1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/SCCIterator.h" 55 #include "llvm/ADT/SetVector.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallSet.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/Analysis/CodeMetrics.h" 62 #include "llvm/Analysis/GlobalsModRef.h" 63 #include "llvm/Analysis/LoopInfo.h" 64 #include "llvm/Analysis/LoopIterator.h" 65 #include "llvm/Analysis/LoopPass.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/Analysis/VectorUtils.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/IR/ValueHandle.h" 87 #include "llvm/IR/Verifier.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/BranchProbability.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Transforms/Scalar.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include "llvm/Transforms/Utils/LoopSimplify.h" 97 #include "llvm/Transforms/Utils/LoopUtils.h" 98 #include "llvm/Transforms/Utils/LoopVersioning.h" 99 #include "llvm/Transforms/Vectorize.h" 100 #include <algorithm> 101 #include <map> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define LV_NAME "loop-vectorize" 108 #define DEBUG_TYPE LV_NAME 109 110 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 111 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 112 113 static cl::opt<bool> 114 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 115 cl::desc("Enable if-conversion during vectorization.")); 116 117 /// Loops with a known constant trip count below this number are vectorized only 118 /// if no scalar iteration overheads are incurred. 119 static cl::opt<unsigned> TinyTripCountVectorThreshold( 120 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 121 cl::desc("Loops with a constant trip count that is smaller than this " 122 "value are vectorized only if no scalar iteration overheads " 123 "are incurred.")); 124 125 static cl::opt<bool> MaximizeBandwidth( 126 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 127 cl::desc("Maximize bandwidth when selecting vectorization factor which " 128 "will be determined by the smallest type in loop.")); 129 130 static cl::opt<bool> EnableInterleavedMemAccesses( 131 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 132 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 133 134 /// Maximum factor for an interleaved memory access. 135 static cl::opt<unsigned> MaxInterleaveGroupFactor( 136 "max-interleave-group-factor", cl::Hidden, 137 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 138 cl::init(8)); 139 140 /// We don't interleave loops with a known constant trip count below this 141 /// number. 142 static const unsigned TinyTripCountInterleaveThreshold = 128; 143 144 static cl::opt<unsigned> ForceTargetNumScalarRegs( 145 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 146 cl::desc("A flag that overrides the target's number of scalar registers.")); 147 148 static cl::opt<unsigned> ForceTargetNumVectorRegs( 149 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 150 cl::desc("A flag that overrides the target's number of vector registers.")); 151 152 /// Maximum vectorization interleave count. 153 static const unsigned MaxInterleaveFactor = 16; 154 155 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 156 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's max interleave factor for " 158 "scalar loops.")); 159 160 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 161 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 162 cl::desc("A flag that overrides the target's max interleave factor for " 163 "vectorized loops.")); 164 165 static cl::opt<unsigned> ForceTargetInstructionCost( 166 "force-target-instruction-cost", cl::init(0), cl::Hidden, 167 cl::desc("A flag that overrides the target's expected cost for " 168 "an instruction to a single constant value. Mostly " 169 "useful for getting consistent testing.")); 170 171 static cl::opt<unsigned> SmallLoopCost( 172 "small-loop-cost", cl::init(20), cl::Hidden, 173 cl::desc( 174 "The cost of a loop that is considered 'small' by the interleaver.")); 175 176 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 177 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 178 cl::desc("Enable the use of the block frequency analysis to access PGO " 179 "heuristics minimizing code growth in cold regions and being more " 180 "aggressive in hot regions.")); 181 182 // Runtime interleave loops for load/store throughput. 183 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 184 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 185 cl::desc( 186 "Enable runtime interleaving until load/store ports are saturated")); 187 188 /// The number of stores in a loop that are allowed to need predication. 189 static cl::opt<unsigned> NumberOfStoresToPredicate( 190 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 191 cl::desc("Max number of stores to be predicated behind an if.")); 192 193 static cl::opt<bool> EnableIndVarRegisterHeur( 194 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 195 cl::desc("Count the induction variable only once when interleaving")); 196 197 static cl::opt<bool> EnableCondStoresVectorization( 198 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 199 cl::desc("Enable if predication of stores during vectorization.")); 200 201 static cl::opt<unsigned> MaxNestedScalarReductionIC( 202 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 203 cl::desc("The maximum interleave count to use when interleaving a scalar " 204 "reduction in a nested loop.")); 205 206 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 207 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 208 cl::desc("The maximum allowed number of runtime memory checks with a " 209 "vectorize(enable) pragma.")); 210 211 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 212 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 213 cl::desc("The maximum number of SCEV checks allowed.")); 214 215 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 216 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 217 cl::desc("The maximum number of SCEV checks allowed with a " 218 "vectorize(enable) pragma")); 219 220 /// Create an analysis remark that explains why vectorization failed 221 /// 222 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 223 /// RemarkName is the identifier for the remark. If \p I is passed it is an 224 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 225 /// the location of the remark. \return the remark object that can be 226 /// streamed to. 227 static OptimizationRemarkAnalysis 228 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 229 Instruction *I = nullptr) { 230 Value *CodeRegion = TheLoop->getHeader(); 231 DebugLoc DL = TheLoop->getStartLoc(); 232 233 if (I) { 234 CodeRegion = I->getParent(); 235 // If there is no debug location attached to the instruction, revert back to 236 // using the loop's. 237 if (I->getDebugLoc()) 238 DL = I->getDebugLoc(); 239 } 240 241 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 242 R << "loop not vectorized: "; 243 return R; 244 } 245 246 namespace { 247 248 // Forward declarations. 249 class LoopVectorizeHints; 250 class LoopVectorizationLegality; 251 class LoopVectorizationCostModel; 252 class LoopVectorizationRequirements; 253 254 /// Returns true if the given loop body has a cycle, excluding the loop 255 /// itself. 256 static bool hasCyclesInLoopBody(const Loop &L) { 257 if (!L.empty()) 258 return true; 259 260 for (const auto &SCC : 261 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 262 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 263 if (SCC.size() > 1) { 264 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 265 DEBUG(L.dump()); 266 return true; 267 } 268 } 269 return false; 270 } 271 272 /// A helper function for converting Scalar types to vector types. 273 /// If the incoming type is void, we return void. If the VF is 1, we return 274 /// the scalar type. 275 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 276 if (Scalar->isVoidTy() || VF == 1) 277 return Scalar; 278 return VectorType::get(Scalar, VF); 279 } 280 281 // FIXME: The following helper functions have multiple implementations 282 // in the project. They can be effectively organized in a common Load/Store 283 // utilities unit. 284 285 /// A helper function that returns the pointer operand of a load or store 286 /// instruction. 287 static Value *getPointerOperand(Value *I) { 288 if (auto *LI = dyn_cast<LoadInst>(I)) 289 return LI->getPointerOperand(); 290 if (auto *SI = dyn_cast<StoreInst>(I)) 291 return SI->getPointerOperand(); 292 return nullptr; 293 } 294 295 /// A helper function that returns the type of loaded or stored value. 296 static Type *getMemInstValueType(Value *I) { 297 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 298 "Expected Load or Store instruction"); 299 if (auto *LI = dyn_cast<LoadInst>(I)) 300 return LI->getType(); 301 return cast<StoreInst>(I)->getValueOperand()->getType(); 302 } 303 304 /// A helper function that returns the alignment of load or store instruction. 305 static unsigned getMemInstAlignment(Value *I) { 306 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 307 "Expected Load or Store instruction"); 308 if (auto *LI = dyn_cast<LoadInst>(I)) 309 return LI->getAlignment(); 310 return cast<StoreInst>(I)->getAlignment(); 311 } 312 313 /// A helper function that returns the address space of the pointer operand of 314 /// load or store instruction. 315 static unsigned getMemInstAddressSpace(Value *I) { 316 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 317 "Expected Load or Store instruction"); 318 if (auto *LI = dyn_cast<LoadInst>(I)) 319 return LI->getPointerAddressSpace(); 320 return cast<StoreInst>(I)->getPointerAddressSpace(); 321 } 322 323 /// A helper function that returns true if the given type is irregular. The 324 /// type is irregular if its allocated size doesn't equal the store size of an 325 /// element of the corresponding vector type at the given vectorization factor. 326 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 327 328 // Determine if an array of VF elements of type Ty is "bitcast compatible" 329 // with a <VF x Ty> vector. 330 if (VF > 1) { 331 auto *VectorTy = VectorType::get(Ty, VF); 332 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 333 } 334 335 // If the vectorization factor is one, we just check if an array of type Ty 336 // requires padding between elements. 337 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 338 } 339 340 /// A helper function that returns the reciprocal of the block probability of 341 /// predicated blocks. If we return X, we are assuming the predicated block 342 /// will execute once for for every X iterations of the loop header. 343 /// 344 /// TODO: We should use actual block probability here, if available. Currently, 345 /// we always assume predicated blocks have a 50% chance of executing. 346 static unsigned getReciprocalPredBlockProb() { return 2; } 347 348 /// A helper function that adds a 'fast' flag to floating-point operations. 349 static Value *addFastMathFlag(Value *V) { 350 if (isa<FPMathOperator>(V)) { 351 FastMathFlags Flags; 352 Flags.setUnsafeAlgebra(); 353 cast<Instruction>(V)->setFastMathFlags(Flags); 354 } 355 return V; 356 } 357 358 /// A helper function that returns an integer or floating-point constant with 359 /// value C. 360 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 361 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 362 : ConstantFP::get(Ty, C); 363 } 364 365 /// InnerLoopVectorizer vectorizes loops which contain only one basic 366 /// block to a specified vectorization factor (VF). 367 /// This class performs the widening of scalars into vectors, or multiple 368 /// scalars. This class also implements the following features: 369 /// * It inserts an epilogue loop for handling loops that don't have iteration 370 /// counts that are known to be a multiple of the vectorization factor. 371 /// * It handles the code generation for reduction variables. 372 /// * Scalarization (implementation using scalars) of un-vectorizable 373 /// instructions. 374 /// InnerLoopVectorizer does not perform any vectorization-legality 375 /// checks, and relies on the caller to check for the different legality 376 /// aspects. The InnerLoopVectorizer relies on the 377 /// LoopVectorizationLegality class to provide information about the induction 378 /// and reduction variables that were found to a given vectorization factor. 379 class InnerLoopVectorizer { 380 public: 381 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 382 LoopInfo *LI, DominatorTree *DT, 383 const TargetLibraryInfo *TLI, 384 const TargetTransformInfo *TTI, AssumptionCache *AC, 385 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 386 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 387 LoopVectorizationCostModel *CM) 388 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 389 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 390 Builder(PSE.getSE()->getContext()), Induction(nullptr), 391 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 392 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 393 AddedSafetyChecks(false) {} 394 395 /// Create a new empty loop. Unlink the old loop and connect the new one. 396 void createVectorizedLoopSkeleton(); 397 398 /// Vectorize a single instruction within the innermost loop. 399 void vectorizeInstruction(Instruction &I); 400 401 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 402 void fixVectorizedLoop(); 403 404 // Return true if any runtime check is added. 405 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 406 407 virtual ~InnerLoopVectorizer() {} 408 409 protected: 410 /// A small list of PHINodes. 411 typedef SmallVector<PHINode *, 4> PhiVector; 412 413 /// A type for vectorized values in the new loop. Each value from the 414 /// original loop, when vectorized, is represented by UF vector values in the 415 /// new unrolled loop, where UF is the unroll factor. 416 typedef SmallVector<Value *, 2> VectorParts; 417 418 /// A type for scalarized values in the new loop. Each value from the 419 /// original loop, when scalarized, is represented by UF x VF scalar values 420 /// in the new unrolled loop, where UF is the unroll factor and VF is the 421 /// vectorization factor. 422 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 423 424 // When we if-convert we need to create edge masks. We have to cache values 425 // so that we don't end up with exponential recursion/IR. 426 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 427 EdgeMaskCacheTy; 428 typedef DenseMap<BasicBlock *, VectorParts> BlockMaskCacheTy; 429 430 /// Set up the values of the IVs correctly when exiting the vector loop. 431 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 432 Value *CountRoundDown, Value *EndValue, 433 BasicBlock *MiddleBlock); 434 435 /// Create a new induction variable inside L. 436 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 437 Value *Step, Instruction *DL); 438 439 /// Handle all cross-iteration phis in the header. 440 void fixCrossIterationPHIs(); 441 442 /// Fix a first-order recurrence. This is the second phase of vectorizing 443 /// this phi node. 444 void fixFirstOrderRecurrence(PHINode *Phi); 445 446 /// Fix a reduction cross-iteration phi. This is the second phase of 447 /// vectorizing this phi node. 448 void fixReduction(PHINode *Phi); 449 450 /// \brief The Loop exit block may have single value PHI nodes with some 451 /// incoming value. While vectorizing we only handled real values 452 /// that were defined inside the loop and we should have one value for 453 /// each predecessor of its parent basic block. See PR14725. 454 void fixLCSSAPHIs(); 455 456 /// Iteratively sink the scalarized operands of a predicated instruction into 457 /// the block that was created for it. 458 void sinkScalarOperands(Instruction *PredInst); 459 460 /// Predicate conditional instructions that require predication on their 461 /// respective conditions. 462 void predicateInstructions(); 463 464 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 465 /// represented as. 466 void truncateToMinimalBitwidths(); 467 468 /// A helper function that computes the predicate of the block BB, assuming 469 /// that the header block of the loop is set to True. It returns the *entry* 470 /// mask for the block BB. 471 VectorParts createBlockInMask(BasicBlock *BB); 472 /// A helper function that computes the predicate of the edge between SRC 473 /// and DST. 474 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 475 476 /// Vectorize a single PHINode in a block. This method handles the induction 477 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 478 /// arbitrary length vectors. 479 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 480 481 /// Insert the new loop to the loop hierarchy and pass manager 482 /// and update the analysis passes. 483 void updateAnalysis(); 484 485 /// This instruction is un-vectorizable. Implement it as a sequence 486 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 487 /// scalarized instruction behind an if block predicated on the control 488 /// dependence of the instruction. 489 void scalarizeInstruction(Instruction *Instr, bool IfPredicateInstr = false); 490 491 /// Vectorize Load and Store instructions, 492 virtual void vectorizeMemoryInstruction(Instruction *Instr); 493 494 /// Create a broadcast instruction. This method generates a broadcast 495 /// instruction (shuffle) for loop invariant values and for the induction 496 /// value. If this is the induction variable then we extend it to N, N+1, ... 497 /// this is needed because each iteration in the loop corresponds to a SIMD 498 /// element. 499 virtual Value *getBroadcastInstrs(Value *V); 500 501 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 502 /// to each vector element of Val. The sequence starts at StartIndex. 503 /// \p Opcode is relevant for FP induction variable. 504 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 505 Instruction::BinaryOps Opcode = 506 Instruction::BinaryOpsEnd); 507 508 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 509 /// variable on which to base the steps, \p Step is the size of the step, and 510 /// \p EntryVal is the value from the original loop that maps to the steps. 511 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 512 /// can be a truncate instruction). 513 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 514 const InductionDescriptor &ID); 515 516 /// Create a vector induction phi node based on an existing scalar one. \p 517 /// EntryVal is the value from the original loop that maps to the vector phi 518 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 519 /// truncate instruction, instead of widening the original IV, we widen a 520 /// version of the IV truncated to \p EntryVal's type. 521 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 522 Value *Step, Instruction *EntryVal); 523 524 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 525 /// is provided, the integer induction variable will first be truncated to 526 /// the corresponding type. 527 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 528 529 /// Returns true if an instruction \p I should be scalarized instead of 530 /// vectorized for the chosen vectorization factor. 531 bool shouldScalarizeInstruction(Instruction *I) const; 532 533 /// Returns true if we should generate a scalar version of \p IV. 534 bool needsScalarInduction(Instruction *IV) const; 535 536 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 537 /// vector or scalar value on-demand if one is not yet available. When 538 /// vectorizing a loop, we visit the definition of an instruction before its 539 /// uses. When visiting the definition, we either vectorize or scalarize the 540 /// instruction, creating an entry for it in the corresponding map. (In some 541 /// cases, such as induction variables, we will create both vector and scalar 542 /// entries.) Then, as we encounter uses of the definition, we derive values 543 /// for each scalar or vector use unless such a value is already available. 544 /// For example, if we scalarize a definition and one of its uses is vector, 545 /// we build the required vector on-demand with an insertelement sequence 546 /// when visiting the use. Otherwise, if the use is scalar, we can use the 547 /// existing scalar definition. 548 /// 549 /// Return a value in the new loop corresponding to \p V from the original 550 /// loop at unroll index \p Part. If the value has already been vectorized, 551 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 552 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 553 /// a new vector value on-demand by inserting the scalar values into a vector 554 /// with an insertelement sequence. If the value has been neither vectorized 555 /// nor scalarized, it must be loop invariant, so we simply broadcast the 556 /// value into a vector. 557 Value *getOrCreateVectorValue(Value *V, unsigned Part); 558 559 /// Return a value in the new loop corresponding to \p V from the original 560 /// loop at unroll index \p Part and vector index \p Lane. If the value has 561 /// been vectorized but not scalarized, the necessary extractelement 562 /// instruction will be generated. 563 Value *getOrCreateScalarValue(Value *V, unsigned Part, unsigned Lane); 564 565 /// Try to vectorize the interleaved access group that \p Instr belongs to. 566 void vectorizeInterleaveGroup(Instruction *Instr); 567 568 /// Generate a shuffle sequence that will reverse the vector Vec. 569 virtual Value *reverseVector(Value *Vec); 570 571 /// Returns (and creates if needed) the original loop trip count. 572 Value *getOrCreateTripCount(Loop *NewLoop); 573 574 /// Returns (and creates if needed) the trip count of the widened loop. 575 Value *getOrCreateVectorTripCount(Loop *NewLoop); 576 577 /// Emit a bypass check to see if the vector trip count is zero, including if 578 /// it overflows. 579 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 580 /// Emit a bypass check to see if all of the SCEV assumptions we've 581 /// had to make are correct. 582 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 583 /// Emit bypass checks to check any memory assumptions we may have made. 584 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 585 586 /// Add additional metadata to \p To that was not present on \p Orig. 587 /// 588 /// Currently this is used to add the noalias annotations based on the 589 /// inserted memchecks. Use this for instructions that are *cloned* into the 590 /// vector loop. 591 void addNewMetadata(Instruction *To, const Instruction *Orig); 592 593 /// Add metadata from one instruction to another. 594 /// 595 /// This includes both the original MDs from \p From and additional ones (\see 596 /// addNewMetadata). Use this for *newly created* instructions in the vector 597 /// loop. 598 void addMetadata(Instruction *To, Instruction *From); 599 600 /// \brief Similar to the previous function but it adds the metadata to a 601 /// vector of instructions. 602 void addMetadata(ArrayRef<Value *> To, Instruction *From); 603 604 /// \brief Set the debug location in the builder using the debug location in 605 /// the instruction. 606 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 607 608 /// This is a helper class for maintaining vectorization state. It's used for 609 /// mapping values from the original loop to their corresponding values in 610 /// the new loop. Two mappings are maintained: one for vectorized values and 611 /// one for scalarized values. Vectorized values are represented with UF 612 /// vector values in the new loop, and scalarized values are represented with 613 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 614 /// vectorization factors, respectively. 615 /// 616 /// Entries can be added to either map with setVectorValue and setScalarValue, 617 /// which assert that an entry was not already added before. If an entry is to 618 /// replace an existing one, call resetVectorValue. This is currently needed 619 /// to modify the mapped values during "fix-up" operations that occur once the 620 /// first phase of widening is complete. These operations include type 621 /// truncation and the second phase of recurrence widening. 622 /// 623 /// Entries from either map can be retrieved using the getVectorValue and 624 /// getScalarValue functions, which assert that the desired value exists. 625 626 struct ValueMap { 627 628 /// Construct an empty map with the given unroll and vectorization factors. 629 ValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {} 630 631 /// \return True if the map has any vector entry for \p Key. 632 bool hasAnyVectorValue(Value *Key) const { 633 return VectorMapStorage.count(Key); 634 } 635 636 /// \return True if the map has a vector entry for \p Key and \p Part. 637 bool hasVectorValue(Value *Key, unsigned Part) const { 638 assert(Part < UF && "Queried Vector Part is too large."); 639 if (!hasAnyVectorValue(Key)) 640 return false; 641 const VectorParts &Entry = VectorMapStorage.find(Key)->second; 642 assert(Entry.size() == UF && "VectorParts has wrong dimensions."); 643 return Entry[Part] != nullptr; 644 } 645 646 /// \return True if the map has any scalar entry for \p Key. 647 bool hasAnyScalarValue(Value *Key) const { 648 return ScalarMapStorage.count(Key); 649 } 650 651 /// \return True if the map has a scalar entry for \p Key, \p Part and 652 /// \p Part. 653 bool hasScalarValue(Value *Key, unsigned Part, unsigned Lane) const { 654 assert(Part < UF && "Queried Scalar Part is too large."); 655 assert(Lane < VF && "Queried Scalar Lane is too large."); 656 if (!hasAnyScalarValue(Key)) 657 return false; 658 const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; 659 assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); 660 assert(Entry[Part].size() == VF && "ScalarParts has wrong dimensions."); 661 return Entry[Part][Lane] != nullptr; 662 } 663 664 /// Retrieve the existing vector value that corresponds to \p Key and 665 /// \p Part. 666 Value *getVectorValue(Value *Key, unsigned Part) { 667 assert(hasVectorValue(Key, Part) && "Getting non-existent value."); 668 return VectorMapStorage[Key][Part]; 669 } 670 671 /// Retrieve the existing scalar value that corresponds to \p Key, \p Part 672 /// and \p Lane. 673 Value *getScalarValue(Value *Key, unsigned Part, unsigned Lane) { 674 assert(hasScalarValue(Key, Part, Lane) && "Getting non-existent value."); 675 return ScalarMapStorage[Key][Part][Lane]; 676 } 677 678 /// Set a vector value associated with \p Key and \p Part. Assumes such a 679 /// value is not already set. If it is, use resetVectorValue() instead. 680 void setVectorValue(Value *Key, unsigned Part, Value *Vector) { 681 assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); 682 if (!VectorMapStorage.count(Key)) { 683 VectorParts Entry(UF); 684 VectorMapStorage[Key] = Entry; 685 } 686 VectorMapStorage[Key][Part] = Vector; 687 } 688 689 /// Set a scalar value associated with \p Key for \p Part and \p Lane. 690 /// Assumes such a value is not already set. 691 void setScalarValue(Value *Key, unsigned Part, unsigned Lane, 692 Value *Scalar) { 693 assert(!hasScalarValue(Key, Part, Lane) && "Scalar value already set"); 694 if (!ScalarMapStorage.count(Key)) { 695 ScalarParts Entry(UF); 696 for (unsigned Part = 0; Part < UF; ++Part) 697 Entry[Part].resize(VF, nullptr); 698 // TODO: Consider storing uniform values only per-part, as they occupy 699 // lane 0 only, keeping the other VF-1 redundant entries null. 700 ScalarMapStorage[Key] = Entry; 701 } 702 ScalarMapStorage[Key][Part][Lane] = Scalar; 703 } 704 705 /// Reset the vector value associated with \p Key for the given \p Part. 706 /// This function can be used to update values that have already been 707 /// vectorized. This is the case for "fix-up" operations including type 708 /// truncation and the second phase of recurrence vectorization. 709 void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { 710 assert(hasVectorValue(Key, Part) && "Vector value not set for part"); 711 VectorMapStorage[Key][Part] = Vector; 712 } 713 714 private: 715 /// The unroll factor. Each entry in the vector map contains UF vector 716 /// values. 717 unsigned UF; 718 719 /// The vectorization factor. Each entry in the scalar map contains UF x VF 720 /// scalar values. 721 unsigned VF; 722 723 /// The vector and scalar map storage. We use std::map and not DenseMap 724 /// because insertions to DenseMap invalidate its iterators. 725 std::map<Value *, VectorParts> VectorMapStorage; 726 std::map<Value *, ScalarParts> ScalarMapStorage; 727 }; 728 729 /// The original loop. 730 Loop *OrigLoop; 731 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 732 /// dynamic knowledge to simplify SCEV expressions and converts them to a 733 /// more usable form. 734 PredicatedScalarEvolution &PSE; 735 /// Loop Info. 736 LoopInfo *LI; 737 /// Dominator Tree. 738 DominatorTree *DT; 739 /// Alias Analysis. 740 AliasAnalysis *AA; 741 /// Target Library Info. 742 const TargetLibraryInfo *TLI; 743 /// Target Transform Info. 744 const TargetTransformInfo *TTI; 745 /// Assumption Cache. 746 AssumptionCache *AC; 747 /// Interface to emit optimization remarks. 748 OptimizationRemarkEmitter *ORE; 749 750 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 751 /// used. 752 /// 753 /// This is currently only used to add no-alias metadata based on the 754 /// memchecks. The actually versioning is performed manually. 755 std::unique_ptr<LoopVersioning> LVer; 756 757 /// The vectorization SIMD factor to use. Each vector will have this many 758 /// vector elements. 759 unsigned VF; 760 761 protected: 762 /// The vectorization unroll factor to use. Each scalar is vectorized to this 763 /// many different vector instructions. 764 unsigned UF; 765 766 /// The builder that we use 767 IRBuilder<> Builder; 768 769 // --- Vectorization state --- 770 771 /// The vector-loop preheader. 772 BasicBlock *LoopVectorPreHeader; 773 /// The scalar-loop preheader. 774 BasicBlock *LoopScalarPreHeader; 775 /// Middle Block between the vector and the scalar. 776 BasicBlock *LoopMiddleBlock; 777 /// The ExitBlock of the scalar loop. 778 BasicBlock *LoopExitBlock; 779 /// The vector loop body. 780 BasicBlock *LoopVectorBody; 781 /// The scalar loop body. 782 BasicBlock *LoopScalarBody; 783 /// A list of all bypass blocks. The first block is the entry of the loop. 784 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 785 786 /// The new Induction variable which was added to the new block. 787 PHINode *Induction; 788 /// The induction variable of the old basic block. 789 PHINode *OldInduction; 790 791 /// Maps values from the original loop to their corresponding values in the 792 /// vectorized loop. A key value can map to either vector values, scalar 793 /// values or both kinds of values, depending on whether the key was 794 /// vectorized and scalarized. 795 ValueMap VectorLoopValueMap; 796 797 /// Store instructions that should be predicated, as a pair 798 /// <StoreInst, Predicate> 799 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 800 EdgeMaskCacheTy EdgeMaskCache; 801 BlockMaskCacheTy BlockMaskCache; 802 /// Trip count of the original loop. 803 Value *TripCount; 804 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 805 Value *VectorTripCount; 806 807 /// The legality analysis. 808 LoopVectorizationLegality *Legal; 809 810 /// The profitablity analysis. 811 LoopVectorizationCostModel *Cost; 812 813 // Record whether runtime checks are added. 814 bool AddedSafetyChecks; 815 816 // Holds the end values for each induction variable. We save the end values 817 // so we can later fix-up the external users of the induction variables. 818 DenseMap<PHINode *, Value *> IVEndValues; 819 }; 820 821 class InnerLoopUnroller : public InnerLoopVectorizer { 822 public: 823 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 824 LoopInfo *LI, DominatorTree *DT, 825 const TargetLibraryInfo *TLI, 826 const TargetTransformInfo *TTI, AssumptionCache *AC, 827 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 828 LoopVectorizationLegality *LVL, 829 LoopVectorizationCostModel *CM) 830 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 831 UnrollFactor, LVL, CM) {} 832 833 private: 834 void vectorizeMemoryInstruction(Instruction *Instr) override; 835 Value *getBroadcastInstrs(Value *V) override; 836 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 837 Instruction::BinaryOps Opcode = 838 Instruction::BinaryOpsEnd) override; 839 Value *reverseVector(Value *Vec) override; 840 }; 841 842 /// \brief Look for a meaningful debug location on the instruction or it's 843 /// operands. 844 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 845 if (!I) 846 return I; 847 848 DebugLoc Empty; 849 if (I->getDebugLoc() != Empty) 850 return I; 851 852 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 853 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 854 if (OpInst->getDebugLoc() != Empty) 855 return OpInst; 856 } 857 858 return I; 859 } 860 861 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 862 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 863 const DILocation *DIL = Inst->getDebugLoc(); 864 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 865 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 866 else 867 B.SetCurrentDebugLocation(DIL); 868 } else 869 B.SetCurrentDebugLocation(DebugLoc()); 870 } 871 872 #ifndef NDEBUG 873 /// \return string containing a file name and a line # for the given loop. 874 static std::string getDebugLocString(const Loop *L) { 875 std::string Result; 876 if (L) { 877 raw_string_ostream OS(Result); 878 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 879 LoopDbgLoc.print(OS); 880 else 881 // Just print the module name. 882 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 883 OS.flush(); 884 } 885 return Result; 886 } 887 #endif 888 889 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 890 const Instruction *Orig) { 891 // If the loop was versioned with memchecks, add the corresponding no-alias 892 // metadata. 893 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 894 LVer->annotateInstWithNoAlias(To, Orig); 895 } 896 897 void InnerLoopVectorizer::addMetadata(Instruction *To, 898 Instruction *From) { 899 propagateMetadata(To, From); 900 addNewMetadata(To, From); 901 } 902 903 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 904 Instruction *From) { 905 for (Value *V : To) { 906 if (Instruction *I = dyn_cast<Instruction>(V)) 907 addMetadata(I, From); 908 } 909 } 910 911 /// \brief The group of interleaved loads/stores sharing the same stride and 912 /// close to each other. 913 /// 914 /// Each member in this group has an index starting from 0, and the largest 915 /// index should be less than interleaved factor, which is equal to the absolute 916 /// value of the access's stride. 917 /// 918 /// E.g. An interleaved load group of factor 4: 919 /// for (unsigned i = 0; i < 1024; i+=4) { 920 /// a = A[i]; // Member of index 0 921 /// b = A[i+1]; // Member of index 1 922 /// d = A[i+3]; // Member of index 3 923 /// ... 924 /// } 925 /// 926 /// An interleaved store group of factor 4: 927 /// for (unsigned i = 0; i < 1024; i+=4) { 928 /// ... 929 /// A[i] = a; // Member of index 0 930 /// A[i+1] = b; // Member of index 1 931 /// A[i+2] = c; // Member of index 2 932 /// A[i+3] = d; // Member of index 3 933 /// } 934 /// 935 /// Note: the interleaved load group could have gaps (missing members), but 936 /// the interleaved store group doesn't allow gaps. 937 class InterleaveGroup { 938 public: 939 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 940 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 941 assert(Align && "The alignment should be non-zero"); 942 943 Factor = std::abs(Stride); 944 assert(Factor > 1 && "Invalid interleave factor"); 945 946 Reverse = Stride < 0; 947 Members[0] = Instr; 948 } 949 950 bool isReverse() const { return Reverse; } 951 unsigned getFactor() const { return Factor; } 952 unsigned getAlignment() const { return Align; } 953 unsigned getNumMembers() const { return Members.size(); } 954 955 /// \brief Try to insert a new member \p Instr with index \p Index and 956 /// alignment \p NewAlign. The index is related to the leader and it could be 957 /// negative if it is the new leader. 958 /// 959 /// \returns false if the instruction doesn't belong to the group. 960 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 961 assert(NewAlign && "The new member's alignment should be non-zero"); 962 963 int Key = Index + SmallestKey; 964 965 // Skip if there is already a member with the same index. 966 if (Members.count(Key)) 967 return false; 968 969 if (Key > LargestKey) { 970 // The largest index is always less than the interleave factor. 971 if (Index >= static_cast<int>(Factor)) 972 return false; 973 974 LargestKey = Key; 975 } else if (Key < SmallestKey) { 976 // The largest index is always less than the interleave factor. 977 if (LargestKey - Key >= static_cast<int>(Factor)) 978 return false; 979 980 SmallestKey = Key; 981 } 982 983 // It's always safe to select the minimum alignment. 984 Align = std::min(Align, NewAlign); 985 Members[Key] = Instr; 986 return true; 987 } 988 989 /// \brief Get the member with the given index \p Index 990 /// 991 /// \returns nullptr if contains no such member. 992 Instruction *getMember(unsigned Index) const { 993 int Key = SmallestKey + Index; 994 if (!Members.count(Key)) 995 return nullptr; 996 997 return Members.find(Key)->second; 998 } 999 1000 /// \brief Get the index for the given member. Unlike the key in the member 1001 /// map, the index starts from 0. 1002 unsigned getIndex(Instruction *Instr) const { 1003 for (auto I : Members) 1004 if (I.second == Instr) 1005 return I.first - SmallestKey; 1006 1007 llvm_unreachable("InterleaveGroup contains no such member"); 1008 } 1009 1010 Instruction *getInsertPos() const { return InsertPos; } 1011 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 1012 1013 private: 1014 unsigned Factor; // Interleave Factor. 1015 bool Reverse; 1016 unsigned Align; 1017 DenseMap<int, Instruction *> Members; 1018 int SmallestKey; 1019 int LargestKey; 1020 1021 // To avoid breaking dependences, vectorized instructions of an interleave 1022 // group should be inserted at either the first load or the last store in 1023 // program order. 1024 // 1025 // E.g. %even = load i32 // Insert Position 1026 // %add = add i32 %even // Use of %even 1027 // %odd = load i32 1028 // 1029 // store i32 %even 1030 // %odd = add i32 // Def of %odd 1031 // store i32 %odd // Insert Position 1032 Instruction *InsertPos; 1033 }; 1034 1035 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1036 /// 1037 /// Use this class to analyze interleaved accesses only when we can vectorize 1038 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1039 /// on interleaved accesses is unsafe. 1040 /// 1041 /// The analysis collects interleave groups and records the relationships 1042 /// between the member and the group in a map. 1043 class InterleavedAccessInfo { 1044 public: 1045 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1046 DominatorTree *DT, LoopInfo *LI) 1047 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1048 RequiresScalarEpilogue(false) {} 1049 1050 ~InterleavedAccessInfo() { 1051 SmallSet<InterleaveGroup *, 4> DelSet; 1052 // Avoid releasing a pointer twice. 1053 for (auto &I : InterleaveGroupMap) 1054 DelSet.insert(I.second); 1055 for (auto *Ptr : DelSet) 1056 delete Ptr; 1057 } 1058 1059 /// \brief Analyze the interleaved accesses and collect them in interleave 1060 /// groups. Substitute symbolic strides using \p Strides. 1061 void analyzeInterleaving(const ValueToValueMap &Strides); 1062 1063 /// \brief Check if \p Instr belongs to any interleave group. 