1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 AnalysisKey ShouldRunExtraVectorPasses::Key;
432 
433 /// InnerLoopVectorizer vectorizes loops which contain only one basic
434 /// block to a specified vectorization factor (VF).
435 /// This class performs the widening of scalars into vectors, or multiple
436 /// scalars. This class also implements the following features:
437 /// * It inserts an epilogue loop for handling loops that don't have iteration
438 ///   counts that are known to be a multiple of the vectorization factor.
439 /// * It handles the code generation for reduction variables.
440 /// * Scalarization (implementation using scalars) of un-vectorizable
441 ///   instructions.
442 /// InnerLoopVectorizer does not perform any vectorization-legality
443 /// checks, and relies on the caller to check for the different legality
444 /// aspects. The InnerLoopVectorizer relies on the
445 /// LoopVectorizationLegality class to provide information about the induction
446 /// and reduction variables that were found to a given vectorization factor.
447 class InnerLoopVectorizer {
448 public:
449   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
450                       LoopInfo *LI, DominatorTree *DT,
451                       const TargetLibraryInfo *TLI,
452                       const TargetTransformInfo *TTI, AssumptionCache *AC,
453                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
454                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
455                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
456                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
457       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
458         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
459         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
460         PSI(PSI), RTChecks(RTChecks) {
461     // Query this against the original loop and save it here because the profile
462     // of the original loop header may change as the transformation happens.
463     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
464         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465   }
466 
467   virtual ~InnerLoopVectorizer() = default;
468 
469   /// Create a new empty loop that will contain vectorized instructions later
470   /// on, while the old loop will be used as the scalar remainder. Control flow
471   /// is generated around the vectorized (and scalar epilogue) loops consisting
472   /// of various checks and bypasses. Return the pre-header block of the new
473   /// loop and the start value for the canonical induction, if it is != 0. The
474   /// latter is the case when vectorizing the epilogue loop. In the case of
475   /// epilogue vectorization, this function is overriden to handle the more
476   /// complex control flow around the loops.
477   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
478 
479   /// Widen a single call instruction within the innermost loop.
480   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
481                             VPTransformState &State);
482 
483   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
484   void fixVectorizedLoop(VPTransformState &State);
485 
486   // Return true if any runtime check is added.
487   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
488 
489   /// A type for vectorized values in the new loop. Each value from the
490   /// original loop, when vectorized, is represented by UF vector values in the
491   /// new unrolled loop, where UF is the unroll factor.
492   using VectorParts = SmallVector<Value *, 2>;
493 
494   /// Vectorize a single first-order recurrence or pointer induction PHINode in
495   /// a block. This method handles the induction variable canonicalization. It
496   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
497   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
498                            VPTransformState &State);
499 
500   /// A helper function to scalarize a single Instruction in the innermost loop.
501   /// Generates a sequence of scalar instances for each lane between \p MinLane
502   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
503   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
504   /// Instr's operands.
505   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
506                             const VPIteration &Instance, bool IfPredicateInstr,
507                             VPTransformState &State);
508 
509   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
510   /// is provided, the integer induction variable will first be truncated to
511   /// the corresponding type. \p CanonicalIV is the scalar value generated for
512   /// the canonical induction variable.
513   void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def,
514                              VPTransformState &State, Value *CanonicalIV);
515 
516   /// Construct the vector value of a scalarized value \p V one lane at a time.
517   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
518                                  VPTransformState &State);
519 
520   /// Try to vectorize interleaved access group \p Group with the base address
521   /// given in \p Addr, optionally masking the vector operations if \p
522   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
523   /// values in the vectorized loop.
524   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
525                                 ArrayRef<VPValue *> VPDefs,
526                                 VPTransformState &State, VPValue *Addr,
527                                 ArrayRef<VPValue *> StoredValues,
528                                 VPValue *BlockInMask = nullptr);
529 
530   /// Set the debug location in the builder \p Ptr using the debug location in
531   /// \p V. If \p Ptr is None then it uses the class member's Builder.
532   void setDebugLocFromInst(const Value *V,
533                            Optional<IRBuilderBase *> CustomBuilder = None);
534 
535   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
536   void fixNonInductionPHIs(VPTransformState &State);
537 
538   /// Returns true if the reordering of FP operations is not allowed, but we are
539   /// able to vectorize with strict in-order reductions for the given RdxDesc.
540   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
541 
542   /// Create a broadcast instruction. This method generates a broadcast
543   /// instruction (shuffle) for loop invariant values and for the induction
544   /// value. If this is the induction variable then we extend it to N, N+1, ...
545   /// this is needed because each iteration in the loop corresponds to a SIMD
546   /// element.
547   virtual Value *getBroadcastInstrs(Value *V);
548 
549   /// Add metadata from one instruction to another.
550   ///
551   /// This includes both the original MDs from \p From and additional ones (\see
552   /// addNewMetadata).  Use this for *newly created* instructions in the vector
553   /// loop.
554   void addMetadata(Instruction *To, Instruction *From);
555 
556   /// Similar to the previous function but it adds the metadata to a
557   /// vector of instructions.
558   void addMetadata(ArrayRef<Value *> To, Instruction *From);
559 
560   // Returns the resume value (bc.merge.rdx) for a reduction as
561   // generated by fixReduction.
562   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
563 
564 protected:
565   friend class LoopVectorizationPlanner;
566 
567   /// A small list of PHINodes.
568   using PhiVector = SmallVector<PHINode *, 4>;
569 
570   /// A type for scalarized values in the new loop. Each value from the
571   /// original loop, when scalarized, is represented by UF x VF scalar values
572   /// in the new unrolled loop, where UF is the unroll factor and VF is the
573   /// vectorization factor.
574   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
575 
576   /// Set up the values of the IVs correctly when exiting the vector loop.
577   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
578                     Value *CountRoundDown, Value *EndValue,
579                     BasicBlock *MiddleBlock);
580 
581   /// Introduce a conditional branch (on true, condition to be set later) at the
582   /// end of the header=latch connecting it to itself (across the backedge) and
583   /// to the exit block of \p L.
584   void createHeaderBranch(Loop *L);
585 
586   /// Handle all cross-iteration phis in the header.
587   void fixCrossIterationPHIs(VPTransformState &State);
588 
589   /// Create the exit value of first order recurrences in the middle block and
590   /// update their users.
591   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
592                                VPTransformState &State);
593 
594   /// Create code for the loop exit value of the reduction.
595   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
596 
597   /// Clear NSW/NUW flags from reduction instructions if necessary.
598   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
599                                VPTransformState &State);
600 
601   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
602   /// means we need to add the appropriate incoming value from the middle
603   /// block as exiting edges from the scalar epilogue loop (if present) are
604   /// already in place, and we exit the vector loop exclusively to the middle
605   /// block.
606   void fixLCSSAPHIs(VPTransformState &State);
607 
608   /// Iteratively sink the scalarized operands of a predicated instruction into
609   /// the block that was created for it.
610   void sinkScalarOperands(Instruction *PredInst);
611 
612   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
613   /// represented as.
614   void truncateToMinimalBitwidths(VPTransformState &State);
615 
616   /// Create a vector induction phi node based on an existing scalar one. \p
617   /// EntryVal is the value from the original loop that maps to the vector phi
618   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
619   /// truncate instruction, instead of widening the original IV, we widen a
620   /// version of the IV truncated to \p EntryVal's type.
621   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
622                                        Value *Step, Value *Start,
623                                        Instruction *EntryVal, VPValue *Def,
624                                        VPTransformState &State);
625 
626   /// Returns (and creates if needed) the original loop trip count.
627   Value *getOrCreateTripCount(Loop *NewLoop);
628 
629   /// Returns (and creates if needed) the trip count of the widened loop.
630   Value *getOrCreateVectorTripCount(Loop *NewLoop);
631 
632   /// Returns a bitcasted value to the requested vector type.
633   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
634   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
635                                 const DataLayout &DL);
636 
637   /// Emit a bypass check to see if the vector trip count is zero, including if
638   /// it overflows.
639   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
640 
641   /// Emit a bypass check to see if all of the SCEV assumptions we've
642   /// had to make are correct. Returns the block containing the checks or
643   /// nullptr if no checks have been added.
644   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
645 
646   /// Emit bypass checks to check any memory assumptions we may have made.
647   /// Returns the block containing the checks or nullptr if no checks have been
648   /// added.
649   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
650 
651   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
652   /// vector loop preheader, middle block and scalar preheader. Also
653   /// allocate a loop object for the new vector loop and return it.
654   Loop *createVectorLoopSkeleton(StringRef Prefix);
655 
656   /// Create new phi nodes for the induction variables to resume iteration count
657   /// in the scalar epilogue, from where the vectorized loop left off.
658   /// In cases where the loop skeleton is more complicated (eg. epilogue
659   /// vectorization) and the resume values can come from an additional bypass
660   /// block, the \p AdditionalBypass pair provides information about the bypass
661   /// block and the end value on the edge from bypass to this loop.
662   void createInductionResumeValues(
663       Loop *L,
664       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
665 
666   /// Complete the loop skeleton by adding debug MDs, creating appropriate
667   /// conditional branches in the middle block, preparing the builder and
668   /// running the verifier. Take in the vector loop \p L as argument, and return
669   /// the preheader of the completed vector loop.
670   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
671 
672   /// Add additional metadata to \p To that was not present on \p Orig.
673   ///
674   /// Currently this is used to add the noalias annotations based on the
675   /// inserted memchecks.  Use this for instructions that are *cloned* into the
676   /// vector loop.
677   void addNewMetadata(Instruction *To, const Instruction *Orig);
678 
679   /// Collect poison-generating recipes that may generate a poison value that is
680   /// used after vectorization, even when their operands are not poison. Those
681   /// recipes meet the following conditions:
682   ///  * Contribute to the address computation of a recipe generating a widen
683   ///    memory load/store (VPWidenMemoryInstructionRecipe or
684   ///    VPInterleaveRecipe).
685   ///  * Such a widen memory load/store has at least one underlying Instruction
686   ///    that is in a basic block that needs predication and after vectorization
687   ///    the generated instruction won't be predicated.
688   void collectPoisonGeneratingRecipes(VPTransformState &State);
689 
690   /// Allow subclasses to override and print debug traces before/after vplan
691   /// execution, when trace information is requested.
692   virtual void printDebugTracesAtStart(){};
693   virtual void printDebugTracesAtEnd(){};
694 
695   /// The original loop.
696   Loop *OrigLoop;
697 
698   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
699   /// dynamic knowledge to simplify SCEV expressions and converts them to a
700   /// more usable form.
701   PredicatedScalarEvolution &PSE;
702 
703   /// Loop Info.
704   LoopInfo *LI;
705 
706   /// Dominator Tree.
707   DominatorTree *DT;
708 
709   /// Alias Analysis.
710   AAResults *AA;
711 
712   /// Target Library Info.
713   const TargetLibraryInfo *TLI;
714 
715   /// Target Transform Info.
716   const TargetTransformInfo *TTI;
717 
718   /// Assumption Cache.
719   AssumptionCache *AC;
720 
721   /// Interface to emit optimization remarks.
722   OptimizationRemarkEmitter *ORE;
723 
724   /// LoopVersioning.  It's only set up (non-null) if memchecks were
725   /// used.
726   ///
727   /// This is currently only used to add no-alias metadata based on the
728   /// memchecks.  The actually versioning is performed manually.
729   std::unique_ptr<LoopVersioning> LVer;
730 
731   /// The vectorization SIMD factor to use. Each vector will have this many
732   /// vector elements.
733   ElementCount VF;
734 
735   /// The vectorization unroll factor to use. Each scalar is vectorized to this
736   /// many different vector instructions.
737   unsigned UF;
738 
739   /// The builder that we use
740   IRBuilder<> Builder;
741 
742   // --- Vectorization state ---
743 
744   /// The vector-loop preheader.
745   BasicBlock *LoopVectorPreHeader;
746 
747   /// The scalar-loop preheader.
748   BasicBlock *LoopScalarPreHeader;
749 
750   /// Middle Block between the vector and the scalar.
751   BasicBlock *LoopMiddleBlock;
752 
753   /// The unique ExitBlock of the scalar loop if one exists.  Note that
754   /// there can be multiple exiting edges reaching this block.
755   BasicBlock *LoopExitBlock;
756 
757   /// The vector loop body.
758   BasicBlock *LoopVectorBody;
759 
760   /// The scalar loop body.
761   BasicBlock *LoopScalarBody;
762 
763   /// A list of all bypass blocks. The first block is the entry of the loop.
764   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
765 
766   /// Store instructions that were predicated.
767   SmallVector<Instruction *, 4> PredicatedInstructions;
768 
769   /// Trip count of the original loop.
770   Value *TripCount = nullptr;
771 
772   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
773   Value *VectorTripCount = nullptr;
774 
775   /// The legality analysis.
776   LoopVectorizationLegality *Legal;
777 
778   /// The profitablity analysis.
779   LoopVectorizationCostModel *Cost;
780 
781   // Record whether runtime checks are added.
782   bool AddedSafetyChecks = false;
783 
784   // Holds the end values for each induction variable. We save the end values
785   // so we can later fix-up the external users of the induction variables.
786   DenseMap<PHINode *, Value *> IVEndValues;
787 
788   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
789   // fixed up at the end of vector code generation.
790   SmallVector<PHINode *, 8> OrigPHIsToFix;
791 
792   /// BFI and PSI are used to check for profile guided size optimizations.
793   BlockFrequencyInfo *BFI;
794   ProfileSummaryInfo *PSI;
795 
796   // Whether this loop should be optimized for size based on profile guided size
797   // optimizatios.
798   bool OptForSizeBasedOnProfile;
799 
800   /// Structure to hold information about generated runtime checks, responsible
801   /// for cleaning the checks, if vectorization turns out unprofitable.
802   GeneratedRTChecks &RTChecks;
803 
804   // Holds the resume values for reductions in the loops, used to set the
805   // correct start value of reduction PHIs when vectorizing the epilogue.
806   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
807       ReductionResumeValues;
808 };
809 
810 class InnerLoopUnroller : public InnerLoopVectorizer {
811 public:
812   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
813                     LoopInfo *LI, DominatorTree *DT,
814                     const TargetLibraryInfo *TLI,
815                     const TargetTransformInfo *TTI, AssumptionCache *AC,
816                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
817                     LoopVectorizationLegality *LVL,
818                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
819                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
820       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
821                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
822                             BFI, PSI, Check) {}
823 
824 private:
825   Value *getBroadcastInstrs(Value *V) override;
826 };
827 
828 /// Encapsulate information regarding vectorization of a loop and its epilogue.
829 /// This information is meant to be updated and used across two stages of
830 /// epilogue vectorization.
831 struct EpilogueLoopVectorizationInfo {
832   ElementCount MainLoopVF = ElementCount::getFixed(0);
833   unsigned MainLoopUF = 0;
834   ElementCount EpilogueVF = ElementCount::getFixed(0);
835   unsigned EpilogueUF = 0;
836   BasicBlock *MainLoopIterationCountCheck = nullptr;
837   BasicBlock *EpilogueIterationCountCheck = nullptr;
838   BasicBlock *SCEVSafetyCheck = nullptr;
839   BasicBlock *MemSafetyCheck = nullptr;
840   Value *TripCount = nullptr;
841   Value *VectorTripCount = nullptr;
842 
843   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
844                                 ElementCount EVF, unsigned EUF)
845       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
846     assert(EUF == 1 &&
847            "A high UF for the epilogue loop is likely not beneficial.");
848   }
849 };
850 
851 /// An extension of the inner loop vectorizer that creates a skeleton for a
852 /// vectorized loop that has its epilogue (residual) also vectorized.
853 /// The idea is to run the vplan on a given loop twice, firstly to setup the
854 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
855 /// from the first step and vectorize the epilogue.  This is achieved by
856 /// deriving two concrete strategy classes from this base class and invoking
857 /// them in succession from the loop vectorizer planner.
858 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
859 public:
860   InnerLoopAndEpilogueVectorizer(
861       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
862       DominatorTree *DT, const TargetLibraryInfo *TLI,
863       const TargetTransformInfo *TTI, AssumptionCache *AC,
864       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
865       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
866       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
867       GeneratedRTChecks &Checks)
868       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
869                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
870                             Checks),
871         EPI(EPI) {}
872 
873   // Override this function to handle the more complex control flow around the
874   // three loops.
875   std::pair<BasicBlock *, Value *>
876   createVectorizedLoopSkeleton() final override {
877     return createEpilogueVectorizedLoopSkeleton();
878   }
879 
880   /// The interface for creating a vectorized skeleton using one of two
881   /// different strategies, each corresponding to one execution of the vplan
882   /// as described above.
883   virtual std::pair<BasicBlock *, Value *>
884   createEpilogueVectorizedLoopSkeleton() = 0;
885 
886   /// Holds and updates state information required to vectorize the main loop
887   /// and its epilogue in two separate passes. This setup helps us avoid
888   /// regenerating and recomputing runtime safety checks. It also helps us to
889   /// shorten the iteration-count-check path length for the cases where the
890   /// iteration count of the loop is so small that the main vector loop is
891   /// completely skipped.
892   EpilogueLoopVectorizationInfo &EPI;
893 };
894 
895 /// A specialized derived class of inner loop vectorizer that performs
896 /// vectorization of *main* loops in the process of vectorizing loops and their
897 /// epilogues.
898 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
899 public:
900   EpilogueVectorizerMainLoop(
901       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
902       DominatorTree *DT, const TargetLibraryInfo *TLI,
903       const TargetTransformInfo *TTI, AssumptionCache *AC,
904       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
905       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
906       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
907       GeneratedRTChecks &Check)
908       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
909                                        EPI, LVL, CM, BFI, PSI, Check) {}
910   /// Implements the interface for creating a vectorized skeleton using the
911   /// *main loop* strategy (ie the first pass of vplan execution).
912   std::pair<BasicBlock *, Value *>
913   createEpilogueVectorizedLoopSkeleton() final override;
914 
915 protected:
916   /// Emits an iteration count bypass check once for the main loop (when \p
917   /// ForEpilogue is false) and once for the epilogue loop (when \p
918   /// ForEpilogue is true).
919   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
920                                              bool ForEpilogue);
921   void printDebugTracesAtStart() override;
922   void printDebugTracesAtEnd() override;
923 };
924 
925 // A specialized derived class of inner loop vectorizer that performs
926 // vectorization of *epilogue* loops in the process of vectorizing loops and
927 // their epilogues.
928 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
929 public:
930   EpilogueVectorizerEpilogueLoop(
931       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
932       DominatorTree *DT, const TargetLibraryInfo *TLI,
933       const TargetTransformInfo *TTI, AssumptionCache *AC,
934       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
935       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
936       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
937       GeneratedRTChecks &Checks)
938       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
939                                        EPI, LVL, CM, BFI, PSI, Checks) {}
940   /// Implements the interface for creating a vectorized skeleton using the
941   /// *epilogue loop* strategy (ie the second pass of vplan execution).
942   std::pair<BasicBlock *, Value *>
943   createEpilogueVectorizedLoopSkeleton() final override;
944 
945 protected:
946   /// Emits an iteration count bypass check after the main vector loop has
947   /// finished to see if there are any iterations left to execute by either
948   /// the vector epilogue or the scalar epilogue.
949   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
950                                                       BasicBlock *Bypass,
951                                                       BasicBlock *Insert);
952   void printDebugTracesAtStart() override;
953   void printDebugTracesAtEnd() override;
954 };
955 } // end namespace llvm
956 
957 /// Look for a meaningful debug location on the instruction or it's
958 /// operands.
959 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
960   if (!I)
961     return I;
962 
963   DebugLoc Empty;
964   if (I->getDebugLoc() != Empty)
965     return I;
966 
967   for (Use &Op : I->operands()) {
968     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
969       if (OpInst->getDebugLoc() != Empty)
970         return OpInst;
971   }
972 
973   return I;
974 }
975 
976 void InnerLoopVectorizer::setDebugLocFromInst(
977     const Value *V, Optional<IRBuilderBase *> CustomBuilder) {
978   IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
979   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
980     const DILocation *DIL = Inst->getDebugLoc();
981 
982     // When a FSDiscriminator is enabled, we don't need to add the multiply
983     // factors to the discriminators.
984     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
985         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
986       // FIXME: For scalable vectors, assume vscale=1.
987       auto NewDIL =
988           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
989       if (NewDIL)
990         B->SetCurrentDebugLocation(NewDIL.getValue());
991       else
992         LLVM_DEBUG(dbgs()
993                    << "Failed to create new discriminator: "
994                    << DIL->getFilename() << " Line: " << DIL->getLine());
995     } else
996       B->SetCurrentDebugLocation(DIL);
997   } else
998     B->SetCurrentDebugLocation(DebugLoc());
999 }
1000 
1001 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1002 /// is passed, the message relates to that particular instruction.
1003 #ifndef NDEBUG
1004 static void debugVectorizationMessage(const StringRef Prefix,
1005                                       const StringRef DebugMsg,
1006                                       Instruction *I) {
1007   dbgs() << "LV: " << Prefix << DebugMsg;
1008   if (I != nullptr)
1009     dbgs() << " " << *I;
1010   else
1011     dbgs() << '.';
1012   dbgs() << '\n';
1013 }
1014 #endif
1015 
1016 /// Create an analysis remark that explains why vectorization failed
1017 ///
1018 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1019 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1020 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1021 /// the location of the remark.  \return the remark object that can be
1022 /// streamed to.
1023 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1024     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1025   Value *CodeRegion = TheLoop->getHeader();
1026   DebugLoc DL = TheLoop->getStartLoc();
1027 
1028   if (I) {
1029     CodeRegion = I->getParent();
1030     // If there is no debug location attached to the instruction, revert back to
1031     // using the loop's.
1032     if (I->getDebugLoc())
1033       DL = I->getDebugLoc();
1034   }
1035 
1036   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1037 }
1038 
1039 namespace llvm {
1040 
1041 /// Return a value for Step multiplied by VF.
1042 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
1043                        int64_t Step) {
1044   assert(Ty->isIntegerTy() && "Expected an integer step");
1045   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1046   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1047 }
1048 
1049 /// Return the runtime value for VF.
1050 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
1051   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1052   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1053 }
1054 
1055 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1056                                   ElementCount VF) {
1057   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1058   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1059   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1060   return B.CreateUIToFP(RuntimeVF, FTy);
1061 }
1062 
1063 void reportVectorizationFailure(const StringRef DebugMsg,
1064                                 const StringRef OREMsg, const StringRef ORETag,
1065                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1066                                 Instruction *I) {
1067   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1068   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1069   ORE->emit(
1070       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1071       << "loop not vectorized: " << OREMsg);
1072 }
1073 
1074 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1075                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1076                              Instruction *I) {
1077   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1078   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1079   ORE->emit(
1080       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1081       << Msg);
1082 }
1083 
1084 } // end namespace llvm
1085 
1086 #ifndef NDEBUG
1087 /// \return string containing a file name and a line # for the given loop.
1088 static std::string getDebugLocString(const Loop *L) {
1089   std::string Result;
1090   if (L) {
1091     raw_string_ostream OS(Result);
1092     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1093       LoopDbgLoc.print(OS);
1094     else
1095       // Just print the module name.
1096       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1097     OS.flush();
1098   }
1099   return Result;
1100 }
1101 #endif
1102 
1103 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1104                                          const Instruction *Orig) {
1105   // If the loop was versioned with memchecks, add the corresponding no-alias
1106   // metadata.
1107   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1108     LVer->annotateInstWithNoAlias(To, Orig);
1109 }
1110 
1111 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1112     VPTransformState &State) {
1113 
1114   // Collect recipes in the backward slice of `Root` that may generate a poison
1115   // value that is used after vectorization.
1116   SmallPtrSet<VPRecipeBase *, 16> Visited;
1117   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1118     SmallVector<VPRecipeBase *, 16> Worklist;
1119     Worklist.push_back(Root);
1120 
1121     // Traverse the backward slice of Root through its use-def chain.
1122     while (!Worklist.empty()) {
1123       VPRecipeBase *CurRec = Worklist.back();
1124       Worklist.pop_back();
1125 
1126       if (!Visited.insert(CurRec).second)
1127         continue;
1128 
1129       // Prune search if we find another recipe generating a widen memory
1130       // instruction. Widen memory instructions involved in address computation
1131       // will lead to gather/scatter instructions, which don't need to be
1132       // handled.
1133       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1134           isa<VPInterleaveRecipe>(CurRec) ||
1135           isa<VPCanonicalIVPHIRecipe>(CurRec))
1136         continue;
1137 
1138       // This recipe contributes to the address computation of a widen
1139       // load/store. Collect recipe if its underlying instruction has
1140       // poison-generating flags.
1141       Instruction *Instr = CurRec->getUnderlyingInstr();
1142       if (Instr && Instr->hasPoisonGeneratingFlags())
1143         State.MayGeneratePoisonRecipes.insert(CurRec);
1144 
1145       // Add new definitions to the worklist.
1146       for (VPValue *operand : CurRec->operands())
1147         if (VPDef *OpDef = operand->getDef())
1148           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1149     }
1150   });
1151 
1152   // Traverse all the recipes in the VPlan and collect the poison-generating
1153   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1154   // VPInterleaveRecipe.
1155   auto Iter = depth_first(
1156       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1157   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1158     for (VPRecipeBase &Recipe : *VPBB) {
1159       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1160         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1161         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1162         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1163             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1164           collectPoisonGeneratingInstrsInBackwardSlice(
1165               cast<VPRecipeBase>(AddrDef));
1166       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1167         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1168         if (AddrDef) {
1169           // Check if any member of the interleave group needs predication.
1170           const InterleaveGroup<Instruction> *InterGroup =
1171               InterleaveRec->getInterleaveGroup();
1172           bool NeedPredication = false;
1173           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1174                I < NumMembers; ++I) {
1175             Instruction *Member = InterGroup->getMember(I);
1176             if (Member)
1177               NeedPredication |=
1178                   Legal->blockNeedsPredication(Member->getParent());
1179           }
1180 
1181           if (NeedPredication)
1182             collectPoisonGeneratingInstrsInBackwardSlice(
1183                 cast<VPRecipeBase>(AddrDef));
1184         }
1185       }
1186     }
1187   }
1188 }
1189 
1190 void InnerLoopVectorizer::addMetadata(Instruction *To,
1191                                       Instruction *From) {
1192   propagateMetadata(To, From);
1193   addNewMetadata(To, From);
1194 }
1195 
1196 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1197                                       Instruction *From) {
1198   for (Value *V : To) {
1199     if (Instruction *I = dyn_cast<Instruction>(V))
1200       addMetadata(I, From);
1201   }
1202 }
1203 
1204 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1205     const RecurrenceDescriptor &RdxDesc) {
1206   auto It = ReductionResumeValues.find(&RdxDesc);
1207   assert(It != ReductionResumeValues.end() &&
1208          "Expected to find a resume value for the reduction.");
1209   return It->second;
1210 }
1211 
1212 namespace llvm {
1213 
1214 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1215 // lowered.
1216 enum ScalarEpilogueLowering {
1217 
1218   // The default: allowing scalar epilogues.
1219   CM_ScalarEpilogueAllowed,
1220 
1221   // Vectorization with OptForSize: don't allow epilogues.
1222   CM_ScalarEpilogueNotAllowedOptSize,
1223 
1224   // A special case of vectorisation with OptForSize: loops with a very small
1225   // trip count are considered for vectorization under OptForSize, thereby
1226   // making sure the cost of their loop body is dominant, free of runtime
1227   // guards and scalar iteration overheads.
1228   CM_ScalarEpilogueNotAllowedLowTripLoop,
1229 
1230   // Loop hint predicate indicating an epilogue is undesired.
1231   CM_ScalarEpilogueNotNeededUsePredicate,
1232 
1233   // Directive indicating we must either tail fold or not vectorize
1234   CM_ScalarEpilogueNotAllowedUsePredicate
1235 };
1236 
1237 /// ElementCountComparator creates a total ordering for ElementCount
1238 /// for the purposes of using it in a set structure.
1239 struct ElementCountComparator {
1240   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1241     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1242            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1243   }
1244 };
1245 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1246 
1247 /// LoopVectorizationCostModel - estimates the expected speedups due to
1248 /// vectorization.
1249 /// In many cases vectorization is not profitable. This can happen because of
1250 /// a number of reasons. In this class we mainly attempt to predict the
1251 /// expected speedup/slowdowns due to the supported instruction set. We use the
1252 /// TargetTransformInfo to query the different backends for the cost of
1253 /// different operations.
1254 class LoopVectorizationCostModel {
1255 public:
1256   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1257                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1258                              LoopVectorizationLegality *Legal,
1259                              const TargetTransformInfo &TTI,
1260                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1261                              AssumptionCache *AC,
1262                              OptimizationRemarkEmitter *ORE, const Function *F,
1263                              const LoopVectorizeHints *Hints,
1264                              InterleavedAccessInfo &IAI)
1265       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1266         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1267         Hints(Hints), InterleaveInfo(IAI) {}
1268 
1269   /// \return An upper bound for the vectorization factors (both fixed and
1270   /// scalable). If the factors are 0, vectorization and interleaving should be
1271   /// avoided up front.
1272   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1273 
1274   /// \return True if runtime checks are required for vectorization, and false
1275   /// otherwise.
1276   bool runtimeChecksRequired();
1277 
1278   /// \return The most profitable vectorization factor and the cost of that VF.
1279   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1280   /// then this vectorization factor will be selected if vectorization is
1281   /// possible.
1282   VectorizationFactor
1283   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1284 
1285   VectorizationFactor
1286   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1287                                     const LoopVectorizationPlanner &LVP);
1288 
1289   /// Setup cost-based decisions for user vectorization factor.
1290   /// \return true if the UserVF is a feasible VF to be chosen.
1291   bool selectUserVectorizationFactor(ElementCount UserVF) {
1292     collectUniformsAndScalars(UserVF);
1293     collectInstsToScalarize(UserVF);
1294     return expectedCost(UserVF).first.isValid();
1295   }
1296 
1297   /// \return The size (in bits) of the smallest and widest types in the code
1298   /// that needs to be vectorized. We ignore values that remain scalar such as
1299   /// 64 bit loop indices.
1300   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1301 
1302   /// \return The desired interleave count.
1303   /// If interleave count has been specified by metadata it will be returned.
1304   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1305   /// are the selected vectorization factor and the cost of the selected VF.
1306   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1307 
1308   /// Memory access instruction may be vectorized in more than one way.
1309   /// Form of instruction after vectorization depends on cost.
1310   /// This function takes cost-based decisions for Load/Store instructions
1311   /// and collects them in a map. This decisions map is used for building
1312   /// the lists of loop-uniform and loop-scalar instructions.
1313   /// The calculated cost is saved with widening decision in order to
1314   /// avoid redundant calculations.
1315   void setCostBasedWideningDecision(ElementCount VF);
1316 
1317   /// A struct that represents some properties of the register usage
1318   /// of a loop.
1319   struct RegisterUsage {
1320     /// Holds the number of loop invariant values that are used in the loop.
1321     /// The key is ClassID of target-provided register class.
1322     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1323     /// Holds the maximum number of concurrent live intervals in the loop.
1324     /// The key is ClassID of target-provided register class.
1325     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1326   };
1327 
1328   /// \return Returns information about the register usages of the loop for the
1329   /// given vectorization factors.
1330   SmallVector<RegisterUsage, 8>
1331   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1332 
1333   /// Collect values we want to ignore in the cost model.
1334   void collectValuesToIgnore();
1335 
1336   /// Collect all element types in the loop for which widening is needed.
1337   void collectElementTypesForWidening();
1338 
1339   /// Split reductions into those that happen in the loop, and those that happen
1340   /// outside. In loop reductions are collected into InLoopReductionChains.
1341   void collectInLoopReductions();
1342 
1343   /// Returns true if we should use strict in-order reductions for the given
1344   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1345   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1346   /// of FP operations.
1347   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1348     return !Hints->allowReordering() && RdxDesc.isOrdered();
1349   }
1350 
1351   /// \returns The smallest bitwidth each instruction can be represented with.
1352   /// The vector equivalents of these instructions should be truncated to this
1353   /// type.
1354   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1355     return MinBWs;
1356   }
1357 
1358   /// \returns True if it is more profitable to scalarize instruction \p I for
1359   /// vectorization factor \p VF.
1360   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1361     assert(VF.isVector() &&
1362            "Profitable to scalarize relevant only for VF > 1.");
1363 
1364     // Cost model is not run in the VPlan-native path - return conservative
1365     // result until this changes.
1366     if (EnableVPlanNativePath)
1367       return false;
1368 
1369     auto Scalars = InstsToScalarize.find(VF);
1370     assert(Scalars != InstsToScalarize.end() &&
1371            "VF not yet analyzed for scalarization profitability");
1372     return Scalars->second.find(I) != Scalars->second.end();
1373   }
1374 
1375   /// Returns true if \p I is known to be uniform after vectorization.
1376   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1377     if (VF.isScalar())
1378       return true;
1379 
1380     // Cost model is not run in the VPlan-native path - return conservative
1381     // result until this changes.
1382     if (EnableVPlanNativePath)
1383       return false;
1384 
1385     auto UniformsPerVF = Uniforms.find(VF);
1386     assert(UniformsPerVF != Uniforms.end() &&
1387            "VF not yet analyzed for uniformity");
1388     return UniformsPerVF->second.count(I);
1389   }
1390 
1391   /// Returns true if \p I is known to be scalar after vectorization.
1392   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1393     if (VF.isScalar())
1394       return true;
1395 
1396     // Cost model is not run in the VPlan-native path - return conservative
1397     // result until this changes.
1398     if (EnableVPlanNativePath)
1399       return false;
1400 
1401     auto ScalarsPerVF = Scalars.find(VF);
1402     assert(ScalarsPerVF != Scalars.end() &&
1403            "Scalar values are not calculated for VF");
1404     return ScalarsPerVF->second.count(I);
1405   }
1406 
1407   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1408   /// for vectorization factor \p VF.
