1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask,
548                                   bool ConsecutiveStride, bool Reverse);
549 
550   /// Set the debug location in the builder \p Ptr using the debug location in
551   /// \p V. If \p Ptr is None then it uses the class member's Builder.
552   void setDebugLocFromInst(const Value *V,
553                            Optional<IRBuilder<> *> CustomBuilder = None);
554 
555   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
556   void fixNonInductionPHIs(VPTransformState &State);
557 
558   /// Returns true if the reordering of FP operations is not allowed, but we are
559   /// able to vectorize with strict in-order reductions for the given RdxDesc.
560   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
561 
562   /// Create a broadcast instruction. This method generates a broadcast
563   /// instruction (shuffle) for loop invariant values and for the induction
564   /// value. If this is the induction variable then we extend it to N, N+1, ...
565   /// this is needed because each iteration in the loop corresponds to a SIMD
566   /// element.
567   virtual Value *getBroadcastInstrs(Value *V);
568 
569 protected:
570   friend class LoopVectorizationPlanner;
571 
572   /// A small list of PHINodes.
573   using PhiVector = SmallVector<PHINode *, 4>;
574 
575   /// A type for scalarized values in the new loop. Each value from the
576   /// original loop, when scalarized, is represented by UF x VF scalar values
577   /// in the new unrolled loop, where UF is the unroll factor and VF is the
578   /// vectorization factor.
579   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
580 
581   /// Set up the values of the IVs correctly when exiting the vector loop.
582   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
583                     Value *CountRoundDown, Value *EndValue,
584                     BasicBlock *MiddleBlock);
585 
586   /// Create a new induction variable inside L.
587   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
588                                    Value *Step, Instruction *DL);
589 
590   /// Handle all cross-iteration phis in the header.
591   void fixCrossIterationPHIs(VPTransformState &State);
592 
593   /// Create the exit value of first order recurrences in the middle block and
594   /// update their users.
595   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
596 
597   /// Create code for the loop exit value of the reduction.
598   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
599 
600   /// Clear NSW/NUW flags from reduction instructions if necessary.
601   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
602                                VPTransformState &State);
603 
604   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
605   /// means we need to add the appropriate incoming value from the middle
606   /// block as exiting edges from the scalar epilogue loop (if present) are
607   /// already in place, and we exit the vector loop exclusively to the middle
608   /// block.
609   void fixLCSSAPHIs(VPTransformState &State);
610 
611   /// Iteratively sink the scalarized operands of a predicated instruction into
612   /// the block that was created for it.
613   void sinkScalarOperands(Instruction *PredInst);
614 
615   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
616   /// represented as.
617   void truncateToMinimalBitwidths(VPTransformState &State);
618 
619   /// This function adds
620   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
621   /// to each vector element of Val. The sequence starts at StartIndex.
622   /// \p Opcode is relevant for FP induction variable.
623   virtual Value *
624   getStepVector(Value *Val, Value *StartIdx, Value *Step,
625                 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd);
626 
627   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
628   /// variable on which to base the steps, \p Step is the size of the step, and
629   /// \p EntryVal is the value from the original loop that maps to the steps.
630   /// Note that \p EntryVal doesn't have to be an induction variable - it
631   /// can also be a truncate instruction.
632   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
633                         const InductionDescriptor &ID, VPValue *Def,
634                         VPValue *CastDef, VPTransformState &State);
635 
636   /// Create a vector induction phi node based on an existing scalar one. \p
637   /// EntryVal is the value from the original loop that maps to the vector phi
638   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
639   /// truncate instruction, instead of widening the original IV, we widen a
640   /// version of the IV truncated to \p EntryVal's type.
641   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
642                                        Value *Step, Value *Start,
643                                        Instruction *EntryVal, VPValue *Def,
644                                        VPValue *CastDef,
645                                        VPTransformState &State);
646 
647   /// Returns true if an instruction \p I should be scalarized instead of
648   /// vectorized for the chosen vectorization factor.
649   bool shouldScalarizeInstruction(Instruction *I) const;
650 
651   /// Returns true if we should generate a scalar version of \p IV.
652   bool needsScalarInduction(Instruction *IV) const;
653 
654   /// If there is a cast involved in the induction variable \p ID, which should
655   /// be ignored in the vectorized loop body, this function records the
656   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
657   /// cast. We had already proved that the casted Phi is equal to the uncasted
658   /// Phi in the vectorized loop (under a runtime guard), and therefore
659   /// there is no need to vectorize the cast - the same value can be used in the
660   /// vector loop for both the Phi and the cast.
661   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
662   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
663   ///
664   /// \p EntryVal is the value from the original loop that maps to the vector
665   /// phi node and is used to distinguish what is the IV currently being
666   /// processed - original one (if \p EntryVal is a phi corresponding to the
667   /// original IV) or the "newly-created" one based on the proof mentioned above
668   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
669   /// latter case \p EntryVal is a TruncInst and we must not record anything for
670   /// that IV, but it's error-prone to expect callers of this routine to care
671   /// about that, hence this explicit parameter.
672   void recordVectorLoopValueForInductionCast(
673       const InductionDescriptor &ID, const Instruction *EntryVal,
674       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
675       unsigned Part, unsigned Lane = UINT_MAX);
676 
677   /// Generate a shuffle sequence that will reverse the vector Vec.
678   virtual Value *reverseVector(Value *Vec);
679 
680   /// Returns (and creates if needed) the original loop trip count.
681   Value *getOrCreateTripCount(Loop *NewLoop);
682 
683   /// Returns (and creates if needed) the trip count of the widened loop.
684   Value *getOrCreateVectorTripCount(Loop *NewLoop);
685 
686   /// Returns a bitcasted value to the requested vector type.
687   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
688   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
689                                 const DataLayout &DL);
690 
691   /// Emit a bypass check to see if the vector trip count is zero, including if
692   /// it overflows.
693   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
694 
695   /// Emit a bypass check to see if all of the SCEV assumptions we've
696   /// had to make are correct. Returns the block containing the checks or
697   /// nullptr if no checks have been added.
698   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
699 
700   /// Emit bypass checks to check any memory assumptions we may have made.
701   /// Returns the block containing the checks or nullptr if no checks have been
702   /// added.
703   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
704 
705   /// Compute the transformed value of Index at offset StartValue using step
706   /// StepValue.
707   /// For integer induction, returns StartValue + Index * StepValue.
708   /// For pointer induction, returns StartValue[Index * StepValue].
709   /// FIXME: The newly created binary instructions should contain nsw/nuw
710   /// flags, which can be found from the original scalar operations.
711   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
712                               const DataLayout &DL,
713                               const InductionDescriptor &ID) const;
714 
715   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
716   /// vector loop preheader, middle block and scalar preheader. Also
717   /// allocate a loop object for the new vector loop and return it.
718   Loop *createVectorLoopSkeleton(StringRef Prefix);
719 
720   /// Create new phi nodes for the induction variables to resume iteration count
721   /// in the scalar epilogue, from where the vectorized loop left off (given by
722   /// \p VectorTripCount).
723   /// In cases where the loop skeleton is more complicated (eg. epilogue
724   /// vectorization) and the resume values can come from an additional bypass
725   /// block, the \p AdditionalBypass pair provides information about the bypass
726   /// block and the end value on the edge from bypass to this loop.
727   void createInductionResumeValues(
728       Loop *L, Value *VectorTripCount,
729       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
730 
731   /// Complete the loop skeleton by adding debug MDs, creating appropriate
732   /// conditional branches in the middle block, preparing the builder and
733   /// running the verifier. Take in the vector loop \p L as argument, and return
734   /// the preheader of the completed vector loop.
735   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
736 
737   /// Add additional metadata to \p To that was not present on \p Orig.
738   ///
739   /// Currently this is used to add the noalias annotations based on the
740   /// inserted memchecks.  Use this for instructions that are *cloned* into the
741   /// vector loop.
742   void addNewMetadata(Instruction *To, const Instruction *Orig);
743 
744   /// Add metadata from one instruction to another.
745   ///
746   /// This includes both the original MDs from \p From and additional ones (\see
747   /// addNewMetadata).  Use this for *newly created* instructions in the vector
748   /// loop.
749   void addMetadata(Instruction *To, Instruction *From);
750 
751   /// Similar to the previous function but it adds the metadata to a
752   /// vector of instructions.
753   void addMetadata(ArrayRef<Value *> To, Instruction *From);
754 
755   /// Allow subclasses to override and print debug traces before/after vplan
756   /// execution, when trace information is requested.
757   virtual void printDebugTracesAtStart(){};
758   virtual void printDebugTracesAtEnd(){};
759 
760   /// The original loop.
761   Loop *OrigLoop;
762 
763   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
764   /// dynamic knowledge to simplify SCEV expressions and converts them to a
765   /// more usable form.
766   PredicatedScalarEvolution &PSE;
767 
768   /// Loop Info.
769   LoopInfo *LI;
770 
771   /// Dominator Tree.
772   DominatorTree *DT;
773 
774   /// Alias Analysis.
775   AAResults *AA;
776 
777   /// Target Library Info.
778   const TargetLibraryInfo *TLI;
779 
780   /// Target Transform Info.
781   const TargetTransformInfo *TTI;
782 
783   /// Assumption Cache.
784   AssumptionCache *AC;
785 
786   /// Interface to emit optimization remarks.
787   OptimizationRemarkEmitter *ORE;
788 
789   /// LoopVersioning.  It's only set up (non-null) if memchecks were
790   /// used.
791   ///
792   /// This is currently only used to add no-alias metadata based on the
793   /// memchecks.  The actually versioning is performed manually.
794   std::unique_ptr<LoopVersioning> LVer;
795 
796   /// The vectorization SIMD factor to use. Each vector will have this many
797   /// vector elements.
798   ElementCount VF;
799 
800   /// The vectorization unroll factor to use. Each scalar is vectorized to this
801   /// many different vector instructions.
802   unsigned UF;
803 
804   /// The builder that we use
805   IRBuilder<> Builder;
806 
807   // --- Vectorization state ---
808 
809   /// The vector-loop preheader.
810   BasicBlock *LoopVectorPreHeader;
811 
812   /// The scalar-loop preheader.
813   BasicBlock *LoopScalarPreHeader;
814 
815   /// Middle Block between the vector and the scalar.
816   BasicBlock *LoopMiddleBlock;
817 
818   /// The unique ExitBlock of the scalar loop if one exists.  Note that
819   /// there can be multiple exiting edges reaching this block.
820   BasicBlock *LoopExitBlock;
821 
822   /// The vector loop body.
823   BasicBlock *LoopVectorBody;
824 
825   /// The scalar loop body.
826   BasicBlock *LoopScalarBody;
827 
828   /// A list of all bypass blocks. The first block is the entry of the loop.
829   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
830 
831   /// The new Induction variable which was added to the new block.
832   PHINode *Induction = nullptr;
833 
834   /// The induction variable of the old basic block.
835   PHINode *OldInduction = nullptr;
836 
837   /// Store instructions that were predicated.
838   SmallVector<Instruction *, 4> PredicatedInstructions;
839 
840   /// Trip count of the original loop.
841   Value *TripCount = nullptr;
842 
843   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
844   Value *VectorTripCount = nullptr;
845 
846   /// The legality analysis.
847   LoopVectorizationLegality *Legal;
848 
849   /// The profitablity analysis.
850   LoopVectorizationCostModel *Cost;
851 
852   // Record whether runtime checks are added.
853   bool AddedSafetyChecks = false;
854 
855   // Holds the end values for each induction variable. We save the end values
856   // so we can later fix-up the external users of the induction variables.
857   DenseMap<PHINode *, Value *> IVEndValues;
858 
859   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
860   // fixed up at the end of vector code generation.
861   SmallVector<PHINode *, 8> OrigPHIsToFix;
862 
863   /// BFI and PSI are used to check for profile guided size optimizations.
864   BlockFrequencyInfo *BFI;
865   ProfileSummaryInfo *PSI;
866 
867   // Whether this loop should be optimized for size based on profile guided size
868   // optimizatios.
869   bool OptForSizeBasedOnProfile;
870 
871   /// Structure to hold information about generated runtime checks, responsible
872   /// for cleaning the checks, if vectorization turns out unprofitable.
873   GeneratedRTChecks &RTChecks;
874 };
875 
876 class InnerLoopUnroller : public InnerLoopVectorizer {
877 public:
878   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
879                     LoopInfo *LI, DominatorTree *DT,
880                     const TargetLibraryInfo *TLI,
881                     const TargetTransformInfo *TTI, AssumptionCache *AC,
882                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
883                     LoopVectorizationLegality *LVL,
884                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
885                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
886       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
887                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
888                             BFI, PSI, Check) {}
889 
890 private:
891   Value *getBroadcastInstrs(Value *V) override;
892   Value *getStepVector(
893       Value *Val, Value *StartIdx, Value *Step,
894       Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd) override;
895   Value *reverseVector(Value *Vec) override;
896 };
897 
898 /// Encapsulate information regarding vectorization of a loop and its epilogue.
899 /// This information is meant to be updated and used across two stages of
900 /// epilogue vectorization.
901 struct EpilogueLoopVectorizationInfo {
902   ElementCount MainLoopVF = ElementCount::getFixed(0);
903   unsigned MainLoopUF = 0;
904   ElementCount EpilogueVF = ElementCount::getFixed(0);
905   unsigned EpilogueUF = 0;
906   BasicBlock *MainLoopIterationCountCheck = nullptr;
907   BasicBlock *EpilogueIterationCountCheck = nullptr;
908   BasicBlock *SCEVSafetyCheck = nullptr;
909   BasicBlock *MemSafetyCheck = nullptr;
910   Value *TripCount = nullptr;
911   Value *VectorTripCount = nullptr;
912 
913   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
914                                 ElementCount EVF, unsigned EUF)
915       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
916     assert(EUF == 1 &&
917            "A high UF for the epilogue loop is likely not beneficial.");
918   }
919 };
920 
921 /// An extension of the inner loop vectorizer that creates a skeleton for a
922 /// vectorized loop that has its epilogue (residual) also vectorized.
923 /// The idea is to run the vplan on a given loop twice, firstly to setup the
924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
925 /// from the first step and vectorize the epilogue.  This is achieved by
926 /// deriving two concrete strategy classes from this base class and invoking
927 /// them in succession from the loop vectorizer planner.
928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
929 public:
930   InnerLoopAndEpilogueVectorizer(
931       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
932       DominatorTree *DT, const TargetLibraryInfo *TLI,
933       const TargetTransformInfo *TTI, AssumptionCache *AC,
934       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
935       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
936       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
937       GeneratedRTChecks &Checks)
938       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
939                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
940                             Checks),
941         EPI(EPI) {}
942 
943   // Override this function to handle the more complex control flow around the
944   // three loops.
945   BasicBlock *createVectorizedLoopSkeleton() final override {
946     return createEpilogueVectorizedLoopSkeleton();
947   }
948 
949   /// The interface for creating a vectorized skeleton using one of two
950   /// different strategies, each corresponding to one execution of the vplan
951   /// as described above.
952   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
953 
954   /// Holds and updates state information required to vectorize the main loop
955   /// and its epilogue in two separate passes. This setup helps us avoid
956   /// regenerating and recomputing runtime safety checks. It also helps us to
957   /// shorten the iteration-count-check path length for the cases where the
958   /// iteration count of the loop is so small that the main vector loop is
959   /// completely skipped.
960   EpilogueLoopVectorizationInfo &EPI;
961 };
962 
963 /// A specialized derived class of inner loop vectorizer that performs
964 /// vectorization of *main* loops in the process of vectorizing loops and their
965 /// epilogues.
966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
967 public:
968   EpilogueVectorizerMainLoop(
969       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
970       DominatorTree *DT, const TargetLibraryInfo *TLI,
971       const TargetTransformInfo *TTI, AssumptionCache *AC,
972       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
973       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
974       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
975       GeneratedRTChecks &Check)
976       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
977                                        EPI, LVL, CM, BFI, PSI, Check) {}
978   /// Implements the interface for creating a vectorized skeleton using the
979   /// *main loop* strategy (ie the first pass of vplan execution).
980   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
981 
982 protected:
983   /// Emits an iteration count bypass check once for the main loop (when \p
984   /// ForEpilogue is false) and once for the epilogue loop (when \p
985   /// ForEpilogue is true).
986   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
987                                              bool ForEpilogue);
988   void printDebugTracesAtStart() override;
989   void printDebugTracesAtEnd() override;
990 };
991 
992 // A specialized derived class of inner loop vectorizer that performs
993 // vectorization of *epilogue* loops in the process of vectorizing loops and
994 // their epilogues.
995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
996 public:
997   EpilogueVectorizerEpilogueLoop(
998       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
999       DominatorTree *DT, const TargetLibraryInfo *TLI,
1000       const TargetTransformInfo *TTI, AssumptionCache *AC,
1001       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1002       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1003       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1004       GeneratedRTChecks &Checks)
1005       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1006                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1007   /// Implements the interface for creating a vectorized skeleton using the
1008   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1009   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1010 
1011 protected:
1012   /// Emits an iteration count bypass check after the main vector loop has
1013   /// finished to see if there are any iterations left to execute by either
1014   /// the vector epilogue or the scalar epilogue.
1015   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1016                                                       BasicBlock *Bypass,
1017                                                       BasicBlock *Insert);
1018   void printDebugTracesAtStart() override;
1019   void printDebugTracesAtEnd() override;
1020 };
1021 } // end namespace llvm
1022 
1023 /// Look for a meaningful debug location on the instruction or it's
1024 /// operands.
1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1026   if (!I)
1027     return I;
1028 
1029   DebugLoc Empty;
1030   if (I->getDebugLoc() != Empty)
1031     return I;
1032 
1033   for (Use &Op : I->operands()) {
1034     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1035       if (OpInst->getDebugLoc() != Empty)
1036         return OpInst;
1037   }
1038 
1039   return I;
1040 }
1041 
1042 void InnerLoopVectorizer::setDebugLocFromInst(
1043     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1044   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1045   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1046     const DILocation *DIL = Inst->getDebugLoc();
1047 
1048     // When a FSDiscriminator is enabled, we don't need to add the multiply
1049     // factors to the discriminators.
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1052       // FIXME: For scalable vectors, assume vscale=1.
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B->SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     } else
1062       B->SetCurrentDebugLocation(DIL);
1063   } else
1064     B->SetCurrentDebugLocation(DebugLoc());
1065 }
1066 
1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1068 /// is passed, the message relates to that particular instruction.
1069 #ifndef NDEBUG
1070 static void debugVectorizationMessage(const StringRef Prefix,
1071                                       const StringRef DebugMsg,
1072                                       Instruction *I) {
1073   dbgs() << "LV: " << Prefix << DebugMsg;
1074   if (I != nullptr)
1075     dbgs() << " " << *I;
1076   else
1077     dbgs() << '.';
1078   dbgs() << '\n';
1079 }
1080 #endif
1081 
1082 /// Create an analysis remark that explains why vectorization failed
1083 ///
1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1085 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1086 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1087 /// the location of the remark.  \return the remark object that can be
1088 /// streamed to.
1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1090     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1091   Value *CodeRegion = TheLoop->getHeader();
1092   DebugLoc DL = TheLoop->getStartLoc();
1093 
1094   if (I) {
1095     CodeRegion = I->getParent();
1096     // If there is no debug location attached to the instruction, revert back to
1097     // using the loop's.
1098     if (I->getDebugLoc())
1099       DL = I->getDebugLoc();
1100   }
1101 
1102   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1103 }
1104 
1105 /// Return a value for Step multiplied by VF.
1106 static Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF,
1107                               int64_t Step) {
1108   assert(Ty->isIntegerTy() && "Expected an integer step");
1109   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1110   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1111 }
1112 
1113 namespace llvm {
1114 
1115 /// Return the runtime value for VF.
1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1117   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1118   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1119 }
1120 
1121 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1122   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1123   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1124   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1125   return B.CreateUIToFP(RuntimeVF, FTy);
1126 }
1127 
1128 void reportVectorizationFailure(const StringRef DebugMsg,
1129                                 const StringRef OREMsg, const StringRef ORETag,
1130                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1131                                 Instruction *I) {
1132   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1133   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1134   ORE->emit(
1135       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1136       << "loop not vectorized: " << OREMsg);
1137 }
1138 
1139 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1140                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1141                              Instruction *I) {
1142   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1143   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1144   ORE->emit(
1145       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1146       << Msg);
1147 }
1148 
1149 } // end namespace llvm
1150 
1151 #ifndef NDEBUG
1152 /// \return string containing a file name and a line # for the given loop.
1153 static std::string getDebugLocString(const Loop *L) {
1154   std::string Result;
1155   if (L) {
1156     raw_string_ostream OS(Result);
1157     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1158       LoopDbgLoc.print(OS);
1159     else
1160       // Just print the module name.
1161       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1162     OS.flush();
1163   }
1164   return Result;
1165 }
1166 #endif
1167 
1168 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1169                                          const Instruction *Orig) {
1170   // If the loop was versioned with memchecks, add the corresponding no-alias
1171   // metadata.
1172   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1173     LVer->annotateInstWithNoAlias(To, Orig);
1174 }
1175 
1176 void InnerLoopVectorizer::addMetadata(Instruction *To,
1177                                       Instruction *From) {
1178   propagateMetadata(To, From);
1179   addNewMetadata(To, From);
1180 }
1181 
1182 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1183                                       Instruction *From) {
1184   for (Value *V : To) {
1185     if (Instruction *I = dyn_cast<Instruction>(V))
1186       addMetadata(I, From);
1187   }
1188 }
1189 
1190 namespace llvm {
1191 
1192 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1193 // lowered.
1194 enum ScalarEpilogueLowering {
1195 
1196   // The default: allowing scalar epilogues.
1197   CM_ScalarEpilogueAllowed,
1198 
1199   // Vectorization with OptForSize: don't allow epilogues.
1200   CM_ScalarEpilogueNotAllowedOptSize,
1201 
1202   // A special case of vectorisation with OptForSize: loops with a very small
1203   // trip count are considered for vectorization under OptForSize, thereby
1204   // making sure the cost of their loop body is dominant, free of runtime
1205   // guards and scalar iteration overheads.
1206   CM_ScalarEpilogueNotAllowedLowTripLoop,
1207 
1208   // Loop hint predicate indicating an epilogue is undesired.
1209   CM_ScalarEpilogueNotNeededUsePredicate,
1210 
1211   // Directive indicating we must either tail fold or not vectorize
1212   CM_ScalarEpilogueNotAllowedUsePredicate
1213 };
1214 
1215 /// ElementCountComparator creates a total ordering for ElementCount
1216 /// for the purposes of using it in a set structure.
1217 struct ElementCountComparator {
1218   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1219     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1220            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1221   }
1222 };
1223 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1224 
1225 /// LoopVectorizationCostModel - estimates the expected speedups due to
1226 /// vectorization.
1227 /// In many cases vectorization is not profitable. This can happen because of
1228 /// a number of reasons. In this class we mainly attempt to predict the
1229 /// expected speedup/slowdowns due to the supported instruction set. We use the
1230 /// TargetTransformInfo to query the different backends for the cost of
1231 /// different operations.
1232 class LoopVectorizationCostModel {
1233 public:
1234   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1235                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1236                              LoopVectorizationLegality *Legal,
1237                              const TargetTransformInfo &TTI,
1238                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1239                              AssumptionCache *AC,
1240                              OptimizationRemarkEmitter *ORE, const Function *F,
1241                              const LoopVectorizeHints *Hints,
1242                              InterleavedAccessInfo &IAI)
1243       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1244         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1245         Hints(Hints), InterleaveInfo(IAI) {}
1246 
1247   /// \return An upper bound for the vectorization factors (both fixed and
1248   /// scalable). If the factors are 0, vectorization and interleaving should be
1249   /// avoided up front.
1250   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1251 
1252   /// \return True if runtime checks are required for vectorization, and false
1253   /// otherwise.
1254   bool runtimeChecksRequired();
1255 
1256   /// \return The most profitable vectorization factor and the cost of that VF.
1257   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1258   /// then this vectorization factor will be selected if vectorization is
1259   /// possible.
1260   VectorizationFactor
1261   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1262 
1263   VectorizationFactor
1264   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1265                                     const LoopVectorizationPlanner &LVP);
1266 
1267   /// Setup cost-based decisions for user vectorization factor.
1268   /// \return true if the UserVF is a feasible VF to be chosen.
1269   bool selectUserVectorizationFactor(ElementCount UserVF) {
1270     collectUniformsAndScalars(UserVF);
1271     collectInstsToScalarize(UserVF);
1272     return expectedCost(UserVF).first.isValid();
1273   }
1274 
1275   /// \return The size (in bits) of the smallest and widest types in the code
1276   /// that needs to be vectorized. We ignore values that remain scalar such as
1277   /// 64 bit loop indices.
1278   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1279 
1280   /// \return The desired interleave count.
1281   /// If interleave count has been specified by metadata it will be returned.
1282   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1283   /// are the selected vectorization factor and the cost of the selected VF.
1284   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1285 
1286   /// Memory access instruction may be vectorized in more than one way.
1287   /// Form of instruction after vectorization depends on cost.
1288   /// This function takes cost-based decisions for Load/Store instructions
1289   /// and collects them in a map. This decisions map is used for building
1290   /// the lists of loop-uniform and loop-scalar instructions.
1291   /// The calculated cost is saved with widening decision in order to
1292   /// avoid redundant calculations.
1293   void setCostBasedWideningDecision(ElementCount VF);
1294 
1295   /// A struct that represents some properties of the register usage
1296   /// of a loop.
1297   struct RegisterUsage {
1298     /// Holds the number of loop invariant values that are used in the loop.
1299     /// The key is ClassID of target-provided register class.
1300     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1301     /// Holds the maximum number of concurrent live intervals in the loop.
1302     /// The key is ClassID of target-provided register class.
1303     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1304   };
1305 
1306   /// \return Returns information about the register usages of the loop for the
1307   /// given vectorization factors.
1308   SmallVector<RegisterUsage, 8>
1309   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1310 
1311   /// Collect values we want to ignore in the cost model.
1312   void collectValuesToIgnore();
1313 
1314   /// Collect all element types in the loop for which widening is needed.
1315   void collectElementTypesForWidening();
1316 
1317   /// Split reductions into those that happen in the loop, and those that happen
1318   /// outside. In loop reductions are collected into InLoopReductionChains.
1319   void collectInLoopReductions();
1320 
1321   /// Returns true if we should use strict in-order reductions for the given
1322   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1323   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1324   /// of FP operations.
1325   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1326     return !Hints->allowReordering() && RdxDesc.isOrdered();
1327   }
1328 
1329   /// \returns The smallest bitwidth each instruction can be represented with.
1330   /// The vector equivalents of these instructions should be truncated to this
1331   /// type.
1332   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1333     return MinBWs;
1334   }
1335 
1336   /// \returns True if it is more profitable to scalarize instruction \p I for
1337   /// vectorization factor \p VF.
1338   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1339     assert(VF.isVector() &&
1340            "Profitable to scalarize relevant only for VF > 1.");
1341 
1342     // Cost model is not run in the VPlan-native path - return conservative
1343     // result until this changes.
1344     if (EnableVPlanNativePath)
1345       return false;
1346 
1347     auto Scalars = InstsToScalarize.find(VF);
1348     assert(Scalars != InstsToScalarize.end() &&
1349            "VF not yet analyzed for scalarization profitability");
1350     return Scalars->second.find(I) != Scalars->second.end();
1351   }
1352 
1353   /// Returns true if \p I is known to be uniform after vectorization.
1354   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1355     if (VF.isScalar())
1356       return true;
1357 
1358     // Cost model is not run in the VPlan-native path - return conservative
1359     // result until this changes.
1360     if (EnableVPlanNativePath)
1361       return false;
1362 
1363     auto UniformsPerVF = Uniforms.find(VF);
1364     assert(UniformsPerVF != Uniforms.end() &&
1365            "VF not yet analyzed for uniformity");
1366     return UniformsPerVF->second.count(I);
1367   }
1368 
1369   /// Returns true if \p I is known to be scalar after vectorization.
1370   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1371     if (VF.isScalar())
1372       return true;
1373 
1374     // Cost model is not run in the VPlan-native path - return conservative
1375     // result until this changes.
1376     if (EnableVPlanNativePath)
1377       return false;
1378 
1379     auto ScalarsPerVF = Scalars.find(VF);
1380     assert(ScalarsPerVF != Scalars.end() &&
1381            "Scalar values are not calculated for VF");
1382     return ScalarsPerVF->second.count(I);
1383   }
1384 
1385   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1386   /// for vectorization factor \p VF.
1387   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1388     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1389            !isProfitableToScalarize(I, VF) &&
1390            !isScalarAfterVectorization(I, VF);
1391   }
1392 
1393   /// Decision that was taken during cost calculation for memory instruction.
1394   enum InstWidening {
1395     CM_Unknown,
1396     CM_Widen,         // For consecutive accesses with stride +1.
1397     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1398     CM_Interleave,
1399     CM_GatherScatter,
1400     CM_Scalarize
1401   };
1402 
1403   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1404   /// instruction \p I and vector width \p VF.
1405   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1406                            InstructionCost Cost) {
1407     assert(VF.isVector() && "Expected VF >=2");
1408     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1409   }
1410 
1411   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1412   /// interleaving group \p Grp and vector width \p VF.
1413   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1414                            ElementCount VF, InstWidening W,
1415                            InstructionCost Cost) {
1416     assert(VF.isVector() && "Expected VF >=2");
1417     /// Broadcast this decicion to all instructions inside the group.
1418     /// But the cost will be assigned to one instruction only.
1419     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1420       if (auto *I = Grp->getMember(i)) {
1421         if (Grp->getInsertPos() == I)
1422           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1423         else
1424           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1425       }
1426     }
1427   }
1428 
1429   /// Return the cost model decision for the given instruction \p I and vector
1430   /// width \p VF. Return CM_Unknown if this instruction did not pass
1431   /// through the cost modeling.
1432   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1433     assert(VF.isVector() && "Expected VF to be a vector VF");
1434     // Cost model is not run in the VPlan-native path - return conservative
1435     // result until this changes.
1436     if (EnableVPlanNativePath)
1437       return CM_GatherScatter;
1438 
1439     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1440     auto Itr = WideningDecisions.find(InstOnVF);
1441     if (Itr == WideningDecisions.end())
1442       return CM_Unknown;
1443     return Itr->second.first;
1444   }
1445 
1446   /// Return the vectorization cost for the given instruction \p I and vector
1447   /// width \p VF.
1448   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1449     assert(VF.isVector() && "Expected VF >=2");
1450     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1451     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1452            "The cost is not calculated");
1453     return WideningDecisions[InstOnVF].second;
1454   }
1455 
1456   /// Return True if instruction \p I is an optimizable truncate whose operand
1457   /// is an induction variable. Such a truncate will be removed by adding a new
1458   /// induction variable with the destination type.
1459   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1460     // If the instruction is not a truncate, return false.
1461     auto *Trunc = dyn_cast<TruncInst>(I);
1462     if (!Trunc)
1463       return false;
1464 
1465     // Get the source and destination types of the truncate.
1466     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1467     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1468 
1469     // If the truncate is free for the given types, return false. Replacing a
1470     // free truncate with an induction variable would add an induction variable
1471     // update instruction to each iteration of the loop. We exclude from this
1472     // check the primary induction variable since it will need an update
1473     // instruction regardless.
1474     Value *Op = Trunc->getOperand(0);
1475     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1476       return false;
1477 
1478     // If the truncated value is not an induction variable, return false.
1479     return Legal->isInductionPhi(Op);
1480   }
1481 
1482   /// Collects the instructions to scalarize for each predicated instruction in
1483   /// the loop.
1484   void collectInstsToScalarize(ElementCount VF);
1485 
1486   /// Collect Uniform and Scalar values for the given \p VF.
1487   /// The sets depend on CM decision for Load/Store instructions
1488   /// that may be vectorized as interleave, gather-scatter or scalarized.
1489   void collectUniformsAndScalars(ElementCount VF) {
1490     // Do the analysis once.
1491     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1492       return;
1493     setCostBasedWideningDecision(VF);
1494     collectLoopUniforms(VF);
1495     collectLoopScalars(VF);
1496   }
1497 
1498   /// Returns true if the target machine supports masked store operation
1499   /// for the given \p DataType and kind of access to \p Ptr.
1500   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1501     return Legal->isConsecutivePtr(DataType, Ptr) &&
1502            TTI.isLegalMaskedStore(DataType, Alignment);
1503   }
1504 
1505   /// Returns true if the target machine supports masked load operation
1506   /// for the given \p DataType and kind of access to \p Ptr.
1507   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1508     return Legal->isConsecutivePtr(DataType, Ptr) &&
1509            TTI.isLegalMaskedLoad(DataType, Alignment);
1510   }
1511 
1512   /// Returns true if the target machine can represent \p V as a masked gather
1513   /// or scatter operation.
1514   bool isLegalGatherOrScatter(Value *V) {
1515     bool LI = isa<LoadInst>(V);
1516     bool SI = isa<StoreInst>(V);
1517     if (!LI && !SI)
1518       return false;
1519     auto *Ty = getLoadStoreType(V);
1520     Align Align = getLoadStoreAlignment(V);
1521     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1522            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1523   }
1524 
1525   /// Returns true if the target machine supports all of the reduction
1526   /// variables found for the given VF.
1527   bool canVectorizeReductions(ElementCount VF) const {
1528     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1529       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1530       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1531     }));
1532   }
1533 
1534   /// Returns true if \p I is an instruction that will be scalarized with
1535   /// predication. Such instructions include conditional stores and
1536   /// instructions that may divide by zero.
1537   /// If a non-zero VF has been calculated, we check if I will be scalarized
1538   /// predication for that VF.
1539   bool isScalarWithPredication(Instruction *I) const;
1540 
1541   // Returns true if \p I is an instruction that will be predicated either
1542   // through scalar predication or masked load/store or masked gather/scatter.
1543   // Superset of instructions that return true for isScalarWithPredication.
1544   bool isPredicatedInst(Instruction *I) {
1545     if (!blockNeedsPredication(I->getParent()))
1546       return false;
1547     // Loads and stores that need some form of masked operation are predicated
1548     // instructions.
1549     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1550       return Legal->isMaskRequired(I);
1551     return isScalarWithPredication(I);
1552   }
1553 
1554   /// Returns true if \p I is a memory instruction with consecutive memory
1555   /// access that can be widened.
1556   bool
1557   memoryInstructionCanBeWidened(Instruction *I,
1558                                 ElementCount VF = ElementCount::getFixed(1));
1559 
1560   /// Returns true if \p I is a memory instruction in an interleaved-group
1561   /// of memory accesses that can be vectorized with wide vector loads/stores
1562   /// and shuffles.
1563   bool
1564   interleavedAccessCanBeWidened(Instruction *I,
1565                                 ElementCount VF = ElementCount::getFixed(1));
1566 
1567   /// Check if \p Instr belongs to any interleaved access group.
1568   bool isAccessInterleaved(Instruction *Instr) {
1569     return InterleaveInfo.isInterleaved(Instr);
1570   }
1571 
1572   /// Get the interleaved access group that \p Instr belongs to.
1573   const InterleaveGroup<Instruction> *
1574   getInterleavedAccessGroup(Instruction *Instr) {
1575     return InterleaveInfo.getInterleaveGroup(Instr);
1576   }
1577 
1578   /// Returns true if we're required to use a scalar epilogue for at least
1579   /// the final iteration of the original loop.
1580   bool requiresScalarEpilogue(ElementCount VF) const {
1581     if (!isScalarEpilogueAllowed())
1582       return false;
1583     // If we might exit from anywhere but the latch, must run the exiting
1584     // iteration in scalar form.
1585     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1586       return true;
1587     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1588   }
1589 
1590   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1591   /// loop hint annotation.
1592   bool isScalarEpilogueAllowed() const {
1593     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1594   }
1595 
1596   /// Returns true if all loop blocks should be masked to fold tail loop.
1597   bool foldTailByMasking() const { return FoldTailByMasking; }
1598 
1599   bool blockNeedsPredication(BasicBlock *BB) const {
1600     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1601   }
1602 
1603   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1604   /// nodes to the chain of instructions representing the reductions. Uses a
1605   /// MapVector to ensure deterministic iteration order.
1606   using ReductionChainMap =
1607       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1608 
1609   /// Return the chain of instructions representing an inloop reduction.
1610   const ReductionChainMap &getInLoopReductionChains() const {
1611     return InLoopReductionChains;
1612   }
1613 
1614   /// Returns true if the Phi is part of an inloop reduction.
1615   bool isInLoopReduction(PHINode *Phi) const {
1616     return InLoopReductionChains.count(Phi);
1617   }
1618 
1619   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1620   /// with factor VF.  Return the cost of the instruction, including
1621   /// scalarization overhead if it's needed.
1622   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1623 
1624   /// Estimate cost of a call instruction CI if it were vectorized with factor
1625   /// VF. Return the cost of the instruction, including scalarization overhead
1626   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1627   /// scalarized -
1628   /// i.e. either vector version isn't available, or is too expensive.
1629   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1630                                     bool &NeedToScalarize) const;
1631 
1632   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1633   /// that of B.
1634   bool isMoreProfitable(const VectorizationFactor &A,
1635                         const VectorizationFactor &B) const;
1636 
1637   /// Invalidates decisions already taken by the cost model.
1638   void invalidateCostModelingDecisions() {
1639     WideningDecisions.clear();
1640     Uniforms.clear();
1641     Scalars.clear();
1642   }
1643 
1644 private:
1645   unsigned NumPredStores = 0;
1646 
1647   /// \return An upper bound for the vectorization factors for both
1648   /// fixed and scalable vectorization, where the minimum-known number of
1649   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1650   /// disabled or unsupported, then the scalable part will be equal to
1651   /// ElementCount::getScalable(0).
1652   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1653                                            ElementCount UserVF);
1654 
1655   /// \return the maximized element count based on the targets vector
1656   /// registers and the loop trip-count, but limited to a maximum safe VF.
1657   /// This is a helper function of computeFeasibleMaxVF.
1658   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1659   /// issue that occurred on one of the buildbots which cannot be reproduced
1660   /// without having access to the properietary compiler (see comments on
1661   /// D98509). The issue is currently under investigation and this workaround
1662   /// will be removed as soon as possible.
1663   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1664                                        unsigned SmallestType,
1665                                        unsigned WidestType,
1666                                        const ElementCount &MaxSafeVF);
1667 
1668   /// \return the maximum legal scalable VF, based on the safe max number
1669   /// of elements.
1670   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1671 
1672   /// The vectorization cost is a combination of the cost itself and a boolean
1673   /// indicating whether any of the contributing operations will actually
1674   /// operate on vector values after type legalization in the backend. If this
1675   /// latter value is false, then all operations will be scalarized (i.e. no
1676   /// vectorization has actually taken place).
1677   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1678 
1679   /// Returns the expected execution cost. The unit of the cost does
1680   /// not matter because we use the 'cost' units to compare different
1681   /// vector widths. The cost that is returned is *not* normalized by
1682   /// the factor width. If \p Invalid is not nullptr, this function
1683   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1684   /// each instruction that has an Invalid cost for the given VF.
1685   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1686   VectorizationCostTy
1687   expectedCost(ElementCount VF,
1688                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1689 
1690   /// Returns the execution time cost of an instruction for a given vector
1691   /// width. Vector width of one means scalar.
1692   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1693 
1694   /// The cost-computation logic from getInstructionCost which provides
1695   /// the vector type as an output parameter.
1696   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1697                                      Type *&VectorTy);
1698 
1699   /// Return the cost of instructions in an inloop reduction pattern, if I is
1700   /// part of that pattern.
1701   Optional<InstructionCost>
1702   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1703                           TTI::TargetCostKind CostKind);
1704 
1705   /// Calculate vectorization cost of memory instruction \p I.
1706   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost computation for scalarized memory instruction.
1709   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1710 
1711   /// The cost computation for interleaving group of memory instructions.
1712   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1713 
1714   /// The cost computation for Gather/Scatter instruction.
1715   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1716 
1717   /// The cost computation for widening instruction \p I with consecutive
1718   /// memory access.
1719   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1720 
1721   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1722   /// Load: scalar load + broadcast.
1723   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1724   /// element)
1725   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1726 
1727   /// Estimate the overhead of scalarizing an instruction. This is a
1728   /// convenience wrapper for the type-based getScalarizationOverhead API.
1729   InstructionCost getScalarizationOverhead(Instruction *I,
1730                                            ElementCount VF) const;
1731 
1732   /// Returns whether the instruction is a load or store and will be a emitted
1733   /// as a vector operation.
1734   bool isConsecutiveLoadOrStore(Instruction *I);
1735 
1736   /// Returns true if an artificially high cost for emulated masked memrefs
1737   /// should be used.
1738   bool useEmulatedMaskMemRefHack(Instruction *I);
1739 
1740   /// Map of scalar integer values to the smallest bitwidth they can be legally
1741   /// represented as. The vector equivalents of these values should be truncated
1742   /// to this type.
1743   MapVector<Instruction *, uint64_t> MinBWs;
1744 
1745   /// A type representing the costs for instructions if they were to be
1746   /// scalarized rather than vectorized. The entries are Instruction-Cost
1747   /// pairs.
1748   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1749 
1750   /// A set containing all BasicBlocks that are known to present after
1751   /// vectorization as a predicated block.
1752   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1753 
1754   /// Records whether it is allowed to have the original scalar loop execute at
1755   /// least once. This may be needed as a fallback loop in case runtime
1756   /// aliasing/dependence checks fail, or to handle the tail/remainder
1757   /// iterations when the trip count is unknown or doesn't divide by the VF,
1758   /// or as a peel-loop to handle gaps in interleave-groups.
1759   /// Under optsize and when the trip count is very small we don't allow any
1760   /// iterations to execute in the scalar loop.
1761   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1762 
1763   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1764   bool FoldTailByMasking = false;
1765 
1766   /// A map holding scalar costs for different vectorization factors. The
1767   /// presence of a cost for an instruction in the mapping indicates that the
1768   /// instruction will be scalarized when vectorizing with the associated
1769   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1770   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1771 
1772   /// Holds the instructions known to be uniform after vectorization.
1773   /// The data is collected per VF.
1774   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1775 
1776   /// Holds the instructions known to be scalar after vectorization.