1064 bool isInterleaved(Instruction *Instr) const { 1065 return InterleaveGroupMap.count(Instr); 1066 } 1067 1068 /// \brief Return the maximum interleave factor of all interleaved groups. 1069 unsigned getMaxInterleaveFactor() const { 1070 unsigned MaxFactor = 1; 1071 for (auto &Entry : InterleaveGroupMap) 1072 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1073 return MaxFactor; 1074 } 1075 1076 /// \brief Get the interleave group that \p Instr belongs to. 1077 /// 1078 /// \returns nullptr if doesn't have such group. 1079 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1080 if (InterleaveGroupMap.count(Instr)) 1081 return InterleaveGroupMap.find(Instr)->second; 1082 return nullptr; 1083 } 1084 1085 /// \brief Returns true if an interleaved group that may access memory 1086 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1087 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1088 1089 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1090 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1091 1092 private: 1093 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1094 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1095 /// The interleaved access analysis can also add new predicates (for example 1096 /// by versioning strides of pointers). 1097 PredicatedScalarEvolution &PSE; 1098 Loop *TheLoop; 1099 DominatorTree *DT; 1100 LoopInfo *LI; 1101 const LoopAccessInfo *LAI; 1102 1103 /// True if the loop may contain non-reversed interleaved groups with 1104 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1105 /// out-of-bounds by executing at least one scalar epilogue iteration. 1106 bool RequiresScalarEpilogue; 1107 1108 /// Holds the relationships between the members and the interleave group. 1109 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1110 1111 /// Holds dependences among the memory accesses in the loop. It maps a source 1112 /// access to a set of dependent sink accesses. 1113 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1114 1115 /// \brief The descriptor for a strided memory access. 1116 struct StrideDescriptor { 1117 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1118 unsigned Align) 1119 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1120 1121 StrideDescriptor() = default; 1122 1123 // The access's stride. It is negative for a reverse access. 1124 int64_t Stride = 0; 1125 const SCEV *Scev = nullptr; // The scalar expression of this access 1126 uint64_t Size = 0; // The size of the memory object. 1127 unsigned Align = 0; // The alignment of this access. 1128 }; 1129 1130 /// \brief A type for holding instructions and their stride descriptors. 1131 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1132 1133 /// \brief Create a new interleave group with the given instruction \p Instr, 1134 /// stride \p Stride and alignment \p Align. 1135 /// 1136 /// \returns the newly created interleave group. 1137 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1138 unsigned Align) { 1139 assert(!InterleaveGroupMap.count(Instr) && 1140 "Already in an interleaved access group"); 1141 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1142 return InterleaveGroupMap[Instr]; 1143 } 1144 1145 /// \brief Release the group and remove all the relationships. 1146 void releaseGroup(InterleaveGroup *Group) { 1147 for (unsigned i = 0; i < Group->getFactor(); i++) 1148 if (Instruction *Member = Group->getMember(i)) 1149 InterleaveGroupMap.erase(Member); 1150 1151 delete Group; 1152 } 1153 1154 /// \brief Collect all the accesses with a constant stride in program order. 1155 void collectConstStrideAccesses( 1156 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1157 const ValueToValueMap &Strides); 1158 1159 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1160 static bool isStrided(int Stride) { 1161 unsigned Factor = std::abs(Stride); 1162 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1163 } 1164 1165 /// \brief Returns true if \p BB is a predicated block. 1166 bool isPredicated(BasicBlock *BB) const { 1167 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1168 } 1169 1170 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1171 bool areDependencesValid() const { 1172 return LAI && LAI->getDepChecker().getDependences(); 1173 } 1174 1175 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1176 /// necessary, when constructing interleaved groups. 1177 /// 1178 /// \p A must precede \p B in program order. We return false if reordering is 1179 /// not necessary or is prevented because \p A and \p B may be dependent. 1180 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1181 StrideEntry *B) const { 1182 1183 // Code motion for interleaved accesses can potentially hoist strided loads 1184 // and sink strided stores. The code below checks the legality of the 1185 // following two conditions: 1186 // 1187 // 1. Potentially moving a strided load (B) before any store (A) that 1188 // precedes B, or 1189 // 1190 // 2. Potentially moving a strided store (A) after any load or store (B) 1191 // that A precedes. 1192 // 1193 // It's legal to reorder A and B if we know there isn't a dependence from A 1194 // to B. Note that this determination is conservative since some 1195 // dependences could potentially be reordered safely. 1196 1197 // A is potentially the source of a dependence. 1198 auto *Src = A->first; 1199 auto SrcDes = A->second; 1200 1201 // B is potentially the sink of a dependence. 1202 auto *Sink = B->first; 1203 auto SinkDes = B->second; 1204 1205 // Code motion for interleaved accesses can't violate WAR dependences. 1206 // Thus, reordering is legal if the source isn't a write. 1207 if (!Src->mayWriteToMemory()) 1208 return true; 1209 1210 // At least one of the accesses must be strided. 1211 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1212 return true; 1213 1214 // If dependence information is not available from LoopAccessInfo, 1215 // conservatively assume the instructions can't be reordered. 1216 if (!areDependencesValid()) 1217 return false; 1218 1219 // If we know there is a dependence from source to sink, assume the 1220 // instructions can't be reordered. Otherwise, reordering is legal. 1221 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1222 } 1223 1224 /// \brief Collect the dependences from LoopAccessInfo. 1225 /// 1226 /// We process the dependences once during the interleaved access analysis to 1227 /// enable constant-time dependence queries. 1228 void collectDependences() { 1229 if (!areDependencesValid()) 1230 return; 1231 auto *Deps = LAI->getDepChecker().getDependences(); 1232 for (auto Dep : *Deps) 1233 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1234 } 1235 }; 1236 1237 /// Utility class for getting and setting loop vectorizer hints in the form 1238 /// of loop metadata. 1239 /// This class keeps a number of loop annotations locally (as member variables) 1240 /// and can, upon request, write them back as metadata on the loop. It will 1241 /// initially scan the loop for existing metadata, and will update the local 1242 /// values based on information in the loop. 1243 /// We cannot write all values to metadata, as the mere presence of some info, 1244 /// for example 'force', means a decision has been made. So, we need to be 1245 /// careful NOT to add them if the user hasn't specifically asked so. 1246 class LoopVectorizeHints { 1247 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1248 1249 /// Hint - associates name and validation with the hint value. 1250 struct Hint { 1251 const char *Name; 1252 unsigned Value; // This may have to change for non-numeric values. 1253 HintKind Kind; 1254 1255 Hint(const char *Name, unsigned Value, HintKind Kind) 1256 : Name(Name), Value(Value), Kind(Kind) {} 1257 1258 bool validate(unsigned Val) { 1259 switch (Kind) { 1260 case HK_WIDTH: 1261 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1262 case HK_UNROLL: 1263 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1264 case HK_FORCE: 1265 return (Val <= 1); 1266 case HK_ISVECTORIZED: 1267 return (Val==0 || Val==1); 1268 } 1269 return false; 1270 } 1271 }; 1272 1273 /// Vectorization width. 1274 Hint Width; 1275 /// Vectorization interleave factor. 1276 Hint Interleave; 1277 /// Vectorization forced 1278 Hint Force; 1279 1280 /// Already Vectorized 1281 Hint IsVectorized; 1282 /// Return the loop metadata prefix. 1283 static StringRef Prefix() { return "llvm.loop."; } 1284 1285 /// True if there is any unsafe math in the loop. 1286 bool PotentiallyUnsafe; 1287 1288 public: 1289 enum ForceKind { 1290 FK_Undefined = -1, ///< Not selected. 1291 FK_Disabled = 0, ///< Forcing disabled. 1292 FK_Enabled = 1, ///< Forcing enabled. 1293 }; 1294 1295 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1296 OptimizationRemarkEmitter &ORE) 1297 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1298 HK_WIDTH), 1299 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1300 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1301 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 1302 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1303 // Populate values with existing loop metadata. 1304 getHintsFromMetadata(); 1305 1306 // force-vector-interleave overrides DisableInterleaving. 1307 if (VectorizerParams::isInterleaveForced()) 1308 Interleave.Value = VectorizerParams::VectorizationInterleave; 1309 1310 if (IsVectorized.Value != 1) 1311 // If the vectorization width and interleaving count are both 1 then 1312 // consider the loop to have been already vectorized because there's 1313 // nothing more that we can do. 1314 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1315 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1316 << "LV: Interleaving disabled by the pass manager\n"); 1317 } 1318 1319 /// Mark the loop L as already vectorized by setting the width to 1. 1320 void setAlreadyVectorized() { 1321 IsVectorized.Value = 1; 1322 Hint Hints[] = {IsVectorized}; 1323 writeHintsToMetadata(Hints); 1324 } 1325 1326 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1327 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1328 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1329 emitRemarkWithHints(); 1330 return false; 1331 } 1332 1333 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1334 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1335 emitRemarkWithHints(); 1336 return false; 1337 } 1338 1339 if (getIsVectorized() == 1) { 1340 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1341 // FIXME: Add interleave.disable metadata. This will allow 1342 // vectorize.disable to be used without disabling the pass and errors 1343 // to differentiate between disabled vectorization and a width of 1. 1344 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1345 "AllDisabled", L->getStartLoc(), 1346 L->getHeader()) 1347 << "loop not vectorized: vectorization and interleaving are " 1348 "explicitly disabled, or the loop has already been " 1349 "vectorized"); 1350 return false; 1351 } 1352 1353 return true; 1354 } 1355 1356 /// Dumps all the hint information. 1357 void emitRemarkWithHints() const { 1358 using namespace ore; 1359 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1360 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1361 TheLoop->getStartLoc(), 1362 TheLoop->getHeader()) 1363 << "loop not vectorized: vectorization is explicitly disabled"); 1364 else { 1365 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1366 TheLoop->getStartLoc(), TheLoop->getHeader()); 1367 R << "loop not vectorized"; 1368 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1369 R << " (Force=" << NV("Force", true); 1370 if (Width.Value != 0) 1371 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1372 if (Interleave.Value != 0) 1373 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1374 R << ")"; 1375 } 1376 ORE.emit(R); 1377 } 1378 } 1379 1380 unsigned getWidth() const { return Width.Value; } 1381 unsigned getInterleave() const { return Interleave.Value; } 1382 unsigned getIsVectorized() const { return IsVectorized.Value; } 1383 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1384 1385 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1386 /// pass name to force the frontend to print the diagnostic. 1387 const char *vectorizeAnalysisPassName() const { 1388 if (getWidth() == 1) 1389 return LV_NAME; 1390 if (getForce() == LoopVectorizeHints::FK_Disabled) 1391 return LV_NAME; 1392 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1393 return LV_NAME; 1394 return OptimizationRemarkAnalysis::AlwaysPrint; 1395 } 1396 1397 bool allowReordering() const { 1398 // When enabling loop hints are provided we allow the vectorizer to change 1399 // the order of operations that is given by the scalar loop. This is not 1400 // enabled by default because can be unsafe or inefficient. For example, 1401 // reordering floating-point operations will change the way round-off 1402 // error accumulates in the loop. 1403 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1404 } 1405 1406 bool isPotentiallyUnsafe() const { 1407 // Avoid FP vectorization if the target is unsure about proper support. 1408 // This may be related to the SIMD unit in the target not handling 1409 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1410 // Otherwise, a sequence of vectorized loops, even without reduction, 1411 // could lead to different end results on the destination vectors. 1412 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1413 } 1414 1415 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1416 1417 private: 1418 /// Find hints specified in the loop metadata and update local values. 1419 void getHintsFromMetadata() { 1420 MDNode *LoopID = TheLoop->getLoopID(); 1421 if (!LoopID) 1422 return; 1423 1424 // First operand should refer to the loop id itself. 1425 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1426 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1427 1428 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1429 const MDString *S = nullptr; 1430 SmallVector<Metadata *, 4> Args; 1431 1432 // The expected hint is either a MDString or a MDNode with the first 1433 // operand a MDString. 1434 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1435 if (!MD || MD->getNumOperands() == 0) 1436 continue; 1437 S = dyn_cast<MDString>(MD->getOperand(0)); 1438 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1439 Args.push_back(MD->getOperand(i)); 1440 } else { 1441 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1442 assert(Args.size() == 0 && "too many arguments for MDString"); 1443 } 1444 1445 if (!S) 1446 continue; 1447 1448 // Check if the hint starts with the loop metadata prefix. 1449 StringRef Name = S->getString(); 1450 if (Args.size() == 1) 1451 setHint(Name, Args[0]); 1452 } 1453 } 1454 1455 /// Checks string hint with one operand and set value if valid. 1456 void setHint(StringRef Name, Metadata *Arg) { 1457 if (!Name.startswith(Prefix())) 1458 return; 1459 Name = Name.substr(Prefix().size(), StringRef::npos); 1460 1461 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1462 if (!C) 1463 return; 1464 unsigned Val = C->getZExtValue(); 1465 1466 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1467 for (auto H : Hints) { 1468 if (Name == H->Name) { 1469 if (H->validate(Val)) 1470 H->Value = Val; 1471 else 1472 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1473 break; 1474 } 1475 } 1476 } 1477 1478 /// Create a new hint from name / value pair. 1479 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1480 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1481 Metadata *MDs[] = {MDString::get(Context, Name), 1482 ConstantAsMetadata::get( 1483 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1484 return MDNode::get(Context, MDs); 1485 } 1486 1487 /// Matches metadata with hint name. 1488 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1489 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1490 if (!Name) 1491 return false; 1492 1493 for (auto H : HintTypes) 1494 if (Name->getString().endswith(H.Name)) 1495 return true; 1496 return false; 1497 } 1498 1499 /// Sets current hints into loop metadata, keeping other values intact. 1500 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1501 if (HintTypes.size() == 0) 1502 return; 1503 1504 // Reserve the first element to LoopID (see below). 1505 SmallVector<Metadata *, 4> MDs(1); 1506 // If the loop already has metadata, then ignore the existing operands. 1507 MDNode *LoopID = TheLoop->getLoopID(); 1508 if (LoopID) { 1509 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1510 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1511 // If node in update list, ignore old value. 1512 if (!matchesHintMetadataName(Node, HintTypes)) 1513 MDs.push_back(Node); 1514 } 1515 } 1516 1517 // Now, add the missing hints. 1518 for (auto H : HintTypes) 1519 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1520 1521 // Replace current metadata node with new one. 1522 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1523 MDNode *NewLoopID = MDNode::get(Context, MDs); 1524 // Set operand 0 to refer to the loop id itself. 1525 NewLoopID->replaceOperandWith(0, NewLoopID); 1526 1527 TheLoop->setLoopID(NewLoopID); 1528 } 1529 1530 /// The loop these hints belong to. 1531 const Loop *TheLoop; 1532 1533 /// Interface to emit optimization remarks. 1534 OptimizationRemarkEmitter &ORE; 1535 }; 1536 1537 static void emitMissedWarning(Function *F, Loop *L, 1538 const LoopVectorizeHints &LH, 1539 OptimizationRemarkEmitter *ORE) { 1540 LH.emitRemarkWithHints(); 1541 1542 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1543 if (LH.getWidth() != 1) 1544 ORE->emit(DiagnosticInfoOptimizationFailure( 1545 DEBUG_TYPE, "FailedRequestedVectorization", 1546 L->getStartLoc(), L->getHeader()) 1547 << "loop not vectorized: " 1548 << "failed explicitly specified loop vectorization"); 1549 else if (LH.getInterleave() != 1) 1550 ORE->emit(DiagnosticInfoOptimizationFailure( 1551 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1552 L->getHeader()) 1553 << "loop not interleaved: " 1554 << "failed explicitly specified loop interleaving"); 1555 } 1556 } 1557 1558 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1559 /// to what vectorization factor. 1560 /// This class does not look at the profitability of vectorization, only the 1561 /// legality. This class has two main kinds of checks: 1562 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1563 /// will change the order of memory accesses in a way that will change the 1564 /// correctness of the program. 1565 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1566 /// checks for a number of different conditions, such as the availability of a 1567 /// single induction variable, that all types are supported and vectorize-able, 1568 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1569 /// This class is also used by InnerLoopVectorizer for identifying 1570 /// induction variable and the different reduction variables. 1571 class LoopVectorizationLegality { 1572 public: 1573 LoopVectorizationLegality( 1574 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1575 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1576 const TargetTransformInfo *TTI, 1577 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1578 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1579 LoopVectorizeHints *H) 1580 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1581 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1582 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1583 Requirements(R), Hints(H) {} 1584 1585 /// ReductionList contains the reduction descriptors for all 1586 /// of the reductions that were found in the loop. 1587 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1588 1589 /// InductionList saves induction variables and maps them to the 1590 /// induction descriptor. 1591 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1592 1593 /// RecurrenceSet contains the phi nodes that are recurrences other than 1594 /// inductions and reductions. 1595 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1596 1597 /// Returns true if it is legal to vectorize this loop. 1598 /// This does not mean that it is profitable to vectorize this 1599 /// loop, only that it is legal to do so. 1600 bool canVectorize(); 1601 1602 /// Returns the primary induction variable. 1603 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1604 1605 /// Returns the reduction variables found in the loop. 1606 ReductionList *getReductionVars() { return &Reductions; } 1607 1608 /// Returns the induction variables found in the loop. 1609 InductionList *getInductionVars() { return &Inductions; } 1610 1611 /// Return the first-order recurrences found in the loop. 1612 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1613 1614 /// Return the set of instructions to sink to handle first-order recurrences. 1615 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1616 1617 /// Returns the widest induction type. 1618 Type *getWidestInductionType() { return WidestIndTy; } 1619 1620 /// Returns True if V is an induction variable in this loop. 1621 bool isInductionVariable(const Value *V); 1622 1623 /// Returns True if PN is a reduction variable in this loop. 1624 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1625 1626 /// Returns True if Phi is a first-order recurrence in this loop. 1627 bool isFirstOrderRecurrence(const PHINode *Phi); 1628 1629 /// Return true if the block BB needs to be predicated in order for the loop 1630 /// to be vectorized. 1631 bool blockNeedsPredication(BasicBlock *BB); 1632 1633 /// Check if this pointer is consecutive when vectorizing. This happens 1634 /// when the last index of the GEP is the induction variable, or that the 1635 /// pointer itself is an induction variable. 1636 /// This check allows us to vectorize A[idx] into a wide load/store. 1637 /// Returns: 1638 /// 0 - Stride is unknown or non-consecutive. 1639 /// 1 - Address is consecutive. 1640 /// -1 - Address is consecutive, and decreasing. 1641 int isConsecutivePtr(Value *Ptr); 1642 1643 /// Returns true if the value V is uniform within the loop. 1644 bool isUniform(Value *V); 1645 1646 /// Returns the information that we collected about runtime memory check. 1647 const RuntimePointerChecking *getRuntimePointerChecking() const { 1648 return LAI->getRuntimePointerChecking(); 1649 } 1650 1651 const LoopAccessInfo *getLAI() const { return LAI; } 1652 1653 /// \brief Check if \p Instr belongs to any interleaved access group. 1654 bool isAccessInterleaved(Instruction *Instr) { 1655 return InterleaveInfo.isInterleaved(Instr); 1656 } 1657 1658 /// \brief Return the maximum interleave factor of all interleaved groups. 1659 unsigned getMaxInterleaveFactor() const { 1660 return InterleaveInfo.getMaxInterleaveFactor(); 1661 } 1662 1663 /// \brief Get the interleaved access group that \p Instr belongs to. 1664 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1665 return InterleaveInfo.getInterleaveGroup(Instr); 1666 } 1667 1668 /// \brief Returns true if an interleaved group requires a scalar iteration 1669 /// to handle accesses with gaps. 1670 bool requiresScalarEpilogue() const { 1671 return InterleaveInfo.requiresScalarEpilogue(); 1672 } 1673 1674 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1675 1676 bool hasStride(Value *V) { return LAI->hasStride(V); } 1677 1678 /// Returns true if the target machine supports masked store operation 1679 /// for the given \p DataType and kind of access to \p Ptr. 1680 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1681 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1682 } 1683 /// Returns true if the target machine supports masked load operation 1684 /// for the given \p DataType and kind of access to \p Ptr. 1685 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1686 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1687 } 1688 /// Returns true if the target machine supports masked scatter operation 1689 /// for the given \p DataType. 1690 bool isLegalMaskedScatter(Type *DataType) { 1691 return TTI->isLegalMaskedScatter(DataType); 1692 } 1693 /// Returns true if the target machine supports masked gather operation 1694 /// for the given \p DataType. 1695 bool isLegalMaskedGather(Type *DataType) { 1696 return TTI->isLegalMaskedGather(DataType); 1697 } 1698 /// Returns true if the target machine can represent \p V as a masked gather 1699 /// or scatter operation. 1700 bool isLegalGatherOrScatter(Value *V) { 1701 auto *LI = dyn_cast<LoadInst>(V); 1702 auto *SI = dyn_cast<StoreInst>(V); 1703 if (!LI && !SI) 1704 return false; 1705 auto *Ptr = getPointerOperand(V); 1706 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1707 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1708 } 1709 1710 /// Returns true if vector representation of the instruction \p I 1711 /// requires mask. 1712 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1713 unsigned getNumStores() const { return LAI->getNumStores(); } 1714 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1715 unsigned getNumPredStores() const { return NumPredStores; } 1716 1717 /// Returns true if \p I is an instruction that will be scalarized with 1718 /// predication. Such instructions include conditional stores and 1719 /// instructions that may divide by zero. 1720 bool isScalarWithPredication(Instruction *I); 1721 1722 /// Returns true if \p I is a memory instruction with consecutive memory 1723 /// access that can be widened. 1724 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1725 1726 // Returns true if the NoNaN attribute is set on the function. 1727 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1728 1729 private: 1730 /// Check if a single basic block loop is vectorizable. 1731 /// At this point we know that this is a loop with a constant trip count 1732 /// and we only need to check individual instructions. 1733 bool canVectorizeInstrs(); 1734 1735 /// When we vectorize loops we may change the order in which 1736 /// we read and write from memory. This method checks if it is 1737 /// legal to vectorize the code, considering only memory constrains. 1738 /// Returns true if the loop is vectorizable 1739 bool canVectorizeMemory(); 1740 1741 /// Return true if we can vectorize this loop using the IF-conversion 1742 /// transformation. 1743 bool canVectorizeWithIfConvert(); 1744 1745 /// Return true if all of the instructions in the block can be speculatively 1746 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1747 /// and we know that we can read from them without segfault. 1748 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1749 1750 /// Updates the vectorization state by adding \p Phi to the inductions list. 1751 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1752 /// better choice for the main induction than the existing one. 1753 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1754 SmallPtrSetImpl<Value *> &AllowedExit); 1755 1756 /// Create an analysis remark that explains why vectorization failed 1757 /// 1758 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1759 /// an instruction that prevents vectorization. Otherwise the loop is used 1760 /// for the location of the remark. \return the remark object that can be 1761 /// streamed to. 1762 OptimizationRemarkAnalysis 1763 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1764 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1765 RemarkName, TheLoop, I); 1766 } 1767 1768 /// \brief If an access has a symbolic strides, this maps the pointer value to 1769 /// the stride symbol. 1770 const ValueToValueMap *getSymbolicStrides() { 1771 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1772 // it's collected. This happens from canVectorizeWithIfConvert, when the 1773 // pointer is checked to reference consecutive elements suitable for a 1774 // masked access. 1775 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1776 } 1777 1778 unsigned NumPredStores; 1779 1780 /// The loop that we evaluate. 1781 Loop *TheLoop; 1782 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1783 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1784 /// of existing SCEV assumptions. The analysis will also add a minimal set 1785 /// of new predicates if this is required to enable vectorization and 1786 /// unrolling. 1787 PredicatedScalarEvolution &PSE; 1788 /// Target Library Info. 1789 TargetLibraryInfo *TLI; 1790 /// Target Transform Info 1791 const TargetTransformInfo *TTI; 1792 /// Dominator Tree. 1793 DominatorTree *DT; 1794 // LoopAccess analysis. 1795 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1796 // And the loop-accesses info corresponding to this loop. This pointer is 1797 // null until canVectorizeMemory sets it up. 1798 const LoopAccessInfo *LAI; 1799 /// Interface to emit optimization remarks. 1800 OptimizationRemarkEmitter *ORE; 1801 1802 /// The interleave access information contains groups of interleaved accesses 1803 /// with the same stride and close to each other. 1804 InterleavedAccessInfo InterleaveInfo; 1805 1806 // --- vectorization state --- // 1807 1808 /// Holds the primary induction variable. This is the counter of the 1809 /// loop. 1810 PHINode *PrimaryInduction; 1811 /// Holds the reduction variables. 1812 ReductionList Reductions; 1813 /// Holds all of the induction variables that we found in the loop. 1814 /// Notice that inductions don't need to start at zero and that induction 1815 /// variables can be pointers. 1816 InductionList Inductions; 1817 /// Holds the phi nodes that are first-order recurrences. 1818 RecurrenceSet FirstOrderRecurrences; 1819 /// Holds instructions that need to sink past other instructions to handle 1820 /// first-order recurrences. 1821 DenseMap<Instruction *, Instruction *> SinkAfter; 1822 /// Holds the widest induction type encountered. 1823 Type *WidestIndTy; 1824 1825 /// Allowed outside users. This holds the induction and reduction 1826 /// vars which can be accessed from outside the loop. 1827 SmallPtrSet<Value *, 4> AllowedExit; 1828 1829 /// Can we assume the absence of NaNs. 1830 bool HasFunNoNaNAttr; 1831 1832 /// Vectorization requirements that will go through late-evaluation. 1833 LoopVectorizationRequirements *Requirements; 1834 1835 /// Used to emit an analysis of any legality issues. 1836 LoopVectorizeHints *Hints; 1837 1838 /// While vectorizing these instructions we have to generate a 1839 /// call to the appropriate masked intrinsic 1840 SmallPtrSet<const Instruction *, 8> MaskedOp; 1841 }; 1842 1843 /// LoopVectorizationCostModel - estimates the expected speedups due to 1844 /// vectorization. 1845 /// In many cases vectorization is not profitable. This can happen because of 1846 /// a number of reasons. In this class we mainly attempt to predict the 1847 /// expected speedup/slowdowns due to the supported instruction set. We use the 1848 /// TargetTransformInfo to query the different backends for the cost of 1849 /// different operations. 1850 class LoopVectorizationCostModel { 1851 public: 1852 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1853 LoopInfo *LI, LoopVectorizationLegality *Legal, 1854 const TargetTransformInfo &TTI, 1855 const TargetLibraryInfo *TLI, DemandedBits *DB, 1856 AssumptionCache *AC, 1857 OptimizationRemarkEmitter *ORE, const Function *F, 1858 const LoopVectorizeHints *Hints) 1859 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1860 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1861 1862 /// \return An upper bound for the vectorization factor, or None if 1863 /// vectorization should be avoided up front. 1864 Optional<unsigned> computeMaxVF(bool OptForSize); 1865 1866 /// Information about vectorization costs 1867 struct VectorizationFactor { 1868 unsigned Width; // Vector width with best cost 1869 unsigned Cost; // Cost of the loop with that width 1870 }; 1871 /// \return The most profitable vectorization factor and the cost of that VF. 1872 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1873 /// then this vectorization factor will be selected if vectorization is 1874 /// possible. 1875 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1876 1877 /// Setup cost-based decisions for user vectorization factor. 1878 void selectUserVectorizationFactor(unsigned UserVF) { 1879 collectUniformsAndScalars(UserVF); 1880 collectInstsToScalarize(UserVF); 1881 } 1882 1883 /// \return The size (in bits) of the smallest and widest types in the code 1884 /// that needs to be vectorized. We ignore values that remain scalar such as 1885 /// 64 bit loop indices. 1886 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1887 1888 /// \return The desired interleave count. 1889 /// If interleave count has been specified by metadata it will be returned. 1890 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1891 /// are the selected vectorization factor and the cost of the selected VF. 1892 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1893 unsigned LoopCost); 1894 1895 /// Memory access instruction may be vectorized in more than one way. 1896 /// Form of instruction after vectorization depends on cost. 1897 /// This function takes cost-based decisions for Load/Store instructions 1898 /// and collects them in a map. This decisions map is used for building 1899 /// the lists of loop-uniform and loop-scalar instructions. 1900 /// The calculated cost is saved with widening decision in order to 1901 /// avoid redundant calculations. 1902 void setCostBasedWideningDecision(unsigned VF); 1903 1904 /// \brief A struct that represents some properties of the register usage 1905 /// of a loop. 1906 struct RegisterUsage { 1907 /// Holds the number of loop invariant values that are used in the loop. 1908 unsigned LoopInvariantRegs; 1909 /// Holds the maximum number of concurrent live intervals in the loop. 1910 unsigned MaxLocalUsers; 1911 /// Holds the number of instructions in the loop. 1912 unsigned NumInstructions; 1913 }; 1914 1915 /// \return Returns information about the register usages of the loop for the 1916 /// given vectorization factors. 1917 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1918 1919 /// Collect values we want to ignore in the cost model. 1920 void collectValuesToIgnore(); 1921 1922 /// \returns The smallest bitwidth each instruction can be represented with. 1923 /// The vector equivalents of these instructions should be truncated to this 1924 /// type. 1925 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1926 return MinBWs; 1927 } 1928 1929 /// \returns True if it is more profitable to scalarize instruction \p I for 1930 /// vectorization factor \p VF. 1931 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1932 auto Scalars = InstsToScalarize.find(VF); 1933 assert(Scalars != InstsToScalarize.end() && 1934 "VF not yet analyzed for scalarization profitability"); 1935 return Scalars->second.count(I); 1936 } 1937 1938 /// Returns true if \p I is known to be uniform after vectorization. 1939 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1940 if (VF == 1) 1941 return true; 1942 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1943 auto UniformsPerVF = Uniforms.find(VF); 1944 return UniformsPerVF->second.count(I); 1945 } 1946 1947 /// Returns true if \p I is known to be scalar after vectorization. 1948 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1949 if (VF == 1) 1950 return true; 1951 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1952 auto ScalarsPerVF = Scalars.find(VF); 1953 return ScalarsPerVF->second.count(I); 1954 } 1955 1956 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1957 /// for vectorization factor \p VF. 1958 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1959 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1960 !isScalarAfterVectorization(I, VF); 1961 } 1962 1963 /// Decision that was taken during cost calculation for memory instruction. 1964 enum InstWidening { 1965 CM_Unknown, 1966 CM_Widen, 1967 CM_Interleave, 1968 CM_GatherScatter, 1969 CM_Scalarize 1970 }; 1971 1972 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1973 /// instruction \p I and vector width \p VF. 1974 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1975 unsigned Cost) { 1976 assert(VF >= 2 && "Expected VF >=2"); 1977 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1978 } 1979 1980 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1981 /// interleaving group \p Grp and vector width \p VF. 1982 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1983 InstWidening W, unsigned Cost) { 1984 assert(VF >= 2 && "Expected VF >=2"); 1985 /// Broadcast this decicion to all instructions inside the group. 1986 /// But the cost will be assigned to one instruction only. 1987 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1988 if (auto *I = Grp->getMember(i)) { 1989 if (Grp->getInsertPos() == I) 1990 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1991 else 1992 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1993 } 1994 } 1995 } 1996 1997 /// Return the cost model decision for the given instruction \p I and vector 1998 /// width \p VF. Return CM_Unknown if this instruction did not pass 1999 /// through the cost modeling. 2000 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 2001 assert(VF >= 2 && "Expected VF >=2"); 2002 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2003 auto Itr = WideningDecisions.find(InstOnVF); 2004 if (Itr == WideningDecisions.end()) 2005 return CM_Unknown; 2006 return Itr->second.first; 2007 } 2008 2009 /// Return the vectorization cost for the given instruction \p I and vector 2010 /// width \p VF. 2011 unsigned getWideningCost(Instruction *I, unsigned VF) { 2012 assert(VF >= 2 && "Expected VF >=2"); 2013 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2014 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 2015 return WideningDecisions[InstOnVF].second; 2016 } 2017 2018 /// Return True if instruction \p I is an optimizable truncate whose operand 2019 /// is an induction variable. Such a truncate will be removed by adding a new 2020 /// induction variable with the destination type. 2021 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 2022 2023 // If the instruction is not a truncate, return false. 2024 auto *Trunc = dyn_cast<TruncInst>(I); 2025 if (!Trunc) 2026 return false; 2027 2028 // Get the source and destination types of the truncate. 2029 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2030 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2031 2032 // If the truncate is free for the given types, return false. Replacing a 2033 // free truncate with an induction variable would add an induction variable 2034 // update instruction to each iteration of the loop. We exclude from this 2035 // check the primary induction variable since it will need an update 2036 // instruction regardless. 2037 Value *Op = Trunc->getOperand(0); 2038 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2039 return false; 2040 2041 // If the truncated value is not an induction variable, return false. 2042 return Legal->isInductionVariable(Op); 2043 } 2044 2045 private: 2046 /// \return An upper bound for the vectorization factor, larger than zero. 2047 /// One is returned if vectorization should best be avoided due to cost. 2048 unsigned computeFeasibleMaxVF(bool OptForSize); 2049 2050 /// The vectorization cost is a combination of the cost itself and a boolean 2051 /// indicating whether any of the contributing operations will actually 2052 /// operate on 2053 /// vector values after type legalization in the backend. If this latter value 2054 /// is 2055 /// false, then all operations will be scalarized (i.e. no vectorization has 2056 /// actually taken place). 