1409   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1410     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1411            !isProfitableToScalarize(I, VF) &&
1412            !isScalarAfterVectorization(I, VF);
1413   }
1414 
1415   /// Decision that was taken during cost calculation for memory instruction.
1416   enum InstWidening {
1417     CM_Unknown,
1418     CM_Widen,         // For consecutive accesses with stride +1.
1419     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1420     CM_Interleave,
1421     CM_GatherScatter,
1422     CM_Scalarize
1423   };
1424 
1425   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1426   /// instruction \p I and vector width \p VF.
1427   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1428                            InstructionCost Cost) {
1429     assert(VF.isVector() && "Expected VF >=2");
1430     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1431   }
1432 
1433   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1434   /// interleaving group \p Grp and vector width \p VF.
1435   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1436                            ElementCount VF, InstWidening W,
1437                            InstructionCost Cost) {
1438     assert(VF.isVector() && "Expected VF >=2");
1439     /// Broadcast this decicion to all instructions inside the group.
1440     /// But the cost will be assigned to one instruction only.
1441     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1442       if (auto *I = Grp->getMember(i)) {
1443         if (Grp->getInsertPos() == I)
1444           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1445         else
1446           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1447       }
1448     }
1449   }
1450 
1451   /// Return the cost model decision for the given instruction \p I and vector
1452   /// width \p VF. Return CM_Unknown if this instruction did not pass
1453   /// through the cost modeling.
1454   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1455     assert(VF.isVector() && "Expected VF to be a vector VF");
1456     // Cost model is not run in the VPlan-native path - return conservative
1457     // result until this changes.
1458     if (EnableVPlanNativePath)
1459       return CM_GatherScatter;
1460 
1461     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1462     auto Itr = WideningDecisions.find(InstOnVF);
1463     if (Itr == WideningDecisions.end())
1464       return CM_Unknown;
1465     return Itr->second.first;
1466   }
1467 
1468   /// Return the vectorization cost for the given instruction \p I and vector
1469   /// width \p VF.
1470   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1471     assert(VF.isVector() && "Expected VF >=2");
1472     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1473     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1474            "The cost is not calculated");
1475     return WideningDecisions[InstOnVF].second;
1476   }
1477 
1478   /// Return True if instruction \p I is an optimizable truncate whose operand
1479   /// is an induction variable. Such a truncate will be removed by adding a new
1480   /// induction variable with the destination type.
1481   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1482     // If the instruction is not a truncate, return false.
1483     auto *Trunc = dyn_cast<TruncInst>(I);
1484     if (!Trunc)
1485       return false;
1486 
1487     // Get the source and destination types of the truncate.
1488     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1489     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1490 
1491     // If the truncate is free for the given types, return false. Replacing a
1492     // free truncate with an induction variable would add an induction variable
1493     // update instruction to each iteration of the loop. We exclude from this
1494     // check the primary induction variable since it will need an update
1495     // instruction regardless.
1496     Value *Op = Trunc->getOperand(0);
1497     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1498       return false;
1499 
1500     // If the truncated value is not an induction variable, return false.
1501     return Legal->isInductionPhi(Op);
1502   }
1503 
1504   /// Collects the instructions to scalarize for each predicated instruction in
1505   /// the loop.
1506   void collectInstsToScalarize(ElementCount VF);
1507 
1508   /// Collect Uniform and Scalar values for the given \p VF.
1509   /// The sets depend on CM decision for Load/Store instructions
1510   /// that may be vectorized as interleave, gather-scatter or scalarized.
1511   void collectUniformsAndScalars(ElementCount VF) {
1512     // Do the analysis once.
1513     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1514       return;
1515     setCostBasedWideningDecision(VF);
1516     collectLoopUniforms(VF);
1517     collectLoopScalars(VF);
1518   }
1519 
1520   /// Returns true if the target machine supports masked store operation
1521   /// for the given \p DataType and kind of access to \p Ptr.
1522   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1523     return Legal->isConsecutivePtr(DataType, Ptr) &&
1524            TTI.isLegalMaskedStore(DataType, Alignment);
1525   }
1526 
1527   /// Returns true if the target machine supports masked load operation
1528   /// for the given \p DataType and kind of access to \p Ptr.
1529   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1530     return Legal->isConsecutivePtr(DataType, Ptr) &&
1531            TTI.isLegalMaskedLoad(DataType, Alignment);
1532   }
1533 
1534   /// Returns true if the target machine can represent \p V as a masked gather
1535   /// or scatter operation.
1536   bool isLegalGatherOrScatter(Value *V,
1537                               ElementCount VF = ElementCount::getFixed(1)) {
1538     bool LI = isa<LoadInst>(V);
1539     bool SI = isa<StoreInst>(V);
1540     if (!LI && !SI)
1541       return false;
1542     auto *Ty = getLoadStoreType(V);
1543     Align Align = getLoadStoreAlignment(V);
1544     if (VF.isVector())
1545       Ty = VectorType::get(Ty, VF);
1546     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1547            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1548   }
1549 
1550   /// Returns true if the target machine supports all of the reduction
1551   /// variables found for the given VF.
1552   bool canVectorizeReductions(ElementCount VF) const {
1553     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1554       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1555       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1556     }));
1557   }
1558 
1559   /// Returns true if \p I is an instruction that will be scalarized with
1560   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1561   /// instructions include conditional stores and instructions that may divide
1562   /// by zero.
1563   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1564 
1565   // Returns true if \p I is an instruction that will be predicated either
1566   // through scalar predication or masked load/store or masked gather/scatter.
1567   // \p VF is the vectorization factor that will be used to vectorize \p I.
1568   // Superset of instructions that return true for isScalarWithPredication.
1569   bool isPredicatedInst(Instruction *I, ElementCount VF,
1570                         bool IsKnownUniform = false) {
1571     // When we know the load is uniform and the original scalar loop was not
1572     // predicated we don't need to mark it as a predicated instruction. Any
1573     // vectorised blocks created when tail-folding are something artificial we
1574     // have introduced and we know there is always at least one active lane.
1575     // That's why we call Legal->blockNeedsPredication here because it doesn't
1576     // query tail-folding.
1577     if (IsKnownUniform && isa<LoadInst>(I) &&
1578         !Legal->blockNeedsPredication(I->getParent()))
1579       return false;
1580     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1581       return false;
1582     // Loads and stores that need some form of masked operation are predicated
1583     // instructions.
1584     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1585       return Legal->isMaskRequired(I);
1586     return isScalarWithPredication(I, VF);
1587   }
1588 
1589   /// Returns true if \p I is a memory instruction with consecutive memory
1590   /// access that can be widened.
1591   bool
1592   memoryInstructionCanBeWidened(Instruction *I,
1593                                 ElementCount VF = ElementCount::getFixed(1));
1594 
1595   /// Returns true if \p I is a memory instruction in an interleaved-group
1596   /// of memory accesses that can be vectorized with wide vector loads/stores
1597   /// and shuffles.
1598   bool
1599   interleavedAccessCanBeWidened(Instruction *I,
1600                                 ElementCount VF = ElementCount::getFixed(1));
1601 
1602   /// Check if \p Instr belongs to any interleaved access group.
1603   bool isAccessInterleaved(Instruction *Instr) {
1604     return InterleaveInfo.isInterleaved(Instr);
1605   }
1606 
1607   /// Get the interleaved access group that \p Instr belongs to.
1608   const InterleaveGroup<Instruction> *
1609   getInterleavedAccessGroup(Instruction *Instr) {
1610     return InterleaveInfo.getInterleaveGroup(Instr);
1611   }
1612 
1613   /// Returns true if we're required to use a scalar epilogue for at least
1614   /// the final iteration of the original loop.
1615   bool requiresScalarEpilogue(ElementCount VF) const {
1616     if (!isScalarEpilogueAllowed())
1617       return false;
1618     // If we might exit from anywhere but the latch, must run the exiting
1619     // iteration in scalar form.
1620     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1621       return true;
1622     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1623   }
1624 
1625   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1626   /// loop hint annotation.
1627   bool isScalarEpilogueAllowed() const {
1628     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1629   }
1630 
1631   /// Returns true if all loop blocks should be masked to fold tail loop.
1632   bool foldTailByMasking() const { return FoldTailByMasking; }
1633 
1634   /// Returns true if the instructions in this block requires predication
1635   /// for any reason, e.g. because tail folding now requires a predicate
1636   /// or because the block in the original loop was predicated.
1637   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1638     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1639   }
1640 
1641   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1642   /// nodes to the chain of instructions representing the reductions. Uses a
1643   /// MapVector to ensure deterministic iteration order.
1644   using ReductionChainMap =
1645       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1646 
1647   /// Return the chain of instructions representing an inloop reduction.
1648   const ReductionChainMap &getInLoopReductionChains() const {
1649     return InLoopReductionChains;
1650   }
1651 
1652   /// Returns true if the Phi is part of an inloop reduction.
1653   bool isInLoopReduction(PHINode *Phi) const {
1654     return InLoopReductionChains.count(Phi);
1655   }
1656 
1657   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1658   /// with factor VF.  Return the cost of the instruction, including
1659   /// scalarization overhead if it's needed.
1660   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1661 
1662   /// Estimate cost of a call instruction CI if it were vectorized with factor
1663   /// VF. Return the cost of the instruction, including scalarization overhead
1664   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1665   /// scalarized -
1666   /// i.e. either vector version isn't available, or is too expensive.
1667   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1668                                     bool &NeedToScalarize) const;
1669 
1670   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1671   /// that of B.
1672   bool isMoreProfitable(const VectorizationFactor &A,
1673                         const VectorizationFactor &B) const;
1674 
1675   /// Invalidates decisions already taken by the cost model.
1676   void invalidateCostModelingDecisions() {
1677     WideningDecisions.clear();
1678     Uniforms.clear();
1679     Scalars.clear();
1680   }
1681 
1682 private:
1683   unsigned NumPredStores = 0;
1684 
1685   /// Convenience function that returns the value of vscale_range iff
1686   /// vscale_range.min == vscale_range.max or otherwise returns the value
1687   /// returned by the corresponding TLI method.
1688   Optional<unsigned> getVScaleForTuning() const;
1689 
1690   /// \return An upper bound for the vectorization factors for both
1691   /// fixed and scalable vectorization, where the minimum-known number of
1692   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1693   /// disabled or unsupported, then the scalable part will be equal to
1694   /// ElementCount::getScalable(0).
1695   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1696                                            ElementCount UserVF,
1697                                            bool FoldTailByMasking);
1698 
1699   /// \return the maximized element count based on the targets vector
1700   /// registers and the loop trip-count, but limited to a maximum safe VF.
1701   /// This is a helper function of computeFeasibleMaxVF.
1702   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1703   /// issue that occurred on one of the buildbots which cannot be reproduced
1704   /// without having access to the properietary compiler (see comments on
1705   /// D98509). The issue is currently under investigation and this workaround
1706   /// will be removed as soon as possible.
1707   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1708                                        unsigned SmallestType,
1709                                        unsigned WidestType,
1710                                        const ElementCount &MaxSafeVF,
1711                                        bool FoldTailByMasking);
1712 
1713   /// \return the maximum legal scalable VF, based on the safe max number
1714   /// of elements.
1715   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1716 
1717   /// The vectorization cost is a combination of the cost itself and a boolean
1718   /// indicating whether any of the contributing operations will actually
1719   /// operate on vector values after type legalization in the backend. If this
1720   /// latter value is false, then all operations will be scalarized (i.e. no
1721   /// vectorization has actually taken place).
1722   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1723 
1724   /// Returns the expected execution cost. The unit of the cost does
1725   /// not matter because we use the 'cost' units to compare different
1726   /// vector widths. The cost that is returned is *not* normalized by
1727   /// the factor width. If \p Invalid is not nullptr, this function
1728   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1729   /// each instruction that has an Invalid cost for the given VF.
1730   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1731   VectorizationCostTy
1732   expectedCost(ElementCount VF,
1733                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1734 
1735   /// Returns the execution time cost of an instruction for a given vector
1736   /// width. Vector width of one means scalar.
1737   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1738 
1739   /// The cost-computation logic from getInstructionCost which provides
1740   /// the vector type as an output parameter.
1741   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1742                                      Type *&VectorTy);
1743 
1744   /// Return the cost of instructions in an inloop reduction pattern, if I is
1745   /// part of that pattern.
1746   Optional<InstructionCost>
1747   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1748                           TTI::TargetCostKind CostKind);
1749 
1750   /// Calculate vectorization cost of memory instruction \p I.
1751   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1752 
1753   /// The cost computation for scalarized memory instruction.
1754   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1755 
1756   /// The cost computation for interleaving group of memory instructions.
1757   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1758 
1759   /// The cost computation for Gather/Scatter instruction.
1760   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1761 
1762   /// The cost computation for widening instruction \p I with consecutive
1763   /// memory access.
1764   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1765 
1766   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1767   /// Load: scalar load + broadcast.
1768   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1769   /// element)
1770   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1771 
1772   /// Estimate the overhead of scalarizing an instruction. This is a
1773   /// convenience wrapper for the type-based getScalarizationOverhead API.
1774   InstructionCost getScalarizationOverhead(Instruction *I,
1775                                            ElementCount VF) const;
1776 
1777   /// Returns whether the instruction is a load or store and will be a emitted
1778   /// as a vector operation.
1779   bool isConsecutiveLoadOrStore(Instruction *I);
1780 
1781   /// Returns true if an artificially high cost for emulated masked memrefs
1782   /// should be used.
1783   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1784 
1785   /// Map of scalar integer values to the smallest bitwidth they can be legally
1786   /// represented as. The vector equivalents of these values should be truncated
1787   /// to this type.
1788   MapVector<Instruction *, uint64_t> MinBWs;
1789 
1790   /// A type representing the costs for instructions if they were to be
1791   /// scalarized rather than vectorized. The entries are Instruction-Cost
1792   /// pairs.
1793   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1794 
1795   /// A set containing all BasicBlocks that are known to present after
1796   /// vectorization as a predicated block.
1797   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1798 
1799   /// Records whether it is allowed to have the original scalar loop execute at
1800   /// least once. This may be needed as a fallback loop in case runtime
1801   /// aliasing/dependence checks fail, or to handle the tail/remainder
1802   /// iterations when the trip count is unknown or doesn't divide by the VF,
1803   /// or as a peel-loop to handle gaps in interleave-groups.
1804   /// Under optsize and when the trip count is very small we don't allow any
1805   /// iterations to execute in the scalar loop.
1806   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1807 
1808   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1809   bool FoldTailByMasking = false;
1810 
1811   /// A map holding scalar costs for different vectorization factors. The
1812   /// presence of a cost for an instruction in the mapping indicates that the
1813   /// instruction will be scalarized when vectorizing with the associated
1814   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1815   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1816 
1817   /// Holds the instructions known to be uniform after vectorization.
1818   /// The data is collected per VF.
1819   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1820 
1821   /// Holds the instructions known to be scalar after vectorization.
1822   /// The data is collected per VF.
1823   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1824 
1825   /// Holds the instructions (address computations) that are forced to be
1826   /// scalarized.
1827   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1828 
1829   /// PHINodes of the reductions that should be expanded in-loop along with
1830   /// their associated chains of reduction operations, in program order from top
1831   /// (PHI) to bottom
1832   ReductionChainMap InLoopReductionChains;
1833 
1834   /// A Map of inloop reduction operations and their immediate chain operand.
1835   /// FIXME: This can be removed once reductions can be costed correctly in
1836   /// vplan. This was added to allow quick lookup to the inloop operations,
1837   /// without having to loop through InLoopReductionChains.
1838   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1839 
1840   /// Returns the expected difference in cost from scalarizing the expression
1841   /// feeding a predicated instruction \p PredInst. The instructions to
1842   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1843   /// non-negative return value implies the expression will be scalarized.
1844   /// Currently, only single-use chains are considered for scalarization.
1845   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1846                               ElementCount VF);
1847 
1848   /// Collect the instructions that are uniform after vectorization. An
1849   /// instruction is uniform if we represent it with a single scalar value in
1850   /// the vectorized loop corresponding to each vector iteration. Examples of
1851   /// uniform instructions include pointer operands of consecutive or
1852   /// interleaved memory accesses. Note that although uniformity implies an
1853   /// instruction will be scalar, the reverse is not true. In general, a
1854   /// scalarized instruction will be represented by VF scalar values in the
1855   /// vectorized loop, each corresponding to an iteration of the original
1856   /// scalar loop.
1857   void collectLoopUniforms(ElementCount VF);
1858 
1859   /// Collect the instructions that are scalar after vectorization. An
1860   /// instruction is scalar if it is known to be uniform or will be scalarized
1861   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1862   /// to the list if they are used by a load/store instruction that is marked as
1863   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1864   /// VF values in the vectorized loop, each corresponding to an iteration of
1865   /// the original scalar loop.
1866   void collectLoopScalars(ElementCount VF);
1867 
1868   /// Keeps cost model vectorization decision and cost for instructions.
1869   /// Right now it is used for memory instructions only.
1870   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1871                                 std::pair<InstWidening, InstructionCost>>;
1872 
1873   DecisionList WideningDecisions;
1874 
1875   /// Returns true if \p V is expected to be vectorized and it needs to be
1876   /// extracted.
1877   bool needsExtract(Value *V, ElementCount VF) const {
1878     Instruction *I = dyn_cast<Instruction>(V);
1879     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1880         TheLoop->isLoopInvariant(I))
1881       return false;
1882 
1883     // Assume we can vectorize V (and hence we need extraction) if the
1884     // scalars are not computed yet. This can happen, because it is called
1885     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1886     // the scalars are collected. That should be a safe assumption in most
1887     // cases, because we check if the operands have vectorizable types
1888     // beforehand in LoopVectorizationLegality.
1889     return Scalars.find(VF) == Scalars.end() ||
1890            !isScalarAfterVectorization(I, VF);
1891   };
1892 
1893   /// Returns a range containing only operands needing to be extracted.
1894   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1895                                                    ElementCount VF) const {
1896     return SmallVector<Value *, 4>(make_filter_range(
1897         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1898   }
1899 
1900   /// Determines if we have the infrastructure to vectorize loop \p L and its
1901   /// epilogue, assuming the main loop is vectorized by \p VF.
1902   bool isCandidateForEpilogueVectorization(const Loop &L,
1903                                            const ElementCount VF) const;
1904 
1905   /// Returns true if epilogue vectorization is considered profitable, and
1906   /// false otherwise.
1907   /// \p VF is the vectorization factor chosen for the original loop.
1908   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1909 
1910 public:
1911   /// The loop that we evaluate.
1912   Loop *TheLoop;
1913 
1914   /// Predicated scalar evolution analysis.
1915   PredicatedScalarEvolution &PSE;
1916 
1917   /// Loop Info analysis.
1918   LoopInfo *LI;
1919 
1920   /// Vectorization legality.
1921   LoopVectorizationLegality *Legal;
1922 
1923   /// Vector target information.
1924   const TargetTransformInfo &TTI;
1925 
1926   /// Target Library Info.
1927   const TargetLibraryInfo *TLI;
1928 
1929   /// Demanded bits analysis.
1930   DemandedBits *DB;
1931 
1932   /// Assumption cache.
1933   AssumptionCache *AC;
1934 
1935   /// Interface to emit optimization remarks.
1936   OptimizationRemarkEmitter *ORE;
1937 
1938   const Function *TheFunction;
1939 
1940   /// Loop Vectorize Hint.
1941   const LoopVectorizeHints *Hints;
1942 
1943   /// The interleave access information contains groups of interleaved accesses
1944   /// with the same stride and close to each other.
1945   InterleavedAccessInfo &InterleaveInfo;
1946 
1947   /// Values to ignore in the cost model.
1948   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1949 
1950   /// Values to ignore in the cost model when VF > 1.
1951   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1952 
1953   /// All element types found in the loop.
1954   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1955 
1956   /// Profitable vector factors.
1957   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1958 };
1959 } // end namespace llvm
1960 
1961 /// Helper struct to manage generating runtime checks for vectorization.
1962 ///
1963 /// The runtime checks are created up-front in temporary blocks to allow better
1964 /// estimating the cost and un-linked from the existing IR. After deciding to
1965 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1966 /// temporary blocks are completely removed.
1967 class GeneratedRTChecks {
1968   /// Basic block which contains the generated SCEV checks, if any.
1969   BasicBlock *SCEVCheckBlock = nullptr;
1970 
1971   /// The value representing the result of the generated SCEV checks. If it is
1972   /// nullptr, either no SCEV checks have been generated or they have been used.
1973   Value *SCEVCheckCond = nullptr;
1974 
1975   /// Basic block which contains the generated memory runtime checks, if any.
1976   BasicBlock *MemCheckBlock = nullptr;
1977 
1978   /// The value representing the result of the generated memory runtime checks.
1979   /// If it is nullptr, either no memory runtime checks have been generated or
1980   /// they have been used.
1981   Value *MemRuntimeCheckCond = nullptr;
1982 
1983   DominatorTree *DT;
1984   LoopInfo *LI;
1985 
1986   SCEVExpander SCEVExp;
1987   SCEVExpander MemCheckExp;
1988 
1989 public:
1990   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1991                     const DataLayout &DL)
1992       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1993         MemCheckExp(SE, DL, "scev.check") {}
1994 
1995   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1996   /// accurately estimate the cost of the runtime checks. The blocks are
1997   /// un-linked from the IR and is added back during vector code generation. If
1998   /// there is no vector code generation, the check blocks are removed
1999   /// completely.
2000   void Create(Loop *L, const LoopAccessInfo &LAI,
2001               const SCEVPredicate &Pred) {
2002 
2003     BasicBlock *LoopHeader = L->getHeader();
2004     BasicBlock *Preheader = L->getLoopPreheader();
2005 
2006     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
2007     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
2008     // may be used by SCEVExpander. The blocks will be un-linked from their
2009     // predecessors and removed from LI & DT at the end of the function.
2010     if (!Pred.isAlwaysTrue()) {
2011       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
2012                                   nullptr, "vector.scevcheck");
2013 
2014       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
2015           &Pred, SCEVCheckBlock->getTerminator());
2016     }
2017 
2018     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
2019     if (RtPtrChecking.Need) {
2020       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
2021       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
2022                                  "vector.memcheck");
2023 
2024       MemRuntimeCheckCond =
2025           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2026                            RtPtrChecking.getChecks(), MemCheckExp);
2027       assert(MemRuntimeCheckCond &&
2028              "no RT checks generated although RtPtrChecking "
2029              "claimed checks are required");
2030     }
2031 
2032     if (!MemCheckBlock && !SCEVCheckBlock)
2033       return;
2034 
2035     // Unhook the temporary block with the checks, update various places
2036     // accordingly.
2037     if (SCEVCheckBlock)
2038       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2039     if (MemCheckBlock)
2040       MemCheckBlock->replaceAllUsesWith(Preheader);
2041 
2042     if (SCEVCheckBlock) {
2043       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2044       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2045       Preheader->getTerminator()->eraseFromParent();
2046     }
2047     if (MemCheckBlock) {
2048       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2049       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2050       Preheader->getTerminator()->eraseFromParent();
2051     }
2052 
2053     DT->changeImmediateDominator(LoopHeader, Preheader);
2054     if (MemCheckBlock) {
2055       DT->eraseNode(MemCheckBlock);
2056       LI->removeBlock(MemCheckBlock);
2057     }
2058     if (SCEVCheckBlock) {
2059       DT->eraseNode(SCEVCheckBlock);
2060       LI->removeBlock(SCEVCheckBlock);
2061     }
2062   }
2063 
2064   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2065   /// unused.
2066   ~GeneratedRTChecks() {
2067     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2068     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2069     if (!SCEVCheckCond)
2070       SCEVCleaner.markResultUsed();
2071 
2072     if (!MemRuntimeCheckCond)
2073       MemCheckCleaner.markResultUsed();
2074 
2075     if (MemRuntimeCheckCond) {
2076       auto &SE = *MemCheckExp.getSE();
2077       // Memory runtime check generation creates compares that use expanded
2078       // values. Remove them before running the SCEVExpanderCleaners.
2079       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2080         if (MemCheckExp.isInsertedInstruction(&I))
2081           continue;
2082         SE.forgetValue(&I);
2083         I.eraseFromParent();
2084       }
2085     }
2086     MemCheckCleaner.cleanup();
2087     SCEVCleaner.cleanup();
2088 
2089     if (SCEVCheckCond)
2090       SCEVCheckBlock->eraseFromParent();
2091     if (MemRuntimeCheckCond)
2092       MemCheckBlock->eraseFromParent();
2093   }
2094 
2095   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2096   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2097   /// depending on the generated condition.
2098   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2099                              BasicBlock *LoopVectorPreHeader,
2100                              BasicBlock *LoopExitBlock) {
2101     if (!SCEVCheckCond)
2102       return nullptr;
2103     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2104       if (C->isZero())
2105         return nullptr;
2106 
2107     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2108 
2109     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2110     // Create new preheader for vector loop.
2111     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2112       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2113 
2114     SCEVCheckBlock->getTerminator()->eraseFromParent();
2115     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2116     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2117                                                 SCEVCheckBlock);
2118 
2119     DT->addNewBlock(SCEVCheckBlock, Pred);
2120     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2121 
2122     ReplaceInstWithInst(
2123         SCEVCheckBlock->getTerminator(),
2124         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2125     // Mark the check as used, to prevent it from being removed during cleanup.
2126     SCEVCheckCond = nullptr;
2127     return SCEVCheckBlock;
2128   }
2129 
2130   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2131   /// the branches to branch to the vector preheader or \p Bypass, depending on
2132   /// the generated condition.
2133   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2134                                    BasicBlock *LoopVectorPreHeader) {
2135     // Check if we generated code that checks in runtime if arrays overlap.
2136     if (!MemRuntimeCheckCond)
2137       return nullptr;
2138 
2139     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2140     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2141                                                 MemCheckBlock);
2142 
2143     DT->addNewBlock(MemCheckBlock, Pred);
2144     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2145     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2146 
2147     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2148       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2149 
2150     ReplaceInstWithInst(
2151         MemCheckBlock->getTerminator(),
2152         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2153     MemCheckBlock->getTerminator()->setDebugLoc(
2154         Pred->getTerminator()->getDebugLoc());
2155 
2156     // Mark the check as used, to prevent it from being removed during cleanup.
2157     MemRuntimeCheckCond = nullptr;
2158     return MemCheckBlock;
2159   }
2160 };
2161 
2162 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2163 // vectorization. The loop needs to be annotated with #pragma omp simd
2164 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2165 // vector length information is not provided, vectorization is not considered
2166 // explicit. Interleave hints are not allowed either. These limitations will be
2167 // relaxed in the future.
2168 // Please, note that we are currently forced to abuse the pragma 'clang
2169 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2170 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2171 // provides *explicit vectorization hints* (LV can bypass legal checks and
2172 // assume that vectorization is legal). However, both hints are implemented
2173 // using the same metadata (llvm.loop.vectorize, processed by
2174 // LoopVectorizeHints). This will be fixed in the future when the native IR
2175 // representation for pragma 'omp simd' is introduced.
2176 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2177                                    OptimizationRemarkEmitter *ORE) {
2178   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2179   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2180 
2181   // Only outer loops with an explicit vectorization hint are supported.
2182   // Unannotated outer loops are ignored.
2183   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2184     return false;
2185 
2186   Function *Fn = OuterLp->getHeader()->getParent();
2187   if (!Hints.allowVectorization(Fn, OuterLp,
2188                                 true /*VectorizeOnlyWhenForced*/)) {
2189     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2190     return false;
2191   }
2192 
2193   if (Hints.getInterleave() > 1) {
2194     // TODO: Interleave support is future work.
2195     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2196                          "outer loops.\n");
2197     Hints.emitRemarkWithHints();
2198     return false;
2199   }
2200 
2201   return true;
2202 }
2203 
2204 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2205                                   OptimizationRemarkEmitter *ORE,
2206                                   SmallVectorImpl<Loop *> &V) {
2207   // Collect inner loops and outer loops without irreducible control flow. For
2208   // now, only collect outer loops that have explicit vectorization hints. If we
2209   // are stress testing the VPlan H-CFG construction, we collect the outermost
2210   // loop of every loop nest.
2211   if (L.isInnermost() || VPlanBuildStressTest ||
2212       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2213     LoopBlocksRPO RPOT(&L);
2214     RPOT.perform(LI);
2215     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2216       V.push_back(&L);
2217       // TODO: Collect inner loops inside marked outer loops in case
2218       // vectorization fails for the outer loop. Do not invoke
2219       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2220       // already known to be reducible. We can use an inherited attribute for
2221       // that.
2222       return;
2223     }
2224   }
2225   for (Loop *InnerL : L)
2226     collectSupportedLoops(*InnerL, LI, ORE, V);
2227 }
2228 
2229 namespace {
2230 
2231 /// The LoopVectorize Pass.
2232 struct LoopVectorize : public FunctionPass {
2233   /// Pass identification, replacement for typeid
2234   static char ID;
2235 
2236   LoopVectorizePass Impl;
2237 
2238   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2239                          bool VectorizeOnlyWhenForced = false)
2240       : FunctionPass(ID),
2241         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2242     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2243   }
2244 
2245   bool runOnFunction(Function &F) override {
2246     if (skipFunction(F))
2247       return false;
2248 
2249     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2250     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2251     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2252     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2253     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2254     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2255     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2256     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2257     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2258     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2259     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2260     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2261     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2262 
2263     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2264         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2265 
2266     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2267                         GetLAA, *ORE, PSI).MadeAnyChange;
2268   }
2269 
2270   void getAnalysisUsage(AnalysisUsage &AU) const override {
2271     AU.addRequired<AssumptionCacheTracker>();
2272     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2273     AU.addRequired<DominatorTreeWrapperPass>();
2274     AU.addRequired<LoopInfoWrapperPass>();
2275     AU.addRequired<ScalarEvolutionWrapperPass>();
2276     AU.addRequired<TargetTransformInfoWrapperPass>();
2277     AU.addRequired<AAResultsWrapperPass>();
2278     AU.addRequired<LoopAccessLegacyAnalysis>();
2279     AU.addRequired<DemandedBitsWrapperPass>();
2280     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2281     AU.addRequired<InjectTLIMappingsLegacy>();
2282 
2283     // We currently do not preserve loopinfo/dominator analyses with outer loop
2284     // vectorization. Until this is addressed, mark these analyses as preserved
2285     // only for non-VPlan-native path.
2286     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2287     if (!EnableVPlanNativePath) {
2288       AU.addPreserved<LoopInfoWrapperPass>();
2289       AU.addPreserved<DominatorTreeWrapperPass>();
2290     }
2291 
2292     AU.addPreserved<BasicAAWrapperPass>();
2293     AU.addPreserved<GlobalsAAWrapperPass>();
2294     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2295   }
2296 };
2297 
2298 } // end anonymous namespace
2299 
2300 //===----------------------------------------------------------------------===//
2301 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2302 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2303 //===----------------------------------------------------------------------===//
2304 
2305 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2306   // We need to place the broadcast of invariant variables outside the loop,
2307   // but only if it's proven safe to do so. Else, broadcast will be inside
2308   // vector loop body.
2309   Instruction *Instr = dyn_cast<Instruction>(V);
2310   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2311                      (!Instr ||
2312                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2313   // Place the code for broadcasting invariant variables in the new preheader.
2314   IRBuilder<>::InsertPointGuard Guard(Builder);
2315   if (SafeToHoist)
2316     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2317 
2318   // Broadcast the scalar into all locations in the vector.
2319   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2320 
2321   return Shuf;
2322 }
2323 
2324 /// This function adds
2325 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2326 /// to each vector element of Val. The sequence starts at StartIndex.
2327 /// \p Opcode is relevant for FP induction variable.
2328 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2329                             Instruction::BinaryOps BinOp, ElementCount VF,
2330                             IRBuilderBase &Builder) {
2331   assert(VF.isVector() && "only vector VFs are supported");
2332 
2333   // Create and check the types.
2334   auto *ValVTy = cast<VectorType>(Val->getType());
2335   ElementCount VLen = ValVTy->getElementCount();
2336 
2337   Type *STy = Val->getType()->getScalarType();
2338   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2339          "Induction Step must be an integer or FP");
2340   assert(Step->getType() == STy && "Step has wrong type");
2341 
2342   SmallVector<Constant *, 8> Indices;
2343 
2344   // Create a vector of consecutive numbers from zero to VF.
2345   VectorType *InitVecValVTy = ValVTy;
2346   if (STy->isFloatingPointTy()) {
2347     Type *InitVecValSTy =
2348         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2349     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2350   }
2351   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2352 
2353   // Splat the StartIdx
2354   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2355 
2356   if (STy->isIntegerTy()) {
2357     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2358     Step = Builder.CreateVectorSplat(VLen, Step);
2359     assert(Step->getType() == Val->getType() && "Invalid step vec");
2360     // FIXME: The newly created binary instructions should contain nsw/nuw
2361     // flags, which can be found from the original scalar operations.
2362     Step = Builder.CreateMul(InitVec, Step);
2363     return Builder.CreateAdd(Val, Step, "induction");
2364   }
2365 
2366   // Floating point induction.
2367   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2368          "Binary Opcode should be specified for FP induction");
2369   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2370   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2371 
2372   Step = Builder.CreateVectorSplat(VLen, Step);
2373   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2374   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2375 }
2376 
2377 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2378     const InductionDescriptor &II, Value *Step, Value *Start,
2379     Instruction *EntryVal, VPValue *Def, VPTransformState &State) {
2380   IRBuilderBase &Builder = State.Builder;
2381   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2382          "Expected either an induction phi-node or a truncate of it!");
2383 
2384   // Construct the initial value of the vector IV in the vector loop preheader
2385   auto CurrIP = Builder.saveIP();
2386   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2387   if (isa<TruncInst>(EntryVal)) {
2388     assert(Start->getType()->isIntegerTy() &&
2389            "Truncation requires an integer type");
2390     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2391     Step = Builder.CreateTrunc(Step, TruncType);
2392     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2393   }
2394 
2395   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2396   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
2397   Value *SteppedStart = getStepVector(
2398       SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder);
2399 
2400   // We create vector phi nodes for both integer and floating-point induction
2401   // variables. Here, we determine the kind of arithmetic we will perform.