1777   /// The data is collected per VF.
1778   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1779 
1780   /// Holds the instructions (address computations) that are forced to be
1781   /// scalarized.
1782   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1783 
1784   /// PHINodes of the reductions that should be expanded in-loop along with
1785   /// their associated chains of reduction operations, in program order from top
1786   /// (PHI) to bottom
1787   ReductionChainMap InLoopReductionChains;
1788 
1789   /// A Map of inloop reduction operations and their immediate chain operand.
1790   /// FIXME: This can be removed once reductions can be costed correctly in
1791   /// vplan. This was added to allow quick lookup to the inloop operations,
1792   /// without having to loop through InLoopReductionChains.
1793   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1794 
1795   /// Returns the expected difference in cost from scalarizing the expression
1796   /// feeding a predicated instruction \p PredInst. The instructions to
1797   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1798   /// non-negative return value implies the expression will be scalarized.
1799   /// Currently, only single-use chains are considered for scalarization.
1800   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1801                               ElementCount VF);
1802 
1803   /// Collect the instructions that are uniform after vectorization. An
1804   /// instruction is uniform if we represent it with a single scalar value in
1805   /// the vectorized loop corresponding to each vector iteration. Examples of
1806   /// uniform instructions include pointer operands of consecutive or
1807   /// interleaved memory accesses. Note that although uniformity implies an
1808   /// instruction will be scalar, the reverse is not true. In general, a
1809   /// scalarized instruction will be represented by VF scalar values in the
1810   /// vectorized loop, each corresponding to an iteration of the original
1811   /// scalar loop.
1812   void collectLoopUniforms(ElementCount VF);
1813 
1814   /// Collect the instructions that are scalar after vectorization. An
1815   /// instruction is scalar if it is known to be uniform or will be scalarized
1816   /// during vectorization. Non-uniform scalarized instructions will be
1817   /// represented by VF values in the vectorized loop, each corresponding to an
1818   /// iteration of the original scalar loop.
1819   void collectLoopScalars(ElementCount VF);
1820 
1821   /// Keeps cost model vectorization decision and cost for instructions.
1822   /// Right now it is used for memory instructions only.
1823   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1824                                 std::pair<InstWidening, InstructionCost>>;
1825 
1826   DecisionList WideningDecisions;
1827 
1828   /// Returns true if \p V is expected to be vectorized and it needs to be
1829   /// extracted.
1830   bool needsExtract(Value *V, ElementCount VF) const {
1831     Instruction *I = dyn_cast<Instruction>(V);
1832     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1833         TheLoop->isLoopInvariant(I))
1834       return false;
1835 
1836     // Assume we can vectorize V (and hence we need extraction) if the
1837     // scalars are not computed yet. This can happen, because it is called
1838     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1839     // the scalars are collected. That should be a safe assumption in most
1840     // cases, because we check if the operands have vectorizable types
1841     // beforehand in LoopVectorizationLegality.
1842     return Scalars.find(VF) == Scalars.end() ||
1843            !isScalarAfterVectorization(I, VF);
1844   };
1845 
1846   /// Returns a range containing only operands needing to be extracted.
1847   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1848                                                    ElementCount VF) const {
1849     return SmallVector<Value *, 4>(make_filter_range(
1850         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1851   }
1852 
1853   /// Determines if we have the infrastructure to vectorize loop \p L and its
1854   /// epilogue, assuming the main loop is vectorized by \p VF.
1855   bool isCandidateForEpilogueVectorization(const Loop &L,
1856                                            const ElementCount VF) const;
1857 
1858   /// Returns true if epilogue vectorization is considered profitable, and
1859   /// false otherwise.
1860   /// \p VF is the vectorization factor chosen for the original loop.
1861   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1862 
1863 public:
1864   /// The loop that we evaluate.
1865   Loop *TheLoop;
1866 
1867   /// Predicated scalar evolution analysis.
1868   PredicatedScalarEvolution &PSE;
1869 
1870   /// Loop Info analysis.
1871   LoopInfo *LI;
1872 
1873   /// Vectorization legality.
1874   LoopVectorizationLegality *Legal;
1875 
1876   /// Vector target information.
1877   const TargetTransformInfo &TTI;
1878 
1879   /// Target Library Info.
1880   const TargetLibraryInfo *TLI;
1881 
1882   /// Demanded bits analysis.
1883   DemandedBits *DB;
1884 
1885   /// Assumption cache.
1886   AssumptionCache *AC;
1887 
1888   /// Interface to emit optimization remarks.
1889   OptimizationRemarkEmitter *ORE;
1890 
1891   const Function *TheFunction;
1892 
1893   /// Loop Vectorize Hint.
1894   const LoopVectorizeHints *Hints;
1895 
1896   /// The interleave access information contains groups of interleaved accesses
1897   /// with the same stride and close to each other.
1898   InterleavedAccessInfo &InterleaveInfo;
1899 
1900   /// Values to ignore in the cost model.
1901   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1902 
1903   /// Values to ignore in the cost model when VF > 1.
1904   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1905 
1906   /// All element types found in the loop.
1907   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1908 
1909   /// Profitable vector factors.
1910   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1911 };
1912 } // end namespace llvm
1913 
1914 /// Helper struct to manage generating runtime checks for vectorization.
1915 ///
1916 /// The runtime checks are created up-front in temporary blocks to allow better
1917 /// estimating the cost and un-linked from the existing IR. After deciding to
1918 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1919 /// temporary blocks are completely removed.
1920 class GeneratedRTChecks {
1921   /// Basic block which contains the generated SCEV checks, if any.
1922   BasicBlock *SCEVCheckBlock = nullptr;
1923 
1924   /// The value representing the result of the generated SCEV checks. If it is
1925   /// nullptr, either no SCEV checks have been generated or they have been used.
1926   Value *SCEVCheckCond = nullptr;
1927 
1928   /// Basic block which contains the generated memory runtime checks, if any.
1929   BasicBlock *MemCheckBlock = nullptr;
1930 
1931   /// The value representing the result of the generated memory runtime checks.
1932   /// If it is nullptr, either no memory runtime checks have been generated or
1933   /// they have been used.
1934   Value *MemRuntimeCheckCond = nullptr;
1935 
1936   DominatorTree *DT;
1937   LoopInfo *LI;
1938 
1939   SCEVExpander SCEVExp;
1940   SCEVExpander MemCheckExp;
1941 
1942 public:
1943   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1944                     const DataLayout &DL)
1945       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1946         MemCheckExp(SE, DL, "scev.check") {}
1947 
1948   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1949   /// accurately estimate the cost of the runtime checks. The blocks are
1950   /// un-linked from the IR and is added back during vector code generation. If
1951   /// there is no vector code generation, the check blocks are removed
1952   /// completely.
1953   void Create(Loop *L, const LoopAccessInfo &LAI,
1954               const SCEVUnionPredicate &UnionPred) {
1955 
1956     BasicBlock *LoopHeader = L->getHeader();
1957     BasicBlock *Preheader = L->getLoopPreheader();
1958 
1959     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1960     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1961     // may be used by SCEVExpander. The blocks will be un-linked from their
1962     // predecessors and removed from LI & DT at the end of the function.
1963     if (!UnionPred.isAlwaysTrue()) {
1964       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1965                                   nullptr, "vector.scevcheck");
1966 
1967       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1968           &UnionPred, SCEVCheckBlock->getTerminator());
1969     }
1970 
1971     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1972     if (RtPtrChecking.Need) {
1973       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1974       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1975                                  "vector.memcheck");
1976 
1977       MemRuntimeCheckCond =
1978           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1979                            RtPtrChecking.getChecks(), MemCheckExp);
1980       assert(MemRuntimeCheckCond &&
1981              "no RT checks generated although RtPtrChecking "
1982              "claimed checks are required");
1983     }
1984 
1985     if (!MemCheckBlock && !SCEVCheckBlock)
1986       return;
1987 
1988     // Unhook the temporary block with the checks, update various places
1989     // accordingly.
1990     if (SCEVCheckBlock)
1991       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1992     if (MemCheckBlock)
1993       MemCheckBlock->replaceAllUsesWith(Preheader);
1994 
1995     if (SCEVCheckBlock) {
1996       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1997       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1998       Preheader->getTerminator()->eraseFromParent();
1999     }
2000     if (MemCheckBlock) {
2001       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2002       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2003       Preheader->getTerminator()->eraseFromParent();
2004     }
2005 
2006     DT->changeImmediateDominator(LoopHeader, Preheader);
2007     if (MemCheckBlock) {
2008       DT->eraseNode(MemCheckBlock);
2009       LI->removeBlock(MemCheckBlock);
2010     }
2011     if (SCEVCheckBlock) {
2012       DT->eraseNode(SCEVCheckBlock);
2013       LI->removeBlock(SCEVCheckBlock);
2014     }
2015   }
2016 
2017   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2018   /// unused.
2019   ~GeneratedRTChecks() {
2020     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2021     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2022     if (!SCEVCheckCond)
2023       SCEVCleaner.markResultUsed();
2024 
2025     if (!MemRuntimeCheckCond)
2026       MemCheckCleaner.markResultUsed();
2027 
2028     if (MemRuntimeCheckCond) {
2029       auto &SE = *MemCheckExp.getSE();
2030       // Memory runtime check generation creates compares that use expanded
2031       // values. Remove them before running the SCEVExpanderCleaners.
2032       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2033         if (MemCheckExp.isInsertedInstruction(&I))
2034           continue;
2035         SE.forgetValue(&I);
2036         I.eraseFromParent();
2037       }
2038     }
2039     MemCheckCleaner.cleanup();
2040     SCEVCleaner.cleanup();
2041 
2042     if (SCEVCheckCond)
2043       SCEVCheckBlock->eraseFromParent();
2044     if (MemRuntimeCheckCond)
2045       MemCheckBlock->eraseFromParent();
2046   }
2047 
2048   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2049   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2050   /// depending on the generated condition.
2051   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2052                              BasicBlock *LoopVectorPreHeader,
2053                              BasicBlock *LoopExitBlock) {
2054     if (!SCEVCheckCond)
2055       return nullptr;
2056     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2057       if (C->isZero())
2058         return nullptr;
2059 
2060     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2061 
2062     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2063     // Create new preheader for vector loop.
2064     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2065       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2066 
2067     SCEVCheckBlock->getTerminator()->eraseFromParent();
2068     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2069     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2070                                                 SCEVCheckBlock);
2071 
2072     DT->addNewBlock(SCEVCheckBlock, Pred);
2073     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2074 
2075     ReplaceInstWithInst(
2076         SCEVCheckBlock->getTerminator(),
2077         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2078     // Mark the check as used, to prevent it from being removed during cleanup.
2079     SCEVCheckCond = nullptr;
2080     return SCEVCheckBlock;
2081   }
2082 
2083   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2084   /// the branches to branch to the vector preheader or \p Bypass, depending on
2085   /// the generated condition.
2086   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2087                                    BasicBlock *LoopVectorPreHeader) {
2088     // Check if we generated code that checks in runtime if arrays overlap.
2089     if (!MemRuntimeCheckCond)
2090       return nullptr;
2091 
2092     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2093     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2094                                                 MemCheckBlock);
2095 
2096     DT->addNewBlock(MemCheckBlock, Pred);
2097     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2098     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2099 
2100     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2101       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2102 
2103     ReplaceInstWithInst(
2104         MemCheckBlock->getTerminator(),
2105         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2106     MemCheckBlock->getTerminator()->setDebugLoc(
2107         Pred->getTerminator()->getDebugLoc());
2108 
2109     // Mark the check as used, to prevent it from being removed during cleanup.
2110     MemRuntimeCheckCond = nullptr;
2111     return MemCheckBlock;
2112   }
2113 };
2114 
2115 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2116 // vectorization. The loop needs to be annotated with #pragma omp simd
2117 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2118 // vector length information is not provided, vectorization is not considered
2119 // explicit. Interleave hints are not allowed either. These limitations will be
2120 // relaxed in the future.
2121 // Please, note that we are currently forced to abuse the pragma 'clang
2122 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2123 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2124 // provides *explicit vectorization hints* (LV can bypass legal checks and
2125 // assume that vectorization is legal). However, both hints are implemented
2126 // using the same metadata (llvm.loop.vectorize, processed by
2127 // LoopVectorizeHints). This will be fixed in the future when the native IR
2128 // representation for pragma 'omp simd' is introduced.
2129 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2130                                    OptimizationRemarkEmitter *ORE) {
2131   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2132   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2133 
2134   // Only outer loops with an explicit vectorization hint are supported.
2135   // Unannotated outer loops are ignored.
2136   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2137     return false;
2138 
2139   Function *Fn = OuterLp->getHeader()->getParent();
2140   if (!Hints.allowVectorization(Fn, OuterLp,
2141                                 true /*VectorizeOnlyWhenForced*/)) {
2142     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2143     return false;
2144   }
2145 
2146   if (Hints.getInterleave() > 1) {
2147     // TODO: Interleave support is future work.
2148     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2149                          "outer loops.\n");
2150     Hints.emitRemarkWithHints();
2151     return false;
2152   }
2153 
2154   return true;
2155 }
2156 
2157 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2158                                   OptimizationRemarkEmitter *ORE,
2159                                   SmallVectorImpl<Loop *> &V) {
2160   // Collect inner loops and outer loops without irreducible control flow. For
2161   // now, only collect outer loops that have explicit vectorization hints. If we
2162   // are stress testing the VPlan H-CFG construction, we collect the outermost
2163   // loop of every loop nest.
2164   if (L.isInnermost() || VPlanBuildStressTest ||
2165       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2166     LoopBlocksRPO RPOT(&L);
2167     RPOT.perform(LI);
2168     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2169       V.push_back(&L);
2170       // TODO: Collect inner loops inside marked outer loops in case
2171       // vectorization fails for the outer loop. Do not invoke
2172       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2173       // already known to be reducible. We can use an inherited attribute for
2174       // that.
2175       return;
2176     }
2177   }
2178   for (Loop *InnerL : L)
2179     collectSupportedLoops(*InnerL, LI, ORE, V);
2180 }
2181 
2182 namespace {
2183 
2184 /// The LoopVectorize Pass.
2185 struct LoopVectorize : public FunctionPass {
2186   /// Pass identification, replacement for typeid
2187   static char ID;
2188 
2189   LoopVectorizePass Impl;
2190 
2191   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2192                          bool VectorizeOnlyWhenForced = false)
2193       : FunctionPass(ID),
2194         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2195     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2196   }
2197 
2198   bool runOnFunction(Function &F) override {
2199     if (skipFunction(F))
2200       return false;
2201 
2202     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2203     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2204     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2205     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2206     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2207     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2208     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2209     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2210     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2211     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2212     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2213     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2214     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2215 
2216     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2217         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2218 
2219     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2220                         GetLAA, *ORE, PSI).MadeAnyChange;
2221   }
2222 
2223   void getAnalysisUsage(AnalysisUsage &AU) const override {
2224     AU.addRequired<AssumptionCacheTracker>();
2225     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2226     AU.addRequired<DominatorTreeWrapperPass>();
2227     AU.addRequired<LoopInfoWrapperPass>();
2228     AU.addRequired<ScalarEvolutionWrapperPass>();
2229     AU.addRequired<TargetTransformInfoWrapperPass>();
2230     AU.addRequired<AAResultsWrapperPass>();
2231     AU.addRequired<LoopAccessLegacyAnalysis>();
2232     AU.addRequired<DemandedBitsWrapperPass>();
2233     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2234     AU.addRequired<InjectTLIMappingsLegacy>();
2235 
2236     // We currently do not preserve loopinfo/dominator analyses with outer loop
2237     // vectorization. Until this is addressed, mark these analyses as preserved
2238     // only for non-VPlan-native path.
2239     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2240     if (!EnableVPlanNativePath) {
2241       AU.addPreserved<LoopInfoWrapperPass>();
2242       AU.addPreserved<DominatorTreeWrapperPass>();
2243     }
2244 
2245     AU.addPreserved<BasicAAWrapperPass>();
2246     AU.addPreserved<GlobalsAAWrapperPass>();
2247     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2248   }
2249 };
2250 
2251 } // end anonymous namespace
2252 
2253 //===----------------------------------------------------------------------===//
2254 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2255 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2256 //===----------------------------------------------------------------------===//
2257 
2258 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2259   // We need to place the broadcast of invariant variables outside the loop,
2260   // but only if it's proven safe to do so. Else, broadcast will be inside
2261   // vector loop body.
2262   Instruction *Instr = dyn_cast<Instruction>(V);
2263   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2264                      (!Instr ||
2265                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2266   // Place the code for broadcasting invariant variables in the new preheader.
2267   IRBuilder<>::InsertPointGuard Guard(Builder);
2268   if (SafeToHoist)
2269     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2270 
2271   // Broadcast the scalar into all locations in the vector.
2272   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2273 
2274   return Shuf;
2275 }
2276 
2277 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2278     const InductionDescriptor &II, Value *Step, Value *Start,
2279     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2280     VPTransformState &State) {
2281   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2282          "Expected either an induction phi-node or a truncate of it!");
2283 
2284   // Construct the initial value of the vector IV in the vector loop preheader
2285   auto CurrIP = Builder.saveIP();
2286   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2287   if (isa<TruncInst>(EntryVal)) {
2288     assert(Start->getType()->isIntegerTy() &&
2289            "Truncation requires an integer type");
2290     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2291     Step = Builder.CreateTrunc(Step, TruncType);
2292     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2293   }
2294 
2295   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2296   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2297   Value *SteppedStart =
2298       getStepVector(SplatStart, Zero, Step, II.getInductionOpcode());
2299 
2300   // We create vector phi nodes for both integer and floating-point induction
2301   // variables. Here, we determine the kind of arithmetic we will perform.
2302   Instruction::BinaryOps AddOp;
2303   Instruction::BinaryOps MulOp;
2304   if (Step->getType()->isIntegerTy()) {
2305     AddOp = Instruction::Add;
2306     MulOp = Instruction::Mul;
2307   } else {
2308     AddOp = II.getInductionOpcode();
2309     MulOp = Instruction::FMul;
2310   }
2311 
2312   // Multiply the vectorization factor by the step using integer or
2313   // floating-point arithmetic as appropriate.
2314   Type *StepType = Step->getType();
2315   Value *RuntimeVF;
2316   if (Step->getType()->isFloatingPointTy())
2317     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, VF);
2318   else
2319     RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2320   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2321 
2322   // Create a vector splat to use in the induction update.
2323   //
2324   // FIXME: If the step is non-constant, we create the vector splat with
2325   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2326   //        handle a constant vector splat.
2327   Value *SplatVF = isa<Constant>(Mul)
2328                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2329                        : Builder.CreateVectorSplat(VF, Mul);
2330   Builder.restoreIP(CurrIP);
2331 
2332   // We may need to add the step a number of times, depending on the unroll
2333   // factor. The last of those goes into the PHI.
2334   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2335                                     &*LoopVectorBody->getFirstInsertionPt());
2336   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2337   Instruction *LastInduction = VecInd;
2338   for (unsigned Part = 0; Part < UF; ++Part) {
2339     State.set(Def, LastInduction, Part);
2340 
2341     if (isa<TruncInst>(EntryVal))
2342       addMetadata(LastInduction, EntryVal);
2343     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2344                                           State, Part);
2345 
2346     LastInduction = cast<Instruction>(
2347         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2348     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2349   }
2350 
2351   // Move the last step to the end of the latch block. This ensures consistent
2352   // placement of all induction updates.
2353   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2354   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2355   auto *ICmp = cast<Instruction>(Br->getCondition());
2356   LastInduction->moveBefore(ICmp);
2357   LastInduction->setName("vec.ind.next");
2358 
2359   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2360   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2361 }
2362 
2363 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2364   return Cost->isScalarAfterVectorization(I, VF) ||
2365          Cost->isProfitableToScalarize(I, VF);
2366 }
2367 
2368 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2369   if (shouldScalarizeInstruction(IV))
2370     return true;
2371   auto isScalarInst = [&](User *U) -> bool {
2372     auto *I = cast<Instruction>(U);
2373     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2374   };
2375   return llvm::any_of(IV->users(), isScalarInst);
2376 }
2377 
2378 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2379     const InductionDescriptor &ID, const Instruction *EntryVal,
2380     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2381     unsigned Part, unsigned Lane) {
2382   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2383          "Expected either an induction phi-node or a truncate of it!");
2384 
2385   // This induction variable is not the phi from the original loop but the
2386   // newly-created IV based on the proof that casted Phi is equal to the
2387   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2388   // re-uses the same InductionDescriptor that original IV uses but we don't
2389   // have to do any recording in this case - that is done when original IV is
2390   // processed.
2391   if (isa<TruncInst>(EntryVal))
2392     return;
2393 
2394   if (!CastDef) {
2395     assert(ID.getCastInsts().empty() &&
2396            "there are casts for ID, but no CastDef");
2397     return;
2398   }
2399   assert(!ID.getCastInsts().empty() &&
2400          "there is a CastDef, but no casts for ID");
2401   // Only the first Cast instruction in the Casts vector is of interest.
2402   // The rest of the Casts (if exist) have no uses outside the
2403   // induction update chain itself.
2404   if (Lane < UINT_MAX)
2405     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2406   else
2407     State.set(CastDef, VectorLoopVal, Part);
2408 }
2409 
2410 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2411                                                 TruncInst *Trunc, VPValue *Def,
2412                                                 VPValue *CastDef,
2413                                                 VPTransformState &State) {
2414   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2415          "Primary induction variable must have an integer type");
2416 
2417   auto II = Legal->getInductionVars().find(IV);
2418   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2419 
2420   auto ID = II->second;
2421   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2422 
2423   // The value from the original loop to which we are mapping the new induction
2424   // variable.
2425   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2426 
2427   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2428 
2429   // Generate code for the induction step. Note that induction steps are
2430   // required to be loop-invariant
2431   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2432     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2433            "Induction step should be loop invariant");
2434     if (PSE.getSE()->isSCEVable(IV->getType())) {
2435       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2436       return Exp.expandCodeFor(Step, Step->getType(),
2437                                LoopVectorPreHeader->getTerminator());
2438     }
2439     return cast<SCEVUnknown>(Step)->getValue();
2440   };
2441 
2442   // The scalar value to broadcast. This is derived from the canonical
2443   // induction variable. If a truncation type is given, truncate the canonical
2444   // induction variable and step. Otherwise, derive these values from the
2445   // induction descriptor.
2446   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2447     Value *ScalarIV = Induction;
2448     if (IV != OldInduction) {
2449       ScalarIV = IV->getType()->isIntegerTy()
2450                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2451                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2452                                           IV->getType());
2453       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2454       ScalarIV->setName("offset.idx");
2455     }
2456     if (Trunc) {
2457       auto *TruncType = cast<IntegerType>(Trunc->getType());
2458       assert(Step->getType()->isIntegerTy() &&
2459              "Truncation requires an integer step");
2460       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2461       Step = Builder.CreateTrunc(Step, TruncType);
2462     }
2463     return ScalarIV;
2464   };
2465 
2466   // Create the vector values from the scalar IV, in the absence of creating a
2467   // vector IV.
2468   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2469     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2470     for (unsigned Part = 0; Part < UF; ++Part) {
2471       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2472       Value *StartIdx;
2473       if (Step->getType()->isFloatingPointTy())
2474         StartIdx = getRuntimeVFAsFloat(Builder, Step->getType(), VF * Part);
2475       else
2476         StartIdx = getRuntimeVF(Builder, Step->getType(), VF * Part);
2477 
2478       Value *EntryPart =
2479           getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode());
2480       State.set(Def, EntryPart, Part);
2481       if (Trunc)
2482         addMetadata(EntryPart, Trunc);
2483       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2484                                             State, Part);
2485     }
2486   };
2487 
2488   // Fast-math-flags propagate from the original induction instruction.
2489   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2490   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2491     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2492 
2493   // Now do the actual transformations, and start with creating the step value.
2494   Value *Step = CreateStepValue(ID.getStep());
2495   if (VF.isZero() || VF.isScalar()) {
2496     Value *ScalarIV = CreateScalarIV(Step);
2497     CreateSplatIV(ScalarIV, Step);
2498     return;
2499   }
2500 
2501   // Determine if we want a scalar version of the induction variable. This is
2502   // true if the induction variable itself is not widened, or if it has at
2503   // least one user in the loop that is not widened.
2504   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2505   if (!NeedsScalarIV) {
2506     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2507                                     State);
2508     return;
2509   }
2510 
2511   // Try to create a new independent vector induction variable. If we can't
2512   // create the phi node, we will splat the scalar induction variable in each
2513   // loop iteration.
2514   if (!shouldScalarizeInstruction(EntryVal)) {
2515     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2516                                     State);
2517     Value *ScalarIV = CreateScalarIV(Step);
2518     // Create scalar steps that can be used by instructions we will later
2519     // scalarize. Note that the addition of the scalar steps will not increase
2520     // the number of instructions in the loop in the common case prior to
2521     // InstCombine. We will be trading one vector extract for each scalar step.
2522     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2523     return;
2524   }
2525 
2526   // All IV users are scalar instructions, so only emit a scalar IV, not a
2527   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2528   // predicate used by the masked loads/stores.
2529   Value *ScalarIV = CreateScalarIV(Step);
2530   if (!Cost->isScalarEpilogueAllowed())
2531     CreateSplatIV(ScalarIV, Step);
2532   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2533 }
2534 
2535 Value *InnerLoopVectorizer::getStepVector(Value *Val, Value *StartIdx,
2536                                           Value *Step,
2537                                           Instruction::BinaryOps BinOp) {
2538   // Create and check the types.
2539   auto *ValVTy = cast<VectorType>(Val->getType());
2540   ElementCount VLen = ValVTy->getElementCount();
2541 
2542   Type *STy = Val->getType()->getScalarType();
2543   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2544          "Induction Step must be an integer or FP");
2545   assert(Step->getType() == STy && "Step has wrong type");
2546 
2547   SmallVector<Constant *, 8> Indices;
2548 
2549   // Create a vector of consecutive numbers from zero to VF.
2550   VectorType *InitVecValVTy = ValVTy;
2551   Type *InitVecValSTy = STy;
2552   if (STy->isFloatingPointTy()) {
2553     InitVecValSTy =
2554         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2555     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2556   }
2557   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2558 
2559   // Splat the StartIdx
2560   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2561 
2562   if (STy->isIntegerTy()) {
2563     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2564     Step = Builder.CreateVectorSplat(VLen, Step);
2565     assert(Step->getType() == Val->getType() && "Invalid step vec");
2566     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2567     // which can be found from the original scalar operations.
2568     Step = Builder.CreateMul(InitVec, Step);
2569     return Builder.CreateAdd(Val, Step, "induction");
2570   }
2571 
2572   // Floating point induction.
2573   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2574          "Binary Opcode should be specified for FP induction");
2575   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2576   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2577 
2578   Step = Builder.CreateVectorSplat(VLen, Step);
2579   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2580   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2581 }
2582 
2583 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2584                                            Instruction *EntryVal,
2585                                            const InductionDescriptor &ID,
2586                                            VPValue *Def, VPValue *CastDef,
2587                                            VPTransformState &State) {
2588   // We shouldn't have to build scalar steps if we aren't vectorizing.
2589   assert(VF.isVector() && "VF should be greater than one");
2590   // Get the value type and ensure it and the step have the same integer type.
2591   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2592   assert(ScalarIVTy == Step->getType() &&
2593          "Val and Step should have the same type");
2594 
2595   // We build scalar steps for both integer and floating-point induction
2596   // variables. Here, we determine the kind of arithmetic we will perform.
2597   Instruction::BinaryOps AddOp;
2598   Instruction::BinaryOps MulOp;
2599   if (ScalarIVTy->isIntegerTy()) {
2600     AddOp = Instruction::Add;
2601     MulOp = Instruction::Mul;
2602   } else {
2603     AddOp = ID.getInductionOpcode();
2604     MulOp = Instruction::FMul;
2605   }
2606 
2607   // Determine the number of scalars we need to generate for each unroll
2608   // iteration. If EntryVal is uniform, we only need to generate the first
2609   // lane. Otherwise, we generate all VF values.
2610   bool IsUniform =
2611       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2612   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2613   // Compute the scalar steps and save the results in State.
2614   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2615                                      ScalarIVTy->getScalarSizeInBits());
2616   Type *VecIVTy = nullptr;
2617   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2618   if (!IsUniform && VF.isScalable()) {
2619     VecIVTy = VectorType::get(ScalarIVTy, VF);
2620     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2621     SplatStep = Builder.CreateVectorSplat(VF, Step);
2622     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2623   }
2624 
2625   for (unsigned Part = 0; Part < UF; ++Part) {
2626     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, VF, Part);
2627 
2628     if (!IsUniform && VF.isScalable()) {
2629       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2630       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2631       if (ScalarIVTy->isFloatingPointTy())
2632         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2633       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2634       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2635       State.set(Def, Add, Part);
2636       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2637                                             Part);
2638       // It's useful to record the lane values too for the known minimum number
2639       // of elements so we do those below. This improves the code quality when
2640       // trying to extract the first element, for example.
2641     }
2642 
2643     if (ScalarIVTy->isFloatingPointTy())
2644       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2645 
2646     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2647       Value *StartIdx = Builder.CreateBinOp(
2648           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2649       // The step returned by `createStepForVF` is a runtime-evaluated value
2650       // when VF is scalable. Otherwise, it should be folded into a Constant.
2651       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2652              "Expected StartIdx to be folded to a constant when VF is not "
2653              "scalable");
2654       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2655       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2656       State.set(Def, Add, VPIteration(Part, Lane));
2657       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2658                                             Part, Lane);
2659     }
2660   }
2661 }
2662 
2663 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2664                                                     const VPIteration &Instance,
2665                                                     VPTransformState &State) {
2666   Value *ScalarInst = State.get(Def, Instance);
2667   Value *VectorValue = State.get(Def, Instance.Part);
2668   VectorValue = Builder.CreateInsertElement(
2669       VectorValue, ScalarInst,
2670       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2671   State.set(Def, VectorValue, Instance.Part);
2672 }
2673 
2674 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2675   assert(Vec->getType()->isVectorTy() && "Invalid type");
2676   return Builder.CreateVectorReverse(Vec, "reverse");
2677 }
2678 
2679 // Return whether we allow using masked interleave-groups (for dealing with
2680 // strided loads/stores that reside in predicated blocks, or for dealing
2681 // with gaps).
2682 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2683   // If an override option has been passed in for interleaved accesses, use it.
2684   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2685     return EnableMaskedInterleavedMemAccesses;
2686 
2687   return TTI.enableMaskedInterleavedAccessVectorization();
2688 }
2689 
2690 // Try to vectorize the interleave group that \p Instr belongs to.
2691 //
2692 // E.g. Translate following interleaved load group (factor = 3):
2693 //   for (i = 0; i < N; i+=3) {
2694 //     R = Pic[i];             // Member of index 0
2695 //     G = Pic[i+1];           // Member of index 1
2696 //     B = Pic[i+2];           // Member of index 2
2697 //     ... // do something to R, G, B
2698 //   }
2699 // To:
2700 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2701 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2702 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2703 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2704 //
2705 // Or translate following interleaved store group (factor = 3):
2706 //   for (i = 0; i < N; i+=3) {
2707 //     ... do something to R, G, B
2708 //     Pic[i]   = R;           // Member of index 0
2709 //     Pic[i+1] = G;           // Member of index 1
2710 //     Pic[i+2] = B;           // Member of index 2
2711 //   }
2712 // To:
2713 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2714 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2715 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2716 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2717 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2718 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2719     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2720     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2721     VPValue *BlockInMask) {
2722   Instruction *Instr = Group->getInsertPos();
2723   const DataLayout &DL = Instr->getModule()->getDataLayout();
2724 
2725   // Prepare for the vector type of the interleaved load/store.
2726   Type *ScalarTy = getLoadStoreType(Instr);
2727   unsigned InterleaveFactor = Group->getFactor();
2728   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2729   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2730 
2731   // Prepare for the new pointers.
2732   SmallVector<Value *, 2> AddrParts;
2733   unsigned Index = Group->getIndex(Instr);
2734 
2735   // TODO: extend the masked interleaved-group support to reversed access.
2736   assert((!BlockInMask || !Group->isReverse()) &&
2737          "Reversed masked interleave-group not supported.");
2738 
2739   // If the group is reverse, adjust the index to refer to the last vector lane
2740   // instead of the first. We adjust the index from the first vector lane,
2741   // rather than directly getting the pointer for lane VF - 1, because the
2742   // pointer operand of the interleaved access is supposed to be uniform. For
2743   // uniform instructions, we're only required to generate a value for the
2744   // first vector lane in each unroll iteration.
2745   if (Group->isReverse())
2746     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2747 
2748   for (unsigned Part = 0; Part < UF; Part++) {
2749     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2750     setDebugLocFromInst(AddrPart);
2751 
2752     // Notice current instruction could be any index. Need to adjust the address
2753     // to the member of index 0.
2754     //
2755     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2756     //       b = A[i];       // Member of index 0
2757     // Current pointer is pointed to A[i+1], adjust it to A[i].
2758     //
2759     // E.g.  A[i+1] = a;     // Member of index 1
2760     //       A[i]   = b;     // Member of index 0
2761     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2762     // Current pointer is pointed to A[i+2], adjust it to A[i].
2763 
2764     bool InBounds = false;
2765     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2766       InBounds = gep->isInBounds();
2767     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2768     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2769 
2770     // Cast to the vector pointer type.
2771     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2772     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2773     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2774   }
2775 
2776   setDebugLocFromInst(Instr);
2777   Value *PoisonVec = PoisonValue::get(VecTy);
2778 
2779   Value *MaskForGaps = nullptr;
2780   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2781     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2782     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2783   }
2784 
2785   // Vectorize the interleaved load group.
2786   if (isa<LoadInst>(Instr)) {
2787     // For each unroll part, create a wide load for the group.
2788     SmallVector<Value *, 2> NewLoads;
2789     for (unsigned Part = 0; Part < UF; Part++) {
2790       Instruction *NewLoad;
2791       if (BlockInMask || MaskForGaps) {
2792         assert(useMaskedInterleavedAccesses(*TTI) &&
2793                "masked interleaved groups are not allowed.");
2794         Value *GroupMask = MaskForGaps;
2795         if (BlockInMask) {
2796           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2797           Value *ShuffledMask = Builder.CreateShuffleVector(
2798               BlockInMaskPart,
2799               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2800               "interleaved.mask");
2801           GroupMask = MaskForGaps
2802                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2803                                                 MaskForGaps)
2804                           : ShuffledMask;
2805         }
2806         NewLoad =
2807             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2808                                      GroupMask, PoisonVec, "wide.masked.vec");
2809       }
2810       else
2811         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2812                                             Group->getAlign(), "wide.vec");
2813       Group->addMetadata(NewLoad);
2814       NewLoads.push_back(NewLoad);
2815     }
2816 
2817     // For each member in the group, shuffle out the appropriate data from the
2818     // wide loads.
2819     unsigned J = 0;
2820     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2821       Instruction *Member = Group->getMember(I);
2822 
2823       // Skip the gaps in the group.
2824       if (!Member)
2825         continue;
2826 
2827       auto StrideMask =
2828           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2829       for (unsigned Part = 0; Part < UF; Part++) {
2830         Value *StridedVec = Builder.CreateShuffleVector(
2831             NewLoads[Part], StrideMask, "strided.vec");
2832 
2833         // If this member has different type, cast the result type.
2834         if (Member->getType() != ScalarTy) {
2835           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2836           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2837           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2838         }
2839 
2840         if (Group->isReverse())
2841           StridedVec = reverseVector(StridedVec);
2842 
2843         State.set(VPDefs[J], StridedVec, Part);
2844       }
2845       ++J;
2846     }
2847     return;
2848   }
2849 
2850   // The sub vector type for current instruction.
2851   auto *SubVT = VectorType::get(ScalarTy, VF);
2852 
2853   // Vectorize the interleaved store group.
2854   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2855   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2856          "masked interleaved groups are not allowed.");
2857   assert((!MaskForGaps || !VF.isScalable()) &&
2858          "masking gaps for scalable vectors is not yet supported.");
2859   for (unsigned Part = 0; Part < UF; Part++) {
2860     // Collect the stored vector from each member.
2861     SmallVector<Value *, 4> StoredVecs;
2862     for (unsigned i = 0; i < InterleaveFactor; i++) {
2863       assert((Group->getMember(i) || MaskForGaps) &&
2864              "Fail to get a member from an interleaved store group");
2865       Instruction *Member = Group->getMember(i);
2866 
2867       // Skip the gaps in the group.
2868       if (!Member) {
2869         Value *Undef = PoisonValue::get(SubVT);
2870         StoredVecs.push_back(Undef);
2871         continue;
2872       }
2873 
2874       Value *StoredVec = State.get(StoredValues[i], Part);
2875 
2876       if (Group->isReverse())
2877         StoredVec = reverseVector(StoredVec);
2878 
2879       // If this member has different type, cast it to a unified type.
2880 
2881       if (StoredVec->getType() != SubVT)
2882         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2883 
2884       StoredVecs.push_back(StoredVec);
2885     }
2886 
2887     // Concatenate all vectors into a wide vector.
2888     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2889 
2890     // Interleave the elements in the wide vector.
2891     Value *IVec = Builder.CreateShuffleVector(
2892         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2893         "interleaved.vec");
2894 
2895     Instruction *NewStoreInstr;
2896     if (BlockInMask || MaskForGaps) {
2897       Value *GroupMask = MaskForGaps;
2898       if (BlockInMask) {
2899         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2900         Value *ShuffledMask = Builder.CreateShuffleVector(
2901             BlockInMaskPart,
2902             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2903             "interleaved.mask");
2904         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2905                                                       ShuffledMask, MaskForGaps)
2906                                 : ShuffledMask;
2907       }
2908       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2909                                                 Group->getAlign(), GroupMask);
2910     } else
2911       NewStoreInstr =
2912           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2913 
2914     Group->addMetadata(NewStoreInstr);
2915   }
2916 }
2917 
2918 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2919     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2920     VPValue *StoredValue, VPValue *BlockInMask, bool ConsecutiveStride,
2921     bool Reverse) {
2922   // Attempt to issue a wide load.
2923   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2924   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2925 
2926   assert((LI || SI) && "Invalid Load/Store instruction");
2927   assert((!SI || StoredValue) && "No stored value provided for widened store");
2928   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2929 
2930   Type *ScalarDataTy = getLoadStoreType(Instr);
2931 
2932   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2933   const Align Alignment = getLoadStoreAlignment(Instr);
2934   bool CreateGatherScatter = !ConsecutiveStride;
2935 
2936   VectorParts BlockInMaskParts(UF);
2937   bool isMaskRequired = BlockInMask;
2938   if (isMaskRequired)
2939     for (unsigned Part = 0; Part < UF; ++Part)
2940       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2941 
2942   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2943     // Calculate the pointer for the specific unroll-part.
2944     GetElementPtrInst *PartPtr = nullptr;
2945 
2946     bool InBounds = false;
2947     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2948       InBounds = gep->isInBounds();
2949     if (Reverse) {
2950       // If the address is consecutive but reversed, then the
2951       // wide store needs to start at the last vector element.
2952       // RunTimeVF =  VScale * VF.getKnownMinValue()
2953       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2954       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2955       // NumElt = -Part * RunTimeVF
2956       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2957       // LastLane = 1 - RunTimeVF
2958       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2959       PartPtr =
2960           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2961       PartPtr->setIsInBounds(InBounds);
2962       PartPtr = cast<GetElementPtrInst>(
2963           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2964       PartPtr->setIsInBounds(InBounds);
2965       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2966         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2967     } else {
2968       Value *Increment =
2969           createStepForVF(Builder, Builder.getInt32Ty(), VF, Part);
2970       PartPtr = cast<GetElementPtrInst>(
2971           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2972       PartPtr->setIsInBounds(InBounds);
2973     }
2974 
2975     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2976     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2977   };
2978 
2979   // Handle Stores:
2980   if (SI) {
2981     setDebugLocFromInst(SI);
2982 
2983     for (unsigned Part = 0; Part < UF; ++Part) {
2984       Instruction *NewSI = nullptr;
2985       Value *StoredVal = State.get(StoredValue, Part);
2986       if (CreateGatherScatter) {
2987         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2988         Value *VectorGep = State.get(Addr, Part);
2989         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2990                                             MaskPart);
2991       } else {
2992         if (Reverse) {
2993           // If we store to reverse consecutive memory locations, then we need
2994           // to reverse the order of elements in the stored value.
2995           StoredVal = reverseVector(StoredVal);
2996           // We don't want to update the value in the map as it might be used in
2997           // another expression. So don't call resetVectorValue(StoredVal).
2998         }
2999         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3000         if (isMaskRequired)
3001           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3002                                             BlockInMaskParts[Part]);
3003         else
3004           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3005       }
3006       addMetadata(NewSI, SI);
3007     }
3008     return;
3009   }
3010 
3011   // Handle loads.
3012   assert(LI && "Must have a load instruction");
3013   setDebugLocFromInst(LI);
3014   for (unsigned Part = 0; Part < UF; ++Part) {
3015     Value *NewLI;
3016     if (CreateGatherScatter) {
3017       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3018       Value *VectorGep = State.get(Addr, Part);
3019       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3020                                          nullptr, "wide.masked.gather");
3021       addMetadata(NewLI, LI);
3022     } else {
3023       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3024       if (isMaskRequired)
3025         NewLI = Builder.CreateMaskedLoad(
3026             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3027             PoisonValue::get(DataTy), "wide.masked.load");
3028       else
3029         NewLI =
3030             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3031 
3032       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3033       addMetadata(NewLI, LI);
3034       if (Reverse)
3035         NewLI = reverseVector(NewLI);
3036     }
3037 
3038     State.set(Def, NewLI, Part);
3039   }
3040 }
3041 
3042 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3043                                                VPUser &User,
3044                                                const VPIteration &Instance,
3045                                                bool IfPredicateInstr,
3046                                                VPTransformState &State) {
3047   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3048 
3049   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3050   // the first lane and part.
3051   if (isa<NoAliasScopeDeclInst>(Instr))
3052     if (!Instance.isFirstIteration())
3053       return;
3054 
3055   setDebugLocFromInst(Instr);
3056 
3057   // Does this instruction return a value ?