2057 typedef std::pair<unsigned, bool> VectorizationCostTy; 2058 2059 /// Returns the expected execution cost. The unit of the cost does 2060 /// not matter because we use the 'cost' units to compare different 2061 /// vector widths. The cost that is returned is *not* normalized by 2062 /// the factor width. 2063 VectorizationCostTy expectedCost(unsigned VF); 2064 2065 /// Returns the execution time cost of an instruction for a given vector 2066 /// width. Vector width of one means scalar. 2067 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2068 2069 /// The cost-computation logic from getInstructionCost which provides 2070 /// the vector type as an output parameter. 2071 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2072 2073 /// Calculate vectorization cost of memory instruction \p I. 2074 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2075 2076 /// The cost computation for scalarized memory instruction. 2077 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2078 2079 /// The cost computation for interleaving group of memory instructions. 2080 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2081 2082 /// The cost computation for Gather/Scatter instruction. 2083 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2084 2085 /// The cost computation for widening instruction \p I with consecutive 2086 /// memory access. 2087 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2088 2089 /// The cost calculation for Load instruction \p I with uniform pointer - 2090 /// scalar load + broadcast. 2091 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2092 2093 /// Returns whether the instruction is a load or store and will be a emitted 2094 /// as a vector operation. 2095 bool isConsecutiveLoadOrStore(Instruction *I); 2096 2097 /// Create an analysis remark that explains why vectorization failed 2098 /// 2099 /// \p RemarkName is the identifier for the remark. \return the remark object 2100 /// that can be streamed to. 2101 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2102 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2103 RemarkName, TheLoop); 2104 } 2105 2106 /// Map of scalar integer values to the smallest bitwidth they can be legally 2107 /// represented as. The vector equivalents of these values should be truncated 2108 /// to this type. 2109 MapVector<Instruction *, uint64_t> MinBWs; 2110 2111 /// A type representing the costs for instructions if they were to be 2112 /// scalarized rather than vectorized. The entries are Instruction-Cost 2113 /// pairs. 2114 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2115 2116 /// A set containing all BasicBlocks that are known to present after 2117 /// vectorization as a predicated block. 2118 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2119 2120 /// A map holding scalar costs for different vectorization factors. The 2121 /// presence of a cost for an instruction in the mapping indicates that the 2122 /// instruction will be scalarized when vectorizing with the associated 2123 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2124 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2125 2126 /// Holds the instructions known to be uniform after vectorization. 2127 /// The data is collected per VF. 2128 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2129 2130 /// Holds the instructions known to be scalar after vectorization. 2131 /// The data is collected per VF. 2132 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2133 2134 /// Holds the instructions (address computations) that are forced to be 2135 /// scalarized. 2136 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2137 2138 /// Returns the expected difference in cost from scalarizing the expression 2139 /// feeding a predicated instruction \p PredInst. The instructions to 2140 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2141 /// non-negative return value implies the expression will be scalarized. 2142 /// Currently, only single-use chains are considered for scalarization. 2143 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2144 unsigned VF); 2145 2146 /// Collects the instructions to scalarize for each predicated instruction in 2147 /// the loop. 2148 void collectInstsToScalarize(unsigned VF); 2149 2150 /// Collect the instructions that are uniform after vectorization. An 2151 /// instruction is uniform if we represent it with a single scalar value in 2152 /// the vectorized loop corresponding to each vector iteration. Examples of 2153 /// uniform instructions include pointer operands of consecutive or 2154 /// interleaved memory accesses. Note that although uniformity implies an 2155 /// instruction will be scalar, the reverse is not true. In general, a 2156 /// scalarized instruction will be represented by VF scalar values in the 2157 /// vectorized loop, each corresponding to an iteration of the original 2158 /// scalar loop. 2159 void collectLoopUniforms(unsigned VF); 2160 2161 /// Collect the instructions that are scalar after vectorization. An 2162 /// instruction is scalar if it is known to be uniform or will be scalarized 2163 /// during vectorization. Non-uniform scalarized instructions will be 2164 /// represented by VF values in the vectorized loop, each corresponding to an 2165 /// iteration of the original scalar loop. 2166 void collectLoopScalars(unsigned VF); 2167 2168 /// Collect Uniform and Scalar values for the given \p VF. 2169 /// The sets depend on CM decision for Load/Store instructions 2170 /// that may be vectorized as interleave, gather-scatter or scalarized. 2171 void collectUniformsAndScalars(unsigned VF) { 2172 // Do the analysis once. 2173 if (VF == 1 || Uniforms.count(VF)) 2174 return; 2175 setCostBasedWideningDecision(VF); 2176 collectLoopUniforms(VF); 2177 collectLoopScalars(VF); 2178 } 2179 2180 /// Keeps cost model vectorization decision and cost for instructions. 2181 /// Right now it is used for memory instructions only. 2182 typedef DenseMap<std::pair<Instruction *, unsigned>, 2183 std::pair<InstWidening, unsigned>> 2184 DecisionList; 2185 2186 DecisionList WideningDecisions; 2187 2188 public: 2189 /// The loop that we evaluate. 2190 Loop *TheLoop; 2191 /// Predicated scalar evolution analysis. 2192 PredicatedScalarEvolution &PSE; 2193 /// Loop Info analysis. 2194 LoopInfo *LI; 2195 /// Vectorization legality. 2196 LoopVectorizationLegality *Legal; 2197 /// Vector target information. 2198 const TargetTransformInfo &TTI; 2199 /// Target Library Info. 2200 const TargetLibraryInfo *TLI; 2201 /// Demanded bits analysis. 2202 DemandedBits *DB; 2203 /// Assumption cache. 2204 AssumptionCache *AC; 2205 /// Interface to emit optimization remarks. 2206 OptimizationRemarkEmitter *ORE; 2207 2208 const Function *TheFunction; 2209 /// Loop Vectorize Hint. 2210 const LoopVectorizeHints *Hints; 2211 /// Values to ignore in the cost model. 2212 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2213 /// Values to ignore in the cost model when VF > 1. 2214 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2215 }; 2216 2217 /// LoopVectorizationPlanner - drives the vectorization process after having 2218 /// passed Legality checks. 2219 class LoopVectorizationPlanner { 2220 public: 2221 LoopVectorizationPlanner(Loop *OrigLoop, LoopInfo *LI, 2222 LoopVectorizationLegality *Legal, 2223 LoopVectorizationCostModel &CM) 2224 : OrigLoop(OrigLoop), LI(LI), Legal(Legal), CM(CM) {} 2225 2226 ~LoopVectorizationPlanner() {} 2227 2228 /// Plan how to best vectorize, return the best VF and its cost. 2229 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2230 unsigned UserVF); 2231 2232 /// Generate the IR code for the vectorized loop. 2233 void executePlan(InnerLoopVectorizer &ILV); 2234 2235 protected: 2236 /// Collect the instructions from the original loop that would be trivially 2237 /// dead in the vectorized loop if generated. 2238 void collectTriviallyDeadInstructions( 2239 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2240 2241 private: 2242 /// The loop that we evaluate. 2243 Loop *OrigLoop; 2244 2245 /// Loop Info analysis. 2246 LoopInfo *LI; 2247 2248 /// The legality analysis. 2249 LoopVectorizationLegality *Legal; 2250 2251 /// The profitablity analysis. 2252 LoopVectorizationCostModel &CM; 2253 }; 2254 2255 /// \brief This holds vectorization requirements that must be verified late in 2256 /// the process. The requirements are set by legalize and costmodel. Once 2257 /// vectorization has been determined to be possible and profitable the 2258 /// requirements can be verified by looking for metadata or compiler options. 2259 /// For example, some loops require FP commutativity which is only allowed if 2260 /// vectorization is explicitly specified or if the fast-math compiler option 2261 /// has been provided. 2262 /// Late evaluation of these requirements allows helpful diagnostics to be 2263 /// composed that tells the user what need to be done to vectorize the loop. For 2264 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2265 /// evaluation should be used only when diagnostics can generated that can be 2266 /// followed by a non-expert user. 2267 class LoopVectorizationRequirements { 2268 public: 2269 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2270 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2271 2272 void addUnsafeAlgebraInst(Instruction *I) { 2273 // First unsafe algebra instruction. 2274 if (!UnsafeAlgebraInst) 2275 UnsafeAlgebraInst = I; 2276 } 2277 2278 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2279 2280 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2281 const char *PassName = Hints.vectorizeAnalysisPassName(); 2282 bool Failed = false; 2283 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2284 ORE.emit( 2285 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2286 UnsafeAlgebraInst->getDebugLoc(), 2287 UnsafeAlgebraInst->getParent()) 2288 << "loop not vectorized: cannot prove it is safe to reorder " 2289 "floating-point operations"); 2290 Failed = true; 2291 } 2292 2293 // Test if runtime memcheck thresholds are exceeded. 2294 bool PragmaThresholdReached = 2295 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2296 bool ThresholdReached = 2297 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2298 if ((ThresholdReached && !Hints.allowReordering()) || 2299 PragmaThresholdReached) { 2300 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2301 L->getStartLoc(), 2302 L->getHeader()) 2303 << "loop not vectorized: cannot prove it is safe to reorder " 2304 "memory operations"); 2305 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2306 Failed = true; 2307 } 2308 2309 return Failed; 2310 } 2311 2312 private: 2313 unsigned NumRuntimePointerChecks; 2314 Instruction *UnsafeAlgebraInst; 2315 2316 /// Interface to emit optimization remarks. 2317 OptimizationRemarkEmitter &ORE; 2318 }; 2319 2320 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2321 if (L.empty()) { 2322 if (!hasCyclesInLoopBody(L)) 2323 V.push_back(&L); 2324 return; 2325 } 2326 for (Loop *InnerL : L) 2327 addAcyclicInnerLoop(*InnerL, V); 2328 } 2329 2330 /// The LoopVectorize Pass. 2331 struct LoopVectorize : public FunctionPass { 2332 /// Pass identification, replacement for typeid 2333 static char ID; 2334 2335 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2336 : FunctionPass(ID) { 2337 Impl.DisableUnrolling = NoUnrolling; 2338 Impl.AlwaysVectorize = AlwaysVectorize; 2339 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2340 } 2341 2342 LoopVectorizePass Impl; 2343 2344 bool runOnFunction(Function &F) override { 2345 if (skipFunction(F)) 2346 return false; 2347 2348 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2349 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2350 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2351 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2352 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2353 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2354 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2355 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2356 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2357 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2358 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2359 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2360 2361 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2362 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2363 2364 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2365 GetLAA, *ORE); 2366 } 2367 2368 void getAnalysisUsage(AnalysisUsage &AU) const override { 2369 AU.addRequired<AssumptionCacheTracker>(); 2370 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2371 AU.addRequired<DominatorTreeWrapperPass>(); 2372 AU.addRequired<LoopInfoWrapperPass>(); 2373 AU.addRequired<ScalarEvolutionWrapperPass>(); 2374 AU.addRequired<TargetTransformInfoWrapperPass>(); 2375 AU.addRequired<AAResultsWrapperPass>(); 2376 AU.addRequired<LoopAccessLegacyAnalysis>(); 2377 AU.addRequired<DemandedBitsWrapperPass>(); 2378 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2379 AU.addPreserved<LoopInfoWrapperPass>(); 2380 AU.addPreserved<DominatorTreeWrapperPass>(); 2381 AU.addPreserved<BasicAAWrapperPass>(); 2382 AU.addPreserved<GlobalsAAWrapperPass>(); 2383 } 2384 }; 2385 2386 } // end anonymous namespace 2387 2388 //===----------------------------------------------------------------------===// 2389 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2390 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2391 //===----------------------------------------------------------------------===// 2392 2393 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2394 // We need to place the broadcast of invariant variables outside the loop. 2395 Instruction *Instr = dyn_cast<Instruction>(V); 2396 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2397 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2398 2399 // Place the code for broadcasting invariant variables in the new preheader. 2400 IRBuilder<>::InsertPointGuard Guard(Builder); 2401 if (Invariant) 2402 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2403 2404 // Broadcast the scalar into all locations in the vector. 2405 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2406 2407 return Shuf; 2408 } 2409 2410 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2411 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2412 Value *Start = II.getStartValue(); 2413 2414 // Construct the initial value of the vector IV in the vector loop preheader 2415 auto CurrIP = Builder.saveIP(); 2416 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2417 if (isa<TruncInst>(EntryVal)) { 2418 assert(Start->getType()->isIntegerTy() && 2419 "Truncation requires an integer type"); 2420 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2421 Step = Builder.CreateTrunc(Step, TruncType); 2422 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2423 } 2424 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2425 Value *SteppedStart = 2426 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2427 2428 // We create vector phi nodes for both integer and floating-point induction 2429 // variables. Here, we determine the kind of arithmetic we will perform. 2430 Instruction::BinaryOps AddOp; 2431 Instruction::BinaryOps MulOp; 2432 if (Step->getType()->isIntegerTy()) { 2433 AddOp = Instruction::Add; 2434 MulOp = Instruction::Mul; 2435 } else { 2436 AddOp = II.getInductionOpcode(); 2437 MulOp = Instruction::FMul; 2438 } 2439 2440 // Multiply the vectorization factor by the step using integer or 2441 // floating-point arithmetic as appropriate. 2442 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2443 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2444 2445 // Create a vector splat to use in the induction update. 2446 // 2447 // FIXME: If the step is non-constant, we create the vector splat with 2448 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2449 // handle a constant vector splat. 2450 Value *SplatVF = isa<Constant>(Mul) 2451 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2452 : Builder.CreateVectorSplat(VF, Mul); 2453 Builder.restoreIP(CurrIP); 2454 2455 // We may need to add the step a number of times, depending on the unroll 2456 // factor. The last of those goes into the PHI. 2457 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2458 &*LoopVectorBody->getFirstInsertionPt()); 2459 Instruction *LastInduction = VecInd; 2460 for (unsigned Part = 0; Part < UF; ++Part) { 2461 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2462 if (isa<TruncInst>(EntryVal)) 2463 addMetadata(LastInduction, EntryVal); 2464 LastInduction = cast<Instruction>(addFastMathFlag( 2465 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2466 } 2467 2468 // Move the last step to the end of the latch block. This ensures consistent 2469 // placement of all induction updates. 2470 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2471 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2472 auto *ICmp = cast<Instruction>(Br->getCondition()); 2473 LastInduction->moveBefore(ICmp); 2474 LastInduction->setName("vec.ind.next"); 2475 2476 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2477 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2478 } 2479 2480 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2481 return Cost->isScalarAfterVectorization(I, VF) || 2482 Cost->isProfitableToScalarize(I, VF); 2483 } 2484 2485 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2486 if (shouldScalarizeInstruction(IV)) 2487 return true; 2488 auto isScalarInst = [&](User *U) -> bool { 2489 auto *I = cast<Instruction>(U); 2490 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2491 }; 2492 return any_of(IV->users(), isScalarInst); 2493 } 2494 2495 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2496 2497 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2498 "Primary induction variable must have an integer type"); 2499 2500 auto II = Legal->getInductionVars()->find(IV); 2501 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2502 2503 auto ID = II->second; 2504 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2505 2506 // The scalar value to broadcast. This will be derived from the canonical 2507 // induction variable. 2508 Value *ScalarIV = nullptr; 2509 2510 // The value from the original loop to which we are mapping the new induction 2511 // variable. 2512 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2513 2514 // True if we have vectorized the induction variable. 2515 auto VectorizedIV = false; 2516 2517 // Determine if we want a scalar version of the induction variable. This is 2518 // true if the induction variable itself is not widened, or if it has at 2519 // least one user in the loop that is not widened. 2520 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2521 2522 // Generate code for the induction step. Note that induction steps are 2523 // required to be loop-invariant 2524 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2525 "Induction step should be loop invariant"); 2526 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2527 Value *Step = nullptr; 2528 if (PSE.getSE()->isSCEVable(IV->getType())) { 2529 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2530 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2531 LoopVectorPreHeader->getTerminator()); 2532 } else { 2533 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2534 } 2535 2536 // Try to create a new independent vector induction variable. If we can't 2537 // create the phi node, we will splat the scalar induction variable in each 2538 // loop iteration. 2539 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2540 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2541 VectorizedIV = true; 2542 } 2543 2544 // If we haven't yet vectorized the induction variable, or if we will create 2545 // a scalar one, we need to define the scalar induction variable and step 2546 // values. If we were given a truncation type, truncate the canonical 2547 // induction variable and step. Otherwise, derive these values from the 2548 // induction descriptor. 2549 if (!VectorizedIV || NeedsScalarIV) { 2550 ScalarIV = Induction; 2551 if (IV != OldInduction) { 2552 ScalarIV = IV->getType()->isIntegerTy() 2553 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2554 : Builder.CreateCast(Instruction::SIToFP, Induction, 2555 IV->getType()); 2556 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2557 ScalarIV->setName("offset.idx"); 2558 } 2559 if (Trunc) { 2560 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2561 assert(Step->getType()->isIntegerTy() && 2562 "Truncation requires an integer step"); 2563 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2564 Step = Builder.CreateTrunc(Step, TruncType); 2565 } 2566 } 2567 2568 // If we haven't yet vectorized the induction variable, splat the scalar 2569 // induction variable, and build the necessary step vectors. 2570 if (!VectorizedIV) { 2571 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2572 for (unsigned Part = 0; Part < UF; ++Part) { 2573 Value *EntryPart = 2574 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2575 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2576 if (Trunc) 2577 addMetadata(EntryPart, Trunc); 2578 } 2579 } 2580 2581 // If an induction variable is only used for counting loop iterations or 2582 // calculating addresses, it doesn't need to be widened. Create scalar steps 2583 // that can be used by instructions we will later scalarize. Note that the 2584 // addition of the scalar steps will not increase the number of instructions 2585 // in the loop in the common case prior to InstCombine. We will be trading 2586 // one vector extract for each scalar step. 2587 if (NeedsScalarIV) 2588 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2589 } 2590 2591 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2592 Instruction::BinaryOps BinOp) { 2593 // Create and check the types. 2594 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2595 int VLen = Val->getType()->getVectorNumElements(); 2596 2597 Type *STy = Val->getType()->getScalarType(); 2598 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2599 "Induction Step must be an integer or FP"); 2600 assert(Step->getType() == STy && "Step has wrong type"); 2601 2602 SmallVector<Constant *, 8> Indices; 2603 2604 if (STy->isIntegerTy()) { 2605 // Create a vector of consecutive numbers from zero to VF. 2606 for (int i = 0; i < VLen; ++i) 2607 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2608 2609 // Add the consecutive indices to the vector value. 2610 Constant *Cv = ConstantVector::get(Indices); 2611 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2612 Step = Builder.CreateVectorSplat(VLen, Step); 2613 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2614 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2615 // which can be found from the original scalar operations. 2616 Step = Builder.CreateMul(Cv, Step); 2617 return Builder.CreateAdd(Val, Step, "induction"); 2618 } 2619 2620 // Floating point induction. 2621 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2622 "Binary Opcode should be specified for FP induction"); 2623 // Create a vector of consecutive numbers from zero to VF. 2624 for (int i = 0; i < VLen; ++i) 2625 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2626 2627 // Add the consecutive indices to the vector value. 2628 Constant *Cv = ConstantVector::get(Indices); 2629 2630 Step = Builder.CreateVectorSplat(VLen, Step); 2631 2632 // Floating point operations had to be 'fast' to enable the induction. 2633 FastMathFlags Flags; 2634 Flags.setUnsafeAlgebra(); 2635 2636 Value *MulOp = Builder.CreateFMul(Cv, Step); 2637 if (isa<Instruction>(MulOp)) 2638 // Have to check, MulOp may be a constant 2639 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2640 2641 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2642 if (isa<Instruction>(BOp)) 2643 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2644 return BOp; 2645 } 2646 2647 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2648 Value *EntryVal, 2649 const InductionDescriptor &ID) { 2650 2651 // We shouldn't have to build scalar steps if we aren't vectorizing. 2652 assert(VF > 1 && "VF should be greater than one"); 2653 2654 // Get the value type and ensure it and the step have the same integer type. 2655 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2656 assert(ScalarIVTy == Step->getType() && 2657 "Val and Step should have the same type"); 2658 2659 // We build scalar steps for both integer and floating-point induction 2660 // variables. Here, we determine the kind of arithmetic we will perform. 2661 Instruction::BinaryOps AddOp; 2662 Instruction::BinaryOps MulOp; 2663 if (ScalarIVTy->isIntegerTy()) { 2664 AddOp = Instruction::Add; 2665 MulOp = Instruction::Mul; 2666 } else { 2667 AddOp = ID.getInductionOpcode(); 2668 MulOp = Instruction::FMul; 2669 } 2670 2671 // Determine the number of scalars we need to generate for each unroll 2672 // iteration. If EntryVal is uniform, we only need to generate the first 2673 // lane. Otherwise, we generate all VF values. 2674 unsigned Lanes = 2675 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF; 2676 2677 // Compute the scalar steps and save the results in VectorLoopValueMap. 2678 for (unsigned Part = 0; Part < UF; ++Part) { 2679 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2680 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2681 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2682 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2683 VectorLoopValueMap.setScalarValue(EntryVal, Part, Lane, Add); 2684 } 2685 } 2686 } 2687 2688 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2689 2690 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2691 ValueToValueMap(); 2692 2693 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2694 if (Stride == 1 || Stride == -1) 2695 return Stride; 2696 return 0; 2697 } 2698 2699 bool LoopVectorizationLegality::isUniform(Value *V) { 2700 return LAI->isUniform(V); 2701 } 2702 2703 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2704 assert(V != Induction && "The new induction variable should not be used."); 2705 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2706 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2707 2708 // If we have a stride that is replaced by one, do it here. 2709 if (Legal->hasStride(V)) 2710 V = ConstantInt::get(V->getType(), 1); 2711 2712 // If we have a vector mapped to this value, return it. 2713 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2714 return VectorLoopValueMap.getVectorValue(V, Part); 2715 2716 // If the value has not been vectorized, check if it has been scalarized 2717 // instead. If it has been scalarized, and we actually need the value in 2718 // vector form, we will construct the vector values on demand. 2719 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2720 2721 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, Part, 0); 2722 2723 // If we've scalarized a value, that value should be an instruction. 2724 auto *I = cast<Instruction>(V); 2725 2726 // If we aren't vectorizing, we can just copy the scalar map values over to 2727 // the vector map. 2728 if (VF == 1) { 2729 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2730 return ScalarValue; 2731 } 2732 2733 // Get the last scalar instruction we generated for V and Part. If the value 2734 // is known to be uniform after vectorization, this corresponds to lane zero 2735 // of the Part unroll iteration. Otherwise, the last instruction is the one 2736 // we created for the last vector lane of the Part unroll iteration. 2737 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2738 auto *LastInst = 2739 cast<Instruction>(VectorLoopValueMap.getScalarValue(V, Part, LastLane)); 2740 2741 // Set the insert point after the last scalarized instruction. This ensures 2742 // the insertelement sequence will directly follow the scalar definitions. 2743 auto OldIP = Builder.saveIP(); 2744 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2745 Builder.SetInsertPoint(&*NewIP); 2746 2747 // However, if we are vectorizing, we need to construct the vector values. 2748 // If the value is known to be uniform after vectorization, we can just 2749 // broadcast the scalar value corresponding to lane zero for each unroll 2750 // iteration. Otherwise, we construct the vector values using insertelement 2751 // instructions. Since the resulting vectors are stored in 2752 // VectorLoopValueMap, we will only generate the insertelements once. 2753 Value *VectorValue = nullptr; 2754 if (Cost->isUniformAfterVectorization(I, VF)) { 2755 VectorValue = getBroadcastInstrs(ScalarValue); 2756 } else { 2757 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2758 for (unsigned Lane = 0; Lane < VF; ++Lane) 2759 VectorValue = Builder.CreateInsertElement( 2760 VectorValue, getOrCreateScalarValue(V, Part, Lane), 2761 Builder.getInt32(Lane)); 2762 } 2763 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2764 Builder.restoreIP(OldIP); 2765 return VectorValue; 2766 } 2767 2768 // If this scalar is unknown, assume that it is a constant or that it is 2769 // loop invariant. Broadcast V and save the value for future uses. 2770 Value *B = getBroadcastInstrs(V); 2771 VectorLoopValueMap.setVectorValue(V, Part, B); 2772 return B; 2773 } 2774 2775 Value *InnerLoopVectorizer::getOrCreateScalarValue(Value *V, unsigned Part, 2776 unsigned Lane) { 2777 2778 // If the value is not an instruction contained in the loop, it should 2779 // already be scalar. 2780 if (OrigLoop->isLoopInvariant(V)) 2781 return V; 2782 2783 assert(Lane > 0 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2784 : true && "Uniform values only have lane zero"); 2785 2786 // If the value from the original loop has not been vectorized, it is 2787 // represented by UF x VF scalar values in the new loop. Return the requested 2788 // scalar value. 2789 if (VectorLoopValueMap.hasScalarValue(V, Part, Lane)) 2790 return VectorLoopValueMap.getScalarValue(V, Part, Lane); 2791 2792 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2793 // for the given unroll part. If this entry is not a vector type (i.e., the 2794 // vectorization factor is one), there is no need to generate an 2795 // extractelement instruction. 2796 auto *U = getOrCreateVectorValue(V, Part); 2797 if (!U->getType()->isVectorTy()) { 2798 assert(VF == 1 && "Value not scalarized has non-vector type"); 2799 return U; 2800 } 2801 2802 // Otherwise, the value from the original loop has been vectorized and is 2803 // represented by UF vector values. Extract and return the requested scalar 2804 // value from the appropriate vector lane. 2805 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2806 } 2807 2808 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2809 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2810 SmallVector<Constant *, 8> ShuffleMask; 2811 for (unsigned i = 0; i < VF; ++i) 2812 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2813 2814 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2815 ConstantVector::get(ShuffleMask), 2816 "reverse"); 2817 } 2818 2819 // Try to vectorize the interleave group that \p Instr belongs to. 2820 // 2821 // E.g. Translate following interleaved load group (factor = 3): 2822 // for (i = 0; i < N; i+=3) { 2823 // R = Pic[i]; // Member of index 0 2824 // G = Pic[i+1]; // Member of index 1 2825 // B = Pic[i+2]; // Member of index 2 2826 // ... // do something to R, G, B 2827 // } 2828 // To: 2829 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2830 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2831 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2832 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2833 // 2834 // Or translate following interleaved store group (factor = 3): 2835 // for (i = 0; i < N; i+=3) { 2836 // ... do something to R, G, B 2837 // Pic[i] = R; // Member of index 0 2838 // Pic[i+1] = G; // Member of index 1 2839 // Pic[i+2] = B; // Member of index 2 2840 // } 2841 // To: 2842 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2843 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2844 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2845 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2846 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2847 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2848 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2849 assert(Group && "Fail to get an interleaved access group."); 2850 2851 // Skip if current instruction is not the insert position. 2852 if (Instr != Group->getInsertPos()) 2853 return; 2854 2855 Value *Ptr = getPointerOperand(Instr); 2856 2857 // Prepare for the vector type of the interleaved load/store. 2858 Type *ScalarTy = getMemInstValueType(Instr); 2859 unsigned InterleaveFactor = Group->getFactor(); 2860 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2861 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2862 2863 // Prepare for the new pointers. 2864 setDebugLocFromInst(Builder, Ptr); 2865 SmallVector<Value *, 2> NewPtrs; 2866 unsigned Index = Group->getIndex(Instr); 2867 2868 // If the group is reverse, adjust the index to refer to the last vector lane 2869 // instead of the first. We adjust the index from the first vector lane, 2870 // rather than directly getting the pointer for lane VF - 1, because the 2871 // pointer operand of the interleaved access is supposed to be uniform. For 2872 // uniform instructions, we're only required to generate a value for the 2873 // first vector lane in each unroll iteration. 2874 if (Group->isReverse()) 2875 Index += (VF - 1) * Group->getFactor(); 2876 2877 for (unsigned Part = 0; Part < UF; Part++) { 2878 Value *NewPtr = getOrCreateScalarValue(Ptr, Part, 0); 2879 2880 // Notice current instruction could be any index. Need to adjust the address 2881 // to the member of index 0. 2882 // 2883 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2884 // b = A[i]; // Member of index 0 2885 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2886 // 2887 // E.g. A[i+1] = a; // Member of index 1 2888 // A[i] = b; // Member of index 0 2889 // A[i+2] = c; // Member of index 2 (Current instruction) 2890 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2891 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2892 2893 // Cast to the vector pointer type. 2894 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2895 } 2896 2897 setDebugLocFromInst(Builder, Instr); 2898 Value *UndefVec = UndefValue::get(VecTy); 2899 2900 // Vectorize the interleaved load group. 2901 if (isa<LoadInst>(Instr)) { 2902 2903 // For each unroll part, create a wide load for the group. 2904 SmallVector<Value *, 2> NewLoads; 2905 for (unsigned Part = 0; Part < UF; Part++) { 2906 auto *NewLoad = Builder.CreateAlignedLoad( 2907 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2908 addMetadata(NewLoad, Instr); 2909 NewLoads.push_back(NewLoad); 2910 } 2911 2912 // For each member in the group, shuffle out the appropriate data from the 2913 // wide loads. 2914 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2915 Instruction *Member = Group->getMember(I); 2916 2917 // Skip the gaps in the group. 2918 if (!Member) 2919 continue; 2920 2921 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2922 for (unsigned Part = 0; Part < UF; Part++) { 2923 Value *StridedVec = Builder.CreateShuffleVector( 2924 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2925 2926 // If this member has different type, cast the result type. 2927 if (Member->getType() != ScalarTy) { 2928 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2929 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2930 } 2931 2932 if (Group->isReverse()) 2933 StridedVec = reverseVector(StridedVec); 2934 2935 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2936 } 2937 } 2938 return; 2939 } 2940 2941 // The sub vector type for current instruction. 2942 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2943 2944 // Vectorize the interleaved store group. 2945 for (unsigned Part = 0; Part < UF; Part++) { 2946 // Collect the stored vector from each member. 2947 SmallVector<Value *, 4> StoredVecs; 2948 for (unsigned i = 0; i < InterleaveFactor; i++) { 2949 // Interleaved store group doesn't allow a gap, so each index has a member 2950 Instruction *Member = Group->getMember(i); 2951 assert(Member && "Fail to get a member from an interleaved store group"); 2952 2953 Value *StoredVec = getOrCreateVectorValue( 2954 cast<StoreInst>(Member)->getValueOperand(), Part); 2955 if (Group->isReverse()) 2956 StoredVec = reverseVector(StoredVec); 2957 2958 // If this member has different type, cast it to an unified type. 2959 if (StoredVec->getType() != SubVT) 2960 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2961 2962 StoredVecs.push_back(StoredVec); 2963 } 2964 2965 // Concatenate all vectors into a wide vector. 2966 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2967 2968 // Interleave the elements in the wide vector. 2969 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2970 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2971 "interleaved.vec"); 2972 2973 Instruction *NewStoreInstr = 2974 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2975 addMetadata(NewStoreInstr, Instr); 2976 } 2977 } 2978 2979 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2980 // Attempt to issue a wide load. 2981 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2982 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2983 2984 assert((LI || SI) && "Invalid Load/Store instruction"); 2985 2986 LoopVectorizationCostModel::InstWidening Decision = 2987 Cost->getWideningDecision(Instr, VF); 2988 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2989 "CM decision should be taken at this point"); 2990 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2991 return vectorizeInterleaveGroup(Instr); 2992 2993 Type *ScalarDataTy = getMemInstValueType(Instr); 2994 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2995 Value *Ptr = getPointerOperand(Instr); 2996 unsigned Alignment = getMemInstAlignment(Instr); 2997 // An alignment of 0 means target abi alignment. We need to use the scalar's 2998 // target abi alignment in such a case. 2999 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3000 if (!Alignment) 3001 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3002 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3003 3004 // Scalarize the memory instruction if necessary. 3005 if (Decision == LoopVectorizationCostModel::CM_Scalarize) 3006 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 3007 3008 // Determine if the pointer operand of the access is either consecutive or 3009 // reverse consecutive. 3010 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 3011 bool Reverse = ConsecutiveStride < 0; 3012 bool CreateGatherScatter = 3013 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3014 3015 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3016 // gather/scatter. Otherwise Decision should have been to Scalarize. 3017 assert((ConsecutiveStride || CreateGatherScatter) && 3018 "The instruction should be scalarized"); 3019 3020 // Handle consecutive loads/stores. 3021 if (ConsecutiveStride) 3022 Ptr = getOrCreateScalarValue(Ptr, 0, 0); 3023 3024 VectorParts Mask = createBlockInMask(Instr->getParent()); 3025 // Handle Stores: 3026 if (SI) { 3027 assert(!Legal->isUniform(SI->getPointerOperand()) && 3028 "We do not allow storing to uniform addresses"); 3029 setDebugLocFromInst(Builder, SI); 3030 3031 for (unsigned Part = 0; Part < UF; ++Part) { 3032 Instruction *NewSI = nullptr; 3033 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3034 if (CreateGatherScatter) { 3035 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 3036 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3037 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3038 MaskPart); 3039 } else { 3040 // Calculate the pointer for the specific unroll-part. 3041 Value *PartPtr = 3042 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3043 3044 if (Reverse) { 3045 // If we store to reverse consecutive memory locations, then we need 3046 // to reverse the order of elements in the stored value. 