2402   Instruction::BinaryOps AddOp;
2403   Instruction::BinaryOps MulOp;
2404   if (Step->getType()->isIntegerTy()) {
2405     AddOp = Instruction::Add;
2406     MulOp = Instruction::Mul;
2407   } else {
2408     AddOp = II.getInductionOpcode();
2409     MulOp = Instruction::FMul;
2410   }
2411 
2412   // Multiply the vectorization factor by the step using integer or
2413   // floating-point arithmetic as appropriate.
2414   Type *StepType = Step->getType();
2415   Value *RuntimeVF;
2416   if (Step->getType()->isFloatingPointTy())
2417     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
2418   else
2419     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
2420   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2421 
2422   // Create a vector splat to use in the induction update.
2423   //
2424   // FIXME: If the step is non-constant, we create the vector splat with
2425   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2426   //        handle a constant vector splat.
2427   Value *SplatVF = isa<Constant>(Mul)
2428                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
2429                        : Builder.CreateVectorSplat(State.VF, Mul);
2430   Builder.restoreIP(CurrIP);
2431 
2432   // We may need to add the step a number of times, depending on the unroll
2433   // factor. The last of those goes into the PHI.
2434   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2435                                     &*LoopVectorBody->getFirstInsertionPt());
2436   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2437   Instruction *LastInduction = VecInd;
2438   for (unsigned Part = 0; Part < UF; ++Part) {
2439     State.set(Def, LastInduction, Part);
2440 
2441     if (isa<TruncInst>(EntryVal))
2442       addMetadata(LastInduction, EntryVal);
2443 
2444     LastInduction = cast<Instruction>(
2445         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2446     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2447   }
2448 
2449   // Move the last step to the end of the latch block. This ensures consistent
2450   // placement of all induction updates.
2451   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2452   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2453   LastInduction->moveBefore(Br);
2454   LastInduction->setName("vec.ind.next");
2455 
2456   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2457   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2458 }
2459 
2460 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2461 /// variable on which to base the steps, \p Step is the size of the step, and
2462 /// \p EntryVal is the value from the original loop that maps to the steps.
2463 /// Note that \p EntryVal doesn't have to be an induction variable - it
2464 /// can also be a truncate instruction.
2465 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2466                              Instruction *EntryVal,
2467                              const InductionDescriptor &ID, VPValue *Def,
2468                              VPTransformState &State) {
2469   IRBuilderBase &Builder = State.Builder;
2470   // We shouldn't have to build scalar steps if we aren't vectorizing.
2471   assert(State.VF.isVector() && "VF should be greater than one");
2472   // Get the value type and ensure it and the step have the same integer type.
2473   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2474   assert(ScalarIVTy == Step->getType() &&
2475          "Val and Step should have the same type");
2476 
2477   // We build scalar steps for both integer and floating-point induction
2478   // variables. Here, we determine the kind of arithmetic we will perform.
2479   Instruction::BinaryOps AddOp;
2480   Instruction::BinaryOps MulOp;
2481   if (ScalarIVTy->isIntegerTy()) {
2482     AddOp = Instruction::Add;
2483     MulOp = Instruction::Mul;
2484   } else {
2485     AddOp = ID.getInductionOpcode();
2486     MulOp = Instruction::FMul;
2487   }
2488 
2489   // Determine the number of scalars we need to generate for each unroll
2490   // iteration.
2491   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2492   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2493   // Compute the scalar steps and save the results in State.
2494   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2495                                      ScalarIVTy->getScalarSizeInBits());
2496   Type *VecIVTy = nullptr;
2497   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2498   if (!FirstLaneOnly && State.VF.isScalable()) {
2499     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2500     UnitStepVec =
2501         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2502     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2503     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2504   }
2505 
2506   for (unsigned Part = 0; Part < State.UF; ++Part) {
2507     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2508 
2509     if (!FirstLaneOnly && State.VF.isScalable()) {
2510       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2511       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2512       if (ScalarIVTy->isFloatingPointTy())
2513         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2514       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2515       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2516       State.set(Def, Add, Part);
2517       // It's useful to record the lane values too for the known minimum number
2518       // of elements so we do those below. This improves the code quality when
2519       // trying to extract the first element, for example.
2520     }
2521 
2522     if (ScalarIVTy->isFloatingPointTy())
2523       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2524 
2525     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2526       Value *StartIdx = Builder.CreateBinOp(
2527           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2528       // The step returned by `createStepForVF` is a runtime-evaluated value
2529       // when VF is scalable. Otherwise, it should be folded into a Constant.
2530       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2531              "Expected StartIdx to be folded to a constant when VF is not "
2532              "scalable");
2533       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2534       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2535       State.set(Def, Add, VPIteration(Part, Lane));
2536     }
2537   }
2538 }
2539 
2540 // Generate code for the induction step. Note that induction steps are
2541 // required to be loop-invariant
2542 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2543                               Instruction *InsertBefore,
2544                               Loop *OrigLoop = nullptr) {
2545   const DataLayout &DL = SE.getDataLayout();
2546   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2547          "Induction step should be loop invariant");
2548   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2549     return E->getValue();
2550 
2551   SCEVExpander Exp(SE, DL, "induction");
2552   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2553 }
2554 
2555 /// Compute the transformed value of Index at offset StartValue using step
2556 /// StepValue.
2557 /// For integer induction, returns StartValue + Index * StepValue.
2558 /// For pointer induction, returns StartValue[Index * StepValue].
2559 /// FIXME: The newly created binary instructions should contain nsw/nuw
2560 /// flags, which can be found from the original scalar operations.
2561 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2562                                    Value *StartValue, Value *Step,
2563                                    const InductionDescriptor &ID) {
2564   assert(Index->getType()->getScalarType() == Step->getType() &&
2565          "Index scalar type does not match StepValue type");
2566 
2567   // Note: the IR at this point is broken. We cannot use SE to create any new
2568   // SCEV and then expand it, hoping that SCEV's simplification will give us
2569   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2570   // lead to various SCEV crashes. So all we can do is to use builder and rely
2571   // on InstCombine for future simplifications. Here we handle some trivial
2572   // cases only.
2573   auto CreateAdd = [&B](Value *X, Value *Y) {
2574     assert(X->getType() == Y->getType() && "Types don't match!");
2575     if (auto *CX = dyn_cast<ConstantInt>(X))
2576       if (CX->isZero())
2577         return Y;
2578     if (auto *CY = dyn_cast<ConstantInt>(Y))
2579       if (CY->isZero())
2580         return X;
2581     return B.CreateAdd(X, Y);
2582   };
2583 
2584   // We allow X to be a vector type, in which case Y will potentially be
2585   // splatted into a vector with the same element count.
2586   auto CreateMul = [&B](Value *X, Value *Y) {
2587     assert(X->getType()->getScalarType() == Y->getType() &&
2588            "Types don't match!");
2589     if (auto *CX = dyn_cast<ConstantInt>(X))
2590       if (CX->isOne())
2591         return Y;
2592     if (auto *CY = dyn_cast<ConstantInt>(Y))
2593       if (CY->isOne())
2594         return X;
2595     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2596     if (XVTy && !isa<VectorType>(Y->getType()))
2597       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2598     return B.CreateMul(X, Y);
2599   };
2600 
2601   switch (ID.getKind()) {
2602   case InductionDescriptor::IK_IntInduction: {
2603     assert(!isa<VectorType>(Index->getType()) &&
2604            "Vector indices not supported for integer inductions yet");
2605     assert(Index->getType() == StartValue->getType() &&
2606            "Index type does not match StartValue type");
2607     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2608       return B.CreateSub(StartValue, Index);
2609     auto *Offset = CreateMul(Index, Step);
2610     return CreateAdd(StartValue, Offset);
2611   }
2612   case InductionDescriptor::IK_PtrInduction: {
2613     assert(isa<Constant>(Step) &&
2614            "Expected constant step for pointer induction");
2615     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2616   }
2617   case InductionDescriptor::IK_FpInduction: {
2618     assert(!isa<VectorType>(Index->getType()) &&
2619            "Vector indices not supported for FP inductions yet");
2620     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2621     auto InductionBinOp = ID.getInductionBinOp();
2622     assert(InductionBinOp &&
2623            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2624             InductionBinOp->getOpcode() == Instruction::FSub) &&
2625            "Original bin op should be defined for FP induction");
2626 
2627     Value *MulExp = B.CreateFMul(Step, Index);
2628     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2629                          "induction");
2630   }
2631   case InductionDescriptor::IK_NoInduction:
2632     return nullptr;
2633   }
2634   llvm_unreachable("invalid enum");
2635 }
2636 
2637 void InnerLoopVectorizer::widenIntOrFpInduction(
2638     PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State,
2639     Value *CanonicalIV) {
2640   Value *Start = Def->getStartValue()->getLiveInIRValue();
2641   const InductionDescriptor &ID = Def->getInductionDescriptor();
2642   TruncInst *Trunc = Def->getTruncInst();
2643   IRBuilderBase &Builder = State.Builder;
2644   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2645   assert(!State.VF.isZero() && "VF must be non-zero");
2646 
2647   // The value from the original loop to which we are mapping the new induction
2648   // variable.
2649   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2650 
2651   auto &DL = EntryVal->getModule()->getDataLayout();
2652 
2653   // Generate code for the induction step. Note that induction steps are
2654   // required to be loop-invariant
2655   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2656     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2657            "Induction step should be loop invariant");
2658     if (PSE.getSE()->isSCEVable(IV->getType())) {
2659       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2660       return Exp.expandCodeFor(Step, Step->getType(),
2661                                State.CFG.VectorPreHeader->getTerminator());
2662     }
2663     return cast<SCEVUnknown>(Step)->getValue();
2664   };
2665 
2666   // The scalar value to broadcast. This is derived from the canonical
2667   // induction variable. If a truncation type is given, truncate the canonical
2668   // induction variable and step. Otherwise, derive these values from the
2669   // induction descriptor.
2670   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2671     Value *ScalarIV = CanonicalIV;
2672     Type *NeededType = IV->getType();
2673     if (!Def->isCanonical() || ScalarIV->getType() != NeededType) {
2674       ScalarIV =
2675           NeededType->isIntegerTy()
2676               ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType)
2677               : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType);
2678       ScalarIV = emitTransformedIndex(Builder, ScalarIV, Start, Step, ID);
2679       ScalarIV->setName("offset.idx");
2680     }
2681     if (Trunc) {
2682       auto *TruncType = cast<IntegerType>(Trunc->getType());
2683       assert(Step->getType()->isIntegerTy() &&
2684              "Truncation requires an integer step");
2685       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2686       Step = Builder.CreateTrunc(Step, TruncType);
2687     }
2688     return ScalarIV;
2689   };
2690 
2691   // Fast-math-flags propagate from the original induction instruction.
2692   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2693   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2694     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2695 
2696   // Now do the actual transformations, and start with creating the step value.
2697   Value *Step = CreateStepValue(ID.getStep());
2698   if (State.VF.isScalar()) {
2699     Value *ScalarIV = CreateScalarIV(Step);
2700     Type *ScalarTy = IntegerType::get(ScalarIV->getContext(),
2701                                       Step->getType()->getScalarSizeInBits());
2702 
2703     Instruction::BinaryOps IncOp = ID.getInductionOpcode();
2704     if (IncOp == Instruction::BinaryOpsEnd)
2705       IncOp = Instruction::Add;
2706     for (unsigned Part = 0; Part < UF; ++Part) {
2707       Value *StartIdx = ConstantInt::get(ScalarTy, Part);
2708       Instruction::BinaryOps MulOp = Instruction::Mul;
2709       if (Step->getType()->isFloatingPointTy()) {
2710         StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType());
2711         MulOp = Instruction::FMul;
2712       }
2713 
2714       Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2715       Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction");
2716       State.set(Def, EntryPart, Part);
2717       if (Trunc) {
2718         assert(!Step->getType()->isFloatingPointTy() &&
2719                "fp inductions shouldn't be truncated");
2720         addMetadata(EntryPart, Trunc);
2721       }
2722     }
2723     return;
2724   }
2725 
2726   // Create a new independent vector induction variable, if one is needed.
2727   if (Def->needsVectorIV())
2728     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State);
2729 
2730   if (Def->needsScalarIV()) {
2731     // Create scalar steps that can be used by instructions we will later
2732     // scalarize. Note that the addition of the scalar steps will not increase
2733     // the number of instructions in the loop in the common case prior to
2734     // InstCombine. We will be trading one vector extract for each scalar step.
2735     Value *ScalarIV = CreateScalarIV(Step);
2736     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State);
2737   }
2738 }
2739 
2740 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2741                                                     const VPIteration &Instance,
2742                                                     VPTransformState &State) {
2743   Value *ScalarInst = State.get(Def, Instance);
2744   Value *VectorValue = State.get(Def, Instance.Part);
2745   VectorValue = Builder.CreateInsertElement(
2746       VectorValue, ScalarInst,
2747       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2748   State.set(Def, VectorValue, Instance.Part);
2749 }
2750 
2751 // Return whether we allow using masked interleave-groups (for dealing with
2752 // strided loads/stores that reside in predicated blocks, or for dealing
2753 // with gaps).
2754 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2755   // If an override option has been passed in for interleaved accesses, use it.
2756   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2757     return EnableMaskedInterleavedMemAccesses;
2758 
2759   return TTI.enableMaskedInterleavedAccessVectorization();
2760 }
2761 
2762 // Try to vectorize the interleave group that \p Instr belongs to.
2763 //
2764 // E.g. Translate following interleaved load group (factor = 3):
2765 //   for (i = 0; i < N; i+=3) {
2766 //     R = Pic[i];             // Member of index 0
2767 //     G = Pic[i+1];           // Member of index 1
2768 //     B = Pic[i+2];           // Member of index 2
2769 //     ... // do something to R, G, B
2770 //   }
2771 // To:
2772 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2773 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2774 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2775 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2776 //
2777 // Or translate following interleaved store group (factor = 3):
2778 //   for (i = 0; i < N; i+=3) {
2779 //     ... do something to R, G, B
2780 //     Pic[i]   = R;           // Member of index 0
2781 //     Pic[i+1] = G;           // Member of index 1
2782 //     Pic[i+2] = B;           // Member of index 2
2783 //   }
2784 // To:
2785 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2786 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2787 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2788 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2789 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2790 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2791     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2792     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2793     VPValue *BlockInMask) {
2794   Instruction *Instr = Group->getInsertPos();
2795   const DataLayout &DL = Instr->getModule()->getDataLayout();
2796 
2797   // Prepare for the vector type of the interleaved load/store.
2798   Type *ScalarTy = getLoadStoreType(Instr);
2799   unsigned InterleaveFactor = Group->getFactor();
2800   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2801   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2802 
2803   // Prepare for the new pointers.
2804   SmallVector<Value *, 2> AddrParts;
2805   unsigned Index = Group->getIndex(Instr);
2806 
2807   // TODO: extend the masked interleaved-group support to reversed access.
2808   assert((!BlockInMask || !Group->isReverse()) &&
2809          "Reversed masked interleave-group not supported.");
2810 
2811   // If the group is reverse, adjust the index to refer to the last vector lane
2812   // instead of the first. We adjust the index from the first vector lane,
2813   // rather than directly getting the pointer for lane VF - 1, because the
2814   // pointer operand of the interleaved access is supposed to be uniform. For
2815   // uniform instructions, we're only required to generate a value for the
2816   // first vector lane in each unroll iteration.
2817   if (Group->isReverse())
2818     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2819 
2820   for (unsigned Part = 0; Part < UF; Part++) {
2821     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2822     setDebugLocFromInst(AddrPart);
2823 
2824     // Notice current instruction could be any index. Need to adjust the address
2825     // to the member of index 0.
2826     //
2827     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2828     //       b = A[i];       // Member of index 0
2829     // Current pointer is pointed to A[i+1], adjust it to A[i].
2830     //
2831     // E.g.  A[i+1] = a;     // Member of index 1
2832     //       A[i]   = b;     // Member of index 0
2833     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2834     // Current pointer is pointed to A[i+2], adjust it to A[i].
2835 
2836     bool InBounds = false;
2837     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2838       InBounds = gep->isInBounds();
2839     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2840     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2841 
2842     // Cast to the vector pointer type.
2843     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2844     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2845     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2846   }
2847 
2848   setDebugLocFromInst(Instr);
2849   Value *PoisonVec = PoisonValue::get(VecTy);
2850 
2851   Value *MaskForGaps = nullptr;
2852   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2853     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2854     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2855   }
2856 
2857   // Vectorize the interleaved load group.
2858   if (isa<LoadInst>(Instr)) {
2859     // For each unroll part, create a wide load for the group.
2860     SmallVector<Value *, 2> NewLoads;
2861     for (unsigned Part = 0; Part < UF; Part++) {
2862       Instruction *NewLoad;
2863       if (BlockInMask || MaskForGaps) {
2864         assert(useMaskedInterleavedAccesses(*TTI) &&
2865                "masked interleaved groups are not allowed.");
2866         Value *GroupMask = MaskForGaps;
2867         if (BlockInMask) {
2868           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2869           Value *ShuffledMask = Builder.CreateShuffleVector(
2870               BlockInMaskPart,
2871               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2872               "interleaved.mask");
2873           GroupMask = MaskForGaps
2874                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2875                                                 MaskForGaps)
2876                           : ShuffledMask;
2877         }
2878         NewLoad =
2879             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2880                                      GroupMask, PoisonVec, "wide.masked.vec");
2881       }
2882       else
2883         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2884                                             Group->getAlign(), "wide.vec");
2885       Group->addMetadata(NewLoad);
2886       NewLoads.push_back(NewLoad);
2887     }
2888 
2889     // For each member in the group, shuffle out the appropriate data from the
2890     // wide loads.
2891     unsigned J = 0;
2892     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2893       Instruction *Member = Group->getMember(I);
2894 
2895       // Skip the gaps in the group.
2896       if (!Member)
2897         continue;
2898 
2899       auto StrideMask =
2900           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2901       for (unsigned Part = 0; Part < UF; Part++) {
2902         Value *StridedVec = Builder.CreateShuffleVector(
2903             NewLoads[Part], StrideMask, "strided.vec");
2904 
2905         // If this member has different type, cast the result type.
2906         if (Member->getType() != ScalarTy) {
2907           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2908           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2909           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2910         }
2911 
2912         if (Group->isReverse())
2913           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2914 
2915         State.set(VPDefs[J], StridedVec, Part);
2916       }
2917       ++J;
2918     }
2919     return;
2920   }
2921 
2922   // The sub vector type for current instruction.
2923   auto *SubVT = VectorType::get(ScalarTy, VF);
2924 
2925   // Vectorize the interleaved store group.
2926   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2927   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2928          "masked interleaved groups are not allowed.");
2929   assert((!MaskForGaps || !VF.isScalable()) &&
2930          "masking gaps for scalable vectors is not yet supported.");
2931   for (unsigned Part = 0; Part < UF; Part++) {
2932     // Collect the stored vector from each member.
2933     SmallVector<Value *, 4> StoredVecs;
2934     for (unsigned i = 0; i < InterleaveFactor; i++) {
2935       assert((Group->getMember(i) || MaskForGaps) &&
2936              "Fail to get a member from an interleaved store group");
2937       Instruction *Member = Group->getMember(i);
2938 
2939       // Skip the gaps in the group.
2940       if (!Member) {
2941         Value *Undef = PoisonValue::get(SubVT);
2942         StoredVecs.push_back(Undef);
2943         continue;
2944       }
2945 
2946       Value *StoredVec = State.get(StoredValues[i], Part);
2947 
2948       if (Group->isReverse())
2949         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2950 
2951       // If this member has different type, cast it to a unified type.
2952 
2953       if (StoredVec->getType() != SubVT)
2954         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2955 
2956       StoredVecs.push_back(StoredVec);
2957     }
2958 
2959     // Concatenate all vectors into a wide vector.
2960     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2961 
2962     // Interleave the elements in the wide vector.
2963     Value *IVec = Builder.CreateShuffleVector(
2964         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2965         "interleaved.vec");
2966 
2967     Instruction *NewStoreInstr;
2968     if (BlockInMask || MaskForGaps) {
2969       Value *GroupMask = MaskForGaps;
2970       if (BlockInMask) {
2971         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2972         Value *ShuffledMask = Builder.CreateShuffleVector(
2973             BlockInMaskPart,
2974             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2975             "interleaved.mask");
2976         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2977                                                       ShuffledMask, MaskForGaps)
2978                                 : ShuffledMask;
2979       }
2980       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2981                                                 Group->getAlign(), GroupMask);
2982     } else
2983       NewStoreInstr =
2984           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2985 
2986     Group->addMetadata(NewStoreInstr);
2987   }
2988 }
2989 
2990 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2991                                                VPReplicateRecipe *RepRecipe,
2992                                                const VPIteration &Instance,
2993                                                bool IfPredicateInstr,
2994                                                VPTransformState &State) {
2995   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2996 
2997   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2998   // the first lane and part.
2999   if (isa<NoAliasScopeDeclInst>(Instr))
3000     if (!Instance.isFirstIteration())
3001       return;
3002 
3003   setDebugLocFromInst(Instr);
3004 
3005   // Does this instruction return a value ?
3006   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3007 
3008   Instruction *Cloned = Instr->clone();
3009   if (!IsVoidRetTy)
3010     Cloned->setName(Instr->getName() + ".cloned");
3011 
3012   // If the scalarized instruction contributes to the address computation of a
3013   // widen masked load/store which was in a basic block that needed predication
3014   // and is not predicated after vectorization, we can't propagate
3015   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
3016   // instruction could feed a poison value to the base address of the widen
3017   // load/store.
3018   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
3019     Cloned->dropPoisonGeneratingFlags();
3020 
3021   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3022                                Builder.GetInsertPoint());
3023   // Replace the operands of the cloned instructions with their scalar
3024   // equivalents in the new loop.
3025   for (auto &I : enumerate(RepRecipe->operands())) {
3026     auto InputInstance = Instance;
3027     VPValue *Operand = I.value();
3028     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
3029     if (OperandR && OperandR->isUniform())
3030       InputInstance.Lane = VPLane::getFirstLane();
3031     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
3032   }
3033   addNewMetadata(Cloned, Instr);
3034 
3035   // Place the cloned scalar in the new loop.
3036   Builder.Insert(Cloned);
3037 
3038   State.set(RepRecipe, Cloned, Instance);
3039 
3040   // If we just cloned a new assumption, add it the assumption cache.
3041   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3042     AC->registerAssumption(II);
3043 
3044   // End if-block.
3045   if (IfPredicateInstr)
3046     PredicatedInstructions.push_back(Cloned);
3047 }
3048 
3049 void InnerLoopVectorizer::createHeaderBranch(Loop *L) {
3050   BasicBlock *Header = L->getHeader();
3051   assert(!L->getLoopLatch() && "loop should not have a latch at this point");
3052 
3053   IRBuilder<> B(Header->getTerminator());
3054   Instruction *OldInst =
3055       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
3056   setDebugLocFromInst(OldInst, &B);
3057 
3058   // Connect the header to the exit and header blocks and replace the old
3059   // terminator.
3060   B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header);
3061 
3062   // Now we have two terminators. Remove the old one from the block.
3063   Header->getTerminator()->eraseFromParent();
3064 }
3065 
3066 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3067   if (TripCount)
3068     return TripCount;
3069 
3070   assert(L && "Create Trip Count for null loop.");
3071   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3072   // Find the loop boundaries.
3073   ScalarEvolution *SE = PSE.getSE();
3074   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3075   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3076          "Invalid loop count");
3077 
3078   Type *IdxTy = Legal->getWidestInductionType();
3079   assert(IdxTy && "No type for induction");
3080 
3081   // The exit count might have the type of i64 while the phi is i32. This can
3082   // happen if we have an induction variable that is sign extended before the
3083   // compare. The only way that we get a backedge taken count is that the
3084   // induction variable was signed and as such will not overflow. In such a case
3085   // truncation is legal.
3086   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3087       IdxTy->getPrimitiveSizeInBits())
3088     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3089   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3090 
3091   // Get the total trip count from the count by adding 1.
3092   const SCEV *ExitCount = SE->getAddExpr(
3093       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3094 
3095   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3096 
3097   // Expand the trip count and place the new instructions in the preheader.
3098   // Notice that the pre-header does not change, only the loop body.
3099   SCEVExpander Exp(*SE, DL, "induction");
3100 
3101   // Count holds the overall loop count (N).
3102   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3103                                 L->getLoopPreheader()->getTerminator());
3104 
3105   if (TripCount->getType()->isPointerTy())
3106     TripCount =
3107         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3108                                     L->getLoopPreheader()->getTerminator());
3109 
3110   return TripCount;
3111 }
3112 
3113 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3114   if (VectorTripCount)
3115     return VectorTripCount;
3116 
3117   Value *TC = getOrCreateTripCount(L);
3118   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3119 
3120   Type *Ty = TC->getType();
3121   // This is where we can make the step a runtime constant.
3122   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3123 
3124   // If the tail is to be folded by masking, round the number of iterations N
3125   // up to a multiple of Step instead of rounding down. This is done by first
3126   // adding Step-1 and then rounding down. Note that it's ok if this addition
3127   // overflows: the vector induction variable will eventually wrap to zero given
3128   // that it starts at zero and its Step is a power of two; the loop will then
3129   // exit, with the last early-exit vector comparison also producing all-true.
3130   if (Cost->foldTailByMasking()) {
3131     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3132            "VF*UF must be a power of 2 when folding tail by masking");
3133     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
3134     TC = Builder.CreateAdd(
3135         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
3136   }
3137 
3138   // Now we need to generate the expression for the part of the loop that the
3139   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3140   // iterations are not required for correctness, or N - Step, otherwise. Step
3141   // is equal to the vectorization factor (number of SIMD elements) times the
3142   // unroll factor (number of SIMD instructions).
3143   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3144 
3145   // There are cases where we *must* run at least one iteration in the remainder
3146   // loop.  See the cost model for when this can happen.  If the step evenly
3147   // divides the trip count, we set the remainder to be equal to the step. If
3148   // the step does not evenly divide the trip count, no adjustment is necessary
3149   // since there will already be scalar iterations. Note that the minimum
3150   // iterations check ensures that N >= Step.
3151   if (Cost->requiresScalarEpilogue(VF)) {
3152     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3153     R = Builder.CreateSelect(IsZero, Step, R);
3154   }
3155 
3156   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3157 
3158   return VectorTripCount;
3159 }
3160 
3161 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3162                                                    const DataLayout &DL) {
3163   // Verify that V is a vector type with same number of elements as DstVTy.
3164   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3165   unsigned VF = DstFVTy->getNumElements();
3166   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3167   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3168   Type *SrcElemTy = SrcVecTy->getElementType();
3169   Type *DstElemTy = DstFVTy->getElementType();
3170   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3171          "Vector elements must have same size");
3172 
3173   // Do a direct cast if element types are castable.
3174   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3175     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3176   }
3177   // V cannot be directly casted to desired vector type.
3178   // May happen when V is a floating point vector but DstVTy is a vector of
3179   // pointers or vice-versa. Handle this using a two-step bitcast using an
3180   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3181   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3182          "Only one type should be a pointer type");
3183   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3184          "Only one type should be a floating point type");
3185   Type *IntTy =
3186       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3187   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3188   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3189   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3190 }
3191 
3192 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3193                                                          BasicBlock *Bypass) {
3194   Value *Count = getOrCreateTripCount(L);
3195   // Reuse existing vector loop preheader for TC checks.
3196   // Note that new preheader block is generated for vector loop.
3197   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3198   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3199 
3200   // Generate code to check if the loop's trip count is less than VF * UF, or
3201   // equal to it in case a scalar epilogue is required; this implies that the
3202   // vector trip count is zero. This check also covers the case where adding one
3203   // to the backedge-taken count overflowed leading to an incorrect trip count
3204   // of zero. In this case we will also jump to the scalar loop.
3205   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3206                                             : ICmpInst::ICMP_ULT;
3207 
3208   // If tail is to be folded, vector loop takes care of all iterations.
3209   Value *CheckMinIters = Builder.getFalse();
3210   if (!Cost->foldTailByMasking()) {
3211     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3212     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3213   }
3214   // Create new preheader for vector loop.
3215   LoopVectorPreHeader =
3216       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3217                  "vector.ph");
3218 
3219   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3220                                DT->getNode(Bypass)->getIDom()) &&
3221          "TC check is expected to dominate Bypass");
3222 
3223   // Update dominator for Bypass & LoopExit (if needed).
3224   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3225   if (!Cost->requiresScalarEpilogue(VF))
3226     // If there is an epilogue which must run, there's no edge from the
3227     // middle block to exit blocks  and thus no need to update the immediate
3228     // dominator of the exit blocks.
3229     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3230 
3231   ReplaceInstWithInst(
3232       TCCheckBlock->getTerminator(),
3233       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3234   LoopBypassBlocks.push_back(TCCheckBlock);
3235 }
3236 
3237 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3238 
3239   BasicBlock *const SCEVCheckBlock =
3240       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3241   if (!SCEVCheckBlock)
3242     return nullptr;
3243 
3244   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3245            (OptForSizeBasedOnProfile &&
3246             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3247          "Cannot SCEV check stride or overflow when optimizing for size");
3248 
3249 
3250   // Update dominator only if this is first RT check.
3251   if (LoopBypassBlocks.empty()) {
3252     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3253     if (!Cost->requiresScalarEpilogue(VF))
3254       // If there is an epilogue which must run, there's no edge from the
3255       // middle block to exit blocks  and thus no need to update the immediate
3256       // dominator of the exit blocks.
3257       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3258   }
3259 
3260   LoopBypassBlocks.push_back(SCEVCheckBlock);
3261   AddedSafetyChecks = true;
3262   return SCEVCheckBlock;
3263 }
3264 
3265 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3266                                                       BasicBlock *Bypass) {
3267   // VPlan-native path does not do any analysis for runtime checks currently.
3268   if (EnableVPlanNativePath)
3269     return nullptr;
3270 
3271   BasicBlock *const MemCheckBlock =
3272       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3273 
3274   // Check if we generated code that checks in runtime if arrays overlap. We put
3275   // the checks into a separate block to make the more common case of few
3276   // elements faster.
3277   if (!MemCheckBlock)
3278     return nullptr;
3279 
3280   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3281     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3282            "Cannot emit memory checks when optimizing for size, unless forced "
3283            "to vectorize.");
3284     ORE->emit([&]() {
3285       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3286                                         L->getStartLoc(), L->getHeader())
3287              << "Code-size may be reduced by not forcing "
3288                 "vectorization, or by source-code modifications "
3289                 "eliminating the need for runtime checks "
3290                 "(e.g., adding 'restrict').";
3291     });
3292   }
3293 
3294   LoopBypassBlocks.push_back(MemCheckBlock);
3295 
3296   AddedSafetyChecks = true;
3297 
3298   // We currently don't use LoopVersioning for the actual loop cloning but we
3299   // still use it to add the noalias metadata.
3300   LVer = std::make_unique<LoopVersioning>(
3301       *Legal->getLAI(),
3302       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3303       DT, PSE.getSE());
3304   LVer->prepareNoAliasMetadata();
3305   return MemCheckBlock;
3306 }
3307 
3308 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3309   LoopScalarBody = OrigLoop->getHeader();
3310   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3311   assert(LoopVectorPreHeader && "Invalid loop structure");
3312   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3313   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3314          "multiple exit loop without required epilogue?");
3315 
3316   LoopMiddleBlock =
3317       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3318                  LI, nullptr, Twine(Prefix) + "middle.block");
3319   LoopScalarPreHeader =
3320       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3321                  nullptr, Twine(Prefix) + "scalar.ph");
3322 
3323   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3324 
3325   // Set up the middle block terminator.  Two cases:
3326   // 1) If we know that we must execute the scalar epilogue, emit an
3327   //    unconditional branch.
3328   // 2) Otherwise, we must have a single unique exit block (due to how we
3329   //    implement the multiple exit case).  In this case, set up a conditonal
3330   //    branch from the middle block to the loop scalar preheader, and the
3331   //    exit block.  completeLoopSkeleton will update the condition to use an
3332   //    iteration check, if required to decide whether to execute the remainder.
3333   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3334     BranchInst::Create(LoopScalarPreHeader) :
3335     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3336                        Builder.getTrue());
3337   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3338   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3339 
3340   // We intentionally don't let SplitBlock to update LoopInfo since
3341   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3342   // LoopVectorBody is explicitly added to the correct place few lines later.
3343   LoopVectorBody =
3344       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3345                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3346 
3347   // Update dominator for loop exit.
3348   if (!Cost->requiresScalarEpilogue(VF))
3349     // If there is an epilogue which must run, there's no edge from the
3350     // middle block to exit blocks  and thus no need to update the immediate
3351     // dominator of the exit blocks.
3352     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3353 
3354   // Create and register the new vector loop.
3355   Loop *Lp = LI->AllocateLoop();
3356   Loop *ParentLoop = OrigLoop->getParentLoop();
3357 
3358   // Insert the new loop into the loop nest and register the new basic blocks
3359   // before calling any utilities such as SCEV that require valid LoopInfo.
3360   if (ParentLoop) {
3361     ParentLoop->addChildLoop(Lp);
3362   } else {
3363     LI->addTopLevelLoop(Lp);
3364   }
3365   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3366   return Lp;
3367 }
3368 
3369 void InnerLoopVectorizer::createInductionResumeValues(
3370     Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) {
3371   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3372           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3373          "Inconsistent information about additional bypass.");
3374 
3375   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3376   assert(VectorTripCount && L && "Expected valid arguments");
3377   // We are going to resume the execution of the scalar loop.