3058   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3059 
3060   Instruction *Cloned = Instr->clone();
3061   if (!IsVoidRetTy)
3062     Cloned->setName(Instr->getName() + ".cloned");
3063 
3064   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3065                                Builder.GetInsertPoint());
3066   // Replace the operands of the cloned instructions with their scalar
3067   // equivalents in the new loop.
3068   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3069     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3070     auto InputInstance = Instance;
3071     if (!Operand || !OrigLoop->contains(Operand) ||
3072         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3073       InputInstance.Lane = VPLane::getFirstLane();
3074     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3075     Cloned->setOperand(op, NewOp);
3076   }
3077   addNewMetadata(Cloned, Instr);
3078 
3079   // Place the cloned scalar in the new loop.
3080   Builder.Insert(Cloned);
3081 
3082   State.set(Def, Cloned, Instance);
3083 
3084   // If we just cloned a new assumption, add it the assumption cache.
3085   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3086     AC->registerAssumption(II);
3087 
3088   // End if-block.
3089   if (IfPredicateInstr)
3090     PredicatedInstructions.push_back(Cloned);
3091 }
3092 
3093 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3094                                                       Value *End, Value *Step,
3095                                                       Instruction *DL) {
3096   BasicBlock *Header = L->getHeader();
3097   BasicBlock *Latch = L->getLoopLatch();
3098   // As we're just creating this loop, it's possible no latch exists
3099   // yet. If so, use the header as this will be a single block loop.
3100   if (!Latch)
3101     Latch = Header;
3102 
3103   IRBuilder<> B(&*Header->getFirstInsertionPt());
3104   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3105   setDebugLocFromInst(OldInst, &B);
3106   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3107 
3108   B.SetInsertPoint(Latch->getTerminator());
3109   setDebugLocFromInst(OldInst, &B);
3110 
3111   // Create i+1 and fill the PHINode.
3112   //
3113   // If the tail is not folded, we know that End - Start >= Step (either
3114   // statically or through the minimum iteration checks). We also know that both
3115   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3116   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3117   // overflows and we can mark the induction increment as NUW.
3118   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3119                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3120   Induction->addIncoming(Start, L->getLoopPreheader());
3121   Induction->addIncoming(Next, Latch);
3122   // Create the compare.
3123   Value *ICmp = B.CreateICmpEQ(Next, End);
3124   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3125 
3126   // Now we have two terminators. Remove the old one from the block.
3127   Latch->getTerminator()->eraseFromParent();
3128 
3129   return Induction;
3130 }
3131 
3132 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3133   if (TripCount)
3134     return TripCount;
3135 
3136   assert(L && "Create Trip Count for null loop.");
3137   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3138   // Find the loop boundaries.
3139   ScalarEvolution *SE = PSE.getSE();
3140   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3141   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3142          "Invalid loop count");
3143 
3144   Type *IdxTy = Legal->getWidestInductionType();
3145   assert(IdxTy && "No type for induction");
3146 
3147   // The exit count might have the type of i64 while the phi is i32. This can
3148   // happen if we have an induction variable that is sign extended before the
3149   // compare. The only way that we get a backedge taken count is that the
3150   // induction variable was signed and as such will not overflow. In such a case
3151   // truncation is legal.
3152   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3153       IdxTy->getPrimitiveSizeInBits())
3154     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3155   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3156 
3157   // Get the total trip count from the count by adding 1.
3158   const SCEV *ExitCount = SE->getAddExpr(
3159       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3160 
3161   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3162 
3163   // Expand the trip count and place the new instructions in the preheader.
3164   // Notice that the pre-header does not change, only the loop body.
3165   SCEVExpander Exp(*SE, DL, "induction");
3166 
3167   // Count holds the overall loop count (N).
3168   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3169                                 L->getLoopPreheader()->getTerminator());
3170 
3171   if (TripCount->getType()->isPointerTy())
3172     TripCount =
3173         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3174                                     L->getLoopPreheader()->getTerminator());
3175 
3176   return TripCount;
3177 }
3178 
3179 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3180   if (VectorTripCount)
3181     return VectorTripCount;
3182 
3183   Value *TC = getOrCreateTripCount(L);
3184   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3185 
3186   Type *Ty = TC->getType();
3187   // This is where we can make the step a runtime constant.
3188   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3189 
3190   // If the tail is to be folded by masking, round the number of iterations N
3191   // up to a multiple of Step instead of rounding down. This is done by first
3192   // adding Step-1 and then rounding down. Note that it's ok if this addition
3193   // overflows: the vector induction variable will eventually wrap to zero given
3194   // that it starts at zero and its Step is a power of two; the loop will then
3195   // exit, with the last early-exit vector comparison also producing all-true.
3196   if (Cost->foldTailByMasking()) {
3197     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3198            "VF*UF must be a power of 2 when folding tail by masking");
3199     assert(!VF.isScalable() &&
3200            "Tail folding not yet supported for scalable vectors");
3201     TC = Builder.CreateAdd(
3202         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3203   }
3204 
3205   // Now we need to generate the expression for the part of the loop that the
3206   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3207   // iterations are not required for correctness, or N - Step, otherwise. Step
3208   // is equal to the vectorization factor (number of SIMD elements) times the
3209   // unroll factor (number of SIMD instructions).
3210   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3211 
3212   // There are cases where we *must* run at least one iteration in the remainder
3213   // loop.  See the cost model for when this can happen.  If the step evenly
3214   // divides the trip count, we set the remainder to be equal to the step. If
3215   // the step does not evenly divide the trip count, no adjustment is necessary
3216   // since there will already be scalar iterations. Note that the minimum
3217   // iterations check ensures that N >= Step.
3218   if (Cost->requiresScalarEpilogue(VF)) {
3219     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3220     R = Builder.CreateSelect(IsZero, Step, R);
3221   }
3222 
3223   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3224 
3225   return VectorTripCount;
3226 }
3227 
3228 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3229                                                    const DataLayout &DL) {
3230   // Verify that V is a vector type with same number of elements as DstVTy.
3231   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3232   unsigned VF = DstFVTy->getNumElements();
3233   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3234   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3235   Type *SrcElemTy = SrcVecTy->getElementType();
3236   Type *DstElemTy = DstFVTy->getElementType();
3237   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3238          "Vector elements must have same size");
3239 
3240   // Do a direct cast if element types are castable.
3241   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3242     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3243   }
3244   // V cannot be directly casted to desired vector type.
3245   // May happen when V is a floating point vector but DstVTy is a vector of
3246   // pointers or vice-versa. Handle this using a two-step bitcast using an
3247   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3248   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3249          "Only one type should be a pointer type");
3250   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3251          "Only one type should be a floating point type");
3252   Type *IntTy =
3253       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3254   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3255   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3256   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3257 }
3258 
3259 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3260                                                          BasicBlock *Bypass) {
3261   Value *Count = getOrCreateTripCount(L);
3262   // Reuse existing vector loop preheader for TC checks.
3263   // Note that new preheader block is generated for vector loop.
3264   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3265   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3266 
3267   // Generate code to check if the loop's trip count is less than VF * UF, or
3268   // equal to it in case a scalar epilogue is required; this implies that the
3269   // vector trip count is zero. This check also covers the case where adding one
3270   // to the backedge-taken count overflowed leading to an incorrect trip count
3271   // of zero. In this case we will also jump to the scalar loop.
3272   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3273                                             : ICmpInst::ICMP_ULT;
3274 
3275   // If tail is to be folded, vector loop takes care of all iterations.
3276   Value *CheckMinIters = Builder.getFalse();
3277   if (!Cost->foldTailByMasking()) {
3278     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3279     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3280   }
3281   // Create new preheader for vector loop.
3282   LoopVectorPreHeader =
3283       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3284                  "vector.ph");
3285 
3286   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3287                                DT->getNode(Bypass)->getIDom()) &&
3288          "TC check is expected to dominate Bypass");
3289 
3290   // Update dominator for Bypass & LoopExit (if needed).
3291   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3292   if (!Cost->requiresScalarEpilogue(VF))
3293     // If there is an epilogue which must run, there's no edge from the
3294     // middle block to exit blocks  and thus no need to update the immediate
3295     // dominator of the exit blocks.
3296     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3297 
3298   ReplaceInstWithInst(
3299       TCCheckBlock->getTerminator(),
3300       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3301   LoopBypassBlocks.push_back(TCCheckBlock);
3302 }
3303 
3304 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3305 
3306   BasicBlock *const SCEVCheckBlock =
3307       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3308   if (!SCEVCheckBlock)
3309     return nullptr;
3310 
3311   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3312            (OptForSizeBasedOnProfile &&
3313             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3314          "Cannot SCEV check stride or overflow when optimizing for size");
3315 
3316 
3317   // Update dominator only if this is first RT check.
3318   if (LoopBypassBlocks.empty()) {
3319     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3320     if (!Cost->requiresScalarEpilogue(VF))
3321       // If there is an epilogue which must run, there's no edge from the
3322       // middle block to exit blocks  and thus no need to update the immediate
3323       // dominator of the exit blocks.
3324       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3325   }
3326 
3327   LoopBypassBlocks.push_back(SCEVCheckBlock);
3328   AddedSafetyChecks = true;
3329   return SCEVCheckBlock;
3330 }
3331 
3332 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3333                                                       BasicBlock *Bypass) {
3334   // VPlan-native path does not do any analysis for runtime checks currently.
3335   if (EnableVPlanNativePath)
3336     return nullptr;
3337 
3338   BasicBlock *const MemCheckBlock =
3339       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3340 
3341   // Check if we generated code that checks in runtime if arrays overlap. We put
3342   // the checks into a separate block to make the more common case of few
3343   // elements faster.
3344   if (!MemCheckBlock)
3345     return nullptr;
3346 
3347   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3348     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3349            "Cannot emit memory checks when optimizing for size, unless forced "
3350            "to vectorize.");
3351     ORE->emit([&]() {
3352       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3353                                         L->getStartLoc(), L->getHeader())
3354              << "Code-size may be reduced by not forcing "
3355                 "vectorization, or by source-code modifications "
3356                 "eliminating the need for runtime checks "
3357                 "(e.g., adding 'restrict').";
3358     });
3359   }
3360 
3361   LoopBypassBlocks.push_back(MemCheckBlock);
3362 
3363   AddedSafetyChecks = true;
3364 
3365   // We currently don't use LoopVersioning for the actual loop cloning but we
3366   // still use it to add the noalias metadata.
3367   LVer = std::make_unique<LoopVersioning>(
3368       *Legal->getLAI(),
3369       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3370       DT, PSE.getSE());
3371   LVer->prepareNoAliasMetadata();
3372   return MemCheckBlock;
3373 }
3374 
3375 Value *InnerLoopVectorizer::emitTransformedIndex(
3376     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3377     const InductionDescriptor &ID) const {
3378 
3379   SCEVExpander Exp(*SE, DL, "induction");
3380   auto Step = ID.getStep();
3381   auto StartValue = ID.getStartValue();
3382   assert(Index->getType()->getScalarType() == Step->getType() &&
3383          "Index scalar type does not match StepValue type");
3384 
3385   // Note: the IR at this point is broken. We cannot use SE to create any new
3386   // SCEV and then expand it, hoping that SCEV's simplification will give us
3387   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3388   // lead to various SCEV crashes. So all we can do is to use builder and rely
3389   // on InstCombine for future simplifications. Here we handle some trivial
3390   // cases only.
3391   auto CreateAdd = [&B](Value *X, Value *Y) {
3392     assert(X->getType() == Y->getType() && "Types don't match!");
3393     if (auto *CX = dyn_cast<ConstantInt>(X))
3394       if (CX->isZero())
3395         return Y;
3396     if (auto *CY = dyn_cast<ConstantInt>(Y))
3397       if (CY->isZero())
3398         return X;
3399     return B.CreateAdd(X, Y);
3400   };
3401 
3402   // We allow X to be a vector type, in which case Y will potentially be
3403   // splatted into a vector with the same element count.
3404   auto CreateMul = [&B](Value *X, Value *Y) {
3405     assert(X->getType()->getScalarType() == Y->getType() &&
3406            "Types don't match!");
3407     if (auto *CX = dyn_cast<ConstantInt>(X))
3408       if (CX->isOne())
3409         return Y;
3410     if (auto *CY = dyn_cast<ConstantInt>(Y))
3411       if (CY->isOne())
3412         return X;
3413     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3414     if (XVTy && !isa<VectorType>(Y->getType()))
3415       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3416     return B.CreateMul(X, Y);
3417   };
3418 
3419   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3420   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3421   // the DomTree is not kept up-to-date for additional blocks generated in the
3422   // vector loop. By using the header as insertion point, we guarantee that the
3423   // expanded instructions dominate all their uses.
3424   auto GetInsertPoint = [this, &B]() {
3425     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3426     if (InsertBB != LoopVectorBody &&
3427         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3428       return LoopVectorBody->getTerminator();
3429     return &*B.GetInsertPoint();
3430   };
3431 
3432   switch (ID.getKind()) {
3433   case InductionDescriptor::IK_IntInduction: {
3434     assert(!isa<VectorType>(Index->getType()) &&
3435            "Vector indices not supported for integer inductions yet");
3436     assert(Index->getType() == StartValue->getType() &&
3437            "Index type does not match StartValue type");
3438     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3439       return B.CreateSub(StartValue, Index);
3440     auto *Offset = CreateMul(
3441         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3442     return CreateAdd(StartValue, Offset);
3443   }
3444   case InductionDescriptor::IK_PtrInduction: {
3445     assert(isa<SCEVConstant>(Step) &&
3446            "Expected constant step for pointer induction");
3447     return B.CreateGEP(
3448         ID.getElementType(), StartValue,
3449         CreateMul(Index,
3450                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3451                                     GetInsertPoint())));
3452   }
3453   case InductionDescriptor::IK_FpInduction: {
3454     assert(!isa<VectorType>(Index->getType()) &&
3455            "Vector indices not supported for FP inductions yet");
3456     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3457     auto InductionBinOp = ID.getInductionBinOp();
3458     assert(InductionBinOp &&
3459            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3460             InductionBinOp->getOpcode() == Instruction::FSub) &&
3461            "Original bin op should be defined for FP induction");
3462 
3463     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3464     Value *MulExp = B.CreateFMul(StepValue, Index);
3465     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3466                          "induction");
3467   }
3468   case InductionDescriptor::IK_NoInduction:
3469     return nullptr;
3470   }
3471   llvm_unreachable("invalid enum");
3472 }
3473 
3474 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3475   LoopScalarBody = OrigLoop->getHeader();
3476   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3477   assert(LoopVectorPreHeader && "Invalid loop structure");
3478   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3479   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3480          "multiple exit loop without required epilogue?");
3481 
3482   LoopMiddleBlock =
3483       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3484                  LI, nullptr, Twine(Prefix) + "middle.block");
3485   LoopScalarPreHeader =
3486       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3487                  nullptr, Twine(Prefix) + "scalar.ph");
3488 
3489   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3490 
3491   // Set up the middle block terminator.  Two cases:
3492   // 1) If we know that we must execute the scalar epilogue, emit an
3493   //    unconditional branch.
3494   // 2) Otherwise, we must have a single unique exit block (due to how we
3495   //    implement the multiple exit case).  In this case, set up a conditonal
3496   //    branch from the middle block to the loop scalar preheader, and the
3497   //    exit block.  completeLoopSkeleton will update the condition to use an
3498   //    iteration check, if required to decide whether to execute the remainder.
3499   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3500     BranchInst::Create(LoopScalarPreHeader) :
3501     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3502                        Builder.getTrue());
3503   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3504   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3505 
3506   // We intentionally don't let SplitBlock to update LoopInfo since
3507   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3508   // LoopVectorBody is explicitly added to the correct place few lines later.
3509   LoopVectorBody =
3510       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3511                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3512 
3513   // Update dominator for loop exit.
3514   if (!Cost->requiresScalarEpilogue(VF))
3515     // If there is an epilogue which must run, there's no edge from the
3516     // middle block to exit blocks  and thus no need to update the immediate
3517     // dominator of the exit blocks.
3518     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3519 
3520   // Create and register the new vector loop.
3521   Loop *Lp = LI->AllocateLoop();
3522   Loop *ParentLoop = OrigLoop->getParentLoop();
3523 
3524   // Insert the new loop into the loop nest and register the new basic blocks
3525   // before calling any utilities such as SCEV that require valid LoopInfo.
3526   if (ParentLoop) {
3527     ParentLoop->addChildLoop(Lp);
3528   } else {
3529     LI->addTopLevelLoop(Lp);
3530   }
3531   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3532   return Lp;
3533 }
3534 
3535 void InnerLoopVectorizer::createInductionResumeValues(
3536     Loop *L, Value *VectorTripCount,
3537     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3538   assert(VectorTripCount && L && "Expected valid arguments");
3539   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3540           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3541          "Inconsistent information about additional bypass.");
3542   // We are going to resume the execution of the scalar loop.
3543   // Go over all of the induction variables that we found and fix the
3544   // PHIs that are left in the scalar version of the loop.
3545   // The starting values of PHI nodes depend on the counter of the last
3546   // iteration in the vectorized loop.
3547   // If we come from a bypass edge then we need to start from the original
3548   // start value.
3549   for (auto &InductionEntry : Legal->getInductionVars()) {
3550     PHINode *OrigPhi = InductionEntry.first;
3551     InductionDescriptor II = InductionEntry.second;
3552 
3553     // Create phi nodes to merge from the  backedge-taken check block.
3554     PHINode *BCResumeVal =
3555         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3556                         LoopScalarPreHeader->getTerminator());
3557     // Copy original phi DL over to the new one.
3558     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3559     Value *&EndValue = IVEndValues[OrigPhi];
3560     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3561     if (OrigPhi == OldInduction) {
3562       // We know what the end value is.
3563       EndValue = VectorTripCount;
3564     } else {
3565       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3566 
3567       // Fast-math-flags propagate from the original induction instruction.
3568       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3569         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3570 
3571       Type *StepType = II.getStep()->getType();
3572       Instruction::CastOps CastOp =
3573           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3574       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3575       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3576       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3577       EndValue->setName("ind.end");
3578 
3579       // Compute the end value for the additional bypass (if applicable).
3580       if (AdditionalBypass.first) {
3581         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3582         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3583                                          StepType, true);
3584         CRD =
3585             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3586         EndValueFromAdditionalBypass =
3587             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3588         EndValueFromAdditionalBypass->setName("ind.end");
3589       }
3590     }
3591     // The new PHI merges the original incoming value, in case of a bypass,
3592     // or the value at the end of the vectorized loop.
3593     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3594 
3595     // Fix the scalar body counter (PHI node).
3596     // The old induction's phi node in the scalar body needs the truncated
3597     // value.
3598     for (BasicBlock *BB : LoopBypassBlocks)
3599       BCResumeVal->addIncoming(II.getStartValue(), BB);
3600 
3601     if (AdditionalBypass.first)
3602       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3603                                             EndValueFromAdditionalBypass);
3604 
3605     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3606   }
3607 }
3608 
3609 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3610                                                       MDNode *OrigLoopID) {
3611   assert(L && "Expected valid loop.");
3612 
3613   // The trip counts should be cached by now.
3614   Value *Count = getOrCreateTripCount(L);
3615   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3616 
3617   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3618 
3619   // Add a check in the middle block to see if we have completed
3620   // all of the iterations in the first vector loop.  Three cases:
3621   // 1) If we require a scalar epilogue, there is no conditional branch as
3622   //    we unconditionally branch to the scalar preheader.  Do nothing.
3623   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3624   //    Thus if tail is to be folded, we know we don't need to run the
3625   //    remainder and we can use the previous value for the condition (true).
3626   // 3) Otherwise, construct a runtime check.
3627   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3628     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3629                                         Count, VectorTripCount, "cmp.n",
3630                                         LoopMiddleBlock->getTerminator());
3631 
3632     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3633     // of the corresponding compare because they may have ended up with
3634     // different line numbers and we want to avoid awkward line stepping while
3635     // debugging. Eg. if the compare has got a line number inside the loop.
3636     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3637     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3638   }
3639 
3640   // Get ready to start creating new instructions into the vectorized body.
3641   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3642          "Inconsistent vector loop preheader");
3643   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3644 
3645   Optional<MDNode *> VectorizedLoopID =
3646       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3647                                       LLVMLoopVectorizeFollowupVectorized});
3648   if (VectorizedLoopID.hasValue()) {
3649     L->setLoopID(VectorizedLoopID.getValue());
3650 
3651     // Do not setAlreadyVectorized if loop attributes have been defined
3652     // explicitly.
3653     return LoopVectorPreHeader;
3654   }
3655 
3656   // Keep all loop hints from the original loop on the vector loop (we'll
3657   // replace the vectorizer-specific hints below).
3658   if (MDNode *LID = OrigLoop->getLoopID())
3659     L->setLoopID(LID);
3660 
3661   LoopVectorizeHints Hints(L, true, *ORE);
3662   Hints.setAlreadyVectorized();
3663 
3664 #ifdef EXPENSIVE_CHECKS
3665   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3666   LI->verify(*DT);
3667 #endif
3668 
3669   return LoopVectorPreHeader;
3670 }
3671 
3672 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3673   /*
3674    In this function we generate a new loop. The new loop will contain
3675    the vectorized instructions while the old loop will continue to run the
3676    scalar remainder.
3677 
3678        [ ] <-- loop iteration number check.
3679     /   |
3680    /    v
3681   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3682   |  /  |
3683   | /   v
3684   ||   [ ]     <-- vector pre header.
3685   |/    |
3686   |     v
3687   |    [  ] \
3688   |    [  ]_|   <-- vector loop.
3689   |     |
3690   |     v
3691   \   -[ ]   <--- middle-block.
3692    \/   |
3693    /\   v
3694    | ->[ ]     <--- new preheader.
3695    |    |
3696  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3697    |   [ ] \
3698    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3699     \   |
3700      \  v
3701       >[ ]     <-- exit block(s).
3702    ...
3703    */
3704 
3705   // Get the metadata of the original loop before it gets modified.
3706   MDNode *OrigLoopID = OrigLoop->getLoopID();
3707 
3708   // Workaround!  Compute the trip count of the original loop and cache it
3709   // before we start modifying the CFG.  This code has a systemic problem
3710   // wherein it tries to run analysis over partially constructed IR; this is
3711   // wrong, and not simply for SCEV.  The trip count of the original loop
3712   // simply happens to be prone to hitting this in practice.  In theory, we
3713   // can hit the same issue for any SCEV, or ValueTracking query done during
3714   // mutation.  See PR49900.
3715   getOrCreateTripCount(OrigLoop);
3716 
3717   // Create an empty vector loop, and prepare basic blocks for the runtime
3718   // checks.
3719   Loop *Lp = createVectorLoopSkeleton("");
3720 
3721   // Now, compare the new count to zero. If it is zero skip the vector loop and
3722   // jump to the scalar loop. This check also covers the case where the
3723   // backedge-taken count is uint##_max: adding one to it will overflow leading
3724   // to an incorrect trip count of zero. In this (rare) case we will also jump
3725   // to the scalar loop.
3726   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3727 
3728   // Generate the code to check any assumptions that we've made for SCEV
3729   // expressions.
3730   emitSCEVChecks(Lp, LoopScalarPreHeader);
3731 
3732   // Generate the code that checks in runtime if arrays overlap. We put the
3733   // checks into a separate block to make the more common case of few elements
3734   // faster.
3735   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3736 
3737   // Some loops have a single integer induction variable, while other loops
3738   // don't. One example is c++ iterators that often have multiple pointer
3739   // induction variables. In the code below we also support a case where we
3740   // don't have a single induction variable.
3741   //
3742   // We try to obtain an induction variable from the original loop as hard
3743   // as possible. However if we don't find one that:
3744   //   - is an integer
3745   //   - counts from zero, stepping by one
3746   //   - is the size of the widest induction variable type
3747   // then we create a new one.
3748   OldInduction = Legal->getPrimaryInduction();
3749   Type *IdxTy = Legal->getWidestInductionType();
3750   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3751   // The loop step is equal to the vectorization factor (num of SIMD elements)
3752   // times the unroll factor (num of SIMD instructions).
3753   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3754   Value *Step = createStepForVF(Builder, IdxTy, VF, UF);
3755   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3756   Induction =
3757       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3758                               getDebugLocFromInstOrOperands(OldInduction));
3759 
3760   // Emit phis for the new starting index of the scalar loop.
3761   createInductionResumeValues(Lp, CountRoundDown);
3762 
3763   return completeLoopSkeleton(Lp, OrigLoopID);
3764 }
3765 
3766 // Fix up external users of the induction variable. At this point, we are
3767 // in LCSSA form, with all external PHIs that use the IV having one input value,
3768 // coming from the remainder loop. We need those PHIs to also have a correct
3769 // value for the IV when arriving directly from the middle block.
3770 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3771                                        const InductionDescriptor &II,
3772                                        Value *CountRoundDown, Value *EndValue,
3773                                        BasicBlock *MiddleBlock) {
3774   // There are two kinds of external IV usages - those that use the value
3775   // computed in the last iteration (the PHI) and those that use the penultimate
3776   // value (the value that feeds into the phi from the loop latch).
3777   // We allow both, but they, obviously, have different values.
3778 
3779   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3780 
3781   DenseMap<Value *, Value *> MissingVals;
3782 
3783   // An external user of the last iteration's value should see the value that
3784   // the remainder loop uses to initialize its own IV.
3785   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3786   for (User *U : PostInc->users()) {
3787     Instruction *UI = cast<Instruction>(U);
3788     if (!OrigLoop->contains(UI)) {
3789       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3790       MissingVals[UI] = EndValue;
3791     }
3792   }
3793 
3794   // An external user of the penultimate value need to see EndValue - Step.
3795   // The simplest way to get this is to recompute it from the constituent SCEVs,
3796   // that is Start + (Step * (CRD - 1)).
3797   for (User *U : OrigPhi->users()) {
3798     auto *UI = cast<Instruction>(U);
3799     if (!OrigLoop->contains(UI)) {
3800       const DataLayout &DL =
3801           OrigLoop->getHeader()->getModule()->getDataLayout();
3802       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3803 
3804       IRBuilder<> B(MiddleBlock->getTerminator());
3805 
3806       // Fast-math-flags propagate from the original induction instruction.
3807       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3808         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3809 
3810       Value *CountMinusOne = B.CreateSub(
3811           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3812       Value *CMO =
3813           !II.getStep()->getType()->isIntegerTy()
3814               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3815                              II.getStep()->getType())
3816               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3817       CMO->setName("cast.cmo");
3818       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3819       Escape->setName("ind.escape");
3820       MissingVals[UI] = Escape;
3821     }
3822   }
3823 
3824   for (auto &I : MissingVals) {
3825     PHINode *PHI = cast<PHINode>(I.first);
3826     // One corner case we have to handle is two IVs "chasing" each-other,
3827     // that is %IV2 = phi [...], [ %IV1, %latch ]
3828     // In this case, if IV1 has an external use, we need to avoid adding both
3829     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3830     // don't already have an incoming value for the middle block.
3831     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3832       PHI->addIncoming(I.second, MiddleBlock);
3833   }
3834 }
3835 
3836 namespace {
3837 
3838 struct CSEDenseMapInfo {
3839   static bool canHandle(const Instruction *I) {
3840     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3841            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3842   }
3843 
3844   static inline Instruction *getEmptyKey() {
3845     return DenseMapInfo<Instruction *>::getEmptyKey();
3846   }
3847 
3848   static inline Instruction *getTombstoneKey() {
3849     return DenseMapInfo<Instruction *>::getTombstoneKey();
3850   }
3851 
3852   static unsigned getHashValue(const Instruction *I) {
3853     assert(canHandle(I) && "Unknown instruction!");
3854     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3855                                                            I->value_op_end()));
3856   }
3857 
3858   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3859     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3860         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3861       return LHS == RHS;
3862     return LHS->isIdenticalTo(RHS);
3863   }
3864 };
3865 
3866 } // end anonymous namespace
3867 
3868 ///Perform cse of induction variable instructions.
3869 static void cse(BasicBlock *BB) {
3870   // Perform simple cse.
3871   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3872   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3873     if (!CSEDenseMapInfo::canHandle(&In))
3874       continue;
3875 
3876     // Check if we can replace this instruction with any of the
3877     // visited instructions.
3878     if (Instruction *V = CSEMap.lookup(&In)) {
3879       In.replaceAllUsesWith(V);
3880       In.eraseFromParent();
3881       continue;
3882     }
3883 
3884     CSEMap[&In] = &In;
3885   }
3886 }
3887 
3888 InstructionCost
3889 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3890                                               bool &NeedToScalarize) const {
3891   Function *F = CI->getCalledFunction();
3892   Type *ScalarRetTy = CI->getType();
3893   SmallVector<Type *, 4> Tys, ScalarTys;
3894   for (auto &ArgOp : CI->args())
3895     ScalarTys.push_back(ArgOp->getType());
3896 
3897   // Estimate cost of scalarized vector call. The source operands are assumed
3898   // to be vectors, so we need to extract individual elements from there,
3899   // execute VF scalar calls, and then gather the result into the vector return
3900   // value.
3901   InstructionCost ScalarCallCost =
3902       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3903   if (VF.isScalar())
3904     return ScalarCallCost;
3905 
3906   // Compute corresponding vector type for return value and arguments.
3907   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3908   for (Type *ScalarTy : ScalarTys)
3909     Tys.push_back(ToVectorTy(ScalarTy, VF));
3910 
3911   // Compute costs of unpacking argument values for the scalar calls and
3912   // packing the return values to a vector.
3913   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3914 
3915   InstructionCost Cost =
3916       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3917 
3918   // If we can't emit a vector call for this function, then the currently found
3919   // cost is the cost we need to return.
3920   NeedToScalarize = true;
3921   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3922   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3923 
3924   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3925     return Cost;
3926 
3927   // If the corresponding vector cost is cheaper, return its cost.
3928   InstructionCost VectorCallCost =
3929       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3930   if (VectorCallCost < Cost) {
3931     NeedToScalarize = false;
3932     Cost = VectorCallCost;
3933   }
3934   return Cost;
3935 }
3936 
3937 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3938   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3939     return Elt;
3940   return VectorType::get(Elt, VF);
3941 }
3942 
3943 InstructionCost
3944 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3945                                                    ElementCount VF) const {
3946   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3947   assert(ID && "Expected intrinsic call!");
3948   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3949   FastMathFlags FMF;
3950   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3951     FMF = FPMO->getFastMathFlags();
3952 
3953   SmallVector<const Value *> Arguments(CI->args());
3954   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3955   SmallVector<Type *> ParamTys;
3956   std::transform(FTy->param_begin(), FTy->param_end(),
3957                  std::back_inserter(ParamTys),
3958                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3959 
3960   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3961                                     dyn_cast<IntrinsicInst>(CI));
3962   return TTI.getIntrinsicInstrCost(CostAttrs,
3963                                    TargetTransformInfo::TCK_RecipThroughput);
3964 }
3965 
3966 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3967   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3968   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3969   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3970 }
3971 
3972 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3973   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3974   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3975   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3976 }
3977 
3978 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3979   // For every instruction `I` in MinBWs, truncate the operands, create a
3980   // truncated version of `I` and reextend its result. InstCombine runs
3981   // later and will remove any ext/trunc pairs.
3982   SmallPtrSet<Value *, 4> Erased;
3983   for (const auto &KV : Cost->getMinimalBitwidths()) {
3984     // If the value wasn't vectorized, we must maintain the original scalar
3985     // type. The absence of the value from State indicates that it
3986     // wasn't vectorized.
3987     // FIXME: Should not rely on getVPValue at this point.
3988     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3989     if (!State.hasAnyVectorValue(Def))
3990       continue;
3991     for (unsigned Part = 0; Part < UF; ++Part) {
3992       Value *I = State.get(Def, Part);
3993       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3994         continue;
3995       Type *OriginalTy = I->getType();
3996       Type *ScalarTruncatedTy =
3997           IntegerType::get(OriginalTy->getContext(), KV.second);
3998       auto *TruncatedTy = VectorType::get(
3999           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4000       if (TruncatedTy == OriginalTy)
4001         continue;
4002 
4003       IRBuilder<> B(cast<Instruction>(I));
4004       auto ShrinkOperand = [&](Value *V) -> Value * {
4005         if (auto *ZI = dyn_cast<ZExtInst>(V))
4006           if (ZI->getSrcTy() == TruncatedTy)
4007             return ZI->getOperand(0);
4008         return B.CreateZExtOrTrunc(V, TruncatedTy);
4009       };
4010 
4011       // The actual instruction modification depends on the instruction type,
4012       // unfortunately.
4013       Value *NewI = nullptr;
4014       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4015         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4016                              ShrinkOperand(BO->getOperand(1)));
4017 
4018         // Any wrapping introduced by shrinking this operation shouldn't be
4019         // considered undefined behavior. So, we can't unconditionally copy
4020         // arithmetic wrapping flags to NewI.
4021         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4022       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4023         NewI =
4024             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4025                          ShrinkOperand(CI->getOperand(1)));
4026       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4027         NewI = B.CreateSelect(SI->getCondition(),
4028                               ShrinkOperand(SI->getTrueValue()),
4029                               ShrinkOperand(SI->getFalseValue()));
4030       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4031         switch (CI->getOpcode()) {
4032         default:
4033           llvm_unreachable("Unhandled cast!");
4034         case Instruction::Trunc:
4035           NewI = ShrinkOperand(CI->getOperand(0));
4036           break;
4037         case Instruction::SExt:
4038           NewI = B.CreateSExtOrTrunc(
4039               CI->getOperand(0),
4040               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4041           break;
4042         case Instruction::ZExt:
4043           NewI = B.CreateZExtOrTrunc(
4044               CI->getOperand(0),
4045               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4046           break;
4047         }
4048       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4049         auto Elements0 =
4050             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4051         auto *O0 = B.CreateZExtOrTrunc(
4052             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4053         auto Elements1 =
4054             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4055         auto *O1 = B.CreateZExtOrTrunc(
4056             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4057 
4058         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4059       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4060         // Don't do anything with the operands, just extend the result.
4061         continue;
4062       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4063         auto Elements =
4064             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4065         auto *O0 = B.CreateZExtOrTrunc(
4066             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4067         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4068         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4069       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4070         auto Elements =
4071             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4072         auto *O0 = B.CreateZExtOrTrunc(
4073             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4074         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4075       } else {
4076         // If we don't know what to do, be conservative and don't do anything.
4077         continue;
4078       }
4079 
4080       // Lastly, extend the result.
4081       NewI->takeName(cast<Instruction>(I));
4082       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4083       I->replaceAllUsesWith(Res);
4084       cast<Instruction>(I)->eraseFromParent();
4085       Erased.insert(I);
4086       State.reset(Def, Res, Part);
4087     }
4088   }
4089 
4090   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4091   for (const auto &KV : Cost->getMinimalBitwidths()) {
4092     // If the value wasn't vectorized, we must maintain the original scalar
4093     // type. The absence of the value from State indicates that it
4094     // wasn't vectorized.
4095     // FIXME: Should not rely on getVPValue at this point.
4096     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4097     if (!State.hasAnyVectorValue(Def))
4098       continue;
4099     for (unsigned Part = 0; Part < UF; ++Part) {
4100       Value *I = State.get(Def, Part);
4101       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4102       if (Inst && Inst->use_empty()) {
4103         Value *NewI = Inst->getOperand(0);
4104         Inst->eraseFromParent();
4105         State.reset(Def, NewI, Part);
4106       }
4107     }
4108   }
4109 }
4110 
4111 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4112   // Insert truncates and extends for any truncated instructions as hints to
4113   // InstCombine.
4114   if (VF.isVector())
4115     truncateToMinimalBitwidths(State);
4116 
4117   // Fix widened non-induction PHIs by setting up the PHI operands.
4118   if (OrigPHIsToFix.size()) {
4119     assert(EnableVPlanNativePath &&
4120            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4121     fixNonInductionPHIs(State);
4122   }
4123 
4124   // At this point every instruction in the original loop is widened to a
4125   // vector form. Now we need to fix the recurrences in the loop. These PHI
4126   // nodes are currently empty because we did not want to introduce cycles.
4127   // This is the second stage of vectorizing recurrences.
4128   fixCrossIterationPHIs(State);
4129 
4130   // Forget the original basic block.
4131   PSE.getSE()->forgetLoop(OrigLoop);
4132 
4133   // If we inserted an edge from the middle block to the unique exit block,
4134   // update uses outside the loop (phis) to account for the newly inserted
4135   // edge.
4136   if (!Cost->requiresScalarEpilogue(VF)) {
4137     // Fix-up external users of the induction variables.
4138     for (auto &Entry : Legal->getInductionVars())
4139       fixupIVUsers(Entry.first, Entry.second,
4140                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4141                    IVEndValues[Entry.first], LoopMiddleBlock);
4142 
4143     fixLCSSAPHIs(State);
4144   }
4145 
4146   for (Instruction *PI : PredicatedInstructions)
4147     sinkScalarOperands(&*PI);
4148 
4149   // Remove redundant induction instructions.
4150   cse(LoopVectorBody);
4151 
4152   // Set/update profile weights for the vector and remainder loops as original
4153   // loop iterations are now distributed among them. Note that original loop
4154   // represented by LoopScalarBody becomes remainder loop after vectorization.
4155   //
4156   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4157   // end up getting slightly roughened result but that should be OK since
4158   // profile is not inherently precise anyway. Note also possible bypass of
4159   // vector code caused by legality checks is ignored, assigning all the weight
4160   // to the vector loop, optimistically.
4161   //
4162   // For scalable vectorization we can't know at compile time how many iterations
4163   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4164   // vscale of '1'.
4165   setProfileInfoAfterUnrolling(
4166       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4167       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4168 }
4169 
4170 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4171   // In order to support recurrences we need to be able to vectorize Phi nodes.
4172   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4173   // stage #2: We now need to fix the recurrences by adding incoming edges to
4174   // the currently empty PHI nodes. At this point every instruction in the
4175   // original loop is widened to a vector form so we can use them to construct
4176   // the incoming edges.
4177   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4178   for (VPRecipeBase &R : Header->phis()) {
4179     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4180       fixReduction(ReductionPhi, State);
4181     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4182       fixFirstOrderRecurrence(FOR, State);
4183   }
4184 }
4185 
4186 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4187                                                   VPTransformState &State) {
4188   // This is the second phase of vectorizing first-order recurrences. An
4189   // overview of the transformation is described below. Suppose we have the
4190   // following loop.
4191   //
4192   //   for (int i = 0; i < n; ++i)
4193   //     b[i] = a[i] - a[i - 1];
4194   //
4195   // There is a first-order recurrence on "a". For this loop, the shorthand
4196   // scalar IR looks like:
4197   //
4198   //   scalar.ph:
4199   //     s_init = a[-1]
4200   //     br scalar.body
4201   //
4202   //   scalar.body:
4203   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4204   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4205   //     s2 = a[i]
4206   //     b[i] = s2 - s1
4207   //     br cond, scalar.body, ...
4208   //
4209   // In this example, s1 is a recurrence because it's value depends on the
4210   // previous iteration. In the first phase of vectorization, we created a
4211   // vector phi v1 for s1. We now complete the vectorization and produce the
4212   // shorthand vector IR shown below (for VF = 4, UF = 1).
4213   //
4214   //   vector.ph:
4215   //     v_init = vector(..., ..., ..., a[-1])
4216   //     br vector.body
4217   //
4218   //   vector.body
4219   //     i = phi [0, vector.ph], [i+4, vector.body]
4220   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4221   //     v2 = a[i, i+1, i+2, i+3];
4222   //     v3 = vector(v1(3), v2(0, 1, 2))
4223   //     b[i, i+1, i+2, i+3] = v2 - v3
4224   //     br cond, vector.body, middle.block
4225   //
4226   //   middle.block:
4227   //     x = v2(3)
4228   //     br scalar.ph
4229   //
4230   //   scalar.ph:
4231   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4232   //     br scalar.body
4233   //
4234   // After execution completes the vector loop, we extract the next value of
4235   // the recurrence (x) to use as the initial value in the scalar loop.
4236 
4237   // Extract the last vector element in the middle block. This will be the
4238   // initial value for the recurrence when jumping to the scalar loop.
4239   VPValue *PreviousDef = PhiR->getBackedgeValue();
4240   Value *Incoming = State.get(PreviousDef, UF - 1);
4241   auto *ExtractForScalar = Incoming;
4242   auto *IdxTy = Builder.getInt32Ty();
4243   if (VF.isVector()) {
4244     auto *One = ConstantInt::get(IdxTy, 1);
4245     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4246     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4247     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4248     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4249                                                     "vector.recur.extract");
4250   }
4251   // Extract the second last element in the middle block if the
4252   // Phi is used outside the loop. We need to extract the phi itself
4253   // and not the last element (the phi update in the current iteration). This
4254   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4255   // when the scalar loop is not run at all.
4256   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4257   if (VF.isVector()) {
4258     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4259     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4260     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4261         Incoming, Idx, "vector.recur.extract.for.phi");
4262   } else if (UF > 1)
4263     // When loop is unrolled without vectorizing, initialize
4264     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4265     // of `Incoming`. This is analogous to the vectorized case above: extracting
4266     // the second last element when VF > 1.
4267     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4268 
4269   // Fix the initial value of the original recurrence in the scalar loop.
4270   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4271   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4272   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4273   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4274   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4275     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4276     Start->addIncoming(Incoming, BB);
4277   }
4278 
4279   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4280   Phi->setName("scalar.recur");
4281 
4282   // Finally, fix users of the recurrence outside the loop. The users will need
4283   // either the last value of the scalar recurrence or the last value of the
4284   // vector recurrence we extracted in the middle block. Since the loop is in
4285   // LCSSA form, we just need to find all the phi nodes for the original scalar
4286   // recurrence in the exit block, and then add an edge for the middle block.
4287   // Note that LCSSA does not imply single entry when the original scalar loop
4288   // had multiple exiting edges (as we always run the last iteration in the
4289   // scalar epilogue); in that case, there is no edge from middle to exit and
4290   // and thus no phis which needed updated.
4291   if (!Cost->requiresScalarEpilogue(VF))
4292     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4293       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4294         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4295 }
4296 
4297 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4298                                        VPTransformState &State) {
4299   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4300   // Get it's reduction variable descriptor.