3047 StoredVal = reverseVector(StoredVal); 3048 // We don't want to update the value in the map as it might be used in 3049 // another expression. So don't call resetVectorValue(StoredVal). 3050 3051 // If the address is consecutive but reversed, then the 3052 // wide store needs to start at the last vector element. 3053 PartPtr = 3054 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3055 PartPtr = 3056 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3057 if (Mask[Part]) // The reverse of a null all-one mask is a null mask. 3058 Mask[Part] = reverseVector(Mask[Part]); 3059 } 3060 3061 Value *VecPtr = 3062 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3063 3064 if (Legal->isMaskRequired(SI) && Mask[Part]) 3065 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3066 Mask[Part]); 3067 else 3068 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3069 } 3070 addMetadata(NewSI, SI); 3071 } 3072 return; 3073 } 3074 3075 // Handle loads. 3076 assert(LI && "Must have a load instruction"); 3077 setDebugLocFromInst(Builder, LI); 3078 for (unsigned Part = 0; Part < UF; ++Part) { 3079 Value *NewLI; 3080 if (CreateGatherScatter) { 3081 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3082 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3083 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3084 nullptr, "wide.masked.gather"); 3085 addMetadata(NewLI, LI); 3086 } else { 3087 // Calculate the pointer for the specific unroll-part. 3088 Value *PartPtr = 3089 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3090 3091 if (Reverse) { 3092 // If the address is consecutive but reversed, then the 3093 // wide load needs to start at the last vector element. 3094 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3095 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3096 if (Mask[Part]) // The reverse of a null all-one mask is a null mask. 3097 Mask[Part] = reverseVector(Mask[Part]); 3098 } 3099 3100 Value *VecPtr = 3101 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3102 if (Legal->isMaskRequired(LI) && Mask[Part]) 3103 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3104 UndefValue::get(DataTy), 3105 "wide.masked.load"); 3106 else 3107 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3108 3109 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3110 addMetadata(NewLI, LI); 3111 if (Reverse) 3112 NewLI = reverseVector(NewLI); 3113 } 3114 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3115 } 3116 } 3117 3118 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3119 bool IfPredicateInstr) { 3120 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3121 DEBUG(dbgs() << "LV: Scalarizing" 3122 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3123 << '\n'); 3124 // Holds vector parameters or scalars, in case of uniform vals. 3125 SmallVector<VectorParts, 4> Params; 3126 3127 setDebugLocFromInst(Builder, Instr); 3128 3129 // Does this instruction return a value ? 3130 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3131 3132 VectorParts Cond; 3133 if (IfPredicateInstr) 3134 Cond = createBlockInMask(Instr->getParent()); 3135 3136 // Determine the number of scalars we need to generate for each unroll 3137 // iteration. If the instruction is uniform, we only need to generate the 3138 // first lane. Otherwise, we generate all VF values. 3139 unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF; 3140 3141 // For each vector unroll 'part': 3142 for (unsigned Part = 0; Part < UF; ++Part) { 3143 // For each scalar that we create: 3144 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3145 3146 // Start if-block. 3147 Value *Cmp = nullptr; 3148 if (IfPredicateInstr) { 3149 Cmp = Cond[Part]; 3150 if (!Cmp) // Block in mask is all-one. 3151 Cmp = Builder.getTrue(); 3152 else if (Cmp->getType()->isVectorTy()) 3153 Cmp = Builder.CreateExtractElement(Cmp, Builder.getInt32(Lane)); 3154 } 3155 3156 Instruction *Cloned = Instr->clone(); 3157 if (!IsVoidRetTy) 3158 Cloned->setName(Instr->getName() + ".cloned"); 3159 3160 // Replace the operands of the cloned instructions with their scalar 3161 // equivalents in the new loop. 3162 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3163 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Part, Lane); 3164 Cloned->setOperand(op, NewOp); 3165 } 3166 addNewMetadata(Cloned, Instr); 3167 3168 // Place the cloned scalar in the new loop. 3169 Builder.Insert(Cloned); 3170 3171 // Add the cloned scalar to the scalar map entry. 3172 VectorLoopValueMap.setScalarValue(Instr, Part, Lane, Cloned); 3173 3174 // If we just cloned a new assumption, add it the assumption cache. 3175 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3176 if (II->getIntrinsicID() == Intrinsic::assume) 3177 AC->registerAssumption(II); 3178 3179 // End if-block. 3180 if (IfPredicateInstr) 3181 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3182 } 3183 } 3184 } 3185 3186 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3187 Value *End, Value *Step, 3188 Instruction *DL) { 3189 BasicBlock *Header = L->getHeader(); 3190 BasicBlock *Latch = L->getLoopLatch(); 3191 // As we're just creating this loop, it's possible no latch exists 3192 // yet. If so, use the header as this will be a single block loop. 3193 if (!Latch) 3194 Latch = Header; 3195 3196 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3197 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3198 setDebugLocFromInst(Builder, OldInst); 3199 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3200 3201 Builder.SetInsertPoint(Latch->getTerminator()); 3202 setDebugLocFromInst(Builder, OldInst); 3203 3204 // Create i+1 and fill the PHINode. 3205 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3206 Induction->addIncoming(Start, L->getLoopPreheader()); 3207 Induction->addIncoming(Next, Latch); 3208 // Create the compare. 3209 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3210 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3211 3212 // Now we have two terminators. Remove the old one from the block. 3213 Latch->getTerminator()->eraseFromParent(); 3214 3215 return Induction; 3216 } 3217 3218 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3219 if (TripCount) 3220 return TripCount; 3221 3222 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3223 // Find the loop boundaries. 3224 ScalarEvolution *SE = PSE.getSE(); 3225 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3226 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3227 "Invalid loop count"); 3228 3229 Type *IdxTy = Legal->getWidestInductionType(); 3230 3231 // The exit count might have the type of i64 while the phi is i32. This can 3232 // happen if we have an induction variable that is sign extended before the 3233 // compare. The only way that we get a backedge taken count is that the 3234 // induction variable was signed and as such will not overflow. In such a case 3235 // truncation is legal. 3236 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3237 IdxTy->getPrimitiveSizeInBits()) 3238 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3239 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3240 3241 // Get the total trip count from the count by adding 1. 3242 const SCEV *ExitCount = SE->getAddExpr( 3243 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3244 3245 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3246 3247 // Expand the trip count and place the new instructions in the preheader. 3248 // Notice that the pre-header does not change, only the loop body. 3249 SCEVExpander Exp(*SE, DL, "induction"); 3250 3251 // Count holds the overall loop count (N). 3252 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3253 L->getLoopPreheader()->getTerminator()); 3254 3255 if (TripCount->getType()->isPointerTy()) 3256 TripCount = 3257 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3258 L->getLoopPreheader()->getTerminator()); 3259 3260 return TripCount; 3261 } 3262 3263 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3264 if (VectorTripCount) 3265 return VectorTripCount; 3266 3267 Value *TC = getOrCreateTripCount(L); 3268 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3269 3270 // Now we need to generate the expression for the part of the loop that the 3271 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3272 // iterations are not required for correctness, or N - Step, otherwise. Step 3273 // is equal to the vectorization factor (number of SIMD elements) times the 3274 // unroll factor (number of SIMD instructions). 3275 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3276 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3277 3278 // If there is a non-reversed interleaved group that may speculatively access 3279 // memory out-of-bounds, we need to ensure that there will be at least one 3280 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3281 // the trip count, we set the remainder to be equal to the step. If the step 3282 // does not evenly divide the trip count, no adjustment is necessary since 3283 // there will already be scalar iterations. Note that the minimum iterations 3284 // check ensures that N >= Step. 3285 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3286 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3287 R = Builder.CreateSelect(IsZero, Step, R); 3288 } 3289 3290 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3291 3292 return VectorTripCount; 3293 } 3294 3295 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3296 BasicBlock *Bypass) { 3297 Value *Count = getOrCreateTripCount(L); 3298 BasicBlock *BB = L->getLoopPreheader(); 3299 IRBuilder<> Builder(BB->getTerminator()); 3300 3301 // Generate code to check if the loop's trip count is less than VF * UF, or 3302 // equal to it in case a scalar epilogue is required; this implies that the 3303 // vector trip count is zero. This check also covers the case where adding one 3304 // to the backedge-taken count overflowed leading to an incorrect trip count 3305 // of zero. In this case we will also jump to the scalar loop. 3306 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3307 : ICmpInst::ICMP_ULT; 3308 Value *CheckMinIters = Builder.CreateICmp( 3309 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3310 3311 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3312 // Update dominator tree immediately if the generated block is a 3313 // LoopBypassBlock because SCEV expansions to generate loop bypass 3314 // checks may query it before the current function is finished. 3315 DT->addNewBlock(NewBB, BB); 3316 if (L->getParentLoop()) 3317 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3318 ReplaceInstWithInst(BB->getTerminator(), 3319 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3320 LoopBypassBlocks.push_back(BB); 3321 } 3322 3323 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3324 BasicBlock *BB = L->getLoopPreheader(); 3325 3326 // Generate the code to check that the SCEV assumptions that we made. 3327 // We want the new basic block to start at the first instruction in a 3328 // sequence of instructions that form a check. 3329 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3330 "scev.check"); 3331 Value *SCEVCheck = 3332 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3333 3334 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3335 if (C->isZero()) 3336 return; 3337 3338 // Create a new block containing the stride check. 3339 BB->setName("vector.scevcheck"); 3340 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3341 // Update dominator tree immediately if the generated block is a 3342 // LoopBypassBlock because SCEV expansions to generate loop bypass 3343 // checks may query it before the current function is finished. 3344 DT->addNewBlock(NewBB, BB); 3345 if (L->getParentLoop()) 3346 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3347 ReplaceInstWithInst(BB->getTerminator(), 3348 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3349 LoopBypassBlocks.push_back(BB); 3350 AddedSafetyChecks = true; 3351 } 3352 3353 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3354 BasicBlock *BB = L->getLoopPreheader(); 3355 3356 // Generate the code that checks in runtime if arrays overlap. We put the 3357 // checks into a separate block to make the more common case of few elements 3358 // faster. 3359 Instruction *FirstCheckInst; 3360 Instruction *MemRuntimeCheck; 3361 std::tie(FirstCheckInst, MemRuntimeCheck) = 3362 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3363 if (!MemRuntimeCheck) 3364 return; 3365 3366 // Create a new block containing the memory check. 3367 BB->setName("vector.memcheck"); 3368 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3369 // Update dominator tree immediately if the generated block is a 3370 // LoopBypassBlock because SCEV expansions to generate loop bypass 3371 // checks may query it before the current function is finished. 3372 DT->addNewBlock(NewBB, BB); 3373 if (L->getParentLoop()) 3374 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3375 ReplaceInstWithInst(BB->getTerminator(), 3376 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3377 LoopBypassBlocks.push_back(BB); 3378 AddedSafetyChecks = true; 3379 3380 // We currently don't use LoopVersioning for the actual loop cloning but we 3381 // still use it to add the noalias metadata. 3382 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3383 PSE.getSE()); 3384 LVer->prepareNoAliasMetadata(); 3385 } 3386 3387 void InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3388 /* 3389 In this function we generate a new loop. The new loop will contain 3390 the vectorized instructions while the old loop will continue to run the 3391 scalar remainder. 3392 3393 [ ] <-- loop iteration number check. 3394 / | 3395 / v 3396 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3397 | / | 3398 | / v 3399 || [ ] <-- vector pre header. 3400 |/ | 3401 | v 3402 | [ ] \ 3403 | [ ]_| <-- vector loop. 3404 | | 3405 | v 3406 | -[ ] <--- middle-block. 3407 | / | 3408 | / v 3409 -|- >[ ] <--- new preheader. 3410 | | 3411 | v 3412 | [ ] \ 3413 | [ ]_| <-- old scalar loop to handle remainder. 3414 \ | 3415 \ v 3416 >[ ] <-- exit block. 3417 ... 3418 */ 3419 3420 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3421 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3422 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3423 assert(VectorPH && "Invalid loop structure"); 3424 assert(ExitBlock && "Must have an exit block"); 3425 3426 // Some loops have a single integer induction variable, while other loops 3427 // don't. One example is c++ iterators that often have multiple pointer 3428 // induction variables. In the code below we also support a case where we 3429 // don't have a single induction variable. 3430 // 3431 // We try to obtain an induction variable from the original loop as hard 3432 // as possible. However if we don't find one that: 3433 // - is an integer 3434 // - counts from zero, stepping by one 3435 // - is the size of the widest induction variable type 3436 // then we create a new one. 3437 OldInduction = Legal->getPrimaryInduction(); 3438 Type *IdxTy = Legal->getWidestInductionType(); 3439 3440 // Split the single block loop into the two loop structure described above. 3441 BasicBlock *VecBody = 3442 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3443 BasicBlock *MiddleBlock = 3444 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3445 BasicBlock *ScalarPH = 3446 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3447 3448 // Create and register the new vector loop. 3449 Loop *Lp = new Loop(); 3450 Loop *ParentLoop = OrigLoop->getParentLoop(); 3451 3452 // Insert the new loop into the loop nest and register the new basic blocks 3453 // before calling any utilities such as SCEV that require valid LoopInfo. 3454 if (ParentLoop) { 3455 ParentLoop->addChildLoop(Lp); 3456 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3457 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3458 } else { 3459 LI->addTopLevelLoop(Lp); 3460 } 3461 Lp->addBasicBlockToLoop(VecBody, *LI); 3462 3463 // Find the loop boundaries. 3464 Value *Count = getOrCreateTripCount(Lp); 3465 3466 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3467 3468 // Now, compare the new count to zero. If it is zero skip the vector loop and 3469 // jump to the scalar loop. This check also covers the case where the 3470 // backedge-taken count is uint##_max: adding one to it will overflow leading 3471 // to an incorrect trip count of zero. In this (rare) case we will also jump 3472 // to the scalar loop. 3473 emitMinimumIterationCountCheck(Lp, ScalarPH); 3474 3475 // Generate the code to check any assumptions that we've made for SCEV 3476 // expressions. 3477 emitSCEVChecks(Lp, ScalarPH); 3478 3479 // Generate the code that checks in runtime if arrays overlap. We put the 3480 // checks into a separate block to make the more common case of few elements 3481 // faster. 3482 emitMemRuntimeChecks(Lp, ScalarPH); 3483 3484 // Generate the induction variable. 3485 // The loop step is equal to the vectorization factor (num of SIMD elements) 3486 // times the unroll factor (num of SIMD instructions). 3487 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3488 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3489 Induction = 3490 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3491 getDebugLocFromInstOrOperands(OldInduction)); 3492 3493 // We are going to resume the execution of the scalar loop. 3494 // Go over all of the induction variables that we found and fix the 3495 // PHIs that are left in the scalar version of the loop. 3496 // The starting values of PHI nodes depend on the counter of the last 3497 // iteration in the vectorized loop. 3498 // If we come from a bypass edge then we need to start from the original 3499 // start value. 3500 3501 // This variable saves the new starting index for the scalar loop. It is used 3502 // to test if there are any tail iterations left once the vector loop has 3503 // completed. 3504 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3505 for (auto &InductionEntry : *List) { 3506 PHINode *OrigPhi = InductionEntry.first; 3507 InductionDescriptor II = InductionEntry.second; 3508 3509 // Create phi nodes to merge from the backedge-taken check block. 3510 PHINode *BCResumeVal = PHINode::Create( 3511 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3512 Value *&EndValue = IVEndValues[OrigPhi]; 3513 if (OrigPhi == OldInduction) { 3514 // We know what the end value is. 3515 EndValue = CountRoundDown; 3516 } else { 3517 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3518 Type *StepType = II.getStep()->getType(); 3519 Instruction::CastOps CastOp = 3520 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3521 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3522 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3523 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3524 EndValue->setName("ind.end"); 3525 } 3526 3527 // The new PHI merges the original incoming value, in case of a bypass, 3528 // or the value at the end of the vectorized loop. 3529 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3530 3531 // Fix the scalar body counter (PHI node). 3532 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3533 3534 // The old induction's phi node in the scalar body needs the truncated 3535 // value. 3536 for (BasicBlock *BB : LoopBypassBlocks) 3537 BCResumeVal->addIncoming(II.getStartValue(), BB); 3538 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3539 } 3540 3541 // Add a check in the middle block to see if we have completed 3542 // all of the iterations in the first vector loop. 3543 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3544 Value *CmpN = 3545 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3546 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3547 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3548 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3549 3550 // Get ready to start creating new instructions into the vectorized body. 3551 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3552 3553 // Save the state. 3554 LoopVectorPreHeader = Lp->getLoopPreheader(); 3555 LoopScalarPreHeader = ScalarPH; 3556 LoopMiddleBlock = MiddleBlock; 3557 LoopExitBlock = ExitBlock; 3558 LoopVectorBody = VecBody; 3559 LoopScalarBody = OldBasicBlock; 3560 3561 // Keep all loop hints from the original loop on the vector loop (we'll 3562 // replace the vectorizer-specific hints below). 3563 if (MDNode *LID = OrigLoop->getLoopID()) 3564 Lp->setLoopID(LID); 3565 3566 LoopVectorizeHints Hints(Lp, true, *ORE); 3567 Hints.setAlreadyVectorized(); 3568 } 3569 3570 // Fix up external users of the induction variable. At this point, we are 3571 // in LCSSA form, with all external PHIs that use the IV having one input value, 3572 // coming from the remainder loop. We need those PHIs to also have a correct 3573 // value for the IV when arriving directly from the middle block. 3574 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3575 const InductionDescriptor &II, 3576 Value *CountRoundDown, Value *EndValue, 3577 BasicBlock *MiddleBlock) { 3578 // There are two kinds of external IV usages - those that use the value 3579 // computed in the last iteration (the PHI) and those that use the penultimate 3580 // value (the value that feeds into the phi from the loop latch). 3581 // We allow both, but they, obviously, have different values. 3582 3583 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3584 3585 DenseMap<Value *, Value *> MissingVals; 3586 3587 // An external user of the last iteration's value should see the value that 3588 // the remainder loop uses to initialize its own IV. 3589 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3590 for (User *U : PostInc->users()) { 3591 Instruction *UI = cast<Instruction>(U); 3592 if (!OrigLoop->contains(UI)) { 3593 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3594 MissingVals[UI] = EndValue; 3595 } 3596 } 3597 3598 // An external user of the penultimate value need to see EndValue - Step. 3599 // The simplest way to get this is to recompute it from the constituent SCEVs, 3600 // that is Start + (Step * (CRD - 1)). 3601 for (User *U : OrigPhi->users()) { 3602 auto *UI = cast<Instruction>(U); 3603 if (!OrigLoop->contains(UI)) { 3604 const DataLayout &DL = 3605 OrigLoop->getHeader()->getModule()->getDataLayout(); 3606 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3607 3608 IRBuilder<> B(MiddleBlock->getTerminator()); 3609 Value *CountMinusOne = B.CreateSub( 3610 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3611 Value *CMO = 3612 !II.getStep()->getType()->isIntegerTy() 3613 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3614 II.getStep()->getType()) 3615 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3616 CMO->setName("cast.cmo"); 3617 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3618 Escape->setName("ind.escape"); 3619 MissingVals[UI] = Escape; 3620 } 3621 } 3622 3623 for (auto &I : MissingVals) { 3624 PHINode *PHI = cast<PHINode>(I.first); 3625 // One corner case we have to handle is two IVs "chasing" each-other, 3626 // that is %IV2 = phi [...], [ %IV1, %latch ] 3627 // In this case, if IV1 has an external use, we need to avoid adding both 3628 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3629 // don't already have an incoming value for the middle block. 3630 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3631 PHI->addIncoming(I.second, MiddleBlock); 3632 } 3633 } 3634 3635 namespace { 3636 struct CSEDenseMapInfo { 3637 static bool canHandle(const Instruction *I) { 3638 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3639 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3640 } 3641 static inline Instruction *getEmptyKey() { 3642 return DenseMapInfo<Instruction *>::getEmptyKey(); 3643 } 3644 static inline Instruction *getTombstoneKey() { 3645 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3646 } 3647 static unsigned getHashValue(const Instruction *I) { 3648 assert(canHandle(I) && "Unknown instruction!"); 3649 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3650 I->value_op_end())); 3651 } 3652 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3653 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3654 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3655 return LHS == RHS; 3656 return LHS->isIdenticalTo(RHS); 3657 } 3658 }; 3659 } 3660 3661 ///\brief Perform cse of induction variable instructions. 3662 static void cse(BasicBlock *BB) { 3663 // Perform simple cse. 3664 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3665 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3666 Instruction *In = &*I++; 3667 3668 if (!CSEDenseMapInfo::canHandle(In)) 3669 continue; 3670 3671 // Check if we can replace this instruction with any of the 3672 // visited instructions. 3673 if (Instruction *V = CSEMap.lookup(In)) { 3674 In->replaceAllUsesWith(V); 3675 In->eraseFromParent(); 3676 continue; 3677 } 3678 3679 CSEMap[In] = In; 3680 } 3681 } 3682 3683 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3684 /// convenience wrapper for the type-based getScalarizationOverhead API. 3685 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3686 const TargetTransformInfo &TTI) { 3687 if (VF == 1) 3688 return 0; 3689 3690 unsigned Cost = 0; 3691 Type *RetTy = ToVectorTy(I->getType(), VF); 3692 if (!RetTy->isVoidTy() && 3693 (!isa<LoadInst>(I) || 3694 !TTI.supportsEfficientVectorElementLoadStore())) 3695 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3696 3697 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3698 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3699 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3700 } 3701 else if (!isa<StoreInst>(I) || 3702 !TTI.supportsEfficientVectorElementLoadStore()) { 3703 SmallVector<const Value *, 4> Operands(I->operand_values()); 3704 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3705 } 3706 3707 return Cost; 3708 } 3709 3710 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3711 // Return the cost of the instruction, including scalarization overhead if it's 3712 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3713 // i.e. either vector version isn't available, or is too expensive. 3714 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3715 const TargetTransformInfo &TTI, 3716 const TargetLibraryInfo *TLI, 3717 bool &NeedToScalarize) { 3718 Function *F = CI->getCalledFunction(); 3719 StringRef FnName = CI->getCalledFunction()->getName(); 3720 Type *ScalarRetTy = CI->getType(); 3721 SmallVector<Type *, 4> Tys, ScalarTys; 3722 for (auto &ArgOp : CI->arg_operands()) 3723 ScalarTys.push_back(ArgOp->getType()); 3724 3725 // Estimate cost of scalarized vector call. The source operands are assumed 3726 // to be vectors, so we need to extract individual elements from there, 3727 // execute VF scalar calls, and then gather the result into the vector return 3728 // value. 3729 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3730 if (VF == 1) 3731 return ScalarCallCost; 3732 3733 // Compute corresponding vector type for return value and arguments. 3734 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3735 for (Type *ScalarTy : ScalarTys) 3736 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3737 3738 // Compute costs of unpacking argument values for the scalar calls and 3739 // packing the return values to a vector. 3740 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3741 3742 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3743 3744 // If we can't emit a vector call for this function, then the currently found 3745 // cost is the cost we need to return. 3746 NeedToScalarize = true; 3747 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3748 return Cost; 3749 3750 // If the corresponding vector cost is cheaper, return its cost. 3751 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3752 if (VectorCallCost < Cost) { 3753 NeedToScalarize = false; 3754 return VectorCallCost; 3755 } 3756 return Cost; 3757 } 3758 3759 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3760 // factor VF. Return the cost of the instruction, including scalarization 3761 // overhead if it's needed. 3762 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3763 const TargetTransformInfo &TTI, 3764 const TargetLibraryInfo *TLI) { 3765 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3766 assert(ID && "Expected intrinsic call!"); 3767 3768 FastMathFlags FMF; 3769 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3770 FMF = FPMO->getFastMathFlags(); 3771 3772 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3773 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3774 } 3775 3776 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3777 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3778 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3779 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3780 } 3781 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3782 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3783 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3784 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3785 } 3786 3787 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3788 // For every instruction `I` in MinBWs, truncate the operands, create a 3789 // truncated version of `I` and reextend its result. InstCombine runs 3790 // later and will remove any ext/trunc pairs. 3791 // 3792 SmallPtrSet<Value *, 4> Erased; 3793 for (const auto &KV : Cost->getMinimalBitwidths()) { 3794 // If the value wasn't vectorized, we must maintain the original scalar 3795 // type. The absence of the value from VectorLoopValueMap indicates that it 3796 // wasn't vectorized. 3797 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3798 continue; 3799 for (unsigned Part = 0; Part < UF; ++Part) { 3800 Value *I = getOrCreateVectorValue(KV.first, Part); 3801 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3802 continue; 3803 Type *OriginalTy = I->getType(); 3804 Type *ScalarTruncatedTy = 3805 IntegerType::get(OriginalTy->getContext(), KV.second); 3806 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3807 OriginalTy->getVectorNumElements()); 3808 if (TruncatedTy == OriginalTy) 3809 continue; 3810 3811 IRBuilder<> B(cast<Instruction>(I)); 3812 auto ShrinkOperand = [&](Value *V) -> Value * { 3813 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3814 if (ZI->getSrcTy() == TruncatedTy) 3815 return ZI->getOperand(0); 3816 return B.CreateZExtOrTrunc(V, TruncatedTy); 3817 }; 3818 3819 // The actual instruction modification depends on the instruction type, 3820 // unfortunately. 3821 Value *NewI = nullptr; 3822 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3823 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3824 ShrinkOperand(BO->getOperand(1))); 3825 3826 // Any wrapping introduced by shrinking this operation shouldn't be 3827 // considered undefined behavior. So, we can't unconditionally copy 3828 // arithmetic wrapping flags to NewI. 3829 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3830 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3831 NewI = 3832 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3833 ShrinkOperand(CI->getOperand(1))); 3834 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3835 NewI = B.CreateSelect(SI->getCondition(), 3836 ShrinkOperand(SI->getTrueValue()), 3837 ShrinkOperand(SI->getFalseValue())); 3838 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3839 switch (CI->getOpcode()) { 3840 default: 3841 llvm_unreachable("Unhandled cast!"); 3842 case Instruction::Trunc: 3843 NewI = ShrinkOperand(CI->getOperand(0)); 3844 break; 3845 case Instruction::SExt: 3846 NewI = B.CreateSExtOrTrunc( 3847 CI->getOperand(0), 3848 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3849 break; 3850 case Instruction::ZExt: 3851 NewI = B.CreateZExtOrTrunc( 3852 CI->getOperand(0), 3853 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3854 break; 3855 } 3856 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3857 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3858 auto *O0 = B.CreateZExtOrTrunc( 3859 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3860 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3861 auto *O1 = B.CreateZExtOrTrunc( 3862 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3863 3864 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3865 } else if (isa<LoadInst>(I)) { 3866 // Don't do anything with the operands, just extend the result. 3867 continue; 3868 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3869 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3870 auto *O0 = B.CreateZExtOrTrunc( 3871 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3872 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3873 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3874 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3875 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3876 auto *O0 = B.CreateZExtOrTrunc( 3877 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3878 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3879 } else { 3880 llvm_unreachable("Unhandled instruction type!"); 3881 } 3882 3883 // Lastly, extend the result. 3884 NewI->takeName(cast<Instruction>(I)); 3885 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3886 I->replaceAllUsesWith(Res); 3887 cast<Instruction>(I)->eraseFromParent(); 3888 Erased.insert(I); 3889 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3890 } 3891 } 3892 3893 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3894 for (const auto &KV : Cost->getMinimalBitwidths()) { 3895 // If the value wasn't vectorized, we must maintain the original scalar 3896 // type. The absence of the value from VectorLoopValueMap indicates that it 3897 // wasn't vectorized. 3898 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3899 continue; 3900 for (unsigned Part = 0; Part < UF; ++Part) { 3901 Value *I = getOrCreateVectorValue(KV.first, Part); 3902 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3903 if (Inst && Inst->use_empty()) { 3904 Value *NewI = Inst->getOperand(0); 3905 Inst->eraseFromParent(); 3906 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3907 } 3908 } 3909 } 3910 } 3911 3912 void InnerLoopVectorizer::fixVectorizedLoop() { 3913 // Insert truncates and extends for any truncated instructions as hints to 3914 // InstCombine. 3915 if (VF > 1) 3916 truncateToMinimalBitwidths(); 3917 3918 // At this point every instruction in the original loop is widened to a 3919 // vector form. Now we need to fix the recurrences in the loop. These PHI 3920 // nodes are currently empty because we did not want to introduce cycles. 3921 // This is the second stage of vectorizing recurrences. 3922 fixCrossIterationPHIs(); 3923 3924 // Update the dominator tree. 3925 // 3926 // FIXME: After creating the structure of the new loop, the dominator tree is 3927 // no longer up-to-date, and it remains that way until we update it 3928 // here. An out-of-date dominator tree is problematic for SCEV, 3929 // because SCEVExpander uses it to guide code generation. The 3930 // vectorizer use SCEVExpanders in several places. Instead, we should 3931 // keep the dominator tree up-to-date as we go. 3932 updateAnalysis(); 3933 3934 // Fix-up external users of the induction variables. 3935 for (auto &Entry : *Legal->getInductionVars()) 3936 fixupIVUsers(Entry.first, Entry.second, 3937 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3938 IVEndValues[Entry.first], LoopMiddleBlock); 3939 3940 fixLCSSAPHIs(); 3941 predicateInstructions(); 3942 3943 // Remove redundant induction instructions. 3944 cse(LoopVectorBody); 3945 } 3946 3947 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3948 // In order to support recurrences we need to be able to vectorize Phi nodes. 3949 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3950 // stage #2: We now need to fix the recurrences by adding incoming edges to 3951 // the currently empty PHI nodes. At this point every instruction in the 3952 // original loop is widened to a vector form so we can use them to construct 3953 // the incoming edges. 3954 for (Instruction &I : *OrigLoop->getHeader()) { 3955 PHINode *Phi = dyn_cast<PHINode>(&I); 3956 if (!Phi) 3957 break; 3958 // Handle first-order recurrences and reductions that need to be fixed. 3959 if (Legal->isFirstOrderRecurrence(Phi)) 3960 fixFirstOrderRecurrence(Phi); 3961 else if (Legal->isReductionVariable(Phi)) 3962 fixReduction(Phi); 3963 } 3964 } 3965 3966 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3967 3968 // This is the second phase of vectorizing first-order recurrences. An 3969 // overview of the transformation is described below. Suppose we have the 3970 // following loop. 3971 // 3972 // for (int i = 0; i < n; ++i) 3973 // b[i] = a[i] - a[i - 1]; 3974 // 3975 // There is a first-order recurrence on "a". For this loop, the shorthand 3976 // scalar IR looks like: 3977 // 3978 // scalar.ph: 3979 // s_init = a[-1] 3980 // br scalar.body 3981 // 3982 // scalar.body: 3983 // i = phi [0, scalar.ph], [i+1, scalar.body] 3984 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3985 // s2 = a[i] 3986 // b[i] = s2 - s1 3987 // br cond, scalar.body, ... 3988 // 3989 // In this example, s1 is a recurrence because it's value depends on the 3990 // previous iteration. In the first phase of vectorization, we created a 3991 // temporary value for s1. We now complete the vectorization and produce the 3992 // shorthand vector IR shown below (for VF = 4, UF = 1). 3993 // 3994 // vector.ph: 3995 // v_init = vector(..., ..., ..., a[-1]) 3996 // br vector.body 3997 // 3998 // vector.body 3999 // i = phi [0, vector.ph], [i+4, vector.body] 4000 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4001 // v2 = a[i, i+1, i+2, i+3]; 4002 // v3 = vector(v1(3), v2(0, 1, 2)) 4003 // b[i, i+1, i+2, i+3] = v2 - v3 4004 // br cond, vector.body, middle.block 4005 // 4006 // middle.block: 4007 // x = v2(3) 4008 // br scalar.ph 4009 // 4010 // scalar.ph: 4011 // s_init = phi [x, middle.block], [a[-1], otherwise] 4012 // br scalar.body 4013 // 4014 // After execution completes the vector loop, we extract the next value of 4015 // the recurrence (x) to use as the initial value in the scalar loop. 4016 4017 // Get the original loop preheader and single loop latch. 4018 auto *Preheader = OrigLoop->getLoopPreheader(); 4019 auto *Latch = OrigLoop->getLoopLatch(); 4020 4021 // Get the initial and previous values of the scalar recurrence. 4022 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4023 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4024 4025 // Create a vector from the initial value. 4026 auto *VectorInit = ScalarInit; 4027 if (VF > 1) { 4028 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4029 VectorInit = Builder.CreateInsertElement( 4030 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4031 Builder.getInt32(VF - 1), "vector.recur.init"); 4032 } 4033 4034 // We constructed a temporary phi node in the first phase of vectorization. 4035 // This phi node will eventually be deleted. 4036 Builder.SetInsertPoint( 4037 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4038 4039 // Create a phi node for the new recurrence. The current value will either be 4040 // the initial value inserted into a vector or loop-varying vector value. 