3378   // Go over all of the induction variables that we found and fix the
3379   // PHIs that are left in the scalar version of the loop.
3380   // The starting values of PHI nodes depend on the counter of the last
3381   // iteration in the vectorized loop.
3382   // If we come from a bypass edge then we need to start from the original
3383   // start value.
3384   Instruction *OldInduction = Legal->getPrimaryInduction();
3385   for (auto &InductionEntry : Legal->getInductionVars()) {
3386     PHINode *OrigPhi = InductionEntry.first;
3387     InductionDescriptor II = InductionEntry.second;
3388 
3389     // Create phi nodes to merge from the  backedge-taken check block.
3390     PHINode *BCResumeVal =
3391         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3392                         LoopScalarPreHeader->getTerminator());
3393     // Copy original phi DL over to the new one.
3394     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3395     Value *&EndValue = IVEndValues[OrigPhi];
3396     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3397     if (OrigPhi == OldInduction) {
3398       // We know what the end value is.
3399       EndValue = VectorTripCount;
3400     } else {
3401       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3402 
3403       // Fast-math-flags propagate from the original induction instruction.
3404       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3405         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3406 
3407       Type *StepType = II.getStep()->getType();
3408       Instruction::CastOps CastOp =
3409           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3410       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3411       Value *Step =
3412           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3413       EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3414       EndValue->setName("ind.end");
3415 
3416       // Compute the end value for the additional bypass (if applicable).
3417       if (AdditionalBypass.first) {
3418         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3419         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3420                                          StepType, true);
3421         Value *Step =
3422             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3423         CRD =
3424             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3425         EndValueFromAdditionalBypass =
3426             emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3427         EndValueFromAdditionalBypass->setName("ind.end");
3428       }
3429     }
3430     // The new PHI merges the original incoming value, in case of a bypass,
3431     // or the value at the end of the vectorized loop.
3432     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3433 
3434     // Fix the scalar body counter (PHI node).
3435     // The old induction's phi node in the scalar body needs the truncated
3436     // value.
3437     for (BasicBlock *BB : LoopBypassBlocks)
3438       BCResumeVal->addIncoming(II.getStartValue(), BB);
3439 
3440     if (AdditionalBypass.first)
3441       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3442                                             EndValueFromAdditionalBypass);
3443 
3444     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3445   }
3446 }
3447 
3448 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3449                                                       MDNode *OrigLoopID) {
3450   assert(L && "Expected valid loop.");
3451 
3452   // The trip counts should be cached by now.
3453   Value *Count = getOrCreateTripCount(L);
3454   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3455 
3456   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3457 
3458   // Add a check in the middle block to see if we have completed
3459   // all of the iterations in the first vector loop.  Three cases:
3460   // 1) If we require a scalar epilogue, there is no conditional branch as
3461   //    we unconditionally branch to the scalar preheader.  Do nothing.
3462   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3463   //    Thus if tail is to be folded, we know we don't need to run the
3464   //    remainder and we can use the previous value for the condition (true).
3465   // 3) Otherwise, construct a runtime check.
3466   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3467     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3468                                         Count, VectorTripCount, "cmp.n",
3469                                         LoopMiddleBlock->getTerminator());
3470 
3471     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3472     // of the corresponding compare because they may have ended up with
3473     // different line numbers and we want to avoid awkward line stepping while
3474     // debugging. Eg. if the compare has got a line number inside the loop.
3475     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3476     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3477   }
3478 
3479   // Get ready to start creating new instructions into the vectorized body.
3480   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3481          "Inconsistent vector loop preheader");
3482   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3483 
3484 #ifdef EXPENSIVE_CHECKS
3485   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3486   LI->verify(*DT);
3487 #endif
3488 
3489   return LoopVectorPreHeader;
3490 }
3491 
3492 std::pair<BasicBlock *, Value *>
3493 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3494   /*
3495    In this function we generate a new loop. The new loop will contain
3496    the vectorized instructions while the old loop will continue to run the
3497    scalar remainder.
3498 
3499        [ ] <-- loop iteration number check.
3500     /   |
3501    /    v
3502   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3503   |  /  |
3504   | /   v
3505   ||   [ ]     <-- vector pre header.
3506   |/    |
3507   |     v
3508   |    [  ] \
3509   |    [  ]_|   <-- vector loop.
3510   |     |
3511   |     v
3512   \   -[ ]   <--- middle-block.
3513    \/   |
3514    /\   v
3515    | ->[ ]     <--- new preheader.
3516    |    |
3517  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3518    |   [ ] \
3519    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3520     \   |
3521      \  v
3522       >[ ]     <-- exit block(s).
3523    ...
3524    */
3525 
3526   // Get the metadata of the original loop before it gets modified.
3527   MDNode *OrigLoopID = OrigLoop->getLoopID();
3528 
3529   // Workaround!  Compute the trip count of the original loop and cache it
3530   // before we start modifying the CFG.  This code has a systemic problem
3531   // wherein it tries to run analysis over partially constructed IR; this is
3532   // wrong, and not simply for SCEV.  The trip count of the original loop
3533   // simply happens to be prone to hitting this in practice.  In theory, we
3534   // can hit the same issue for any SCEV, or ValueTracking query done during
3535   // mutation.  See PR49900.
3536   getOrCreateTripCount(OrigLoop);
3537 
3538   // Create an empty vector loop, and prepare basic blocks for the runtime
3539   // checks.
3540   Loop *Lp = createVectorLoopSkeleton("");
3541 
3542   // Now, compare the new count to zero. If it is zero skip the vector loop and
3543   // jump to the scalar loop. This check also covers the case where the
3544   // backedge-taken count is uint##_max: adding one to it will overflow leading
3545   // to an incorrect trip count of zero. In this (rare) case we will also jump
3546   // to the scalar loop.
3547   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3548 
3549   // Generate the code to check any assumptions that we've made for SCEV
3550   // expressions.
3551   emitSCEVChecks(Lp, LoopScalarPreHeader);
3552 
3553   // Generate the code that checks in runtime if arrays overlap. We put the
3554   // checks into a separate block to make the more common case of few elements
3555   // faster.
3556   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3557 
3558   createHeaderBranch(Lp);
3559 
3560   // Emit phis for the new starting index of the scalar loop.
3561   createInductionResumeValues(Lp);
3562 
3563   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
3564 }
3565 
3566 // Fix up external users of the induction variable. At this point, we are
3567 // in LCSSA form, with all external PHIs that use the IV having one input value,
3568 // coming from the remainder loop. We need those PHIs to also have a correct
3569 // value for the IV when arriving directly from the middle block.
3570 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3571                                        const InductionDescriptor &II,
3572                                        Value *CountRoundDown, Value *EndValue,
3573                                        BasicBlock *MiddleBlock) {
3574   // There are two kinds of external IV usages - those that use the value
3575   // computed in the last iteration (the PHI) and those that use the penultimate
3576   // value (the value that feeds into the phi from the loop latch).
3577   // We allow both, but they, obviously, have different values.
3578 
3579   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3580 
3581   DenseMap<Value *, Value *> MissingVals;
3582 
3583   // An external user of the last iteration's value should see the value that
3584   // the remainder loop uses to initialize its own IV.
3585   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3586   for (User *U : PostInc->users()) {
3587     Instruction *UI = cast<Instruction>(U);
3588     if (!OrigLoop->contains(UI)) {
3589       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3590       MissingVals[UI] = EndValue;
3591     }
3592   }
3593 
3594   // An external user of the penultimate value need to see EndValue - Step.
3595   // The simplest way to get this is to recompute it from the constituent SCEVs,
3596   // that is Start + (Step * (CRD - 1)).
3597   for (User *U : OrigPhi->users()) {
3598     auto *UI = cast<Instruction>(U);
3599     if (!OrigLoop->contains(UI)) {
3600       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3601 
3602       IRBuilder<> B(MiddleBlock->getTerminator());
3603 
3604       // Fast-math-flags propagate from the original induction instruction.
3605       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3606         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3607 
3608       Value *CountMinusOne = B.CreateSub(
3609           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3610       Value *CMO =
3611           !II.getStep()->getType()->isIntegerTy()
3612               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3613                              II.getStep()->getType())
3614               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3615       CMO->setName("cast.cmo");
3616 
3617       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3618                                     LoopVectorBody->getTerminator());
3619       Value *Escape =
3620           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3621       Escape->setName("ind.escape");
3622       MissingVals[UI] = Escape;
3623     }
3624   }
3625 
3626   for (auto &I : MissingVals) {
3627     PHINode *PHI = cast<PHINode>(I.first);
3628     // One corner case we have to handle is two IVs "chasing" each-other,
3629     // that is %IV2 = phi [...], [ %IV1, %latch ]
3630     // In this case, if IV1 has an external use, we need to avoid adding both
3631     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3632     // don't already have an incoming value for the middle block.
3633     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3634       PHI->addIncoming(I.second, MiddleBlock);
3635   }
3636 }
3637 
3638 namespace {
3639 
3640 struct CSEDenseMapInfo {
3641   static bool canHandle(const Instruction *I) {
3642     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3643            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3644   }
3645 
3646   static inline Instruction *getEmptyKey() {
3647     return DenseMapInfo<Instruction *>::getEmptyKey();
3648   }
3649 
3650   static inline Instruction *getTombstoneKey() {
3651     return DenseMapInfo<Instruction *>::getTombstoneKey();
3652   }
3653 
3654   static unsigned getHashValue(const Instruction *I) {
3655     assert(canHandle(I) && "Unknown instruction!");
3656     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3657                                                            I->value_op_end()));
3658   }
3659 
3660   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3661     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3662         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3663       return LHS == RHS;
3664     return LHS->isIdenticalTo(RHS);
3665   }
3666 };
3667 
3668 } // end anonymous namespace
3669 
3670 ///Perform cse of induction variable instructions.
3671 static void cse(BasicBlock *BB) {
3672   // Perform simple cse.
3673   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3674   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3675     if (!CSEDenseMapInfo::canHandle(&In))
3676       continue;
3677 
3678     // Check if we can replace this instruction with any of the
3679     // visited instructions.
3680     if (Instruction *V = CSEMap.lookup(&In)) {
3681       In.replaceAllUsesWith(V);
3682       In.eraseFromParent();
3683       continue;
3684     }
3685 
3686     CSEMap[&In] = &In;
3687   }
3688 }
3689 
3690 InstructionCost
3691 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3692                                               bool &NeedToScalarize) const {
3693   Function *F = CI->getCalledFunction();
3694   Type *ScalarRetTy = CI->getType();
3695   SmallVector<Type *, 4> Tys, ScalarTys;
3696   for (auto &ArgOp : CI->args())
3697     ScalarTys.push_back(ArgOp->getType());
3698 
3699   // Estimate cost of scalarized vector call. The source operands are assumed
3700   // to be vectors, so we need to extract individual elements from there,
3701   // execute VF scalar calls, and then gather the result into the vector return
3702   // value.
3703   InstructionCost ScalarCallCost =
3704       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3705   if (VF.isScalar())
3706     return ScalarCallCost;
3707 
3708   // Compute corresponding vector type for return value and arguments.
3709   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3710   for (Type *ScalarTy : ScalarTys)
3711     Tys.push_back(ToVectorTy(ScalarTy, VF));
3712 
3713   // Compute costs of unpacking argument values for the scalar calls and
3714   // packing the return values to a vector.
3715   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3716 
3717   InstructionCost Cost =
3718       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3719 
3720   // If we can't emit a vector call for this function, then the currently found
3721   // cost is the cost we need to return.
3722   NeedToScalarize = true;
3723   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3724   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3725 
3726   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3727     return Cost;
3728 
3729   // If the corresponding vector cost is cheaper, return its cost.
3730   InstructionCost VectorCallCost =
3731       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3732   if (VectorCallCost < Cost) {
3733     NeedToScalarize = false;
3734     Cost = VectorCallCost;
3735   }
3736   return Cost;
3737 }
3738 
3739 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3740   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3741     return Elt;
3742   return VectorType::get(Elt, VF);
3743 }
3744 
3745 InstructionCost
3746 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3747                                                    ElementCount VF) const {
3748   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3749   assert(ID && "Expected intrinsic call!");
3750   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3751   FastMathFlags FMF;
3752   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3753     FMF = FPMO->getFastMathFlags();
3754 
3755   SmallVector<const Value *> Arguments(CI->args());
3756   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3757   SmallVector<Type *> ParamTys;
3758   std::transform(FTy->param_begin(), FTy->param_end(),
3759                  std::back_inserter(ParamTys),
3760                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3761 
3762   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3763                                     dyn_cast<IntrinsicInst>(CI));
3764   return TTI.getIntrinsicInstrCost(CostAttrs,
3765                                    TargetTransformInfo::TCK_RecipThroughput);
3766 }
3767 
3768 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3769   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3770   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3771   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3772 }
3773 
3774 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3775   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3776   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3777   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3778 }
3779 
3780 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3781   // For every instruction `I` in MinBWs, truncate the operands, create a
3782   // truncated version of `I` and reextend its result. InstCombine runs
3783   // later and will remove any ext/trunc pairs.
3784   SmallPtrSet<Value *, 4> Erased;
3785   for (const auto &KV : Cost->getMinimalBitwidths()) {
3786     // If the value wasn't vectorized, we must maintain the original scalar
3787     // type. The absence of the value from State indicates that it
3788     // wasn't vectorized.
3789     // FIXME: Should not rely on getVPValue at this point.
3790     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3791     if (!State.hasAnyVectorValue(Def))
3792       continue;
3793     for (unsigned Part = 0; Part < UF; ++Part) {
3794       Value *I = State.get(Def, Part);
3795       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3796         continue;
3797       Type *OriginalTy = I->getType();
3798       Type *ScalarTruncatedTy =
3799           IntegerType::get(OriginalTy->getContext(), KV.second);
3800       auto *TruncatedTy = VectorType::get(
3801           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3802       if (TruncatedTy == OriginalTy)
3803         continue;
3804 
3805       IRBuilder<> B(cast<Instruction>(I));
3806       auto ShrinkOperand = [&](Value *V) -> Value * {
3807         if (auto *ZI = dyn_cast<ZExtInst>(V))
3808           if (ZI->getSrcTy() == TruncatedTy)
3809             return ZI->getOperand(0);
3810         return B.CreateZExtOrTrunc(V, TruncatedTy);
3811       };
3812 
3813       // The actual instruction modification depends on the instruction type,
3814       // unfortunately.
3815       Value *NewI = nullptr;
3816       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3817         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3818                              ShrinkOperand(BO->getOperand(1)));
3819 
3820         // Any wrapping introduced by shrinking this operation shouldn't be
3821         // considered undefined behavior. So, we can't unconditionally copy
3822         // arithmetic wrapping flags to NewI.
3823         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3824       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3825         NewI =
3826             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3827                          ShrinkOperand(CI->getOperand(1)));
3828       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3829         NewI = B.CreateSelect(SI->getCondition(),
3830                               ShrinkOperand(SI->getTrueValue()),
3831                               ShrinkOperand(SI->getFalseValue()));
3832       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3833         switch (CI->getOpcode()) {
3834         default:
3835           llvm_unreachable("Unhandled cast!");
3836         case Instruction::Trunc:
3837           NewI = ShrinkOperand(CI->getOperand(0));
3838           break;
3839         case Instruction::SExt:
3840           NewI = B.CreateSExtOrTrunc(
3841               CI->getOperand(0),
3842               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3843           break;
3844         case Instruction::ZExt:
3845           NewI = B.CreateZExtOrTrunc(
3846               CI->getOperand(0),
3847               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3848           break;
3849         }
3850       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3851         auto Elements0 =
3852             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3853         auto *O0 = B.CreateZExtOrTrunc(
3854             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3855         auto Elements1 =
3856             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3857         auto *O1 = B.CreateZExtOrTrunc(
3858             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3859 
3860         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3861       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3862         // Don't do anything with the operands, just extend the result.
3863         continue;
3864       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3865         auto Elements =
3866             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3867         auto *O0 = B.CreateZExtOrTrunc(
3868             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3869         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3870         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3871       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3872         auto Elements =
3873             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3874         auto *O0 = B.CreateZExtOrTrunc(
3875             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3876         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3877       } else {
3878         // If we don't know what to do, be conservative and don't do anything.
3879         continue;
3880       }
3881 
3882       // Lastly, extend the result.
3883       NewI->takeName(cast<Instruction>(I));
3884       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3885       I->replaceAllUsesWith(Res);
3886       cast<Instruction>(I)->eraseFromParent();
3887       Erased.insert(I);
3888       State.reset(Def, Res, Part);
3889     }
3890   }
3891 
3892   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3893   for (const auto &KV : Cost->getMinimalBitwidths()) {
3894     // If the value wasn't vectorized, we must maintain the original scalar
3895     // type. The absence of the value from State indicates that it
3896     // wasn't vectorized.
3897     // FIXME: Should not rely on getVPValue at this point.
3898     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3899     if (!State.hasAnyVectorValue(Def))
3900       continue;
3901     for (unsigned Part = 0; Part < UF; ++Part) {
3902       Value *I = State.get(Def, Part);
3903       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3904       if (Inst && Inst->use_empty()) {
3905         Value *NewI = Inst->getOperand(0);
3906         Inst->eraseFromParent();
3907         State.reset(Def, NewI, Part);
3908       }
3909     }
3910   }
3911 }
3912 
3913 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3914   // Insert truncates and extends for any truncated instructions as hints to
3915   // InstCombine.
3916   if (VF.isVector())
3917     truncateToMinimalBitwidths(State);
3918 
3919   // Fix widened non-induction PHIs by setting up the PHI operands.
3920   if (OrigPHIsToFix.size()) {
3921     assert(EnableVPlanNativePath &&
3922            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3923     fixNonInductionPHIs(State);
3924   }
3925 
3926   // At this point every instruction in the original loop is widened to a
3927   // vector form. Now we need to fix the recurrences in the loop. These PHI
3928   // nodes are currently empty because we did not want to introduce cycles.
3929   // This is the second stage of vectorizing recurrences.
3930   fixCrossIterationPHIs(State);
3931 
3932   // Forget the original basic block.
3933   PSE.getSE()->forgetLoop(OrigLoop);
3934 
3935   // If we inserted an edge from the middle block to the unique exit block,
3936   // update uses outside the loop (phis) to account for the newly inserted
3937   // edge.
3938   if (!Cost->requiresScalarEpilogue(VF)) {
3939     // Fix-up external users of the induction variables.
3940     for (auto &Entry : Legal->getInductionVars())
3941       fixupIVUsers(Entry.first, Entry.second,
3942                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3943                    IVEndValues[Entry.first], LoopMiddleBlock);
3944 
3945     fixLCSSAPHIs(State);
3946   }
3947 
3948   for (Instruction *PI : PredicatedInstructions)
3949     sinkScalarOperands(&*PI);
3950 
3951   // Remove redundant induction instructions.
3952   cse(LoopVectorBody);
3953 
3954   // Set/update profile weights for the vector and remainder loops as original
3955   // loop iterations are now distributed among them. Note that original loop
3956   // represented by LoopScalarBody becomes remainder loop after vectorization.
3957   //
3958   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3959   // end up getting slightly roughened result but that should be OK since
3960   // profile is not inherently precise anyway. Note also possible bypass of
3961   // vector code caused by legality checks is ignored, assigning all the weight
3962   // to the vector loop, optimistically.
3963   //
3964   // For scalable vectorization we can't know at compile time how many iterations
3965   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3966   // vscale of '1'.
3967   setProfileInfoAfterUnrolling(
3968       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
3969       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
3970 }
3971 
3972 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3973   // In order to support recurrences we need to be able to vectorize Phi nodes.
3974   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3975   // stage #2: We now need to fix the recurrences by adding incoming edges to
3976   // the currently empty PHI nodes. At this point every instruction in the
3977   // original loop is widened to a vector form so we can use them to construct
3978   // the incoming edges.
3979   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
3980   for (VPRecipeBase &R : Header->phis()) {
3981     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3982       fixReduction(ReductionPhi, State);
3983     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3984       fixFirstOrderRecurrence(FOR, State);
3985   }
3986 }
3987 
3988 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3989     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3990   // This is the second phase of vectorizing first-order recurrences. An
3991   // overview of the transformation is described below. Suppose we have the
3992   // following loop.
3993   //
3994   //   for (int i = 0; i < n; ++i)
3995   //     b[i] = a[i] - a[i - 1];
3996   //
3997   // There is a first-order recurrence on "a". For this loop, the shorthand
3998   // scalar IR looks like:
3999   //
4000   //   scalar.ph:
4001   //     s_init = a[-1]
4002   //     br scalar.body
4003   //
4004   //   scalar.body:
4005   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4006   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4007   //     s2 = a[i]
4008   //     b[i] = s2 - s1
4009   //     br cond, scalar.body, ...
4010   //
4011   // In this example, s1 is a recurrence because it's value depends on the
4012   // previous iteration. In the first phase of vectorization, we created a
4013   // vector phi v1 for s1. We now complete the vectorization and produce the
4014   // shorthand vector IR shown below (for VF = 4, UF = 1).
4015   //
4016   //   vector.ph:
4017   //     v_init = vector(..., ..., ..., a[-1])
4018   //     br vector.body
4019   //
4020   //   vector.body
4021   //     i = phi [0, vector.ph], [i+4, vector.body]
4022   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4023   //     v2 = a[i, i+1, i+2, i+3];
4024   //     v3 = vector(v1(3), v2(0, 1, 2))
4025   //     b[i, i+1, i+2, i+3] = v2 - v3
4026   //     br cond, vector.body, middle.block
4027   //
4028   //   middle.block:
4029   //     x = v2(3)
4030   //     br scalar.ph
4031   //
4032   //   scalar.ph:
4033   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4034   //     br scalar.body
4035   //
4036   // After execution completes the vector loop, we extract the next value of
4037   // the recurrence (x) to use as the initial value in the scalar loop.
4038 
4039   // Extract the last vector element in the middle block. This will be the
4040   // initial value for the recurrence when jumping to the scalar loop.
4041   VPValue *PreviousDef = PhiR->getBackedgeValue();
4042   Value *Incoming = State.get(PreviousDef, UF - 1);
4043   auto *ExtractForScalar = Incoming;
4044   auto *IdxTy = Builder.getInt32Ty();
4045   if (VF.isVector()) {
4046     auto *One = ConstantInt::get(IdxTy, 1);
4047     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4048     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4049     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4050     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4051                                                     "vector.recur.extract");
4052   }
4053   // Extract the second last element in the middle block if the
4054   // Phi is used outside the loop. We need to extract the phi itself
4055   // and not the last element (the phi update in the current iteration). This
4056   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4057   // when the scalar loop is not run at all.
4058   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4059   if (VF.isVector()) {
4060     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4061     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4062     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4063         Incoming, Idx, "vector.recur.extract.for.phi");
4064   } else if (UF > 1)
4065     // When loop is unrolled without vectorizing, initialize
4066     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4067     // of `Incoming`. This is analogous to the vectorized case above: extracting
4068     // the second last element when VF > 1.
4069     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4070 
4071   // Fix the initial value of the original recurrence in the scalar loop.
4072   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4073   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4074   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4075   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4076   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4077     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4078     Start->addIncoming(Incoming, BB);
4079   }
4080 
4081   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4082   Phi->setName("scalar.recur");
4083 
4084   // Finally, fix users of the recurrence outside the loop. The users will need
4085   // either the last value of the scalar recurrence or the last value of the
4086   // vector recurrence we extracted in the middle block. Since the loop is in
4087   // LCSSA form, we just need to find all the phi nodes for the original scalar
4088   // recurrence in the exit block, and then add an edge for the middle block.
4089   // Note that LCSSA does not imply single entry when the original scalar loop
4090   // had multiple exiting edges (as we always run the last iteration in the
4091   // scalar epilogue); in that case, there is no edge from middle to exit and
4092   // and thus no phis which needed updated.
4093   if (!Cost->requiresScalarEpilogue(VF))
4094     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4095       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4096         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4097 }
4098 
4099 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4100                                        VPTransformState &State) {
4101   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4102   // Get it's reduction variable descriptor.
4103   assert(Legal->isReductionVariable(OrigPhi) &&
4104          "Unable to find the reduction variable");
4105   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4106 
4107   RecurKind RK = RdxDesc.getRecurrenceKind();
4108   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4109   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4110   setDebugLocFromInst(ReductionStartValue);
4111 
4112   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4113   // This is the vector-clone of the value that leaves the loop.
4114   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4115 
4116   // Wrap flags are in general invalid after vectorization, clear them.
4117   clearReductionWrapFlags(RdxDesc, State);
4118 
4119   // Before each round, move the insertion point right between
4120   // the PHIs and the values we are going to write.
4121   // This allows us to write both PHINodes and the extractelement
4122   // instructions.
4123   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4124 
4125   setDebugLocFromInst(LoopExitInst);
4126 
4127   Type *PhiTy = OrigPhi->getType();
4128   // If tail is folded by masking, the vector value to leave the loop should be
4129   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4130   // instead of the former. For an inloop reduction the reduction will already
4131   // be predicated, and does not need to be handled here.
4132   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4133     for (unsigned Part = 0; Part < UF; ++Part) {
4134       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4135       Value *Sel = nullptr;
4136       for (User *U : VecLoopExitInst->users()) {
4137         if (isa<SelectInst>(U)) {
4138           assert(!Sel && "Reduction exit feeding two selects");
4139           Sel = U;
4140         } else
4141           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4142       }
4143       assert(Sel && "Reduction exit feeds no select");
4144       State.reset(LoopExitInstDef, Sel, Part);
4145 
4146       // If the target can create a predicated operator for the reduction at no
4147       // extra cost in the loop (for example a predicated vadd), it can be
4148       // cheaper for the select to remain in the loop than be sunk out of it,
4149       // and so use the select value for the phi instead of the old
4150       // LoopExitValue.
4151       if (PreferPredicatedReductionSelect ||
4152           TTI->preferPredicatedReductionSelect(
4153               RdxDesc.getOpcode(), PhiTy,
4154               TargetTransformInfo::ReductionFlags())) {
4155         auto *VecRdxPhi =
4156             cast<PHINode>(State.get(PhiR, Part));
4157         VecRdxPhi->setIncomingValueForBlock(
4158             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4159       }
4160     }
4161   }
4162 
4163   // If the vector reduction can be performed in a smaller type, we truncate
4164   // then extend the loop exit value to enable InstCombine to evaluate the
4165   // entire expression in the smaller type.
4166   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4167     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4168     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4169     Builder.SetInsertPoint(
4170         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4171     VectorParts RdxParts(UF);
4172     for (unsigned Part = 0; Part < UF; ++Part) {
4173       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4174       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4175       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4176                                         : Builder.CreateZExt(Trunc, VecTy);
4177       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4178         if (U != Trunc) {
4179           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4180           RdxParts[Part] = Extnd;
4181         }
4182     }
4183     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4184     for (unsigned Part = 0; Part < UF; ++Part) {
4185       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4186       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4187     }
4188   }
4189 
4190   // Reduce all of the unrolled parts into a single vector.
4191   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4192   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4193 
4194   // The middle block terminator has already been assigned a DebugLoc here (the
4195   // OrigLoop's single latch terminator). We want the whole middle block to
4196   // appear to execute on this line because: (a) it is all compiler generated,
4197   // (b) these instructions are always executed after evaluating the latch
4198   // conditional branch, and (c) other passes may add new predecessors which
4199   // terminate on this line. This is the easiest way to ensure we don't
4200   // accidentally cause an extra step back into the loop while debugging.
4201   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4202   if (PhiR->isOrdered())
4203     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4204   else {
4205     // Floating-point operations should have some FMF to enable the reduction.
4206     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4207     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4208     for (unsigned Part = 1; Part < UF; ++Part) {
4209       Value *RdxPart = State.get(LoopExitInstDef, Part);
4210       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4211         ReducedPartRdx = Builder.CreateBinOp(
4212             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4213       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4214         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4215                                            ReducedPartRdx, RdxPart);
4216       else
4217         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4218     }
4219   }
4220 
4221   // Create the reduction after the loop. Note that inloop reductions create the
4222   // target reduction in the loop using a Reduction recipe.
4223   if (VF.isVector() && !PhiR->isInLoop()) {
4224     ReducedPartRdx =
4225         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4226     // If the reduction can be performed in a smaller type, we need to extend
4227     // the reduction to the wider type before we branch to the original loop.
4228     if (PhiTy != RdxDesc.getRecurrenceType())
4229       ReducedPartRdx = RdxDesc.isSigned()
4230                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4231                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4232   }
4233 
4234   PHINode *ResumePhi =
4235       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
4236 
4237   // Create a phi node that merges control-flow from the backedge-taken check
4238   // block and the middle block.
4239   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4240                                         LoopScalarPreHeader->getTerminator());
4241 
4242   // If we are fixing reductions in the epilogue loop then we should already
4243   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4244   // we carry over the incoming values correctly.
4245   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4246     if (Incoming == LoopMiddleBlock)
4247       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4248     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4249       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4250                               Incoming);
4251     else
4252       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4253   }
4254 
4255   // Set the resume value for this reduction
4256   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4257 
4258   // Now, we need to fix the users of the reduction variable
4259   // inside and outside of the scalar remainder loop.
4260 
4261   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4262   // in the exit blocks.  See comment on analogous loop in
4263   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4264   if (!Cost->requiresScalarEpilogue(VF))
4265     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4266       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4267         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4268 
4269   // Fix the scalar loop reduction variable with the incoming reduction sum
4270   // from the vector body and from the backedge value.
4271   int IncomingEdgeBlockIdx =
4272       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4273   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4274   // Pick the other block.
4275   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4276   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4277   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4278 }
4279 
4280 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4281                                                   VPTransformState &State) {
4282   RecurKind RK = RdxDesc.getRecurrenceKind();
4283   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4284     return;
4285 
4286   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4287   assert(LoopExitInstr && "null loop exit instruction");
4288   SmallVector<Instruction *, 8> Worklist;
4289   SmallPtrSet<Instruction *, 8> Visited;
4290   Worklist.push_back(LoopExitInstr);
4291   Visited.insert(LoopExitInstr);
4292 
4293   while (!Worklist.empty()) {
4294     Instruction *Cur = Worklist.pop_back_val();
4295     if (isa<OverflowingBinaryOperator>(Cur))
4296       for (unsigned Part = 0; Part < UF; ++Part) {
4297         // FIXME: Should not rely on getVPValue at this point.
4298         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4299         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4300       }
4301 
4302     for (User *U : Cur->users()) {
4303       Instruction *UI = cast<Instruction>(U);
4304       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4305           Visited.insert(UI).second)
4306         Worklist.push_back(UI);
4307     }
4308   }
4309 }
4310 
4311 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4312   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4313     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4314       // Some phis were already hand updated by the reduction and recurrence
4315       // code above, leave them alone.
4316       continue;
4317 
4318     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4319     // Non-instruction incoming values will have only one value.
4320 
4321     VPLane Lane = VPLane::getFirstLane();
4322     if (isa<Instruction>(IncomingValue) &&
4323         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4324                                            VF))
4325       Lane = VPLane::getLastLaneForVF(VF);
4326 
4327     // Can be a loop invariant incoming value or the last scalar value to be
4328     // extracted from the vectorized loop.
4329     // FIXME: Should not rely on getVPValue at this point.
4330     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4331     Value *lastIncomingValue =
4332         OrigLoop->isLoopInvariant(IncomingValue)
4333             ? IncomingValue
4334             : State.get(State.Plan->getVPValue(IncomingValue, true),
4335                         VPIteration(UF - 1, Lane));
4336     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4337   }
4338 }
4339 
4340 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4341   // The basic block and loop containing the predicated instruction.
4342   auto *PredBB = PredInst->getParent();
4343   auto *VectorLoop = LI->getLoopFor(PredBB);
4344 
4345   // Initialize a worklist with the operands of the predicated instruction.
4346   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4347 
4348   // Holds instructions that we need to analyze again. An instruction may be
4349   // reanalyzed if we don't yet know if we can sink it or not.
4350   SmallVector<Instruction *, 8> InstsToReanalyze;
4351 
4352   // Returns true if a given use occurs in the predicated block. Phi nodes use
4353   // their operands in their corresponding predecessor blocks.
4354   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4355     auto *I = cast<Instruction>(U.getUser());
4356     BasicBlock *BB = I->getParent();
4357     if (auto *Phi = dyn_cast<PHINode>(I))
4358       BB = Phi->getIncomingBlock(
4359           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4360     return BB == PredBB;
4361   };
4362 
4363   // Iteratively sink the scalarized operands of the predicated instruction
4364   // into the block we created for it. When an instruction is sunk, it's
4365   // operands are then added to the worklist. The algorithm ends after one pass
4366   // through the worklist doesn't sink a single instruction.
4367   bool Changed;
4368   do {
4369     // Add the instructions that need to be reanalyzed to the worklist, and
4370     // reset the changed indicator.
4371     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4372     InstsToReanalyze.clear();
4373     Changed = false;
4374 
4375     while (!Worklist.empty()) {
4376       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4377 
4378       // We can't sink an instruction if it is a phi node, is not in the loop,
4379       // or may have side effects.
4380       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4381           I->mayHaveSideEffects())
4382         continue;
4383 
4384       // If the instruction is already in PredBB, check if we can sink its
4385       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4386       // sinking the scalar instruction I, hence it appears in PredBB; but it
4387       // may have failed to sink I's operands (recursively), which we try
4388       // (again) here.
4389       if (I->getParent() == PredBB) {
4390         Worklist.insert(I->op_begin(), I->op_end());
4391         continue;
4392       }
4393 
4394       // It's legal to sink the instruction if all its uses occur in the
4395       // predicated block. Otherwise, there's nothing to do yet, and we may
4396       // need to reanalyze the instruction.
4397       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4398         InstsToReanalyze.push_back(I);
4399         continue;
4400       }
4401 
4402       // Move the instruction to the beginning of the predicated block, and add
4403       // it's operands to the worklist.