4301   assert(Legal->isReductionVariable(OrigPhi) &&
4302          "Unable to find the reduction variable");
4303   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4304 
4305   RecurKind RK = RdxDesc.getRecurrenceKind();
4306   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4307   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4308   setDebugLocFromInst(ReductionStartValue);
4309 
4310   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4311   // This is the vector-clone of the value that leaves the loop.
4312   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4313 
4314   // Wrap flags are in general invalid after vectorization, clear them.
4315   clearReductionWrapFlags(RdxDesc, State);
4316 
4317   // Before each round, move the insertion point right between
4318   // the PHIs and the values we are going to write.
4319   // This allows us to write both PHINodes and the extractelement
4320   // instructions.
4321   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4322 
4323   setDebugLocFromInst(LoopExitInst);
4324 
4325   Type *PhiTy = OrigPhi->getType();
4326   // If tail is folded by masking, the vector value to leave the loop should be
4327   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4328   // instead of the former. For an inloop reduction the reduction will already
4329   // be predicated, and does not need to be handled here.
4330   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4331     for (unsigned Part = 0; Part < UF; ++Part) {
4332       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4333       Value *Sel = nullptr;
4334       for (User *U : VecLoopExitInst->users()) {
4335         if (isa<SelectInst>(U)) {
4336           assert(!Sel && "Reduction exit feeding two selects");
4337           Sel = U;
4338         } else
4339           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4340       }
4341       assert(Sel && "Reduction exit feeds no select");
4342       State.reset(LoopExitInstDef, Sel, Part);
4343 
4344       // If the target can create a predicated operator for the reduction at no
4345       // extra cost in the loop (for example a predicated vadd), it can be
4346       // cheaper for the select to remain in the loop than be sunk out of it,
4347       // and so use the select value for the phi instead of the old
4348       // LoopExitValue.
4349       if (PreferPredicatedReductionSelect ||
4350           TTI->preferPredicatedReductionSelect(
4351               RdxDesc.getOpcode(), PhiTy,
4352               TargetTransformInfo::ReductionFlags())) {
4353         auto *VecRdxPhi =
4354             cast<PHINode>(State.get(PhiR, Part));
4355         VecRdxPhi->setIncomingValueForBlock(
4356             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4357       }
4358     }
4359   }
4360 
4361   // If the vector reduction can be performed in a smaller type, we truncate
4362   // then extend the loop exit value to enable InstCombine to evaluate the
4363   // entire expression in the smaller type.
4364   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4365     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4366     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4367     Builder.SetInsertPoint(
4368         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4369     VectorParts RdxParts(UF);
4370     for (unsigned Part = 0; Part < UF; ++Part) {
4371       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4372       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4373       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4374                                         : Builder.CreateZExt(Trunc, VecTy);
4375       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4376         if (U != Trunc) {
4377           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4378           RdxParts[Part] = Extnd;
4379         }
4380     }
4381     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4382     for (unsigned Part = 0; Part < UF; ++Part) {
4383       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4384       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4385     }
4386   }
4387 
4388   // Reduce all of the unrolled parts into a single vector.
4389   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4390   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4391 
4392   // The middle block terminator has already been assigned a DebugLoc here (the
4393   // OrigLoop's single latch terminator). We want the whole middle block to
4394   // appear to execute on this line because: (a) it is all compiler generated,
4395   // (b) these instructions are always executed after evaluating the latch
4396   // conditional branch, and (c) other passes may add new predecessors which
4397   // terminate on this line. This is the easiest way to ensure we don't
4398   // accidentally cause an extra step back into the loop while debugging.
4399   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4400   if (PhiR->isOrdered())
4401     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4402   else {
4403     // Floating-point operations should have some FMF to enable the reduction.
4404     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4405     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4406     for (unsigned Part = 1; Part < UF; ++Part) {
4407       Value *RdxPart = State.get(LoopExitInstDef, Part);
4408       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4409         ReducedPartRdx = Builder.CreateBinOp(
4410             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4411       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4412         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4413                                            ReducedPartRdx, RdxPart);
4414       else
4415         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4416     }
4417   }
4418 
4419   // Create the reduction after the loop. Note that inloop reductions create the
4420   // target reduction in the loop using a Reduction recipe.
4421   if (VF.isVector() && !PhiR->isInLoop()) {
4422     ReducedPartRdx =
4423         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4424     // If the reduction can be performed in a smaller type, we need to extend
4425     // the reduction to the wider type before we branch to the original loop.
4426     if (PhiTy != RdxDesc.getRecurrenceType())
4427       ReducedPartRdx = RdxDesc.isSigned()
4428                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4429                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4430   }
4431 
4432   // Create a phi node that merges control-flow from the backedge-taken check
4433   // block and the middle block.
4434   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4435                                         LoopScalarPreHeader->getTerminator());
4436   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4437     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4438   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4439 
4440   // Now, we need to fix the users of the reduction variable
4441   // inside and outside of the scalar remainder loop.
4442 
4443   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4444   // in the exit blocks.  See comment on analogous loop in
4445   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4446   if (!Cost->requiresScalarEpilogue(VF))
4447     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4448       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4449         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4450 
4451   // Fix the scalar loop reduction variable with the incoming reduction sum
4452   // from the vector body and from the backedge value.
4453   int IncomingEdgeBlockIdx =
4454       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4455   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4456   // Pick the other block.
4457   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4458   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4459   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4460 }
4461 
4462 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4463                                                   VPTransformState &State) {
4464   RecurKind RK = RdxDesc.getRecurrenceKind();
4465   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4466     return;
4467 
4468   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4469   assert(LoopExitInstr && "null loop exit instruction");
4470   SmallVector<Instruction *, 8> Worklist;
4471   SmallPtrSet<Instruction *, 8> Visited;
4472   Worklist.push_back(LoopExitInstr);
4473   Visited.insert(LoopExitInstr);
4474 
4475   while (!Worklist.empty()) {
4476     Instruction *Cur = Worklist.pop_back_val();
4477     if (isa<OverflowingBinaryOperator>(Cur))
4478       for (unsigned Part = 0; Part < UF; ++Part) {
4479         // FIXME: Should not rely on getVPValue at this point.
4480         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4481         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4482       }
4483 
4484     for (User *U : Cur->users()) {
4485       Instruction *UI = cast<Instruction>(U);
4486       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4487           Visited.insert(UI).second)
4488         Worklist.push_back(UI);
4489     }
4490   }
4491 }
4492 
4493 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4494   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4495     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4496       // Some phis were already hand updated by the reduction and recurrence
4497       // code above, leave them alone.
4498       continue;
4499 
4500     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4501     // Non-instruction incoming values will have only one value.
4502 
4503     VPLane Lane = VPLane::getFirstLane();
4504     if (isa<Instruction>(IncomingValue) &&
4505         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4506                                            VF))
4507       Lane = VPLane::getLastLaneForVF(VF);
4508 
4509     // Can be a loop invariant incoming value or the last scalar value to be
4510     // extracted from the vectorized loop.
4511     // FIXME: Should not rely on getVPValue at this point.
4512     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4513     Value *lastIncomingValue =
4514         OrigLoop->isLoopInvariant(IncomingValue)
4515             ? IncomingValue
4516             : State.get(State.Plan->getVPValue(IncomingValue, true),
4517                         VPIteration(UF - 1, Lane));
4518     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4519   }
4520 }
4521 
4522 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4523   // The basic block and loop containing the predicated instruction.
4524   auto *PredBB = PredInst->getParent();
4525   auto *VectorLoop = LI->getLoopFor(PredBB);
4526 
4527   // Initialize a worklist with the operands of the predicated instruction.
4528   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4529 
4530   // Holds instructions that we need to analyze again. An instruction may be
4531   // reanalyzed if we don't yet know if we can sink it or not.
4532   SmallVector<Instruction *, 8> InstsToReanalyze;
4533 
4534   // Returns true if a given use occurs in the predicated block. Phi nodes use
4535   // their operands in their corresponding predecessor blocks.
4536   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4537     auto *I = cast<Instruction>(U.getUser());
4538     BasicBlock *BB = I->getParent();
4539     if (auto *Phi = dyn_cast<PHINode>(I))
4540       BB = Phi->getIncomingBlock(
4541           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4542     return BB == PredBB;
4543   };
4544 
4545   // Iteratively sink the scalarized operands of the predicated instruction
4546   // into the block we created for it. When an instruction is sunk, it's
4547   // operands are then added to the worklist. The algorithm ends after one pass
4548   // through the worklist doesn't sink a single instruction.
4549   bool Changed;
4550   do {
4551     // Add the instructions that need to be reanalyzed to the worklist, and
4552     // reset the changed indicator.
4553     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4554     InstsToReanalyze.clear();
4555     Changed = false;
4556 
4557     while (!Worklist.empty()) {
4558       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4559 
4560       // We can't sink an instruction if it is a phi node, is not in the loop,
4561       // or may have side effects.
4562       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4563           I->mayHaveSideEffects())
4564         continue;
4565 
4566       // If the instruction is already in PredBB, check if we can sink its
4567       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4568       // sinking the scalar instruction I, hence it appears in PredBB; but it
4569       // may have failed to sink I's operands (recursively), which we try
4570       // (again) here.
4571       if (I->getParent() == PredBB) {
4572         Worklist.insert(I->op_begin(), I->op_end());
4573         continue;
4574       }
4575 
4576       // It's legal to sink the instruction if all its uses occur in the
4577       // predicated block. Otherwise, there's nothing to do yet, and we may
4578       // need to reanalyze the instruction.
4579       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4580         InstsToReanalyze.push_back(I);
4581         continue;
4582       }
4583 
4584       // Move the instruction to the beginning of the predicated block, and add
4585       // it's operands to the worklist.
4586       I->moveBefore(&*PredBB->getFirstInsertionPt());
4587       Worklist.insert(I->op_begin(), I->op_end());
4588 
4589       // The sinking may have enabled other instructions to be sunk, so we will
4590       // need to iterate.
4591       Changed = true;
4592     }
4593   } while (Changed);
4594 }
4595 
4596 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4597   for (PHINode *OrigPhi : OrigPHIsToFix) {
4598     VPWidenPHIRecipe *VPPhi =
4599         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4600     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4601     // Make sure the builder has a valid insert point.
4602     Builder.SetInsertPoint(NewPhi);
4603     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4604       VPValue *Inc = VPPhi->getIncomingValue(i);
4605       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4606       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4607     }
4608   }
4609 }
4610 
4611 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4612   return Cost->useOrderedReductions(RdxDesc);
4613 }
4614 
4615 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4616                                    VPUser &Operands, unsigned UF,
4617                                    ElementCount VF, bool IsPtrLoopInvariant,
4618                                    SmallBitVector &IsIndexLoopInvariant,
4619                                    VPTransformState &State) {
4620   // Construct a vector GEP by widening the operands of the scalar GEP as
4621   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4622   // results in a vector of pointers when at least one operand of the GEP
4623   // is vector-typed. Thus, to keep the representation compact, we only use
4624   // vector-typed operands for loop-varying values.
4625 
4626   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4627     // If we are vectorizing, but the GEP has only loop-invariant operands,
4628     // the GEP we build (by only using vector-typed operands for
4629     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4630     // produce a vector of pointers, we need to either arbitrarily pick an
4631     // operand to broadcast, or broadcast a clone of the original GEP.
4632     // Here, we broadcast a clone of the original.
4633     //
4634     // TODO: If at some point we decide to scalarize instructions having
4635     //       loop-invariant operands, this special case will no longer be
4636     //       required. We would add the scalarization decision to
4637     //       collectLoopScalars() and teach getVectorValue() to broadcast
4638     //       the lane-zero scalar value.
4639     auto *Clone = Builder.Insert(GEP->clone());
4640     for (unsigned Part = 0; Part < UF; ++Part) {
4641       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4642       State.set(VPDef, EntryPart, Part);
4643       addMetadata(EntryPart, GEP);
4644     }
4645   } else {
4646     // If the GEP has at least one loop-varying operand, we are sure to
4647     // produce a vector of pointers. But if we are only unrolling, we want
4648     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4649     // produce with the code below will be scalar (if VF == 1) or vector
4650     // (otherwise). Note that for the unroll-only case, we still maintain
4651     // values in the vector mapping with initVector, as we do for other
4652     // instructions.
4653     for (unsigned Part = 0; Part < UF; ++Part) {
4654       // The pointer operand of the new GEP. If it's loop-invariant, we
4655       // won't broadcast it.
4656       auto *Ptr = IsPtrLoopInvariant
4657                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4658                       : State.get(Operands.getOperand(0), Part);
4659 
4660       // Collect all the indices for the new GEP. If any index is
4661       // loop-invariant, we won't broadcast it.
4662       SmallVector<Value *, 4> Indices;
4663       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4664         VPValue *Operand = Operands.getOperand(I);
4665         if (IsIndexLoopInvariant[I - 1])
4666           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4667         else
4668           Indices.push_back(State.get(Operand, Part));
4669       }
4670 
4671       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4672       // but it should be a vector, otherwise.
4673       auto *NewGEP =
4674           GEP->isInBounds()
4675               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4676                                           Indices)
4677               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4678       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4679              "NewGEP is not a pointer vector");
4680       State.set(VPDef, NewGEP, Part);
4681       addMetadata(NewGEP, GEP);
4682     }
4683   }
4684 }
4685 
4686 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4687                                               VPWidenPHIRecipe *PhiR,
4688                                               VPTransformState &State) {
4689   PHINode *P = cast<PHINode>(PN);
4690   if (EnableVPlanNativePath) {
4691     // Currently we enter here in the VPlan-native path for non-induction
4692     // PHIs where all control flow is uniform. We simply widen these PHIs.
4693     // Create a vector phi with no operands - the vector phi operands will be
4694     // set at the end of vector code generation.
4695     Type *VecTy = (State.VF.isScalar())
4696                       ? PN->getType()
4697                       : VectorType::get(PN->getType(), State.VF);
4698     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4699     State.set(PhiR, VecPhi, 0);
4700     OrigPHIsToFix.push_back(P);
4701 
4702     return;
4703   }
4704 
4705   assert(PN->getParent() == OrigLoop->getHeader() &&
4706          "Non-header phis should have been handled elsewhere");
4707 
4708   // In order to support recurrences we need to be able to vectorize Phi nodes.
4709   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4710   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4711   // this value when we vectorize all of the instructions that use the PHI.
4712 
4713   assert(!Legal->isReductionVariable(P) &&
4714          "reductions should be handled elsewhere");
4715 
4716   setDebugLocFromInst(P);
4717 
4718   // This PHINode must be an induction variable.
4719   // Make sure that we know about it.
4720   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4721 
4722   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4723   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4724 
4725   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4726   // which can be found from the original scalar operations.
4727   switch (II.getKind()) {
4728   case InductionDescriptor::IK_NoInduction:
4729     llvm_unreachable("Unknown induction");
4730   case InductionDescriptor::IK_IntInduction:
4731   case InductionDescriptor::IK_FpInduction:
4732     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4733   case InductionDescriptor::IK_PtrInduction: {
4734     // Handle the pointer induction variable case.
4735     assert(P->getType()->isPointerTy() && "Unexpected type.");
4736 
4737     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4738       // This is the normalized GEP that starts counting at zero.
4739       Value *PtrInd =
4740           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4741       // Determine the number of scalars we need to generate for each unroll
4742       // iteration. If the instruction is uniform, we only need to generate the
4743       // first lane. Otherwise, we generate all VF values.
4744       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4745       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4746 
4747       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4748       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4749       if (NeedsVectorIndex) {
4750         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4751         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4752         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4753       }
4754 
4755       for (unsigned Part = 0; Part < UF; ++Part) {
4756         Value *PartStart =
4757             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4758 
4759         if (NeedsVectorIndex) {
4760           // Here we cache the whole vector, which means we can support the
4761           // extraction of any lane. However, in some cases the extractelement
4762           // instruction that is generated for scalar uses of this vector (e.g.
4763           // a load instruction) is not folded away. Therefore we still
4764           // calculate values for the first n lanes to avoid redundant moves
4765           // (when extracting the 0th element) and to produce scalar code (i.e.
4766           // additional add/gep instructions instead of expensive extractelement
4767           // instructions) when extracting higher-order elements.
4768           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4769           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4770           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4771           Value *SclrGep =
4772               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4773           SclrGep->setName("next.gep");
4774           State.set(PhiR, SclrGep, Part);
4775         }
4776 
4777         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4778           Value *Idx = Builder.CreateAdd(
4779               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4780           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4781           Value *SclrGep =
4782               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4783           SclrGep->setName("next.gep");
4784           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4785         }
4786       }
4787       return;
4788     }
4789     assert(isa<SCEVConstant>(II.getStep()) &&
4790            "Induction step not a SCEV constant!");
4791     Type *PhiType = II.getStep()->getType();
4792 
4793     // Build a pointer phi
4794     Value *ScalarStartValue = II.getStartValue();
4795     Type *ScStValueType = ScalarStartValue->getType();
4796     PHINode *NewPointerPhi =
4797         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4798     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4799 
4800     // A pointer induction, performed by using a gep
4801     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4802     Instruction *InductionLoc = LoopLatch->getTerminator();
4803     const SCEV *ScalarStep = II.getStep();
4804     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4805     Value *ScalarStepValue =
4806         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4807     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4808     Value *NumUnrolledElems =
4809         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4810     Value *InductionGEP = GetElementPtrInst::Create(
4811         II.getElementType(), NewPointerPhi,
4812         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4813         InductionLoc);
4814     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4815 
4816     // Create UF many actual address geps that use the pointer
4817     // phi as base and a vectorized version of the step value
4818     // (<step*0, ..., step*N>) as offset.
4819     for (unsigned Part = 0; Part < State.UF; ++Part) {
4820       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4821       Value *StartOffsetScalar =
4822           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4823       Value *StartOffset =
4824           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4825       // Create a vector of consecutive numbers from zero to VF.
4826       StartOffset =
4827           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4828 
4829       Value *GEP = Builder.CreateGEP(
4830           II.getElementType(), NewPointerPhi,
4831           Builder.CreateMul(
4832               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4833               "vector.gep"));
4834       State.set(PhiR, GEP, Part);
4835     }
4836   }
4837   }
4838 }
4839 
4840 /// A helper function for checking whether an integer division-related
4841 /// instruction may divide by zero (in which case it must be predicated if
4842 /// executed conditionally in the scalar code).
4843 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4844 /// Non-zero divisors that are non compile-time constants will not be
4845 /// converted into multiplication, so we will still end up scalarizing
4846 /// the division, but can do so w/o predication.
4847 static bool mayDivideByZero(Instruction &I) {
4848   assert((I.getOpcode() == Instruction::UDiv ||
4849           I.getOpcode() == Instruction::SDiv ||
4850           I.getOpcode() == Instruction::URem ||
4851           I.getOpcode() == Instruction::SRem) &&
4852          "Unexpected instruction");
4853   Value *Divisor = I.getOperand(1);
4854   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4855   return !CInt || CInt->isZero();
4856 }
4857 
4858 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4859                                            VPUser &User,
4860                                            VPTransformState &State) {
4861   switch (I.getOpcode()) {
4862   case Instruction::Call:
4863   case Instruction::Br:
4864   case Instruction::PHI:
4865   case Instruction::GetElementPtr:
4866   case Instruction::Select:
4867     llvm_unreachable("This instruction is handled by a different recipe.");
4868   case Instruction::UDiv:
4869   case Instruction::SDiv:
4870   case Instruction::SRem:
4871   case Instruction::URem:
4872   case Instruction::Add:
4873   case Instruction::FAdd:
4874   case Instruction::Sub:
4875   case Instruction::FSub:
4876   case Instruction::FNeg:
4877   case Instruction::Mul:
4878   case Instruction::FMul:
4879   case Instruction::FDiv:
4880   case Instruction::FRem:
4881   case Instruction::Shl:
4882   case Instruction::LShr:
4883   case Instruction::AShr:
4884   case Instruction::And:
4885   case Instruction::Or:
4886   case Instruction::Xor: {
4887     // Just widen unops and binops.
4888     setDebugLocFromInst(&I);
4889 
4890     for (unsigned Part = 0; Part < UF; ++Part) {
4891       SmallVector<Value *, 2> Ops;
4892       for (VPValue *VPOp : User.operands())
4893         Ops.push_back(State.get(VPOp, Part));
4894 
4895       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4896 
4897       if (auto *VecOp = dyn_cast<Instruction>(V))
4898         VecOp->copyIRFlags(&I);
4899 
4900       // Use this vector value for all users of the original instruction.
4901       State.set(Def, V, Part);
4902       addMetadata(V, &I);
4903     }
4904 
4905     break;
4906   }
4907   case Instruction::ICmp:
4908   case Instruction::FCmp: {
4909     // Widen compares. Generate vector compares.
4910     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4911     auto *Cmp = cast<CmpInst>(&I);
4912     setDebugLocFromInst(Cmp);
4913     for (unsigned Part = 0; Part < UF; ++Part) {
4914       Value *A = State.get(User.getOperand(0), Part);
4915       Value *B = State.get(User.getOperand(1), Part);
4916       Value *C = nullptr;
4917       if (FCmp) {
4918         // Propagate fast math flags.
4919         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4920         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4921         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4922       } else {
4923         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4924       }
4925       State.set(Def, C, Part);
4926       addMetadata(C, &I);
4927     }
4928 
4929     break;
4930   }
4931 
4932   case Instruction::ZExt:
4933   case Instruction::SExt:
4934   case Instruction::FPToUI:
4935   case Instruction::FPToSI:
4936   case Instruction::FPExt:
4937   case Instruction::PtrToInt:
4938   case Instruction::IntToPtr:
4939   case Instruction::SIToFP:
4940   case Instruction::UIToFP:
4941   case Instruction::Trunc:
4942   case Instruction::FPTrunc:
4943   case Instruction::BitCast: {
4944     auto *CI = cast<CastInst>(&I);
4945     setDebugLocFromInst(CI);
4946 
4947     /// Vectorize casts.
4948     Type *DestTy =
4949         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4950 
4951     for (unsigned Part = 0; Part < UF; ++Part) {
4952       Value *A = State.get(User.getOperand(0), Part);
4953       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4954       State.set(Def, Cast, Part);
4955       addMetadata(Cast, &I);
4956     }
4957     break;
4958   }
4959   default:
4960     // This instruction is not vectorized by simple widening.
4961     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4962     llvm_unreachable("Unhandled instruction!");
4963   } // end of switch.
4964 }
4965 
4966 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4967                                                VPUser &ArgOperands,
4968                                                VPTransformState &State) {
4969   assert(!isa<DbgInfoIntrinsic>(I) &&
4970          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4971   setDebugLocFromInst(&I);
4972 
4973   Module *M = I.getParent()->getParent()->getParent();
4974   auto *CI = cast<CallInst>(&I);
4975 
4976   SmallVector<Type *, 4> Tys;
4977   for (Value *ArgOperand : CI->args())
4978     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4979 
4980   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4981 
4982   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4983   // version of the instruction.
4984   // Is it beneficial to perform intrinsic call compared to lib call?
4985   bool NeedToScalarize = false;
4986   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4987   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4988   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4989   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4990          "Instruction should be scalarized elsewhere.");
4991   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4992          "Either the intrinsic cost or vector call cost must be valid");
4993 
4994   for (unsigned Part = 0; Part < UF; ++Part) {
4995     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4996     SmallVector<Value *, 4> Args;
4997     for (auto &I : enumerate(ArgOperands.operands())) {
4998       // Some intrinsics have a scalar argument - don't replace it with a
4999       // vector.
5000       Value *Arg;
5001       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5002         Arg = State.get(I.value(), Part);
5003       else {
5004         Arg = State.get(I.value(), VPIteration(0, 0));
5005         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5006           TysForDecl.push_back(Arg->getType());
5007       }
5008       Args.push_back(Arg);
5009     }
5010 
5011     Function *VectorF;
5012     if (UseVectorIntrinsic) {
5013       // Use vector version of the intrinsic.
5014       if (VF.isVector())
5015         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5016       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5017       assert(VectorF && "Can't retrieve vector intrinsic.");
5018     } else {
5019       // Use vector version of the function call.
5020       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5021 #ifndef NDEBUG
5022       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5023              "Can't create vector function.");
5024 #endif
5025         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5026     }
5027       SmallVector<OperandBundleDef, 1> OpBundles;
5028       CI->getOperandBundlesAsDefs(OpBundles);
5029       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5030 
5031       if (isa<FPMathOperator>(V))
5032         V->copyFastMathFlags(CI);
5033 
5034       State.set(Def, V, Part);
5035       addMetadata(V, &I);
5036   }
5037 }
5038 
5039 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5040                                                  VPUser &Operands,
5041                                                  bool InvariantCond,
5042                                                  VPTransformState &State) {
5043   setDebugLocFromInst(&I);
5044 
5045   // The condition can be loop invariant  but still defined inside the
5046   // loop. This means that we can't just use the original 'cond' value.
5047   // We have to take the 'vectorized' value and pick the first lane.
5048   // Instcombine will make this a no-op.
5049   auto *InvarCond = InvariantCond
5050                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5051                         : nullptr;
5052 
5053   for (unsigned Part = 0; Part < UF; ++Part) {
5054     Value *Cond =
5055         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5056     Value *Op0 = State.get(Operands.getOperand(1), Part);
5057     Value *Op1 = State.get(Operands.getOperand(2), Part);
5058     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5059     State.set(VPDef, Sel, Part);
5060     addMetadata(Sel, &I);
5061   }
5062 }
5063 
5064 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5065   // We should not collect Scalars more than once per VF. Right now, this
5066   // function is called from collectUniformsAndScalars(), which already does
5067   // this check. Collecting Scalars for VF=1 does not make any sense.
5068   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5069          "This function should not be visited twice for the same VF");
5070 
5071   SmallSetVector<Instruction *, 8> Worklist;
5072 
5073   // These sets are used to seed the analysis with pointers used by memory
5074   // accesses that will remain scalar.
5075   SmallSetVector<Instruction *, 8> ScalarPtrs;
5076   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5077   auto *Latch = TheLoop->getLoopLatch();
5078 
5079   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5080   // The pointer operands of loads and stores will be scalar as long as the
5081   // memory access is not a gather or scatter operation. The value operand of a
5082   // store will remain scalar if the store is scalarized.
5083   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5084     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5085     assert(WideningDecision != CM_Unknown &&
5086            "Widening decision should be ready at this moment");
5087     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5088       if (Ptr == Store->getValueOperand())
5089         return WideningDecision == CM_Scalarize;
5090     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5091            "Ptr is neither a value or pointer operand");
5092     return WideningDecision != CM_GatherScatter;
5093   };
5094 
5095   // A helper that returns true if the given value is a bitcast or
5096   // getelementptr instruction contained in the loop.
5097   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5098     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5099             isa<GetElementPtrInst>(V)) &&
5100            !TheLoop->isLoopInvariant(V);
5101   };
5102 
5103   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5104     if (!isa<PHINode>(Ptr) ||
5105         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5106       return false;
5107     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5108     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5109       return false;
5110     return isScalarUse(MemAccess, Ptr);
5111   };
5112 
5113   // A helper that evaluates a memory access's use of a pointer. If the
5114   // pointer is actually the pointer induction of a loop, it is being
5115   // inserted into Worklist. If the use will be a scalar use, and the
5116   // pointer is only used by memory accesses, we place the pointer in
5117   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5118   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5119     if (isScalarPtrInduction(MemAccess, Ptr)) {
5120       Worklist.insert(cast<Instruction>(Ptr));
5121       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5122                         << "\n");
5123 
5124       Instruction *Update = cast<Instruction>(
5125           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5126 
5127       // If there is more than one user of Update (Ptr), we shouldn't assume it
5128       // will be scalar after vectorisation as other users of the instruction
5129       // may require widening. Otherwise, add it to ScalarPtrs.
5130       if (Update->hasOneUse() && cast<Value>(*Update->user_begin()) == Ptr) {
5131         ScalarPtrs.insert(Update);
5132         return;
5133       }
5134     }
5135     // We only care about bitcast and getelementptr instructions contained in
5136     // the loop.
5137     if (!isLoopVaryingBitCastOrGEP(Ptr))
5138       return;
5139 
5140     // If the pointer has already been identified as scalar (e.g., if it was
5141     // also identified as uniform), there's nothing to do.
5142     auto *I = cast<Instruction>(Ptr);
5143     if (Worklist.count(I))
5144       return;
5145 
5146     // If the use of the pointer will be a scalar use, and all users of the
5147     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5148     // place the pointer in PossibleNonScalarPtrs.
5149     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5150           return isa<LoadInst>(U) || isa<StoreInst>(U);
5151         }))
5152       ScalarPtrs.insert(I);
5153     else
5154       PossibleNonScalarPtrs.insert(I);
5155   };
5156 
5157   // We seed the scalars analysis with three classes of instructions: (1)
5158   // instructions marked uniform-after-vectorization and (2) bitcast,
5159   // getelementptr and (pointer) phi instructions used by memory accesses
5160   // requiring a scalar use.
5161   //
5162   // (1) Add to the worklist all instructions that have been identified as
5163   // uniform-after-vectorization.
5164   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5165 
5166   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5167   // memory accesses requiring a scalar use. The pointer operands of loads and
5168   // stores will be scalar as long as the memory accesses is not a gather or
5169   // scatter operation. The value operand of a store will remain scalar if the
5170   // store is scalarized.
5171   for (auto *BB : TheLoop->blocks())
5172     for (auto &I : *BB) {
5173       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5174         evaluatePtrUse(Load, Load->getPointerOperand());
5175       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5176         evaluatePtrUse(Store, Store->getPointerOperand());
5177         evaluatePtrUse(Store, Store->getValueOperand());
5178       }
5179     }
5180   for (auto *I : ScalarPtrs)
5181     if (!PossibleNonScalarPtrs.count(I)) {
5182       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5183       Worklist.insert(I);
5184     }
5185 
5186   // Insert the forced scalars.
5187   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5188   // induction variable when the PHI user is scalarized.
5189   auto ForcedScalar = ForcedScalars.find(VF);
5190   if (ForcedScalar != ForcedScalars.end())
5191     for (auto *I : ForcedScalar->second)
5192       Worklist.insert(I);
5193 
5194   // Expand the worklist by looking through any bitcasts and getelementptr
5195   // instructions we've already identified as scalar. This is similar to the
5196   // expansion step in collectLoopUniforms(); however, here we're only
5197   // expanding to include additional bitcasts and getelementptr instructions.
5198   unsigned Idx = 0;
5199   while (Idx != Worklist.size()) {
5200     Instruction *Dst = Worklist[Idx++];
5201     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5202       continue;
5203     auto *Src = cast<Instruction>(Dst->getOperand(0));
5204     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5205           auto *J = cast<Instruction>(U);
5206           return !TheLoop->contains(J) || Worklist.count(J) ||
5207                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5208                   isScalarUse(J, Src));
5209         })) {
5210       Worklist.insert(Src);
5211       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5212     }
5213   }
5214 
5215   // An induction variable will remain scalar if all users of the induction
5216   // variable and induction variable update remain scalar.
5217   for (auto &Induction : Legal->getInductionVars()) {
5218     auto *Ind = Induction.first;
5219     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5220 
5221     // If tail-folding is applied, the primary induction variable will be used
5222     // to feed a vector compare.
5223     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5224       continue;
5225 
5226     // Determine if all users of the induction variable are scalar after
5227     // vectorization.
5228     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5229       auto *I = cast<Instruction>(U);
5230       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5231     });
5232     if (!ScalarInd)
5233       continue;
5234 
5235     // Determine if all users of the induction variable update instruction are
5236     // scalar after vectorization.
5237     auto ScalarIndUpdate =
5238         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5239           auto *I = cast<Instruction>(U);
5240           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5241         });
5242     if (!ScalarIndUpdate)
5243       continue;
5244 
5245     // The induction variable and its update instruction will remain scalar.
5246     Worklist.insert(Ind);
5247     Worklist.insert(IndUpdate);
5248     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5249     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5250                       << "\n");
5251   }
5252 
5253   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5254 }
5255 
5256 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5257   if (!blockNeedsPredication(I->getParent()))
5258     return false;
5259   switch(I->getOpcode()) {
5260   default:
5261     break;
5262   case Instruction::Load:
5263   case Instruction::Store: {
5264     if (!Legal->isMaskRequired(I))
5265       return false;
5266     auto *Ptr = getLoadStorePointerOperand(I);
5267     auto *Ty = getLoadStoreType(I);
5268     const Align Alignment = getLoadStoreAlignment(I);
5269     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5270                                 TTI.isLegalMaskedGather(Ty, Alignment))
5271                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5272                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5273   }
5274   case Instruction::UDiv:
5275   case Instruction::SDiv:
5276   case Instruction::SRem:
5277   case Instruction::URem:
5278     return mayDivideByZero(*I);
5279   }
5280   return false;
5281 }
5282 
5283 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5284     Instruction *I, ElementCount VF) {
5285   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5286   assert(getWideningDecision(I, VF) == CM_Unknown &&
5287          "Decision should not be set yet.");
5288   auto *Group = getInterleavedAccessGroup(I);
5289   assert(Group && "Must have a group.");
5290 
5291   // If the instruction's allocated size doesn't equal it's type size, it
5292   // requires padding and will be scalarized.
5293   auto &DL = I->getModule()->getDataLayout();
5294   auto *ScalarTy = getLoadStoreType(I);
5295   if (hasIrregularType(ScalarTy, DL))
5296     return false;
5297 
5298   // Check if masking is required.
5299   // A Group may need masking for one of two reasons: it resides in a block that
5300   // needs predication, or it was decided to use masking to deal with gaps
5301   // (either a gap at the end of a load-access that may result in a speculative
5302   // load, or any gaps in a store-access).
5303   bool PredicatedAccessRequiresMasking =
5304       blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5305   bool LoadAccessWithGapsRequiresEpilogMasking =
5306       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5307       !isScalarEpilogueAllowed();
5308   bool StoreAccessWithGapsRequiresMasking =
5309       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5310   if (!PredicatedAccessRequiresMasking &&
5311       !LoadAccessWithGapsRequiresEpilogMasking &&
5312       !StoreAccessWithGapsRequiresMasking)
5313     return true;
5314 
5315   // If masked interleaving is required, we expect that the user/target had
5316   // enabled it, because otherwise it either wouldn't have been created or
5317   // it should have been invalidated by the CostModel.
5318   assert(useMaskedInterleavedAccesses(TTI) &&
5319          "Masked interleave-groups for predicated accesses are not enabled.");
5320 
5321   if (Group->isReverse())
5322     return false;
5323 
5324   auto *Ty = getLoadStoreType(I);
5325   const Align Alignment = getLoadStoreAlignment(I);
5326   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5327                           : TTI.isLegalMaskedStore(Ty, Alignment);
5328 }
5329 
5330 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5331     Instruction *I, ElementCount VF) {
5332   // Get and ensure we have a valid memory instruction.
5333   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
5334 
5335   auto *Ptr = getLoadStorePointerOperand(I);
5336   auto *ScalarTy = getLoadStoreType(I);
5337 
5338   // In order to be widened, the pointer should be consecutive, first of all.
5339   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
5340     return false;
5341 
5342   // If the instruction is a store located in a predicated block, it will be
5343   // scalarized.
5344   if (isScalarWithPredication(I))
5345     return false;
5346 
5347   // If the instruction's allocated size doesn't equal it's type size, it
5348   // requires padding and will be scalarized.
5349   auto &DL = I->getModule()->getDataLayout();
5350   if (hasIrregularType(ScalarTy, DL))
5351     return false;
5352 
5353   return true;
5354 }
5355 
5356 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5357   // We should not collect Uniforms more than once per VF. Right now,
5358   // this function is called from collectUniformsAndScalars(), which
5359   // already does this check. Collecting Uniforms for VF=1 does not make any
5360   // sense.
5361 
5362   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5363          "This function should not be visited twice for the same VF");
5364 
5365   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5366   // not analyze again.  Uniforms.count(VF) will return 1.
5367   Uniforms[VF].clear();
5368 
5369   // We now know that the loop is vectorizable!
5370   // Collect instructions inside the loop that will remain uniform after
5371   // vectorization.
5372 
5373   // Global values, params and instructions outside of current loop are out of
5374   // scope.
5375   auto isOutOfScope = [&](Value *V) -> bool {
5376     Instruction *I = dyn_cast<Instruction>(V);
5377     return (!I || !TheLoop->contains(I));
5378   };
5379 
5380   // Worklist containing uniform instructions demanding lane 0.
5381   SetVector<Instruction *> Worklist;
5382   BasicBlock *Latch = TheLoop->getLoopLatch();
5383 
5384   // Add uniform instructions demanding lane 0 to the worklist. Instructions
5385   // that are scalar with predication must not be considered uniform after
5386   // vectorization, because that would create an erroneous replicating region
5387   // where only a single instance out of VF should be formed.
5388   // TODO: optimize such seldom cases if found important, see PR40816.
5389   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5390     if (isOutOfScope(I)) {
5391       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5392                         << *I << "\n");
5393       return;
5394     }
5395     if (isScalarWithPredication(I)) {
5396       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5397                         << *I << "\n");
5398       return;
5399     }
5400     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5401     Worklist.insert(I);
5402   };
5403 
5404   // Start with the conditional branch. If the branch condition is an
5405   // instruction contained in the loop that is only used by the branch, it is
5406   // uniform.
5407   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5408   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5409     addToWorklistIfAllowed(Cmp);
5410 
5411   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5412     InstWidening WideningDecision = getWideningDecision(I, VF);
5413     assert(WideningDecision != CM_Unknown &&
5414            "Widening decision should be ready at this moment");
5415 
5416     // A uniform memory op is itself uniform.  We exclude uniform stores
5417     // here as they demand the last lane, not the first one.
5418     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5419       assert(WideningDecision == CM_Scalarize);
5420       return true;
5421     }
5422 
5423     return (WideningDecision == CM_Widen ||
5424             WideningDecision == CM_Widen_Reverse ||
5425             WideningDecision == CM_Interleave);
5426   };
5427 
5428 
5429   // Returns true if Ptr is the pointer operand of a memory access instruction
5430   // I, and I is known to not require scalarization.
5431   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5432     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5433   };
5434 
5435   // Holds a list of values which are known to have at least one uniform use.
5436   // Note that there may be other uses which aren't uniform.  A "uniform use"
5437   // here is something which only demands lane 0 of the unrolled iterations;
5438   // it does not imply that all lanes produce the same value (e.g. this is not
5439   // the usual meaning of uniform)
5440   SetVector<Value *> HasUniformUse;
5441 
5442   // Scan the loop for instructions which are either a) known to have only
5443   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5444   for (auto *BB : TheLoop->blocks())
5445     for (auto &I : *BB) {
5446       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5447         switch (II->getIntrinsicID()) {
5448         case Intrinsic::sideeffect:
5449         case Intrinsic::experimental_noalias_scope_decl:
5450         case Intrinsic::assume:
5451         case Intrinsic::lifetime_start:
5452         case Intrinsic::lifetime_end:
5453           if (TheLoop->hasLoopInvariantOperands(&I))
5454             addToWorklistIfAllowed(&I);
5455           break;
5456         default:
5457           break;
5458         }
5459       }
5460 
5461       // ExtractValue instructions must be uniform, because the operands are
5462       // known to be loop-invariant.
5463       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5464         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5465                "Expected aggregate value to be loop invariant");
5466         addToWorklistIfAllowed(EVI);
5467         continue;
5468       }
5469 
5470       // If there's no pointer operand, there's nothing to do.
5471       auto *Ptr = getLoadStorePointerOperand(&I);
5472       if (!Ptr)
5473         continue;
5474 
5475       // A uniform memory op is itself uniform.  We exclude uniform stores
5476       // here as they demand the last lane, not the first one.
5477       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5478         addToWorklistIfAllowed(&I);
5479 
5480       if (isUniformDecision(&I, VF)) {
5481         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5482         HasUniformUse.insert(Ptr);
5483       }
5484     }
5485 
5486   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5487   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5488   // disallows uses outside the loop as well.
5489   for (auto *V : HasUniformUse) {
5490     if (isOutOfScope(V))
5491       continue;
5492     auto *I = cast<Instruction>(V);
5493     auto UsersAreMemAccesses =
5494       llvm::all_of(I->users(), [&](User *U) -> bool {
5495         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5496       });
5497     if (UsersAreMemAccesses)
5498       addToWorklistIfAllowed(I);
5499   }
5500 
5501   // Expand Worklist in topological order: whenever a new instruction
5502   // is added , its users should be already inside Worklist.  It ensures
5503   // a uniform instruction will only be used by uniform instructions.
5504   unsigned idx = 0;
5505   while (idx != Worklist.size()) {
5506     Instruction *I = Worklist[idx++];
5507 
5508     for (auto OV : I->operand_values()) {
5509       // isOutOfScope operands cannot be uniform instructions.
5510       if (isOutOfScope(OV))
5511         continue;
5512       // First order recurrence Phi's should typically be considered
5513       // non-uniform.
5514       auto *OP = dyn_cast<PHINode>(OV);
5515       if (OP && Legal->isFirstOrderRecurrence(OP))
5516         continue;
5517       // If all the users of the operand are uniform, then add the
5518       // operand into the uniform worklist.
5519       auto *OI = cast<Instruction>(OV);
5520       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5521             auto *J = cast<Instruction>(U);
5522             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5523           }))
5524         addToWorklistIfAllowed(OI);
5525     }
5526   }
5527 
5528   // For an instruction to be added into Worklist above, all its users inside
5529   // the loop should also be in Worklist. However, this condition cannot be
5530   // true for phi nodes that form a cyclic dependence. We must process phi
5531   // nodes separately. An induction variable will remain uniform if all users
5532   // of the induction variable and induction variable update remain uniform.
5533   // The code below handles both pointer and non-pointer induction variables.
5534   for (auto &Induction : Legal->getInductionVars()) {
5535     auto *Ind = Induction.first;
5536     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5537 
5538     // Determine if all users of the induction variable are uniform after
5539     // vectorization.
5540     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5541       auto *I = cast<Instruction>(U);
5542       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5543              isVectorizedMemAccessUse(I, Ind);
5544     });
5545     if (!UniformInd)
5546       continue;
5547 
5548     // Determine if all users of the induction variable update instruction are
5549     // uniform after vectorization.