4041 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4042 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4043 4044 // Get the vectorized previous value of the last part UF - 1. It appears last 4045 // among all unrolled iterations, due to the order of their construction. 4046 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4047 4048 // Set the insertion point after the previous value if it is an instruction. 4049 // Note that the previous value may have been constant-folded so it is not 4050 // guaranteed to be an instruction in the vector loop. Also, if the previous 4051 // value is a phi node, we should insert after all the phi nodes to avoid 4052 // breaking basic block verification. 4053 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4054 isa<PHINode>(PreviousLastPart)) 4055 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4056 else 4057 Builder.SetInsertPoint( 4058 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4059 4060 // We will construct a vector for the recurrence by combining the values for 4061 // the current and previous iterations. This is the required shuffle mask. 4062 SmallVector<Constant *, 8> ShuffleMask(VF); 4063 ShuffleMask[0] = Builder.getInt32(VF - 1); 4064 for (unsigned I = 1; I < VF; ++I) 4065 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4066 4067 // The vector from which to take the initial value for the current iteration 4068 // (actual or unrolled). Initially, this is the vector phi node. 4069 Value *Incoming = VecPhi; 4070 4071 // Shuffle the current and previous vector and update the vector parts. 4072 for (unsigned Part = 0; Part < UF; ++Part) { 4073 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4074 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4075 auto *Shuffle = 4076 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4077 ConstantVector::get(ShuffleMask)) 4078 : Incoming; 4079 PhiPart->replaceAllUsesWith(Shuffle); 4080 cast<Instruction>(PhiPart)->eraseFromParent(); 4081 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4082 Incoming = PreviousPart; 4083 } 4084 4085 // Fix the latch value of the new recurrence in the vector loop. 4086 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4087 4088 // Extract the last vector element in the middle block. This will be the 4089 // initial value for the recurrence when jumping to the scalar loop. 4090 auto *ExtractForScalar = Incoming; 4091 if (VF > 1) { 4092 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4093 ExtractForScalar = Builder.CreateExtractElement( 4094 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4095 } 4096 // Extract the second last element in the middle block if the 4097 // Phi is used outside the loop. We need to extract the phi itself 4098 // and not the last element (the phi update in the current iteration). This 4099 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4100 // when the scalar loop is not run at all. 4101 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4102 if (VF > 1) 4103 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4104 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4105 // When loop is unrolled without vectorizing, initialize 4106 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4107 // `Incoming`. This is analogous to the vectorized case above: extracting the 4108 // second last element when VF > 1. 4109 else if (UF > 1) 4110 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4111 4112 // Fix the initial value of the original recurrence in the scalar loop. 4113 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4114 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4115 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4116 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4117 Start->addIncoming(Incoming, BB); 4118 } 4119 4120 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4121 Phi->setName("scalar.recur"); 4122 4123 // Finally, fix users of the recurrence outside the loop. The users will need 4124 // either the last value of the scalar recurrence or the last value of the 4125 // vector recurrence we extracted in the middle block. Since the loop is in 4126 // LCSSA form, we just need to find the phi node for the original scalar 4127 // recurrence in the exit block, and then add an edge for the middle block. 4128 for (auto &I : *LoopExitBlock) { 4129 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4130 if (!LCSSAPhi) 4131 break; 4132 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4133 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4134 break; 4135 } 4136 } 4137 } 4138 4139 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4140 Constant *Zero = Builder.getInt32(0); 4141 4142 // Get it's reduction variable descriptor. 4143 assert(Legal->isReductionVariable(Phi) && 4144 "Unable to find the reduction variable"); 4145 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4146 4147 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4148 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4149 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4150 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4151 RdxDesc.getMinMaxRecurrenceKind(); 4152 setDebugLocFromInst(Builder, ReductionStartValue); 4153 4154 // We need to generate a reduction vector from the incoming scalar. 4155 // To do so, we need to generate the 'identity' vector and override 4156 // one of the elements with the incoming scalar reduction. We need 4157 // to do it in the vector-loop preheader. 4158 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4159 4160 // This is the vector-clone of the value that leaves the loop. 4161 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4162 4163 // Find the reduction identity variable. Zero for addition, or, xor, 4164 // one for multiplication, -1 for And. 4165 Value *Identity; 4166 Value *VectorStart; 4167 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4168 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4169 // MinMax reduction have the start value as their identify. 4170 if (VF == 1) { 4171 VectorStart = Identity = ReductionStartValue; 4172 } else { 4173 VectorStart = Identity = 4174 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4175 } 4176 } else { 4177 // Handle other reduction kinds: 4178 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4179 RK, VecTy->getScalarType()); 4180 if (VF == 1) { 4181 Identity = Iden; 4182 // This vector is the Identity vector where the first element is the 4183 // incoming scalar reduction. 4184 VectorStart = ReductionStartValue; 4185 } else { 4186 Identity = ConstantVector::getSplat(VF, Iden); 4187 4188 // This vector is the Identity vector where the first element is the 4189 // incoming scalar reduction. 4190 VectorStart = 4191 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4192 } 4193 } 4194 4195 // Fix the vector-loop phi. 4196 4197 // Reductions do not have to start at zero. They can start with 4198 // any loop invariant values. 4199 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4200 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4201 for (unsigned Part = 0; Part < UF; ++Part) { 4202 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4203 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4204 // Make sure to add the reduction stat value only to the 4205 // first unroll part. 4206 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4207 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4208 cast<PHINode>(VecRdxPhi) 4209 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4210 } 4211 4212 // Before each round, move the insertion point right between 4213 // the PHIs and the values we are going to write. 4214 // This allows us to write both PHINodes and the extractelement 4215 // instructions. 4216 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4217 4218 setDebugLocFromInst(Builder, LoopExitInst); 4219 4220 // If the vector reduction can be performed in a smaller type, we truncate 4221 // then extend the loop exit value to enable InstCombine to evaluate the 4222 // entire expression in the smaller type. 4223 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4224 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4225 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4226 VectorParts RdxParts(UF); 4227 for (unsigned Part = 0; Part < UF; ++Part) { 4228 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4229 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4230 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4231 : Builder.CreateZExt(Trunc, VecTy); 4232 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4233 UI != RdxParts[Part]->user_end();) 4234 if (*UI != Trunc) { 4235 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4236 RdxParts[Part] = Extnd; 4237 } else { 4238 ++UI; 4239 } 4240 } 4241 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4242 for (unsigned Part = 0; Part < UF; ++Part) { 4243 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4244 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4245 } 4246 } 4247 4248 // Reduce all of the unrolled parts into a single vector. 4249 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4250 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4251 setDebugLocFromInst(Builder, ReducedPartRdx); 4252 for (unsigned Part = 1; Part < UF; ++Part) { 4253 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4254 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4255 // Floating point operations had to be 'fast' to enable the reduction. 4256 ReducedPartRdx = addFastMathFlag( 4257 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4258 ReducedPartRdx, "bin.rdx")); 4259 else 4260 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4261 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4262 } 4263 4264 if (VF > 1) { 4265 bool NoNaN = Legal->hasFunNoNaNAttr(); 4266 ReducedPartRdx = 4267 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4268 // If the reduction can be performed in a smaller type, we need to extend 4269 // the reduction to the wider type before we branch to the original loop. 4270 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4271 ReducedPartRdx = 4272 RdxDesc.isSigned() 4273 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4274 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4275 } 4276 4277 // Create a phi node that merges control-flow from the backedge-taken check 4278 // block and the middle block. 4279 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4280 LoopScalarPreHeader->getTerminator()); 4281 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4282 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4283 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4284 4285 // Now, we need to fix the users of the reduction variable 4286 // inside and outside of the scalar remainder loop. 4287 // We know that the loop is in LCSSA form. We need to update the 4288 // PHI nodes in the exit blocks. 4289 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4290 LEE = LoopExitBlock->end(); 4291 LEI != LEE; ++LEI) { 4292 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4293 if (!LCSSAPhi) 4294 break; 4295 4296 // All PHINodes need to have a single entry edge, or two if 4297 // we already fixed them. 4298 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4299 4300 // We found a reduction value exit-PHI. Update it with the 4301 // incoming bypass edge. 4302 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4303 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4304 } // end of the LCSSA phi scan. 4305 4306 // Fix the scalar loop reduction variable with the incoming reduction sum 4307 // from the vector body and from the backedge value. 4308 int IncomingEdgeBlockIdx = 4309 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4310 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4311 // Pick the other block. 4312 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4313 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4314 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4315 } 4316 4317 void InnerLoopVectorizer::fixLCSSAPHIs() { 4318 for (Instruction &LEI : *LoopExitBlock) { 4319 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4320 if (!LCSSAPhi) 4321 break; 4322 if (LCSSAPhi->getNumIncomingValues() == 1) { 4323 assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) && 4324 "Incoming value isn't loop invariant"); 4325 LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock); 4326 } 4327 } 4328 } 4329 4330 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4331 4332 // The basic block and loop containing the predicated instruction. 4333 auto *PredBB = PredInst->getParent(); 4334 auto *VectorLoop = LI->getLoopFor(PredBB); 4335 4336 // Initialize a worklist with the operands of the predicated instruction. 4337 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4338 4339 // Holds instructions that we need to analyze again. An instruction may be 4340 // reanalyzed if we don't yet know if we can sink it or not. 4341 SmallVector<Instruction *, 8> InstsToReanalyze; 4342 4343 // Returns true if a given use occurs in the predicated block. Phi nodes use 4344 // their operands in their corresponding predecessor blocks. 4345 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4346 auto *I = cast<Instruction>(U.getUser()); 4347 BasicBlock *BB = I->getParent(); 4348 if (auto *Phi = dyn_cast<PHINode>(I)) 4349 BB = Phi->getIncomingBlock( 4350 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4351 return BB == PredBB; 4352 }; 4353 4354 // Iteratively sink the scalarized operands of the predicated instruction 4355 // into the block we created for it. When an instruction is sunk, it's 4356 // operands are then added to the worklist. The algorithm ends after one pass 4357 // through the worklist doesn't sink a single instruction. 4358 bool Changed; 4359 do { 4360 4361 // Add the instructions that need to be reanalyzed to the worklist, and 4362 // reset the changed indicator. 4363 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4364 InstsToReanalyze.clear(); 4365 Changed = false; 4366 4367 while (!Worklist.empty()) { 4368 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4369 4370 // We can't sink an instruction if it is a phi node, is already in the 4371 // predicated block, is not in the loop, or may have side effects. 4372 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4373 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4374 continue; 4375 4376 // It's legal to sink the instruction if all its uses occur in the 4377 // predicated block. Otherwise, there's nothing to do yet, and we may 4378 // need to reanalyze the instruction. 4379 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4380 InstsToReanalyze.push_back(I); 4381 continue; 4382 } 4383 4384 // Move the instruction to the beginning of the predicated block, and add 4385 // it's operands to the worklist. 4386 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4387 Worklist.insert(I->op_begin(), I->op_end()); 4388 4389 // The sinking may have enabled other instructions to be sunk, so we will 4390 // need to iterate. 4391 Changed = true; 4392 } 4393 } while (Changed); 4394 } 4395 4396 void InnerLoopVectorizer::predicateInstructions() { 4397 4398 // For each instruction I marked for predication on value C, split I into its 4399 // own basic block to form an if-then construct over C. Since I may be fed by 4400 // an extractelement instruction or other scalar operand, we try to 4401 // iteratively sink its scalar operands into the predicated block. If I feeds 4402 // an insertelement instruction, we try to move this instruction into the 4403 // predicated block as well. For non-void types, a phi node will be created 4404 // for the resulting value (either vector or scalar). 4405 // 4406 // So for some predicated instruction, e.g. the conditional sdiv in: 4407 // 4408 // for.body: 4409 // ... 4410 // %add = add nsw i32 %mul, %0 4411 // %cmp5 = icmp sgt i32 %2, 7 4412 // br i1 %cmp5, label %if.then, label %if.end 4413 // 4414 // if.then: 4415 // %div = sdiv i32 %0, %1 4416 // br label %if.end 4417 // 4418 // if.end: 4419 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4420 // 4421 // the sdiv at this point is scalarized and if-converted using a select. 4422 // The inactive elements in the vector are not used, but the predicated 4423 // instruction is still executed for all vector elements, essentially: 4424 // 4425 // vector.body: 4426 // ... 4427 // %17 = add nsw <2 x i32> %16, %wide.load 4428 // %29 = extractelement <2 x i32> %wide.load, i32 0 4429 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4430 // %31 = sdiv i32 %29, %30 4431 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4432 // %35 = extractelement <2 x i32> %wide.load, i32 1 4433 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4434 // %37 = sdiv i32 %35, %36 4435 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4436 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4437 // 4438 // Predication will now re-introduce the original control flow to avoid false 4439 // side-effects by the sdiv instructions on the inactive elements, yielding 4440 // (after cleanup): 4441 // 4442 // vector.body: 4443 // ... 4444 // %5 = add nsw <2 x i32> %4, %wide.load 4445 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4446 // %9 = extractelement <2 x i1> %8, i32 0 4447 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4448 // 4449 // pred.sdiv.if: 4450 // %10 = extractelement <2 x i32> %wide.load, i32 0 4451 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4452 // %12 = sdiv i32 %10, %11 4453 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4454 // br label %pred.sdiv.continue 4455 // 4456 // pred.sdiv.continue: 4457 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4458 // %15 = extractelement <2 x i1> %8, i32 1 4459 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4460 // 4461 // pred.sdiv.if54: 4462 // %16 = extractelement <2 x i32> %wide.load, i32 1 4463 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4464 // %18 = sdiv i32 %16, %17 4465 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4466 // br label %pred.sdiv.continue55 4467 // 4468 // pred.sdiv.continue55: 4469 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4470 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4471 4472 for (auto KV : PredicatedInstructions) { 4473 BasicBlock::iterator I(KV.first); 4474 BasicBlock *Head = I->getParent(); 4475 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4476 /*BranchWeights=*/nullptr, DT, LI); 4477 I->moveBefore(T); 4478 sinkScalarOperands(&*I); 4479 4480 BasicBlock *PredicatedBlock = I->getParent(); 4481 Twine BBNamePrefix = Twine("pred.") + I->getOpcodeName(); 4482 PredicatedBlock->setName(BBNamePrefix + ".if"); 4483 PredicatedBlock->getSingleSuccessor()->setName(BBNamePrefix + ".continue"); 4484 4485 // If the instruction is non-void create a Phi node at reconvergence point. 4486 if (!I->getType()->isVoidTy()) { 4487 Value *IncomingTrue = nullptr; 4488 Value *IncomingFalse = nullptr; 4489 4490 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4491 // If the predicated instruction is feeding an insert-element, move it 4492 // into the Then block; Phi node will be created for the vector. 4493 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4494 IEI->moveBefore(T); 4495 IncomingTrue = IEI; // the new vector with the inserted element. 4496 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4497 } else { 4498 // Phi node will be created for the scalar predicated instruction. 4499 IncomingTrue = &*I; 4500 IncomingFalse = UndefValue::get(I->getType()); 4501 } 4502 4503 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4504 assert(PostDom && "Then block has multiple successors"); 4505 PHINode *Phi = 4506 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4507 IncomingTrue->replaceAllUsesWith(Phi); 4508 Phi->addIncoming(IncomingFalse, Head); 4509 Phi->addIncoming(IncomingTrue, I->getParent()); 4510 } 4511 } 4512 4513 DEBUG(DT->verifyDomTree()); 4514 } 4515 4516 InnerLoopVectorizer::VectorParts 4517 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4518 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4519 4520 // Look for cached value. 4521 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4522 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 4523 if (ECEntryIt != EdgeMaskCache.end()) 4524 return ECEntryIt->second; 4525 4526 VectorParts SrcMask = createBlockInMask(Src); 4527 4528 // The terminator has to be a branch inst! 4529 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4530 assert(BI && "Unexpected terminator found"); 4531 4532 if (!BI->isConditional()) 4533 return EdgeMaskCache[Edge] = SrcMask; 4534 4535 VectorParts EdgeMask(UF); 4536 for (unsigned Part = 0; Part < UF; ++Part) { 4537 auto *EdgeMaskPart = getOrCreateVectorValue(BI->getCondition(), Part); 4538 if (BI->getSuccessor(0) != Dst) 4539 EdgeMaskPart = Builder.CreateNot(EdgeMaskPart); 4540 4541 if (SrcMask[Part]) // Otherwise block in-mask is all-one, no need to AND. 4542 EdgeMaskPart = Builder.CreateAnd(EdgeMaskPart, SrcMask[Part]); 4543 4544 EdgeMask[Part] = EdgeMaskPart; 4545 } 4546 4547 return EdgeMaskCache[Edge] = EdgeMask; 4548 } 4549 4550 InnerLoopVectorizer::VectorParts 4551 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4552 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4553 4554 // Look for cached value. 4555 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 4556 if (BCEntryIt != BlockMaskCache.end()) 4557 return BCEntryIt->second; 4558 4559 // All-one mask is modelled as no-mask following the convention for masked 4560 // load/store/gather/scatter. Initialize BlockMask to no-mask. 4561 VectorParts BlockMask(UF); 4562 for (unsigned Part = 0; Part < UF; ++Part) 4563 BlockMask[Part] = nullptr; 4564 4565 // Loop incoming mask is all-one. 4566 if (OrigLoop->getHeader() == BB) 4567 return BlockMaskCache[BB] = BlockMask; 4568 4569 // This is the block mask. We OR all incoming edges. 4570 for (auto *Predecessor : predecessors(BB)) { 4571 VectorParts EdgeMask = createEdgeMask(Predecessor, BB); 4572 if (!EdgeMask[0]) // Mask of predecessor is all-one so mask of block is too. 4573 return BlockMaskCache[BB] = EdgeMask; 4574 4575 if (!BlockMask[0]) { // BlockMask has its initialized nullptr value. 4576 BlockMask = EdgeMask; 4577 continue; 4578 } 4579 4580 for (unsigned Part = 0; Part < UF; ++Part) 4581 BlockMask[Part] = Builder.CreateOr(BlockMask[Part], EdgeMask[Part]); 4582 } 4583 4584 return BlockMaskCache[BB] = BlockMask; 4585 } 4586 4587 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4588 unsigned VF) { 4589 PHINode *P = cast<PHINode>(PN); 4590 // In order to support recurrences we need to be able to vectorize Phi nodes. 4591 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4592 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4593 // this value when we vectorize all of the instructions that use the PHI. 4594 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4595 for (unsigned Part = 0; Part < UF; ++Part) { 4596 // This is phase one of vectorizing PHIs. 4597 Type *VecTy = 4598 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4599 Value *EntryPart = PHINode::Create( 4600 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4601 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4602 } 4603 return; 4604 } 4605 4606 setDebugLocFromInst(Builder, P); 4607 // Check for PHI nodes that are lowered to vector selects. 4608 if (P->getParent() != OrigLoop->getHeader()) { 4609 // We know that all PHIs in non-header blocks are converted into 4610 // selects, so we don't have to worry about the insertion order and we 4611 // can just use the builder. 4612 // At this point we generate the predication tree. There may be 4613 // duplications since this is a simple recursive scan, but future 4614 // optimizations will clean it up. 4615 4616 unsigned NumIncoming = P->getNumIncomingValues(); 4617 4618 // Generate a sequence of selects of the form: 4619 // SELECT(Mask3, In3, 4620 // SELECT(Mask2, In2, 4621 // ( ...))) 4622 VectorParts Entry(UF); 4623 for (unsigned In = 0; In < NumIncoming; In++) { 4624 VectorParts Cond = 4625 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4626 4627 for (unsigned Part = 0; Part < UF; ++Part) { 4628 Value *In0 = getOrCreateVectorValue(P->getIncomingValue(In), Part); 4629 // We might have single edge PHIs (blocks) - use an identity 4630 // 'select' for the first PHI operand. 4631 if (In == 0) 4632 Entry[Part] = Builder.CreateSelect(Cond[Part], In0, In0); 4633 else 4634 // Select between the current value and the previous incoming edge 4635 // based on the incoming mask. 4636 Entry[Part] = Builder.CreateSelect(Cond[Part], In0, Entry[Part], 4637 "predphi"); 4638 } 4639 } 4640 for (unsigned Part = 0; Part < UF; ++Part) 4641 VectorLoopValueMap.setVectorValue(P, Part, Entry[Part]); 4642 return; 4643 } 4644 4645 // This PHINode must be an induction variable. 4646 // Make sure that we know about it. 4647 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4648 4649 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4650 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4651 4652 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4653 // which can be found from the original scalar operations. 4654 switch (II.getKind()) { 4655 case InductionDescriptor::IK_NoInduction: 4656 llvm_unreachable("Unknown induction"); 4657 case InductionDescriptor::IK_IntInduction: 4658 case InductionDescriptor::IK_FpInduction: 4659 return widenIntOrFpInduction(P); 4660 case InductionDescriptor::IK_PtrInduction: { 4661 // Handle the pointer induction variable case. 4662 assert(P->getType()->isPointerTy() && "Unexpected type."); 4663 // This is the normalized GEP that starts counting at zero. 4664 Value *PtrInd = Induction; 4665 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4666 // Determine the number of scalars we need to generate for each unroll 4667 // iteration. If the instruction is uniform, we only need to generate the 4668 // first lane. Otherwise, we generate all VF values. 4669 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4670 // These are the scalar results. Notice that we don't generate vector GEPs 4671 // because scalar GEPs result in better code. 4672 for (unsigned Part = 0; Part < UF; ++Part) { 4673 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4674 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4675 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4676 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4677 SclrGep->setName("next.gep"); 4678 VectorLoopValueMap.setScalarValue(P, Part, Lane, SclrGep); 4679 } 4680 } 4681 return; 4682 } 4683 } 4684 } 4685 4686 /// A helper function for checking whether an integer division-related 4687 /// instruction may divide by zero (in which case it must be predicated if 4688 /// executed conditionally in the scalar code). 4689 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4690 /// Non-zero divisors that are non compile-time constants will not be 4691 /// converted into multiplication, so we will still end up scalarizing 4692 /// the division, but can do so w/o predication. 4693 static bool mayDivideByZero(Instruction &I) { 4694 assert((I.getOpcode() == Instruction::UDiv || 4695 I.getOpcode() == Instruction::SDiv || 4696 I.getOpcode() == Instruction::URem || 4697 I.getOpcode() == Instruction::SRem) && 4698 "Unexpected instruction"); 4699 Value *Divisor = I.getOperand(1); 4700 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4701 return !CInt || CInt->isZero(); 4702 } 4703 4704 void InnerLoopVectorizer::vectorizeInstruction(Instruction &I) { 4705 // Scalarize instructions that should remain scalar after vectorization. 4706 if (VF > 1 && 4707 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || isa<DbgInfoIntrinsic>(&I)) && 4708 shouldScalarizeInstruction(&I)) { 4709 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4710 return; 4711 } 4712 4713 switch (I.getOpcode()) { 4714 case Instruction::Br: 4715 // Nothing to do for PHIs and BR, since we already took care of the 4716 // loop control flow instructions. 4717 break; 4718 case Instruction::PHI: { 4719 // Vectorize PHINodes. 4720 widenPHIInstruction(&I, UF, VF); 4721 break; 4722 } // End of PHI. 4723 case Instruction::GetElementPtr: { 4724 // Construct a vector GEP by widening the operands of the scalar GEP as 4725 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4726 // results in a vector of pointers when at least one operand of the GEP 4727 // is vector-typed. Thus, to keep the representation compact, we only use 4728 // vector-typed operands for loop-varying values. 4729 auto *GEP = cast<GetElementPtrInst>(&I); 4730 4731 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4732 // If we are vectorizing, but the GEP has only loop-invariant operands, 4733 // the GEP we build (by only using vector-typed operands for 4734 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4735 // produce a vector of pointers, we need to either arbitrarily pick an 4736 // operand to broadcast, or broadcast a clone of the original GEP. 4737 // Here, we broadcast a clone of the original. 4738 // 4739 // TODO: If at some point we decide to scalarize instructions having 4740 // loop-invariant operands, this special case will no longer be 4741 // required. We would add the scalarization decision to 4742 // collectLoopScalars() and teach getVectorValue() to broadcast 4743 // the lane-zero scalar value. 4744 auto *Clone = Builder.Insert(GEP->clone()); 4745 for (unsigned Part = 0; Part < UF; ++Part) { 4746 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4747 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4748 addMetadata(EntryPart, GEP); 4749 } 4750 } else { 4751 // If the GEP has at least one loop-varying operand, we are sure to 4752 // produce a vector of pointers. But if we are only unrolling, we want 4753 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4754 // produce with the code below will be scalar (if VF == 1) or vector 4755 // (otherwise). Note that for the unroll-only case, we still maintain 4756 // values in the vector mapping with initVector, as we do for other 4757 // instructions. 4758 for (unsigned Part = 0; Part < UF; ++Part) { 4759 4760 // The pointer operand of the new GEP. If it's loop-invariant, we 4761 // won't broadcast it. 4762 auto *Ptr = 4763 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4764 ? GEP->getPointerOperand() 4765 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4766 4767 // Collect all the indices for the new GEP. If any index is 4768 // loop-invariant, we won't broadcast it. 4769 SmallVector<Value *, 4> Indices; 4770 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4771 if (OrigLoop->isLoopInvariant(U.get())) 4772 Indices.push_back(U.get()); 4773 else 4774 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4775 } 4776 4777 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4778 // but it should be a vector, otherwise. 4779 auto *NewGEP = GEP->isInBounds() 4780 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4781 : Builder.CreateGEP(Ptr, Indices); 4782 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4783 "NewGEP is not a pointer vector"); 4784 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4785 addMetadata(NewGEP, GEP); 4786 } 4787 } 4788 4789 break; 4790 } 4791 case Instruction::UDiv: 4792 case Instruction::SDiv: 4793 case Instruction::SRem: 4794 case Instruction::URem: 4795 // Scalarize with predication if this instruction may divide by zero and 4796 // block execution is conditional, otherwise fallthrough. 4797 if (Legal->isScalarWithPredication(&I)) { 4798 scalarizeInstruction(&I, true); 4799 break; 4800 } 4801 LLVM_FALLTHROUGH; 4802 case Instruction::Add: 4803 case Instruction::FAdd: 4804 case Instruction::Sub: 4805 case Instruction::FSub: 4806 case Instruction::Mul: 4807 case Instruction::FMul: 4808 case Instruction::FDiv: 4809 case Instruction::FRem: 4810 case Instruction::Shl: 4811 case Instruction::LShr: 4812 case Instruction::AShr: 4813 case Instruction::And: 4814 case Instruction::Or: 4815 case Instruction::Xor: { 4816 // Just widen binops. 4817 auto *BinOp = cast<BinaryOperator>(&I); 4818 setDebugLocFromInst(Builder, BinOp); 4819 4820 for (unsigned Part = 0; Part < UF; ++Part) { 4821 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4822 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4823 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4824 4825 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4826 VecOp->copyIRFlags(BinOp); 4827 4828 // Use this vector value for all users of the original instruction. 4829 VectorLoopValueMap.setVectorValue(&I, Part, V); 4830 addMetadata(V, BinOp); 4831 } 4832 4833 break; 4834 } 4835 case Instruction::Select: { 4836 // Widen selects. 4837 // If the selector is loop invariant we can create a select 4838 // instruction with a scalar condition. Otherwise, use vector-select. 4839 auto *SE = PSE.getSE(); 4840 bool InvariantCond = 4841 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4842 setDebugLocFromInst(Builder, &I); 4843 4844 // The condition can be loop invariant but still defined inside the 4845 // loop. This means that we can't just use the original 'cond' value. 4846 // We have to take the 'vectorized' value and pick the first lane. 4847 // Instcombine will make this a no-op. 4848 4849 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), 0, 0); 4850 4851 for (unsigned Part = 0; Part < UF; ++Part) { 4852 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4853 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4854 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4855 Value *Sel = 4856 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4857 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4858 addMetadata(Sel, &I); 4859 } 4860 4861 break; 4862 } 4863 4864 case Instruction::ICmp: 4865 case Instruction::FCmp: { 4866 // Widen compares. Generate vector compares. 4867 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4868 auto *Cmp = dyn_cast<CmpInst>(&I); 4869 setDebugLocFromInst(Builder, Cmp); 4870 for (unsigned Part = 0; Part < UF; ++Part) { 4871 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4872 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4873 Value *C = nullptr; 4874 if (FCmp) { 4875 // Propagate fast math flags. 4876 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4877 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4878 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4879 } else { 4880 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4881 } 4882 VectorLoopValueMap.setVectorValue(&I, Part, C); 4883 addMetadata(C, &I); 4884 } 4885 4886 break; 4887 } 4888 4889 case Instruction::Store: 4890 case Instruction::Load: 4891 vectorizeMemoryInstruction(&I); 4892 break; 4893 case Instruction::ZExt: 4894 case Instruction::SExt: 4895 case Instruction::FPToUI: 4896 case Instruction::FPToSI: 4897 case Instruction::FPExt: 4898 case Instruction::PtrToInt: 4899 case Instruction::IntToPtr: 4900 case Instruction::SIToFP: 4901 case Instruction::UIToFP: 4902 case Instruction::Trunc: 4903 case Instruction::FPTrunc: 4904 case Instruction::BitCast: { 4905 auto *CI = dyn_cast<CastInst>(&I); 4906 setDebugLocFromInst(Builder, CI); 4907 4908 // Optimize the special case where the source is a constant integer 4909 // induction variable. Notice that we can only optimize the 'trunc' case 4910 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4911 // (c) other casts depend on pointer size. 4912 if (Cost->isOptimizableIVTruncate(CI, VF)) { 4913 widenIntOrFpInduction(cast<PHINode>(CI->getOperand(0)), 4914 cast<TruncInst>(CI)); 4915 break; 4916 } 4917 4918 /// Vectorize casts. 4919 Type *DestTy = 4920 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4921 4922 for (unsigned Part = 0; Part < UF; ++Part) { 4923 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4924 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4925 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4926 addMetadata(Cast, &I); 4927 } 4928 break; 4929 } 4930 4931 case Instruction::Call: { 4932 // Ignore dbg intrinsics. 4933 if (isa<DbgInfoIntrinsic>(I)) 4934 break; 4935 setDebugLocFromInst(Builder, &I); 4936 4937 Module *M = I.getParent()->getParent()->getParent(); 4938 auto *CI = cast<CallInst>(&I); 4939 4940 StringRef FnName = CI->getCalledFunction()->getName(); 4941 Function *F = CI->getCalledFunction(); 4942 Type *RetTy = ToVectorTy(CI->getType(), VF); 4943 SmallVector<Type *, 4> Tys; 4944 for (Value *ArgOperand : CI->arg_operands()) 4945 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4946 4947 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4948 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4949 ID == Intrinsic::lifetime_start)) { 4950 scalarizeInstruction(&I); 4951 break; 4952 } 4953 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4954 // version of the instruction. 4955 // Is it beneficial to perform intrinsic call compared to lib call? 4956 bool NeedToScalarize; 4957 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4958 bool UseVectorIntrinsic = 4959 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4960 if (!UseVectorIntrinsic && NeedToScalarize) { 4961 scalarizeInstruction(&I); 4962 break; 4963 } 4964 4965 for (unsigned Part = 0; Part < UF; ++Part) { 4966 SmallVector<Value *, 4> Args; 4967 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4968 Value *Arg = CI->getArgOperand(i); 4969 // Some intrinsics have a scalar argument - don't replace it with a 4970 // vector. 4971 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4972 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4973 Args.push_back(Arg); 4974 } 4975 4976 Function *VectorF; 4977 if (UseVectorIntrinsic) { 4978 // Use vector version of the intrinsic. 4979 Type *TysForDecl[] = {CI->getType()}; 4980 if (VF > 1) 4981 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4982 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4983 } else { 4984 // Use vector version of the library call. 4985 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4986 assert(!VFnName.empty() && "Vector function name is empty."); 4987 VectorF = M->getFunction(VFnName); 4988 if (!VectorF) { 4989 // Generate a declaration 4990 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4991 VectorF = 4992 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4993 VectorF->copyAttributesFrom(F); 4994 } 4995 } 4996 assert(VectorF && "Can't create vector function."); 4997 4998 SmallVector<OperandBundleDef, 1> OpBundles; 4999 CI->getOperandBundlesAsDefs(OpBundles); 5000 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5001 5002 if (isa<FPMathOperator>(V)) 5003 V->copyFastMathFlags(CI); 5004 5005 VectorLoopValueMap.setVectorValue(&I, Part, V); 5006 addMetadata(V, &I); 5007 } 5008 5009 break; 5010 } 5011 5012 default: 5013 // All other instructions are unsupported. Scalarize them. 5014 scalarizeInstruction(&I); 5015 break; 5016 } // end of switch. 5017 } 5018 5019 void InnerLoopVectorizer::updateAnalysis() { 5020 // Forget the original basic block. 5021 PSE.getSE()->forgetLoop(OrigLoop); 5022 5023 // Update the dominator tree information. 5024 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 5025 "Entry does not dominate exit."); 5026 5027 DT->addNewBlock(LI->getLoopFor(LoopVectorBody)->getHeader(), 5028 LoopVectorPreHeader); 5029 DT->addNewBlock(LoopMiddleBlock, 5030 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 5031 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 5032 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 5033 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 5034 5035 DEBUG(DT->verifyDomTree()); 5036 } 5037 5038 /// \brief Check whether it is safe to if-convert this phi node. 5039 /// 5040 /// Phi nodes with constant expressions that can trap are not safe to if 5041 /// convert. 