L, LI, ORE, Worklist); 9362 9363 LoopsAnalyzed += Worklist.size(); 9364 9365 // Now walk the identified inner loops. 9366 while (!Worklist.empty()) { 9367 Loop *L = Worklist.pop_back_val(); 9368 9369 // For the inner loops we actually process, form LCSSA to simplify the 9370 // transform. 9371 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 9372 9373 Changed |= CFGChanged |= processLoop(L); 9374 } 9375 9376 // Process each loop nest in the function. 9377 return LoopVectorizeResult(Changed, CFGChanged); 9378 } 9379 9380 PreservedAnalyses LoopVectorizePass::run(Function &F, 9381 FunctionAnalysisManager &AM) { 9382 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 9383 auto &LI = AM.getResult<LoopAnalysis>(F); 9384 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 9385 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 9386 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 9387 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 9388 auto &AA = AM.getResult<AAManager>(F); 9389 auto &AC = AM.getResult<AssumptionAnalysis>(F); 9390 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 9391 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9392 MemorySSA *MSSA = EnableMSSALoopDependency 9393 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 9394 : nullptr; 9395 9396 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 9397 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 9398 [&](Loop &L) -> const LoopAccessInfo & { 9399 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 9400 TLI, TTI, nullptr, MSSA}; 9401 return LAM.getResult<LoopAccessAnalysis>(L, AR); 9402 }; 9403 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 9404 ProfileSummaryInfo *PSI = 9405 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 9406 LoopVectorizeResult Result = 9407 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 9408 if (!Result.MadeAnyChange) 9409 return PreservedAnalyses::all(); 9410 PreservedAnalyses PA; 9411 9412 // We currently do not preserve loopinfo/dominator analyses with outer loop 9413 // vectorization. Until this is addressed, mark these analyses as preserved 9414 // only for non-VPlan-native path. 9415 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 9416 if (!EnableVPlanNativePath) { 9417 PA.preserve<LoopAnalysis>(); 9418 PA.preserve<DominatorTreeAnalysis>(); 9419 } 9420 PA.preserve<BasicAA>(); 9421 PA.preserve<GlobalsAA>(); 9422 if (!Result.MadeCFGChange) 9423 PA.preserveSet<CFGAnalyses>(); 9424 return PA; 9425 } 9426