4404       I->moveBefore(&*PredBB->getFirstInsertionPt());
4405       Worklist.insert(I->op_begin(), I->op_end());
4406 
4407       // The sinking may have enabled other instructions to be sunk, so we will
4408       // need to iterate.
4409       Changed = true;
4410     }
4411   } while (Changed);
4412 }
4413 
4414 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4415   for (PHINode *OrigPhi : OrigPHIsToFix) {
4416     VPWidenPHIRecipe *VPPhi =
4417         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4418     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4419     // Make sure the builder has a valid insert point.
4420     Builder.SetInsertPoint(NewPhi);
4421     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4422       VPValue *Inc = VPPhi->getIncomingValue(i);
4423       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4424       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4425     }
4426   }
4427 }
4428 
4429 bool InnerLoopVectorizer::useOrderedReductions(
4430     const RecurrenceDescriptor &RdxDesc) {
4431   return Cost->useOrderedReductions(RdxDesc);
4432 }
4433 
4434 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4435                                               VPWidenPHIRecipe *PhiR,
4436                                               VPTransformState &State) {
4437   PHINode *P = cast<PHINode>(PN);
4438   if (EnableVPlanNativePath) {
4439     // Currently we enter here in the VPlan-native path for non-induction
4440     // PHIs where all control flow is uniform. We simply widen these PHIs.
4441     // Create a vector phi with no operands - the vector phi operands will be
4442     // set at the end of vector code generation.
4443     Type *VecTy = (State.VF.isScalar())
4444                       ? PN->getType()
4445                       : VectorType::get(PN->getType(), State.VF);
4446     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4447     State.set(PhiR, VecPhi, 0);
4448     OrigPHIsToFix.push_back(P);
4449 
4450     return;
4451   }
4452 
4453   assert(PN->getParent() == OrigLoop->getHeader() &&
4454          "Non-header phis should have been handled elsewhere");
4455 
4456   // In order to support recurrences we need to be able to vectorize Phi nodes.
4457   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4458   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4459   // this value when we vectorize all of the instructions that use the PHI.
4460 
4461   assert(!Legal->isReductionVariable(P) &&
4462          "reductions should be handled elsewhere");
4463 
4464   setDebugLocFromInst(P);
4465 
4466   // This PHINode must be an induction variable.
4467   // Make sure that we know about it.
4468   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4469 
4470   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4471   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4472 
4473   auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV();
4474   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
4475 
4476   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4477   // which can be found from the original scalar operations.
4478   switch (II.getKind()) {
4479   case InductionDescriptor::IK_NoInduction:
4480     llvm_unreachable("Unknown induction");
4481   case InductionDescriptor::IK_IntInduction:
4482   case InductionDescriptor::IK_FpInduction:
4483     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4484   case InductionDescriptor::IK_PtrInduction: {
4485     // Handle the pointer induction variable case.
4486     assert(P->getType()->isPointerTy() && "Unexpected type.");
4487 
4488     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4489       // This is the normalized GEP that starts counting at zero.
4490       Value *PtrInd =
4491           Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType());
4492       // Determine the number of scalars we need to generate for each unroll
4493       // iteration. If the instruction is uniform, we only need to generate the
4494       // first lane. Otherwise, we generate all VF values.
4495       bool IsUniform = vputils::onlyFirstLaneUsed(PhiR);
4496       assert((IsUniform || !State.VF.isScalable()) &&
4497              "Cannot scalarize a scalable VF");
4498       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4499 
4500       for (unsigned Part = 0; Part < UF; ++Part) {
4501         Value *PartStart =
4502             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4503 
4504         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4505           Value *Idx = Builder.CreateAdd(
4506               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4507           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4508 
4509           Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
4510                                         State.CFG.PrevBB->getTerminator());
4511           Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx,
4512                                                 II.getStartValue(), Step, II);
4513           SclrGep->setName("next.gep");
4514           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4515         }
4516       }
4517       return;
4518     }
4519     assert(isa<SCEVConstant>(II.getStep()) &&
4520            "Induction step not a SCEV constant!");
4521     Type *PhiType = II.getStep()->getType();
4522 
4523     // Build a pointer phi
4524     Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue();
4525     Type *ScStValueType = ScalarStartValue->getType();
4526     PHINode *NewPointerPhi =
4527         PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
4528     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4529 
4530     // A pointer induction, performed by using a gep
4531     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4532     Instruction *InductionLoc = LoopLatch->getTerminator();
4533     const SCEV *ScalarStep = II.getStep();
4534     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4535     Value *ScalarStepValue =
4536         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4537     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4538     Value *NumUnrolledElems =
4539         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4540     Value *InductionGEP = GetElementPtrInst::Create(
4541         II.getElementType(), NewPointerPhi,
4542         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4543         InductionLoc);
4544     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4545 
4546     // Create UF many actual address geps that use the pointer
4547     // phi as base and a vectorized version of the step value
4548     // (<step*0, ..., step*N>) as offset.
4549     for (unsigned Part = 0; Part < State.UF; ++Part) {
4550       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4551       Value *StartOffsetScalar =
4552           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4553       Value *StartOffset =
4554           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4555       // Create a vector of consecutive numbers from zero to VF.
4556       StartOffset =
4557           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4558 
4559       Value *GEP = Builder.CreateGEP(
4560           II.getElementType(), NewPointerPhi,
4561           Builder.CreateMul(
4562               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4563               "vector.gep"));
4564       State.set(PhiR, GEP, Part);
4565     }
4566   }
4567   }
4568 }
4569 
4570 /// A helper function for checking whether an integer division-related
4571 /// instruction may divide by zero (in which case it must be predicated if
4572 /// executed conditionally in the scalar code).
4573 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4574 /// Non-zero divisors that are non compile-time constants will not be
4575 /// converted into multiplication, so we will still end up scalarizing
4576 /// the division, but can do so w/o predication.
4577 static bool mayDivideByZero(Instruction &I) {
4578   assert((I.getOpcode() == Instruction::UDiv ||
4579           I.getOpcode() == Instruction::SDiv ||
4580           I.getOpcode() == Instruction::URem ||
4581           I.getOpcode() == Instruction::SRem) &&
4582          "Unexpected instruction");
4583   Value *Divisor = I.getOperand(1);
4584   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4585   return !CInt || CInt->isZero();
4586 }
4587 
4588 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4589                                                VPUser &ArgOperands,
4590                                                VPTransformState &State) {
4591   assert(!isa<DbgInfoIntrinsic>(I) &&
4592          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4593   setDebugLocFromInst(&I);
4594 
4595   Module *M = I.getParent()->getParent()->getParent();
4596   auto *CI = cast<CallInst>(&I);
4597 
4598   SmallVector<Type *, 4> Tys;
4599   for (Value *ArgOperand : CI->args())
4600     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4601 
4602   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4603 
4604   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4605   // version of the instruction.
4606   // Is it beneficial to perform intrinsic call compared to lib call?
4607   bool NeedToScalarize = false;
4608   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4609   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4610   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4611   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4612          "Instruction should be scalarized elsewhere.");
4613   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4614          "Either the intrinsic cost or vector call cost must be valid");
4615 
4616   for (unsigned Part = 0; Part < UF; ++Part) {
4617     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4618     SmallVector<Value *, 4> Args;
4619     for (auto &I : enumerate(ArgOperands.operands())) {
4620       // Some intrinsics have a scalar argument - don't replace it with a
4621       // vector.
4622       Value *Arg;
4623       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4624         Arg = State.get(I.value(), Part);
4625       else {
4626         Arg = State.get(I.value(), VPIteration(0, 0));
4627         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4628           TysForDecl.push_back(Arg->getType());
4629       }
4630       Args.push_back(Arg);
4631     }
4632 
4633     Function *VectorF;
4634     if (UseVectorIntrinsic) {
4635       // Use vector version of the intrinsic.
4636       if (VF.isVector())
4637         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4638       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4639       assert(VectorF && "Can't retrieve vector intrinsic.");
4640     } else {
4641       // Use vector version of the function call.
4642       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4643 #ifndef NDEBUG
4644       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4645              "Can't create vector function.");
4646 #endif
4647         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4648     }
4649       SmallVector<OperandBundleDef, 1> OpBundles;
4650       CI->getOperandBundlesAsDefs(OpBundles);
4651       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4652 
4653       if (isa<FPMathOperator>(V))
4654         V->copyFastMathFlags(CI);
4655 
4656       State.set(Def, V, Part);
4657       addMetadata(V, &I);
4658   }
4659 }
4660 
4661 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4662   // We should not collect Scalars more than once per VF. Right now, this
4663   // function is called from collectUniformsAndScalars(), which already does
4664   // this check. Collecting Scalars for VF=1 does not make any sense.
4665   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4666          "This function should not be visited twice for the same VF");
4667 
4668   SmallSetVector<Instruction *, 8> Worklist;
4669 
4670   // These sets are used to seed the analysis with pointers used by memory
4671   // accesses that will remain scalar.
4672   SmallSetVector<Instruction *, 8> ScalarPtrs;
4673   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4674   auto *Latch = TheLoop->getLoopLatch();
4675 
4676   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4677   // The pointer operands of loads and stores will be scalar as long as the
4678   // memory access is not a gather or scatter operation. The value operand of a
4679   // store will remain scalar if the store is scalarized.
4680   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4681     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4682     assert(WideningDecision != CM_Unknown &&
4683            "Widening decision should be ready at this moment");
4684     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4685       if (Ptr == Store->getValueOperand())
4686         return WideningDecision == CM_Scalarize;
4687     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4688            "Ptr is neither a value or pointer operand");
4689     return WideningDecision != CM_GatherScatter;
4690   };
4691 
4692   // A helper that returns true if the given value is a bitcast or
4693   // getelementptr instruction contained in the loop.
4694   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4695     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4696             isa<GetElementPtrInst>(V)) &&
4697            !TheLoop->isLoopInvariant(V);
4698   };
4699 
4700   // A helper that evaluates a memory access's use of a pointer. If the use will
4701   // be a scalar use and the pointer is only used by memory accesses, we place
4702   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4703   // PossibleNonScalarPtrs.
4704   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4705     // We only care about bitcast and getelementptr instructions contained in
4706     // the loop.
4707     if (!isLoopVaryingBitCastOrGEP(Ptr))
4708       return;
4709 
4710     // If the pointer has already been identified as scalar (e.g., if it was
4711     // also identified as uniform), there's nothing to do.
4712     auto *I = cast<Instruction>(Ptr);
4713     if (Worklist.count(I))
4714       return;
4715 
4716     // If the use of the pointer will be a scalar use, and all users of the
4717     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4718     // place the pointer in PossibleNonScalarPtrs.
4719     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4720           return isa<LoadInst>(U) || isa<StoreInst>(U);
4721         }))
4722       ScalarPtrs.insert(I);
4723     else
4724       PossibleNonScalarPtrs.insert(I);
4725   };
4726 
4727   // We seed the scalars analysis with three classes of instructions: (1)
4728   // instructions marked uniform-after-vectorization and (2) bitcast,
4729   // getelementptr and (pointer) phi instructions used by memory accesses
4730   // requiring a scalar use.
4731   //
4732   // (1) Add to the worklist all instructions that have been identified as
4733   // uniform-after-vectorization.
4734   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4735 
4736   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4737   // memory accesses requiring a scalar use. The pointer operands of loads and
4738   // stores will be scalar as long as the memory accesses is not a gather or
4739   // scatter operation. The value operand of a store will remain scalar if the
4740   // store is scalarized.
4741   for (auto *BB : TheLoop->blocks())
4742     for (auto &I : *BB) {
4743       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4744         evaluatePtrUse(Load, Load->getPointerOperand());
4745       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4746         evaluatePtrUse(Store, Store->getPointerOperand());
4747         evaluatePtrUse(Store, Store->getValueOperand());
4748       }
4749     }
4750   for (auto *I : ScalarPtrs)
4751     if (!PossibleNonScalarPtrs.count(I)) {
4752       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4753       Worklist.insert(I);
4754     }
4755 
4756   // Insert the forced scalars.
4757   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4758   // induction variable when the PHI user is scalarized.
4759   auto ForcedScalar = ForcedScalars.find(VF);
4760   if (ForcedScalar != ForcedScalars.end())
4761     for (auto *I : ForcedScalar->second)
4762       Worklist.insert(I);
4763 
4764   // Expand the worklist by looking through any bitcasts and getelementptr
4765   // instructions we've already identified as scalar. This is similar to the
4766   // expansion step in collectLoopUniforms(); however, here we're only
4767   // expanding to include additional bitcasts and getelementptr instructions.
4768   unsigned Idx = 0;
4769   while (Idx != Worklist.size()) {
4770     Instruction *Dst = Worklist[Idx++];
4771     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4772       continue;
4773     auto *Src = cast<Instruction>(Dst->getOperand(0));
4774     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4775           auto *J = cast<Instruction>(U);
4776           return !TheLoop->contains(J) || Worklist.count(J) ||
4777                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4778                   isScalarUse(J, Src));
4779         })) {
4780       Worklist.insert(Src);
4781       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4782     }
4783   }
4784 
4785   // An induction variable will remain scalar if all users of the induction
4786   // variable and induction variable update remain scalar.
4787   for (auto &Induction : Legal->getInductionVars()) {
4788     auto *Ind = Induction.first;
4789     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4790 
4791     // If tail-folding is applied, the primary induction variable will be used
4792     // to feed a vector compare.
4793     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4794       continue;
4795 
4796     // Returns true if \p Indvar is a pointer induction that is used directly by
4797     // load/store instruction \p I.
4798     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4799                                               Instruction *I) {
4800       return Induction.second.getKind() ==
4801                  InductionDescriptor::IK_PtrInduction &&
4802              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4803              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4804     };
4805 
4806     // Determine if all users of the induction variable are scalar after
4807     // vectorization.
4808     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4809       auto *I = cast<Instruction>(U);
4810       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4811              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4812     });
4813     if (!ScalarInd)
4814       continue;
4815 
4816     // Determine if all users of the induction variable update instruction are
4817     // scalar after vectorization.
4818     auto ScalarIndUpdate =
4819         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4820           auto *I = cast<Instruction>(U);
4821           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4822                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4823         });
4824     if (!ScalarIndUpdate)
4825       continue;
4826 
4827     // The induction variable and its update instruction will remain scalar.
4828     Worklist.insert(Ind);
4829     Worklist.insert(IndUpdate);
4830     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4831     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4832                       << "\n");
4833   }
4834 
4835   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4836 }
4837 
4838 bool LoopVectorizationCostModel::isScalarWithPredication(
4839     Instruction *I, ElementCount VF) const {
4840   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4841     return false;
4842   switch(I->getOpcode()) {
4843   default:
4844     break;
4845   case Instruction::Load:
4846   case Instruction::Store: {
4847     if (!Legal->isMaskRequired(I))
4848       return false;
4849     auto *Ptr = getLoadStorePointerOperand(I);
4850     auto *Ty = getLoadStoreType(I);
4851     Type *VTy = Ty;
4852     if (VF.isVector())
4853       VTy = VectorType::get(Ty, VF);
4854     const Align Alignment = getLoadStoreAlignment(I);
4855     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4856                                 TTI.isLegalMaskedGather(VTy, Alignment))
4857                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4858                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4859   }
4860   case Instruction::UDiv:
4861   case Instruction::SDiv:
4862   case Instruction::SRem:
4863   case Instruction::URem:
4864     return mayDivideByZero(*I);
4865   }
4866   return false;
4867 }
4868 
4869 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4870     Instruction *I, ElementCount VF) {
4871   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4872   assert(getWideningDecision(I, VF) == CM_Unknown &&
4873          "Decision should not be set yet.");
4874   auto *Group = getInterleavedAccessGroup(I);
4875   assert(Group && "Must have a group.");
4876 
4877   // If the instruction's allocated size doesn't equal it's type size, it
4878   // requires padding and will be scalarized.
4879   auto &DL = I->getModule()->getDataLayout();
4880   auto *ScalarTy = getLoadStoreType(I);
4881   if (hasIrregularType(ScalarTy, DL))
4882     return false;
4883 
4884   // Check if masking is required.
4885   // A Group may need masking for one of two reasons: it resides in a block that
4886   // needs predication, or it was decided to use masking to deal with gaps
4887   // (either a gap at the end of a load-access that may result in a speculative
4888   // load, or any gaps in a store-access).
4889   bool PredicatedAccessRequiresMasking =
4890       blockNeedsPredicationForAnyReason(I->getParent()) &&
4891       Legal->isMaskRequired(I);
4892   bool LoadAccessWithGapsRequiresEpilogMasking =
4893       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4894       !isScalarEpilogueAllowed();
4895   bool StoreAccessWithGapsRequiresMasking =
4896       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4897   if (!PredicatedAccessRequiresMasking &&
4898       !LoadAccessWithGapsRequiresEpilogMasking &&
4899       !StoreAccessWithGapsRequiresMasking)
4900     return true;
4901 
4902   // If masked interleaving is required, we expect that the user/target had
4903   // enabled it, because otherwise it either wouldn't have been created or
4904   // it should have been invalidated by the CostModel.
4905   assert(useMaskedInterleavedAccesses(TTI) &&
4906          "Masked interleave-groups for predicated accesses are not enabled.");
4907 
4908   if (Group->isReverse())
4909     return false;
4910 
4911   auto *Ty = getLoadStoreType(I);
4912   const Align Alignment = getLoadStoreAlignment(I);
4913   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4914                           : TTI.isLegalMaskedStore(Ty, Alignment);
4915 }
4916 
4917 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4918     Instruction *I, ElementCount VF) {
4919   // Get and ensure we have a valid memory instruction.
4920   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4921 
4922   auto *Ptr = getLoadStorePointerOperand(I);
4923   auto *ScalarTy = getLoadStoreType(I);
4924 
4925   // In order to be widened, the pointer should be consecutive, first of all.
4926   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4927     return false;
4928 
4929   // If the instruction is a store located in a predicated block, it will be
4930   // scalarized.
4931   if (isScalarWithPredication(I, VF))
4932     return false;
4933 
4934   // If the instruction's allocated size doesn't equal it's type size, it
4935   // requires padding and will be scalarized.
4936   auto &DL = I->getModule()->getDataLayout();
4937   if (hasIrregularType(ScalarTy, DL))
4938     return false;
4939 
4940   return true;
4941 }
4942 
4943 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4944   // We should not collect Uniforms more than once per VF. Right now,
4945   // this function is called from collectUniformsAndScalars(), which
4946   // already does this check. Collecting Uniforms for VF=1 does not make any
4947   // sense.
4948 
4949   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4950          "This function should not be visited twice for the same VF");
4951 
4952   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4953   // not analyze again.  Uniforms.count(VF) will return 1.
4954   Uniforms[VF].clear();
4955 
4956   // We now know that the loop is vectorizable!
4957   // Collect instructions inside the loop that will remain uniform after
4958   // vectorization.
4959 
4960   // Global values, params and instructions outside of current loop are out of
4961   // scope.
4962   auto isOutOfScope = [&](Value *V) -> bool {
4963     Instruction *I = dyn_cast<Instruction>(V);
4964     return (!I || !TheLoop->contains(I));
4965   };
4966 
4967   // Worklist containing uniform instructions demanding lane 0.
4968   SetVector<Instruction *> Worklist;
4969   BasicBlock *Latch = TheLoop->getLoopLatch();
4970 
4971   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4972   // that are scalar with predication must not be considered uniform after
4973   // vectorization, because that would create an erroneous replicating region
4974   // where only a single instance out of VF should be formed.
4975   // TODO: optimize such seldom cases if found important, see PR40816.
4976   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4977     if (isOutOfScope(I)) {
4978       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4979                         << *I << "\n");
4980       return;
4981     }
4982     if (isScalarWithPredication(I, VF)) {
4983       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4984                         << *I << "\n");
4985       return;
4986     }
4987     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4988     Worklist.insert(I);
4989   };
4990 
4991   // Start with the conditional branch. If the branch condition is an
4992   // instruction contained in the loop that is only used by the branch, it is
4993   // uniform.
4994   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4995   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4996     addToWorklistIfAllowed(Cmp);
4997 
4998   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4999     InstWidening WideningDecision = getWideningDecision(I, VF);
5000     assert(WideningDecision != CM_Unknown &&
5001            "Widening decision should be ready at this moment");
5002 
5003     // A uniform memory op is itself uniform.  We exclude uniform stores
5004     // here as they demand the last lane, not the first one.
5005     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5006       assert(WideningDecision == CM_Scalarize);
5007       return true;
5008     }
5009 
5010     return (WideningDecision == CM_Widen ||
5011             WideningDecision == CM_Widen_Reverse ||
5012             WideningDecision == CM_Interleave);
5013   };
5014 
5015 
5016   // Returns true if Ptr is the pointer operand of a memory access instruction
5017   // I, and I is known to not require scalarization.
5018   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5019     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5020   };
5021 
5022   // Holds a list of values which are known to have at least one uniform use.
5023   // Note that there may be other uses which aren't uniform.  A "uniform use"
5024   // here is something which only demands lane 0 of the unrolled iterations;
5025   // it does not imply that all lanes produce the same value (e.g. this is not
5026   // the usual meaning of uniform)
5027   SetVector<Value *> HasUniformUse;
5028 
5029   // Scan the loop for instructions which are either a) known to have only
5030   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5031   for (auto *BB : TheLoop->blocks())
5032     for (auto &I : *BB) {
5033       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5034         switch (II->getIntrinsicID()) {
5035         case Intrinsic::sideeffect:
5036         case Intrinsic::experimental_noalias_scope_decl:
5037         case Intrinsic::assume:
5038         case Intrinsic::lifetime_start:
5039         case Intrinsic::lifetime_end:
5040           if (TheLoop->hasLoopInvariantOperands(&I))
5041             addToWorklistIfAllowed(&I);
5042           break;
5043         default:
5044           break;
5045         }
5046       }
5047 
5048       // ExtractValue instructions must be uniform, because the operands are
5049       // known to be loop-invariant.
5050       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5051         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5052                "Expected aggregate value to be loop invariant");
5053         addToWorklistIfAllowed(EVI);
5054         continue;
5055       }
5056 
5057       // If there's no pointer operand, there's nothing to do.
5058       auto *Ptr = getLoadStorePointerOperand(&I);
5059       if (!Ptr)
5060         continue;
5061 
5062       // A uniform memory op is itself uniform.  We exclude uniform stores
5063       // here as they demand the last lane, not the first one.
5064       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5065         addToWorklistIfAllowed(&I);
5066 
5067       if (isUniformDecision(&I, VF)) {
5068         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5069         HasUniformUse.insert(Ptr);
5070       }
5071     }
5072 
5073   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5074   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5075   // disallows uses outside the loop as well.
5076   for (auto *V : HasUniformUse) {
5077     if (isOutOfScope(V))
5078       continue;
5079     auto *I = cast<Instruction>(V);
5080     auto UsersAreMemAccesses =
5081       llvm::all_of(I->users(), [&](User *U) -> bool {
5082         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5083       });
5084     if (UsersAreMemAccesses)
5085       addToWorklistIfAllowed(I);
5086   }
5087 
5088   // Expand Worklist in topological order: whenever a new instruction
5089   // is added , its users should be already inside Worklist.  It ensures
5090   // a uniform instruction will only be used by uniform instructions.
5091   unsigned idx = 0;
5092   while (idx != Worklist.size()) {
5093     Instruction *I = Worklist[idx++];
5094 
5095     for (auto OV : I->operand_values()) {
5096       // isOutOfScope operands cannot be uniform instructions.
5097       if (isOutOfScope(OV))
5098         continue;
5099       // First order recurrence Phi's should typically be considered
5100       // non-uniform.
5101       auto *OP = dyn_cast<PHINode>(OV);
5102       if (OP && Legal->isFirstOrderRecurrence(OP))
5103         continue;
5104       // If all the users of the operand are uniform, then add the
5105       // operand into the uniform worklist.
5106       auto *OI = cast<Instruction>(OV);
5107       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5108             auto *J = cast<Instruction>(U);
5109             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5110           }))
5111         addToWorklistIfAllowed(OI);
5112     }
5113   }
5114 
5115   // For an instruction to be added into Worklist above, all its users inside
5116   // the loop should also be in Worklist. However, this condition cannot be
5117   // true for phi nodes that form a cyclic dependence. We must process phi
5118   // nodes separately. An induction variable will remain uniform if all users
5119   // of the induction variable and induction variable update remain uniform.
5120   // The code below handles both pointer and non-pointer induction variables.
5121   for (auto &Induction : Legal->getInductionVars()) {
5122     auto *Ind = Induction.first;
5123     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5124 
5125     // Determine if all users of the induction variable are uniform after
5126     // vectorization.
5127     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5128       auto *I = cast<Instruction>(U);
5129       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5130              isVectorizedMemAccessUse(I, Ind);
5131     });
5132     if (!UniformInd)
5133       continue;
5134 
5135     // Determine if all users of the induction variable update instruction are
5136     // uniform after vectorization.
5137     auto UniformIndUpdate =
5138         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5139           auto *I = cast<Instruction>(U);
5140           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5141                  isVectorizedMemAccessUse(I, IndUpdate);
5142         });
5143     if (!UniformIndUpdate)
5144       continue;
5145 
5146     // The induction variable and its update instruction will remain uniform.
5147     addToWorklistIfAllowed(Ind);
5148     addToWorklistIfAllowed(IndUpdate);
5149   }
5150 
5151   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5152 }
5153 
5154 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5155   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5156 
5157   if (Legal->getRuntimePointerChecking()->Need) {
5158     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5159         "runtime pointer checks needed. Enable vectorization of this "
5160         "loop with '#pragma clang loop vectorize(enable)' when "
5161         "compiling with -Os/-Oz",
5162         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5163     return true;
5164   }
5165 
5166   if (!PSE.getPredicate().isAlwaysTrue()) {
5167     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5168         "runtime SCEV checks needed. Enable vectorization of this "
5169         "loop with '#pragma clang loop vectorize(enable)' when "
5170         "compiling with -Os/-Oz",
5171         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5172     return true;
5173   }
5174 
5175   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5176   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5177     reportVectorizationFailure("Runtime stride check for small trip count",
5178         "runtime stride == 1 checks needed. Enable vectorization of "
5179         "this loop without such check by compiling with -Os/-Oz",
5180         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5181     return true;
5182   }
5183 
5184   return false;
5185 }
5186 
5187 ElementCount
5188 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5189   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5190     return ElementCount::getScalable(0);
5191 
5192   if (Hints->isScalableVectorizationDisabled()) {
5193     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5194                             "ScalableVectorizationDisabled", ORE, TheLoop);
5195     return ElementCount::getScalable(0);
5196   }
5197 
5198   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5199 
5200   auto MaxScalableVF = ElementCount::getScalable(
5201       std::numeric_limits<ElementCount::ScalarTy>::max());
5202 
5203   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5204   // FIXME: While for scalable vectors this is currently sufficient, this should
5205   // be replaced by a more detailed mechanism that filters out specific VFs,
5206   // instead of invalidating vectorization for a whole set of VFs based on the
5207   // MaxVF.
5208 
5209   // Disable scalable vectorization if the loop contains unsupported reductions.
5210   if (!canVectorizeReductions(MaxScalableVF)) {
5211     reportVectorizationInfo(
5212         "Scalable vectorization not supported for the reduction "
5213         "operations found in this loop.",
5214         "ScalableVFUnfeasible", ORE, TheLoop);
5215     return ElementCount::getScalable(0);
5216   }
5217 
5218   // Disable scalable vectorization if the loop contains any instructions
5219   // with element types not supported for scalable vectors.
5220   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5221         return !Ty->isVoidTy() &&
5222                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5223       })) {
5224     reportVectorizationInfo("Scalable vectorization is not supported "
5225                             "for all element types found in this loop.",
5226                             "ScalableVFUnfeasible", ORE, TheLoop);
5227     return ElementCount::getScalable(0);
5228   }
5229 
5230   if (Legal->isSafeForAnyVectorWidth())
5231     return MaxScalableVF;
5232 
5233   // Limit MaxScalableVF by the maximum safe dependence distance.
5234   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5235   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
5236     MaxVScale =
5237         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
5238   MaxScalableVF = ElementCount::getScalable(
5239       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5240   if (!MaxScalableVF)
5241     reportVectorizationInfo(
5242         "Max legal vector width too small, scalable vectorization "
5243         "unfeasible.",
5244         "ScalableVFUnfeasible", ORE, TheLoop);
5245 
5246   return MaxScalableVF;
5247 }
5248 
5249 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
5250     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
5251   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5252   unsigned SmallestType, WidestType;
5253   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5254 
5255   // Get the maximum safe dependence distance in bits computed by LAA.
5256   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5257   // the memory accesses that is most restrictive (involved in the smallest
5258   // dependence distance).
5259   unsigned MaxSafeElements =
5260       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5261 
5262   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5263   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5264 
5265   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5266                     << ".\n");
5267   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5268                     << ".\n");
5269 
5270   // First analyze the UserVF, fall back if the UserVF should be ignored.
5271   if (UserVF) {
5272     auto MaxSafeUserVF =
5273         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5274 
5275     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5276       // If `VF=vscale x N` is safe, then so is `VF=N`
5277       if (UserVF.isScalable())
5278         return FixedScalableVFPair(
5279             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5280       else
5281         return UserVF;
5282     }
5283 
5284     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5285 
5286     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5287     // is better to ignore the hint and let the compiler choose a suitable VF.
5288     if (!UserVF.isScalable()) {
5289       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5290                         << " is unsafe, clamping to max safe VF="
5291                         << MaxSafeFixedVF << ".\n");
5292       ORE->emit([&]() {
5293         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5294                                           TheLoop->getStartLoc(),
5295                                           TheLoop->getHeader())
5296                << "User-specified vectorization factor "
5297                << ore::NV("UserVectorizationFactor", UserVF)
5298                << " is unsafe, clamping to maximum safe vectorization factor "
5299                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5300       });
5301       return MaxSafeFixedVF;
5302     }
5303 
5304     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5305       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5306                         << " is ignored because scalable vectors are not "
5307                            "available.\n");
5308       ORE->emit([&]() {
5309         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5310                                           TheLoop->getStartLoc(),
5311                                           TheLoop->getHeader())
5312                << "User-specified vectorization factor "
5313                << ore::NV("UserVectorizationFactor", UserVF)
5314                << " is ignored because the target does not support scalable "
5315                   "vectors. The compiler will pick a more suitable value.";
5316       });
5317     } else {
5318       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5319                         << " is unsafe. Ignoring scalable UserVF.\n");
5320       ORE->emit([&]() {
5321         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5322                                           TheLoop->getStartLoc(),
5323                                           TheLoop->getHeader())
5324                << "User-specified vectorization factor "
5325                << ore::NV("UserVectorizationFactor", UserVF)
5326                << " is unsafe. Ignoring the hint to let the compiler pick a "
5327                   "more suitable value.";
5328       });
5329     }
5330   }
5331 
5332   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5333                     << " / " << WidestType << " bits.\n");
5334 
5335   FixedScalableVFPair Result(ElementCount::getFixed(1),
5336                              ElementCount::getScalable(0));
5337   if (auto MaxVF =
5338           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5339                                   MaxSafeFixedVF, FoldTailByMasking))
5340     Result.FixedVF = MaxVF;
5341 
5342   if (auto MaxVF =
5343           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5344                                   MaxSafeScalableVF, FoldTailByMasking))
5345     if (MaxVF.isScalable()) {
5346       Result.ScalableVF = MaxVF;
5347       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5348                         << "\n");
5349     }
5350 
5351   return Result;
5352 }
5353 
5354 FixedScalableVFPair
5355 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5356   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5357     // TODO: It may by useful to do since it's still likely to be dynamically
5358     // uniform if the target can skip.
5359     reportVectorizationFailure(
5360         "Not inserting runtime ptr check for divergent target",
5361         "runtime pointer checks needed. Not enabled for divergent target",
5362         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5363     return FixedScalableVFPair::getNone();
5364   }
5365 
5366   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5367   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5368   if (TC == 1) {
5369     reportVectorizationFailure("Single iteration (non) loop",
5370         "loop trip count is one, irrelevant for vectorization",
5371         "SingleIterationLoop", ORE, TheLoop);
5372     return FixedScalableVFPair::getNone();
5373   }
5374 
5375   switch (ScalarEpilogueStatus) {
5376   case CM_ScalarEpilogueAllowed:
5377     return computeFeasibleMaxVF(TC, UserVF, false);
5378   case CM_ScalarEpilogueNotAllowedUsePredicate:
5379     LLVM_FALLTHROUGH;
5380   case CM_ScalarEpilogueNotNeededUsePredicate:
5381     LLVM_DEBUG(
5382         dbgs() << "LV: vector predicate hint/switch found.\n"
5383                << "LV: Not allowing scalar epilogue, creating predicated "
5384                << "vector loop.\n");
5385     break;
5386   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5387     // fallthrough as a special case of OptForSize
5388   case CM_ScalarEpilogueNotAllowedOptSize:
5389     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5390       LLVM_DEBUG(
5391           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5392     else
5393       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5394                         << "count.\n");
5395 
5396     // Bail if runtime checks are required, which are not good when optimising
5397     // for size.
5398     if (runtimeChecksRequired())
5399       return FixedScalableVFPair::getNone();
5400 
5401     break;
5402   }
5403 
5404   // The only loops we can vectorize without a scalar epilogue, are loops with
5405   // a bottom-test and a single exiting block. We'd have to handle the fact
5406   // that not every instruction executes on the last iteration.  This will
5407   // require a lane mask which varies through the vector loop body.  (TODO)
5408   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5409     // If there was a tail-folding hint/switch, but we can't fold the tail by
5410     // masking, fallback to a vectorization with a scalar epilogue.
5411     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5412       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5413                            "scalar epilogue instead.\n");
5414       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5415       return computeFeasibleMaxVF(TC, UserVF, false);
5416     }
5417     return FixedScalableVFPair::getNone();
5418   }
5419 
5420   // Now try the tail folding
5421 
5422   // Invalidate interleave groups that require an epilogue if we can't mask
5423   // the interleave-group.