5042 static bool canIfConvertPHINodes(BasicBlock *BB) { 5043 for (Instruction &I : *BB) { 5044 auto *Phi = dyn_cast<PHINode>(&I); 5045 if (!Phi) 5046 return true; 5047 for (Value *V : Phi->incoming_values()) 5048 if (auto *C = dyn_cast<Constant>(V)) 5049 if (C->canTrap()) 5050 return false; 5051 } 5052 return true; 5053 } 5054 5055 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5056 if (!EnableIfConversion) { 5057 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5058 << "if-conversion is disabled"); 5059 return false; 5060 } 5061 5062 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5063 5064 // A list of pointers that we can safely read and write to. 5065 SmallPtrSet<Value *, 8> SafePointes; 5066 5067 // Collect safe addresses. 5068 for (BasicBlock *BB : TheLoop->blocks()) { 5069 if (blockNeedsPredication(BB)) 5070 continue; 5071 5072 for (Instruction &I : *BB) 5073 if (auto *Ptr = getPointerOperand(&I)) 5074 SafePointes.insert(Ptr); 5075 } 5076 5077 // Collect the blocks that need predication. 5078 BasicBlock *Header = TheLoop->getHeader(); 5079 for (BasicBlock *BB : TheLoop->blocks()) { 5080 // We don't support switch statements inside loops. 5081 if (!isa<BranchInst>(BB->getTerminator())) { 5082 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5083 << "loop contains a switch statement"); 5084 return false; 5085 } 5086 5087 // We must be able to predicate all blocks that need to be predicated. 5088 if (blockNeedsPredication(BB)) { 5089 if (!blockCanBePredicated(BB, SafePointes)) { 5090 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5091 << "control flow cannot be substituted for a select"); 5092 return false; 5093 } 5094 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5095 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5096 << "control flow cannot be substituted for a select"); 5097 return false; 5098 } 5099 } 5100 5101 // We can if-convert this loop. 5102 return true; 5103 } 5104 5105 bool LoopVectorizationLegality::canVectorize() { 5106 // Store the result and return it at the end instead of exiting early, in case 5107 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 5108 bool Result = true; 5109 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5110 // be canonicalized. 5111 if (!TheLoop->getLoopPreheader()) { 5112 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5113 << "loop control flow is not understood by vectorizer"); 5114 if (ORE->allowExtraAnalysis()) 5115 Result = false; 5116 else 5117 return false; 5118 } 5119 5120 // FIXME: The code is currently dead, since the loop gets sent to 5121 // LoopVectorizationLegality is already an innermost loop. 5122 // 5123 // We can only vectorize innermost loops. 5124 if (!TheLoop->empty()) { 5125 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5126 << "loop is not the innermost loop"); 5127 if (ORE->allowExtraAnalysis()) 5128 Result = false; 5129 else 5130 return false; 5131 } 5132 5133 // We must have a single backedge. 5134 if (TheLoop->getNumBackEdges() != 1) { 5135 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5136 << "loop control flow is not understood by vectorizer"); 5137 if (ORE->allowExtraAnalysis()) 5138 Result = false; 5139 else 5140 return false; 5141 } 5142 5143 // We must have a single exiting block. 5144 if (!TheLoop->getExitingBlock()) { 5145 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5146 << "loop control flow is not understood by vectorizer"); 5147 if (ORE->allowExtraAnalysis()) 5148 Result = false; 5149 else 5150 return false; 5151 } 5152 5153 // We only handle bottom-tested loops, i.e. loop in which the condition is 5154 // checked at the end of each iteration. With that we can assume that all 5155 // instructions in the loop are executed the same number of times. 5156 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5157 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5158 << "loop control flow is not understood by vectorizer"); 5159 if (ORE->allowExtraAnalysis()) 5160 Result = false; 5161 else 5162 return false; 5163 } 5164 5165 // We need to have a loop header. 5166 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5167 << '\n'); 5168 5169 // Check if we can if-convert non-single-bb loops. 5170 unsigned NumBlocks = TheLoop->getNumBlocks(); 5171 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5172 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5173 if (ORE->allowExtraAnalysis()) 5174 Result = false; 5175 else 5176 return false; 5177 } 5178 5179 // Check if we can vectorize the instructions and CFG in this loop. 5180 if (!canVectorizeInstrs()) { 5181 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5182 if (ORE->allowExtraAnalysis()) 5183 Result = false; 5184 else 5185 return false; 5186 } 5187 5188 // Go over each instruction and look at memory deps. 5189 if (!canVectorizeMemory()) { 5190 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5191 if (ORE->allowExtraAnalysis()) 5192 Result = false; 5193 else 5194 return false; 5195 } 5196 5197 DEBUG(dbgs() << "LV: We can vectorize this loop" 5198 << (LAI->getRuntimePointerChecking()->Need 5199 ? " (with a runtime bound check)" 5200 : "") 5201 << "!\n"); 5202 5203 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5204 5205 // If an override option has been passed in for interleaved accesses, use it. 5206 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5207 UseInterleaved = EnableInterleavedMemAccesses; 5208 5209 // Analyze interleaved memory accesses. 5210 if (UseInterleaved) 5211 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5212 5213 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5214 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5215 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5216 5217 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5218 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5219 << "Too many SCEV assumptions need to be made and checked " 5220 << "at runtime"); 5221 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5222 if (ORE->allowExtraAnalysis()) 5223 Result = false; 5224 else 5225 return false; 5226 } 5227 5228 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5229 // we can vectorize, and at this point we don't have any other mem analysis 5230 // which may limit our maximum vectorization factor, so just return true with 5231 // no restrictions. 5232 return Result; 5233 } 5234 5235 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5236 if (Ty->isPointerTy()) 5237 return DL.getIntPtrType(Ty); 5238 5239 // It is possible that char's or short's overflow when we ask for the loop's 5240 // trip count, work around this by changing the type size. 5241 if (Ty->getScalarSizeInBits() < 32) 5242 return Type::getInt32Ty(Ty->getContext()); 5243 5244 return Ty; 5245 } 5246 5247 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5248 Ty0 = convertPointerToIntegerType(DL, Ty0); 5249 Ty1 = convertPointerToIntegerType(DL, Ty1); 5250 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5251 return Ty0; 5252 return Ty1; 5253 } 5254 5255 /// \brief Check that the instruction has outside loop users and is not an 5256 /// identified reduction variable. 5257 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5258 SmallPtrSetImpl<Value *> &AllowedExit) { 5259 // Reduction and Induction instructions are allowed to have exit users. All 5260 // other instructions must not have external users. 5261 if (!AllowedExit.count(Inst)) 5262 // Check that all of the users of the loop are inside the BB. 5263 for (User *U : Inst->users()) { 5264 Instruction *UI = cast<Instruction>(U); 5265 // This user may be a reduction exit value. 5266 if (!TheLoop->contains(UI)) { 5267 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5268 return true; 5269 } 5270 } 5271 return false; 5272 } 5273 5274 void LoopVectorizationLegality::addInductionPhi( 5275 PHINode *Phi, const InductionDescriptor &ID, 5276 SmallPtrSetImpl<Value *> &AllowedExit) { 5277 Inductions[Phi] = ID; 5278 Type *PhiTy = Phi->getType(); 5279 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5280 5281 // Get the widest type. 5282 if (!PhiTy->isFloatingPointTy()) { 5283 if (!WidestIndTy) 5284 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5285 else 5286 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5287 } 5288 5289 // Int inductions are special because we only allow one IV. 5290 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5291 ID.getConstIntStepValue() && 5292 ID.getConstIntStepValue()->isOne() && 5293 isa<Constant>(ID.getStartValue()) && 5294 cast<Constant>(ID.getStartValue())->isNullValue()) { 5295 5296 // Use the phi node with the widest type as induction. Use the last 5297 // one if there are multiple (no good reason for doing this other 5298 // than it is expedient). We've checked that it begins at zero and 5299 // steps by one, so this is a canonical induction variable. 5300 if (!PrimaryInduction || PhiTy == WidestIndTy) 5301 PrimaryInduction = Phi; 5302 } 5303 5304 // Both the PHI node itself, and the "post-increment" value feeding 5305 // back into the PHI node may have external users. 5306 // We can allow those uses, except if the SCEVs we have for them rely 5307 // on predicates that only hold within the loop, since allowing the exit 5308 // currently means re-using this SCEV outside the loop. 5309 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5310 AllowedExit.insert(Phi); 5311 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5312 } 5313 5314 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5315 return; 5316 } 5317 5318 bool LoopVectorizationLegality::canVectorizeInstrs() { 5319 BasicBlock *Header = TheLoop->getHeader(); 5320 5321 // Look for the attribute signaling the absence of NaNs. 5322 Function &F = *Header->getParent(); 5323 HasFunNoNaNAttr = 5324 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5325 5326 // For each block in the loop. 5327 for (BasicBlock *BB : TheLoop->blocks()) { 5328 // Scan the instructions in the block and look for hazards. 5329 for (Instruction &I : *BB) { 5330 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5331 Type *PhiTy = Phi->getType(); 5332 // Check that this PHI type is allowed. 5333 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5334 !PhiTy->isPointerTy()) { 5335 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5336 << "loop control flow is not understood by vectorizer"); 5337 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5338 return false; 5339 } 5340 5341 // If this PHINode is not in the header block, then we know that we 5342 // can convert it to select during if-conversion. No need to check if 5343 // the PHIs in this block are induction or reduction variables. 5344 if (BB != Header) { 5345 // Check that this instruction has no outside users or is an 5346 // identified reduction value with an outside user. 5347 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5348 continue; 5349 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5350 << "value could not be identified as " 5351 "an induction or reduction variable"); 5352 return false; 5353 } 5354 5355 // We only allow if-converted PHIs with exactly two incoming values. 5356 if (Phi->getNumIncomingValues() != 2) { 5357 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5358 << "control flow not understood by vectorizer"); 5359 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5360 return false; 5361 } 5362 5363 RecurrenceDescriptor RedDes; 5364 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5365 if (RedDes.hasUnsafeAlgebra()) 5366 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5367 AllowedExit.insert(RedDes.getLoopExitInstr()); 5368 Reductions[Phi] = RedDes; 5369 continue; 5370 } 5371 5372 InductionDescriptor ID; 5373 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5374 addInductionPhi(Phi, ID, AllowedExit); 5375 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5376 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5377 continue; 5378 } 5379 5380 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5381 SinkAfter, DT)) { 5382 FirstOrderRecurrences.insert(Phi); 5383 continue; 5384 } 5385 5386 // As a last resort, coerce the PHI to a AddRec expression 5387 // and re-try classifying it a an induction PHI. 5388 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5389 addInductionPhi(Phi, ID, AllowedExit); 5390 continue; 5391 } 5392 5393 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5394 << "value that could not be identified as " 5395 "reduction is used outside the loop"); 5396 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5397 return false; 5398 } // end of PHI handling 5399 5400 // We handle calls that: 5401 // * Are debug info intrinsics. 5402 // * Have a mapping to an IR intrinsic. 5403 // * Have a vector version available. 5404 auto *CI = dyn_cast<CallInst>(&I); 5405 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5406 !isa<DbgInfoIntrinsic>(CI) && 5407 !(CI->getCalledFunction() && TLI && 5408 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5409 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5410 << "call instruction cannot be vectorized"); 5411 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5412 return false; 5413 } 5414 5415 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5416 // second argument is the same (i.e. loop invariant) 5417 if (CI && hasVectorInstrinsicScalarOpd( 5418 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5419 auto *SE = PSE.getSE(); 5420 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5421 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5422 << "intrinsic instruction cannot be vectorized"); 5423 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5424 return false; 5425 } 5426 } 5427 5428 // Check that the instruction return type is vectorizable. 5429 // Also, we can't vectorize extractelement instructions. 5430 if ((!VectorType::isValidElementType(I.getType()) && 5431 !I.getType()->isVoidTy()) || 5432 isa<ExtractElementInst>(I)) { 5433 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5434 << "instruction return type cannot be vectorized"); 5435 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5436 return false; 5437 } 5438 5439 // Check that the stored type is vectorizable. 5440 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5441 Type *T = ST->getValueOperand()->getType(); 5442 if (!VectorType::isValidElementType(T)) { 5443 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5444 << "store instruction cannot be vectorized"); 5445 return false; 5446 } 5447 5448 // FP instructions can allow unsafe algebra, thus vectorizable by 5449 // non-IEEE-754 compliant SIMD units. 5450 // This applies to floating-point math operations and calls, not memory 5451 // operations, shuffles, or casts, as they don't change precision or 5452 // semantics. 5453 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5454 !I.hasUnsafeAlgebra()) { 5455 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5456 Hints->setPotentiallyUnsafe(); 5457 } 5458 5459 // Reduction instructions are allowed to have exit users. 5460 // All other instructions must not have external users. 5461 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5462 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5463 << "value cannot be used outside the loop"); 5464 return false; 5465 } 5466 5467 } // next instr. 5468 } 5469 5470 if (!PrimaryInduction) { 5471 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5472 if (Inductions.empty()) { 5473 ORE->emit(createMissedAnalysis("NoInductionVariable") 5474 << "loop induction variable could not be identified"); 5475 return false; 5476 } 5477 } 5478 5479 // Now we know the widest induction type, check if our found induction 5480 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5481 // will create another. 5482 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5483 PrimaryInduction = nullptr; 5484 5485 return true; 5486 } 5487 5488 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5489 5490 // We should not collect Scalars more than once per VF. Right now, this 5491 // function is called from collectUniformsAndScalars(), which already does 5492 // this check. Collecting Scalars for VF=1 does not make any sense. 5493 assert(VF >= 2 && !Scalars.count(VF) && 5494 "This function should not be visited twice for the same VF"); 5495 5496 SmallSetVector<Instruction *, 8> Worklist; 5497 5498 // These sets are used to seed the analysis with pointers used by memory 5499 // accesses that will remain scalar. 5500 SmallSetVector<Instruction *, 8> ScalarPtrs; 5501 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5502 5503 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5504 // The pointer operands of loads and stores will be scalar as long as the 5505 // memory access is not a gather or scatter operation. The value operand of a 5506 // store will remain scalar if the store is scalarized. 5507 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5508 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5509 assert(WideningDecision != CM_Unknown && 5510 "Widening decision should be ready at this moment"); 5511 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5512 if (Ptr == Store->getValueOperand()) 5513 return WideningDecision == CM_Scalarize; 5514 assert(Ptr == getPointerOperand(MemAccess) && 5515 "Ptr is neither a value or pointer operand"); 5516 return WideningDecision != CM_GatherScatter; 5517 }; 5518 5519 // A helper that returns true if the given value is a bitcast or 5520 // getelementptr instruction contained in the loop. 5521 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5522 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5523 isa<GetElementPtrInst>(V)) && 5524 !TheLoop->isLoopInvariant(V); 5525 }; 5526 5527 // A helper that evaluates a memory access's use of a pointer. If the use 5528 // will be a scalar use, and the pointer is only used by memory accesses, we 5529 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5530 // PossibleNonScalarPtrs. 5531 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5532 5533 // We only care about bitcast and getelementptr instructions contained in 5534 // the loop. 5535 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5536 return; 5537 5538 // If the pointer has already been identified as scalar (e.g., if it was 5539 // also identified as uniform), there's nothing to do. 5540 auto *I = cast<Instruction>(Ptr); 5541 if (Worklist.count(I)) 5542 return; 5543 5544 // If the use of the pointer will be a scalar use, and all users of the 5545 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5546 // place the pointer in PossibleNonScalarPtrs. 5547 if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) { 5548 return isa<LoadInst>(U) || isa<StoreInst>(U); 5549 })) 5550 ScalarPtrs.insert(I); 5551 else 5552 PossibleNonScalarPtrs.insert(I); 5553 }; 5554 5555 // We seed the scalars analysis with three classes of instructions: (1) 5556 // instructions marked uniform-after-vectorization, (2) bitcast and 5557 // getelementptr instructions used by memory accesses requiring a scalar use, 5558 // and (3) pointer induction variables and their update instructions (we 5559 // currently only scalarize these). 5560 // 5561 // (1) Add to the worklist all instructions that have been identified as 5562 // uniform-after-vectorization. 5563 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5564 5565 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5566 // memory accesses requiring a scalar use. The pointer operands of loads and 5567 // stores will be scalar as long as the memory accesses is not a gather or 5568 // scatter operation. The value operand of a store will remain scalar if the 5569 // store is scalarized. 5570 for (auto *BB : TheLoop->blocks()) 5571 for (auto &I : *BB) { 5572 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5573 evaluatePtrUse(Load, Load->getPointerOperand()); 5574 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5575 evaluatePtrUse(Store, Store->getPointerOperand()); 5576 evaluatePtrUse(Store, Store->getValueOperand()); 5577 } 5578 } 5579 for (auto *I : ScalarPtrs) 5580 if (!PossibleNonScalarPtrs.count(I)) { 5581 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5582 Worklist.insert(I); 5583 } 5584 5585 // (3) Add to the worklist all pointer induction variables and their update 5586 // instructions. 5587 // 5588 // TODO: Once we are able to vectorize pointer induction variables we should 5589 // no longer insert them into the worklist here. 5590 auto *Latch = TheLoop->getLoopLatch(); 5591 for (auto &Induction : *Legal->getInductionVars()) { 5592 auto *Ind = Induction.first; 5593 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5594 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5595 continue; 5596 Worklist.insert(Ind); 5597 Worklist.insert(IndUpdate); 5598 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5599 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5600 } 5601 5602 // Insert the forced scalars. 5603 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5604 // induction variable when the PHI user is scalarized. 5605 if (ForcedScalars.count(VF)) 5606 for (auto *I : ForcedScalars.find(VF)->second) 5607 Worklist.insert(I); 5608 5609 // Expand the worklist by looking through any bitcasts and getelementptr 5610 // instructions we've already identified as scalar. This is similar to the 5611 // expansion step in collectLoopUniforms(); however, here we're only 5612 // expanding to include additional bitcasts and getelementptr instructions. 5613 unsigned Idx = 0; 5614 while (Idx != Worklist.size()) { 5615 Instruction *Dst = Worklist[Idx++]; 5616 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5617 continue; 5618 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5619 if (all_of(Src->users(), [&](User *U) -> bool { 5620 auto *J = cast<Instruction>(U); 5621 return !TheLoop->contains(J) || Worklist.count(J) || 5622 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5623 isScalarUse(J, Src)); 5624 })) { 5625 Worklist.insert(Src); 5626 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5627 } 5628 } 5629 5630 // An induction variable will remain scalar if all users of the induction 5631 // variable and induction variable update remain scalar. 5632 for (auto &Induction : *Legal->getInductionVars()) { 5633 auto *Ind = Induction.first; 5634 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5635 5636 // We already considered pointer induction variables, so there's no reason 5637 // to look at their users again. 5638 // 5639 // TODO: Once we are able to vectorize pointer induction variables we 5640 // should no longer skip over them here. 5641 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5642 continue; 5643 5644 // Determine if all users of the induction variable are scalar after 5645 // vectorization. 5646 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5647 auto *I = cast<Instruction>(U); 5648 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5649 }); 5650 if (!ScalarInd) 5651 continue; 5652 5653 // Determine if all users of the induction variable update instruction are 5654 // scalar after vectorization. 5655 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5656 auto *I = cast<Instruction>(U); 5657 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5658 }); 5659 if (!ScalarIndUpdate) 5660 continue; 5661 5662 // The induction variable and its update instruction will remain scalar. 5663 Worklist.insert(Ind); 5664 Worklist.insert(IndUpdate); 5665 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5666 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5667 } 5668 5669 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5670 } 5671 5672 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5673 if (!blockNeedsPredication(I->getParent())) 5674 return false; 5675 switch(I->getOpcode()) { 5676 default: 5677 break; 5678 case Instruction::Store: 5679 return !isMaskRequired(I); 5680 case Instruction::UDiv: 5681 case Instruction::SDiv: 5682 case Instruction::SRem: 5683 case Instruction::URem: 5684 return mayDivideByZero(*I); 5685 } 5686 return false; 5687 } 5688 5689 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5690 unsigned VF) { 5691 // Get and ensure we have a valid memory instruction. 5692 LoadInst *LI = dyn_cast<LoadInst>(I); 5693 StoreInst *SI = dyn_cast<StoreInst>(I); 5694 assert((LI || SI) && "Invalid memory instruction"); 5695 5696 auto *Ptr = getPointerOperand(I); 5697 5698 // In order to be widened, the pointer should be consecutive, first of all. 5699 if (!isConsecutivePtr(Ptr)) 5700 return false; 5701 5702 // If the instruction is a store located in a predicated block, it will be 5703 // scalarized. 5704 if (isScalarWithPredication(I)) 5705 return false; 5706 5707 // If the instruction's allocated size doesn't equal it's type size, it 5708 // requires padding and will be scalarized. 5709 auto &DL = I->getModule()->getDataLayout(); 5710 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5711 if (hasIrregularType(ScalarTy, DL, VF)) 5712 return false; 5713 5714 return true; 5715 } 5716 5717 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5718 5719 // We should not collect Uniforms more than once per VF. Right now, 5720 // this function is called from collectUniformsAndScalars(), which 5721 // already does this check. Collecting Uniforms for VF=1 does not make any 5722 // sense. 5723 5724 assert(VF >= 2 && !Uniforms.count(VF) && 5725 "This function should not be visited twice for the same VF"); 5726 5727 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5728 // not analyze again. Uniforms.count(VF) will return 1. 5729 Uniforms[VF].clear(); 5730 5731 // We now know that the loop is vectorizable! 5732 // Collect instructions inside the loop that will remain uniform after 5733 // vectorization. 5734 5735 // Global values, params and instructions outside of current loop are out of 5736 // scope. 5737 auto isOutOfScope = [&](Value *V) -> bool { 5738 Instruction *I = dyn_cast<Instruction>(V); 5739 return (!I || !TheLoop->contains(I)); 5740 }; 5741 5742 SetVector<Instruction *> Worklist; 5743 BasicBlock *Latch = TheLoop->getLoopLatch(); 5744 5745 // Start with the conditional branch. If the branch condition is an 5746 // instruction contained in the loop that is only used by the branch, it is 5747 // uniform. 5748 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5749 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5750 Worklist.insert(Cmp); 5751 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5752 } 5753 5754 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5755 // are pointers that are treated like consecutive pointers during 5756 // vectorization. The pointer operands of interleaved accesses are an 5757 // example. 5758 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5759 5760 // Holds pointer operands of instructions that are possibly non-uniform. 5761 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5762 5763 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5764 InstWidening WideningDecision = getWideningDecision(I, VF); 5765 assert(WideningDecision != CM_Unknown && 5766 "Widening decision should be ready at this moment"); 5767 5768 return (WideningDecision == CM_Widen || 5769 WideningDecision == CM_Interleave); 5770 }; 5771 // Iterate over the instructions in the loop, and collect all 5772 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5773 // that a consecutive-like pointer operand will be scalarized, we collect it 5774 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5775 // getelementptr instruction can be used by both vectorized and scalarized 5776 // memory instructions. For example, if a loop loads and stores from the same 5777 // location, but the store is conditional, the store will be scalarized, and 5778 // the getelementptr won't remain uniform. 5779 for (auto *BB : TheLoop->blocks()) 5780 for (auto &I : *BB) { 5781 5782 // If there's no pointer operand, there's nothing to do. 5783 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5784 if (!Ptr) 5785 continue; 5786 5787 // True if all users of Ptr are memory accesses that have Ptr as their 5788 // pointer operand. 5789 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5790 return getPointerOperand(U) == Ptr; 5791 }); 5792 5793 // Ensure the memory instruction will not be scalarized or used by 5794 // gather/scatter, making its pointer operand non-uniform. If the pointer 5795 // operand is used by any instruction other than a memory access, we 5796 // conservatively assume the pointer operand may be non-uniform. 5797 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5798 PossibleNonUniformPtrs.insert(Ptr); 5799 5800 // If the memory instruction will be vectorized and its pointer operand 5801 // is consecutive-like, or interleaving - the pointer operand should 5802 // remain uniform. 5803 else 5804 ConsecutiveLikePtrs.insert(Ptr); 5805 } 5806 5807 // Add to the Worklist all consecutive and consecutive-like pointers that 5808 // aren't also identified as possibly non-uniform. 5809 for (auto *V : ConsecutiveLikePtrs) 5810 if (!PossibleNonUniformPtrs.count(V)) { 5811 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5812 Worklist.insert(V); 5813 } 5814 5815 // Expand Worklist in topological order: whenever a new instruction 5816 // is added , its users should be either already inside Worklist, or 5817 // out of scope. It ensures a uniform instruction will only be used 5818 // by uniform instructions or out of scope instructions. 5819 unsigned idx = 0; 5820 while (idx != Worklist.size()) { 5821 Instruction *I = Worklist[idx++]; 5822 5823 for (auto OV : I->operand_values()) { 5824 if (isOutOfScope(OV)) 5825 continue; 5826 auto *OI = cast<Instruction>(OV); 5827 if (all_of(OI->users(), [&](User *U) -> bool { 5828 auto *J = cast<Instruction>(U); 5829 return !TheLoop->contains(J) || Worklist.count(J) || 5830 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5831 })) { 5832 Worklist.insert(OI); 5833 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5834 } 5835 } 5836 } 5837 5838 // Returns true if Ptr is the pointer operand of a memory access instruction 5839 // I, and I is known to not require scalarization. 5840 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5841 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5842 }; 5843 5844 // For an instruction to be added into Worklist above, all its users inside 5845 // the loop should also be in Worklist. However, this condition cannot be 5846 // true for phi nodes that form a cyclic dependence. We must process phi 5847 // nodes separately. An induction variable will remain uniform if all users 5848 // of the induction variable and induction variable update remain uniform. 5849 // The code below handles both pointer and non-pointer induction variables. 5850 for (auto &Induction : *Legal->getInductionVars()) { 5851 auto *Ind = Induction.first; 5852 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5853 5854 // Determine if all users of the induction variable are uniform after 5855 // vectorization. 5856 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5857 auto *I = cast<Instruction>(U); 5858 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5859 isVectorizedMemAccessUse(I, Ind); 5860 }); 5861 if (!UniformInd) 5862 continue; 5863 5864 // Determine if all users of the induction variable update instruction are 5865 // uniform after vectorization. 5866 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5867 auto *I = cast<Instruction>(U); 5868 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5869 isVectorizedMemAccessUse(I, IndUpdate); 5870 }); 5871 if (!UniformIndUpdate) 5872 continue; 5873 5874 // The induction variable and its update instruction will remain uniform. 5875 Worklist.insert(Ind); 5876 Worklist.insert(IndUpdate); 5877 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5878 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5879 } 5880 5881 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5882 } 5883 5884 bool LoopVectorizationLegality::canVectorizeMemory() { 5885 LAI = &(*GetLAA)(*TheLoop); 5886 InterleaveInfo.setLAI(LAI); 5887 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5888 if (LAR) { 5889 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5890 "loop not vectorized: ", *LAR); 5891 ORE->emit(VR); 5892 } 5893 if (!LAI->canVectorizeMemory()) 5894 return false; 5895 5896 if (LAI->hasStoreToLoopInvariantAddress()) { 5897 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5898 << "write to a loop invariant address could not be vectorized"); 5899 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5900 return false; 5901 } 5902 5903 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5904 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5905 5906 return true; 5907 } 5908 5909 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5910 Value *In0 = const_cast<Value *>(V); 5911 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5912 if (!PN) 5913 return false; 5914 5915 return Inductions.count(PN); 5916 } 5917 5918 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5919 return FirstOrderRecurrences.count(Phi); 5920 } 5921 5922 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5923 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5924 } 5925 5926 bool LoopVectorizationLegality::blockCanBePredicated( 5927 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5928 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5929 5930 for (Instruction &I : *BB) { 5931 // Check that we don't have a constant expression that can trap as operand. 5932 for (Value *Operand : I.operands()) { 5933 if (auto *C = dyn_cast<Constant>(Operand)) 5934 if (C->canTrap()) 5935 return false; 5936 } 5937 // We might be able to hoist the load. 5938 if (I.mayReadFromMemory()) { 5939 auto *LI = dyn_cast<LoadInst>(&I); 5940 if (!LI) 5941 return false; 5942 if (!SafePtrs.count(LI->getPointerOperand())) { 5943 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5944 isLegalMaskedGather(LI->getType())) { 5945 MaskedOp.insert(LI); 5946 continue; 5947 } 5948 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5949 if (IsAnnotatedParallel) 5950 continue; 5951 return false; 5952 } 5953 } 5954 5955 if (I.mayWriteToMemory()) { 5956 auto *SI = dyn_cast<StoreInst>(&I); 5957 // We only support predication of stores in basic blocks with one 5958 // predecessor. 5959 if (!SI) 5960 return false; 5961 5962 // Build a masked store if it is legal for the target. 5963 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5964 SI->getPointerOperand()) || 5965 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5966 MaskedOp.insert(SI); 5967 continue; 5968 } 5969 5970 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5971 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5972 5973 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5974 !isSinglePredecessor) 5975 return false; 5976 } 5977 if (I.mayThrow()) 5978 return false; 5979 } 5980 5981 return true; 5982 } 5983 5984 void InterleavedAccessInfo::collectConstStrideAccesses( 5985 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5986 const ValueToValueMap &Strides) { 5987 5988 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5989 5990 // Since it's desired that the load/store instructions be maintained in 5991 // "program order" for the interleaved access analysis, we have to visit the 5992 // blocks in the loop in reverse postorder (i.e., in a topological order). 5993 // Such an ordering will ensure that any load/store that may be executed 5994 // before a second load/store will precede the second load/store in 5995 // AccessStrideInfo. 5996 LoopBlocksDFS DFS(TheLoop); 5997 DFS.perform(LI); 5998 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5999 for (auto &I : *BB) { 6000 auto *LI = dyn_cast<LoadInst>(&I); 6001 auto *SI = dyn_cast<StoreInst>(&I); 6002 if (!LI && !SI) 6003 continue; 6004 6005 Value *Ptr = getPointerOperand(&I); 6006 // We don't check wrapping here because we don't know yet if Ptr will be 6007 // part of a full group or a group with gaps. Checking wrapping for all 6008 // pointers (even those that end up in groups with no gaps) will be overly 6009 // conservative. For full groups, wrapping should be ok since if we would 6010 // wrap around the address space we would do a memory access at nullptr 6011 // even without the transformation. The wrapping checks are therefore 6012 // deferred until after we've formed the interleaved groups. 6013 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 6014 /*Assume=*/true, /*ShouldCheckWrap=*/false); 6015 6016 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 6017 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 6018 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 6019 6020 // An alignment of 0 means target ABI alignment. 6021 unsigned Align = getMemInstAlignment(&I); 6022 if (!Align) 6023 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 6024 6025 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 6026 } 6027 } 6028 6029 // Analyze interleaved accesses and collect them into interleaved load and 6030 // store groups. 6031 // 6032 // When generating code for an interleaved load group, we effectively hoist all 6033 // loads in the group to the location of the first load in program order. When 6034 // generating code for an interleaved store group, we sink all stores to the 6035 // location of the last store. This code motion can change the order of load 6036 // and store instructions and may break dependences. 6037 // 6038 // The code generation strategy mentioned above ensures that we won't violate 6039 // any write-after-read (WAR) dependences. 6040 // 6041 // E.g., for the WAR dependence: a = A[i]; // (1) 6042 // A[i] = b; // (2) 6043 // 6044 // The store group of (2) is always inserted at or below (2), and the load 6045 // group of (1) is always inserted at or above (1). Thus, the instructions will 6046 // never be reordered. All other dependences are checked to ensure the 6047 // correctness of the instruction reordering. 6048 // 6049 // The algorithm visits all memory accesses in the loop in bottom-up program 6050 // order. Program order is established by traversing the blocks in the loop in 6051 // reverse postorder when collecting the accesses. 6052 // 6053 // We visit the memory accesses in bottom-up order because it can simplify the 6054 // construction of store groups in the presence of write-after-write (WAW) 6055 // dependences. 6056 // 6057 // E.g., for the WAW dependence: A[i] = a; // (1) 6058 // A[i] = b; // (2) 6059 // A[i + 1] = c; // (3) 6060 // 6061 // We will first create a store group with (3) and (2). (1) can't be added to 6062 // this group because it and (2) are dependent. However, (1) can be grouped 6063 // with other accesses that may precede it in program order. Note that a 6064 // bottom-up order does not imply that WAW dependences should not be checked. 6065 void InterleavedAccessInfo::analyzeInterleaving( 6066 const ValueToValueMap &Strides) { 6067 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6068 6069 // Holds all accesses with a constant stride. 6070 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6071 collectConstStrideAccesses(AccessStrideInfo, Strides); 6072 6073 if (AccessStrideInfo.empty()) 6074 return; 6075 6076 // Collect the dependences in the loop. 6077 collectDependences(); 6078 6079 // Holds all interleaved store groups temporarily. 6080 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6081 // Holds all interleaved load groups temporarily. 