5550     auto UniformIndUpdate =
5551         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5552           auto *I = cast<Instruction>(U);
5553           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5554                  isVectorizedMemAccessUse(I, IndUpdate);
5555         });
5556     if (!UniformIndUpdate)
5557       continue;
5558 
5559     // The induction variable and its update instruction will remain uniform.
5560     addToWorklistIfAllowed(Ind);
5561     addToWorklistIfAllowed(IndUpdate);
5562   }
5563 
5564   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5565 }
5566 
5567 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5568   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5569 
5570   if (Legal->getRuntimePointerChecking()->Need) {
5571     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5572         "runtime pointer checks needed. Enable vectorization of this "
5573         "loop with '#pragma clang loop vectorize(enable)' when "
5574         "compiling with -Os/-Oz",
5575         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5576     return true;
5577   }
5578 
5579   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5580     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5581         "runtime SCEV checks needed. Enable vectorization of this "
5582         "loop with '#pragma clang loop vectorize(enable)' when "
5583         "compiling with -Os/-Oz",
5584         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5585     return true;
5586   }
5587 
5588   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5589   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5590     reportVectorizationFailure("Runtime stride check for small trip count",
5591         "runtime stride == 1 checks needed. Enable vectorization of "
5592         "this loop without such check by compiling with -Os/-Oz",
5593         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5594     return true;
5595   }
5596 
5597   return false;
5598 }
5599 
5600 ElementCount
5601 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5602   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5603     return ElementCount::getScalable(0);
5604 
5605   if (Hints->isScalableVectorizationDisabled()) {
5606     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5607                             "ScalableVectorizationDisabled", ORE, TheLoop);
5608     return ElementCount::getScalable(0);
5609   }
5610 
5611   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5612 
5613   auto MaxScalableVF = ElementCount::getScalable(
5614       std::numeric_limits<ElementCount::ScalarTy>::max());
5615 
5616   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5617   // FIXME: While for scalable vectors this is currently sufficient, this should
5618   // be replaced by a more detailed mechanism that filters out specific VFs,
5619   // instead of invalidating vectorization for a whole set of VFs based on the
5620   // MaxVF.
5621 
5622   // Disable scalable vectorization if the loop contains unsupported reductions.
5623   if (!canVectorizeReductions(MaxScalableVF)) {
5624     reportVectorizationInfo(
5625         "Scalable vectorization not supported for the reduction "
5626         "operations found in this loop.",
5627         "ScalableVFUnfeasible", ORE, TheLoop);
5628     return ElementCount::getScalable(0);
5629   }
5630 
5631   // Disable scalable vectorization if the loop contains any instructions
5632   // with element types not supported for scalable vectors.
5633   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5634         return !Ty->isVoidTy() &&
5635                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5636       })) {
5637     reportVectorizationInfo("Scalable vectorization is not supported "
5638                             "for all element types found in this loop.",
5639                             "ScalableVFUnfeasible", ORE, TheLoop);
5640     return ElementCount::getScalable(0);
5641   }
5642 
5643   if (Legal->isSafeForAnyVectorWidth())
5644     return MaxScalableVF;
5645 
5646   // Limit MaxScalableVF by the maximum safe dependence distance.
5647   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5648   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5649     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5650                              .getVScaleRangeArgs()
5651                              .second;
5652     if (VScaleMax > 0)
5653       MaxVScale = VScaleMax;
5654   }
5655   MaxScalableVF = ElementCount::getScalable(
5656       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5657   if (!MaxScalableVF)
5658     reportVectorizationInfo(
5659         "Max legal vector width too small, scalable vectorization "
5660         "unfeasible.",
5661         "ScalableVFUnfeasible", ORE, TheLoop);
5662 
5663   return MaxScalableVF;
5664 }
5665 
5666 FixedScalableVFPair
5667 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5668                                                  ElementCount UserVF) {
5669   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5670   unsigned SmallestType, WidestType;
5671   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5672 
5673   // Get the maximum safe dependence distance in bits computed by LAA.
5674   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5675   // the memory accesses that is most restrictive (involved in the smallest
5676   // dependence distance).
5677   unsigned MaxSafeElements =
5678       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5679 
5680   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5681   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5682 
5683   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5684                     << ".\n");
5685   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5686                     << ".\n");
5687 
5688   // First analyze the UserVF, fall back if the UserVF should be ignored.
5689   if (UserVF) {
5690     auto MaxSafeUserVF =
5691         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5692 
5693     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5694       // If `VF=vscale x N` is safe, then so is `VF=N`
5695       if (UserVF.isScalable())
5696         return FixedScalableVFPair(
5697             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5698       else
5699         return UserVF;
5700     }
5701 
5702     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5703 
5704     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5705     // is better to ignore the hint and let the compiler choose a suitable VF.
5706     if (!UserVF.isScalable()) {
5707       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5708                         << " is unsafe, clamping to max safe VF="
5709                         << MaxSafeFixedVF << ".\n");
5710       ORE->emit([&]() {
5711         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5712                                           TheLoop->getStartLoc(),
5713                                           TheLoop->getHeader())
5714                << "User-specified vectorization factor "
5715                << ore::NV("UserVectorizationFactor", UserVF)
5716                << " is unsafe, clamping to maximum safe vectorization factor "
5717                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5718       });
5719       return MaxSafeFixedVF;
5720     }
5721 
5722     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5723       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5724                         << " is ignored because scalable vectors are not "
5725                            "available.\n");
5726       ORE->emit([&]() {
5727         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5728                                           TheLoop->getStartLoc(),
5729                                           TheLoop->getHeader())
5730                << "User-specified vectorization factor "
5731                << ore::NV("UserVectorizationFactor", UserVF)
5732                << " is ignored because the target does not support scalable "
5733                   "vectors. The compiler will pick a more suitable value.";
5734       });
5735     } else {
5736       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5737                         << " is unsafe. Ignoring scalable UserVF.\n");
5738       ORE->emit([&]() {
5739         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5740                                           TheLoop->getStartLoc(),
5741                                           TheLoop->getHeader())
5742                << "User-specified vectorization factor "
5743                << ore::NV("UserVectorizationFactor", UserVF)
5744                << " is unsafe. Ignoring the hint to let the compiler pick a "
5745                   "more suitable value.";
5746       });
5747     }
5748   }
5749 
5750   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5751                     << " / " << WidestType << " bits.\n");
5752 
5753   FixedScalableVFPair Result(ElementCount::getFixed(1),
5754                              ElementCount::getScalable(0));
5755   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5756                                            WidestType, MaxSafeFixedVF))
5757     Result.FixedVF = MaxVF;
5758 
5759   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5760                                            WidestType, MaxSafeScalableVF))
5761     if (MaxVF.isScalable()) {
5762       Result.ScalableVF = MaxVF;
5763       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5764                         << "\n");
5765     }
5766 
5767   return Result;
5768 }
5769 
5770 FixedScalableVFPair
5771 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5772   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5773     // TODO: It may by useful to do since it's still likely to be dynamically
5774     // uniform if the target can skip.
5775     reportVectorizationFailure(
5776         "Not inserting runtime ptr check for divergent target",
5777         "runtime pointer checks needed. Not enabled for divergent target",
5778         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5779     return FixedScalableVFPair::getNone();
5780   }
5781 
5782   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5783   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5784   if (TC == 1) {
5785     reportVectorizationFailure("Single iteration (non) loop",
5786         "loop trip count is one, irrelevant for vectorization",
5787         "SingleIterationLoop", ORE, TheLoop);
5788     return FixedScalableVFPair::getNone();
5789   }
5790 
5791   switch (ScalarEpilogueStatus) {
5792   case CM_ScalarEpilogueAllowed:
5793     return computeFeasibleMaxVF(TC, UserVF);
5794   case CM_ScalarEpilogueNotAllowedUsePredicate:
5795     LLVM_FALLTHROUGH;
5796   case CM_ScalarEpilogueNotNeededUsePredicate:
5797     LLVM_DEBUG(
5798         dbgs() << "LV: vector predicate hint/switch found.\n"
5799                << "LV: Not allowing scalar epilogue, creating predicated "
5800                << "vector loop.\n");
5801     break;
5802   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5803     // fallthrough as a special case of OptForSize
5804   case CM_ScalarEpilogueNotAllowedOptSize:
5805     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5806       LLVM_DEBUG(
5807           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5808     else
5809       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5810                         << "count.\n");
5811 
5812     // Bail if runtime checks are required, which are not good when optimising
5813     // for size.
5814     if (runtimeChecksRequired())
5815       return FixedScalableVFPair::getNone();
5816 
5817     break;
5818   }
5819 
5820   // The only loops we can vectorize without a scalar epilogue, are loops with
5821   // a bottom-test and a single exiting block. We'd have to handle the fact
5822   // that not every instruction executes on the last iteration.  This will
5823   // require a lane mask which varies through the vector loop body.  (TODO)
5824   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5825     // If there was a tail-folding hint/switch, but we can't fold the tail by
5826     // masking, fallback to a vectorization with a scalar epilogue.
5827     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5828       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5829                            "scalar epilogue instead.\n");
5830       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5831       return computeFeasibleMaxVF(TC, UserVF);
5832     }
5833     return FixedScalableVFPair::getNone();
5834   }
5835 
5836   // Now try the tail folding
5837 
5838   // Invalidate interleave groups that require an epilogue if we can't mask
5839   // the interleave-group.
5840   if (!useMaskedInterleavedAccesses(TTI)) {
5841     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5842            "No decisions should have been taken at this point");
5843     // Note: There is no need to invalidate any cost modeling decisions here, as
5844     // non where taken so far.
5845     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5846   }
5847 
5848   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5849   // Avoid tail folding if the trip count is known to be a multiple of any VF
5850   // we chose.
5851   // FIXME: The condition below pessimises the case for fixed-width vectors,
5852   // when scalable VFs are also candidates for vectorization.
5853   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5854     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5855     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5856            "MaxFixedVF must be a power of 2");
5857     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5858                                    : MaxFixedVF.getFixedValue();
5859     ScalarEvolution *SE = PSE.getSE();
5860     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5861     const SCEV *ExitCount = SE->getAddExpr(
5862         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5863     const SCEV *Rem = SE->getURemExpr(
5864         SE->applyLoopGuards(ExitCount, TheLoop),
5865         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5866     if (Rem->isZero()) {
5867       // Accept MaxFixedVF if we do not have a tail.
5868       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5869       return MaxFactors;
5870     }
5871   }
5872 
5873   // For scalable vectors, don't use tail folding as this is currently not yet
5874   // supported. The code is likely to have ended up here if the tripcount is
5875   // low, in which case it makes sense not to use scalable vectors.
5876   if (MaxFactors.ScalableVF.isVector())
5877     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5878 
5879   // If we don't know the precise trip count, or if the trip count that we
5880   // found modulo the vectorization factor is not zero, try to fold the tail
5881   // by masking.
5882   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5883   if (Legal->prepareToFoldTailByMasking()) {
5884     FoldTailByMasking = true;
5885     return MaxFactors;
5886   }
5887 
5888   // If there was a tail-folding hint/switch, but we can't fold the tail by
5889   // masking, fallback to a vectorization with a scalar epilogue.
5890   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5891     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5892                          "scalar epilogue instead.\n");
5893     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5894     return MaxFactors;
5895   }
5896 
5897   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5898     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5899     return FixedScalableVFPair::getNone();
5900   }
5901 
5902   if (TC == 0) {
5903     reportVectorizationFailure(
5904         "Unable to calculate the loop count due to complex control flow",
5905         "unable to calculate the loop count due to complex control flow",
5906         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5907     return FixedScalableVFPair::getNone();
5908   }
5909 
5910   reportVectorizationFailure(
5911       "Cannot optimize for size and vectorize at the same time.",
5912       "cannot optimize for size and vectorize at the same time. "
5913       "Enable vectorization of this loop with '#pragma clang loop "
5914       "vectorize(enable)' when compiling with -Os/-Oz",
5915       "NoTailLoopWithOptForSize", ORE, TheLoop);
5916   return FixedScalableVFPair::getNone();
5917 }
5918 
5919 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5920     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5921     const ElementCount &MaxSafeVF) {
5922   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5923   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5924       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5925                            : TargetTransformInfo::RGK_FixedWidthVector);
5926 
5927   // Convenience function to return the minimum of two ElementCounts.
5928   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5929     assert((LHS.isScalable() == RHS.isScalable()) &&
5930            "Scalable flags must match");
5931     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5932   };
5933 
5934   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5935   // Note that both WidestRegister and WidestType may not be a powers of 2.
5936   auto MaxVectorElementCount = ElementCount::get(
5937       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5938       ComputeScalableMaxVF);
5939   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5940   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5941                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5942 
5943   if (!MaxVectorElementCount) {
5944     LLVM_DEBUG(dbgs() << "LV: The target has no "
5945                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5946                       << " vector registers.\n");
5947     return ElementCount::getFixed(1);
5948   }
5949 
5950   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5951   if (ConstTripCount &&
5952       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5953       isPowerOf2_32(ConstTripCount)) {
5954     // We need to clamp the VF to be the ConstTripCount. There is no point in
5955     // choosing a higher viable VF as done in the loop below. If
5956     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5957     // the TC is less than or equal to the known number of lanes.
5958     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5959                       << ConstTripCount << "\n");
5960     return TripCountEC;
5961   }
5962 
5963   ElementCount MaxVF = MaxVectorElementCount;
5964   if (TTI.shouldMaximizeVectorBandwidth() ||
5965       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5966     auto MaxVectorElementCountMaxBW = ElementCount::get(
5967         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5968         ComputeScalableMaxVF);
5969     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5970 
5971     // Collect all viable vectorization factors larger than the default MaxVF
5972     // (i.e. MaxVectorElementCount).
5973     SmallVector<ElementCount, 8> VFs;
5974     for (ElementCount VS = MaxVectorElementCount * 2;
5975          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5976       VFs.push_back(VS);
5977 
5978     // For each VF calculate its register usage.
5979     auto RUs = calculateRegisterUsage(VFs);
5980 
5981     // Select the largest VF which doesn't require more registers than existing
5982     // ones.
5983     for (int i = RUs.size() - 1; i >= 0; --i) {
5984       bool Selected = true;
5985       for (auto &pair : RUs[i].MaxLocalUsers) {
5986         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5987         if (pair.second > TargetNumRegisters)
5988           Selected = false;
5989       }
5990       if (Selected) {
5991         MaxVF = VFs[i];
5992         break;
5993       }
5994     }
5995     if (ElementCount MinVF =
5996             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5997       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5998         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5999                           << ") with target's minimum: " << MinVF << '\n');
6000         MaxVF = MinVF;
6001       }
6002     }
6003   }
6004   return MaxVF;
6005 }
6006 
6007 bool LoopVectorizationCostModel::isMoreProfitable(
6008     const VectorizationFactor &A, const VectorizationFactor &B) const {
6009   InstructionCost CostA = A.Cost;
6010   InstructionCost CostB = B.Cost;
6011 
6012   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6013 
6014   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6015       MaxTripCount) {
6016     // If we are folding the tail and the trip count is a known (possibly small)
6017     // constant, the trip count will be rounded up to an integer number of
6018     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6019     // which we compare directly. When not folding the tail, the total cost will
6020     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6021     // approximated with the per-lane cost below instead of using the tripcount
6022     // as here.
6023     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6024     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6025     return RTCostA < RTCostB;
6026   }
6027 
6028   // Improve estimate for the vector width if it is scalable.
6029   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
6030   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
6031   if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) {
6032     if (A.Width.isScalable())
6033       EstimatedWidthA *= VScale.getValue();
6034     if (B.Width.isScalable())
6035       EstimatedWidthB *= VScale.getValue();
6036   }
6037 
6038   // When set to preferred, for now assume vscale may be larger than 1 (or the
6039   // one being tuned for), so that scalable vectorization is slightly favorable
6040   // over fixed-width vectorization.
6041   if (Hints->isScalableVectorizationPreferred())
6042     if (A.Width.isScalable() && !B.Width.isScalable())
6043       return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
6044 
6045   // To avoid the need for FP division:
6046   //      (CostA / A.Width) < (CostB / B.Width)
6047   // <=>  (CostA * B.Width) < (CostB * A.Width)
6048   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
6049 }
6050 
6051 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6052     const ElementCountSet &VFCandidates) {
6053   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6054   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6055   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6056   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6057          "Expected Scalar VF to be a candidate");
6058 
6059   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6060   VectorizationFactor ChosenFactor = ScalarCost;
6061 
6062   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6063   if (ForceVectorization && VFCandidates.size() > 1) {
6064     // Ignore scalar width, because the user explicitly wants vectorization.
6065     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6066     // evaluation.
6067     ChosenFactor.Cost = InstructionCost::getMax();
6068   }
6069 
6070   SmallVector<InstructionVFPair> InvalidCosts;
6071   for (const auto &i : VFCandidates) {
6072     // The cost for scalar VF=1 is already calculated, so ignore it.
6073     if (i.isScalar())
6074       continue;
6075 
6076     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6077     VectorizationFactor Candidate(i, C.first);
6078 
6079 #ifndef NDEBUG
6080     unsigned AssumedMinimumVscale = 1;
6081     if (Optional<unsigned> VScale = TTI.getVScaleForTuning())
6082       AssumedMinimumVscale = VScale.getValue();
6083     unsigned Width =
6084         Candidate.Width.isScalable()
6085             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
6086             : Candidate.Width.getFixedValue();
6087     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
6088                       << " costs: " << (Candidate.Cost / Width));
6089     if (i.isScalable())
6090       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
6091                         << AssumedMinimumVscale << ")");
6092     LLVM_DEBUG(dbgs() << ".\n");
6093 #endif
6094 
6095     if (!C.second && !ForceVectorization) {
6096       LLVM_DEBUG(
6097           dbgs() << "LV: Not considering vector loop of width " << i
6098                  << " because it will not generate any vector instructions.\n");
6099       continue;
6100     }
6101 
6102     // If profitable add it to ProfitableVF list.
6103     if (isMoreProfitable(Candidate, ScalarCost))
6104       ProfitableVFs.push_back(Candidate);
6105 
6106     if (isMoreProfitable(Candidate, ChosenFactor))
6107       ChosenFactor = Candidate;
6108   }
6109 
6110   // Emit a report of VFs with invalid costs in the loop.
6111   if (!InvalidCosts.empty()) {
6112     // Group the remarks per instruction, keeping the instruction order from
6113     // InvalidCosts.
6114     std::map<Instruction *, unsigned> Numbering;
6115     unsigned I = 0;
6116     for (auto &Pair : InvalidCosts)
6117       if (!Numbering.count(Pair.first))
6118         Numbering[Pair.first] = I++;
6119 
6120     // Sort the list, first on instruction(number) then on VF.
6121     llvm::sort(InvalidCosts,
6122                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6123                  if (Numbering[A.first] != Numbering[B.first])
6124                    return Numbering[A.first] < Numbering[B.first];
6125                  ElementCountComparator ECC;
6126                  return ECC(A.second, B.second);
6127                });
6128 
6129     // For a list of ordered instruction-vf pairs:
6130     //   [(load, vf1), (load, vf2), (store, vf1)]
6131     // Group the instructions together to emit separate remarks for:
6132     //   load  (vf1, vf2)
6133     //   store (vf1)
6134     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6135     auto Subset = ArrayRef<InstructionVFPair>();
6136     do {
6137       if (Subset.empty())
6138         Subset = Tail.take_front(1);
6139 
6140       Instruction *I = Subset.front().first;
6141 
6142       // If the next instruction is different, or if there are no other pairs,
6143       // emit a remark for the collated subset. e.g.
6144       //   [(load, vf1), (load, vf2))]
6145       // to emit:
6146       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6147       if (Subset == Tail || Tail[Subset.size()].first != I) {
6148         std::string OutString;
6149         raw_string_ostream OS(OutString);
6150         assert(!Subset.empty() && "Unexpected empty range");
6151         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6152         for (auto &Pair : Subset)
6153           OS << (Pair.second == Subset.front().second ? "" : ", ")
6154              << Pair.second;
6155         OS << "):";
6156         if (auto *CI = dyn_cast<CallInst>(I))
6157           OS << " call to " << CI->getCalledFunction()->getName();
6158         else
6159           OS << " " << I->getOpcodeName();
6160         OS.flush();
6161         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6162         Tail = Tail.drop_front(Subset.size());
6163         Subset = {};
6164       } else
6165         // Grow the subset by one element
6166         Subset = Tail.take_front(Subset.size() + 1);
6167     } while (!Tail.empty());
6168   }
6169 
6170   if (!EnableCondStoresVectorization && NumPredStores) {
6171     reportVectorizationFailure("There are conditional stores.",
6172         "store that is conditionally executed prevents vectorization",
6173         "ConditionalStore", ORE, TheLoop);
6174     ChosenFactor = ScalarCost;
6175   }
6176 
6177   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6178                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6179              << "LV: Vectorization seems to be not beneficial, "
6180              << "but was forced by a user.\n");
6181   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6182   return ChosenFactor;
6183 }
6184 
6185 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6186     const Loop &L, ElementCount VF) const {
6187   // Cross iteration phis such as reductions need special handling and are
6188   // currently unsupported.
6189   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6190         return Legal->isFirstOrderRecurrence(&Phi) ||
6191                Legal->isReductionVariable(&Phi);
6192       }))
6193     return false;
6194 
6195   // Phis with uses outside of the loop require special handling and are
6196   // currently unsupported.
6197   for (auto &Entry : Legal->getInductionVars()) {
6198     // Look for uses of the value of the induction at the last iteration.
6199     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6200     for (User *U : PostInc->users())
6201       if (!L.contains(cast<Instruction>(U)))
6202         return false;
6203     // Look for uses of penultimate value of the induction.
6204     for (User *U : Entry.first->users())
6205       if (!L.contains(cast<Instruction>(U)))
6206         return false;
6207   }
6208 
6209   // Induction variables that are widened require special handling that is
6210   // currently not supported.
6211   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6212         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6213                  this->isProfitableToScalarize(Entry.first, VF));
6214       }))
6215     return false;
6216 
6217   // Epilogue vectorization code has not been auditted to ensure it handles
6218   // non-latch exits properly.  It may be fine, but it needs auditted and
6219   // tested.
6220   if (L.getExitingBlock() != L.getLoopLatch())
6221     return false;
6222 
6223   return true;
6224 }
6225 
6226 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6227     const ElementCount VF) const {
6228   // FIXME: We need a much better cost-model to take different parameters such
6229   // as register pressure, code size increase and cost of extra branches into
6230   // account. For now we apply a very crude heuristic and only consider loops
6231   // with vectorization factors larger than a certain value.
6232   // We also consider epilogue vectorization unprofitable for targets that don't
6233   // consider interleaving beneficial (eg. MVE).
6234   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6235     return false;
6236   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6237     return true;
6238   return false;
6239 }
6240 
6241 VectorizationFactor
6242 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6243     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6244   VectorizationFactor Result = VectorizationFactor::Disabled();
6245   if (!EnableEpilogueVectorization) {
6246     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6247     return Result;
6248   }
6249 
6250   if (!isScalarEpilogueAllowed()) {
6251     LLVM_DEBUG(
6252         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6253                   "allowed.\n";);
6254     return Result;
6255   }
6256 
6257   // Not really a cost consideration, but check for unsupported cases here to
6258   // simplify the logic.
6259   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6260     LLVM_DEBUG(
6261         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6262                   "not a supported candidate.\n";);
6263     return Result;
6264   }
6265 
6266   if (EpilogueVectorizationForceVF > 1) {
6267     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6268     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
6269     if (LVP.hasPlanWithVF(ForcedEC))
6270       return {ForcedEC, 0};
6271     else {
6272       LLVM_DEBUG(
6273           dbgs()
6274               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6275       return Result;
6276     }
6277   }
6278 
6279   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6280       TheLoop->getHeader()->getParent()->hasMinSize()) {
6281     LLVM_DEBUG(
6282         dbgs()
6283             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6284     return Result;
6285   }
6286 
6287   auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
6288   if (MainLoopVF.isScalable())
6289     LLVM_DEBUG(
6290         dbgs() << "LEV: Epilogue vectorization using scalable vectors not "
6291                   "yet supported. Converting to fixed-width (VF="
6292                << FixedMainLoopVF << ") instead\n");
6293 
6294   if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) {
6295     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
6296                          "this loop\n");
6297     return Result;
6298   }
6299 
6300   for (auto &NextVF : ProfitableVFs)
6301     if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) &&
6302         (Result.Width.getFixedValue() == 1 ||
6303          isMoreProfitable(NextVF, Result)) &&
6304         LVP.hasPlanWithVF(NextVF.Width))
6305       Result = NextVF;
6306 
6307   if (Result != VectorizationFactor::Disabled())
6308     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6309                       << Result.Width.getFixedValue() << "\n";);
6310   return Result;
6311 }
6312 
6313 std::pair<unsigned, unsigned>
6314 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6315   unsigned MinWidth = -1U;
6316   unsigned MaxWidth = 8;
6317   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6318   for (Type *T : ElementTypesInLoop) {
6319     MinWidth = std::min<unsigned>(
6320         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6321     MaxWidth = std::max<unsigned>(
6322         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6323   }
6324   return {MinWidth, MaxWidth};
6325 }
6326 
6327 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6328   ElementTypesInLoop.clear();
6329   // For each block.
6330   for (BasicBlock *BB : TheLoop->blocks()) {
6331     // For each instruction in the loop.
6332     for (Instruction &I : BB->instructionsWithoutDebug()) {
6333       Type *T = I.getType();
6334 
6335       // Skip ignored values.
6336       if (ValuesToIgnore.count(&I))
6337         continue;
6338 
6339       // Only examine Loads, Stores and PHINodes.
6340       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6341         continue;
6342 
6343       // Examine PHI nodes that are reduction variables. Update the type to
6344       // account for the recurrence type.
6345       if (auto *PN = dyn_cast<PHINode>(&I)) {
6346         if (!Legal->isReductionVariable(PN))
6347           continue;
6348         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6349         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6350             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6351                                       RdxDesc.getRecurrenceType(),
6352                                       TargetTransformInfo::ReductionFlags()))
6353           continue;
6354         T = RdxDesc.getRecurrenceType();
6355       }
6356 
6357       // Examine the stored values.
6358       if (auto *ST = dyn_cast<StoreInst>(&I))
6359         T = ST->getValueOperand()->getType();
6360 
6361       // Ignore loaded pointer types and stored pointer types that are not
6362       // vectorizable.
6363       //
6364       // FIXME: The check here attempts to predict whether a load or store will
6365       //        be vectorized. We only know this for certain after a VF has
6366       //        been selected. Here, we assume that if an access can be
6367       //        vectorized, it will be. We should also look at extending this
6368       //        optimization to non-pointer types.
6369       //
6370       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6371           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6372         continue;
6373 
6374       ElementTypesInLoop.insert(T);
6375     }
6376   }
6377 }
6378 
6379 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6380                                                            unsigned LoopCost) {
6381   // -- The interleave heuristics --
6382   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6383   // There are many micro-architectural considerations that we can't predict
6384   // at this level. For example, frontend pressure (on decode or fetch) due to
6385   // code size, or the number and capabilities of the execution ports.
6386   //
6387   // We use the following heuristics to select the interleave count:
6388   // 1. If the code has reductions, then we interleave to break the cross
6389   // iteration dependency.
6390   // 2. If the loop is really small, then we interleave to reduce the loop
6391   // overhead.
6392   // 3. We don't interleave if we think that we will spill registers to memory
6393   // due to the increased register pressure.
6394 
6395   if (!isScalarEpilogueAllowed())
6396     return 1;
6397 
6398   // We used the distance for the interleave count.
6399   if (Legal->getMaxSafeDepDistBytes() != -1U)
6400     return 1;
6401 
6402   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6403   const bool HasReductions = !Legal->getReductionVars().empty();
6404   // Do not interleave loops with a relatively small known or estimated trip
6405   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6406   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6407   // because with the above conditions interleaving can expose ILP and break
6408   // cross iteration dependences for reductions.
6409   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6410       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6411     return 1;
6412 
6413   RegisterUsage R = calculateRegisterUsage({VF})[0];
6414   // We divide by these constants so assume that we have at least one
6415   // instruction that uses at least one register.
6416   for (auto& pair : R.MaxLocalUsers) {
6417     pair.second = std::max(pair.second, 1U);
6418   }
6419 
6420   // We calculate the interleave count using the following formula.
6421   // Subtract the number of loop invariants from the number of available
6422   // registers. These registers are used by all of the interleaved instances.
6423   // Next, divide the remaining registers by the number of registers that is
6424   // required by the loop, in order to estimate how many parallel instances
6425   // fit without causing spills. All of this is rounded down if necessary to be
6426   // a power of two. We want power of two interleave count to simplify any
6427   // addressing operations or alignment considerations.
6428   // We also want power of two interleave counts to ensure that the induction
6429   // variable of the vector loop wraps to zero, when tail is folded by masking;
6430   // this currently happens when OptForSize, in which case IC is set to 1 above.
6431   unsigned IC = UINT_MAX;
6432 
6433   for (auto& pair : R.MaxLocalUsers) {
6434     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6435     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6436                       << " registers of "
6437                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6438     if (VF.isScalar()) {
6439       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6440         TargetNumRegisters = ForceTargetNumScalarRegs;
6441     } else {
6442       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6443         TargetNumRegisters = ForceTargetNumVectorRegs;
6444     }
6445     unsigned MaxLocalUsers = pair.second;
6446     unsigned LoopInvariantRegs = 0;
6447     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6448       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6449 
6450     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6451     // Don't count the induction variable as interleaved.
6452     if (EnableIndVarRegisterHeur) {
6453       TmpIC =
6454           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6455                         std::max(1U, (MaxLocalUsers - 1)));
6456     }
6457 
6458     IC = std::min(IC, TmpIC);
6459   }
6460 
6461   // Clamp the interleave ranges to reasonable counts.
6462   unsigned MaxInterleaveCount =
6463       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6464 
6465   // Check if the user has overridden the max.
6466   if (VF.isScalar()) {
6467     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6468       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6469   } else {
6470     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6471       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6472   }
6473 
6474   // If trip count is known or estimated compile time constant, limit the
6475   // interleave count to be less than the trip count divided by VF, provided it
6476   // is at least 1.
6477   //
6478   // For scalable vectors we can't know if interleaving is beneficial. It may
6479   // not be beneficial for small loops if none of the lanes in the second vector
6480   // iterations is enabled. However, for larger loops, there is likely to be a
6481   // similar benefit as for fixed-width vectors. For now, we choose to leave
6482   // the InterleaveCount as if vscale is '1', although if some information about
6483   // the vector is known (e.g. min vector size), we can make a better decision.
6484   if (BestKnownTC) {
6485     MaxInterleaveCount =
6486         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6487     // Make sure MaxInterleaveCount is greater than 0.
6488     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6489   }
6490 
6491   assert(MaxInterleaveCount > 0 &&
6492          "Maximum interleave count must be greater than 0");
6493 
6494   // Clamp the calculated IC to be between the 1 and the max interleave count
6495   // that the target and trip count allows.
6496   if (IC > MaxInterleaveCount)
6497     IC = MaxInterleaveCount;
6498   else
6499     // Make sure IC is greater than 0.
6500     IC = std::max(1u, IC);
6501 
6502   assert(IC > 0 && "Interleave count must be greater than 0.");
6503 
6504   // If we did not calculate the cost for VF (because the user selected the VF)
6505   // then we calculate the cost of VF here.
6506   if (LoopCost == 0) {
6507     InstructionCost C = expectedCost(VF).first;
6508     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6509     LoopCost = *C.getValue();
6510   }
6511 
6512   assert(LoopCost && "Non-zero loop cost expected");
6513 
6514   // Interleave if we vectorized this loop and there is a reduction that could
6515   // benefit from interleaving.
6516   if (VF.isVector() && HasReductions) {
6517     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6518     return IC;
6519   }
6520 
6521   // Note that if we've already vectorized the loop we will have done the
6522   // runtime check and so interleaving won't require further checks.
6523   bool InterleavingRequiresRuntimePointerCheck =
6524       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6525 
6526   // We want to interleave small loops in order to reduce the loop overhead and
6527   // potentially expose ILP opportunities.
6528   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6529                     << "LV: IC is " << IC << '\n'
6530                     << "LV: VF is " << VF << '\n');
6531   const bool AggressivelyInterleaveReductions =
6532       TTI.enableAggressiveInterleaving(HasReductions);
6533   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6534     // We assume that the cost overhead is 1 and we use the cost model
6535     // to estimate the cost of the loop and interleave until the cost of the
6536     // loop overhead is about 5% of the cost of the loop.
6537     unsigned SmallIC =
6538         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6539 
6540     // Interleave until store/load ports (estimated by max interleave count) are
6541     // saturated.
6542     unsigned NumStores = Legal->getNumStores();
6543     unsigned NumLoads = Legal->getNumLoads();
6544     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6545     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6546 
6547     // There is little point in interleaving for reductions containing selects
6548     // and compares when VF=1 since it may just create more overhead than it's
6549     // worth for loops with small trip counts. This is because we still have to
6550     // do the final reduction after the loop.
6551     bool HasSelectCmpReductions =
6552         HasReductions &&
6553         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6554           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6555           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6556               RdxDesc.getRecurrenceKind());
6557         });
6558     if (HasSelectCmpReductions) {
6559       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6560       return 1;
6561     }
6562 
6563     // If we have a scalar reduction (vector reductions are already dealt with
6564     // by this point), we can increase the critical path length if the loop
6565     // we're interleaving is inside another loop. For tree-wise reductions
6566     // set the limit to 2, and for ordered reductions it's best to disable
6567     // interleaving entirely.
6568     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6569       bool HasOrderedReductions =
6570           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6571             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6572             return RdxDesc.isOrdered();
6573           });
6574       if (HasOrderedReductions) {
6575         LLVM_DEBUG(
6576             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6577         return 1;
6578       }
6579 
6580       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6581       SmallIC = std::min(SmallIC, F);
6582       StoresIC = std::min(StoresIC, F);
6583       LoadsIC = std::min(LoadsIC, F);
6584     }
6585 
6586     if (EnableLoadStoreRuntimeInterleave &&
6587         std::max(StoresIC, LoadsIC) > SmallIC) {
6588       LLVM_DEBUG(
6589           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6590       return std::max(StoresIC, LoadsIC);
6591     }
6592 
6593     // If there are scalar reductions and TTI has enabled aggressive
6594     // interleaving for reductions, we will interleave to expose ILP.
6595     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6596         AggressivelyInterleaveReductions) {
6597       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6598       // Interleave no less than SmallIC but not as aggressive as the normal IC
6599       // to satisfy the rare situation when resources are too limited.
6600       return std::max(IC / 2, SmallIC);
6601     } else {
6602       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6603       return SmallIC;
6604     }
6605   }
6606 
6607   // Interleave if this is a large loop (small loops are already dealt with by
6608   // this point) that could benefit from interleaving.
6609   if (AggressivelyInterleaveReductions) {
6610     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6611     return IC;
6612   }
6613 
6614   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6615   return 1;
6616 }
6617 
6618 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6619 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6620   // This function calculates the register usage by measuring the highest number
6621   // of values that are alive at a single location. Obviously, this is a very
6622   // rough estimation. We scan the loop in a topological order in order and
6623   // assign a number to each instruction. We use RPO to ensure that defs are
6624   // met before their users. We assume that each instruction that has in-loop
6625   // users starts an interval. We record every time that an in-loop value is
6626   // used, so we have a list of the first and last occurrences of each
6627   // instruction. Next, we transpose this data structure into a multi map that
6628   // holds the list of intervals that *end* at a specific location. This multi
6629   // map allows us to perform a linear search. We scan the instructions linearly
6630   // and record each time that a new interval starts, by placing it in a set.
6631   // If we find this value in the multi-map then we remove it from the set.
6632   // The max register usage is the maximum size of the set.
6633   // We also search for instructions that are defined outside the loop, but are
6634   // used inside the loop. We need this number separately from the max-interval
6635   // usage number because when we unroll, loop-invariant values do not take
6636   // more register.
6637   LoopBlocksDFS DFS(TheLoop);
6638   DFS.perform(LI);
6639 
6640   RegisterUsage RU;
6641 
6642   // Each 'key' in the map opens a new interval. The values
6643   // of the map are the index of the 'last seen' usage of the
6644   // instruction that is the key.
6645   using IntervalMap = DenseMap<Instruction *, unsigned>;
6646 
6647   // Maps instruction to its index.
6648   SmallVector<Instruction *, 64> IdxToInstr;
6649   // Marks the end of each interval.
6650   IntervalMap EndPoint;
6651   // Saves the list of instruction indices that are used in the loop.
6652   SmallPtrSet<Instruction *, 8> Ends;
6653   // Saves the list of values that are used in the loop but are
6654   // defined outside the loop, such as arguments and constants.
6655   SmallPtrSet<Value *, 8> LoopInvariants;
6656 
6657   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6658     for (Instruction &I : BB->instructionsWithoutDebug()) {
6659       IdxToInstr.push_back(&I);
6660 
6661       // Save the end location of each USE.
6662       for (Value *U : I.operands()) {
6663         auto *Instr = dyn_cast<Instruction>(U);
6664 
6665         // Ignore non-instruction values such as arguments, constants, etc.
6666         if (!Instr)
6667           continue;
6668 
6669         // If this instruction is outside the loop then record it and continue.
6670         if (!TheLoop->contains(Instr)) {
6671           LoopInvariants.insert(Instr);
6672           continue;
6673         }
6674 
6675         // Overwrite previous end points.
6676         EndPoint[Instr] = IdxToInstr.size();
6677         Ends.insert(Instr);
6678       }
6679     }
6680   }
6681 
6682   // Saves the list of intervals that end with the index in 'key'.
6683   using InstrList = SmallVector<Instruction *, 2>;
6684   DenseMap<unsigned, InstrList> TransposeEnds;
6685 
6686   // Transpose the EndPoints to a list of values that end at each index.
6687   for (auto &Interval : EndPoint)
6688     TransposeEnds[Interval.second].push_back(Interval.first);
6689 
6690   SmallPtrSet<Instruction *, 8> OpenIntervals;
6691   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6692   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6693 
6694   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6695 
6696   // A lambda that gets the register usage for the given type and VF.
6697   const auto &TTICapture = TTI;
6698   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6699     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6700       return 0;
6701     InstructionCost::CostType RegUsage =
6702         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6703     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6704            "Nonsensical values for register usage.");
6705     return RegUsage;
6706   };
6707 
6708   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6709     Instruction *I = IdxToInstr[i];
6710 
6711     // Remove all of the instructions that end at this location.
6712     InstrList &List = TransposeEnds[i];
6713     for (Instruction *ToRemove : List)
6714       OpenIntervals.erase(ToRemove);
6715 
6716     // Ignore instructions that are never used within the loop.
6717     if (!Ends.count(I))
6718       continue;
6719 
6720     // Skip ignored values.
6721     if (ValuesToIgnore.count(I))
6722       continue;
6723 
6724     // For each VF find the maximum usage of registers.
6725     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6726       // Count the number of live intervals.
6727       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6728 
6729       if (VFs[j].isScalar()) {
6730         for (auto Inst : OpenIntervals) {
6731           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6732           if (RegUsage.find(ClassID) == RegUsage.end())
6733             RegUsage[ClassID] = 1;
6734           else
6735             RegUsage[ClassID] += 1;
6736         }
6737       } else {
6738         collectUniformsAndScalars(VFs[j]);
6739         for (auto Inst : OpenIntervals) {
6740           // Skip ignored values for VF > 1.
6741           if (VecValuesToIgnore.count(Inst))
6742             continue;
6743           if (isScalarAfterVectorization(Inst, VFs[j])) {
6744             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6745             if (RegUsage.find(ClassID) == RegUsage.end())
6746               RegUsage[ClassID] = 1;
6747             else
6748               RegUsage[ClassID] += 1;
6749           } else {
6750             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6751             if (RegUsage.find(ClassID) == RegUsage.end())
6752               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6753             else
6754               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6755           }
6756         }
6757       }
6758 
6759       for (auto& pair : RegUsage) {
6760         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6761           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6762         else
6763           MaxUsages[j][pair.first] = pair.second;
6764       }
6765     }
6766 
6767     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6768                       << OpenIntervals.size() << '\n');
6769 
6770     // Add the current instruction to the list of open intervals.
6771     OpenIntervals.insert(I);
6772   }
6773 
6774   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6775     SmallMapVector<unsigned, unsigned, 4> Invariant;
6776 
6777     for (auto Inst : LoopInvariants) {
6778       unsigned Usage =
6779           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6780       unsigned ClassID =
6781           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6782       if (Invariant.find(ClassID) == Invariant.end())
6783         Invariant[ClassID] = Usage;
6784       else
6785         Invariant[ClassID] += Usage;
6786     }
6787 
6788     LLVM_DEBUG({
6789       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6790       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6791              << " item\n";
6792       for (const auto &pair : MaxUsages[i]) {
6793         dbgs() << "LV(REG): RegisterClass: "
6794                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6795                << " registers\n";
6796       }
6797       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6798              << " item\n";
6799       for (const auto &pair : Invariant) {
6800         dbgs() << "LV(REG): RegisterClass: "
6801                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6802                << " registers\n";
6803       }
6804     });
6805 
6806     RU.LoopInvariantRegs = Invariant;
6807     RU.MaxLocalUsers = MaxUsages[i];
6808     RUs[i] = RU;
6809   }
6810 
6811   return RUs;
6812 }
6813 
6814 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6815   // TODO: Cost model for emulated masked load/store is completely
6816   // broken. This hack guides the cost model to use an artificially
6817   // high enough value to practically disable vectorization with such
6818   // operations, except where previously deployed legality hack allowed
6819   // using very low cost values. This is to avoid regressions coming simply
6820   // from moving "masked load/store" check from legality to cost model.
6821   // Masked Load/Gather emulation was previously never allowed.
6822   // Limited number of Masked Store/Scatter emulation was allowed.
6823   assert(isPredicatedInst(I) &&
6824          "Expecting a scalar emulated instruction");
6825   return isa<LoadInst>(I) ||
6826          (isa<StoreInst>(I) &&
6827           NumPredStores > NumberOfStoresToPredicate);
6828 }
6829 
6830 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6831   // If we aren't vectorizing the loop, or if we've already collected the
6832   // instructions to scalarize, there's nothing to do. Collection may already
6833   // have occurred if we have a user-selected VF and are now computing the
6834   // expected cost for interleaving.