5424   if (!useMaskedInterleavedAccesses(TTI)) {
5425     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5426            "No decisions should have been taken at this point");
5427     // Note: There is no need to invalidate any cost modeling decisions here, as
5428     // non where taken so far.
5429     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5430   }
5431 
5432   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5433   // Avoid tail folding if the trip count is known to be a multiple of any VF
5434   // we chose.
5435   // FIXME: The condition below pessimises the case for fixed-width vectors,
5436   // when scalable VFs are also candidates for vectorization.
5437   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5438     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5439     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5440            "MaxFixedVF must be a power of 2");
5441     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5442                                    : MaxFixedVF.getFixedValue();
5443     ScalarEvolution *SE = PSE.getSE();
5444     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5445     const SCEV *ExitCount = SE->getAddExpr(
5446         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5447     const SCEV *Rem = SE->getURemExpr(
5448         SE->applyLoopGuards(ExitCount, TheLoop),
5449         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5450     if (Rem->isZero()) {
5451       // Accept MaxFixedVF if we do not have a tail.
5452       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5453       return MaxFactors;
5454     }
5455   }
5456 
5457   // For scalable vectors don't use tail folding for low trip counts or
5458   // optimizing for code size. We only permit this if the user has explicitly
5459   // requested it.
5460   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5461       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5462       MaxFactors.ScalableVF.isVector())
5463     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5464 
5465   // If we don't know the precise trip count, or if the trip count that we
5466   // found modulo the vectorization factor is not zero, try to fold the tail
5467   // by masking.
5468   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5469   if (Legal->prepareToFoldTailByMasking()) {
5470     FoldTailByMasking = true;
5471     return MaxFactors;
5472   }
5473 
5474   // If there was a tail-folding hint/switch, but we can't fold the tail by
5475   // masking, fallback to a vectorization with a scalar epilogue.
5476   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5477     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5478                          "scalar epilogue instead.\n");
5479     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5480     return MaxFactors;
5481   }
5482 
5483   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5484     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5485     return FixedScalableVFPair::getNone();
5486   }
5487 
5488   if (TC == 0) {
5489     reportVectorizationFailure(
5490         "Unable to calculate the loop count due to complex control flow",
5491         "unable to calculate the loop count due to complex control flow",
5492         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5493     return FixedScalableVFPair::getNone();
5494   }
5495 
5496   reportVectorizationFailure(
5497       "Cannot optimize for size and vectorize at the same time.",
5498       "cannot optimize for size and vectorize at the same time. "
5499       "Enable vectorization of this loop with '#pragma clang loop "
5500       "vectorize(enable)' when compiling with -Os/-Oz",
5501       "NoTailLoopWithOptForSize", ORE, TheLoop);
5502   return FixedScalableVFPair::getNone();
5503 }
5504 
5505 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5506     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5507     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5508   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5509   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5510       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5511                            : TargetTransformInfo::RGK_FixedWidthVector);
5512 
5513   // Convenience function to return the minimum of two ElementCounts.
5514   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5515     assert((LHS.isScalable() == RHS.isScalable()) &&
5516            "Scalable flags must match");
5517     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5518   };
5519 
5520   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5521   // Note that both WidestRegister and WidestType may not be a powers of 2.
5522   auto MaxVectorElementCount = ElementCount::get(
5523       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5524       ComputeScalableMaxVF);
5525   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5526   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5527                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5528 
5529   if (!MaxVectorElementCount) {
5530     LLVM_DEBUG(dbgs() << "LV: The target has no "
5531                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5532                       << " vector registers.\n");
5533     return ElementCount::getFixed(1);
5534   }
5535 
5536   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5537   if (ConstTripCount &&
5538       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5539       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5540     // If loop trip count (TC) is known at compile time there is no point in
5541     // choosing VF greater than TC (as done in the loop below). Select maximum
5542     // power of two which doesn't exceed TC.
5543     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5544     // when the TC is less than or equal to the known number of lanes.
5545     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5546     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5547                          "exceeding the constant trip count: "
5548                       << ClampedConstTripCount << "\n");
5549     return ElementCount::getFixed(ClampedConstTripCount);
5550   }
5551 
5552   ElementCount MaxVF = MaxVectorElementCount;
5553   if (TTI.shouldMaximizeVectorBandwidth() ||
5554       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5555     auto MaxVectorElementCountMaxBW = ElementCount::get(
5556         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5557         ComputeScalableMaxVF);
5558     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5559 
5560     // Collect all viable vectorization factors larger than the default MaxVF
5561     // (i.e. MaxVectorElementCount).
5562     SmallVector<ElementCount, 8> VFs;
5563     for (ElementCount VS = MaxVectorElementCount * 2;
5564          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5565       VFs.push_back(VS);
5566 
5567     // For each VF calculate its register usage.
5568     auto RUs = calculateRegisterUsage(VFs);
5569 
5570     // Select the largest VF which doesn't require more registers than existing
5571     // ones.
5572     for (int i = RUs.size() - 1; i >= 0; --i) {
5573       bool Selected = true;
5574       for (auto &pair : RUs[i].MaxLocalUsers) {
5575         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5576         if (pair.second > TargetNumRegisters)
5577           Selected = false;
5578       }
5579       if (Selected) {
5580         MaxVF = VFs[i];
5581         break;
5582       }
5583     }
5584     if (ElementCount MinVF =
5585             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5586       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5587         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5588                           << ") with target's minimum: " << MinVF << '\n');
5589         MaxVF = MinVF;
5590       }
5591     }
5592   }
5593   return MaxVF;
5594 }
5595 
5596 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5597   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5598     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5599     auto Min = Attr.getVScaleRangeMin();
5600     auto Max = Attr.getVScaleRangeMax();
5601     if (Max && Min == Max)
5602       return Max;
5603   }
5604 
5605   return TTI.getVScaleForTuning();
5606 }
5607 
5608 bool LoopVectorizationCostModel::isMoreProfitable(
5609     const VectorizationFactor &A, const VectorizationFactor &B) const {
5610   InstructionCost CostA = A.Cost;
5611   InstructionCost CostB = B.Cost;
5612 
5613   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5614 
5615   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5616       MaxTripCount) {
5617     // If we are folding the tail and the trip count is a known (possibly small)
5618     // constant, the trip count will be rounded up to an integer number of
5619     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5620     // which we compare directly. When not folding the tail, the total cost will
5621     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5622     // approximated with the per-lane cost below instead of using the tripcount
5623     // as here.
5624     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5625     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5626     return RTCostA < RTCostB;
5627   }
5628 
5629   // Improve estimate for the vector width if it is scalable.
5630   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5631   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5632   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5633     if (A.Width.isScalable())
5634       EstimatedWidthA *= VScale.getValue();
5635     if (B.Width.isScalable())
5636       EstimatedWidthB *= VScale.getValue();
5637   }
5638 
5639   // Assume vscale may be larger than 1 (or the value being tuned for),
5640   // so that scalable vectorization is slightly favorable over fixed-width
5641   // vectorization.
5642   if (A.Width.isScalable() && !B.Width.isScalable())
5643     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5644 
5645   // To avoid the need for FP division:
5646   //      (CostA / A.Width) < (CostB / B.Width)
5647   // <=>  (CostA * B.Width) < (CostB * A.Width)
5648   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5649 }
5650 
5651 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5652     const ElementCountSet &VFCandidates) {
5653   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5654   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5655   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5656   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5657          "Expected Scalar VF to be a candidate");
5658 
5659   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5660   VectorizationFactor ChosenFactor = ScalarCost;
5661 
5662   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5663   if (ForceVectorization && VFCandidates.size() > 1) {
5664     // Ignore scalar width, because the user explicitly wants vectorization.
5665     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5666     // evaluation.
5667     ChosenFactor.Cost = InstructionCost::getMax();
5668   }
5669 
5670   SmallVector<InstructionVFPair> InvalidCosts;
5671   for (const auto &i : VFCandidates) {
5672     // The cost for scalar VF=1 is already calculated, so ignore it.
5673     if (i.isScalar())
5674       continue;
5675 
5676     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5677     VectorizationFactor Candidate(i, C.first);
5678 
5679 #ifndef NDEBUG
5680     unsigned AssumedMinimumVscale = 1;
5681     if (Optional<unsigned> VScale = getVScaleForTuning())
5682       AssumedMinimumVscale = VScale.getValue();
5683     unsigned Width =
5684         Candidate.Width.isScalable()
5685             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5686             : Candidate.Width.getFixedValue();
5687     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5688                       << " costs: " << (Candidate.Cost / Width));
5689     if (i.isScalable())
5690       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5691                         << AssumedMinimumVscale << ")");
5692     LLVM_DEBUG(dbgs() << ".\n");
5693 #endif
5694 
5695     if (!C.second && !ForceVectorization) {
5696       LLVM_DEBUG(
5697           dbgs() << "LV: Not considering vector loop of width " << i
5698                  << " because it will not generate any vector instructions.\n");
5699       continue;
5700     }
5701 
5702     // If profitable add it to ProfitableVF list.
5703     if (isMoreProfitable(Candidate, ScalarCost))
5704       ProfitableVFs.push_back(Candidate);
5705 
5706     if (isMoreProfitable(Candidate, ChosenFactor))
5707       ChosenFactor = Candidate;
5708   }
5709 
5710   // Emit a report of VFs with invalid costs in the loop.
5711   if (!InvalidCosts.empty()) {
5712     // Group the remarks per instruction, keeping the instruction order from
5713     // InvalidCosts.
5714     std::map<Instruction *, unsigned> Numbering;
5715     unsigned I = 0;
5716     for (auto &Pair : InvalidCosts)
5717       if (!Numbering.count(Pair.first))
5718         Numbering[Pair.first] = I++;
5719 
5720     // Sort the list, first on instruction(number) then on VF.
5721     llvm::sort(InvalidCosts,
5722                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5723                  if (Numbering[A.first] != Numbering[B.first])
5724                    return Numbering[A.first] < Numbering[B.first];
5725                  ElementCountComparator ECC;
5726                  return ECC(A.second, B.second);
5727                });
5728 
5729     // For a list of ordered instruction-vf pairs:
5730     //   [(load, vf1), (load, vf2), (store, vf1)]
5731     // Group the instructions together to emit separate remarks for:
5732     //   load  (vf1, vf2)
5733     //   store (vf1)
5734     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5735     auto Subset = ArrayRef<InstructionVFPair>();
5736     do {
5737       if (Subset.empty())
5738         Subset = Tail.take_front(1);
5739 
5740       Instruction *I = Subset.front().first;
5741 
5742       // If the next instruction is different, or if there are no other pairs,
5743       // emit a remark for the collated subset. e.g.
5744       //   [(load, vf1), (load, vf2))]
5745       // to emit:
5746       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5747       if (Subset == Tail || Tail[Subset.size()].first != I) {
5748         std::string OutString;
5749         raw_string_ostream OS(OutString);
5750         assert(!Subset.empty() && "Unexpected empty range");
5751         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5752         for (auto &Pair : Subset)
5753           OS << (Pair.second == Subset.front().second ? "" : ", ")
5754              << Pair.second;
5755         OS << "):";
5756         if (auto *CI = dyn_cast<CallInst>(I))
5757           OS << " call to " << CI->getCalledFunction()->getName();
5758         else
5759           OS << " " << I->getOpcodeName();
5760         OS.flush();
5761         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5762         Tail = Tail.drop_front(Subset.size());
5763         Subset = {};
5764       } else
5765         // Grow the subset by one element
5766         Subset = Tail.take_front(Subset.size() + 1);
5767     } while (!Tail.empty());
5768   }
5769 
5770   if (!EnableCondStoresVectorization && NumPredStores) {
5771     reportVectorizationFailure("There are conditional stores.",
5772         "store that is conditionally executed prevents vectorization",
5773         "ConditionalStore", ORE, TheLoop);
5774     ChosenFactor = ScalarCost;
5775   }
5776 
5777   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5778                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5779              << "LV: Vectorization seems to be not beneficial, "
5780              << "but was forced by a user.\n");
5781   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5782   return ChosenFactor;
5783 }
5784 
5785 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5786     const Loop &L, ElementCount VF) const {
5787   // Cross iteration phis such as reductions need special handling and are
5788   // currently unsupported.
5789   if (any_of(L.getHeader()->phis(),
5790              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5791     return false;
5792 
5793   // Phis with uses outside of the loop require special handling and are
5794   // currently unsupported.
5795   for (auto &Entry : Legal->getInductionVars()) {
5796     // Look for uses of the value of the induction at the last iteration.
5797     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5798     for (User *U : PostInc->users())
5799       if (!L.contains(cast<Instruction>(U)))
5800         return false;
5801     // Look for uses of penultimate value of the induction.
5802     for (User *U : Entry.first->users())
5803       if (!L.contains(cast<Instruction>(U)))
5804         return false;
5805   }
5806 
5807   // Induction variables that are widened require special handling that is
5808   // currently not supported.
5809   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5810         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5811                  this->isProfitableToScalarize(Entry.first, VF));
5812       }))
5813     return false;
5814 
5815   // Epilogue vectorization code has not been auditted to ensure it handles
5816   // non-latch exits properly.  It may be fine, but it needs auditted and
5817   // tested.
5818   if (L.getExitingBlock() != L.getLoopLatch())
5819     return false;
5820 
5821   return true;
5822 }
5823 
5824 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5825     const ElementCount VF) const {
5826   // FIXME: We need a much better cost-model to take different parameters such
5827   // as register pressure, code size increase and cost of extra branches into
5828   // account. For now we apply a very crude heuristic and only consider loops
5829   // with vectorization factors larger than a certain value.
5830   // We also consider epilogue vectorization unprofitable for targets that don't
5831   // consider interleaving beneficial (eg. MVE).
5832   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5833     return false;
5834   // FIXME: We should consider changing the threshold for scalable
5835   // vectors to take VScaleForTuning into account.
5836   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5837     return true;
5838   return false;
5839 }
5840 
5841 VectorizationFactor
5842 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5843     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5844   VectorizationFactor Result = VectorizationFactor::Disabled();
5845   if (!EnableEpilogueVectorization) {
5846     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5847     return Result;
5848   }
5849 
5850   if (!isScalarEpilogueAllowed()) {
5851     LLVM_DEBUG(
5852         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5853                   "allowed.\n";);
5854     return Result;
5855   }
5856 
5857   // Not really a cost consideration, but check for unsupported cases here to
5858   // simplify the logic.
5859   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5860     LLVM_DEBUG(
5861         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5862                   "not a supported candidate.\n";);
5863     return Result;
5864   }
5865 
5866   if (EpilogueVectorizationForceVF > 1) {
5867     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5868     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5869     if (LVP.hasPlanWithVF(ForcedEC))
5870       return {ForcedEC, 0};
5871     else {
5872       LLVM_DEBUG(
5873           dbgs()
5874               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5875       return Result;
5876     }
5877   }
5878 
5879   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5880       TheLoop->getHeader()->getParent()->hasMinSize()) {
5881     LLVM_DEBUG(
5882         dbgs()
5883             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5884     return Result;
5885   }
5886 
5887   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5888     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5889                          "this loop\n");
5890     return Result;
5891   }
5892 
5893   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5894   // the main loop handles 8 lanes per iteration. We could still benefit from
5895   // vectorizing the epilogue loop with VF=4.
5896   ElementCount EstimatedRuntimeVF = MainLoopVF;
5897   if (MainLoopVF.isScalable()) {
5898     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5899     if (Optional<unsigned> VScale = getVScaleForTuning())
5900       EstimatedRuntimeVF *= VScale.getValue();
5901   }
5902 
5903   for (auto &NextVF : ProfitableVFs)
5904     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5905           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5906          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5907         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5908         LVP.hasPlanWithVF(NextVF.Width))
5909       Result = NextVF;
5910 
5911   if (Result != VectorizationFactor::Disabled())
5912     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5913                       << Result.Width << "\n";);
5914   return Result;
5915 }
5916 
5917 std::pair<unsigned, unsigned>
5918 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5919   unsigned MinWidth = -1U;
5920   unsigned MaxWidth = 8;
5921   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5922   // For in-loop reductions, no element types are added to ElementTypesInLoop
5923   // if there are no loads/stores in the loop. In this case, check through the
5924   // reduction variables to determine the maximum width.
5925   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5926     // Reset MaxWidth so that we can find the smallest type used by recurrences
5927     // in the loop.
5928     MaxWidth = -1U;
5929     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5930       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5931       // When finding the min width used by the recurrence we need to account
5932       // for casts on the input operands of the recurrence.
5933       MaxWidth = std::min<unsigned>(
5934           MaxWidth, std::min<unsigned>(
5935                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5936                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5937     }
5938   } else {
5939     for (Type *T : ElementTypesInLoop) {
5940       MinWidth = std::min<unsigned>(
5941           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5942       MaxWidth = std::max<unsigned>(
5943           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5944     }
5945   }
5946   return {MinWidth, MaxWidth};
5947 }
5948 
5949 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5950   ElementTypesInLoop.clear();
5951   // For each block.
5952   for (BasicBlock *BB : TheLoop->blocks()) {
5953     // For each instruction in the loop.
5954     for (Instruction &I : BB->instructionsWithoutDebug()) {
5955       Type *T = I.getType();
5956 
5957       // Skip ignored values.
5958       if (ValuesToIgnore.count(&I))
5959         continue;
5960 
5961       // Only examine Loads, Stores and PHINodes.
5962       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5963         continue;
5964 
5965       // Examine PHI nodes that are reduction variables. Update the type to
5966       // account for the recurrence type.
5967       if (auto *PN = dyn_cast<PHINode>(&I)) {
5968         if (!Legal->isReductionVariable(PN))
5969           continue;
5970         const RecurrenceDescriptor &RdxDesc =
5971             Legal->getReductionVars().find(PN)->second;
5972         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5973             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5974                                       RdxDesc.getRecurrenceType(),
5975                                       TargetTransformInfo::ReductionFlags()))
5976           continue;
5977         T = RdxDesc.getRecurrenceType();
5978       }
5979 
5980       // Examine the stored values.
5981       if (auto *ST = dyn_cast<StoreInst>(&I))
5982         T = ST->getValueOperand()->getType();
5983 
5984       assert(T->isSized() &&
5985              "Expected the load/store/recurrence type to be sized");
5986 
5987       ElementTypesInLoop.insert(T);
5988     }
5989   }
5990 }
5991 
5992 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5993                                                            unsigned LoopCost) {
5994   // -- The interleave heuristics --
5995   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5996   // There are many micro-architectural considerations that we can't predict
5997   // at this level. For example, frontend pressure (on decode or fetch) due to
5998   // code size, or the number and capabilities of the execution ports.
5999   //
6000   // We use the following heuristics to select the interleave count:
6001   // 1. If the code has reductions, then we interleave to break the cross
6002   // iteration dependency.
6003   // 2. If the loop is really small, then we interleave to reduce the loop
6004   // overhead.
6005   // 3. We don't interleave if we think that we will spill registers to memory
6006   // due to the increased register pressure.
6007 
6008   if (!isScalarEpilogueAllowed())
6009     return 1;
6010 
6011   // We used the distance for the interleave count.
6012   if (Legal->getMaxSafeDepDistBytes() != -1U)
6013     return 1;
6014 
6015   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6016   const bool HasReductions = !Legal->getReductionVars().empty();
6017   // Do not interleave loops with a relatively small known or estimated trip
6018   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6019   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6020   // because with the above conditions interleaving can expose ILP and break
6021   // cross iteration dependences for reductions.
6022   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6023       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6024     return 1;
6025 
6026   RegisterUsage R = calculateRegisterUsage({VF})[0];
6027   // We divide by these constants so assume that we have at least one
6028   // instruction that uses at least one register.
6029   for (auto& pair : R.MaxLocalUsers) {
6030     pair.second = std::max(pair.second, 1U);
6031   }
6032 
6033   // We calculate the interleave count using the following formula.
6034   // Subtract the number of loop invariants from the number of available
6035   // registers. These registers are used by all of the interleaved instances.
6036   // Next, divide the remaining registers by the number of registers that is
6037   // required by the loop, in order to estimate how many parallel instances
6038   // fit without causing spills. All of this is rounded down if necessary to be
6039   // a power of two. We want power of two interleave count to simplify any
6040   // addressing operations or alignment considerations.
6041   // We also want power of two interleave counts to ensure that the induction
6042   // variable of the vector loop wraps to zero, when tail is folded by masking;
6043   // this currently happens when OptForSize, in which case IC is set to 1 above.
6044   unsigned IC = UINT_MAX;
6045 
6046   for (auto& pair : R.MaxLocalUsers) {
6047     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6048     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6049                       << " registers of "
6050                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6051     if (VF.isScalar()) {
6052       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6053         TargetNumRegisters = ForceTargetNumScalarRegs;
6054     } else {
6055       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6056         TargetNumRegisters = ForceTargetNumVectorRegs;
6057     }
6058     unsigned MaxLocalUsers = pair.second;
6059     unsigned LoopInvariantRegs = 0;
6060     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6061       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6062 
6063     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6064     // Don't count the induction variable as interleaved.
6065     if (EnableIndVarRegisterHeur) {
6066       TmpIC =
6067           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6068                         std::max(1U, (MaxLocalUsers - 1)));
6069     }
6070 
6071     IC = std::min(IC, TmpIC);
6072   }
6073 
6074   // Clamp the interleave ranges to reasonable counts.
6075   unsigned MaxInterleaveCount =
6076       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6077 
6078   // Check if the user has overridden the max.
6079   if (VF.isScalar()) {
6080     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6081       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6082   } else {
6083     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6084       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6085   }
6086 
6087   // If trip count is known or estimated compile time constant, limit the
6088   // interleave count to be less than the trip count divided by VF, provided it
6089   // is at least 1.
6090   //
6091   // For scalable vectors we can't know if interleaving is beneficial. It may
6092   // not be beneficial for small loops if none of the lanes in the second vector
6093   // iterations is enabled. However, for larger loops, there is likely to be a
6094   // similar benefit as for fixed-width vectors. For now, we choose to leave
6095   // the InterleaveCount as if vscale is '1', although if some information about
6096   // the vector is known (e.g. min vector size), we can make a better decision.
6097   if (BestKnownTC) {
6098     MaxInterleaveCount =
6099         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6100     // Make sure MaxInterleaveCount is greater than 0.
6101     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6102   }
6103 
6104   assert(MaxInterleaveCount > 0 &&
6105          "Maximum interleave count must be greater than 0");
6106 
6107   // Clamp the calculated IC to be between the 1 and the max interleave count
6108   // that the target and trip count allows.
6109   if (IC > MaxInterleaveCount)
6110     IC = MaxInterleaveCount;
6111   else
6112     // Make sure IC is greater than 0.
6113     IC = std::max(1u, IC);
6114 
6115   assert(IC > 0 && "Interleave count must be greater than 0.");
6116 
6117   // If we did not calculate the cost for VF (because the user selected the VF)
6118   // then we calculate the cost of VF here.
6119   if (LoopCost == 0) {
6120     InstructionCost C = expectedCost(VF).first;
6121     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6122     LoopCost = *C.getValue();
6123   }
6124 
6125   assert(LoopCost && "Non-zero loop cost expected");
6126 
6127   // Interleave if we vectorized this loop and there is a reduction that could
6128   // benefit from interleaving.
6129   if (VF.isVector() && HasReductions) {
6130     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6131     return IC;
6132   }
6133 
6134   // For any scalar loop that either requires runtime checks or predication we
6135   // are better off leaving this to the unroller. Note that if we've already
6136   // vectorized the loop we will have done the runtime check and so interleaving
6137   // won't require further checks.
6138   bool ScalarInterleavingRequiresPredication =
6139       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
6140          return Legal->blockNeedsPredication(BB);
6141        }));
6142   bool ScalarInterleavingRequiresRuntimePointerCheck =
6143       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6144 
6145   // We want to interleave small loops in order to reduce the loop overhead and
6146   // potentially expose ILP opportunities.
6147   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6148                     << "LV: IC is " << IC << '\n'
6149                     << "LV: VF is " << VF << '\n');
6150   const bool AggressivelyInterleaveReductions =
6151       TTI.enableAggressiveInterleaving(HasReductions);
6152   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
6153       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
6154     // We assume that the cost overhead is 1 and we use the cost model
6155     // to estimate the cost of the loop and interleave until the cost of the
6156     // loop overhead is about 5% of the cost of the loop.
6157     unsigned SmallIC =
6158         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6159 
6160     // Interleave until store/load ports (estimated by max interleave count) are
6161     // saturated.
6162     unsigned NumStores = Legal->getNumStores();
6163     unsigned NumLoads = Legal->getNumLoads();
6164     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6165     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6166 
6167     // There is little point in interleaving for reductions containing selects
6168     // and compares when VF=1 since it may just create more overhead than it's
6169     // worth for loops with small trip counts. This is because we still have to
6170     // do the final reduction after the loop.
6171     bool HasSelectCmpReductions =
6172         HasReductions &&
6173         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6174           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6175           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6176               RdxDesc.getRecurrenceKind());
6177         });
6178     if (HasSelectCmpReductions) {
6179       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6180       return 1;
6181     }
6182 
6183     // If we have a scalar reduction (vector reductions are already dealt with
6184     // by this point), we can increase the critical path length if the loop
6185     // we're interleaving is inside another loop. For tree-wise reductions
6186     // set the limit to 2, and for ordered reductions it's best to disable
6187     // interleaving entirely.
6188     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6189       bool HasOrderedReductions =
6190           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6191             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6192             return RdxDesc.isOrdered();
6193           });
6194       if (HasOrderedReductions) {
6195         LLVM_DEBUG(
6196             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6197         return 1;
6198       }
6199 
6200       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6201       SmallIC = std::min(SmallIC, F);
6202       StoresIC = std::min(StoresIC, F);
6203       LoadsIC = std::min(LoadsIC, F);
6204     }
6205 
6206     if (EnableLoadStoreRuntimeInterleave &&
6207         std::max(StoresIC, LoadsIC) > SmallIC) {
6208       LLVM_DEBUG(
6209           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6210       return std::max(StoresIC, LoadsIC);
6211     }
6212 
6213     // If there are scalar reductions and TTI has enabled aggressive
6214     // interleaving for reductions, we will interleave to expose ILP.
6215     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6216         AggressivelyInterleaveReductions) {
6217       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6218       // Interleave no less than SmallIC but not as aggressive as the normal IC
6219       // to satisfy the rare situation when resources are too limited.
6220       return std::max(IC / 2, SmallIC);
6221     } else {
6222       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6223       return SmallIC;
6224     }
6225   }
6226 
6227   // Interleave if this is a large loop (small loops are already dealt with by
6228   // this point) that could benefit from interleaving.
6229   if (AggressivelyInterleaveReductions) {
6230     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6231     return IC;
6232   }
6233 
6234   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6235   return 1;
6236 }
6237 
6238 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6239 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6240   // This function calculates the register usage by measuring the highest number
6241   // of values that are alive at a single location. Obviously, this is a very
6242   // rough estimation. We scan the loop in a topological order in order and
6243   // assign a number to each instruction. We use RPO to ensure that defs are
6244   // met before their users. We assume that each instruction that has in-loop
6245   // users starts an interval. We record every time that an in-loop value is
6246   // used, so we have a list of the first and last occurrences of each
6247   // instruction. Next, we transpose this data structure into a multi map that
6248   // holds the list of intervals that *end* at a specific location. This multi
6249   // map allows us to perform a linear search. We scan the instructions linearly
6250   // and record each time that a new interval starts, by placing it in a set.
6251   // If we find this value in the multi-map then we remove it from the set.
6252   // The max register usage is the maximum size of the set.
6253   // We also search for instructions that are defined outside the loop, but are
6254   // used inside the loop. We need this number separately from the max-interval
6255   // usage number because when we unroll, loop-invariant values do not take
6256   // more register.
6257   LoopBlocksDFS DFS(TheLoop);
6258   DFS.perform(LI);
6259 
6260   RegisterUsage RU;
6261 
6262   // Each 'key' in the map opens a new interval. The values
6263   // of the map are the index of the 'last seen' usage of the
6264   // instruction that is the key.
6265   using IntervalMap = DenseMap<Instruction *, unsigned>;
6266 
6267   // Maps instruction to its index.
6268   SmallVector<Instruction *, 64> IdxToInstr;
6269   // Marks the end of each interval.
6270   IntervalMap EndPoint;
6271   // Saves the list of instruction indices that are used in the loop.
6272   SmallPtrSet<Instruction *, 8> Ends;
6273   // Saves the list of values that are used in the loop but are
6274   // defined outside the loop, such as arguments and constants.
6275   SmallPtrSet<Value *, 8> LoopInvariants;
6276 
6277   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6278     for (Instruction &I : BB->instructionsWithoutDebug()) {
6279       IdxToInstr.push_back(&I);
6280 
6281       // Save the end location of each USE.
6282       for (Value *U : I.operands()) {
6283         auto *Instr = dyn_cast<Instruction>(U);
6284 
6285         // Ignore non-instruction values such as arguments, constants, etc.
6286         if (!Instr)
6287           continue;
6288 
6289         // If this instruction is outside the loop then record it and continue.
6290         if (!TheLoop->contains(Instr)) {
6291           LoopInvariants.insert(Instr);
6292           continue;
6293         }
6294 
6295         // Overwrite previous end points.
6296         EndPoint[Instr] = IdxToInstr.size();
6297         Ends.insert(Instr);
6298       }
6299     }
6300   }
6301 
6302   // Saves the list of intervals that end with the index in 'key'.
6303   using InstrList = SmallVector<Instruction *, 2>;
6304   DenseMap<unsigned, InstrList> TransposeEnds;
6305 
6306   // Transpose the EndPoints to a list of values that end at each index.
6307   for (auto &Interval : EndPoint)
6308     TransposeEnds[Interval.second].push_back(Interval.first);
6309 
6310   SmallPtrSet<Instruction *, 8> OpenIntervals;
6311   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6312   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6313 
6314   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6315 
6316   // A lambda that gets the register usage for the given type and VF.
6317   const auto &TTICapture = TTI;
6318   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6319     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6320       return 0;
6321     InstructionCost::CostType RegUsage =
6322         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6323     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6324            "Nonsensical values for register usage.");
6325     return RegUsage;
6326   };
6327 
6328   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6329     Instruction *I = IdxToInstr[i];
6330 
6331     // Remove all of the instructions that end at this location.
6332     InstrList &List = TransposeEnds[i];
6333     for (Instruction *ToRemove : List)
6334       OpenIntervals.erase(ToRemove);
6335 
6336     // Ignore instructions that are never used within the loop.
6337     if (!Ends.count(I))
6338       continue;
6339 
6340     // Skip ignored values.
6341     if (ValuesToIgnore.count(I))
6342       continue;
6343 
6344     // For each VF find the maximum usage of registers.
6345     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6346       // Count the number of live intervals.
6347       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6348 
6349       if (VFs[j].isScalar()) {
6350         for (auto Inst : OpenIntervals) {
6351           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6352           if (RegUsage.find(ClassID) == RegUsage.end())
6353             RegUsage[ClassID] = 1;
6354           else
6355             RegUsage[ClassID] += 1;
6356         }
6357       } else {
6358         collectUniformsAndScalars(VFs[j]);
6359         for (auto Inst : OpenIntervals) {
6360           // Skip ignored values for VF > 1.
6361           if (VecValuesToIgnore.count(Inst))
6362             continue;
6363           if (isScalarAfterVectorization(Inst, VFs[j])) {
6364             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6365             if (RegUsage.find(ClassID) == RegUsage.end())
6366               RegUsage[ClassID] = 1;
6367             else
6368               RegUsage[ClassID] += 1;
6369           } else {
6370             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6371             if (RegUsage.find(ClassID) == RegUsage.end())
6372               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6373             else
6374               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6375           }
6376         }
6377       }
6378 
6379       for (auto& pair : RegUsage) {
6380         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6381           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6382         else
6383           MaxUsages[j][pair.first] = pair.second;
6384       }
6385     }
6386 
6387     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6388                       << OpenIntervals.size() << '\n');
6389 
6390     // Add the current instruction to the list of open intervals.
6391     OpenIntervals.insert(I);
6392   }
6393 
6394   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6395     SmallMapVector<unsigned, unsigned, 4> Invariant;
6396 
6397     for (auto Inst : LoopInvariants) {
6398       unsigned Usage =
6399           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6400       unsigned ClassID =
6401           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6402       if (Invariant.find(ClassID) == Invariant.end())
6403         Invariant[ClassID] = Usage;
6404       else
6405         Invariant[ClassID] += Usage;
6406     }
6407 
6408     LLVM_DEBUG({
6409       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6410       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6411              << " item\n";
6412       for (const auto &pair : MaxUsages[i]) {
6413         dbgs() << "LV(REG): RegisterClass: "
6414                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6415                << " registers\n";
6416       }
6417       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6418              << " item\n";
6419       for (const auto &pair : Invariant) {
6420         dbgs() << "LV(REG): RegisterClass: "
6421                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6422                << " registers\n";
6423       }
6424     });
6425 
6426     RU.LoopInvariantRegs = Invariant;
6427     RU.MaxLocalUsers = MaxUsages[i];
6428     RUs[i] = RU;
6429   }
6430 
6431   return RUs;
6432 }
6433 
6434 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6435                                                            ElementCount VF) {
6436   // TODO: Cost model for emulated masked load/store is completely
6437   // broken. This hack guides the cost model to use an artificially
6438   // high enough value to practically disable vectorization with such
6439   // operations, except where previously deployed legality hack allowed
6440   // using very low cost values. This is to avoid regressions coming simply
6441   // from moving "masked load/store" check from legality to cost model.
6442   // Masked Load/Gather emulation was previously never allowed.
6443   // Limited number of Masked Store/Scatter emulation was allowed.