6082 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6083 6084 // Search in bottom-up program order for pairs of accesses (A and B) that can 6085 // form interleaved load or store groups. In the algorithm below, access A 6086 // precedes access B in program order. We initialize a group for B in the 6087 // outer loop of the algorithm, and then in the inner loop, we attempt to 6088 // insert each A into B's group if: 6089 // 6090 // 1. A and B have the same stride, 6091 // 2. A and B have the same memory object size, and 6092 // 3. A belongs in B's group according to its distance from B. 6093 // 6094 // Special care is taken to ensure group formation will not break any 6095 // dependences. 6096 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6097 BI != E; ++BI) { 6098 Instruction *B = BI->first; 6099 StrideDescriptor DesB = BI->second; 6100 6101 // Initialize a group for B if it has an allowable stride. Even if we don't 6102 // create a group for B, we continue with the bottom-up algorithm to ensure 6103 // we don't break any of B's dependences. 6104 InterleaveGroup *Group = nullptr; 6105 if (isStrided(DesB.Stride)) { 6106 Group = getInterleaveGroup(B); 6107 if (!Group) { 6108 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6109 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6110 } 6111 if (B->mayWriteToMemory()) 6112 StoreGroups.insert(Group); 6113 else 6114 LoadGroups.insert(Group); 6115 } 6116 6117 for (auto AI = std::next(BI); AI != E; ++AI) { 6118 Instruction *A = AI->first; 6119 StrideDescriptor DesA = AI->second; 6120 6121 // Our code motion strategy implies that we can't have dependences 6122 // between accesses in an interleaved group and other accesses located 6123 // between the first and last member of the group. Note that this also 6124 // means that a group can't have more than one member at a given offset. 6125 // The accesses in a group can have dependences with other accesses, but 6126 // we must ensure we don't extend the boundaries of the group such that 6127 // we encompass those dependent accesses. 6128 // 6129 // For example, assume we have the sequence of accesses shown below in a 6130 // stride-2 loop: 6131 // 6132 // (1, 2) is a group | A[i] = a; // (1) 6133 // | A[i-1] = b; // (2) | 6134 // A[i-3] = c; // (3) 6135 // A[i] = d; // (4) | (2, 4) is not a group 6136 // 6137 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6138 // but not with (4). If we did, the dependent access (3) would be within 6139 // the boundaries of the (2, 4) group. 6140 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6141 6142 // If a dependence exists and A is already in a group, we know that A 6143 // must be a store since A precedes B and WAR dependences are allowed. 6144 // Thus, A would be sunk below B. We release A's group to prevent this 6145 // illegal code motion. A will then be free to form another group with 6146 // instructions that precede it. 6147 if (isInterleaved(A)) { 6148 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6149 StoreGroups.remove(StoreGroup); 6150 releaseGroup(StoreGroup); 6151 } 6152 6153 // If a dependence exists and A is not already in a group (or it was 6154 // and we just released it), B might be hoisted above A (if B is a 6155 // load) or another store might be sunk below A (if B is a store). In 6156 // either case, we can't add additional instructions to B's group. B 6157 // will only form a group with instructions that it precedes. 6158 break; 6159 } 6160 6161 // At this point, we've checked for illegal code motion. If either A or B 6162 // isn't strided, there's nothing left to do. 6163 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6164 continue; 6165 6166 // Ignore A if it's already in a group or isn't the same kind of memory 6167 // operation as B. 6168 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6169 continue; 6170 6171 // Check rules 1 and 2. Ignore A if its stride or size is different from 6172 // that of B. 6173 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6174 continue; 6175 6176 // Ignore A if the memory object of A and B don't belong to the same 6177 // address space 6178 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6179 continue; 6180 6181 // Calculate the distance from A to B. 6182 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6183 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6184 if (!DistToB) 6185 continue; 6186 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6187 6188 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6189 // size. 6190 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6191 continue; 6192 6193 // Ignore A if either A or B is in a predicated block. Although we 6194 // currently prevent group formation for predicated accesses, we may be 6195 // able to relax this limitation in the future once we handle more 6196 // complicated blocks. 6197 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6198 continue; 6199 6200 // The index of A is the index of B plus A's distance to B in multiples 6201 // of the size. 6202 int IndexA = 6203 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6204 6205 // Try to insert A into B's group. 6206 if (Group->insertMember(A, IndexA, DesA.Align)) { 6207 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6208 << " into the interleave group with" << *B << '\n'); 6209 InterleaveGroupMap[A] = Group; 6210 6211 // Set the first load in program order as the insert position. 6212 if (A->mayReadFromMemory()) 6213 Group->setInsertPos(A); 6214 } 6215 } // Iteration over A accesses. 6216 } // Iteration over B accesses. 6217 6218 // Remove interleaved store groups with gaps. 6219 for (InterleaveGroup *Group : StoreGroups) 6220 if (Group->getNumMembers() != Group->getFactor()) 6221 releaseGroup(Group); 6222 6223 // Remove interleaved groups with gaps (currently only loads) whose memory 6224 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6225 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6226 // not check wrapping (see documentation there). 6227 // FORNOW we use Assume=false; 6228 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6229 // of runtime SCEV assumptions checks (thereby potentially failing to 6230 // vectorize altogether). 6231 // Additional optional optimizations: 6232 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6233 // wrap then we can deduce that all pointers in the group don't wrap. 6234 // This means that we can forcefully peel the loop in order to only have to 6235 // check the first pointer for no-wrap. When we'll change to use Assume=true 6236 // we'll only need at most one runtime check per interleaved group. 6237 // 6238 for (InterleaveGroup *Group : LoadGroups) { 6239 6240 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6241 // load would wrap around the address space we would do a memory access at 6242 // nullptr even without the transformation. 6243 if (Group->getNumMembers() == Group->getFactor()) 6244 continue; 6245 6246 // Case 2: If first and last members of the group don't wrap this implies 6247 // that all the pointers in the group don't wrap. 6248 // So we check only group member 0 (which is always guaranteed to exist), 6249 // and group member Factor - 1; If the latter doesn't exist we rely on 6250 // peeling (if it is a non-reveresed accsess -- see Case 3). 6251 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6252 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6253 /*ShouldCheckWrap=*/true)) { 6254 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6255 "first group member potentially pointer-wrapping.\n"); 6256 releaseGroup(Group); 6257 continue; 6258 } 6259 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6260 if (LastMember) { 6261 Value *LastMemberPtr = getPointerOperand(LastMember); 6262 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6263 /*ShouldCheckWrap=*/true)) { 6264 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6265 "last group member potentially pointer-wrapping.\n"); 6266 releaseGroup(Group); 6267 } 6268 } else { 6269 // Case 3: A non-reversed interleaved load group with gaps: We need 6270 // to execute at least one scalar epilogue iteration. This will ensure 6271 // we don't speculatively access memory out-of-bounds. We only need 6272 // to look for a member at index factor - 1, since every group must have 6273 // a member at index zero. 6274 if (Group->isReverse()) { 6275 releaseGroup(Group); 6276 continue; 6277 } 6278 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6279 RequiresScalarEpilogue = true; 6280 } 6281 } 6282 } 6283 6284 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6285 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6286 ORE->emit(createMissedAnalysis("ConditionalStore") 6287 << "store that is conditionally executed prevents vectorization"); 6288 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6289 return None; 6290 } 6291 6292 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6293 // TODO: It may by useful to do since it's still likely to be dynamically 6294 // uniform if the target can skip. 6295 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6296 6297 ORE->emit( 6298 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6299 << "runtime pointer checks needed. Not enabled for divergent target"); 6300 6301 return None; 6302 } 6303 6304 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6305 return computeFeasibleMaxVF(OptForSize); 6306 6307 if (Legal->getRuntimePointerChecking()->Need) { 6308 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6309 << "runtime pointer checks needed. Enable vectorization of this " 6310 "loop with '#pragma clang loop vectorize(enable)' when " 6311 "compiling with -Os/-Oz"); 6312 DEBUG(dbgs() 6313 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6314 return None; 6315 } 6316 6317 // If we optimize the program for size, avoid creating the tail loop. 6318 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6319 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6320 6321 // If we don't know the precise trip count, don't try to vectorize. 6322 if (TC < 2) { 6323 ORE->emit( 6324 createMissedAnalysis("UnknownLoopCountComplexCFG") 6325 << "unable to calculate the loop count due to complex control flow"); 6326 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6327 return None; 6328 } 6329 6330 unsigned MaxVF = computeFeasibleMaxVF(OptForSize); 6331 6332 if (TC % MaxVF != 0) { 6333 // If the trip count that we found modulo the vectorization factor is not 6334 // zero then we require a tail. 6335 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6336 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6337 // smaller MaxVF that does not require a scalar epilog. 6338 6339 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6340 << "cannot optimize for size and vectorize at the " 6341 "same time. Enable vectorization of this loop " 6342 "with '#pragma clang loop vectorize(enable)' " 6343 "when compiling with -Os/-Oz"); 6344 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6345 return None; 6346 } 6347 6348 return MaxVF; 6349 } 6350 6351 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) { 6352 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6353 unsigned SmallestType, WidestType; 6354 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6355 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6356 unsigned MaxSafeDepDist = -1U; 6357 6358 // Get the maximum safe dependence distance in bits computed by LAA. If the 6359 // loop contains any interleaved accesses, we divide the dependence distance 6360 // by the maximum interleave factor of all interleaved groups. Note that 6361 // although the division ensures correctness, this is a fairly conservative 6362 // computation because the maximum distance computed by LAA may not involve 6363 // any of the interleaved accesses. 6364 if (Legal->getMaxSafeDepDistBytes() != -1U) 6365 MaxSafeDepDist = 6366 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6367 6368 WidestRegister = 6369 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6370 unsigned MaxVectorSize = WidestRegister / WidestType; 6371 6372 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6373 << WidestType << " bits.\n"); 6374 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6375 << " bits.\n"); 6376 6377 if (MaxVectorSize == 0) { 6378 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6379 MaxVectorSize = 1; 6380 } 6381 6382 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6383 " into one vector!"); 6384 6385 unsigned MaxVF = MaxVectorSize; 6386 if (MaximizeBandwidth && !OptForSize) { 6387 // Collect all viable vectorization factors. 6388 SmallVector<unsigned, 8> VFs; 6389 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6390 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6391 VFs.push_back(VS); 6392 6393 // For each VF calculate its register usage. 6394 auto RUs = calculateRegisterUsage(VFs); 6395 6396 // Select the largest VF which doesn't require more registers than existing 6397 // ones. 6398 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6399 for (int i = RUs.size() - 1; i >= 0; --i) { 6400 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6401 MaxVF = VFs[i]; 6402 break; 6403 } 6404 } 6405 } 6406 return MaxVF; 6407 } 6408 6409 LoopVectorizationCostModel::VectorizationFactor 6410 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6411 float Cost = expectedCost(1).first; 6412 #ifndef NDEBUG 6413 const float ScalarCost = Cost; 6414 #endif /* NDEBUG */ 6415 unsigned Width = 1; 6416 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6417 6418 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6419 // Ignore scalar width, because the user explicitly wants vectorization. 6420 if (ForceVectorization && MaxVF > 1) { 6421 Width = 2; 6422 Cost = expectedCost(Width).first / (float)Width; 6423 } 6424 6425 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6426 // Notice that the vector loop needs to be executed less times, so 6427 // we need to divide the cost of the vector loops by the width of 6428 // the vector elements. 6429 VectorizationCostTy C = expectedCost(i); 6430 float VectorCost = C.first / (float)i; 6431 DEBUG(dbgs() << "LV: Vector loop of width " << i 6432 << " costs: " << (int)VectorCost << ".\n"); 6433 if (!C.second && !ForceVectorization) { 6434 DEBUG( 6435 dbgs() << "LV: Not considering vector loop of width " << i 6436 << " because it will not generate any vector instructions.\n"); 6437 continue; 6438 } 6439 if (VectorCost < Cost) { 6440 Cost = VectorCost; 6441 Width = i; 6442 } 6443 } 6444 6445 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6446 << "LV: Vectorization seems to be not beneficial, " 6447 << "but was forced by a user.\n"); 6448 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6449 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6450 return Factor; 6451 } 6452 6453 std::pair<unsigned, unsigned> 6454 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6455 unsigned MinWidth = -1U; 6456 unsigned MaxWidth = 8; 6457 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6458 6459 // For each block. 6460 for (BasicBlock *BB : TheLoop->blocks()) { 6461 // For each instruction in the loop. 6462 for (Instruction &I : *BB) { 6463 Type *T = I.getType(); 6464 6465 // Skip ignored values. 6466 if (ValuesToIgnore.count(&I)) 6467 continue; 6468 6469 // Only examine Loads, Stores and PHINodes. 6470 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6471 continue; 6472 6473 // Examine PHI nodes that are reduction variables. Update the type to 6474 // account for the recurrence type. 6475 if (auto *PN = dyn_cast<PHINode>(&I)) { 6476 if (!Legal->isReductionVariable(PN)) 6477 continue; 6478 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6479 T = RdxDesc.getRecurrenceType(); 6480 } 6481 6482 // Examine the stored values. 6483 if (auto *ST = dyn_cast<StoreInst>(&I)) 6484 T = ST->getValueOperand()->getType(); 6485 6486 // Ignore loaded pointer types and stored pointer types that are not 6487 // vectorizable. 6488 // 6489 // FIXME: The check here attempts to predict whether a load or store will 6490 // be vectorized. We only know this for certain after a VF has 6491 // been selected. Here, we assume that if an access can be 6492 // vectorized, it will be. We should also look at extending this 6493 // optimization to non-pointer types. 6494 // 6495 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6496 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6497 continue; 6498 6499 MinWidth = std::min(MinWidth, 6500 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6501 MaxWidth = std::max(MaxWidth, 6502 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6503 } 6504 } 6505 6506 return {MinWidth, MaxWidth}; 6507 } 6508 6509 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6510 unsigned VF, 6511 unsigned LoopCost) { 6512 6513 // -- The interleave heuristics -- 6514 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6515 // There are many micro-architectural considerations that we can't predict 6516 // at this level. For example, frontend pressure (on decode or fetch) due to 6517 // code size, or the number and capabilities of the execution ports. 6518 // 6519 // We use the following heuristics to select the interleave count: 6520 // 1. If the code has reductions, then we interleave to break the cross 6521 // iteration dependency. 6522 // 2. If the loop is really small, then we interleave to reduce the loop 6523 // overhead. 6524 // 3. We don't interleave if we think that we will spill registers to memory 6525 // due to the increased register pressure. 6526 6527 // When we optimize for size, we don't interleave. 6528 if (OptForSize) 6529 return 1; 6530 6531 // We used the distance for the interleave count. 6532 if (Legal->getMaxSafeDepDistBytes() != -1U) 6533 return 1; 6534 6535 // Do not interleave loops with a relatively small trip count. 6536 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6537 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6538 return 1; 6539 6540 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6541 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6542 << " registers\n"); 6543 6544 if (VF == 1) { 6545 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6546 TargetNumRegisters = ForceTargetNumScalarRegs; 6547 } else { 6548 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6549 TargetNumRegisters = ForceTargetNumVectorRegs; 6550 } 6551 6552 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6553 // We divide by these constants so assume that we have at least one 6554 // instruction that uses at least one register. 6555 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6556 R.NumInstructions = std::max(R.NumInstructions, 1U); 6557 6558 // We calculate the interleave count using the following formula. 6559 // Subtract the number of loop invariants from the number of available 6560 // registers. These registers are used by all of the interleaved instances. 6561 // Next, divide the remaining registers by the number of registers that is 6562 // required by the loop, in order to estimate how many parallel instances 6563 // fit without causing spills. All of this is rounded down if necessary to be 6564 // a power of two. We want power of two interleave count to simplify any 6565 // addressing operations or alignment considerations. 6566 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6567 R.MaxLocalUsers); 6568 6569 // Don't count the induction variable as interleaved. 6570 if (EnableIndVarRegisterHeur) 6571 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6572 std::max(1U, (R.MaxLocalUsers - 1))); 6573 6574 // Clamp the interleave ranges to reasonable counts. 6575 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6576 6577 // Check if the user has overridden the max. 6578 if (VF == 1) { 6579 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6580 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6581 } else { 6582 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6583 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6584 } 6585 6586 // If we did not calculate the cost for VF (because the user selected the VF) 6587 // then we calculate the cost of VF here. 6588 if (LoopCost == 0) 6589 LoopCost = expectedCost(VF).first; 6590 6591 // Clamp the calculated IC to be between the 1 and the max interleave count 6592 // that the target allows. 6593 if (IC > MaxInterleaveCount) 6594 IC = MaxInterleaveCount; 6595 else if (IC < 1) 6596 IC = 1; 6597 6598 // Interleave if we vectorized this loop and there is a reduction that could 6599 // benefit from interleaving. 6600 if (VF > 1 && Legal->getReductionVars()->size()) { 6601 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6602 return IC; 6603 } 6604 6605 // Note that if we've already vectorized the loop we will have done the 6606 // runtime check and so interleaving won't require further checks. 6607 bool InterleavingRequiresRuntimePointerCheck = 6608 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6609 6610 // We want to interleave small loops in order to reduce the loop overhead and 6611 // potentially expose ILP opportunities. 6612 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6613 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6614 // We assume that the cost overhead is 1 and we use the cost model 6615 // to estimate the cost of the loop and interleave until the cost of the 6616 // loop overhead is about 5% of the cost of the loop. 6617 unsigned SmallIC = 6618 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6619 6620 // Interleave until store/load ports (estimated by max interleave count) are 6621 // saturated. 6622 unsigned NumStores = Legal->getNumStores(); 6623 unsigned NumLoads = Legal->getNumLoads(); 6624 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6625 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6626 6627 // If we have a scalar reduction (vector reductions are already dealt with 6628 // by this point), we can increase the critical path length if the loop 6629 // we're interleaving is inside another loop. Limit, by default to 2, so the 6630 // critical path only gets increased by one reduction operation. 6631 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6632 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6633 SmallIC = std::min(SmallIC, F); 6634 StoresIC = std::min(StoresIC, F); 6635 LoadsIC = std::min(LoadsIC, F); 6636 } 6637 6638 if (EnableLoadStoreRuntimeInterleave && 6639 std::max(StoresIC, LoadsIC) > SmallIC) { 6640 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6641 return std::max(StoresIC, LoadsIC); 6642 } 6643 6644 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6645 return SmallIC; 6646 } 6647 6648 // Interleave if this is a large loop (small loops are already dealt with by 6649 // this point) that could benefit from interleaving. 6650 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6651 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6652 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6653 return IC; 6654 } 6655 6656 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6657 return 1; 6658 } 6659 6660 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6661 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6662 // This function calculates the register usage by measuring the highest number 6663 // of values that are alive at a single location. Obviously, this is a very 6664 // rough estimation. We scan the loop in a topological order in order and 6665 // assign a number to each instruction. We use RPO to ensure that defs are 6666 // met before their users. We assume that each instruction that has in-loop 6667 // users starts an interval. We record every time that an in-loop value is 6668 // used, so we have a list of the first and last occurrences of each 6669 // instruction. Next, we transpose this data structure into a multi map that 6670 // holds the list of intervals that *end* at a specific location. This multi 6671 // map allows us to perform a linear search. We scan the instructions linearly 6672 // and record each time that a new interval starts, by placing it in a set. 6673 // If we find this value in the multi-map then we remove it from the set. 6674 // The max register usage is the maximum size of the set. 6675 // We also search for instructions that are defined outside the loop, but are 6676 // used inside the loop. We need this number separately from the max-interval 6677 // usage number because when we unroll, loop-invariant values do not take 6678 // more register. 6679 LoopBlocksDFS DFS(TheLoop); 6680 DFS.perform(LI); 6681 6682 RegisterUsage RU; 6683 RU.NumInstructions = 0; 6684 6685 // Each 'key' in the map opens a new interval. The values 6686 // of the map are the index of the 'last seen' usage of the 6687 // instruction that is the key. 6688 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6689 // Maps instruction to its index. 6690 DenseMap<unsigned, Instruction *> IdxToInstr; 6691 // Marks the end of each interval. 6692 IntervalMap EndPoint; 6693 // Saves the list of instruction indices that are used in the loop. 6694 SmallSet<Instruction *, 8> Ends; 6695 // Saves the list of values that are used in the loop but are 6696 // defined outside the loop, such as arguments and constants. 6697 SmallPtrSet<Value *, 8> LoopInvariants; 6698 6699 unsigned Index = 0; 6700 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6701 RU.NumInstructions += BB->size(); 6702 for (Instruction &I : *BB) { 6703 IdxToInstr[Index++] = &I; 6704 6705 // Save the end location of each USE. 6706 for (Value *U : I.operands()) { 6707 auto *Instr = dyn_cast<Instruction>(U); 6708 6709 // Ignore non-instruction values such as arguments, constants, etc. 6710 if (!Instr) 6711 continue; 6712 6713 // If this instruction is outside the loop then record it and continue. 6714 if (!TheLoop->contains(Instr)) { 6715 LoopInvariants.insert(Instr); 6716 continue; 6717 } 6718 6719 // Overwrite previous end points. 6720 EndPoint[Instr] = Index; 6721 Ends.insert(Instr); 6722 } 6723 } 6724 } 6725 6726 // Saves the list of intervals that end with the index in 'key'. 6727 typedef SmallVector<Instruction *, 2> InstrList; 6728 DenseMap<unsigned, InstrList> TransposeEnds; 6729 6730 // Transpose the EndPoints to a list of values that end at each index. 6731 for (auto &Interval : EndPoint) 6732 TransposeEnds[Interval.second].push_back(Interval.first); 6733 6734 SmallSet<Instruction *, 8> OpenIntervals; 6735 6736 // Get the size of the widest register. 6737 unsigned MaxSafeDepDist = -1U; 6738 if (Legal->getMaxSafeDepDistBytes() != -1U) 6739 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6740 unsigned WidestRegister = 6741 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6742 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6743 6744 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6745 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6746 6747 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6748 6749 // A lambda that gets the register usage for the given type and VF. 6750 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6751 if (Ty->isTokenTy()) 6752 return 0U; 6753 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6754 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6755 }; 6756 6757 for (unsigned int i = 0; i < Index; ++i) { 6758 Instruction *I = IdxToInstr[i]; 6759 6760 // Remove all of the instructions that end at this location. 6761 InstrList &List = TransposeEnds[i]; 6762 for (Instruction *ToRemove : List) 6763 OpenIntervals.erase(ToRemove); 6764 6765 // Ignore instructions that are never used within the loop. 6766 if (!Ends.count(I)) 6767 continue; 6768 6769 // Skip ignored values. 6770 if (ValuesToIgnore.count(I)) 6771 continue; 6772 6773 // For each VF find the maximum usage of registers. 6774 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6775 if (VFs[j] == 1) { 6776 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6777 continue; 6778 } 6779 collectUniformsAndScalars(VFs[j]); 6780 // Count the number of live intervals. 6781 unsigned RegUsage = 0; 6782 for (auto Inst : OpenIntervals) { 6783 // Skip ignored values for VF > 1. 6784 if (VecValuesToIgnore.count(Inst) || 6785 isScalarAfterVectorization(Inst, VFs[j])) 6786 continue; 6787 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6788 } 6789 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6790 } 6791 6792 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6793 << OpenIntervals.size() << '\n'); 6794 6795 // Add the current instruction to the list of open intervals. 6796 OpenIntervals.insert(I); 6797 } 6798 6799 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6800 unsigned Invariant = 0; 6801 if (VFs[i] == 1) 6802 Invariant = LoopInvariants.size(); 6803 else { 6804 for (auto Inst : LoopInvariants) 6805 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6806 } 6807 6808 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6809 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6810 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6811 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6812 6813 RU.LoopInvariantRegs = Invariant; 6814 RU.MaxLocalUsers = MaxUsages[i]; 6815 RUs[i] = RU; 6816 } 6817 6818 return RUs; 6819 } 6820 6821 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6822 6823 // If we aren't vectorizing the loop, or if we've already collected the 6824 // instructions to scalarize, there's nothing to do. Collection may already 6825 // have occurred if we have a user-selected VF and are now computing the 6826 // expected cost for interleaving. 6827 if (VF < 2 || InstsToScalarize.count(VF)) 6828 return; 6829 6830 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6831 // not profitable to scalarize any instructions, the presence of VF in the 6832 // map will indicate that we've analyzed it already. 6833 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6834 6835 // Find all the instructions that are scalar with predication in the loop and 6836 // determine if it would be better to not if-convert the blocks they are in. 6837 // If so, we also record the instructions to scalarize. 6838 for (BasicBlock *BB : TheLoop->blocks()) { 6839 if (!Legal->blockNeedsPredication(BB)) 6840 continue; 6841 for (Instruction &I : *BB) 6842 if (Legal->isScalarWithPredication(&I)) { 6843 ScalarCostsTy ScalarCosts; 6844 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6845 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6846 6847 // Remember that BB will remain after vectorization. 6848 PredicatedBBsAfterVectorization.insert(BB); 6849 } 6850 } 6851 } 6852 6853 int LoopVectorizationCostModel::computePredInstDiscount( 6854 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6855 unsigned VF) { 6856 6857 assert(!isUniformAfterVectorization(PredInst, VF) && 6858 "Instruction marked uniform-after-vectorization will be predicated"); 6859 6860 // Initialize the discount to zero, meaning that the scalar version and the 6861 // vector version cost the same. 6862 int Discount = 0; 6863 6864 // Holds instructions to analyze. The instructions we visit are mapped in 6865 // ScalarCosts. Those instructions are the ones that would be scalarized if 6866 // we find that the scalar version costs less. 6867 SmallVector<Instruction *, 8> Worklist; 6868 6869 // Returns true if the given instruction can be scalarized. 6870 auto canBeScalarized = [&](Instruction *I) -> bool { 6871 6872 // We only attempt to scalarize instructions forming a single-use chain 6873 // from the original predicated block that would otherwise be vectorized. 6874 // Although not strictly necessary, we give up on instructions we know will 6875 // already be scalar to avoid traversing chains that are unlikely to be 6876 // beneficial. 6877 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6878 isScalarAfterVectorization(I, VF)) 6879 return false; 6880 6881 // If the instruction is scalar with predication, it will be analyzed 6882 // separately. We ignore it within the context of PredInst. 6883 if (Legal->isScalarWithPredication(I)) 6884 return false; 6885 6886 // If any of the instruction's operands are uniform after vectorization, 6887 // the instruction cannot be scalarized. This prevents, for example, a 6888 // masked load from being scalarized. 6889 // 6890 // We assume we will only emit a value for lane zero of an instruction 6891 // marked uniform after vectorization, rather than VF identical values. 6892 // Thus, if we scalarize an instruction that uses a uniform, we would 6893 // create uses of values corresponding to the lanes we aren't emitting code 6894 // for. This behavior can be changed by allowing getScalarValue to clone 6895 // the lane zero values for uniforms rather than asserting. 6896 for (Use &U : I->operands()) 6897 if (auto *J = dyn_cast<Instruction>(U.get())) 6898 if (isUniformAfterVectorization(J, VF)) 6899 return false; 6900 6901 // Otherwise, we can scalarize the instruction. 6902 return true; 6903 }; 6904 6905 // Returns true if an operand that cannot be scalarized must be extracted 6906 // from a vector. We will account for this scalarization overhead below. Note 6907 // that the non-void predicated instructions are placed in their own blocks, 6908 // and their return values are inserted into vectors. Thus, an extract would 6909 // still be required. 6910 auto needsExtract = [&](Instruction *I) -> bool { 6911 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6912 }; 6913 6914 // Compute the expected cost discount from scalarizing the entire expression 6915 // feeding the predicated instruction. We currently only consider expressions 6916 // that are single-use instruction chains. 6917 Worklist.push_back(PredInst); 6918 while (!Worklist.empty()) { 6919 Instruction *I = Worklist.pop_back_val(); 6920 6921 // If we've already analyzed the instruction, there's nothing to do. 6922 if (ScalarCosts.count(I)) 6923 continue; 6924 6925 // Compute the cost of the vector instruction. Note that this cost already 6926 // includes the scalarization overhead of the predicated instruction. 6927 unsigned VectorCost = getInstructionCost(I, VF).first; 6928 6929 // Compute the cost of the scalarized instruction. This cost is the cost of 6930 // the instruction as if it wasn't if-converted and instead remained in the 6931 // predicated block. We will scale this cost by block probability after 6932 // computing the scalarization overhead. 6933 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6934 6935 // Compute the scalarization overhead of needed insertelement instructions 6936 // and phi nodes. 6937 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6938 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6939 true, false); 6940 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6941 } 6942 6943 // Compute the scalarization overhead of needed extractelement 6944 // instructions. For each of the instruction's operands, if the operand can 6945 // be scalarized, add it to the worklist; otherwise, account for the 6946 // overhead. 6947 for (Use &U : I->operands()) 6948 if (auto *J = dyn_cast<Instruction>(U.get())) { 6949 assert(VectorType::isValidElementType(J->getType()) && 6950 "Instruction has non-scalar type"); 6951 if (canBeScalarized(J)) 6952 Worklist.push_back(J); 6953 else if (needsExtract(J)) 6954 ScalarCost += TTI.getScalarizationOverhead( 6955 ToVectorTy(J->getType(),VF), false, true); 6956 } 6957 6958 // Scale the total scalar cost by block probability. 6959 ScalarCost /= getReciprocalPredBlockProb(); 6960 6961 // Compute the discount. A non-negative discount means the vector version 6962 // of the instruction costs more, and scalarizing would be beneficial. 6963 Discount += VectorCost - ScalarCost; 6964 ScalarCosts[I] = ScalarCost; 6965 } 6966 6967 return Discount; 6968 } 6969 6970 LoopVectorizationCostModel::VectorizationCostTy 6971 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6972 VectorizationCostTy Cost; 6973 6974 // Collect Uniform and Scalar instructions after vectorization with VF. 6975 collectUniformsAndScalars(VF); 6976 6977 // Collect the instructions (and their associated costs) that will be more 6978 // profitable to scalarize. 6979 collectInstsToScalarize(VF); 6980 6981 // For each block. 6982 for (BasicBlock *BB : TheLoop->blocks()) { 6983 VectorizationCostTy BlockCost; 6984 6985 // For each instruction in the old loop. 6986 for (Instruction &I : *BB) { 6987 // Skip dbg intrinsics. 6988 if (isa<DbgInfoIntrinsic>(I)) 6989 continue; 6990 6991 // Skip ignored values. 6992 if (ValuesToIgnore.count(&I)) 6993 continue; 6994 6995 VectorizationCostTy C = getInstructionCost(&I, VF); 6996 6997 // Check if we should override the cost. 6998 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6999 C.first = ForceTargetInstructionCost; 7000 7001 BlockCost.first += C.first; 7002 BlockCost.second |= C.second; 7003 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 7004 << VF << " For instruction: " << I << '\n'); 7005 } 7006 7007 // If we are vectorizing a predicated block, it will have been 7008 // if-converted. This means that the block's instructions (aside from 7009 // stores and instructions that may divide by zero) will now be 7010 // unconditionally executed. For the scalar case, we may not always execute 7011 // the predicated block. Thus, scale the block's cost by the probability of 7012 // executing it. 7013 if (VF == 1 && Legal->blockNeedsPredication(BB)) 7014 BlockCost.first /= getReciprocalPredBlockProb(); 7015 7016 Cost.first += BlockCost.first; 7017 Cost.second |= BlockCost.second; 7018 } 7019 7020 return Cost; 7021 } 7022 7023 /// \brief Gets Address Access SCEV after verifying that the access pattern 7024 /// is loop invariant except the induction variable dependence. 7025 /// 7026 /// This SCEV can be sent to the Target in order to estimate the address 7027 /// calculation cost. 7028 static const SCEV *getAddressAccessSCEV( 7029 Value *Ptr, 7030 LoopVectorizationLegality *Legal, 7031 ScalarEvolution *SE, 7032 const Loop *TheLoop) { 7033 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7034 if (!Gep) 7035 return nullptr; 7036 7037 // We are looking for a gep with all loop invariant indices except for one 7038 // which should be an induction variable. 7039 unsigned NumOperands = Gep->getNumOperands(); 7040 for (unsigned i = 1; i < NumOperands; ++i) { 7041 Value *Opd = Gep->getOperand(i); 7042 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7043 !Legal->isInductionVariable(Opd)) 7044 return nullptr; 7045 } 7046 7047 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7048 return SE->getSCEV(Ptr); 7049 } 7050 7051 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7052 return Legal->hasStride(I->getOperand(0)) || 7053 Legal->hasStride(I->getOperand(1)); 7054 } 7055 7056 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7057 unsigned VF) { 7058 Type *ValTy = getMemInstValueType(I); 7059 auto SE = PSE.getSE(); 7060 7061 unsigned Alignment = getMemInstAlignment(I); 7062 unsigned AS = getMemInstAddressSpace(I); 7063 Value *Ptr = getPointerOperand(I); 7064 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7065 7066 // Figure out whether the access is strided and get the stride value 7067 // if it's known in compile time 7068 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7069 7070 // Get the cost of the scalar memory instruction and address computation. 7071 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7072 7073 Cost += VF * 7074 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7075 AS, I); 7076 7077 // Get the overhead of the extractelement and insertelement instructions 7078 // we might create due to scalarization. 7079 Cost += getScalarizationOverhead(I, VF, TTI); 7080 7081 // If we have a predicated store, it may not be executed for each vector 7082 // lane. Scale the cost by the probability of executing the predicated 7083 // block. 