6835   if (VF.isScalar() || VF.isZero() ||
6836       InstsToScalarize.find(VF) != InstsToScalarize.end())
6837     return;
6838 
6839   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6840   // not profitable to scalarize any instructions, the presence of VF in the
6841   // map will indicate that we've analyzed it already.
6842   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6843 
6844   // Find all the instructions that are scalar with predication in the loop and
6845   // determine if it would be better to not if-convert the blocks they are in.
6846   // If so, we also record the instructions to scalarize.
6847   for (BasicBlock *BB : TheLoop->blocks()) {
6848     if (!blockNeedsPredication(BB))
6849       continue;
6850     for (Instruction &I : *BB)
6851       if (isScalarWithPredication(&I)) {
6852         ScalarCostsTy ScalarCosts;
6853         // Do not apply discount if scalable, because that would lead to
6854         // invalid scalarization costs.
6855         // Do not apply discount logic if hacked cost is needed
6856         // for emulated masked memrefs.
6857         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6858             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6859           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6860         // Remember that BB will remain after vectorization.
6861         PredicatedBBsAfterVectorization.insert(BB);
6862       }
6863   }
6864 }
6865 
6866 int LoopVectorizationCostModel::computePredInstDiscount(
6867     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6868   assert(!isUniformAfterVectorization(PredInst, VF) &&
6869          "Instruction marked uniform-after-vectorization will be predicated");
6870 
6871   // Initialize the discount to zero, meaning that the scalar version and the
6872   // vector version cost the same.
6873   InstructionCost Discount = 0;
6874 
6875   // Holds instructions to analyze. The instructions we visit are mapped in
6876   // ScalarCosts. Those instructions are the ones that would be scalarized if
6877   // we find that the scalar version costs less.
6878   SmallVector<Instruction *, 8> Worklist;
6879 
6880   // Returns true if the given instruction can be scalarized.
6881   auto canBeScalarized = [&](Instruction *I) -> bool {
6882     // We only attempt to scalarize instructions forming a single-use chain
6883     // from the original predicated block that would otherwise be vectorized.
6884     // Although not strictly necessary, we give up on instructions we know will
6885     // already be scalar to avoid traversing chains that are unlikely to be
6886     // beneficial.
6887     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6888         isScalarAfterVectorization(I, VF))
6889       return false;
6890 
6891     // If the instruction is scalar with predication, it will be analyzed
6892     // separately. We ignore it within the context of PredInst.
6893     if (isScalarWithPredication(I))
6894       return false;
6895 
6896     // If any of the instruction's operands are uniform after vectorization,
6897     // the instruction cannot be scalarized. This prevents, for example, a
6898     // masked load from being scalarized.
6899     //
6900     // We assume we will only emit a value for lane zero of an instruction
6901     // marked uniform after vectorization, rather than VF identical values.
6902     // Thus, if we scalarize an instruction that uses a uniform, we would
6903     // create uses of values corresponding to the lanes we aren't emitting code
6904     // for. This behavior can be changed by allowing getScalarValue to clone
6905     // the lane zero values for uniforms rather than asserting.
6906     for (Use &U : I->operands())
6907       if (auto *J = dyn_cast<Instruction>(U.get()))
6908         if (isUniformAfterVectorization(J, VF))
6909           return false;
6910 
6911     // Otherwise, we can scalarize the instruction.
6912     return true;
6913   };
6914 
6915   // Compute the expected cost discount from scalarizing the entire expression
6916   // feeding the predicated instruction. We currently only consider expressions
6917   // that are single-use instruction chains.
6918   Worklist.push_back(PredInst);
6919   while (!Worklist.empty()) {
6920     Instruction *I = Worklist.pop_back_val();
6921 
6922     // If we've already analyzed the instruction, there's nothing to do.
6923     if (ScalarCosts.find(I) != ScalarCosts.end())
6924       continue;
6925 
6926     // Compute the cost of the vector instruction. Note that this cost already
6927     // includes the scalarization overhead of the predicated instruction.
6928     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6929 
6930     // Compute the cost of the scalarized instruction. This cost is the cost of
6931     // the instruction as if it wasn't if-converted and instead remained in the
6932     // predicated block. We will scale this cost by block probability after
6933     // computing the scalarization overhead.
6934     InstructionCost ScalarCost =
6935         VF.getFixedValue() *
6936         getInstructionCost(I, ElementCount::getFixed(1)).first;
6937 
6938     // Compute the scalarization overhead of needed insertelement instructions
6939     // and phi nodes.
6940     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6941       ScalarCost += TTI.getScalarizationOverhead(
6942           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6943           APInt::getAllOnes(VF.getFixedValue()), true, false);
6944       ScalarCost +=
6945           VF.getFixedValue() *
6946           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6947     }
6948 
6949     // Compute the scalarization overhead of needed extractelement
6950     // instructions. For each of the instruction's operands, if the operand can
6951     // be scalarized, add it to the worklist; otherwise, account for the
6952     // overhead.
6953     for (Use &U : I->operands())
6954       if (auto *J = dyn_cast<Instruction>(U.get())) {
6955         assert(VectorType::isValidElementType(J->getType()) &&
6956                "Instruction has non-scalar type");
6957         if (canBeScalarized(J))
6958           Worklist.push_back(J);
6959         else if (needsExtract(J, VF)) {
6960           ScalarCost += TTI.getScalarizationOverhead(
6961               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6962               APInt::getAllOnes(VF.getFixedValue()), false, true);
6963         }
6964       }
6965 
6966     // Scale the total scalar cost by block probability.
6967     ScalarCost /= getReciprocalPredBlockProb();
6968 
6969     // Compute the discount. A non-negative discount means the vector version
6970     // of the instruction costs more, and scalarizing would be beneficial.
6971     Discount += VectorCost - ScalarCost;
6972     ScalarCosts[I] = ScalarCost;
6973   }
6974 
6975   return *Discount.getValue();
6976 }
6977 
6978 LoopVectorizationCostModel::VectorizationCostTy
6979 LoopVectorizationCostModel::expectedCost(
6980     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6981   VectorizationCostTy Cost;
6982 
6983   // For each block.
6984   for (BasicBlock *BB : TheLoop->blocks()) {
6985     VectorizationCostTy BlockCost;
6986 
6987     // For each instruction in the old loop.
6988     for (Instruction &I : BB->instructionsWithoutDebug()) {
6989       // Skip ignored values.
6990       if (ValuesToIgnore.count(&I) ||
6991           (VF.isVector() && VecValuesToIgnore.count(&I)))
6992         continue;
6993 
6994       VectorizationCostTy C = getInstructionCost(&I, VF);
6995 
6996       // Check if we should override the cost.
6997       if (C.first.isValid() &&
6998           ForceTargetInstructionCost.getNumOccurrences() > 0)
6999         C.first = InstructionCost(ForceTargetInstructionCost);
7000 
7001       // Keep a list of instructions with invalid costs.
7002       if (Invalid && !C.first.isValid())
7003         Invalid->emplace_back(&I, VF);
7004 
7005       BlockCost.first += C.first;
7006       BlockCost.second |= C.second;
7007       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
7008                         << " for VF " << VF << " For instruction: " << I
7009                         << '\n');
7010     }
7011 
7012     // If we are vectorizing a predicated block, it will have been
7013     // if-converted. This means that the block's instructions (aside from
7014     // stores and instructions that may divide by zero) will now be
7015     // unconditionally executed. For the scalar case, we may not always execute
7016     // the predicated block, if it is an if-else block. Thus, scale the block's
7017     // cost by the probability of executing it. blockNeedsPredication from
7018     // Legal is used so as to not include all blocks in tail folded loops.
7019     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
7020       BlockCost.first /= getReciprocalPredBlockProb();
7021 
7022     Cost.first += BlockCost.first;
7023     Cost.second |= BlockCost.second;
7024   }
7025 
7026   return Cost;
7027 }
7028 
7029 /// Gets Address Access SCEV after verifying that the access pattern
7030 /// is loop invariant except the induction variable dependence.
7031 ///
7032 /// This SCEV can be sent to the Target in order to estimate the address
7033 /// calculation cost.
7034 static const SCEV *getAddressAccessSCEV(
7035               Value *Ptr,
7036               LoopVectorizationLegality *Legal,
7037               PredicatedScalarEvolution &PSE,
7038               const Loop *TheLoop) {
7039 
7040   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
7041   if (!Gep)
7042     return nullptr;
7043 
7044   // We are looking for a gep with all loop invariant indices except for one
7045   // which should be an induction variable.
7046   auto SE = PSE.getSE();
7047   unsigned NumOperands = Gep->getNumOperands();
7048   for (unsigned i = 1; i < NumOperands; ++i) {
7049     Value *Opd = Gep->getOperand(i);
7050     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7051         !Legal->isInductionVariable(Opd))
7052       return nullptr;
7053   }
7054 
7055   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7056   return PSE.getSCEV(Ptr);
7057 }
7058 
7059 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7060   return Legal->hasStride(I->getOperand(0)) ||
7061          Legal->hasStride(I->getOperand(1));
7062 }
7063 
7064 InstructionCost
7065 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7066                                                         ElementCount VF) {
7067   assert(VF.isVector() &&
7068          "Scalarization cost of instruction implies vectorization.");
7069   if (VF.isScalable())
7070     return InstructionCost::getInvalid();
7071 
7072   Type *ValTy = getLoadStoreType(I);
7073   auto SE = PSE.getSE();
7074 
7075   unsigned AS = getLoadStoreAddressSpace(I);
7076   Value *Ptr = getLoadStorePointerOperand(I);
7077   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7078 
7079   // Figure out whether the access is strided and get the stride value
7080   // if it's known in compile time
7081   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7082 
7083   // Get the cost of the scalar memory instruction and address computation.
7084   InstructionCost Cost =
7085       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7086 
7087   // Don't pass *I here, since it is scalar but will actually be part of a
7088   // vectorized loop where the user of it is a vectorized instruction.
7089   const Align Alignment = getLoadStoreAlignment(I);
7090   Cost += VF.getKnownMinValue() *
7091           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7092                               AS, TTI::TCK_RecipThroughput);
7093 
7094   // Get the overhead of the extractelement and insertelement instructions
7095   // we might create due to scalarization.
7096   Cost += getScalarizationOverhead(I, VF);
7097 
7098   // If we have a predicated load/store, it will need extra i1 extracts and
7099   // conditional branches, but may not be executed for each vector lane. Scale
7100   // the cost by the probability of executing the predicated block.
7101   if (isPredicatedInst(I)) {
7102     Cost /= getReciprocalPredBlockProb();
7103 
7104     // Add the cost of an i1 extract and a branch
7105     auto *Vec_i1Ty =
7106         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7107     Cost += TTI.getScalarizationOverhead(
7108         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7109         /*Insert=*/false, /*Extract=*/true);
7110     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7111 
7112     if (useEmulatedMaskMemRefHack(I))
7113       // Artificially setting to a high enough value to practically disable
7114       // vectorization with such operations.
7115       Cost = 3000000;
7116   }
7117 
7118   return Cost;
7119 }
7120 
7121 InstructionCost
7122 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7123                                                     ElementCount VF) {
7124   Type *ValTy = getLoadStoreType(I);
7125   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7126   Value *Ptr = getLoadStorePointerOperand(I);
7127   unsigned AS = getLoadStoreAddressSpace(I);
7128   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
7129   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7130 
7131   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7132          "Stride should be 1 or -1 for consecutive memory access");
7133   const Align Alignment = getLoadStoreAlignment(I);
7134   InstructionCost Cost = 0;
7135   if (Legal->isMaskRequired(I))
7136     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7137                                       CostKind);
7138   else
7139     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7140                                 CostKind, I);
7141 
7142   bool Reverse = ConsecutiveStride < 0;
7143   if (Reverse)
7144     Cost +=
7145         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7146   return Cost;
7147 }
7148 
7149 InstructionCost
7150 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7151                                                 ElementCount VF) {
7152   assert(Legal->isUniformMemOp(*I));
7153 
7154   Type *ValTy = getLoadStoreType(I);
7155   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7156   const Align Alignment = getLoadStoreAlignment(I);
7157   unsigned AS = getLoadStoreAddressSpace(I);
7158   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7159   if (isa<LoadInst>(I)) {
7160     return TTI.getAddressComputationCost(ValTy) +
7161            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7162                                CostKind) +
7163            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7164   }
7165   StoreInst *SI = cast<StoreInst>(I);
7166 
7167   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7168   return TTI.getAddressComputationCost(ValTy) +
7169          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7170                              CostKind) +
7171          (isLoopInvariantStoreValue
7172               ? 0
7173               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7174                                        VF.getKnownMinValue() - 1));
7175 }
7176 
7177 InstructionCost
7178 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7179                                                  ElementCount VF) {
7180   Type *ValTy = getLoadStoreType(I);
7181   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7182   const Align Alignment = getLoadStoreAlignment(I);
7183   const Value *Ptr = getLoadStorePointerOperand(I);
7184 
7185   return TTI.getAddressComputationCost(VectorTy) +
7186          TTI.getGatherScatterOpCost(
7187              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7188              TargetTransformInfo::TCK_RecipThroughput, I);
7189 }
7190 
7191 InstructionCost
7192 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7193                                                    ElementCount VF) {
7194   // TODO: Once we have support for interleaving with scalable vectors
7195   // we can calculate the cost properly here.
7196   if (VF.isScalable())
7197     return InstructionCost::getInvalid();
7198 
7199   Type *ValTy = getLoadStoreType(I);
7200   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7201   unsigned AS = getLoadStoreAddressSpace(I);
7202 
7203   auto Group = getInterleavedAccessGroup(I);
7204   assert(Group && "Fail to get an interleaved access group.");
7205 
7206   unsigned InterleaveFactor = Group->getFactor();
7207   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7208 
7209   // Holds the indices of existing members in the interleaved group.
7210   SmallVector<unsigned, 4> Indices;
7211   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7212     if (Group->getMember(IF))
7213       Indices.push_back(IF);
7214 
7215   // Calculate the cost of the whole interleaved group.
7216   bool UseMaskForGaps =
7217       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7218       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7219   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7220       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7221       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7222 
7223   if (Group->isReverse()) {
7224     // TODO: Add support for reversed masked interleaved access.
7225     assert(!Legal->isMaskRequired(I) &&
7226            "Reverse masked interleaved access not supported.");
7227     Cost +=
7228         Group->getNumMembers() *
7229         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7230   }
7231   return Cost;
7232 }
7233 
7234 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7235     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7236   using namespace llvm::PatternMatch;
7237   // Early exit for no inloop reductions
7238   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7239     return None;
7240   auto *VectorTy = cast<VectorType>(Ty);
7241 
7242   // We are looking for a pattern of, and finding the minimal acceptable cost:
7243   //  reduce(mul(ext(A), ext(B))) or
7244   //  reduce(mul(A, B)) or
7245   //  reduce(ext(A)) or
7246   //  reduce(A).
7247   // The basic idea is that we walk down the tree to do that, finding the root
7248   // reduction instruction in InLoopReductionImmediateChains. From there we find
7249   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7250   // of the components. If the reduction cost is lower then we return it for the
7251   // reduction instruction and 0 for the other instructions in the pattern. If
7252   // it is not we return an invalid cost specifying the orignal cost method
7253   // should be used.
7254   Instruction *RetI = I;
7255   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7256     if (!RetI->hasOneUser())
7257       return None;
7258     RetI = RetI->user_back();
7259   }
7260   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7261       RetI->user_back()->getOpcode() == Instruction::Add) {
7262     if (!RetI->hasOneUser())
7263       return None;
7264     RetI = RetI->user_back();
7265   }
7266 
7267   // Test if the found instruction is a reduction, and if not return an invalid
7268   // cost specifying the parent to use the original cost modelling.
7269   if (!InLoopReductionImmediateChains.count(RetI))
7270     return None;
7271 
7272   // Find the reduction this chain is a part of and calculate the basic cost of
7273   // the reduction on its own.
7274   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7275   Instruction *ReductionPhi = LastChain;
7276   while (!isa<PHINode>(ReductionPhi))
7277     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7278 
7279   const RecurrenceDescriptor &RdxDesc =
7280       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7281 
7282   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7283       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7284 
7285   // If we're using ordered reductions then we can just return the base cost
7286   // here, since getArithmeticReductionCost calculates the full ordered
7287   // reduction cost when FP reassociation is not allowed.
7288   if (useOrderedReductions(RdxDesc))
7289     return BaseCost;
7290 
7291   // Get the operand that was not the reduction chain and match it to one of the
7292   // patterns, returning the better cost if it is found.
7293   Instruction *RedOp = RetI->getOperand(1) == LastChain
7294                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7295                            : dyn_cast<Instruction>(RetI->getOperand(1));
7296 
7297   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7298 
7299   Instruction *Op0, *Op1;
7300   if (RedOp &&
7301       match(RedOp,
7302             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7303       match(Op0, m_ZExtOrSExt(m_Value())) &&
7304       Op0->getOpcode() == Op1->getOpcode() &&
7305       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7306       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7307       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7308 
7309     // Matched reduce(ext(mul(ext(A), ext(B)))
7310     // Note that the extend opcodes need to all match, or if A==B they will have
7311     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7312     // which is equally fine.
7313     bool IsUnsigned = isa<ZExtInst>(Op0);
7314     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7315     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7316 
7317     InstructionCost ExtCost =
7318         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7319                              TTI::CastContextHint::None, CostKind, Op0);
7320     InstructionCost MulCost =
7321         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7322     InstructionCost Ext2Cost =
7323         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7324                              TTI::CastContextHint::None, CostKind, RedOp);
7325 
7326     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7327         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7328         CostKind);
7329 
7330     if (RedCost.isValid() &&
7331         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7332       return I == RetI ? RedCost : 0;
7333   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7334              !TheLoop->isLoopInvariant(RedOp)) {
7335     // Matched reduce(ext(A))
7336     bool IsUnsigned = isa<ZExtInst>(RedOp);
7337     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7338     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7339         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7340         CostKind);
7341 
7342     InstructionCost ExtCost =
7343         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7344                              TTI::CastContextHint::None, CostKind, RedOp);
7345     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7346       return I == RetI ? RedCost : 0;
7347   } else if (RedOp &&
7348              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7349     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7350         Op0->getOpcode() == Op1->getOpcode() &&
7351         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7352         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7353       bool IsUnsigned = isa<ZExtInst>(Op0);
7354       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7355       // Matched reduce(mul(ext, ext))
7356       InstructionCost ExtCost =
7357           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7358                                TTI::CastContextHint::None, CostKind, Op0);
7359       InstructionCost MulCost =
7360           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7361 
7362       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7363           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7364           CostKind);
7365 
7366       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7367         return I == RetI ? RedCost : 0;
7368     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7369       // Matched reduce(mul())
7370       InstructionCost MulCost =
7371           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7372 
7373       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7374           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7375           CostKind);
7376 
7377       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7378         return I == RetI ? RedCost : 0;
7379     }
7380   }
7381 
7382   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7383 }
7384 
7385 InstructionCost
7386 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7387                                                      ElementCount VF) {
7388   // Calculate scalar cost only. Vectorization cost should be ready at this
7389   // moment.
7390   if (VF.isScalar()) {
7391     Type *ValTy = getLoadStoreType(I);
7392     const Align Alignment = getLoadStoreAlignment(I);
7393     unsigned AS = getLoadStoreAddressSpace(I);
7394 
7395     return TTI.getAddressComputationCost(ValTy) +
7396            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7397                                TTI::TCK_RecipThroughput, I);
7398   }
7399   return getWideningCost(I, VF);
7400 }
7401 
7402 LoopVectorizationCostModel::VectorizationCostTy
7403 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7404                                                ElementCount VF) {
7405   // If we know that this instruction will remain uniform, check the cost of
7406   // the scalar version.
7407   if (isUniformAfterVectorization(I, VF))
7408     VF = ElementCount::getFixed(1);
7409 
7410   if (VF.isVector() && isProfitableToScalarize(I, VF))
7411     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7412 
7413   // Forced scalars do not have any scalarization overhead.
7414   auto ForcedScalar = ForcedScalars.find(VF);
7415   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7416     auto InstSet = ForcedScalar->second;
7417     if (InstSet.count(I))
7418       return VectorizationCostTy(
7419           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7420            VF.getKnownMinValue()),
7421           false);
7422   }
7423 
7424   Type *VectorTy;
7425   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7426 
7427   bool TypeNotScalarized =
7428       VF.isVector() && VectorTy->isVectorTy() &&
7429       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7430   return VectorizationCostTy(C, TypeNotScalarized);
7431 }
7432 
7433 InstructionCost
7434 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7435                                                      ElementCount VF) const {
7436 
7437   // There is no mechanism yet to create a scalable scalarization loop,
7438   // so this is currently Invalid.
7439   if (VF.isScalable())
7440     return InstructionCost::getInvalid();
7441 
7442   if (VF.isScalar())
7443     return 0;
7444 
7445   InstructionCost Cost = 0;
7446   Type *RetTy = ToVectorTy(I->getType(), VF);
7447   if (!RetTy->isVoidTy() &&
7448       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7449     Cost += TTI.getScalarizationOverhead(
7450         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7451         false);
7452 
7453   // Some targets keep addresses scalar.
7454   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7455     return Cost;
7456 
7457   // Some targets support efficient element stores.
7458   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7459     return Cost;
7460 
7461   // Collect operands to consider.
7462   CallInst *CI = dyn_cast<CallInst>(I);
7463   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7464 
7465   // Skip operands that do not require extraction/scalarization and do not incur
7466   // any overhead.
7467   SmallVector<Type *> Tys;
7468   for (auto *V : filterExtractingOperands(Ops, VF))
7469     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7470   return Cost + TTI.getOperandsScalarizationOverhead(
7471                     filterExtractingOperands(Ops, VF), Tys);
7472 }
7473 
7474 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7475   if (VF.isScalar())
7476     return;
7477   NumPredStores = 0;
7478   for (BasicBlock *BB : TheLoop->blocks()) {
7479     // For each instruction in the old loop.
7480     for (Instruction &I : *BB) {
7481       Value *Ptr =  getLoadStorePointerOperand(&I);
7482       if (!Ptr)
7483         continue;
7484 
7485       // TODO: We should generate better code and update the cost model for
7486       // predicated uniform stores. Today they are treated as any other
7487       // predicated store (see added test cases in
7488       // invariant-store-vectorization.ll).
7489       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7490         NumPredStores++;
7491 
7492       if (Legal->isUniformMemOp(I)) {
7493         // TODO: Avoid replicating loads and stores instead of
7494         // relying on instcombine to remove them.
7495         // Load: Scalar load + broadcast
7496         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7497         InstructionCost Cost;
7498         if (isa<StoreInst>(&I) && VF.isScalable() &&
7499             isLegalGatherOrScatter(&I)) {
7500           Cost = getGatherScatterCost(&I, VF);
7501           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7502         } else {
7503           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7504                  "Cannot yet scalarize uniform stores");
7505           Cost = getUniformMemOpCost(&I, VF);
7506           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7507         }
7508         continue;
7509       }
7510 
7511       // We assume that widening is the best solution when possible.
7512       if (memoryInstructionCanBeWidened(&I, VF)) {
7513         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7514         int ConsecutiveStride = Legal->isConsecutivePtr(
7515             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7516         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7517                "Expected consecutive stride.");
7518         InstWidening Decision =
7519             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7520         setWideningDecision(&I, VF, Decision, Cost);
7521         continue;
7522       }
7523 
7524       // Choose between Interleaving, Gather/Scatter or Scalarization.
7525       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7526       unsigned NumAccesses = 1;
7527       if (isAccessInterleaved(&I)) {
7528         auto Group = getInterleavedAccessGroup(&I);
7529         assert(Group && "Fail to get an interleaved access group.");
7530 
7531         // Make one decision for the whole group.
7532         if (getWideningDecision(&I, VF) != CM_Unknown)
7533           continue;
7534 
7535         NumAccesses = Group->getNumMembers();
7536         if (interleavedAccessCanBeWidened(&I, VF))
7537           InterleaveCost = getInterleaveGroupCost(&I, VF);
7538       }
7539 
7540       InstructionCost GatherScatterCost =
7541           isLegalGatherOrScatter(&I)
7542               ? getGatherScatterCost(&I, VF) * NumAccesses
7543               : InstructionCost::getInvalid();
7544 
7545       InstructionCost ScalarizationCost =
7546           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7547 
7548       // Choose better solution for the current VF,
7549       // write down this decision and use it during vectorization.
7550       InstructionCost Cost;
7551       InstWidening Decision;
7552       if (InterleaveCost <= GatherScatterCost &&
7553           InterleaveCost < ScalarizationCost) {
7554         Decision = CM_Interleave;
7555         Cost = InterleaveCost;
7556       } else if (GatherScatterCost < ScalarizationCost) {
7557         Decision = CM_GatherScatter;
7558         Cost = GatherScatterCost;
7559       } else {
7560         Decision = CM_Scalarize;
7561         Cost = ScalarizationCost;
7562       }
7563       // If the instructions belongs to an interleave group, the whole group
7564       // receives the same decision. The whole group receives the cost, but
7565       // the cost will actually be assigned to one instruction.
7566       if (auto Group = getInterleavedAccessGroup(&I))
7567         setWideningDecision(Group, VF, Decision, Cost);
7568       else
7569         setWideningDecision(&I, VF, Decision, Cost);
7570     }
7571   }
7572 
7573   // Make sure that any load of address and any other address computation
7574   // remains scalar unless there is gather/scatter support. This avoids
7575   // inevitable extracts into address registers, and also has the benefit of
7576   // activating LSR more, since that pass can't optimize vectorized
7577   // addresses.
7578   if (TTI.prefersVectorizedAddressing())
7579     return;
7580 
7581   // Start with all scalar pointer uses.
7582   SmallPtrSet<Instruction *, 8> AddrDefs;
7583   for (BasicBlock *BB : TheLoop->blocks())
7584     for (Instruction &I : *BB) {
7585       Instruction *PtrDef =
7586         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7587       if (PtrDef && TheLoop->contains(PtrDef) &&
7588           getWideningDecision(&I, VF) != CM_GatherScatter)
7589         AddrDefs.insert(PtrDef);
7590     }
7591 
7592   // Add all instructions used to generate the addresses.
7593   SmallVector<Instruction *, 4> Worklist;
7594   append_range(Worklist, AddrDefs);
7595   while (!Worklist.empty()) {
7596     Instruction *I = Worklist.pop_back_val();
7597     for (auto &Op : I->operands())
7598       if (auto *InstOp = dyn_cast<Instruction>(Op))
7599         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7600             AddrDefs.insert(InstOp).second)
7601           Worklist.push_back(InstOp);
7602   }
7603 
7604   for (auto *I : AddrDefs) {
7605     if (isa<LoadInst>(I)) {
7606       // Setting the desired widening decision should ideally be handled in
7607       // by cost functions, but since this involves the task of finding out
7608       // if the loaded register is involved in an address computation, it is
7609       // instead changed here when we know this is the case.
7610       InstWidening Decision = getWideningDecision(I, VF);
7611       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7612         // Scalarize a widened load of address.
7613         setWideningDecision(
7614             I, VF, CM_Scalarize,
7615             (VF.getKnownMinValue() *
7616              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7617       else if (auto Group = getInterleavedAccessGroup(I)) {
7618         // Scalarize an interleave group of address loads.
7619         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7620           if (Instruction *Member = Group->getMember(I))
7621             setWideningDecision(
7622                 Member, VF, CM_Scalarize,
7623                 (VF.getKnownMinValue() *
7624                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7625         }
7626       }
7627     } else
7628       // Make sure I gets scalarized and a cost estimate without
7629       // scalarization overhead.
7630       ForcedScalars[VF].insert(I);
7631   }
7632 }
7633 
7634 InstructionCost
7635 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7636                                                Type *&VectorTy) {
7637   Type *RetTy = I->getType();
7638   if (canTruncateToMinimalBitwidth(I, VF))
7639     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7640   auto SE = PSE.getSE();
7641   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7642 
7643   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7644                                                 ElementCount VF) -> bool {
7645     if (VF.isScalar())
7646       return true;
7647 
7648     auto Scalarized = InstsToScalarize.find(VF);
7649     assert(Scalarized != InstsToScalarize.end() &&
7650            "VF not yet analyzed for scalarization profitability");
7651     return !Scalarized->second.count(I) &&
7652            llvm::all_of(I->users(), [&](User *U) {
7653              auto *UI = cast<Instruction>(U);
7654              return !Scalarized->second.count(UI);
7655            });
7656   };
7657   (void) hasSingleCopyAfterVectorization;
7658 
7659   if (isScalarAfterVectorization(I, VF)) {
7660     // With the exception of GEPs and PHIs, after scalarization there should
7661     // only be one copy of the instruction generated in the loop. This is
7662     // because the VF is either 1, or any instructions that need scalarizing
7663     // have already been dealt with by the the time we get here. As a result,
7664     // it means we don't have to multiply the instruction cost by VF.
7665     assert(I->getOpcode() == Instruction::GetElementPtr ||
7666            I->getOpcode() == Instruction::PHI ||
7667            (I->getOpcode() == Instruction::BitCast &&
7668             I->getType()->isPointerTy()) ||
7669            hasSingleCopyAfterVectorization(I, VF));
7670     VectorTy = RetTy;
7671   } else
7672     VectorTy = ToVectorTy(RetTy, VF);
7673 
7674   // TODO: We need to estimate the cost of intrinsic calls.
7675   switch (I->getOpcode()) {
7676   case Instruction::GetElementPtr:
7677     // We mark this instruction as zero-cost because the cost of GEPs in
7678     // vectorized code depends on whether the corresponding memory instruction
7679     // is scalarized or not. Therefore, we handle GEPs with the memory
7680     // instruction cost.
7681     return 0;
7682   case Instruction::Br: {
7683     // In cases of scalarized and predicated instructions, there will be VF
7684     // predicated blocks in the vectorized loop. Each branch around these
7685     // blocks requires also an extract of its vector compare i1 element.
7686     bool ScalarPredicatedBB = false;
7687     BranchInst *BI = cast<BranchInst>(I);
7688     if (VF.isVector() && BI->isConditional() &&
7689         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7690          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7691       ScalarPredicatedBB = true;
7692 
7693     if (ScalarPredicatedBB) {
7694       // Not possible to scalarize scalable vector with predicated instructions.
7695       if (VF.isScalable())
7696         return InstructionCost::getInvalid();
7697       // Return cost for branches around scalarized and predicated blocks.
7698       auto *Vec_i1Ty =
7699           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7700       return (
7701           TTI.getScalarizationOverhead(
7702               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7703           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7704     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7705       // The back-edge branch will remain, as will all scalar branches.
7706       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7707     else
7708       // This branch will be eliminated by if-conversion.
7709       return 0;
7710     // Note: We currently assume zero cost for an unconditional branch inside
7711     // a predicated block since it will become a fall-through, although we
7712     // may decide in the future to call TTI for all branches.
7713   }
7714   case Instruction::PHI: {
7715     auto *Phi = cast<PHINode>(I);
7716 
7717     // First-order recurrences are replaced by vector shuffles inside the loop.
7718     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7719     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7720       return TTI.getShuffleCost(
7721           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7722           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7723 
7724     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7725     // converted into select instructions. We require N - 1 selects per phi
7726     // node, where N is the number of incoming values.
7727     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7728       return (Phi->getNumIncomingValues() - 1) *
7729              TTI.getCmpSelInstrCost(
7730                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7731                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7732                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7733 
7734     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7735   }
7736   case Instruction::UDiv:
7737   case Instruction::SDiv:
7738   case Instruction::URem:
7739   case Instruction::SRem:
7740     // If we have a predicated instruction, it may not be executed for each
7741     // vector lane. Get the scalarization cost and scale this amount by the
7742     // probability of executing the predicated block. If the instruction is not
7743     // predicated, we fall through to the next case.
7744     if (VF.isVector() && isScalarWithPredication(I)) {
7745       InstructionCost Cost = 0;
7746 
7747       // These instructions have a non-void type, so account for the phi nodes
7748       // that we will create. This cost is likely to be zero. The phi node
7749       // cost, if any, should be scaled by the block probability because it
7750       // models a copy at the end of each predicated block.
7751       Cost += VF.getKnownMinValue() *
7752               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7753 
7754       // The cost of the non-predicated instruction.
7755       Cost += VF.getKnownMinValue() *
7756               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7757 
7758       // The cost of insertelement and extractelement instructions needed for
7759       // scalarization.
7760       Cost += getScalarizationOverhead(I, VF);
7761 
7762       // Scale the cost by the probability of executing the predicated blocks.
7763       // This assumes the predicated block for each vector lane is equally
7764       // likely.
7765       return Cost / getReciprocalPredBlockProb();
7766     }
7767     LLVM_FALLTHROUGH;
7768   case Instruction::Add:
7769   case Instruction::FAdd:
7770   case Instruction::Sub:
7771   case Instruction::FSub:
7772   case Instruction::Mul:
7773   case Instruction::FMul:
7774   case Instruction::FDiv:
7775   case Instruction::FRem:
7776   case Instruction::Shl:
7777   case Instruction::LShr:
7778   case Instruction::AShr:
7779   case Instruction::And:
7780   case Instruction::Or:
7781   case Instruction::Xor: {
7782     // Since we will replace the stride by 1 the multiplication should go away.
7783     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7784       return 0;
7785 
7786     // Detect reduction patterns
7787     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7788       return *RedCost;
7789 
7790     // Certain instructions can be cheaper to vectorize if they have a constant
7791     // second vector operand. One example of this are shifts on x86.
7792     Value *Op2 = I->getOperand(1);
7793     TargetTransformInfo::OperandValueProperties Op2VP;
7794     TargetTransformInfo::OperandValueKind Op2VK =
7795         TTI.getOperandInfo(Op2, Op2VP);
7796     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7797       Op2VK = TargetTransformInfo::OK_UniformValue;
7798 
7799     SmallVector<const Value *, 4> Operands(I->operand_values());
7800     return TTI.getArithmeticInstrCost(
7801         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7802         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7803   }
7804   case Instruction::FNeg: {
7805     return TTI.getArithmeticInstrCost(
7806         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7807         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7808         TargetTransformInfo::OP_None, I->getOperand(0), I);
7809   }
7810   case Instruction::Select: {
7811     SelectInst *SI = cast<SelectInst>(I);
7812     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7813     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7814 
7815     const Value *Op0, *Op1;
7816     using namespace llvm::PatternMatch;
7817     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7818                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7819       // select x, y, false --> x & y
7820       // select x, true, y --> x | y
7821       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7822       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7823       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7824       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7825       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7826               Op1->getType()->getScalarSizeInBits() == 1);
7827 
7828       SmallVector<const Value *, 2> Operands{Op0, Op1};
7829       return TTI.getArithmeticInstrCost(
7830           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7831           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7832     }
7833 
7834     Type *CondTy = SI->getCondition()->getType();
7835     if (!ScalarCond)
7836       CondTy = VectorType::get(CondTy, VF);
7837     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7838                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7839   }
7840   case Instruction::ICmp:
7841   case Instruction::FCmp: {
7842     Type *ValTy = I->getOperand(0)->getType();
7843     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7844     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7845       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7846     VectorTy = ToVectorTy(ValTy, VF);
7847     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7848                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7849   }
7850   case Instruction::Store:
7851   case Instruction::Load: {
7852     ElementCount Width = VF;
7853     if (Width.isVector()) {
7854       InstWidening Decision = getWideningDecision(I, Width);
7855       assert(Decision != CM_Unknown &&
7856              "CM decision should be taken at this point");
7857       if (Decision == CM_Scalarize)
7858         Width = ElementCount::getFixed(1);
7859     }
7860     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7861     return getMemoryInstructionCost(I, VF);
7862   }
7863   case Instruction::BitCast:
7864     if (I->getType()->isPointerTy())
7865       return 0;
7866     LLVM_FALLTHROUGH;
7867   case Instruction::ZExt:
7868   case Instruction::SExt:
7869   case Instruction::FPToUI:
7870   case Instruction::FPToSI:
7871   case Instruction::FPExt:
7872   case Instruction::PtrToInt:
7873   case Instruction::IntToPtr:
7874   case Instruction::SIToFP:
7875   case Instruction::UIToFP:
7876   case Instruction::Trunc:
7877   case Instruction::FPTrunc: {
7878     // Computes the CastContextHint from a Load/Store instruction.
7879     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7880       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7881              "Expected a load or a store!");
7882 
7883       if (VF.isScalar() || !TheLoop->contains(I))
7884         return TTI::CastContextHint::Normal;
7885 
7886       switch (getWideningDecision(I, VF)) {
7887       case LoopVectorizationCostModel::CM_GatherScatter:
7888         return TTI::CastContextHint::GatherScatter;
7889       case LoopVectorizationCostModel::CM_Interleave:
7890         return TTI::CastContextHint::Interleave;
7891       case LoopVectorizationCostModel::CM_Scalarize:
7892       case LoopVectorizationCostModel::CM_Widen:
7893         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7894                                         : TTI::CastContextHint::Normal;
7895       case LoopVectorizationCostModel::CM_Widen_Reverse:
7896         return TTI::CastContextHint::Reversed;
7897       case LoopVectorizationCostModel::CM_Unknown:
7898         llvm_unreachable("Instr did not go through cost modelling?");
7899       }
7900 
7901       llvm_unreachable("Unhandled case!");
7902     };
7903 
7904     unsigned Opcode = I->getOpcode();
7905     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7906     // For Trunc, the context is the only user, which must be a StoreInst.
7907     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7908       if (I->hasOneUse())
7909         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7910           CCH = ComputeCCH(Store);
7911     }
7912     // For Z/Sext, the context is the operand, which must be a LoadInst.
7913     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7914              Opcode == Instruction::FPExt) {
7915       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7916         CCH = ComputeCCH(Load);
7917     }
7918 
7919     // We optimize the truncation of induction variables having constant
7920     // integer steps. The cost of these truncations is the same as the scalar
7921     // operation.
7922     if (isOptimizableIVTruncate(I, VF)) {
7923       auto *Trunc = cast<TruncInst>(I);
7924       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7925                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7926     }
7927 
7928     // Detect reduction patterns
7929     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7930       return *RedCost;
7931 
7932     Type *SrcScalarTy = I->getOperand(0)->getType();
7933     Type *SrcVecTy =
7934         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7935     if (canTruncateToMinimalBitwidth(I, VF)) {
7936       // This cast is going to be shrunk. This may remove the cast or it might
7937       // turn it into slightly different cast. For example, if MinBW == 16,
7938       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7939       //
7940       // Calculate the modified src and dest types.
7941       Type *MinVecTy = VectorTy;
7942       if (Opcode == Instruction::Trunc) {
7943         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7944         VectorTy =
7945             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7946       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7947         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7948         VectorTy =
7949             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7950       }
7951     }
7952 
7953     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7954   }
7955   case Instruction::Call: {
7956     bool NeedToScalarize;
7957     CallInst *CI = cast<CallInst>(I);
7958     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7959     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7960       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7961       return std::min(CallCost, IntrinsicCost);
7962     }
7963     return CallCost;
7964   }
7965   case Instruction::ExtractValue:
7966     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7967   case Instruction::Alloca:
7968     // We cannot easily widen alloca to a scalable alloca, as
7969     // the result would need to be a vector of pointers.
7970     if (VF.isScalable())
7971       return InstructionCost::getInvalid();
7972     LLVM_FALLTHROUGH;
7973   default:
7974     // This opcode is unknown. Assume that it is the same as 'mul'.
7975     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7976   } // end of switch.
7977 }
7978 
7979 char LoopVectorize::ID = 0;
7980 
7981 static const char lv_name[] = "Loop Vectorization";
7982 
7983 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7984 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7985 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7986 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7987 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7988 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7989 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7990 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7991 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7992 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7993 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7994 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7995 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7996 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7997 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7998 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7999 
8000 namespace llvm {
8001 
8002 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
8003 
8004 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
8005                               bool VectorizeOnlyWhenForced) {
8006   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
8007 }
8008 
8009 } // end namespace llvm
8010 
8011 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
8012   // Check if the pointer operand of a load or store instruction is
8013   // consecutive.
8014   if (auto *Ptr = getLoadStorePointerOperand(Inst))
8015     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
8016   return false;
8017 }
8018 
8019 void LoopVectorizationCostModel::collectValuesToIgnore() {
8020   // Ignore ephemeral values.
8021   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
8022 
8023   // Ignore type-promoting instructions we identified during reduction
8024   // detection.
8025   for (auto &Reduction : Legal->getReductionVars()) {
8026     RecurrenceDescriptor &RedDes = Reduction.second;
8027     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
8028     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8029   }
8030   // Ignore type-casting instructions we identified during induction
8031   // detection.
8032   for (auto &Induction : Legal->getInductionVars()) {
8033     InductionDescriptor &IndDes = Induction.second;
8034     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8035     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8036   }
8037 }
8038 
8039 void LoopVectorizationCostModel::collectInLoopReductions() {
8040   for (auto &Reduction : Legal->getReductionVars()) {
8041     PHINode *Phi = Reduction.first;
8042     RecurrenceDescriptor &RdxDesc = Reduction.second;
8043 
8044     // We don't collect reductions that are type promoted (yet).
8045     if (RdxDesc.getRecurrenceType() != Phi->getType())
8046       continue;
8047 
8048     // If the target would prefer this reduction to happen "in-loop", then we
8049     // want to record it as such.
8050     unsigned Opcode = RdxDesc.getOpcode();
8051     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8052         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8053                                    TargetTransformInfo::ReductionFlags()))
8054       continue;
8055 
8056     // Check that we can correctly put the reductions into the loop, by
8057     // finding the chain of operations that leads from the phi to the loop
8058     // exit value.
8059     SmallVector<Instruction *, 4> ReductionOperations =
8060         RdxDesc.getReductionOpChain(Phi, TheLoop);
8061     bool InLoop = !ReductionOperations.empty();
8062     if (InLoop) {
8063       InLoopReductionChains[Phi] = ReductionOperations;
8064       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8065       Instruction *LastChain = Phi;
8066       for (auto *I : ReductionOperations) {
8067         InLoopReductionImmediateChains[I] = LastChain;
8068         LastChain = I;
8069       }
8070     }
8071     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8072                       << " reduction for phi: " << *Phi << "\n");
8073   }
8074 }
8075 
8076 // TODO: we could return a pair of values that specify the max VF and
8077 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8078 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8079 // doesn't have a cost model that can choose which plan to execute if
8080 // more than one is generated.