6444   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6445   return isa<LoadInst>(I) ||
6446          (isa<StoreInst>(I) &&
6447           NumPredStores > NumberOfStoresToPredicate);
6448 }
6449 
6450 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6451   // If we aren't vectorizing the loop, or if we've already collected the
6452   // instructions to scalarize, there's nothing to do. Collection may already
6453   // have occurred if we have a user-selected VF and are now computing the
6454   // expected cost for interleaving.
6455   if (VF.isScalar() || VF.isZero() ||
6456       InstsToScalarize.find(VF) != InstsToScalarize.end())
6457     return;
6458 
6459   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6460   // not profitable to scalarize any instructions, the presence of VF in the
6461   // map will indicate that we've analyzed it already.
6462   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6463 
6464   // Find all the instructions that are scalar with predication in the loop and
6465   // determine if it would be better to not if-convert the blocks they are in.
6466   // If so, we also record the instructions to scalarize.
6467   for (BasicBlock *BB : TheLoop->blocks()) {
6468     if (!blockNeedsPredicationForAnyReason(BB))
6469       continue;
6470     for (Instruction &I : *BB)
6471       if (isScalarWithPredication(&I, VF)) {
6472         ScalarCostsTy ScalarCosts;
6473         // Do not apply discount if scalable, because that would lead to
6474         // invalid scalarization costs.
6475         // Do not apply discount logic if hacked cost is needed
6476         // for emulated masked memrefs.
6477         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6478             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6479           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6480         // Remember that BB will remain after vectorization.
6481         PredicatedBBsAfterVectorization.insert(BB);
6482       }
6483   }
6484 }
6485 
6486 int LoopVectorizationCostModel::computePredInstDiscount(
6487     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6488   assert(!isUniformAfterVectorization(PredInst, VF) &&
6489          "Instruction marked uniform-after-vectorization will be predicated");
6490 
6491   // Initialize the discount to zero, meaning that the scalar version and the
6492   // vector version cost the same.
6493   InstructionCost Discount = 0;
6494 
6495   // Holds instructions to analyze. The instructions we visit are mapped in
6496   // ScalarCosts. Those instructions are the ones that would be scalarized if
6497   // we find that the scalar version costs less.
6498   SmallVector<Instruction *, 8> Worklist;
6499 
6500   // Returns true if the given instruction can be scalarized.
6501   auto canBeScalarized = [&](Instruction *I) -> bool {
6502     // We only attempt to scalarize instructions forming a single-use chain
6503     // from the original predicated block that would otherwise be vectorized.
6504     // Although not strictly necessary, we give up on instructions we know will
6505     // already be scalar to avoid traversing chains that are unlikely to be
6506     // beneficial.
6507     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6508         isScalarAfterVectorization(I, VF))
6509       return false;
6510 
6511     // If the instruction is scalar with predication, it will be analyzed
6512     // separately. We ignore it within the context of PredInst.
6513     if (isScalarWithPredication(I, VF))
6514       return false;
6515 
6516     // If any of the instruction's operands are uniform after vectorization,
6517     // the instruction cannot be scalarized. This prevents, for example, a
6518     // masked load from being scalarized.
6519     //
6520     // We assume we will only emit a value for lane zero of an instruction
6521     // marked uniform after vectorization, rather than VF identical values.
6522     // Thus, if we scalarize an instruction that uses a uniform, we would
6523     // create uses of values corresponding to the lanes we aren't emitting code
6524     // for. This behavior can be changed by allowing getScalarValue to clone
6525     // the lane zero values for uniforms rather than asserting.
6526     for (Use &U : I->operands())
6527       if (auto *J = dyn_cast<Instruction>(U.get()))
6528         if (isUniformAfterVectorization(J, VF))
6529           return false;
6530 
6531     // Otherwise, we can scalarize the instruction.
6532     return true;
6533   };
6534 
6535   // Compute the expected cost discount from scalarizing the entire expression
6536   // feeding the predicated instruction. We currently only consider expressions
6537   // that are single-use instruction chains.
6538   Worklist.push_back(PredInst);
6539   while (!Worklist.empty()) {
6540     Instruction *I = Worklist.pop_back_val();
6541 
6542     // If we've already analyzed the instruction, there's nothing to do.
6543     if (ScalarCosts.find(I) != ScalarCosts.end())
6544       continue;
6545 
6546     // Compute the cost of the vector instruction. Note that this cost already
6547     // includes the scalarization overhead of the predicated instruction.
6548     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6549 
6550     // Compute the cost of the scalarized instruction. This cost is the cost of
6551     // the instruction as if it wasn't if-converted and instead remained in the
6552     // predicated block. We will scale this cost by block probability after
6553     // computing the scalarization overhead.
6554     InstructionCost ScalarCost =
6555         VF.getFixedValue() *
6556         getInstructionCost(I, ElementCount::getFixed(1)).first;
6557 
6558     // Compute the scalarization overhead of needed insertelement instructions
6559     // and phi nodes.
6560     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6561       ScalarCost += TTI.getScalarizationOverhead(
6562           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6563           APInt::getAllOnes(VF.getFixedValue()), true, false);
6564       ScalarCost +=
6565           VF.getFixedValue() *
6566           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6567     }
6568 
6569     // Compute the scalarization overhead of needed extractelement
6570     // instructions. For each of the instruction's operands, if the operand can
6571     // be scalarized, add it to the worklist; otherwise, account for the
6572     // overhead.
6573     for (Use &U : I->operands())
6574       if (auto *J = dyn_cast<Instruction>(U.get())) {
6575         assert(VectorType::isValidElementType(J->getType()) &&
6576                "Instruction has non-scalar type");
6577         if (canBeScalarized(J))
6578           Worklist.push_back(J);
6579         else if (needsExtract(J, VF)) {
6580           ScalarCost += TTI.getScalarizationOverhead(
6581               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6582               APInt::getAllOnes(VF.getFixedValue()), false, true);
6583         }
6584       }
6585 
6586     // Scale the total scalar cost by block probability.
6587     ScalarCost /= getReciprocalPredBlockProb();
6588 
6589     // Compute the discount. A non-negative discount means the vector version
6590     // of the instruction costs more, and scalarizing would be beneficial.
6591     Discount += VectorCost - ScalarCost;
6592     ScalarCosts[I] = ScalarCost;
6593   }
6594 
6595   return *Discount.getValue();
6596 }
6597 
6598 LoopVectorizationCostModel::VectorizationCostTy
6599 LoopVectorizationCostModel::expectedCost(
6600     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6601   VectorizationCostTy Cost;
6602 
6603   // For each block.
6604   for (BasicBlock *BB : TheLoop->blocks()) {
6605     VectorizationCostTy BlockCost;
6606 
6607     // For each instruction in the old loop.
6608     for (Instruction &I : BB->instructionsWithoutDebug()) {
6609       // Skip ignored values.
6610       if (ValuesToIgnore.count(&I) ||
6611           (VF.isVector() && VecValuesToIgnore.count(&I)))
6612         continue;
6613 
6614       VectorizationCostTy C = getInstructionCost(&I, VF);
6615 
6616       // Check if we should override the cost.
6617       if (C.first.isValid() &&
6618           ForceTargetInstructionCost.getNumOccurrences() > 0)
6619         C.first = InstructionCost(ForceTargetInstructionCost);
6620 
6621       // Keep a list of instructions with invalid costs.
6622       if (Invalid && !C.first.isValid())
6623         Invalid->emplace_back(&I, VF);
6624 
6625       BlockCost.first += C.first;
6626       BlockCost.second |= C.second;
6627       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6628                         << " for VF " << VF << " For instruction: " << I
6629                         << '\n');
6630     }
6631 
6632     // If we are vectorizing a predicated block, it will have been
6633     // if-converted. This means that the block's instructions (aside from
6634     // stores and instructions that may divide by zero) will now be
6635     // unconditionally executed. For the scalar case, we may not always execute
6636     // the predicated block, if it is an if-else block. Thus, scale the block's
6637     // cost by the probability of executing it. blockNeedsPredication from
6638     // Legal is used so as to not include all blocks in tail folded loops.
6639     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6640       BlockCost.first /= getReciprocalPredBlockProb();
6641 
6642     Cost.first += BlockCost.first;
6643     Cost.second |= BlockCost.second;
6644   }
6645 
6646   return Cost;
6647 }
6648 
6649 /// Gets Address Access SCEV after verifying that the access pattern
6650 /// is loop invariant except the induction variable dependence.
6651 ///
6652 /// This SCEV can be sent to the Target in order to estimate the address
6653 /// calculation cost.
6654 static const SCEV *getAddressAccessSCEV(
6655               Value *Ptr,
6656               LoopVectorizationLegality *Legal,
6657               PredicatedScalarEvolution &PSE,
6658               const Loop *TheLoop) {
6659 
6660   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6661   if (!Gep)
6662     return nullptr;
6663 
6664   // We are looking for a gep with all loop invariant indices except for one
6665   // which should be an induction variable.
6666   auto SE = PSE.getSE();
6667   unsigned NumOperands = Gep->getNumOperands();
6668   for (unsigned i = 1; i < NumOperands; ++i) {
6669     Value *Opd = Gep->getOperand(i);
6670     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6671         !Legal->isInductionVariable(Opd))
6672       return nullptr;
6673   }
6674 
6675   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6676   return PSE.getSCEV(Ptr);
6677 }
6678 
6679 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6680   return Legal->hasStride(I->getOperand(0)) ||
6681          Legal->hasStride(I->getOperand(1));
6682 }
6683 
6684 InstructionCost
6685 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6686                                                         ElementCount VF) {
6687   assert(VF.isVector() &&
6688          "Scalarization cost of instruction implies vectorization.");
6689   if (VF.isScalable())
6690     return InstructionCost::getInvalid();
6691 
6692   Type *ValTy = getLoadStoreType(I);
6693   auto SE = PSE.getSE();
6694 
6695   unsigned AS = getLoadStoreAddressSpace(I);
6696   Value *Ptr = getLoadStorePointerOperand(I);
6697   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6698   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6699   //       that it is being called from this specific place.
6700 
6701   // Figure out whether the access is strided and get the stride value
6702   // if it's known in compile time
6703   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6704 
6705   // Get the cost of the scalar memory instruction and address computation.
6706   InstructionCost Cost =
6707       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6708 
6709   // Don't pass *I here, since it is scalar but will actually be part of a
6710   // vectorized loop where the user of it is a vectorized instruction.
6711   const Align Alignment = getLoadStoreAlignment(I);
6712   Cost += VF.getKnownMinValue() *
6713           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6714                               AS, TTI::TCK_RecipThroughput);
6715 
6716   // Get the overhead of the extractelement and insertelement instructions
6717   // we might create due to scalarization.
6718   Cost += getScalarizationOverhead(I, VF);
6719 
6720   // If we have a predicated load/store, it will need extra i1 extracts and
6721   // conditional branches, but may not be executed for each vector lane. Scale
6722   // the cost by the probability of executing the predicated block.
6723   if (isPredicatedInst(I, VF)) {
6724     Cost /= getReciprocalPredBlockProb();
6725 
6726     // Add the cost of an i1 extract and a branch
6727     auto *Vec_i1Ty =
6728         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6729     Cost += TTI.getScalarizationOverhead(
6730         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6731         /*Insert=*/false, /*Extract=*/true);
6732     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6733 
6734     if (useEmulatedMaskMemRefHack(I, VF))
6735       // Artificially setting to a high enough value to practically disable
6736       // vectorization with such operations.
6737       Cost = 3000000;
6738   }
6739 
6740   return Cost;
6741 }
6742 
6743 InstructionCost
6744 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6745                                                     ElementCount VF) {
6746   Type *ValTy = getLoadStoreType(I);
6747   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6748   Value *Ptr = getLoadStorePointerOperand(I);
6749   unsigned AS = getLoadStoreAddressSpace(I);
6750   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6751   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6752 
6753   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6754          "Stride should be 1 or -1 for consecutive memory access");
6755   const Align Alignment = getLoadStoreAlignment(I);
6756   InstructionCost Cost = 0;
6757   if (Legal->isMaskRequired(I))
6758     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6759                                       CostKind);
6760   else
6761     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6762                                 CostKind, I);
6763 
6764   bool Reverse = ConsecutiveStride < 0;
6765   if (Reverse)
6766     Cost +=
6767         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6768   return Cost;
6769 }
6770 
6771 InstructionCost
6772 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6773                                                 ElementCount VF) {
6774   assert(Legal->isUniformMemOp(*I));
6775 
6776   Type *ValTy = getLoadStoreType(I);
6777   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6778   const Align Alignment = getLoadStoreAlignment(I);
6779   unsigned AS = getLoadStoreAddressSpace(I);
6780   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6781   if (isa<LoadInst>(I)) {
6782     return TTI.getAddressComputationCost(ValTy) +
6783            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6784                                CostKind) +
6785            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6786   }
6787   StoreInst *SI = cast<StoreInst>(I);
6788 
6789   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6790   return TTI.getAddressComputationCost(ValTy) +
6791          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6792                              CostKind) +
6793          (isLoopInvariantStoreValue
6794               ? 0
6795               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6796                                        VF.getKnownMinValue() - 1));
6797 }
6798 
6799 InstructionCost
6800 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6801                                                  ElementCount VF) {
6802   Type *ValTy = getLoadStoreType(I);
6803   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6804   const Align Alignment = getLoadStoreAlignment(I);
6805   const Value *Ptr = getLoadStorePointerOperand(I);
6806 
6807   return TTI.getAddressComputationCost(VectorTy) +
6808          TTI.getGatherScatterOpCost(
6809              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6810              TargetTransformInfo::TCK_RecipThroughput, I);
6811 }
6812 
6813 InstructionCost
6814 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6815                                                    ElementCount VF) {
6816   // TODO: Once we have support for interleaving with scalable vectors
6817   // we can calculate the cost properly here.
6818   if (VF.isScalable())
6819     return InstructionCost::getInvalid();
6820 
6821   Type *ValTy = getLoadStoreType(I);
6822   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6823   unsigned AS = getLoadStoreAddressSpace(I);
6824 
6825   auto Group = getInterleavedAccessGroup(I);
6826   assert(Group && "Fail to get an interleaved access group.");
6827 
6828   unsigned InterleaveFactor = Group->getFactor();
6829   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6830 
6831   // Holds the indices of existing members in the interleaved group.
6832   SmallVector<unsigned, 4> Indices;
6833   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6834     if (Group->getMember(IF))
6835       Indices.push_back(IF);
6836 
6837   // Calculate the cost of the whole interleaved group.
6838   bool UseMaskForGaps =
6839       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6840       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6841   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6842       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6843       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6844 
6845   if (Group->isReverse()) {
6846     // TODO: Add support for reversed masked interleaved access.
6847     assert(!Legal->isMaskRequired(I) &&
6848            "Reverse masked interleaved access not supported.");
6849     Cost +=
6850         Group->getNumMembers() *
6851         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6852   }
6853   return Cost;
6854 }
6855 
6856 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6857     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6858   using namespace llvm::PatternMatch;
6859   // Early exit for no inloop reductions
6860   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6861     return None;
6862   auto *VectorTy = cast<VectorType>(Ty);
6863 
6864   // We are looking for a pattern of, and finding the minimal acceptable cost:
6865   //  reduce(mul(ext(A), ext(B))) or
6866   //  reduce(mul(A, B)) or
6867   //  reduce(ext(A)) or
6868   //  reduce(A).
6869   // The basic idea is that we walk down the tree to do that, finding the root
6870   // reduction instruction in InLoopReductionImmediateChains. From there we find
6871   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6872   // of the components. If the reduction cost is lower then we return it for the
6873   // reduction instruction and 0 for the other instructions in the pattern. If
6874   // it is not we return an invalid cost specifying the orignal cost method
6875   // should be used.
6876   Instruction *RetI = I;
6877   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6878     if (!RetI->hasOneUser())
6879       return None;
6880     RetI = RetI->user_back();
6881   }
6882   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6883       RetI->user_back()->getOpcode() == Instruction::Add) {
6884     if (!RetI->hasOneUser())
6885       return None;
6886     RetI = RetI->user_back();
6887   }
6888 
6889   // Test if the found instruction is a reduction, and if not return an invalid
6890   // cost specifying the parent to use the original cost modelling.
6891   if (!InLoopReductionImmediateChains.count(RetI))
6892     return None;
6893 
6894   // Find the reduction this chain is a part of and calculate the basic cost of
6895   // the reduction on its own.
6896   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6897   Instruction *ReductionPhi = LastChain;
6898   while (!isa<PHINode>(ReductionPhi))
6899     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6900 
6901   const RecurrenceDescriptor &RdxDesc =
6902       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6903 
6904   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6905       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6906 
6907   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6908   // normal fmul instruction to the cost of the fadd reduction.
6909   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6910     BaseCost +=
6911         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6912 
6913   // If we're using ordered reductions then we can just return the base cost
6914   // here, since getArithmeticReductionCost calculates the full ordered
6915   // reduction cost when FP reassociation is not allowed.
6916   if (useOrderedReductions(RdxDesc))
6917     return BaseCost;
6918 
6919   // Get the operand that was not the reduction chain and match it to one of the
6920   // patterns, returning the better cost if it is found.
6921   Instruction *RedOp = RetI->getOperand(1) == LastChain
6922                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6923                            : dyn_cast<Instruction>(RetI->getOperand(1));
6924 
6925   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6926 
6927   Instruction *Op0, *Op1;
6928   if (RedOp &&
6929       match(RedOp,
6930             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6931       match(Op0, m_ZExtOrSExt(m_Value())) &&
6932       Op0->getOpcode() == Op1->getOpcode() &&
6933       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6934       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6935       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6936 
6937     // Matched reduce(ext(mul(ext(A), ext(B)))
6938     // Note that the extend opcodes need to all match, or if A==B they will have
6939     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6940     // which is equally fine.
6941     bool IsUnsigned = isa<ZExtInst>(Op0);
6942     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6943     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6944 
6945     InstructionCost ExtCost =
6946         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6947                              TTI::CastContextHint::None, CostKind, Op0);
6948     InstructionCost MulCost =
6949         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6950     InstructionCost Ext2Cost =
6951         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6952                              TTI::CastContextHint::None, CostKind, RedOp);
6953 
6954     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6955         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6956         CostKind);
6957 
6958     if (RedCost.isValid() &&
6959         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6960       return I == RetI ? RedCost : 0;
6961   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6962              !TheLoop->isLoopInvariant(RedOp)) {
6963     // Matched reduce(ext(A))
6964     bool IsUnsigned = isa<ZExtInst>(RedOp);
6965     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6966     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6967         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6968         CostKind);
6969 
6970     InstructionCost ExtCost =
6971         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6972                              TTI::CastContextHint::None, CostKind, RedOp);
6973     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6974       return I == RetI ? RedCost : 0;
6975   } else if (RedOp &&
6976              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6977     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6978         Op0->getOpcode() == Op1->getOpcode() &&
6979         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6980       bool IsUnsigned = isa<ZExtInst>(Op0);
6981       Type *Op0Ty = Op0->getOperand(0)->getType();
6982       Type *Op1Ty = Op1->getOperand(0)->getType();
6983       Type *LargestOpTy =
6984           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6985                                                                     : Op0Ty;
6986       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6987 
6988       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6989       // different sizes. We take the largest type as the ext to reduce, and add
6990       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6991       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6992           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6993           TTI::CastContextHint::None, CostKind, Op0);
6994       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6995           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6996           TTI::CastContextHint::None, CostKind, Op1);
6997       InstructionCost MulCost =
6998           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6999 
7000       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7001           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7002           CostKind);
7003       InstructionCost ExtraExtCost = 0;
7004       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
7005         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
7006         ExtraExtCost = TTI.getCastInstrCost(
7007             ExtraExtOp->getOpcode(), ExtType,
7008             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
7009             TTI::CastContextHint::None, CostKind, ExtraExtOp);
7010       }
7011 
7012       if (RedCost.isValid() &&
7013           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
7014         return I == RetI ? RedCost : 0;
7015     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7016       // Matched reduce(mul())
7017       InstructionCost MulCost =
7018           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7019 
7020       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7021           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7022           CostKind);
7023 
7024       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7025         return I == RetI ? RedCost : 0;
7026     }
7027   }
7028 
7029   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7030 }
7031 
7032 InstructionCost
7033 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7034                                                      ElementCount VF) {
7035   // Calculate scalar cost only. Vectorization cost should be ready at this
7036   // moment.
7037   if (VF.isScalar()) {
7038     Type *ValTy = getLoadStoreType(I);
7039     const Align Alignment = getLoadStoreAlignment(I);
7040     unsigned AS = getLoadStoreAddressSpace(I);
7041 
7042     return TTI.getAddressComputationCost(ValTy) +
7043            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7044                                TTI::TCK_RecipThroughput, I);
7045   }
7046   return getWideningCost(I, VF);
7047 }
7048 
7049 LoopVectorizationCostModel::VectorizationCostTy
7050 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7051                                                ElementCount VF) {
7052   // If we know that this instruction will remain uniform, check the cost of
7053   // the scalar version.
7054   if (isUniformAfterVectorization(I, VF))
7055     VF = ElementCount::getFixed(1);
7056 
7057   if (VF.isVector() && isProfitableToScalarize(I, VF))
7058     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7059 
7060   // Forced scalars do not have any scalarization overhead.
7061   auto ForcedScalar = ForcedScalars.find(VF);
7062   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7063     auto InstSet = ForcedScalar->second;
7064     if (InstSet.count(I))
7065       return VectorizationCostTy(
7066           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7067            VF.getKnownMinValue()),
7068           false);
7069   }
7070 
7071   Type *VectorTy;
7072   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7073 
7074   bool TypeNotScalarized = false;
7075   if (VF.isVector() && VectorTy->isVectorTy()) {
7076     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
7077     if (NumParts)
7078       TypeNotScalarized = NumParts < VF.getKnownMinValue();
7079     else
7080       C = InstructionCost::getInvalid();
7081   }
7082   return VectorizationCostTy(C, TypeNotScalarized);
7083 }
7084 
7085 InstructionCost
7086 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7087                                                      ElementCount VF) const {
7088 
7089   // There is no mechanism yet to create a scalable scalarization loop,
7090   // so this is currently Invalid.
7091   if (VF.isScalable())
7092     return InstructionCost::getInvalid();
7093 
7094   if (VF.isScalar())
7095     return 0;
7096 
7097   InstructionCost Cost = 0;
7098   Type *RetTy = ToVectorTy(I->getType(), VF);
7099   if (!RetTy->isVoidTy() &&
7100       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7101     Cost += TTI.getScalarizationOverhead(
7102         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7103         false);
7104 
7105   // Some targets keep addresses scalar.
7106   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7107     return Cost;
7108 
7109   // Some targets support efficient element stores.
7110   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7111     return Cost;
7112 
7113   // Collect operands to consider.
7114   CallInst *CI = dyn_cast<CallInst>(I);
7115   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7116 
7117   // Skip operands that do not require extraction/scalarization and do not incur
7118   // any overhead.
7119   SmallVector<Type *> Tys;
7120   for (auto *V : filterExtractingOperands(Ops, VF))
7121     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7122   return Cost + TTI.getOperandsScalarizationOverhead(
7123                     filterExtractingOperands(Ops, VF), Tys);
7124 }
7125 
7126 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7127   if (VF.isScalar())
7128     return;
7129   NumPredStores = 0;
7130   for (BasicBlock *BB : TheLoop->blocks()) {
7131     // For each instruction in the old loop.
7132     for (Instruction &I : *BB) {
7133       Value *Ptr =  getLoadStorePointerOperand(&I);
7134       if (!Ptr)
7135         continue;
7136 
7137       // TODO: We should generate better code and update the cost model for
7138       // predicated uniform stores. Today they are treated as any other
7139       // predicated store (see added test cases in
7140       // invariant-store-vectorization.ll).
7141       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
7142         NumPredStores++;
7143 
7144       if (Legal->isUniformMemOp(I)) {
7145         // TODO: Avoid replicating loads and stores instead of
7146         // relying on instcombine to remove them.
7147         // Load: Scalar load + broadcast
7148         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7149         InstructionCost Cost;
7150         if (isa<StoreInst>(&I) && VF.isScalable() &&
7151             isLegalGatherOrScatter(&I, VF)) {
7152           Cost = getGatherScatterCost(&I, VF);
7153           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7154         } else {
7155           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7156                  "Cannot yet scalarize uniform stores");
7157           Cost = getUniformMemOpCost(&I, VF);
7158           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7159         }
7160         continue;
7161       }
7162 
7163       // We assume that widening is the best solution when possible.
7164       if (memoryInstructionCanBeWidened(&I, VF)) {
7165         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7166         int ConsecutiveStride = Legal->isConsecutivePtr(
7167             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7168         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7169                "Expected consecutive stride.");
7170         InstWidening Decision =
7171             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7172         setWideningDecision(&I, VF, Decision, Cost);
7173         continue;
7174       }
7175 
7176       // Choose between Interleaving, Gather/Scatter or Scalarization.
7177       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7178       unsigned NumAccesses = 1;
7179       if (isAccessInterleaved(&I)) {
7180         auto Group = getInterleavedAccessGroup(&I);
7181         assert(Group && "Fail to get an interleaved access group.");
7182 
7183         // Make one decision for the whole group.
7184         if (getWideningDecision(&I, VF) != CM_Unknown)
7185           continue;
7186 
7187         NumAccesses = Group->getNumMembers();
7188         if (interleavedAccessCanBeWidened(&I, VF))
7189           InterleaveCost = getInterleaveGroupCost(&I, VF);
7190       }
7191 
7192       InstructionCost GatherScatterCost =
7193           isLegalGatherOrScatter(&I, VF)
7194               ? getGatherScatterCost(&I, VF) * NumAccesses
7195               : InstructionCost::getInvalid();
7196 
7197       InstructionCost ScalarizationCost =
7198           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7199 
7200       // Choose better solution for the current VF,
7201       // write down this decision and use it during vectorization.
7202       InstructionCost Cost;
7203       InstWidening Decision;
7204       if (InterleaveCost <= GatherScatterCost &&
7205           InterleaveCost < ScalarizationCost) {
7206         Decision = CM_Interleave;
7207         Cost = InterleaveCost;
7208       } else if (GatherScatterCost < ScalarizationCost) {
7209         Decision = CM_GatherScatter;
7210         Cost = GatherScatterCost;
7211       } else {
7212         Decision = CM_Scalarize;
7213         Cost = ScalarizationCost;
7214       }
7215       // If the instructions belongs to an interleave group, the whole group
7216       // receives the same decision. The whole group receives the cost, but
7217       // the cost will actually be assigned to one instruction.
7218       if (auto Group = getInterleavedAccessGroup(&I))
7219         setWideningDecision(Group, VF, Decision, Cost);
7220       else
7221         setWideningDecision(&I, VF, Decision, Cost);
7222     }
7223   }
7224 
7225   // Make sure that any load of address and any other address computation
7226   // remains scalar unless there is gather/scatter support. This avoids
7227   // inevitable extracts into address registers, and also has the benefit of
7228   // activating LSR more, since that pass can't optimize vectorized
7229   // addresses.
7230   if (TTI.prefersVectorizedAddressing())
7231     return;
7232 
7233   // Start with all scalar pointer uses.
7234   SmallPtrSet<Instruction *, 8> AddrDefs;
7235   for (BasicBlock *BB : TheLoop->blocks())
7236     for (Instruction &I : *BB) {
7237       Instruction *PtrDef =
7238         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7239       if (PtrDef && TheLoop->contains(PtrDef) &&
7240           getWideningDecision(&I, VF) != CM_GatherScatter)
7241         AddrDefs.insert(PtrDef);
7242     }
7243 
7244   // Add all instructions used to generate the addresses.
7245   SmallVector<Instruction *, 4> Worklist;
7246   append_range(Worklist, AddrDefs);
7247   while (!Worklist.empty()) {
7248     Instruction *I = Worklist.pop_back_val();
7249     for (auto &Op : I->operands())
7250       if (auto *InstOp = dyn_cast<Instruction>(Op))
7251         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7252             AddrDefs.insert(InstOp).second)
7253           Worklist.push_back(InstOp);
7254   }
7255 
7256   for (auto *I : AddrDefs) {
7257     if (isa<LoadInst>(I)) {
7258       // Setting the desired widening decision should ideally be handled in
7259       // by cost functions, but since this involves the task of finding out
7260       // if the loaded register is involved in an address computation, it is
7261       // instead changed here when we know this is the case.
7262       InstWidening Decision = getWideningDecision(I, VF);
7263       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7264         // Scalarize a widened load of address.
7265         setWideningDecision(
7266             I, VF, CM_Scalarize,
7267             (VF.getKnownMinValue() *
7268              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7269       else if (auto Group = getInterleavedAccessGroup(I)) {
7270         // Scalarize an interleave group of address loads.
7271         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7272           if (Instruction *Member = Group->getMember(I))
7273             setWideningDecision(
7274                 Member, VF, CM_Scalarize,
7275                 (VF.getKnownMinValue() *
7276                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7277         }
7278       }
7279     } else
7280       // Make sure I gets scalarized and a cost estimate without
7281       // scalarization overhead.
7282       ForcedScalars[VF].insert(I);
7283   }
7284 }
7285 
7286 InstructionCost
7287 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7288                                                Type *&VectorTy) {
7289   Type *RetTy = I->getType();
7290   if (canTruncateToMinimalBitwidth(I, VF))
7291     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7292   auto SE = PSE.getSE();
7293   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7294 
7295   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7296                                                 ElementCount VF) -> bool {
7297     if (VF.isScalar())
7298       return true;
7299 
7300     auto Scalarized = InstsToScalarize.find(VF);
7301     assert(Scalarized != InstsToScalarize.end() &&
7302            "VF not yet analyzed for scalarization profitability");
7303     return !Scalarized->second.count(I) &&
7304            llvm::all_of(I->users(), [&](User *U) {
7305              auto *UI = cast<Instruction>(U);
7306              return !Scalarized->second.count(UI);
7307            });
7308   };
7309   (void) hasSingleCopyAfterVectorization;
7310 
7311   if (isScalarAfterVectorization(I, VF)) {
7312     // With the exception of GEPs and PHIs, after scalarization there should
7313     // only be one copy of the instruction generated in the loop. This is
7314     // because the VF is either 1, or any instructions that need scalarizing
7315     // have already been dealt with by the the time we get here. As a result,
7316     // it means we don't have to multiply the instruction cost by VF.
7317     assert(I->getOpcode() == Instruction::GetElementPtr ||
7318            I->getOpcode() == Instruction::PHI ||
7319            (I->getOpcode() == Instruction::BitCast &&
7320             I->getType()->isPointerTy()) ||
7321            hasSingleCopyAfterVectorization(I, VF));
7322     VectorTy = RetTy;
7323   } else
7324     VectorTy = ToVectorTy(RetTy, VF);
7325 
7326   // TODO: We need to estimate the cost of intrinsic calls.
7327   switch (I->getOpcode()) {
7328   case Instruction::GetElementPtr:
7329     // We mark this instruction as zero-cost because the cost of GEPs in
7330     // vectorized code depends on whether the corresponding memory instruction
7331     // is scalarized or not. Therefore, we handle GEPs with the memory
7332     // instruction cost.
7333     return 0;
7334   case Instruction::Br: {
7335     // In cases of scalarized and predicated instructions, there will be VF
7336     // predicated blocks in the vectorized loop. Each branch around these
7337     // blocks requires also an extract of its vector compare i1 element.
7338     bool ScalarPredicatedBB = false;
7339     BranchInst *BI = cast<BranchInst>(I);
7340     if (VF.isVector() && BI->isConditional() &&
7341         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7342          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7343       ScalarPredicatedBB = true;
7344 
7345     if (ScalarPredicatedBB) {
7346       // Not possible to scalarize scalable vector with predicated instructions.
7347       if (VF.isScalable())
7348         return InstructionCost::getInvalid();
7349       // Return cost for branches around scalarized and predicated blocks.
7350       auto *Vec_i1Ty =
7351           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7352       return (
7353           TTI.getScalarizationOverhead(
7354               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7355           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7356     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7357       // The back-edge branch will remain, as will all scalar branches.
7358       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7359     else
7360       // This branch will be eliminated by if-conversion.
7361       return 0;
7362     // Note: We currently assume zero cost for an unconditional branch inside
7363     // a predicated block since it will become a fall-through, although we
7364     // may decide in the future to call TTI for all branches.
7365   }
7366   case Instruction::PHI: {
7367     auto *Phi = cast<PHINode>(I);
7368 
7369     // First-order recurrences are replaced by vector shuffles inside the loop.
7370     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7371     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7372       return TTI.getShuffleCost(
7373           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7374           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7375 
7376     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7377     // converted into select instructions. We require N - 1 selects per phi
7378     // node, where N is the number of incoming values.
7379     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7380       return (Phi->getNumIncomingValues() - 1) *
7381              TTI.getCmpSelInstrCost(
7382                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7383                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7384                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7385 
7386     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7387   }
7388   case Instruction::UDiv:
7389   case Instruction::SDiv:
7390   case Instruction::URem:
7391   case Instruction::SRem:
7392     // If we have a predicated instruction, it may not be executed for each
7393     // vector lane. Get the scalarization cost and scale this amount by the
7394     // probability of executing the predicated block. If the instruction is not
7395     // predicated, we fall through to the next case.
7396     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7397       InstructionCost Cost = 0;
7398 
7399       // These instructions have a non-void type, so account for the phi nodes
7400       // that we will create. This cost is likely to be zero. The phi node
7401       // cost, if any, should be scaled by the block probability because it
7402       // models a copy at the end of each predicated block.
7403       Cost += VF.getKnownMinValue() *
7404               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7405 
7406       // The cost of the non-predicated instruction.
7407       Cost += VF.getKnownMinValue() *
7408               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7409 
7410       // The cost of insertelement and extractelement instructions needed for
7411       // scalarization.
7412       Cost += getScalarizationOverhead(I, VF);
7413 
7414       // Scale the cost by the probability of executing the predicated blocks.
7415       // This assumes the predicated block for each vector lane is equally
7416       // likely.