7084 if (Legal->isScalarWithPredication(I)) 7085 Cost /= getReciprocalPredBlockProb(); 7086 7087 return Cost; 7088 } 7089 7090 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7091 unsigned VF) { 7092 Type *ValTy = getMemInstValueType(I); 7093 Type *VectorTy = ToVectorTy(ValTy, VF); 7094 unsigned Alignment = getMemInstAlignment(I); 7095 Value *Ptr = getPointerOperand(I); 7096 unsigned AS = getMemInstAddressSpace(I); 7097 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7098 7099 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7100 "Stride should be 1 or -1 for consecutive memory access"); 7101 unsigned Cost = 0; 7102 if (Legal->isMaskRequired(I)) 7103 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7104 else 7105 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7106 7107 bool Reverse = ConsecutiveStride < 0; 7108 if (Reverse) 7109 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7110 return Cost; 7111 } 7112 7113 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7114 unsigned VF) { 7115 LoadInst *LI = cast<LoadInst>(I); 7116 Type *ValTy = LI->getType(); 7117 Type *VectorTy = ToVectorTy(ValTy, VF); 7118 unsigned Alignment = LI->getAlignment(); 7119 unsigned AS = LI->getPointerAddressSpace(); 7120 7121 return TTI.getAddressComputationCost(ValTy) + 7122 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7123 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7124 } 7125 7126 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7127 unsigned VF) { 7128 Type *ValTy = getMemInstValueType(I); 7129 Type *VectorTy = ToVectorTy(ValTy, VF); 7130 unsigned Alignment = getMemInstAlignment(I); 7131 Value *Ptr = getPointerOperand(I); 7132 7133 return TTI.getAddressComputationCost(VectorTy) + 7134 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7135 Legal->isMaskRequired(I), Alignment); 7136 } 7137 7138 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7139 unsigned VF) { 7140 Type *ValTy = getMemInstValueType(I); 7141 Type *VectorTy = ToVectorTy(ValTy, VF); 7142 unsigned AS = getMemInstAddressSpace(I); 7143 7144 auto Group = Legal->getInterleavedAccessGroup(I); 7145 assert(Group && "Fail to get an interleaved access group."); 7146 7147 unsigned InterleaveFactor = Group->getFactor(); 7148 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7149 7150 // Holds the indices of existing members in an interleaved load group. 7151 // An interleaved store group doesn't need this as it doesn't allow gaps. 7152 SmallVector<unsigned, 4> Indices; 7153 if (isa<LoadInst>(I)) { 7154 for (unsigned i = 0; i < InterleaveFactor; i++) 7155 if (Group->getMember(i)) 7156 Indices.push_back(i); 7157 } 7158 7159 // Calculate the cost of the whole interleaved group. 7160 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7161 Group->getFactor(), Indices, 7162 Group->getAlignment(), AS); 7163 7164 if (Group->isReverse()) 7165 Cost += Group->getNumMembers() * 7166 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7167 return Cost; 7168 } 7169 7170 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7171 unsigned VF) { 7172 7173 // Calculate scalar cost only. Vectorization cost should be ready at this 7174 // moment. 7175 if (VF == 1) { 7176 Type *ValTy = getMemInstValueType(I); 7177 unsigned Alignment = getMemInstAlignment(I); 7178 unsigned AS = getMemInstAddressSpace(I); 7179 7180 return TTI.getAddressComputationCost(ValTy) + 7181 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7182 } 7183 return getWideningCost(I, VF); 7184 } 7185 7186 LoopVectorizationCostModel::VectorizationCostTy 7187 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7188 // If we know that this instruction will remain uniform, check the cost of 7189 // the scalar version. 7190 if (isUniformAfterVectorization(I, VF)) 7191 VF = 1; 7192 7193 if (VF > 1 && isProfitableToScalarize(I, VF)) 7194 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7195 7196 // Forced scalars do not have any scalarization overhead. 7197 if (VF > 1 && ForcedScalars.count(VF) && 7198 ForcedScalars.find(VF)->second.count(I)) 7199 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7200 7201 Type *VectorTy; 7202 unsigned C = getInstructionCost(I, VF, VectorTy); 7203 7204 bool TypeNotScalarized = 7205 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7206 return VectorizationCostTy(C, TypeNotScalarized); 7207 } 7208 7209 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7210 if (VF == 1) 7211 return; 7212 for (BasicBlock *BB : TheLoop->blocks()) { 7213 // For each instruction in the old loop. 7214 for (Instruction &I : *BB) { 7215 Value *Ptr = getPointerOperand(&I); 7216 if (!Ptr) 7217 continue; 7218 7219 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7220 // Scalar load + broadcast 7221 unsigned Cost = getUniformMemOpCost(&I, VF); 7222 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7223 continue; 7224 } 7225 7226 // We assume that widening is the best solution when possible. 7227 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7228 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7229 setWideningDecision(&I, VF, CM_Widen, Cost); 7230 continue; 7231 } 7232 7233 // Choose between Interleaving, Gather/Scatter or Scalarization. 7234 unsigned InterleaveCost = UINT_MAX; 7235 unsigned NumAccesses = 1; 7236 if (Legal->isAccessInterleaved(&I)) { 7237 auto Group = Legal->getInterleavedAccessGroup(&I); 7238 assert(Group && "Fail to get an interleaved access group."); 7239 7240 // Make one decision for the whole group. 7241 if (getWideningDecision(&I, VF) != CM_Unknown) 7242 continue; 7243 7244 NumAccesses = Group->getNumMembers(); 7245 InterleaveCost = getInterleaveGroupCost(&I, VF); 7246 } 7247 7248 unsigned GatherScatterCost = 7249 Legal->isLegalGatherOrScatter(&I) 7250 ? getGatherScatterCost(&I, VF) * NumAccesses 7251 : UINT_MAX; 7252 7253 unsigned ScalarizationCost = 7254 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7255 7256 // Choose better solution for the current VF, 7257 // write down this decision and use it during vectorization. 7258 unsigned Cost; 7259 InstWidening Decision; 7260 if (InterleaveCost <= GatherScatterCost && 7261 InterleaveCost < ScalarizationCost) { 7262 Decision = CM_Interleave; 7263 Cost = InterleaveCost; 7264 } else if (GatherScatterCost < ScalarizationCost) { 7265 Decision = CM_GatherScatter; 7266 Cost = GatherScatterCost; 7267 } else { 7268 Decision = CM_Scalarize; 7269 Cost = ScalarizationCost; 7270 } 7271 // If the instructions belongs to an interleave group, the whole group 7272 // receives the same decision. The whole group receives the cost, but 7273 // the cost will actually be assigned to one instruction. 7274 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7275 setWideningDecision(Group, VF, Decision, Cost); 7276 else 7277 setWideningDecision(&I, VF, Decision, Cost); 7278 } 7279 } 7280 7281 // Make sure that any load of address and any other address computation 7282 // remains scalar unless there is gather/scatter support. This avoids 7283 // inevitable extracts into address registers, and also has the benefit of 7284 // activating LSR more, since that pass can't optimize vectorized 7285 // addresses. 7286 if (TTI.prefersVectorizedAddressing()) 7287 return; 7288 7289 // Start with all scalar pointer uses. 7290 SmallPtrSet<Instruction *, 8> AddrDefs; 7291 for (BasicBlock *BB : TheLoop->blocks()) 7292 for (Instruction &I : *BB) { 7293 Instruction *PtrDef = 7294 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7295 if (PtrDef && TheLoop->contains(PtrDef) && 7296 getWideningDecision(&I, VF) != CM_GatherScatter) 7297 AddrDefs.insert(PtrDef); 7298 } 7299 7300 // Add all instructions used to generate the addresses. 7301 SmallVector<Instruction *, 4> Worklist; 7302 for (auto *I : AddrDefs) 7303 Worklist.push_back(I); 7304 while (!Worklist.empty()) { 7305 Instruction *I = Worklist.pop_back_val(); 7306 for (auto &Op : I->operands()) 7307 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7308 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7309 AddrDefs.insert(InstOp).second == true) 7310 Worklist.push_back(InstOp); 7311 } 7312 7313 for (auto *I : AddrDefs) { 7314 if (isa<LoadInst>(I)) { 7315 // Setting the desired widening decision should ideally be handled in 7316 // by cost functions, but since this involves the task of finding out 7317 // if the loaded register is involved in an address computation, it is 7318 // instead changed here when we know this is the case. 7319 if (getWideningDecision(I, VF) == CM_Widen) 7320 // Scalarize a widened load of address. 7321 setWideningDecision(I, VF, CM_Scalarize, 7322 (VF * getMemoryInstructionCost(I, 1))); 7323 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7324 // Scalarize an interleave group of address loads. 7325 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7326 if (Instruction *Member = Group->getMember(I)) 7327 setWideningDecision(Member, VF, CM_Scalarize, 7328 (VF * getMemoryInstructionCost(Member, 1))); 7329 } 7330 } 7331 } else 7332 // Make sure I gets scalarized and a cost estimate without 7333 // scalarization overhead. 7334 ForcedScalars[VF].insert(I); 7335 } 7336 } 7337 7338 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7339 unsigned VF, 7340 Type *&VectorTy) { 7341 Type *RetTy = I->getType(); 7342 if (canTruncateToMinimalBitwidth(I, VF)) 7343 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7344 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7345 auto SE = PSE.getSE(); 7346 7347 // TODO: We need to estimate the cost of intrinsic calls. 7348 switch (I->getOpcode()) { 7349 case Instruction::GetElementPtr: 7350 // We mark this instruction as zero-cost because the cost of GEPs in 7351 // vectorized code depends on whether the corresponding memory instruction 7352 // is scalarized or not. Therefore, we handle GEPs with the memory 7353 // instruction cost. 7354 return 0; 7355 case Instruction::Br: { 7356 // In cases of scalarized and predicated instructions, there will be VF 7357 // predicated blocks in the vectorized loop. Each branch around these 7358 // blocks requires also an extract of its vector compare i1 element. 7359 bool ScalarPredicatedBB = false; 7360 BranchInst *BI = cast<BranchInst>(I); 7361 if (VF > 1 && BI->isConditional() && 7362 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7363 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7364 ScalarPredicatedBB = true; 7365 7366 if (ScalarPredicatedBB) { 7367 // Return cost for branches around scalarized and predicated blocks. 7368 Type *Vec_i1Ty = 7369 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7370 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7371 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7372 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7373 // The back-edge branch will remain, as will all scalar branches. 7374 return TTI.getCFInstrCost(Instruction::Br); 7375 else 7376 // This branch will be eliminated by if-conversion. 7377 return 0; 7378 // Note: We currently assume zero cost for an unconditional branch inside 7379 // a predicated block since it will become a fall-through, although we 7380 // may decide in the future to call TTI for all branches. 7381 } 7382 case Instruction::PHI: { 7383 auto *Phi = cast<PHINode>(I); 7384 7385 // First-order recurrences are replaced by vector shuffles inside the loop. 7386 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7387 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7388 VectorTy, VF - 1, VectorTy); 7389 7390 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7391 // converted into select instructions. We require N - 1 selects per phi 7392 // node, where N is the number of incoming values. 7393 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7394 return (Phi->getNumIncomingValues() - 1) * 7395 TTI.getCmpSelInstrCost( 7396 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7397 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7398 7399 return TTI.getCFInstrCost(Instruction::PHI); 7400 } 7401 case Instruction::UDiv: 7402 case Instruction::SDiv: 7403 case Instruction::URem: 7404 case Instruction::SRem: 7405 // If we have a predicated instruction, it may not be executed for each 7406 // vector lane. Get the scalarization cost and scale this amount by the 7407 // probability of executing the predicated block. If the instruction is not 7408 // predicated, we fall through to the next case. 7409 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7410 unsigned Cost = 0; 7411 7412 // These instructions have a non-void type, so account for the phi nodes 7413 // that we will create. This cost is likely to be zero. The phi node 7414 // cost, if any, should be scaled by the block probability because it 7415 // models a copy at the end of each predicated block. 7416 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7417 7418 // The cost of the non-predicated instruction. 7419 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7420 7421 // The cost of insertelement and extractelement instructions needed for 7422 // scalarization. 7423 Cost += getScalarizationOverhead(I, VF, TTI); 7424 7425 // Scale the cost by the probability of executing the predicated blocks. 7426 // This assumes the predicated block for each vector lane is equally 7427 // likely. 7428 return Cost / getReciprocalPredBlockProb(); 7429 } 7430 LLVM_FALLTHROUGH; 7431 case Instruction::Add: 7432 case Instruction::FAdd: 7433 case Instruction::Sub: 7434 case Instruction::FSub: 7435 case Instruction::Mul: 7436 case Instruction::FMul: 7437 case Instruction::FDiv: 7438 case Instruction::FRem: 7439 case Instruction::Shl: 7440 case Instruction::LShr: 7441 case Instruction::AShr: 7442 case Instruction::And: 7443 case Instruction::Or: 7444 case Instruction::Xor: { 7445 // Since we will replace the stride by 1 the multiplication should go away. 7446 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7447 return 0; 7448 // Certain instructions can be cheaper to vectorize if they have a constant 7449 // second vector operand. One example of this are shifts on x86. 7450 TargetTransformInfo::OperandValueKind Op1VK = 7451 TargetTransformInfo::OK_AnyValue; 7452 TargetTransformInfo::OperandValueKind Op2VK = 7453 TargetTransformInfo::OK_AnyValue; 7454 TargetTransformInfo::OperandValueProperties Op1VP = 7455 TargetTransformInfo::OP_None; 7456 TargetTransformInfo::OperandValueProperties Op2VP = 7457 TargetTransformInfo::OP_None; 7458 Value *Op2 = I->getOperand(1); 7459 7460 // Check for a splat or for a non uniform vector of constants. 7461 if (isa<ConstantInt>(Op2)) { 7462 ConstantInt *CInt = cast<ConstantInt>(Op2); 7463 if (CInt && CInt->getValue().isPowerOf2()) 7464 Op2VP = TargetTransformInfo::OP_PowerOf2; 7465 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7466 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7467 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7468 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7469 if (SplatValue) { 7470 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7471 if (CInt && CInt->getValue().isPowerOf2()) 7472 Op2VP = TargetTransformInfo::OP_PowerOf2; 7473 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7474 } 7475 } else if (Legal->isUniform(Op2)) { 7476 Op2VK = TargetTransformInfo::OK_UniformValue; 7477 } 7478 SmallVector<const Value *, 4> Operands(I->operand_values()); 7479 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7480 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7481 Op2VK, Op1VP, Op2VP, Operands); 7482 } 7483 case Instruction::Select: { 7484 SelectInst *SI = cast<SelectInst>(I); 7485 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7486 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7487 Type *CondTy = SI->getCondition()->getType(); 7488 if (!ScalarCond) 7489 CondTy = VectorType::get(CondTy, VF); 7490 7491 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7492 } 7493 case Instruction::ICmp: 7494 case Instruction::FCmp: { 7495 Type *ValTy = I->getOperand(0)->getType(); 7496 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7497 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7498 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7499 VectorTy = ToVectorTy(ValTy, VF); 7500 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7501 } 7502 case Instruction::Store: 7503 case Instruction::Load: { 7504 unsigned Width = VF; 7505 if (Width > 1) { 7506 InstWidening Decision = getWideningDecision(I, Width); 7507 assert(Decision != CM_Unknown && 7508 "CM decision should be taken at this point"); 7509 if (Decision == CM_Scalarize) 7510 Width = 1; 7511 } 7512 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7513 return getMemoryInstructionCost(I, VF); 7514 } 7515 case Instruction::ZExt: 7516 case Instruction::SExt: 7517 case Instruction::FPToUI: 7518 case Instruction::FPToSI: 7519 case Instruction::FPExt: 7520 case Instruction::PtrToInt: 7521 case Instruction::IntToPtr: 7522 case Instruction::SIToFP: 7523 case Instruction::UIToFP: 7524 case Instruction::Trunc: 7525 case Instruction::FPTrunc: 7526 case Instruction::BitCast: { 7527 // We optimize the truncation of induction variables having constant 7528 // integer steps. The cost of these truncations is the same as the scalar 7529 // operation. 7530 if (isOptimizableIVTruncate(I, VF)) { 7531 auto *Trunc = cast<TruncInst>(I); 7532 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7533 Trunc->getSrcTy(), Trunc); 7534 } 7535 7536 Type *SrcScalarTy = I->getOperand(0)->getType(); 7537 Type *SrcVecTy = 7538 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7539 if (canTruncateToMinimalBitwidth(I, VF)) { 7540 // This cast is going to be shrunk. This may remove the cast or it might 7541 // turn it into slightly different cast. For example, if MinBW == 16, 7542 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7543 // 7544 // Calculate the modified src and dest types. 7545 Type *MinVecTy = VectorTy; 7546 if (I->getOpcode() == Instruction::Trunc) { 7547 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7548 VectorTy = 7549 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7550 } else if (I->getOpcode() == Instruction::ZExt || 7551 I->getOpcode() == Instruction::SExt) { 7552 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7553 VectorTy = 7554 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7555 } 7556 } 7557 7558 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7559 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7560 } 7561 case Instruction::Call: { 7562 bool NeedToScalarize; 7563 CallInst *CI = cast<CallInst>(I); 7564 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7565 if (getVectorIntrinsicIDForCall(CI, TLI)) 7566 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7567 return CallCost; 7568 } 7569 default: 7570 // The cost of executing VF copies of the scalar instruction. This opcode 7571 // is unknown. Assume that it is the same as 'mul'. 7572 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7573 getScalarizationOverhead(I, VF, TTI); 7574 } // end of switch. 7575 } 7576 7577 char LoopVectorize::ID = 0; 7578 static const char lv_name[] = "Loop Vectorization"; 7579 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7580 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7581 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7582 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7583 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7584 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7585 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7586 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7587 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7588 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7589 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7590 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7591 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7592 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7593 7594 namespace llvm { 7595 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7596 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7597 } 7598 } 7599 7600 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7601 7602 // Check if the pointer operand of a load or store instruction is 7603 // consecutive. 7604 if (auto *Ptr = getPointerOperand(Inst)) 7605 return Legal->isConsecutivePtr(Ptr); 7606 return false; 7607 } 7608 7609 void LoopVectorizationCostModel::collectValuesToIgnore() { 7610 // Ignore ephemeral values. 7611 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7612 7613 // Ignore type-promoting instructions we identified during reduction 7614 // detection. 7615 for (auto &Reduction : *Legal->getReductionVars()) { 7616 RecurrenceDescriptor &RedDes = Reduction.second; 7617 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7618 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7619 } 7620 } 7621 7622 LoopVectorizationCostModel::VectorizationFactor 7623 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7624 7625 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7626 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7627 0U}; 7628 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7629 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7630 return NoVectorization; 7631 7632 if (UserVF) { 7633 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7634 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7635 // Collect the instructions (and their associated costs) that will be more 7636 // profitable to scalarize. 7637 CM.selectUserVectorizationFactor(UserVF); 7638 return {UserVF, 0}; 7639 } 7640 7641 unsigned MaxVF = MaybeMaxVF.getValue(); 7642 assert(MaxVF != 0 && "MaxVF is zero."); 7643 if (MaxVF == 1) 7644 return NoVectorization; 7645 7646 // Select the optimal vectorization factor. 7647 return CM.selectVectorizationFactor(MaxVF); 7648 } 7649 7650 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV) { 7651 // Perform the actual loop transformation. 7652 7653 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7654 ILV.createVectorizedLoopSkeleton(); 7655 7656 //===------------------------------------------------===// 7657 // 7658 // Notice: any optimization or new instruction that go 7659 // into the code below should also be implemented in 7660 // the cost-model. 7661 // 7662 //===------------------------------------------------===// 7663 7664 // 2. Copy and widen instructions from the old loop into the new loop. 7665 7666 // Move instructions to handle first-order recurrences. 7667 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7668 for (auto &Entry : SinkAfter) { 7669 Entry.first->removeFromParent(); 7670 Entry.first->insertAfter(Entry.second); 7671 DEBUG(dbgs() << "Sinking" << *Entry.first << " after" << *Entry.second 7672 << " to vectorize a 1st order recurrence.\n"); 7673 } 7674 7675 // Collect instructions from the original loop that will become trivially dead 7676 // in the vectorized loop. We don't need to vectorize these instructions. For 7677 // example, original induction update instructions can become dead because we 7678 // separately emit induction "steps" when generating code for the new loop. 7679 // Similarly, we create a new latch condition when setting up the structure 7680 // of the new loop, so the old one can become dead. 7681 SmallPtrSet<Instruction *, 4> DeadInstructions; 7682 collectTriviallyDeadInstructions(DeadInstructions); 7683 7684 // Scan the loop in a topological order to ensure that defs are vectorized 7685 // before users. 7686 LoopBlocksDFS DFS(OrigLoop); 7687 DFS.perform(LI); 7688 7689 // Vectorize all instructions in the original loop that will not become 7690 // trivially dead when vectorized. 7691 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 7692 for (Instruction &I : *BB) 7693 if (!DeadInstructions.count(&I)) 7694 ILV.vectorizeInstruction(I); 7695 7696 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7697 // predication, updating analyses. 7698 ILV.fixVectorizedLoop(); 7699 } 7700 7701 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7702 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7703 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7704 7705 // We create new control-flow for the vectorized loop, so the original 7706 // condition will be dead after vectorization if it's only used by the 7707 // branch. 7708 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7709 if (Cmp && Cmp->hasOneUse()) 7710 DeadInstructions.insert(Cmp); 7711 7712 // We create new "steps" for induction variable updates to which the original 7713 // induction variables map. An original update instruction will be dead if 7714 // all its users except the induction variable are dead. 7715 for (auto &Induction : *Legal->getInductionVars()) { 7716 PHINode *Ind = Induction.first; 7717 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7718 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 7719 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7720 })) 7721 DeadInstructions.insert(IndUpdate); 7722 } 7723 } 7724 7725 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7726 auto *SI = dyn_cast<StoreInst>(Instr); 7727 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7728 7729 return scalarizeInstruction(Instr, IfPredicateInstr); 7730 } 7731 7732 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7733 7734 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7735 7736 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7737 Instruction::BinaryOps BinOp) { 7738 // When unrolling and the VF is 1, we only need to add a simple scalar. 7739 Type *Ty = Val->getType(); 7740 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7741 7742 if (Ty->isFloatingPointTy()) { 7743 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7744 7745 // Floating point operations had to be 'fast' to enable the unrolling. 7746 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7747 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7748 } 7749 Constant *C = ConstantInt::get(Ty, StartIdx); 7750 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7751 } 7752 7753 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7754 SmallVector<Metadata *, 4> MDs; 7755 // Reserve first location for self reference to the LoopID metadata node. 7756 MDs.push_back(nullptr); 7757 bool IsUnrollMetadata = false; 7758 MDNode *LoopID = L->getLoopID(); 7759 if (LoopID) { 7760 // First find existing loop unrolling disable metadata. 7761 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7762 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7763 if (MD) { 7764 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7765 IsUnrollMetadata = 7766 S && S->getString().startswith("llvm.loop.unroll.disable"); 7767 } 7768 MDs.push_back(LoopID->getOperand(i)); 7769 } 7770 } 7771 7772 if (!IsUnrollMetadata) { 7773 // Add runtime unroll disable metadata. 7774 LLVMContext &Context = L->getHeader()->getContext(); 7775 SmallVector<Metadata *, 1> DisableOperands; 7776 DisableOperands.push_back( 7777 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7778 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7779 MDs.push_back(DisableNode); 7780 MDNode *NewLoopID = MDNode::get(Context, MDs); 7781 // Set operand 0 to refer to the loop id itself. 7782 NewLoopID->replaceOperandWith(0, NewLoopID); 7783 L->setLoopID(NewLoopID); 7784 } 7785 } 7786 7787 bool LoopVectorizePass::processLoop(Loop *L) { 7788 assert(L->empty() && "Only process inner loops."); 7789 7790 #ifndef NDEBUG 7791 const std::string DebugLocStr = getDebugLocString(L); 7792 #endif /* NDEBUG */ 7793 7794 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7795 << L->getHeader()->getParent()->getName() << "\" from " 7796 << DebugLocStr << "\n"); 7797 7798 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7799 7800 DEBUG(dbgs() << "LV: Loop hints:" 7801 << " force=" 7802 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7803 ? "disabled" 7804 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7805 ? "enabled" 7806 : "?")) 7807 << " width=" << Hints.getWidth() 7808 << " unroll=" << Hints.getInterleave() << "\n"); 7809 7810 // Function containing loop 7811 Function *F = L->getHeader()->getParent(); 7812 7813 // Looking at the diagnostic output is the only way to determine if a loop 7814 // was vectorized (other than looking at the IR or machine code), so it 7815 // is important to generate an optimization remark for each loop. Most of 7816 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7817 // generated as OptimizationRemark and OptimizationRemarkMissed are 7818 // less verbose reporting vectorized loops and unvectorized loops that may 7819 // benefit from vectorization, respectively. 7820 7821 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7822 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7823 return false; 7824 } 7825 7826 PredicatedScalarEvolution PSE(*SE, *L); 7827 7828 // Check if it is legal to vectorize the loop. 7829 LoopVectorizationRequirements Requirements(*ORE); 7830 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7831 &Requirements, &Hints); 7832 if (!LVL.canVectorize()) { 7833 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7834 emitMissedWarning(F, L, Hints, ORE); 7835 return false; 7836 } 7837 7838 // Check the function attributes to find out if this function should be 7839 // optimized for size. 7840 bool OptForSize = 7841 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7842 7843 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7844 // count by optimizing for size, to minimize overheads. 7845 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7846 bool HasExpectedTC = (ExpectedTC > 0); 7847 7848 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7849 auto EstimatedTC = getLoopEstimatedTripCount(L); 7850 if (EstimatedTC) { 7851 ExpectedTC = *EstimatedTC; 7852 HasExpectedTC = true; 7853 } 7854 } 7855 7856 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7857 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7858 << "This loop is worth vectorizing only if no scalar " 7859 << "iteration overheads are incurred."); 7860 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7861 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7862 else { 7863 DEBUG(dbgs() << "\n"); 7864 // Loops with a very small trip count are considered for vectorization 7865 // under OptForSize, thereby making sure the cost of their loop body is 7866 // dominant, free of runtime guards and scalar iteration overheads. 7867 OptForSize = true; 7868 } 7869 } 7870 7871 // Check the function attributes to see if implicit floats are allowed. 7872 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7873 // an integer loop and the vector instructions selected are purely integer 7874 // vector instructions? 7875 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7876 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7877 "attribute is used.\n"); 7878 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7879 "NoImplicitFloat", L) 7880 << "loop not vectorized due to NoImplicitFloat attribute"); 7881 emitMissedWarning(F, L, Hints, ORE); 7882 return false; 7883 } 7884 7885 // Check if the target supports potentially unsafe FP vectorization. 7886 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7887 // for the target we're vectorizing for, to make sure none of the 7888 // additional fp-math flags can help. 7889 if (Hints.isPotentiallyUnsafe() && 7890 TTI->isFPVectorizationPotentiallyUnsafe()) { 7891 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7892 ORE->emit( 7893 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7894 << "loop not vectorized due to unsafe FP support."); 7895 emitMissedWarning(F, L, Hints, ORE); 7896 return false; 7897 } 7898 7899 // Use the cost model. 7900 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7901 &Hints); 7902 CM.collectValuesToIgnore(); 7903 7904 // Use the planner for vectorization. 7905 LoopVectorizationPlanner LVP(L, LI, &LVL, CM); 7906 7907 // Get user vectorization factor. 7908 unsigned UserVF = Hints.getWidth(); 7909 7910 // Plan how to best vectorize, return the best VF and its cost. 7911 LoopVectorizationCostModel::VectorizationFactor VF = 7912 LVP.plan(OptForSize, UserVF); 7913 7914 // Select the interleave count. 7915 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7916 7917 // Get user interleave count. 7918 unsigned UserIC = Hints.getInterleave(); 7919 7920 // Identify the diagnostic messages that should be produced. 7921 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7922 bool VectorizeLoop = true, InterleaveLoop = true; 7923 if (Requirements.doesNotMeet(F, L, Hints)) { 7924 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7925 "requirements.\n"); 7926 emitMissedWarning(F, L, Hints, ORE); 7927 return false; 7928 } 7929 7930 if (VF.Width == 1) { 7931 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7932 VecDiagMsg = std::make_pair( 7933 "VectorizationNotBeneficial", 7934 "the cost-model indicates that vectorization is not beneficial"); 7935 VectorizeLoop = false; 7936 } 7937 7938 if (IC == 1 && UserIC <= 1) { 7939 // Tell the user interleaving is not beneficial. 7940 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7941 IntDiagMsg = std::make_pair( 7942 "InterleavingNotBeneficial", 7943 "the cost-model indicates that interleaving is not beneficial"); 7944 InterleaveLoop = false; 7945 if (UserIC == 1) { 7946 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7947 IntDiagMsg.second += 7948 " and is explicitly disabled or interleave count is set to 1"; 7949 } 7950 } else if (IC > 1 && UserIC == 1) { 7951 // Tell the user interleaving is beneficial, but it explicitly disabled. 7952 DEBUG(dbgs() 7953 << "LV: Interleaving is beneficial but is explicitly disabled."); 7954 IntDiagMsg = std::make_pair( 7955 "InterleavingBeneficialButDisabled", 7956 "the cost-model indicates that interleaving is beneficial " 7957 "but is explicitly disabled or interleave count is set to 1"); 7958 InterleaveLoop = false; 7959 } 7960 7961 // Override IC if user provided an interleave count. 7962 IC = UserIC > 0 ? UserIC : IC; 7963 7964 // Emit diagnostic messages, if any. 7965 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7966 if (!VectorizeLoop && !InterleaveLoop) { 7967 // Do not vectorize or interleaving the loop. 7968 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7969 L->getStartLoc(), L->getHeader()) 7970 << VecDiagMsg.second); 7971 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7972 L->getStartLoc(), L->getHeader()) 7973 << IntDiagMsg.second); 7974 return false; 7975 } else if (!VectorizeLoop && InterleaveLoop) { 7976 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7977 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7978 L->getStartLoc(), L->getHeader()) 7979 << VecDiagMsg.second); 7980 } else if (VectorizeLoop && !InterleaveLoop) { 7981 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7982 << DebugLocStr << '\n'); 7983 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7984 L->getStartLoc(), L->getHeader()) 7985 << IntDiagMsg.second); 7986 } else if (VectorizeLoop && InterleaveLoop) { 7987 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7988 << DebugLocStr << '\n'); 7989 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7990 } 7991 7992 using namespace ore; 7993 if (!VectorizeLoop) { 7994 assert(IC > 1 && "interleave count should not be 1 or 0"); 7995 // If we decided that it is not legal to vectorize the loop, then 7996 // interleave it. 7997 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7998 &CM); 7999 LVP.executePlan(Unroller); 8000 8001 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8002 L->getHeader()) 8003 << "interleaved loop (interleaved count: " 8004 << NV("InterleaveCount", IC) << ")"); 8005 } else { 8006 // If we decided that it is *legal* to vectorize the loop, then do it. 8007 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8008 &LVL, &CM); 8009 LVP.executePlan(LB); 8010 ++LoopsVectorized; 8011 8012 // Add metadata to disable runtime unrolling a scalar loop when there are 8013 // no runtime checks about strides and memory. A scalar loop that is 8014 // rarely used is not worth unrolling. 8015 if (!LB.areSafetyChecksAdded()) 8016 AddRuntimeUnrollDisableMetaData(L); 8017 8018 // Report the vectorization decision. 8019 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8020 L->getHeader()) 8021 << "vectorized loop (vectorization width: " 8022 << NV("VectorizationFactor", VF.Width) 8023 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 8024 } 8025 8026 // Mark the loop as already vectorized to avoid vectorizing again. 8027 Hints.setAlreadyVectorized(); 8028 8029 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8030 return true; 8031 } 8032 8033 bool LoopVectorizePass::runImpl( 8034 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8035 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8036 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8037 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8038 OptimizationRemarkEmitter &ORE_) { 8039 8040 SE = &SE_; 8041 LI = &LI_; 8042 TTI = &TTI_; 8043 DT = &DT_; 8044 BFI = &BFI_; 8045 TLI = TLI_; 8046 AA = &AA_; 8047 AC = &AC_; 8048 GetLAA = &GetLAA_; 8049 DB = &DB_; 8050 ORE = &ORE_; 8051 8052 // Don't attempt if 8053 // 1. the target claims to have no vector registers, and 8054 // 2. interleaving won't help ILP. 8055 // 8056 // The second condition is necessary because, even if the target has no 8057 // vector registers, loop vectorization may still enable scalar 8058 // interleaving. 8059 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8060 return false; 8061 8062 bool Changed = false; 8063 8064 // The vectorizer requires loops to be in simplified form. 8065 // Since simplification may add new inner loops, it has to run before the 8066 // legality and profitability checks. This means running the loop vectorizer 8067 // will simplify all loops, regardless of whether anything end up being 8068 // vectorized. 8069 for (auto &L : *LI) 8070 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8071 8072 // Build up a worklist of inner-loops to vectorize. This is necessary as 8073 // the act of vectorizing or partially unrolling a loop creates new loops 8074 // and can invalidate iterators across the loops. 8075 SmallVector<Loop *, 8> Worklist; 8076 8077 for (Loop *L : *LI) 8078 addAcyclicInnerLoop(*L, Worklist); 8079 8080 LoopsAnalyzed += Worklist.size(); 8081 8082 // Now walk the identified inner loops. 8083 while (!Worklist.empty()) { 8084 Loop *L = Worklist.pop_back_val(); 8085 8086 // For the inner loops we actually process, form LCSSA to simplify the 8087 // transform. 8088 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8089 8090 Changed |= processLoop(L); 8091 } 8092 8093 // Process each loop nest in the function. 8094 return Changed; 8095 8096 } 8097 8098 8099 PreservedAnalyses LoopVectorizePass::run(Function &F, 8100 FunctionAnalysisManager &AM) { 8101 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8102 auto &LI = AM.getResult<LoopAnalysis>(F); 8103 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8104 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8105 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8106 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8107 auto &AA = AM.getResult<AAManager>(F); 8108 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8109 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8110 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8111 8112 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8113 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8114 [&](Loop &L) -> const LoopAccessInfo & { 8115 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 8116 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8117 }; 8118 bool Changed = 8119 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8120 if (!Changed) 8121 return PreservedAnalyses::all(); 8122 PreservedAnalyses PA; 8123 PA.preserve<LoopAnalysis>(); 8124 PA.preserve<DominatorTreeAnalysis>(); 8125 PA.preserve<BasicAA>(); 8126 PA.preserve<GlobalsAA>(); 8127 return PA; 8128 } 8129