8081 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8082                                  LoopVectorizationCostModel &CM) {
8083   unsigned WidestType;
8084   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8085   return WidestVectorRegBits / WidestType;
8086 }
8087 
8088 VectorizationFactor
8089 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8090   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8091   ElementCount VF = UserVF;
8092   // Outer loop handling: They may require CFG and instruction level
8093   // transformations before even evaluating whether vectorization is profitable.
8094   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8095   // the vectorization pipeline.
8096   if (!OrigLoop->isInnermost()) {
8097     // If the user doesn't provide a vectorization factor, determine a
8098     // reasonable one.
8099     if (UserVF.isZero()) {
8100       VF = ElementCount::getFixed(determineVPlanVF(
8101           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8102               .getFixedSize(),
8103           CM));
8104       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8105 
8106       // Make sure we have a VF > 1 for stress testing.
8107       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8108         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8109                           << "overriding computed VF.\n");
8110         VF = ElementCount::getFixed(4);
8111       }
8112     }
8113     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8114     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8115            "VF needs to be a power of two");
8116     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8117                       << "VF " << VF << " to build VPlans.\n");
8118     buildVPlans(VF, VF);
8119 
8120     // For VPlan build stress testing, we bail out after VPlan construction.
8121     if (VPlanBuildStressTest)
8122       return VectorizationFactor::Disabled();
8123 
8124     return {VF, 0 /*Cost*/};
8125   }
8126 
8127   LLVM_DEBUG(
8128       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8129                 "VPlan-native path.\n");
8130   return VectorizationFactor::Disabled();
8131 }
8132 
8133 Optional<VectorizationFactor>
8134 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8135   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8136   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8137   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8138     return None;
8139 
8140   // Invalidate interleave groups if all blocks of loop will be predicated.
8141   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8142       !useMaskedInterleavedAccesses(*TTI)) {
8143     LLVM_DEBUG(
8144         dbgs()
8145         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8146            "which requires masked-interleaved support.\n");
8147     if (CM.InterleaveInfo.invalidateGroups())
8148       // Invalidating interleave groups also requires invalidating all decisions
8149       // based on them, which includes widening decisions and uniform and scalar
8150       // values.
8151       CM.invalidateCostModelingDecisions();
8152   }
8153 
8154   ElementCount MaxUserVF =
8155       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8156   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8157   if (!UserVF.isZero() && UserVFIsLegal) {
8158     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8159            "VF needs to be a power of two");
8160     // Collect the instructions (and their associated costs) that will be more
8161     // profitable to scalarize.
8162     if (CM.selectUserVectorizationFactor(UserVF)) {
8163       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8164       CM.collectInLoopReductions();
8165       buildVPlansWithVPRecipes(UserVF, UserVF);
8166       LLVM_DEBUG(printPlans(dbgs()));
8167       return {{UserVF, 0}};
8168     } else
8169       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8170                               "InvalidCost", ORE, OrigLoop);
8171   }
8172 
8173   // Populate the set of Vectorization Factor Candidates.
8174   ElementCountSet VFCandidates;
8175   for (auto VF = ElementCount::getFixed(1);
8176        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8177     VFCandidates.insert(VF);
8178   for (auto VF = ElementCount::getScalable(1);
8179        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8180     VFCandidates.insert(VF);
8181 
8182   for (const auto &VF : VFCandidates) {
8183     // Collect Uniform and Scalar instructions after vectorization with VF.
8184     CM.collectUniformsAndScalars(VF);
8185 
8186     // Collect the instructions (and their associated costs) that will be more
8187     // profitable to scalarize.
8188     if (VF.isVector())
8189       CM.collectInstsToScalarize(VF);
8190   }
8191 
8192   CM.collectInLoopReductions();
8193   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8194   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8195 
8196   LLVM_DEBUG(printPlans(dbgs()));
8197   if (!MaxFactors.hasVector())
8198     return VectorizationFactor::Disabled();
8199 
8200   // Select the optimal vectorization factor.
8201   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8202 
8203   // Check if it is profitable to vectorize with runtime checks.
8204   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8205   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8206     bool PragmaThresholdReached =
8207         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8208     bool ThresholdReached =
8209         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8210     if ((ThresholdReached && !Hints.allowReordering()) ||
8211         PragmaThresholdReached) {
8212       ORE->emit([&]() {
8213         return OptimizationRemarkAnalysisAliasing(
8214                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8215                    OrigLoop->getHeader())
8216                << "loop not vectorized: cannot prove it is safe to reorder "
8217                   "memory operations";
8218       });
8219       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8220       Hints.emitRemarkWithHints();
8221       return VectorizationFactor::Disabled();
8222     }
8223   }
8224   return SelectedVF;
8225 }
8226 
8227 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
8228   assert(count_if(VPlans,
8229                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
8230              1 &&
8231          "Best VF has not a single VPlan.");
8232 
8233   for (const VPlanPtr &Plan : VPlans) {
8234     if (Plan->hasVF(VF))
8235       return *Plan.get();
8236   }
8237   llvm_unreachable("No plan found!");
8238 }
8239 
8240 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
8241                                            VPlan &BestVPlan,
8242                                            InnerLoopVectorizer &ILV,
8243                                            DominatorTree *DT) {
8244   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
8245                     << '\n');
8246 
8247   // Perform the actual loop transformation.
8248 
8249   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8250   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
8251   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8252   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8253   State.CanonicalIV = ILV.Induction;
8254 
8255   ILV.printDebugTracesAtStart();
8256 
8257   //===------------------------------------------------===//
8258   //
8259   // Notice: any optimization or new instruction that go
8260   // into the code below should also be implemented in
8261   // the cost-model.
8262   //
8263   //===------------------------------------------------===//
8264 
8265   // 2. Copy and widen instructions from the old loop into the new loop.
8266   BestVPlan.execute(&State);
8267 
8268   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8269   //    predication, updating analyses.
8270   ILV.fixVectorizedLoop(State);
8271 
8272   ILV.printDebugTracesAtEnd();
8273 }
8274 
8275 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8276 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8277   for (const auto &Plan : VPlans)
8278     if (PrintVPlansInDotFormat)
8279       Plan->printDOT(O);
8280     else
8281       Plan->print(O);
8282 }
8283 #endif
8284 
8285 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8286     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8287 
8288   // We create new control-flow for the vectorized loop, so the original exit
8289   // conditions will be dead after vectorization if it's only used by the
8290   // terminator
8291   SmallVector<BasicBlock*> ExitingBlocks;
8292   OrigLoop->getExitingBlocks(ExitingBlocks);
8293   for (auto *BB : ExitingBlocks) {
8294     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8295     if (!Cmp || !Cmp->hasOneUse())
8296       continue;
8297 
8298     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8299     if (!DeadInstructions.insert(Cmp).second)
8300       continue;
8301 
8302     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8303     // TODO: can recurse through operands in general
8304     for (Value *Op : Cmp->operands()) {
8305       if (isa<TruncInst>(Op) && Op->hasOneUse())
8306           DeadInstructions.insert(cast<Instruction>(Op));
8307     }
8308   }
8309 
8310   // We create new "steps" for induction variable updates to which the original
8311   // induction variables map. An original update instruction will be dead if
8312   // all its users except the induction variable are dead.
8313   auto *Latch = OrigLoop->getLoopLatch();
8314   for (auto &Induction : Legal->getInductionVars()) {
8315     PHINode *Ind = Induction.first;
8316     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8317 
8318     // If the tail is to be folded by masking, the primary induction variable,
8319     // if exists, isn't dead: it will be used for masking. Don't kill it.
8320     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8321       continue;
8322 
8323     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8324           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8325         }))
8326       DeadInstructions.insert(IndUpdate);
8327 
8328     // We record as "Dead" also the type-casting instructions we had identified
8329     // during induction analysis. We don't need any handling for them in the
8330     // vectorized loop because we have proven that, under a proper runtime
8331     // test guarding the vectorized loop, the value of the phi, and the casted
8332     // value of the phi, are the same. The last instruction in this casting chain
8333     // will get its scalar/vector/widened def from the scalar/vector/widened def
8334     // of the respective phi node. Any other casts in the induction def-use chain
8335     // have no other uses outside the phi update chain, and will be ignored.
8336     InductionDescriptor &IndDes = Induction.second;
8337     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8338     DeadInstructions.insert(Casts.begin(), Casts.end());
8339   }
8340 }
8341 
8342 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8343 
8344 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8345 
8346 Value *InnerLoopUnroller::getStepVector(Value *Val, Value *StartIdx,
8347                                         Value *Step,
8348                                         Instruction::BinaryOps BinOp) {
8349   // When unrolling and the VF is 1, we only need to add a simple scalar.
8350   Type *Ty = Val->getType();
8351   assert(!Ty->isVectorTy() && "Val must be a scalar");
8352 
8353   if (Ty->isFloatingPointTy()) {
8354     // Floating-point operations inherit FMF via the builder's flags.
8355     Value *MulOp = Builder.CreateFMul(StartIdx, Step);
8356     return Builder.CreateBinOp(BinOp, Val, MulOp);
8357   }
8358   return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), "induction");
8359 }
8360 
8361 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8362   SmallVector<Metadata *, 4> MDs;
8363   // Reserve first location for self reference to the LoopID metadata node.
8364   MDs.push_back(nullptr);
8365   bool IsUnrollMetadata = false;
8366   MDNode *LoopID = L->getLoopID();
8367   if (LoopID) {
8368     // First find existing loop unrolling disable metadata.
8369     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8370       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8371       if (MD) {
8372         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8373         IsUnrollMetadata =
8374             S && S->getString().startswith("llvm.loop.unroll.disable");
8375       }
8376       MDs.push_back(LoopID->getOperand(i));
8377     }
8378   }
8379 
8380   if (!IsUnrollMetadata) {
8381     // Add runtime unroll disable metadata.
8382     LLVMContext &Context = L->getHeader()->getContext();
8383     SmallVector<Metadata *, 1> DisableOperands;
8384     DisableOperands.push_back(
8385         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8386     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8387     MDs.push_back(DisableNode);
8388     MDNode *NewLoopID = MDNode::get(Context, MDs);
8389     // Set operand 0 to refer to the loop id itself.
8390     NewLoopID->replaceOperandWith(0, NewLoopID);
8391     L->setLoopID(NewLoopID);
8392   }
8393 }
8394 
8395 //===--------------------------------------------------------------------===//
8396 // EpilogueVectorizerMainLoop
8397 //===--------------------------------------------------------------------===//
8398 
8399 /// This function is partially responsible for generating the control flow
8400 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8401 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8402   MDNode *OrigLoopID = OrigLoop->getLoopID();
8403   Loop *Lp = createVectorLoopSkeleton("");
8404 
8405   // Generate the code to check the minimum iteration count of the vector
8406   // epilogue (see below).
8407   EPI.EpilogueIterationCountCheck =
8408       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8409   EPI.EpilogueIterationCountCheck->setName("iter.check");
8410 
8411   // Generate the code to check any assumptions that we've made for SCEV
8412   // expressions.
8413   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8414 
8415   // Generate the code that checks at runtime if arrays overlap. We put the
8416   // checks into a separate block to make the more common case of few elements
8417   // faster.
8418   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8419 
8420   // Generate the iteration count check for the main loop, *after* the check
8421   // for the epilogue loop, so that the path-length is shorter for the case
8422   // that goes directly through the vector epilogue. The longer-path length for
8423   // the main loop is compensated for, by the gain from vectorizing the larger
8424   // trip count. Note: the branch will get updated later on when we vectorize
8425   // the epilogue.
8426   EPI.MainLoopIterationCountCheck =
8427       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8428 
8429   // Generate the induction variable.
8430   OldInduction = Legal->getPrimaryInduction();
8431   Type *IdxTy = Legal->getWidestInductionType();
8432   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8433 
8434   IRBuilder<> B(&*Lp->getLoopPreheader()->getFirstInsertionPt());
8435   Value *Step = getRuntimeVF(B, IdxTy, VF * UF);
8436   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8437   EPI.VectorTripCount = CountRoundDown;
8438   Induction =
8439       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8440                               getDebugLocFromInstOrOperands(OldInduction));
8441 
8442   // Skip induction resume value creation here because they will be created in
8443   // the second pass. If we created them here, they wouldn't be used anyway,
8444   // because the vplan in the second pass still contains the inductions from the
8445   // original loop.
8446 
8447   return completeLoopSkeleton(Lp, OrigLoopID);
8448 }
8449 
8450 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8451   LLVM_DEBUG({
8452     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8453            << "Main Loop VF:" << EPI.MainLoopVF
8454            << ", Main Loop UF:" << EPI.MainLoopUF
8455            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8456            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8457   });
8458 }
8459 
8460 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8461   DEBUG_WITH_TYPE(VerboseDebug, {
8462     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8463   });
8464 }
8465 
8466 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8467     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8468   assert(L && "Expected valid Loop.");
8469   assert(Bypass && "Expected valid bypass basic block.");
8470   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8471   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8472   Value *Count = getOrCreateTripCount(L);
8473   // Reuse existing vector loop preheader for TC checks.
8474   // Note that new preheader block is generated for vector loop.
8475   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8476   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8477 
8478   // Generate code to check if the loop's trip count is less than VF * UF of the
8479   // main vector loop.
8480   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8481       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8482 
8483   Value *CheckMinIters = Builder.CreateICmp(
8484       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8485       "min.iters.check");
8486 
8487   if (!ForEpilogue)
8488     TCCheckBlock->setName("vector.main.loop.iter.check");
8489 
8490   // Create new preheader for vector loop.
8491   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8492                                    DT, LI, nullptr, "vector.ph");
8493 
8494   if (ForEpilogue) {
8495     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8496                                  DT->getNode(Bypass)->getIDom()) &&
8497            "TC check is expected to dominate Bypass");
8498 
8499     // Update dominator for Bypass & LoopExit.
8500     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8501     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8502       // For loops with multiple exits, there's no edge from the middle block
8503       // to exit blocks (as the epilogue must run) and thus no need to update
8504       // the immediate dominator of the exit blocks.
8505       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8506 
8507     LoopBypassBlocks.push_back(TCCheckBlock);
8508 
8509     // Save the trip count so we don't have to regenerate it in the
8510     // vec.epilog.iter.check. This is safe to do because the trip count
8511     // generated here dominates the vector epilog iter check.
8512     EPI.TripCount = Count;
8513   }
8514 
8515   ReplaceInstWithInst(
8516       TCCheckBlock->getTerminator(),
8517       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8518 
8519   return TCCheckBlock;
8520 }
8521 
8522 //===--------------------------------------------------------------------===//
8523 // EpilogueVectorizerEpilogueLoop
8524 //===--------------------------------------------------------------------===//
8525 
8526 /// This function is partially responsible for generating the control flow
8527 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8528 BasicBlock *
8529 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8530   MDNode *OrigLoopID = OrigLoop->getLoopID();
8531   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8532 
8533   // Now, compare the remaining count and if there aren't enough iterations to
8534   // execute the vectorized epilogue skip to the scalar part.
8535   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8536   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8537   LoopVectorPreHeader =
8538       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8539                  LI, nullptr, "vec.epilog.ph");
8540   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8541                                           VecEpilogueIterationCountCheck);
8542 
8543   // Adjust the control flow taking the state info from the main loop
8544   // vectorization into account.
8545   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8546          "expected this to be saved from the previous pass.");
8547   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8548       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8549 
8550   DT->changeImmediateDominator(LoopVectorPreHeader,
8551                                EPI.MainLoopIterationCountCheck);
8552 
8553   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8554       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8555 
8556   if (EPI.SCEVSafetyCheck)
8557     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8558         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8559   if (EPI.MemSafetyCheck)
8560     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8561         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8562 
8563   DT->changeImmediateDominator(
8564       VecEpilogueIterationCountCheck,
8565       VecEpilogueIterationCountCheck->getSinglePredecessor());
8566 
8567   DT->changeImmediateDominator(LoopScalarPreHeader,
8568                                EPI.EpilogueIterationCountCheck);
8569   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8570     // If there is an epilogue which must run, there's no edge from the
8571     // middle block to exit blocks  and thus no need to update the immediate
8572     // dominator of the exit blocks.
8573     DT->changeImmediateDominator(LoopExitBlock,
8574                                  EPI.EpilogueIterationCountCheck);
8575 
8576   // Keep track of bypass blocks, as they feed start values to the induction
8577   // phis in the scalar loop preheader.
8578   if (EPI.SCEVSafetyCheck)
8579     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8580   if (EPI.MemSafetyCheck)
8581     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8582   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8583 
8584   // Generate a resume induction for the vector epilogue and put it in the
8585   // vector epilogue preheader
8586   Type *IdxTy = Legal->getWidestInductionType();
8587   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8588                                          LoopVectorPreHeader->getFirstNonPHI());
8589   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8590   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8591                            EPI.MainLoopIterationCountCheck);
8592 
8593   // Generate the induction variable.
8594   OldInduction = Legal->getPrimaryInduction();
8595   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8596   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8597   Value *StartIdx = EPResumeVal;
8598   Induction =
8599       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8600                               getDebugLocFromInstOrOperands(OldInduction));
8601 
8602   // Generate induction resume values. These variables save the new starting
8603   // indexes for the scalar loop. They are used to test if there are any tail
8604   // iterations left once the vector loop has completed.
8605   // Note that when the vectorized epilogue is skipped due to iteration count
8606   // check, then the resume value for the induction variable comes from
8607   // the trip count of the main vector loop, hence passing the AdditionalBypass
8608   // argument.
8609   createInductionResumeValues(Lp, CountRoundDown,
8610                               {VecEpilogueIterationCountCheck,
8611                                EPI.VectorTripCount} /* AdditionalBypass */);
8612 
8613   AddRuntimeUnrollDisableMetaData(Lp);
8614   return completeLoopSkeleton(Lp, OrigLoopID);
8615 }
8616 
8617 BasicBlock *
8618 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8619     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8620 
8621   assert(EPI.TripCount &&
8622          "Expected trip count to have been safed in the first pass.");
8623   assert(
8624       (!isa<Instruction>(EPI.TripCount) ||
8625        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8626       "saved trip count does not dominate insertion point.");
8627   Value *TC = EPI.TripCount;
8628   IRBuilder<> Builder(Insert->getTerminator());
8629   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8630 
8631   // Generate code to check if the loop's trip count is less than VF * UF of the
8632   // vector epilogue loop.
8633   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8634       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8635 
8636   Value *CheckMinIters =
8637       Builder.CreateICmp(P, Count,
8638                          createStepForVF(Builder, Count->getType(),
8639                                          EPI.EpilogueVF, EPI.EpilogueUF),
8640                          "min.epilog.iters.check");
8641 
8642   ReplaceInstWithInst(
8643       Insert->getTerminator(),
8644       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8645 
8646   LoopBypassBlocks.push_back(Insert);
8647   return Insert;
8648 }
8649 
8650 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8651   LLVM_DEBUG({
8652     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8653            << "Epilogue Loop VF:" << EPI.EpilogueVF
8654            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8655   });
8656 }
8657 
8658 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8659   DEBUG_WITH_TYPE(VerboseDebug, {
8660     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8661   });
8662 }
8663 
8664 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8665     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8666   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8667   bool PredicateAtRangeStart = Predicate(Range.Start);
8668 
8669   for (ElementCount TmpVF = Range.Start * 2;
8670        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8671     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8672       Range.End = TmpVF;
8673       break;
8674     }
8675 
8676   return PredicateAtRangeStart;
8677 }
8678 
8679 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8680 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8681 /// of VF's starting at a given VF and extending it as much as possible. Each
8682 /// vectorization decision can potentially shorten this sub-range during
8683 /// buildVPlan().
8684 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8685                                            ElementCount MaxVF) {
8686   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8687   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8688     VFRange SubRange = {VF, MaxVFPlusOne};
8689     VPlans.push_back(buildVPlan(SubRange));
8690     VF = SubRange.End;
8691   }
8692 }
8693 
8694 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8695                                          VPlanPtr &Plan) {
8696   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8697 
8698   // Look for cached value.
8699   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8700   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8701   if (ECEntryIt != EdgeMaskCache.end())
8702     return ECEntryIt->second;
8703 
8704   VPValue *SrcMask = createBlockInMask(Src, Plan);
8705 
8706   // The terminator has to be a branch inst!
8707   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8708   assert(BI && "Unexpected terminator found");
8709 
8710   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8711     return EdgeMaskCache[Edge] = SrcMask;
8712 
8713   // If source is an exiting block, we know the exit edge is dynamically dead
8714   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8715   // adding uses of an otherwise potentially dead instruction.
8716   if (OrigLoop->isLoopExiting(Src))
8717     return EdgeMaskCache[Edge] = SrcMask;
8718 
8719   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8720   assert(EdgeMask && "No Edge Mask found for condition");
8721 
8722   if (BI->getSuccessor(0) != Dst)
8723     EdgeMask = Builder.createNot(EdgeMask);
8724 
8725   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8726     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8727     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8728     // The select version does not introduce new UB if SrcMask is false and
8729     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8730     VPValue *False = Plan->getOrAddVPValue(
8731         ConstantInt::getFalse(BI->getCondition()->getType()));
8732     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8733   }
8734 
8735   return EdgeMaskCache[Edge] = EdgeMask;
8736 }
8737 
8738 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8739   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8740 
8741   // Look for cached value.
8742   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8743   if (BCEntryIt != BlockMaskCache.end())
8744     return BCEntryIt->second;
8745 
8746   // All-one mask is modelled as no-mask following the convention for masked
8747   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8748   VPValue *BlockMask = nullptr;
8749 
8750   if (OrigLoop->getHeader() == BB) {
8751     if (!CM.blockNeedsPredication(BB))
8752       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8753 
8754     // Create the block in mask as the first non-phi instruction in the block.
8755     VPBuilder::InsertPointGuard Guard(Builder);
8756     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8757     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8758 
8759     // Introduce the early-exit compare IV <= BTC to form header block mask.
8760     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8761     // Start by constructing the desired canonical IV.
8762     VPValue *IV = nullptr;
8763     if (Legal->getPrimaryInduction())
8764       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8765     else {
8766       auto *IVRecipe = new VPWidenCanonicalIVRecipe();
8767       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8768       IV = IVRecipe;
8769     }
8770     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8771     bool TailFolded = !CM.isScalarEpilogueAllowed();
8772 
8773     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8774       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8775       // as a second argument, we only pass the IV here and extract the
8776       // tripcount from the transform state where codegen of the VP instructions
8777       // happen.
8778       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8779     } else {
8780       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8781     }
8782     return BlockMaskCache[BB] = BlockMask;
8783   }
8784 
8785   // This is the block mask. We OR all incoming edges.
8786   for (auto *Predecessor : predecessors(BB)) {
8787     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8788     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8789       return BlockMaskCache[BB] = EdgeMask;
8790 
8791     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8792       BlockMask = EdgeMask;
8793       continue;
8794     }
8795 
8796     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8797   }
8798 
8799   return BlockMaskCache[BB] = BlockMask;
8800 }
8801 
8802 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8803                                                 ArrayRef<VPValue *> Operands,
8804                                                 VFRange &Range,
8805                                                 VPlanPtr &Plan) {
8806   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8807          "Must be called with either a load or store");
8808 
8809   auto willWiden = [&](ElementCount VF) -> bool {
8810     if (VF.isScalar())
8811       return false;
8812     LoopVectorizationCostModel::InstWidening Decision =
8813         CM.getWideningDecision(I, VF);
8814     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8815            "CM decision should be taken at this point.");
8816     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8817       return true;
8818     if (CM.isScalarAfterVectorization(I, VF) ||
8819         CM.isProfitableToScalarize(I, VF))
8820       return false;
8821     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8822   };
8823 
8824   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8825     return nullptr;
8826 
8827   VPValue *Mask = nullptr;
8828   if (Legal->isMaskRequired(I))
8829     Mask = createBlockInMask(I->getParent(), Plan);
8830 
8831   // Determine if the pointer operand of the access is either consecutive or
8832   // reverse consecutive.
8833   LoopVectorizationCostModel::InstWidening Decision =
8834       CM.getWideningDecision(I, Range.Start);
8835   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8836   bool Consecutive =
8837       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8838 
8839   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8840     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8841                                               Consecutive, Reverse);
8842 
8843   StoreInst *Store = cast<StoreInst>(I);
8844   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8845                                             Mask, Consecutive, Reverse);
8846 }
8847 
8848 VPWidenIntOrFpInductionRecipe *
8849 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8850                                            ArrayRef<VPValue *> Operands) const {
8851   // Check if this is an integer or fp induction. If so, build the recipe that
8852   // produces its scalar and vector values.
8853   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8854   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8855       II.getKind() == InductionDescriptor::IK_FpInduction) {
8856     assert(II.getStartValue() ==
8857            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8858     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8859     return new VPWidenIntOrFpInductionRecipe(
8860         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8861   }
8862 
8863   return nullptr;
8864 }
8865 
8866 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8867     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8868     VPlan &Plan) const {
8869   // Optimize the special case where the source is a constant integer
8870   // induction variable. Notice that we can only optimize the 'trunc' case
8871   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8872   // (c) other casts depend on pointer size.
8873 
8874   // Determine whether \p K is a truncation based on an induction variable that
8875   // can be optimized.
8876   auto isOptimizableIVTruncate =
8877       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8878     return [=](ElementCount VF) -> bool {
8879       return CM.isOptimizableIVTruncate(K, VF);
8880     };
8881   };
8882 
8883   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8884           isOptimizableIVTruncate(I), Range)) {
8885 
8886     InductionDescriptor II =
8887         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8888     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8889     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8890                                              Start, nullptr, I);
8891   }
8892   return nullptr;
8893 }
8894 
8895 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8896                                                 ArrayRef<VPValue *> Operands,
8897                                                 VPlanPtr &Plan) {
8898   // If all incoming values are equal, the incoming VPValue can be used directly
8899   // instead of creating a new VPBlendRecipe.
8900   VPValue *FirstIncoming = Operands[0];
8901   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8902         return FirstIncoming == Inc;
8903       })) {
8904     return Operands[0];
8905   }
8906 
8907   // We know that all PHIs in non-header blocks are converted into selects, so
8908   // we don't have to worry about the insertion order and we can just use the
8909   // builder. At this point we generate the predication tree. There may be
8910   // duplications since this is a simple recursive scan, but future
8911   // optimizations will clean it up.
8912   SmallVector<VPValue *, 2> OperandsWithMask;
8913   unsigned NumIncoming = Phi->getNumIncomingValues();
8914 
8915   for (unsigned In = 0; In < NumIncoming; In++) {
8916     VPValue *EdgeMask =
8917       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8918     assert((EdgeMask || NumIncoming == 1) &&
8919            "Multiple predecessors with one having a full mask");
8920     OperandsWithMask.push_back(Operands[In]);
8921     if (EdgeMask)
8922       OperandsWithMask.push_back(EdgeMask);
8923   }
8924   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8925 }
8926 
8927 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8928                                                    ArrayRef<VPValue *> Operands,
8929                                                    VFRange &Range) const {
8930 
8931   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8932       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8933       Range);
8934 
8935   if (IsPredicated)
8936     return nullptr;
8937 
8938   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8939   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8940              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8941              ID == Intrinsic::pseudoprobe ||
8942              ID == Intrinsic::experimental_noalias_scope_decl))
8943     return nullptr;
8944 
8945   auto willWiden = [&](ElementCount VF) -> bool {
8946     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8947     // The following case may be scalarized depending on the VF.
8948     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8949     // version of the instruction.
8950     // Is it beneficial to perform intrinsic call compared to lib call?
8951     bool NeedToScalarize = false;
8952     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8953     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8954     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8955     return UseVectorIntrinsic || !NeedToScalarize;
8956   };
8957 
8958   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8959     return nullptr;
8960 
8961   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8962   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8963 }
8964 
8965 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8966   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8967          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8968   // Instruction should be widened, unless it is scalar after vectorization,
8969   // scalarization is profitable or it is predicated.
8970   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8971     return CM.isScalarAfterVectorization(I, VF) ||
8972            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8973   };
8974   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8975                                                              Range);
8976 }
8977 
8978 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8979                                            ArrayRef<VPValue *> Operands) const {
8980   auto IsVectorizableOpcode = [](unsigned Opcode) {
8981     switch (Opcode) {
8982     case Instruction::Add:
8983     case Instruction::And:
8984     case Instruction::AShr:
8985     case Instruction::BitCast:
8986     case Instruction::FAdd:
8987     case Instruction::FCmp:
8988     case Instruction::FDiv:
8989     case Instruction::FMul:
8990     case Instruction::FNeg:
8991     case Instruction::FPExt:
8992     case Instruction::FPToSI:
8993     case Instruction::FPToUI:
8994     case Instruction::FPTrunc:
8995     case Instruction::FRem:
8996     case Instruction::FSub:
8997     case Instruction::ICmp:
8998     case Instruction::IntToPtr:
8999     case Instruction::LShr:
9000     case Instruction::Mul:
9001     case Instruction::Or:
9002     case Instruction::PtrToInt:
9003     case Instruction::SDiv:
9004     case Instruction::Select:
9005     case Instruction::SExt:
9006     case Instruction::Shl:
9007     case Instruction::SIToFP:
9008     case Instruction::SRem:
9009     case Instruction::Sub:
9010     case Instruction::Trunc:
9011     case Instruction::UDiv:
9012     case Instruction::UIToFP:
9013     case Instruction::URem:
9014     case Instruction::Xor:
9015     case Instruction::ZExt:
9016       return true;
9017     }
9018     return false;
9019   };
9020 
9021   if (!IsVectorizableOpcode(I->getOpcode()))
9022     return nullptr;
9023 
9024   // Success: widen this instruction.
9025   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
9026 }
9027 
9028 void VPRecipeBuilder::fixHeaderPhis() {
9029   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
9030   for (VPWidenPHIRecipe *R : PhisToFix) {
9031     auto *PN = cast<PHINode>(R->getUnderlyingValue());
9032     VPRecipeBase *IncR =
9033         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
9034     R->addOperand(IncR->getVPSingleValue());
9035   }
9036 }
9037 
9038 VPBasicBlock *VPRecipeBuilder::handleReplication(
9039     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
9040     VPlanPtr &Plan) {
9041   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
9042       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
9043       Range);
9044 
9045   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
9046       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
9047 
9048   // Even if the instruction is not marked as uniform, there are certain
9049   // intrinsic calls that can be effectively treated as such, so we check for
9050   // them here. Conservatively, we only do this for scalable vectors, since
9051   // for fixed-width VFs we can always fall back on full scalarization.
9052   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9053     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9054     case Intrinsic::assume:
9055     case Intrinsic::lifetime_start:
9056     case Intrinsic::lifetime_end:
9057       // For scalable vectors if one of the operands is variant then we still
9058       // want to mark as uniform, which will generate one instruction for just
9059       // the first lane of the vector. We can't scalarize the call in the same
9060       // way as for fixed-width vectors because we don't know how many lanes
9061       // there are.
9062       //
9063       // The reasons for doing it this way for scalable vectors are:
9064       //   1. For the assume intrinsic generating the instruction for the first
9065       //      lane is still be better than not generating any at all. For
9066       //      example, the input may be a splat across all lanes.
9067       //   2. For the lifetime start/end intrinsics the pointer operand only
9068       //      does anything useful when the input comes from a stack object,
9069       //      which suggests it should always be uniform. For non-stack objects
9070       //      the effect is to poison the object, which still allows us to
9071       //      remove the call.
9072       IsUniform = true;
9073       break;
9074     default:
9075       break;
9076     }
9077   }
9078 
9079   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9080                                        IsUniform, IsPredicated);
9081   setRecipe(I, Recipe);
9082   Plan->addVPValue(I, Recipe);
9083 
9084   // Find if I uses a predicated instruction. If so, it will use its scalar
9085   // value. Avoid hoisting the insert-element which packs the scalar value into
9086   // a vector value, as that happens iff all users use the vector value.
9087   for (VPValue *Op : Recipe->operands()) {
9088     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9089     if (!PredR)
9090       continue;
9091     auto *RepR =
9092         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9093     assert(RepR->isPredicated() &&
9094            "expected Replicate recipe to be predicated");
9095     RepR->setAlsoPack(false);
9096   }
9097 
9098   // Finalize the recipe for Instr, first if it is not predicated.
9099   if (!IsPredicated) {
9100     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9101     VPBB->appendRecipe(Recipe);
9102     return VPBB;
9103   }
9104   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9105   assert(VPBB->getSuccessors().empty() &&
9106          "VPBB has successors when handling predicated replication.");
9107   // Record predicated instructions for above packing optimizations.
9108   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9109   VPBlockUtils::insertBlockAfter(Region, VPBB);
9110   auto *RegSucc = new VPBasicBlock();
9111   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9112   return RegSucc;
9113 }
9114 
9115 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9116                                                       VPRecipeBase *PredRecipe,
9117                                                       VPlanPtr &Plan) {
9118   // Instructions marked for predication are replicated and placed under an
9119   // if-then construct to prevent side-effects.
9120 
9121   // Generate recipes to compute the block mask for this region.
9122   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9123 
9124   // Build the triangular if-then region.
9125   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9126   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9127   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9128   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9129   auto *PHIRecipe = Instr->getType()->isVoidTy()
9130                         ? nullptr
9131                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9132   if (PHIRecipe) {
9133     Plan->removeVPValueFor(Instr);
9134     Plan->addVPValue(Instr, PHIRecipe);
9135   }
9136   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9137   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9138   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9139 
9140   // Note: first set Entry as region entry and then connect successors starting
9141   // from it in order, to propagate the "parent" of each VPBasicBlock.
9142   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9143   VPBlockUtils::connectBlocks(Pred, Exit);
9144 
9145   return Region;
9146 }
9147 
9148 VPRecipeOrVPValueTy
9149 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9150                                         ArrayRef<VPValue *> Operands,
9151                                         VFRange &Range, VPlanPtr &Plan) {
9152   // First, check for specific widening recipes that deal with calls, memory
9153   // operations, inductions and Phi nodes.
9154   if (auto *CI = dyn_cast<CallInst>(Instr))
9155     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9156 
9157   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9158     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9159 
9160   VPRecipeBase *Recipe;
9161   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9162     if (Phi->getParent() != OrigLoop->getHeader())
9163       return tryToBlend(Phi, Operands, Plan);
9164     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9165       return toVPRecipeResult(Recipe);
9166 
9167     VPWidenPHIRecipe *PhiRecipe = nullptr;
9168     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9169       VPValue *StartV = Operands[0];
9170       if (Legal->isReductionVariable(Phi)) {
9171         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9172         assert(RdxDesc.getRecurrenceStartValue() ==
9173                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9174         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9175                                              CM.isInLoopReduction(Phi),
9176                                              CM.useOrderedReductions(RdxDesc));
9177       } else {
9178         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9179       }
9180 
9181       // Record the incoming value from the backedge, so we can add the incoming
9182       // value from the backedge after all recipes have been created.
9183       recordRecipeOf(cast<Instruction>(
9184           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9185       PhisToFix.push_back(PhiRecipe);
9186     } else {
9187       // TODO: record start and backedge value for remaining pointer induction
9188       // phis.
9189       assert(Phi->getType()->isPointerTy() &&
9190              "only pointer phis should be handled here");
9191       PhiRecipe = new VPWidenPHIRecipe(Phi);
9192     }
9193 
9194     return toVPRecipeResult(PhiRecipe);
9195   }
9196 
9197   if (isa<TruncInst>(Instr) &&
9198       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9199                                                Range, *Plan)))
9200     return toVPRecipeResult(Recipe);
9201 
9202   if (!shouldWiden(Instr, Range))
9203     return nullptr;
9204 
9205   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9206     return toVPRecipeResult(new VPWidenGEPRecipe(
9207         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9208 
9209   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9210     bool InvariantCond =
9211         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9212     return toVPRecipeResult(new VPWidenSelectRecipe(
9213         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9214   }
9215 
9216   return toVPRecipeResult(tryToWiden(Instr, Operands));
9217 }
9218 
9219 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9220                                                         ElementCount MaxVF) {
9221   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9222 
9223   // Collect instructions from the original loop that will become trivially dead
9224   // in the vectorized loop. We don't need to vectorize these instructions. For
9225   // example, original induction update instructions can become dead because we
9226   // separately emit induction "steps" when generating code for the new loop.
9227   // Similarly, we create a new latch condition when setting up the structure
9228   // of the new loop, so the old one can become dead.
9229   SmallPtrSet<Instruction *, 4> DeadInstructions;
9230   collectTriviallyDeadInstructions(DeadInstructions);
9231 
9232   // Add assume instructions we need to drop to DeadInstructions, to prevent
9233   // them from being added to the VPlan.
9234   // TODO: We only need to drop assumes in blocks that get flattend. If the
9235   // control flow is preserved, we should keep them.
9236   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9237   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9238 
9239   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9240   // Dead instructions do not need sinking. Remove them from SinkAfter.
9241   for (Instruction *I : DeadInstructions)
9242     SinkAfter.erase(I);
9243 
9244   // Cannot sink instructions after dead instructions (there won't be any
9245   // recipes for them). Instead, find the first non-dead previous instruction.
9246   for (auto &P : Legal->getSinkAfter()) {
9247     Instruction *SinkTarget = P.second;
9248     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9249     (void)FirstInst;
9250     while (DeadInstructions.contains(SinkTarget)) {
9251       assert(
9252           SinkTarget != FirstInst &&
9253           "Must find a live instruction (at least the one feeding the "
9254           "first-order recurrence PHI) before reaching beginning of the block");
9255       SinkTarget = SinkTarget->getPrevNode();
9256       assert(SinkTarget != P.first &&
9257              "sink source equals target, no sinking required");
9258     }
9259     P.second = SinkTarget;
9260   }
9261 
9262   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9263   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9264     VFRange SubRange = {VF, MaxVFPlusOne};
9265     VPlans.push_back(
9266         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9267     VF = SubRange.End;
9268   }
9269 }
9270 
9271 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9272     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9273     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9274 
9275   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9276 
9277   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9278 
9279   // ---------------------------------------------------------------------------
9280   // Pre-construction: record ingredients whose recipes we'll need to further
9281   // process after constructing the initial VPlan.
9282   // ---------------------------------------------------------------------------
9283 
9284   // Mark instructions we'll need to sink later and their targets as
9285   // ingredients whose recipe we'll need to record.
9286   for (auto &Entry : SinkAfter) {
9287     RecipeBuilder.recordRecipeOf(Entry.first);
9288     RecipeBuilder.recordRecipeOf(Entry.second);
9289   }
9290   for (auto &Reduction : CM.getInLoopReductionChains()) {
9291     PHINode *Phi = Reduction.first;
9292     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9293     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9294 
9295     RecipeBuilder.recordRecipeOf(Phi);
9296     for (auto &R : ReductionOperations) {
9297       RecipeBuilder.recordRecipeOf(R);
9298       // For min/max reducitons, where we have a pair of icmp/select, we also
9299       // need to record the ICmp recipe, so it can be removed later.
9300       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9301              "Only min/max recurrences allowed for inloop reductions");
9302       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9303         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9304     }
9305   }
9306 
9307   // For each interleave group which is relevant for this (possibly trimmed)
9308   // Range, add it to the set of groups to be later applied to the VPlan and add
9309   // placeholders for its members' Recipes which we'll be replacing with a
9310   // single VPInterleaveRecipe.
9311   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9312     auto applyIG = [IG, this](ElementCount VF) -> bool {
9313       return (VF.isVector() && // Query is illegal for VF == 1
9314               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9315                   LoopVectorizationCostModel::CM_Interleave);
9316     };
9317     if (!getDecisionAndClampRange(applyIG, Range))
9318       continue;
9319     InterleaveGroups.insert(IG);
9320     for (unsigned i = 0; i < IG->getFactor(); i++)
9321       if (Instruction *Member = IG->getMember(i))
9322         RecipeBuilder.recordRecipeOf(Member);
9323   };
9324 
9325   // ---------------------------------------------------------------------------
9326   // Build initial VPlan: Scan the body of the loop in a topological order to
9327   // visit each basic block after having visited its predecessor basic blocks.
9328   // ---------------------------------------------------------------------------
9329 
9330   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9331   auto Plan = std::make_unique<VPlan>();
9332 
9333   // Scan the body of the loop in a topological order to visit each basic block
9334   // after having visited its predecessor basic blocks.
9335   LoopBlocksDFS DFS(OrigLoop);
9336   DFS.perform(LI);
9337 
9338   VPBasicBlock *VPBB = nullptr;
9339   VPBasicBlock *HeaderVPBB = nullptr;
9340   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9341   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9342     // Relevant instructions from basic block BB will be grouped into VPRecipe
9343     // ingredients and fill a new VPBasicBlock.
9344     unsigned VPBBsForBB = 0;
9345     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9346     if (VPBB)
9347       VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9348     else {
9349       Plan->setEntry(FirstVPBBForBB);
9350       HeaderVPBB = FirstVPBBForBB;
9351     }
9352     VPBB = FirstVPBBForBB;
9353     Builder.setInsertPoint(VPBB);
9354 
9355     // Introduce each ingredient into VPlan.
9356     // TODO: Model and preserve debug instrinsics in VPlan.
9357     for (Instruction &I : BB->instructionsWithoutDebug()) {
9358       Instruction *Instr = &I;
9359 
9360       // First filter out irrelevant instructions, to ensure no recipes are
9361       // built for them.
9362       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9363         continue;
9364 
9365       SmallVector<VPValue *, 4> Operands;
9366       auto *Phi = dyn_cast<PHINode>(Instr);
9367       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9368         Operands.push_back(Plan->getOrAddVPValue(
9369             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9370       } else {
9371         auto OpRange = Plan->mapToVPValues(Instr->operands());
9372         Operands = {OpRange.begin(), OpRange.end()};
9373       }
9374       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9375               Instr, Operands, Range, Plan)) {
9376         // If Instr can be simplified to an existing VPValue, use it.
9377         if (RecipeOrValue.is<VPValue *>()) {
9378           auto *VPV = RecipeOrValue.get<VPValue *>();
9379           Plan->addVPValue(Instr, VPV);
9380           // If the re-used value is a recipe, register the recipe for the
9381           // instruction, in case the recipe for Instr needs to be recorded.
9382           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9383             RecipeBuilder.setRecipe(Instr, R);
9384           continue;
9385         }
9386         // Otherwise, add the new recipe.
9387         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9388         for (auto *Def : Recipe->definedValues()) {
9389           auto *UV = Def->getUnderlyingValue();
9390           Plan->addVPValue(UV, Def);
9391         }
9392 
9393         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9394             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9395           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9396           // of the header block. That can happen for truncates of induction
9397           // variables. Those recipes are moved to the phi section of the header
9398           // block after applying SinkAfter, which relies on the original
9399           // position of the trunc.
9400           assert(isa<TruncInst>(Instr));
9401           InductionsToMove.push_back(
9402               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9403         }
9404         RecipeBuilder.setRecipe(Instr, Recipe);
9405         VPBB->appendRecipe(Recipe);
9406         continue;
9407       }
9408 
9409       // Otherwise, if all widening options failed, Instruction is to be
9410       // replicated. This may create a successor for VPBB.
9411       VPBasicBlock *NextVPBB =
9412           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9413       if (NextVPBB != VPBB) {
9414         VPBB = NextVPBB;
9415         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9416                                     : "");
9417       }
9418     }
9419   }
9420 
9421   assert(isa<VPBasicBlock>(Plan->getEntry()) &&
9422          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9423          "entry block must be set to a non-empty VPBasicBlock");
9424   RecipeBuilder.fixHeaderPhis();
9425 
9426   // ---------------------------------------------------------------------------
9427   // Transform initial VPlan: Apply previously taken decisions, in order, to
9428   // bring the VPlan to its final state.
9429   // ---------------------------------------------------------------------------
9430 
9431   // Apply Sink-After legal constraints.
9432   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9433     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9434     if (Region && Region->isReplicator()) {
9435       assert(Region->getNumSuccessors() == 1 &&
9436              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9437       assert(R->getParent()->size() == 1 &&
9438              "A recipe in an original replicator region must be the only "
9439              "recipe in its block");
9440       return Region;
9441     }
9442     return nullptr;
9443   };
9444   for (auto &Entry : SinkAfter) {
9445     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9446     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9447 
9448     auto *TargetRegion = GetReplicateRegion(Target);
9449     auto *SinkRegion = GetReplicateRegion(Sink);
9450     if (!SinkRegion) {
9451       // If the sink source is not a replicate region, sink the recipe directly.
9452       if (TargetRegion) {
9453         // The target is in a replication region, make sure to move Sink to
9454         // the block after it, not into the replication region itself.
9455         VPBasicBlock *NextBlock =
9456             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9457         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9458       } else
9459         Sink->moveAfter(Target);
9460       continue;
9461     }
9462 
9463     // The sink source is in a replicate region. Unhook the region from the CFG.
9464     auto *SinkPred = SinkRegion->getSinglePredecessor();
9465     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9466     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9467     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9468     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9469 
9470     if (TargetRegion) {
9471       // The target recipe is also in a replicate region, move the sink region
9472       // after the target region.
9473       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9474       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9475       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9476       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9477     } else {
9478       // The sink source is in a replicate region, we need to move the whole
9479       // replicate region, which should only contain a single recipe in the
9480       // main block.
9481       auto *SplitBlock =
9482           Target->getParent()->splitAt(std::next(Target->getIterator()));
9483 
9484       auto *SplitPred = SplitBlock->getSinglePredecessor();
9485 
9486       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9487       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9488       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9489       if (VPBB == SplitPred)
9490         VPBB = SplitBlock;
9491     }
9492   }
9493 
9494   // Now that sink-after is done, move induction recipes for optimized truncates
9495   // to the phi section of the header block.
9496   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9497     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9498 
9499   // Adjust the recipes for any inloop reductions.
9500   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9501 
9502   // Introduce a recipe to combine the incoming and previous values of a
9503   // first-order recurrence.
9504   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9505     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9506     if (!RecurPhi)
9507       continue;
9508 
9509     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9510     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9511     auto *Region = GetReplicateRegion(PrevRecipe);
9512     if (Region)
9513       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9514     if (Region || PrevRecipe->isPhi())
9515       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9516     else
9517       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9518 
9519     auto *RecurSplice = cast<VPInstruction>(
9520         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9521                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9522 
9523     RecurPhi->replaceAllUsesWith(RecurSplice);
9524     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9525     // all users.
9526     RecurSplice->setOperand(0, RecurPhi);
9527   }
9528 
9529   // Interleave memory: for each Interleave Group we marked earlier as relevant
9530   // for this VPlan, replace the Recipes widening its memory instructions with a
9531   // single VPInterleaveRecipe at its insertion point.
9532   for (auto IG : InterleaveGroups) {
9533     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9534         RecipeBuilder.getRecipe(IG->getInsertPos()));
9535     SmallVector<VPValue *, 4> StoredValues;
9536     for (unsigned i = 0; i < IG->getFactor(); ++i)
9537       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9538         auto *StoreR =
9539             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9540         StoredValues.push_back(StoreR->getStoredValue());
9541       }
9542 
9543     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9544                                         Recipe->getMask());
9545     VPIG->insertBefore(Recipe);
9546     unsigned J = 0;
9547     for (unsigned i = 0; i < IG->getFactor(); ++i)
9548       if (Instruction *Member = IG->getMember(i)) {
9549         if (!Member->getType()->isVoidTy()) {
9550           VPValue *OriginalV = Plan->getVPValue(Member);
9551           Plan->removeVPValueFor(Member);
9552           Plan->addVPValue(Member, VPIG->getVPValue(J));
9553           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9554           J++;
9555         }
9556         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9557       }
9558   }
9559 
9560   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9561   // in ways that accessing values using original IR values is incorrect.
9562   Plan->disableValue2VPValue();
9563 
9564   VPlanTransforms::sinkScalarOperands(*Plan);
9565   VPlanTransforms::mergeReplicateRegions(*Plan);
9566 
9567   std::string PlanName;
9568   raw_string_ostream RSO(PlanName);
9569   ElementCount VF = Range.Start;
9570   Plan->addVF(VF);
9571   RSO << "Initial VPlan for VF={" << VF;
9572   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9573     Plan->addVF(VF);
9574     RSO << "," << VF;
9575   }
9576   RSO << "},UF>=1";
9577   RSO.flush();
9578   Plan->setName(PlanName);
9579 
9580   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9581   return Plan;
9582 }
9583 
9584 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9585   // Outer loop handling: They may require CFG and instruction level
9586   // transformations before even evaluating whether vectorization is profitable.
9587   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9588   // the vectorization pipeline.
9589   assert(!OrigLoop->isInnermost());
9590   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9591 
9592   // Create new empty VPlan
9593   auto Plan = std::make_unique<VPlan>();
9594 
9595   // Build hierarchical CFG
9596   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9597   HCFGBuilder.buildHierarchicalCFG();
9598 
9599   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9600        VF *= 2)
9601     Plan->addVF(VF);
9602 
9603   if (EnableVPlanPredication) {
9604     VPlanPredicator VPP(*Plan);
9605     VPP.predicate();
9606 
9607     // Avoid running transformation to recipes until masked code generation in
9608     // VPlan-native path is in place.
9609     return Plan;
9610   }
9611 
9612   SmallPtrSet<Instruction *, 1> DeadInstructions;
9613   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9614                                              Legal->getInductionVars(),
9615                                              DeadInstructions, *PSE.getSE());
9616   return Plan;
9617 }
9618 
9619 // Adjust the recipes for reductions. For in-loop reductions the chain of
9620 // instructions leading from the loop exit instr to the phi need to be converted
9621 // to reductions, with one operand being vector and the other being the scalar
9622 // reduction chain. For other reductions, a select is introduced between the phi
9623 // and live-out recipes when folding the tail.
9624 void LoopVectorizationPlanner::adjustRecipesForReductions(
9625     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9626     ElementCount MinVF) {
9627   for (auto &Reduction : CM.getInLoopReductionChains()) {
9628     PHINode *Phi = Reduction.first;
9629     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9630     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9631 
9632     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9633       continue;
9634 
9635     // ReductionOperations are orders top-down from the phi's use to the
9636     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9637     // which of the two operands will remain scalar and which will be reduced.
9638     // For minmax the chain will be the select instructions.
9639     Instruction *Chain = Phi;
9640     for (Instruction *R : ReductionOperations) {
9641       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9642       RecurKind Kind = RdxDesc.getRecurrenceKind();
9643 
9644       VPValue *ChainOp = Plan->getVPValue(Chain);
9645       unsigned FirstOpId;
9646       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9647              "Only min/max recurrences allowed for inloop reductions");
9648       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9649         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9650                "Expected to replace a VPWidenSelectSC");
9651         FirstOpId = 1;
9652       } else {
9653         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9654                "Expected to replace a VPWidenSC");
9655         FirstOpId = 0;
9656       }
9657       unsigned VecOpId =
9658           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9659       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9660 
9661       auto *CondOp = CM.foldTailByMasking()
9662                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9663                          : nullptr;
9664       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9665           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9666       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9667       Plan->removeVPValueFor(R);
9668       Plan->addVPValue(R, RedRecipe);
9669       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9670       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9671       WidenRecipe->eraseFromParent();
9672 
9673       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9674         VPRecipeBase *CompareRecipe =
9675             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9676         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9677                "Expected to replace a VPWidenSC");
9678         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9679                "Expected no remaining users");
9680         CompareRecipe->eraseFromParent();
9681       }
9682       Chain = R;
9683     }
9684   }
9685 
9686   // If tail is folded by masking, introduce selects between the phi
9687   // and the live-out instruction of each reduction, at the end of the latch.
9688   if (CM.foldTailByMasking()) {
9689     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9690       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9691       if (!PhiR || PhiR->isInLoop())
9692         continue;
9693       Builder.setInsertPoint(LatchVPBB);
9694       VPValue *Cond =
9695           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9696       VPValue *Red = PhiR->getBackedgeValue();
9697       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9698     }
9699   }
9700 }
9701 
9702 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9703 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9704                                VPSlotTracker &SlotTracker) const {
9705   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9706   IG->getInsertPos()->printAsOperand(O, false);
9707   O << ", ";
9708   getAddr()->printAsOperand(O, SlotTracker);
9709   VPValue *Mask = getMask();
9710   if (Mask) {
9711     O << ", ";
9712     Mask->printAsOperand(O, SlotTracker);
9713   }
9714 
9715   unsigned OpIdx = 0;
9716   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9717     if (!IG->getMember(i))
9718       continue;
9719     if (getNumStoreOperands() > 0) {
9720       O << "\n" << Indent << "  store ";
9721       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9722       O << " to index " << i;
9723     } else {
9724       O << "\n" << Indent << "  ";
9725       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9726       O << " = load from index " << i;
9727     }
9728     ++OpIdx;
9729   }
9730 }
9731 #endif
9732 
9733 void VPWidenCallRecipe::execute(VPTransformState &State) {
9734   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9735                                   *this, State);
9736 }
9737 
9738 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9739   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9740                                     this, *this, InvariantCond, State);
9741 }
9742 
9743 void VPWidenRecipe::execute(VPTransformState &State) {
9744   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9745 }
9746 
9747 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9748   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9749                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9750                       IsIndexLoopInvariant, State);
9751 }
9752 
9753 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9754   assert(!State.Instance && "Int or FP induction being replicated.");
9755   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9756                                    getTruncInst(), getVPValue(0),
9757                                    getCastValue(), State);
9758 }
9759 
9760 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9761   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9762                                  State);
9763 }
9764 
9765 void VPBlendRecipe::execute(VPTransformState &State) {
9766   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9767   // We know that all PHIs in non-header blocks are converted into
9768   // selects, so we don't have to worry about the insertion order and we
9769   // can just use the builder.
9770   // At this point we generate the predication tree. There may be
9771   // duplications since this is a simple recursive scan, but future
9772   // optimizations will clean it up.
9773 
9774   unsigned NumIncoming = getNumIncomingValues();
9775 
9776   // Generate a sequence of selects of the form:
9777   // SELECT(Mask3, In3,
9778   //        SELECT(Mask2, In2,
9779   //               SELECT(Mask1, In1,
9780   //                      In0)))
9781   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9782   // are essentially undef are taken from In0.
9783   InnerLoopVectorizer::VectorParts Entry(State.UF);
9784   for (unsigned In = 0; In < NumIncoming; ++In) {
9785     for (unsigned Part = 0; Part < State.UF; ++Part) {
9786       // We might have single edge PHIs (blocks) - use an identity
9787       // 'select' for the first PHI operand.
9788       Value *In0 = State.get(getIncomingValue(In), Part);
9789       if (In == 0)
9790         Entry[Part] = In0; // Initialize with the first incoming value.
9791       else {
9792         // Select between the current value and the previous incoming edge
9793         // based on the incoming mask.
9794         Value *Cond = State.get(getMask(In), Part);
9795         Entry[Part] =
9796             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9797       }
9798     }
9799   }
9800   for (unsigned Part = 0; Part < State.UF; ++Part)
9801     State.set(this, Entry[Part], Part);
9802 }
9803 
9804 void VPInterleaveRecipe::execute(VPTransformState &State) {
9805   assert(!State.Instance && "Interleave group being replicated.");
9806   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9807                                       getStoredValues(), getMask());
9808 }
9809 
9810 void VPReductionRecipe::execute(VPTransformState &State) {
9811   assert(!State.Instance && "Reduction being replicated.");
9812   Value *PrevInChain = State.get(getChainOp(), 0);
9813   RecurKind Kind = RdxDesc->getRecurrenceKind();
9814   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9815   // Propagate the fast-math flags carried by the underlying instruction.
9816   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9817   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9818   for (unsigned Part = 0; Part < State.UF; ++Part) {
9819     Value *NewVecOp = State.get(getVecOp(), Part);
9820     if (VPValue *Cond = getCondOp()) {
9821       Value *NewCond = State.get(Cond, Part);
9822       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9823       Value *Iden = RdxDesc->getRecurrenceIdentity(
9824           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9825       Value *IdenVec =
9826           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9827       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9828       NewVecOp = Select;
9829     }
9830     Value *NewRed;
9831     Value *NextInChain;
9832     if (IsOrdered) {
9833       if (State.VF.isVector())
9834         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9835                                         PrevInChain);
9836       else
9837         NewRed = State.Builder.CreateBinOp(
9838             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9839             NewVecOp);
9840       PrevInChain = NewRed;
9841     } else {
9842       PrevInChain = State.get(getChainOp(), Part);
9843       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9844     }
9845     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9846       NextInChain =
9847           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9848                          NewRed, PrevInChain);
9849     } else if (IsOrdered)
9850       NextInChain = NewRed;
9851     else
9852       NextInChain = State.Builder.CreateBinOp(
9853           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9854           PrevInChain);
9855     State.set(this, NextInChain, Part);
9856   }
9857 }
9858 
9859 void VPReplicateRecipe::execute(VPTransformState &State) {
9860   if (State.Instance) { // Generate a single instance.
9861     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9862     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9863                                     *State.Instance, IsPredicated, State);
9864     // Insert scalar instance packing it into a vector.
9865     if (AlsoPack && State.VF.isVector()) {
9866       // If we're constructing lane 0, initialize to start from poison.
9867       if (State.Instance->Lane.isFirstLane()) {
9868         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9869         Value *Poison = PoisonValue::get(
9870             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9871         State.set(this, Poison, State.Instance->Part);
9872       }
9873       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9874     }
9875     return;
9876   }
9877 
9878   // Generate scalar instances for all VF lanes of all UF parts, unless the
9879   // instruction is uniform inwhich case generate only the first lane for each
9880   // of the UF parts.
9881   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9882   assert((!State.VF.isScalable() || IsUniform) &&
9883          "Can't scalarize a scalable vector");
9884   for (unsigned Part = 0; Part < State.UF; ++Part)
9885     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9886       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9887                                       VPIteration(Part, Lane), IsPredicated,
9888                                       State);
9889 }
9890 
9891 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9892   assert(State.Instance && "Branch on Mask works only on single instance.");
9893 
9894   unsigned Part = State.Instance->Part;
9895   unsigned Lane = State.Instance->Lane.getKnownLane();
9896 
9897   Value *ConditionBit = nullptr;
9898   VPValue *BlockInMask = getMask();
9899   if (BlockInMask) {
9900     ConditionBit = State.get(BlockInMask, Part);
9901     if (ConditionBit->getType()->isVectorTy())
9902       ConditionBit = State.Builder.CreateExtractElement(
9903           ConditionBit, State.Builder.getInt32(Lane));
9904   } else // Block in mask is all-one.
9905     ConditionBit = State.Builder.getTrue();
9906 
9907   // Replace the temporary unreachable terminator with a new conditional branch,
9908   // whose two destinations will be set later when they are created.
9909   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9910   assert(isa<UnreachableInst>(CurrentTerminator) &&
9911          "Expected to replace unreachable terminator with conditional branch.");
9912   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9913   CondBr->setSuccessor(0, nullptr);
9914   ReplaceInstWithInst(CurrentTerminator, CondBr);
9915 }
9916 
9917 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9918   assert(State.Instance && "Predicated instruction PHI works per instance.");
9919   Instruction *ScalarPredInst =
9920       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9921   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9922   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9923   assert(PredicatingBB && "Predicated block has no single predecessor.");
9924   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9925          "operand must be VPReplicateRecipe");
9926 
9927   // By current pack/unpack logic we need to generate only a single phi node: if
9928   // a vector value for the predicated instruction exists at this point it means
9929   // the instruction has vector users only, and a phi for the vector value is
9930   // needed. In this case the recipe of the predicated instruction is marked to
9931   // also do that packing, thereby "hoisting" the insert-element sequence.
9932   // Otherwise, a phi node for the scalar value is needed.
9933   unsigned Part = State.Instance->Part;
9934   if (State.hasVectorValue(getOperand(0), Part)) {
9935     Value *VectorValue = State.get(getOperand(0), Part);
9936     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9937     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9938     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9939     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9940     if (State.hasVectorValue(this, Part))
9941       State.reset(this, VPhi, Part);
9942     else
9943       State.set(this, VPhi, Part);
9944     // NOTE: Currently we need to update the value of the operand, so the next
9945     // predicated iteration inserts its generated value in the correct vector.
9946     State.reset(getOperand(0), VPhi, Part);
9947   } else {
9948     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9949     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9950     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9951                      PredicatingBB);
9952     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9953     if (State.hasScalarValue(this, *State.Instance))
9954       State.reset(this, Phi, *State.Instance);
9955     else
9956       State.set(this, Phi, *State.Instance);
9957     // NOTE: Currently we need to update the value of the operand, so the next
9958     // predicated iteration inserts its generated value in the correct vector.
9959     State.reset(getOperand(0), Phi, *State.Instance);
9960   }
9961 }
9962 
9963 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9964   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9965   State.ILV->vectorizeMemoryInstruction(
9966       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9967       StoredValue, getMask(), Consecutive, Reverse);
9968 }
9969 
9970 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9971 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9972 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9973 // for predication.
9974 static ScalarEpilogueLowering getScalarEpilogueLowering(
9975     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9976     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9977     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9978     LoopVectorizationLegality &LVL) {
9979   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9980   // don't look at hints or options, and don't request a scalar epilogue.
9981   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9982   // LoopAccessInfo (due to code dependency and not being able to reliably get
9983   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9984   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9985   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9986   // back to the old way and vectorize with versioning when forced. See D81345.)
9987   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9988                                                       PGSOQueryType::IRPass) &&
9989                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9990     return CM_ScalarEpilogueNotAllowedOptSize;
9991 
9992   // 2) If set, obey the directives
9993   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9994     switch (PreferPredicateOverEpilogue) {
9995     case PreferPredicateTy::ScalarEpilogue:
9996       return CM_ScalarEpilogueAllowed;
9997     case PreferPredicateTy::PredicateElseScalarEpilogue:
9998       return CM_ScalarEpilogueNotNeededUsePredicate;
9999     case PreferPredicateTy::PredicateOrDontVectorize:
10000       return CM_ScalarEpilogueNotAllowedUsePredicate;
10001     };
10002   }
10003 
10004   // 3) If set, obey the hints
10005   switch (Hints.getPredicate()) {
10006   case LoopVectorizeHints::FK_Enabled:
10007     return CM_ScalarEpilogueNotNeededUsePredicate;
10008   case LoopVectorizeHints::FK_Disabled:
10009     return CM_ScalarEpilogueAllowed;
10010   };
10011 
10012   // 4) if the TTI hook indicates this is profitable, request predication.
10013   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10014                                        LVL.getLAI()))
10015     return CM_ScalarEpilogueNotNeededUsePredicate;
10016 
10017   return CM_ScalarEpilogueAllowed;
10018 }
10019 
10020 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10021   // If Values have been set for this Def return the one relevant for \p Part.
10022   if (hasVectorValue(Def, Part))
10023     return Data.PerPartOutput[Def][Part];
10024 
10025   if (!hasScalarValue(Def, {Part, 0})) {
10026     Value *IRV = Def->getLiveInIRValue();
10027     Value *B = ILV->getBroadcastInstrs(IRV);
10028     set(Def, B, Part);
10029     return B;
10030   }
10031 
10032   Value *ScalarValue = get(Def, {Part, 0});
10033   // If we aren't vectorizing, we can just copy the scalar map values over
10034   // to the vector map.
10035   if (VF.isScalar()) {
10036     set(Def, ScalarValue, Part);
10037     return ScalarValue;
10038   }
10039 
10040   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10041   bool IsUniform = RepR && RepR->isUniform();
10042 
10043   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10044   // Check if there is a scalar value for the selected lane.
10045   if (!hasScalarValue(Def, {Part, LastLane})) {
10046     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10047     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10048            "unexpected recipe found to be invariant");
10049     IsUniform = true;
10050     LastLane = 0;
10051   }
10052 
10053   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10054   // Set the insert point after the last scalarized instruction or after the
10055   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10056   // will directly follow the scalar definitions.
10057   auto OldIP = Builder.saveIP();
10058   auto NewIP =
10059       isa<PHINode>(LastInst)
10060           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10061           : std::next(BasicBlock::iterator(LastInst));
10062   Builder.SetInsertPoint(&*NewIP);
10063 
10064   // However, if we are vectorizing, we need to construct the vector values.
10065   // If the value is known to be uniform after vectorization, we can just
10066   // broadcast the scalar value corresponding to lane zero for each unroll
10067   // iteration. Otherwise, we construct the vector values using
10068   // insertelement instructions. Since the resulting vectors are stored in
10069   // State, we will only generate the insertelements once.
10070   Value *VectorValue = nullptr;
10071   if (IsUniform) {
10072     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10073     set(Def, VectorValue, Part);
10074   } else {
10075     // Initialize packing with insertelements to start from undef.
10076     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10077     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10078     set(Def, Undef, Part);
10079     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10080       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10081     VectorValue = get(Def, Part);
10082   }
10083   Builder.restoreIP(OldIP);
10084   return VectorValue;
10085 }
10086 
10087 // Process the loop in the VPlan-native vectorization path. This path builds
10088 // VPlan upfront in the vectorization pipeline, which allows to apply
10089 // VPlan-to-VPlan transformations from the very beginning without modifying the
10090 // input LLVM IR.
10091 static bool processLoopInVPlanNativePath(
10092     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10093     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10094     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10095     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10096     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10097     LoopVectorizationRequirements &Requirements) {
10098 
10099   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10100     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10101     return false;
10102   }
10103   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10104   Function *F = L->getHeader()->getParent();
10105   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10106 
10107   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10108       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10109 
10110   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10111                                 &Hints, IAI);
10112   // Use the planner for outer loop vectorization.
10113   // TODO: CM is not used at this point inside the planner. Turn CM into an
10114   // optional argument if we don't need it in the future.
10115   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10116                                Requirements, ORE);
10117 
10118   // Get user vectorization factor.
10119   ElementCount UserVF = Hints.getWidth();
10120 
10121   CM.collectElementTypesForWidening();
10122 
10123   // Plan how to best vectorize, return the best VF and its cost.
10124   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10125 
10126   // If we are stress testing VPlan builds, do not attempt to generate vector
10127   // code. Masked vector code generation support will follow soon.
10128   // Also, do not attempt to vectorize if no vector code will be produced.
10129   if (VPlanBuildStressTest || EnableVPlanPredication ||
10130       VectorizationFactor::Disabled() == VF)
10131     return false;
10132 
10133   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10134 
10135   {
10136     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10137                              F->getParent()->getDataLayout());
10138     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10139                            &CM, BFI, PSI, Checks);
10140     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10141                       << L->getHeader()->getParent()->getName() << "\"\n");
10142     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10143   }
10144 
10145   // Mark the loop as already vectorized to avoid vectorizing again.
10146   Hints.setAlreadyVectorized();
10147   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10148   return true;
10149 }
10150 
10151 // Emit a remark if there are stores to floats that required a floating point
10152 // extension. If the vectorized loop was generated with floating point there
10153 // will be a performance penalty from the conversion overhead and the change in
10154 // the vector width.
10155 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10156   SmallVector<Instruction *, 4> Worklist;
10157   for (BasicBlock *BB : L->getBlocks()) {
10158     for (Instruction &Inst : *BB) {
10159       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10160         if (S->getValueOperand()->getType()->isFloatTy())
10161           Worklist.push_back(S);
10162       }
10163     }
10164   }
10165 
10166   // Traverse the floating point stores upwards searching, for floating point
10167   // conversions.
10168   SmallPtrSet<const Instruction *, 4> Visited;
10169   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10170   while (!Worklist.empty()) {
10171     auto *I = Worklist.pop_back_val();
10172     if (!L->contains(I))
10173       continue;
10174     if (!Visited.insert(I).second)
10175       continue;
10176 
10177     // Emit a remark if the floating point store required a floating
10178     // point conversion.
10179     // TODO: More work could be done to identify the root cause such as a
10180     // constant or a function return type and point the user to it.
10181     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10182       ORE->emit([&]() {
10183         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10184                                           I->getDebugLoc(), L->getHeader())
10185                << "floating point conversion changes vector width. "
10186                << "Mixed floating point precision requires an up/down "
10187                << "cast that will negatively impact performance.";
10188       });
10189 
10190     for (Use &Op : I->operands())
10191       if (auto *OpI = dyn_cast<Instruction>(Op))
10192         Worklist.push_back(OpI);
10193   }
10194 }
10195 
10196 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10197     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10198                                !EnableLoopInterleaving),
10199       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10200                               !EnableLoopVectorization) {}
10201 
10202 bool LoopVectorizePass::processLoop(Loop *L) {
10203   assert((EnableVPlanNativePath || L->isInnermost()) &&
10204          "VPlan-native path is not enabled. Only process inner loops.");
10205 
10206 #ifndef NDEBUG
10207   const std::string DebugLocStr = getDebugLocString(L);
10208 #endif /* NDEBUG */
10209 
10210   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10211                     << L->getHeader()->getParent()->getName() << "\" from "
10212                     << DebugLocStr << "\n");
10213 
10214   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10215 
10216   LLVM_DEBUG(
10217       dbgs() << "LV: Loop hints:"
10218              << " force="
10219              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10220                      ? "disabled"
10221                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10222                             ? "enabled"
10223                             : "?"))
10224              << " width=" << Hints.getWidth()
10225              << " interleave=" << Hints.getInterleave() << "\n");
10226 
10227   // Function containing loop
10228   Function *F = L->getHeader()->getParent();
10229 
10230   // Looking at the diagnostic output is the only way to determine if a loop
10231   // was vectorized (other than looking at the IR or machine code), so it
10232   // is important to generate an optimization remark for each loop. Most of
10233   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10234   // generated as OptimizationRemark and OptimizationRemarkMissed are
10235   // less verbose reporting vectorized loops and unvectorized loops that may
10236   // benefit from vectorization, respectively.
10237 
10238   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10239     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10240     return false;
10241   }
10242 
10243   PredicatedScalarEvolution PSE(*SE, *L);
10244 
10245   // Check if it is legal to vectorize the loop.
10246   LoopVectorizationRequirements Requirements;
10247   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10248                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10249   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10250     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10251     Hints.emitRemarkWithHints();
10252     return false;
10253   }
10254 
10255   // Check the function attributes and profiles to find out if this function
10256   // should be optimized for size.
10257   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10258       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10259 
10260   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10261   // here. They may require CFG and instruction level transformations before
10262   // even evaluating whether vectorization is profitable. Since we cannot modify
10263   // the incoming IR, we need to build VPlan upfront in the vectorization
10264   // pipeline.
10265   if (!L->isInnermost())
10266     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10267                                         ORE, BFI, PSI, Hints, Requirements);
10268 
10269   assert(L->isInnermost() && "Inner loop expected.");
10270 
10271   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10272   // count by optimizing for size, to minimize overheads.
10273   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10274   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10275     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10276                       << "This loop is worth vectorizing only if no scalar "
10277                       << "iteration overheads are incurred.");
10278     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10279       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10280     else {
10281       LLVM_DEBUG(dbgs() << "\n");
10282       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10283     }
10284   }
10285 
10286   // Check the function attributes to see if implicit floats are allowed.
10287   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10288   // an integer loop and the vector instructions selected are purely integer
10289   // vector instructions?
10290   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10291     reportVectorizationFailure(
10292         "Can't vectorize when the NoImplicitFloat attribute is used",
10293         "loop not vectorized due to NoImplicitFloat attribute",
10294         "NoImplicitFloat", ORE, L);
10295     Hints.emitRemarkWithHints();
10296     return false;
10297   }
10298 
10299   // Check if the target supports potentially unsafe FP vectorization.
10300   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10301   // for the target we're vectorizing for, to make sure none of the
10302   // additional fp-math flags can help.
10303   if (Hints.isPotentiallyUnsafe() &&
10304       TTI->isFPVectorizationPotentiallyUnsafe()) {
10305     reportVectorizationFailure(
10306         "Potentially unsafe FP op prevents vectorization",
10307         "loop not vectorized due to unsafe FP support.",
10308         "UnsafeFP", ORE, L);
10309     Hints.emitRemarkWithHints();
10310     return false;
10311   }
10312 
10313   bool AllowOrderedReductions;
10314   // If the flag is set, use that instead and override the TTI behaviour.
10315   if (ForceOrderedReductions.getNumOccurrences() > 0)
10316     AllowOrderedReductions = ForceOrderedReductions;
10317   else
10318     AllowOrderedReductions = TTI->enableOrderedReductions();
10319   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10320     ORE->emit([&]() {
10321       auto *ExactFPMathInst = Requirements.getExactFPInst();
10322       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10323                                                  ExactFPMathInst->getDebugLoc(),
10324                                                  ExactFPMathInst->getParent())
10325              << "loop not vectorized: cannot prove it is safe to reorder "
10326                 "floating-point operations";
10327     });
10328     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10329                          "reorder floating-point operations\n");
10330     Hints.emitRemarkWithHints();
10331     return false;
10332   }
10333 
10334   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10335   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10336 
10337   // If an override option has been passed in for interleaved accesses, use it.
10338   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10339     UseInterleaved = EnableInterleavedMemAccesses;
10340 
10341   // Analyze interleaved memory accesses.
10342   if (UseInterleaved) {
10343     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10344   }
10345 
10346   // Use the cost model.
10347   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10348                                 F, &Hints, IAI);
10349   CM.collectValuesToIgnore();
10350   CM.collectElementTypesForWidening();
10351 
10352   // Use the planner for vectorization.
10353   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10354                                Requirements, ORE);
10355 
10356   // Get user vectorization factor and interleave count.
10357   ElementCount UserVF = Hints.getWidth();
10358   unsigned UserIC = Hints.getInterleave();
10359 
10360   // Plan how to best vectorize, return the best VF and its cost.
10361   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10362 
10363   VectorizationFactor VF = VectorizationFactor::Disabled();
10364   unsigned IC = 1;
10365 
10366   if (MaybeVF) {
10367     VF = *MaybeVF;
10368     // Select the interleave count.
10369     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10370   }
10371 
10372   // Identify the diagnostic messages that should be produced.
10373   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10374   bool VectorizeLoop = true, InterleaveLoop = true;
10375   if (VF.Width.isScalar()) {
10376     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10377     VecDiagMsg = std::make_pair(
10378         "VectorizationNotBeneficial",
10379         "the cost-model indicates that vectorization is not beneficial");
10380     VectorizeLoop = false;
10381   }
10382 
10383   if (!MaybeVF && UserIC > 1) {
10384     // Tell the user interleaving was avoided up-front, despite being explicitly
10385     // requested.
10386     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10387                          "interleaving should be avoided up front\n");
10388     IntDiagMsg = std::make_pair(
10389         "InterleavingAvoided",
10390         "Ignoring UserIC, because interleaving was avoided up front");
10391     InterleaveLoop = false;
10392   } else if (IC == 1 && UserIC <= 1) {
10393     // Tell the user interleaving is not beneficial.
10394     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10395     IntDiagMsg = std::make_pair(
10396         "InterleavingNotBeneficial",
10397         "the cost-model indicates that interleaving is not beneficial");
10398     InterleaveLoop = false;
10399     if (UserIC == 1) {
10400       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10401       IntDiagMsg.second +=
10402           " and is explicitly disabled or interleave count is set to 1";
10403     }
10404   } else if (IC > 1 && UserIC == 1) {
10405     // Tell the user interleaving is beneficial, but it explicitly disabled.
10406     LLVM_DEBUG(
10407         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10408     IntDiagMsg = std::make_pair(
10409         "InterleavingBeneficialButDisabled",
10410         "the cost-model indicates that interleaving is beneficial "
10411         "but is explicitly disabled or interleave count is set to 1");
10412     InterleaveLoop = false;
10413   }
10414 
10415   // Override IC if user provided an interleave count.
10416   IC = UserIC > 0 ? UserIC : IC;
10417 
10418   // Emit diagnostic messages, if any.
10419   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10420   if (!VectorizeLoop && !InterleaveLoop) {
10421     // Do not vectorize or interleaving the loop.
10422     ORE->emit([&]() {
10423       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10424                                       L->getStartLoc(), L->getHeader())
10425              << VecDiagMsg.second;
10426     });
10427     ORE->emit([&]() {
10428       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10429                                       L->getStartLoc(), L->getHeader())
10430              << IntDiagMsg.second;
10431     });
10432     return false;
10433   } else if (!VectorizeLoop && InterleaveLoop) {
10434     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10435     ORE->emit([&]() {
10436       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10437                                         L->getStartLoc(), L->getHeader())
10438              << VecDiagMsg.second;
10439     });
10440   } else if (VectorizeLoop && !InterleaveLoop) {
10441     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10442                       << ") in " << DebugLocStr << '\n');
10443     ORE->emit([&]() {
10444       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10445                                         L->getStartLoc(), L->getHeader())
10446              << IntDiagMsg.second;
10447     });
10448   } else if (VectorizeLoop && InterleaveLoop) {
10449     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10450                       << ") in " << DebugLocStr << '\n');
10451     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10452   }
10453 
10454   bool DisableRuntimeUnroll = false;
10455   MDNode *OrigLoopID = L->getLoopID();
10456   {
10457     // Optimistically generate runtime checks. Drop them if they turn out to not
10458     // be profitable. Limit the scope of Checks, so the cleanup happens
10459     // immediately after vector codegeneration is done.
10460     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10461                              F->getParent()->getDataLayout());
10462     if (!VF.Width.isScalar() || IC > 1)
10463       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10464 
10465     using namespace ore;
10466     if (!VectorizeLoop) {
10467       assert(IC > 1 && "interleave count should not be 1 or 0");
10468       // If we decided that it is not legal to vectorize the loop, then
10469       // interleave it.
10470       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10471                                  &CM, BFI, PSI, Checks);
10472 
10473       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10474       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10475 
10476       ORE->emit([&]() {
10477         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10478                                   L->getHeader())
10479                << "interleaved loop (interleaved count: "
10480                << NV("InterleaveCount", IC) << ")";
10481       });
10482     } else {
10483       // If we decided that it is *legal* to vectorize the loop, then do it.
10484 
10485       // Consider vectorizing the epilogue too if it's profitable.
10486       VectorizationFactor EpilogueVF =
10487           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10488       if (EpilogueVF.Width.isVector()) {
10489 
10490         // The first pass vectorizes the main loop and creates a scalar epilogue
10491         // to be vectorized by executing the plan (potentially with a different
10492         // factor) again shortly afterwards.
10493         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10494         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10495                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10496 
10497         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10498         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10499                         DT);
10500         ++LoopsVectorized;
10501 
10502         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10503         formLCSSARecursively(*L, *DT, LI, SE);
10504 
10505         // Second pass vectorizes the epilogue and adjusts the control flow
10506         // edges from the first pass.
10507         EPI.MainLoopVF = EPI.EpilogueVF;
10508         EPI.MainLoopUF = EPI.EpilogueUF;
10509         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10510                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10511                                                  Checks);
10512 
10513         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10514         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10515                         DT);
10516         ++LoopsEpilogueVectorized;
10517 
10518         if (!MainILV.areSafetyChecksAdded())
10519           DisableRuntimeUnroll = true;
10520       } else {
10521         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10522                                &LVL, &CM, BFI, PSI, Checks);
10523 
10524         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10525         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10526         ++LoopsVectorized;
10527 
10528         // Add metadata to disable runtime unrolling a scalar loop when there
10529         // are no runtime checks about strides and memory. A scalar loop that is
10530         // rarely used is not worth unrolling.
10531         if (!LB.areSafetyChecksAdded())
10532           DisableRuntimeUnroll = true;
10533       }
10534       // Report the vectorization decision.
10535       ORE->emit([&]() {
10536         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10537                                   L->getHeader())
10538                << "vectorized loop (vectorization width: "
10539                << NV("VectorizationFactor", VF.Width)
10540                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10541       });
10542     }
10543 
10544     if (ORE->allowExtraAnalysis(LV_NAME))
10545       checkMixedPrecision(L, ORE);
10546   }
10547 
10548   Optional<MDNode *> RemainderLoopID =
10549       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10550                                       LLVMLoopVectorizeFollowupEpilogue});
10551   if (RemainderLoopID.hasValue()) {
10552     L->setLoopID(RemainderLoopID.getValue());
10553   } else {
10554     if (DisableRuntimeUnroll)
10555       AddRuntimeUnrollDisableMetaData(L);
10556 
10557     // Mark the loop as already vectorized to avoid vectorizing again.
10558     Hints.setAlreadyVectorized();
10559   }
10560 
10561   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10562   return true;
10563 }
10564 
10565 LoopVectorizeResult LoopVectorizePass::runImpl(
10566     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10567     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10568     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10569     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10570     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10571   SE = &SE_;
10572   LI = &LI_;
10573   TTI = &TTI_;
10574   DT = &DT_;
10575   BFI = &BFI_;
10576   TLI = TLI_;
10577   AA = &AA_;
10578   AC = &AC_;
10579   GetLAA = &GetLAA_;
10580   DB = &DB_;
10581   ORE = &ORE_;
10582   PSI = PSI_;
10583 
10584   // Don't attempt if
10585   // 1. the target claims to have no vector registers, and
10586   // 2. interleaving won't help ILP.
10587   //
10588   // The second condition is necessary because, even if the target has no
10589   // vector registers, loop vectorization may still enable scalar
10590   // interleaving.
10591   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10592       TTI->getMaxInterleaveFactor(1) < 2)
10593     return LoopVectorizeResult(false, false);
10594 
10595   bool Changed = false, CFGChanged = false;
10596 
10597   // The vectorizer requires loops to be in simplified form.
10598   // Since simplification may add new inner loops, it has to run before the
10599   // legality and profitability checks. This means running the loop vectorizer
10600   // will simplify all loops, regardless of whether anything end up being
10601   // vectorized.
10602   for (auto &L : *LI)
10603     Changed |= CFGChanged |=
10604         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10605 
10606   // Build up a worklist of inner-loops to vectorize. This is necessary as
10607   // the act of vectorizing or partially unrolling a loop creates new loops
10608   // and can invalidate iterators across the loops.
10609   SmallVector<Loop *, 8> Worklist;
10610 
10611   for (Loop *L : *LI)
10612     collectSupportedLoops(*L, LI, ORE, Worklist);
10613 
10614   LoopsAnalyzed += Worklist.size();
10615 
10616   // Now walk the identified inner loops.
10617   while (!Worklist.empty()) {
10618     Loop *L = Worklist.pop_back_val();
10619 
10620     // For the inner loops we actually process, form LCSSA to simplify the
10621     // transform.
10622     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10623 
10624     Changed |= CFGChanged |= processLoop(L);
10625   }
10626 
10627   // Process each loop nest in the function.
10628   return LoopVectorizeResult(Changed, CFGChanged);
10629 }
10630 
10631 PreservedAnalyses LoopVectorizePass::run(Function &F,
10632                                          FunctionAnalysisManager &AM) {
10633     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10634     auto &LI = AM.getResult<LoopAnalysis>(F);
10635     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10636     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10637     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10638     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10639     auto &AA = AM.getResult<AAManager>(F);
10640     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10641     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10642     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10643 
10644     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10645     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10646         [&](Loop &L) -> const LoopAccessInfo & {
10647       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10648                                         TLI, TTI, nullptr, nullptr, nullptr};
10649       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10650     };
10651     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10652     ProfileSummaryInfo *PSI =
10653         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10654     LoopVectorizeResult Result =
10655         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10656     if (!Result.MadeAnyChange)
10657       return PreservedAnalyses::all();
10658     PreservedAnalyses PA;
10659 
10660     // We currently do not preserve loopinfo/dominator analyses with outer loop
10661     // vectorization. Until this is addressed, mark these analyses as preserved
10662     // only for non-VPlan-native path.
10663     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10664     if (!EnableVPlanNativePath) {
10665       PA.preserve<LoopAnalysis>();
10666       PA.preserve<DominatorTreeAnalysis>();
10667     }
10668     if (!Result.MadeCFGChange)
10669       PA.preserveSet<CFGAnalyses>();
10670     return PA;
10671 }
10672 
10673 void LoopVectorizePass::printPipeline(
10674     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10675   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10676       OS, MapClassName2PassName);
10677 
10678   OS << "<";
10679   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10680   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10681   OS << ">";
10682 }
10683