7417       return Cost / getReciprocalPredBlockProb();
7418     }
7419     LLVM_FALLTHROUGH;
7420   case Instruction::Add:
7421   case Instruction::FAdd:
7422   case Instruction::Sub:
7423   case Instruction::FSub:
7424   case Instruction::Mul:
7425   case Instruction::FMul:
7426   case Instruction::FDiv:
7427   case Instruction::FRem:
7428   case Instruction::Shl:
7429   case Instruction::LShr:
7430   case Instruction::AShr:
7431   case Instruction::And:
7432   case Instruction::Or:
7433   case Instruction::Xor: {
7434     // Since we will replace the stride by 1 the multiplication should go away.
7435     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7436       return 0;
7437 
7438     // Detect reduction patterns
7439     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7440       return *RedCost;
7441 
7442     // Certain instructions can be cheaper to vectorize if they have a constant
7443     // second vector operand. One example of this are shifts on x86.
7444     Value *Op2 = I->getOperand(1);
7445     TargetTransformInfo::OperandValueProperties Op2VP;
7446     TargetTransformInfo::OperandValueKind Op2VK =
7447         TTI.getOperandInfo(Op2, Op2VP);
7448     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7449       Op2VK = TargetTransformInfo::OK_UniformValue;
7450 
7451     SmallVector<const Value *, 4> Operands(I->operand_values());
7452     return TTI.getArithmeticInstrCost(
7453         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7454         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7455   }
7456   case Instruction::FNeg: {
7457     return TTI.getArithmeticInstrCost(
7458         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7459         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7460         TargetTransformInfo::OP_None, I->getOperand(0), I);
7461   }
7462   case Instruction::Select: {
7463     SelectInst *SI = cast<SelectInst>(I);
7464     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7465     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7466 
7467     const Value *Op0, *Op1;
7468     using namespace llvm::PatternMatch;
7469     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7470                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7471       // select x, y, false --> x & y
7472       // select x, true, y --> x | y
7473       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7474       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7475       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7476       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7477       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7478               Op1->getType()->getScalarSizeInBits() == 1);
7479 
7480       SmallVector<const Value *, 2> Operands{Op0, Op1};
7481       return TTI.getArithmeticInstrCost(
7482           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7483           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7484     }
7485 
7486     Type *CondTy = SI->getCondition()->getType();
7487     if (!ScalarCond)
7488       CondTy = VectorType::get(CondTy, VF);
7489 
7490     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7491     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7492       Pred = Cmp->getPredicate();
7493     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7494                                   CostKind, I);
7495   }
7496   case Instruction::ICmp:
7497   case Instruction::FCmp: {
7498     Type *ValTy = I->getOperand(0)->getType();
7499     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7500     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7501       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7502     VectorTy = ToVectorTy(ValTy, VF);
7503     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7504                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7505                                   I);
7506   }
7507   case Instruction::Store:
7508   case Instruction::Load: {
7509     ElementCount Width = VF;
7510     if (Width.isVector()) {
7511       InstWidening Decision = getWideningDecision(I, Width);
7512       assert(Decision != CM_Unknown &&
7513              "CM decision should be taken at this point");
7514       if (Decision == CM_Scalarize)
7515         Width = ElementCount::getFixed(1);
7516     }
7517     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7518     return getMemoryInstructionCost(I, VF);
7519   }
7520   case Instruction::BitCast:
7521     if (I->getType()->isPointerTy())
7522       return 0;
7523     LLVM_FALLTHROUGH;
7524   case Instruction::ZExt:
7525   case Instruction::SExt:
7526   case Instruction::FPToUI:
7527   case Instruction::FPToSI:
7528   case Instruction::FPExt:
7529   case Instruction::PtrToInt:
7530   case Instruction::IntToPtr:
7531   case Instruction::SIToFP:
7532   case Instruction::UIToFP:
7533   case Instruction::Trunc:
7534   case Instruction::FPTrunc: {
7535     // Computes the CastContextHint from a Load/Store instruction.
7536     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7537       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7538              "Expected a load or a store!");
7539 
7540       if (VF.isScalar() || !TheLoop->contains(I))
7541         return TTI::CastContextHint::Normal;
7542 
7543       switch (getWideningDecision(I, VF)) {
7544       case LoopVectorizationCostModel::CM_GatherScatter:
7545         return TTI::CastContextHint::GatherScatter;
7546       case LoopVectorizationCostModel::CM_Interleave:
7547         return TTI::CastContextHint::Interleave;
7548       case LoopVectorizationCostModel::CM_Scalarize:
7549       case LoopVectorizationCostModel::CM_Widen:
7550         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7551                                         : TTI::CastContextHint::Normal;
7552       case LoopVectorizationCostModel::CM_Widen_Reverse:
7553         return TTI::CastContextHint::Reversed;
7554       case LoopVectorizationCostModel::CM_Unknown:
7555         llvm_unreachable("Instr did not go through cost modelling?");
7556       }
7557 
7558       llvm_unreachable("Unhandled case!");
7559     };
7560 
7561     unsigned Opcode = I->getOpcode();
7562     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7563     // For Trunc, the context is the only user, which must be a StoreInst.
7564     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7565       if (I->hasOneUse())
7566         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7567           CCH = ComputeCCH(Store);
7568     }
7569     // For Z/Sext, the context is the operand, which must be a LoadInst.
7570     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7571              Opcode == Instruction::FPExt) {
7572       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7573         CCH = ComputeCCH(Load);
7574     }
7575 
7576     // We optimize the truncation of induction variables having constant
7577     // integer steps. The cost of these truncations is the same as the scalar
7578     // operation.
7579     if (isOptimizableIVTruncate(I, VF)) {
7580       auto *Trunc = cast<TruncInst>(I);
7581       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7582                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7583     }
7584 
7585     // Detect reduction patterns
7586     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7587       return *RedCost;
7588 
7589     Type *SrcScalarTy = I->getOperand(0)->getType();
7590     Type *SrcVecTy =
7591         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7592     if (canTruncateToMinimalBitwidth(I, VF)) {
7593       // This cast is going to be shrunk. This may remove the cast or it might
7594       // turn it into slightly different cast. For example, if MinBW == 16,
7595       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7596       //
7597       // Calculate the modified src and dest types.
7598       Type *MinVecTy = VectorTy;
7599       if (Opcode == Instruction::Trunc) {
7600         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7601         VectorTy =
7602             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7603       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7604         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7605         VectorTy =
7606             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7607       }
7608     }
7609 
7610     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7611   }
7612   case Instruction::Call: {
7613     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7614       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7615         return *RedCost;
7616     bool NeedToScalarize;
7617     CallInst *CI = cast<CallInst>(I);
7618     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7619     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7620       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7621       return std::min(CallCost, IntrinsicCost);
7622     }
7623     return CallCost;
7624   }
7625   case Instruction::ExtractValue:
7626     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7627   case Instruction::Alloca:
7628     // We cannot easily widen alloca to a scalable alloca, as
7629     // the result would need to be a vector of pointers.
7630     if (VF.isScalable())
7631       return InstructionCost::getInvalid();
7632     LLVM_FALLTHROUGH;
7633   default:
7634     // This opcode is unknown. Assume that it is the same as 'mul'.
7635     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7636   } // end of switch.
7637 }
7638 
7639 char LoopVectorize::ID = 0;
7640 
7641 static const char lv_name[] = "Loop Vectorization";
7642 
7643 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7644 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7645 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7646 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7647 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7648 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7649 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7650 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7651 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7652 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7653 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7654 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7655 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7656 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7657 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7658 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7659 
7660 namespace llvm {
7661 
7662 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7663 
7664 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7665                               bool VectorizeOnlyWhenForced) {
7666   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7667 }
7668 
7669 } // end namespace llvm
7670 
7671 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7672   // Check if the pointer operand of a load or store instruction is
7673   // consecutive.
7674   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7675     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7676   return false;
7677 }
7678 
7679 void LoopVectorizationCostModel::collectValuesToIgnore() {
7680   // Ignore ephemeral values.
7681   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7682 
7683   // Ignore type-promoting instructions we identified during reduction
7684   // detection.
7685   for (auto &Reduction : Legal->getReductionVars()) {
7686     const RecurrenceDescriptor &RedDes = Reduction.second;
7687     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7688     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7689   }
7690   // Ignore type-casting instructions we identified during induction
7691   // detection.
7692   for (auto &Induction : Legal->getInductionVars()) {
7693     const InductionDescriptor &IndDes = Induction.second;
7694     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7695     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7696   }
7697 }
7698 
7699 void LoopVectorizationCostModel::collectInLoopReductions() {
7700   for (auto &Reduction : Legal->getReductionVars()) {
7701     PHINode *Phi = Reduction.first;
7702     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7703 
7704     // We don't collect reductions that are type promoted (yet).
7705     if (RdxDesc.getRecurrenceType() != Phi->getType())
7706       continue;
7707 
7708     // If the target would prefer this reduction to happen "in-loop", then we
7709     // want to record it as such.
7710     unsigned Opcode = RdxDesc.getOpcode();
7711     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7712         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7713                                    TargetTransformInfo::ReductionFlags()))
7714       continue;
7715 
7716     // Check that we can correctly put the reductions into the loop, by
7717     // finding the chain of operations that leads from the phi to the loop
7718     // exit value.
7719     SmallVector<Instruction *, 4> ReductionOperations =
7720         RdxDesc.getReductionOpChain(Phi, TheLoop);
7721     bool InLoop = !ReductionOperations.empty();
7722     if (InLoop) {
7723       InLoopReductionChains[Phi] = ReductionOperations;
7724       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7725       Instruction *LastChain = Phi;
7726       for (auto *I : ReductionOperations) {
7727         InLoopReductionImmediateChains[I] = LastChain;
7728         LastChain = I;
7729       }
7730     }
7731     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7732                       << " reduction for phi: " << *Phi << "\n");
7733   }
7734 }
7735 
7736 // TODO: we could return a pair of values that specify the max VF and
7737 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7738 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7739 // doesn't have a cost model that can choose which plan to execute if
7740 // more than one is generated.
7741 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7742                                  LoopVectorizationCostModel &CM) {
7743   unsigned WidestType;
7744   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7745   return WidestVectorRegBits / WidestType;
7746 }
7747 
7748 VectorizationFactor
7749 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7750   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7751   ElementCount VF = UserVF;
7752   // Outer loop handling: They may require CFG and instruction level
7753   // transformations before even evaluating whether vectorization is profitable.
7754   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7755   // the vectorization pipeline.
7756   if (!OrigLoop->isInnermost()) {
7757     // If the user doesn't provide a vectorization factor, determine a
7758     // reasonable one.
7759     if (UserVF.isZero()) {
7760       VF = ElementCount::getFixed(determineVPlanVF(
7761           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7762               .getFixedSize(),
7763           CM));
7764       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7765 
7766       // Make sure we have a VF > 1 for stress testing.
7767       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7768         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7769                           << "overriding computed VF.\n");
7770         VF = ElementCount::getFixed(4);
7771       }
7772     }
7773     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7774     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7775            "VF needs to be a power of two");
7776     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7777                       << "VF " << VF << " to build VPlans.\n");
7778     buildVPlans(VF, VF);
7779 
7780     // For VPlan build stress testing, we bail out after VPlan construction.
7781     if (VPlanBuildStressTest)
7782       return VectorizationFactor::Disabled();
7783 
7784     return {VF, 0 /*Cost*/};
7785   }
7786 
7787   LLVM_DEBUG(
7788       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7789                 "VPlan-native path.\n");
7790   return VectorizationFactor::Disabled();
7791 }
7792 
7793 Optional<VectorizationFactor>
7794 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7795   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7796   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7797   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7798     return None;
7799 
7800   // Invalidate interleave groups if all blocks of loop will be predicated.
7801   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7802       !useMaskedInterleavedAccesses(*TTI)) {
7803     LLVM_DEBUG(
7804         dbgs()
7805         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7806            "which requires masked-interleaved support.\n");
7807     if (CM.InterleaveInfo.invalidateGroups())
7808       // Invalidating interleave groups also requires invalidating all decisions
7809       // based on them, which includes widening decisions and uniform and scalar
7810       // values.
7811       CM.invalidateCostModelingDecisions();
7812   }
7813 
7814   ElementCount MaxUserVF =
7815       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7816   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7817   if (!UserVF.isZero() && UserVFIsLegal) {
7818     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7819            "VF needs to be a power of two");
7820     // Collect the instructions (and their associated costs) that will be more
7821     // profitable to scalarize.
7822     if (CM.selectUserVectorizationFactor(UserVF)) {
7823       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7824       CM.collectInLoopReductions();
7825       buildVPlansWithVPRecipes(UserVF, UserVF);
7826       LLVM_DEBUG(printPlans(dbgs()));
7827       return {{UserVF, 0}};
7828     } else
7829       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7830                               "InvalidCost", ORE, OrigLoop);
7831   }
7832 
7833   // Populate the set of Vectorization Factor Candidates.
7834   ElementCountSet VFCandidates;
7835   for (auto VF = ElementCount::getFixed(1);
7836        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7837     VFCandidates.insert(VF);
7838   for (auto VF = ElementCount::getScalable(1);
7839        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7840     VFCandidates.insert(VF);
7841 
7842   for (const auto &VF : VFCandidates) {
7843     // Collect Uniform and Scalar instructions after vectorization with VF.
7844     CM.collectUniformsAndScalars(VF);
7845 
7846     // Collect the instructions (and their associated costs) that will be more
7847     // profitable to scalarize.
7848     if (VF.isVector())
7849       CM.collectInstsToScalarize(VF);
7850   }
7851 
7852   CM.collectInLoopReductions();
7853   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7854   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7855 
7856   LLVM_DEBUG(printPlans(dbgs()));
7857   if (!MaxFactors.hasVector())
7858     return VectorizationFactor::Disabled();
7859 
7860   // Select the optimal vectorization factor.
7861   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7862 
7863   // Check if it is profitable to vectorize with runtime checks.
7864   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7865   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7866     bool PragmaThresholdReached =
7867         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7868     bool ThresholdReached =
7869         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7870     if ((ThresholdReached && !Hints.allowReordering()) ||
7871         PragmaThresholdReached) {
7872       ORE->emit([&]() {
7873         return OptimizationRemarkAnalysisAliasing(
7874                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7875                    OrigLoop->getHeader())
7876                << "loop not vectorized: cannot prove it is safe to reorder "
7877                   "memory operations";
7878       });
7879       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7880       Hints.emitRemarkWithHints();
7881       return VectorizationFactor::Disabled();
7882     }
7883   }
7884   return SelectedVF;
7885 }
7886 
7887 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7888   assert(count_if(VPlans,
7889                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7890              1 &&
7891          "Best VF has not a single VPlan.");
7892 
7893   for (const VPlanPtr &Plan : VPlans) {
7894     if (Plan->hasVF(VF))
7895       return *Plan.get();
7896   }
7897   llvm_unreachable("No plan found!");
7898 }
7899 
7900 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7901   SmallVector<Metadata *, 4> MDs;
7902   // Reserve first location for self reference to the LoopID metadata node.
7903   MDs.push_back(nullptr);
7904   bool IsUnrollMetadata = false;
7905   MDNode *LoopID = L->getLoopID();
7906   if (LoopID) {
7907     // First find existing loop unrolling disable metadata.
7908     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7909       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7910       if (MD) {
7911         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7912         IsUnrollMetadata =
7913             S && S->getString().startswith("llvm.loop.unroll.disable");
7914       }
7915       MDs.push_back(LoopID->getOperand(i));
7916     }
7917   }
7918 
7919   if (!IsUnrollMetadata) {
7920     // Add runtime unroll disable metadata.
7921     LLVMContext &Context = L->getHeader()->getContext();
7922     SmallVector<Metadata *, 1> DisableOperands;
7923     DisableOperands.push_back(
7924         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7925     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7926     MDs.push_back(DisableNode);
7927     MDNode *NewLoopID = MDNode::get(Context, MDs);
7928     // Set operand 0 to refer to the loop id itself.
7929     NewLoopID->replaceOperandWith(0, NewLoopID);
7930     L->setLoopID(NewLoopID);
7931   }
7932 }
7933 
7934 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7935                                            VPlan &BestVPlan,
7936                                            InnerLoopVectorizer &ILV,
7937                                            DominatorTree *DT) {
7938   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7939                     << '\n');
7940 
7941   // Perform the actual loop transformation.
7942 
7943   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7944   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7945   Value *CanonicalIVStartValue;
7946   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7947       ILV.createVectorizedLoopSkeleton();
7948   ILV.collectPoisonGeneratingRecipes(State);
7949 
7950   ILV.printDebugTracesAtStart();
7951 
7952   //===------------------------------------------------===//
7953   //
7954   // Notice: any optimization or new instruction that go
7955   // into the code below should also be implemented in
7956   // the cost-model.
7957   //
7958   //===------------------------------------------------===//
7959 
7960   // 2. Copy and widen instructions from the old loop into the new loop.
7961   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7962                              ILV.getOrCreateVectorTripCount(nullptr),
7963                              CanonicalIVStartValue, State);
7964   BestVPlan.execute(&State);
7965 
7966   // Keep all loop hints from the original loop on the vector loop (we'll
7967   // replace the vectorizer-specific hints below).
7968   MDNode *OrigLoopID = OrigLoop->getLoopID();
7969 
7970   Optional<MDNode *> VectorizedLoopID =
7971       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7972                                       LLVMLoopVectorizeFollowupVectorized});
7973 
7974   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7975   if (VectorizedLoopID.hasValue())
7976     L->setLoopID(VectorizedLoopID.getValue());
7977   else {
7978     // Keep all loop hints from the original loop on the vector loop (we'll
7979     // replace the vectorizer-specific hints below).
7980     if (MDNode *LID = OrigLoop->getLoopID())
7981       L->setLoopID(LID);
7982 
7983     LoopVectorizeHints Hints(L, true, *ORE);
7984     Hints.setAlreadyVectorized();
7985   }
7986   // Disable runtime unrolling when vectorizing the epilogue loop.
7987   if (CanonicalIVStartValue)
7988     AddRuntimeUnrollDisableMetaData(L);
7989 
7990   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7991   //    predication, updating analyses.
7992   ILV.fixVectorizedLoop(State);
7993 
7994   ILV.printDebugTracesAtEnd();
7995 }
7996 
7997 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7998 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7999   for (const auto &Plan : VPlans)
8000     if (PrintVPlansInDotFormat)
8001       Plan->printDOT(O);
8002     else
8003       Plan->print(O);
8004 }
8005 #endif
8006 
8007 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8008     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8009 
8010   // We create new control-flow for the vectorized loop, so the original exit
8011   // conditions will be dead after vectorization if it's only used by the
8012   // terminator
8013   SmallVector<BasicBlock*> ExitingBlocks;
8014   OrigLoop->getExitingBlocks(ExitingBlocks);
8015   for (auto *BB : ExitingBlocks) {
8016     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8017     if (!Cmp || !Cmp->hasOneUse())
8018       continue;
8019 
8020     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8021     if (!DeadInstructions.insert(Cmp).second)
8022       continue;
8023 
8024     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8025     // TODO: can recurse through operands in general
8026     for (Value *Op : Cmp->operands()) {
8027       if (isa<TruncInst>(Op) && Op->hasOneUse())
8028           DeadInstructions.insert(cast<Instruction>(Op));
8029     }
8030   }
8031 
8032   // We create new "steps" for induction variable updates to which the original
8033   // induction variables map. An original update instruction will be dead if
8034   // all its users except the induction variable are dead.
8035   auto *Latch = OrigLoop->getLoopLatch();
8036   for (auto &Induction : Legal->getInductionVars()) {
8037     PHINode *Ind = Induction.first;
8038     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8039 
8040     // If the tail is to be folded by masking, the primary induction variable,
8041     // if exists, isn't dead: it will be used for masking. Don't kill it.
8042     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8043       continue;
8044 
8045     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8046           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8047         }))
8048       DeadInstructions.insert(IndUpdate);
8049   }
8050 }
8051 
8052 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8053 
8054 //===--------------------------------------------------------------------===//
8055 // EpilogueVectorizerMainLoop
8056 //===--------------------------------------------------------------------===//
8057 
8058 /// This function is partially responsible for generating the control flow
8059 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8060 std::pair<BasicBlock *, Value *>
8061 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8062   MDNode *OrigLoopID = OrigLoop->getLoopID();
8063   Loop *Lp = createVectorLoopSkeleton("");
8064 
8065   // Generate the code to check the minimum iteration count of the vector
8066   // epilogue (see below).
8067   EPI.EpilogueIterationCountCheck =
8068       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8069   EPI.EpilogueIterationCountCheck->setName("iter.check");
8070 
8071   // Generate the code to check any assumptions that we've made for SCEV
8072   // expressions.
8073   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8074 
8075   // Generate the code that checks at runtime if arrays overlap. We put the
8076   // checks into a separate block to make the more common case of few elements
8077   // faster.
8078   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8079 
8080   // Generate the iteration count check for the main loop, *after* the check
8081   // for the epilogue loop, so that the path-length is shorter for the case
8082   // that goes directly through the vector epilogue. The longer-path length for
8083   // the main loop is compensated for, by the gain from vectorizing the larger
8084   // trip count. Note: the branch will get updated later on when we vectorize
8085   // the epilogue.
8086   EPI.MainLoopIterationCountCheck =
8087       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8088 
8089   // Generate the induction variable.
8090   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8091   EPI.VectorTripCount = CountRoundDown;
8092   createHeaderBranch(Lp);
8093 
8094   // Skip induction resume value creation here because they will be created in
8095   // the second pass. If we created them here, they wouldn't be used anyway,
8096   // because the vplan in the second pass still contains the inductions from the
8097   // original loop.
8098 
8099   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
8100 }
8101 
8102 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8103   LLVM_DEBUG({
8104     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8105            << "Main Loop VF:" << EPI.MainLoopVF
8106            << ", Main Loop UF:" << EPI.MainLoopUF
8107            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8108            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8109   });
8110 }
8111 
8112 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8113   DEBUG_WITH_TYPE(VerboseDebug, {
8114     dbgs() << "intermediate fn:\n"
8115            << *OrigLoop->getHeader()->getParent() << "\n";
8116   });
8117 }
8118 
8119 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8120     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8121   assert(L && "Expected valid Loop.");
8122   assert(Bypass && "Expected valid bypass basic block.");
8123   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8124   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8125   Value *Count = getOrCreateTripCount(L);
8126   // Reuse existing vector loop preheader for TC checks.
8127   // Note that new preheader block is generated for vector loop.
8128   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8129   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8130 
8131   // Generate code to check if the loop's trip count is less than VF * UF of the
8132   // main vector loop.
8133   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8134       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8135 
8136   Value *CheckMinIters = Builder.CreateICmp(
8137       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8138       "min.iters.check");
8139 
8140   if (!ForEpilogue)
8141     TCCheckBlock->setName("vector.main.loop.iter.check");
8142 
8143   // Create new preheader for vector loop.
8144   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8145                                    DT, LI, nullptr, "vector.ph");
8146 
8147   if (ForEpilogue) {
8148     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8149                                  DT->getNode(Bypass)->getIDom()) &&
8150            "TC check is expected to dominate Bypass");
8151 
8152     // Update dominator for Bypass & LoopExit.
8153     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8154     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8155       // For loops with multiple exits, there's no edge from the middle block
8156       // to exit blocks (as the epilogue must run) and thus no need to update
8157       // the immediate dominator of the exit blocks.
8158       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8159 
8160     LoopBypassBlocks.push_back(TCCheckBlock);
8161 
8162     // Save the trip count so we don't have to regenerate it in the
8163     // vec.epilog.iter.check. This is safe to do because the trip count
8164     // generated here dominates the vector epilog iter check.
8165     EPI.TripCount = Count;
8166   }
8167 
8168   ReplaceInstWithInst(
8169       TCCheckBlock->getTerminator(),
8170       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8171 
8172   return TCCheckBlock;
8173 }
8174 
8175 //===--------------------------------------------------------------------===//
8176 // EpilogueVectorizerEpilogueLoop
8177 //===--------------------------------------------------------------------===//
8178 
8179 /// This function is partially responsible for generating the control flow
8180 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8181 std::pair<BasicBlock *, Value *>
8182 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8183   MDNode *OrigLoopID = OrigLoop->getLoopID();
8184   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8185 
8186   // Now, compare the remaining count and if there aren't enough iterations to
8187   // execute the vectorized epilogue skip to the scalar part.
8188   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8189   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8190   LoopVectorPreHeader =
8191       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8192                  LI, nullptr, "vec.epilog.ph");
8193   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8194                                           VecEpilogueIterationCountCheck);
8195 
8196   // Adjust the control flow taking the state info from the main loop
8197   // vectorization into account.
8198   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8199          "expected this to be saved from the previous pass.");
8200   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8201       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8202 
8203   DT->changeImmediateDominator(LoopVectorPreHeader,
8204                                EPI.MainLoopIterationCountCheck);
8205 
8206   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8207       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8208 
8209   if (EPI.SCEVSafetyCheck)
8210     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8211         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8212   if (EPI.MemSafetyCheck)
8213     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8214         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8215 
8216   DT->changeImmediateDominator(
8217       VecEpilogueIterationCountCheck,
8218       VecEpilogueIterationCountCheck->getSinglePredecessor());
8219 
8220   DT->changeImmediateDominator(LoopScalarPreHeader,
8221                                EPI.EpilogueIterationCountCheck);
8222   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8223     // If there is an epilogue which must run, there's no edge from the
8224     // middle block to exit blocks  and thus no need to update the immediate
8225     // dominator of the exit blocks.
8226     DT->changeImmediateDominator(LoopExitBlock,
8227                                  EPI.EpilogueIterationCountCheck);
8228 
8229   // Keep track of bypass blocks, as they feed start values to the induction
8230   // phis in the scalar loop preheader.
8231   if (EPI.SCEVSafetyCheck)
8232     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8233   if (EPI.MemSafetyCheck)
8234     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8235   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8236 
8237   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
8238   // merge control-flow from the latch block and the middle block. Update the
8239   // incoming values here and move the Phi into the preheader.
8240   SmallVector<PHINode *, 4> PhisInBlock;
8241   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
8242     PhisInBlock.push_back(&Phi);
8243 
8244   for (PHINode *Phi : PhisInBlock) {
8245     Phi->replaceIncomingBlockWith(
8246         VecEpilogueIterationCountCheck->getSinglePredecessor(),
8247         VecEpilogueIterationCountCheck);
8248     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
8249     if (EPI.SCEVSafetyCheck)
8250       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
8251     if (EPI.MemSafetyCheck)
8252       Phi->removeIncomingValue(EPI.MemSafetyCheck);
8253     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
8254   }
8255 
8256   // Generate a resume induction for the vector epilogue and put it in the
8257   // vector epilogue preheader
8258   Type *IdxTy = Legal->getWidestInductionType();
8259   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8260                                          LoopVectorPreHeader->getFirstNonPHI());
8261   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8262   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8263                            EPI.MainLoopIterationCountCheck);
8264 
8265   // Generate the induction variable.
8266   createHeaderBranch(Lp);
8267 
8268   // Generate induction resume values. These variables save the new starting
8269   // indexes for the scalar loop. They are used to test if there are any tail
8270   // iterations left once the vector loop has completed.
8271   // Note that when the vectorized epilogue is skipped due to iteration count
8272   // check, then the resume value for the induction variable comes from
8273   // the trip count of the main vector loop, hence passing the AdditionalBypass
8274   // argument.
8275   createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck,
8276                                    EPI.VectorTripCount} /* AdditionalBypass */);
8277 
8278   return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal};
8279 }
8280 
8281 BasicBlock *
8282 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8283     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8284 
8285   assert(EPI.TripCount &&
8286          "Expected trip count to have been safed in the first pass.");
8287   assert(
8288       (!isa<Instruction>(EPI.TripCount) ||
8289        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8290       "saved trip count does not dominate insertion point.");
8291   Value *TC = EPI.TripCount;
8292   IRBuilder<> Builder(Insert->getTerminator());
8293   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8294 
8295   // Generate code to check if the loop's trip count is less than VF * UF of the
8296   // vector epilogue loop.
8297   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8298       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8299 
8300   Value *CheckMinIters =
8301       Builder.CreateICmp(P, Count,
8302                          createStepForVF(Builder, Count->getType(),
8303                                          EPI.EpilogueVF, EPI.EpilogueUF),
8304                          "min.epilog.iters.check");
8305 
8306   ReplaceInstWithInst(
8307       Insert->getTerminator(),
8308       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8309 
8310   LoopBypassBlocks.push_back(Insert);
8311   return Insert;
8312 }
8313 
8314 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8315   LLVM_DEBUG({
8316     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8317            << "Epilogue Loop VF:" << EPI.EpilogueVF
8318            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8319   });
8320 }
8321 
8322 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8323   DEBUG_WITH_TYPE(VerboseDebug, {
8324     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8325   });
8326 }
8327 
8328 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8329     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8330   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8331   bool PredicateAtRangeStart = Predicate(Range.Start);
8332 
8333   for (ElementCount TmpVF = Range.Start * 2;
8334        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8335     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8336       Range.End = TmpVF;
8337       break;
8338     }
8339 
8340   return PredicateAtRangeStart;
8341 }
8342 
8343 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8344 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8345 /// of VF's starting at a given VF and extending it as much as possible. Each
8346 /// vectorization decision can potentially shorten this sub-range during
8347 /// buildVPlan().
8348 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8349                                            ElementCount MaxVF) {
8350   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8351   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8352     VFRange SubRange = {VF, MaxVFPlusOne};
8353     VPlans.push_back(buildVPlan(SubRange));
8354     VF = SubRange.End;
8355   }
8356 }
8357 
8358 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8359                                          VPlanPtr &Plan) {
8360   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8361 
8362   // Look for cached value.
8363   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8364   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8365   if (ECEntryIt != EdgeMaskCache.end())
8366     return ECEntryIt->second;
8367 
8368   VPValue *SrcMask = createBlockInMask(Src, Plan);
8369 
8370   // The terminator has to be a branch inst!
8371   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8372   assert(BI && "Unexpected terminator found");
8373 
8374   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8375     return EdgeMaskCache[Edge] = SrcMask;
8376 
8377   // If source is an exiting block, we know the exit edge is dynamically dead
8378   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8379   // adding uses of an otherwise potentially dead instruction.
8380   if (OrigLoop->isLoopExiting(Src))
8381     return EdgeMaskCache[Edge] = SrcMask;
8382 
8383   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8384   assert(EdgeMask && "No Edge Mask found for condition");
8385 
8386   if (BI->getSuccessor(0) != Dst)
8387     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8388 
8389   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8390     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8391     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8392     // The select version does not introduce new UB if SrcMask is false and
8393     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8394     VPValue *False = Plan->getOrAddVPValue(
8395         ConstantInt::getFalse(BI->getCondition()->getType()));
8396     EdgeMask =
8397         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8398   }
8399 
8400   return EdgeMaskCache[Edge] = EdgeMask;
8401 }
8402 
8403 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8404   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8405 
8406   // Look for cached value.
8407   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8408   if (BCEntryIt != BlockMaskCache.end())
8409     return BCEntryIt->second;
8410 
8411   // All-one mask is modelled as no-mask following the convention for masked
8412   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8413   VPValue *BlockMask = nullptr;
8414 
8415   if (OrigLoop->getHeader() == BB) {
8416     if (!CM.blockNeedsPredicationForAnyReason(BB))
8417       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8418 
8419     // Introduce the early-exit compare IV <= BTC to form header block mask.
8420     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8421     // constructing the desired canonical IV in the header block as its first
8422     // non-phi instructions.
8423     assert(CM.foldTailByMasking() && "must fold the tail");
8424     VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock();
8425     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8426     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8427     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8428 
8429     VPBuilder::InsertPointGuard Guard(Builder);
8430     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8431     if (CM.TTI.emitGetActiveLaneMask()) {
8432       VPValue *TC = Plan->getOrCreateTripCount();
8433       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8434     } else {
8435       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8436       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8437     }
8438     return BlockMaskCache[BB] = BlockMask;
8439   }
8440 
8441   // This is the block mask. We OR all incoming edges.
8442   for (auto *Predecessor : predecessors(BB)) {
8443     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8444     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8445       return BlockMaskCache[BB] = EdgeMask;
8446 
8447     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8448       BlockMask = EdgeMask;
8449       continue;
8450     }
8451 
8452     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8453   }
8454 
8455   return BlockMaskCache[BB] = BlockMask;
8456 }
8457 
8458 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8459                                                 ArrayRef<VPValue *> Operands,
8460                                                 VFRange &Range,
8461                                                 VPlanPtr &Plan) {
8462   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8463          "Must be called with either a load or store");
8464 
8465   auto willWiden = [&](ElementCount VF) -> bool {
8466     if (VF.isScalar())
8467       return false;
8468     LoopVectorizationCostModel::InstWidening Decision =
8469         CM.getWideningDecision(I, VF);
8470     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8471            "CM decision should be taken at this point.");
8472     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8473       return true;
8474     if (CM.isScalarAfterVectorization(I, VF) ||
8475         CM.isProfitableToScalarize(I, VF))
8476       return false;
8477     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8478   };
8479 
8480   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8481     return nullptr;
8482 
8483   VPValue *Mask = nullptr;
8484   if (Legal->isMaskRequired(I))
8485     Mask = createBlockInMask(I->getParent(), Plan);
8486 
8487   // Determine if the pointer operand of the access is either consecutive or
8488   // reverse consecutive.
8489   LoopVectorizationCostModel::InstWidening Decision =
8490       CM.getWideningDecision(I, Range.Start);
8491   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8492   bool Consecutive =
8493       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8494 
8495   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8496     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8497                                               Consecutive, Reverse);
8498 
8499   StoreInst *Store = cast<StoreInst>(I);
8500   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8501                                             Mask, Consecutive, Reverse);
8502 }
8503 
8504 static VPWidenIntOrFpInductionRecipe *
8505 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8506                            VPValue *Start, const InductionDescriptor &IndDesc,
8507                            LoopVectorizationCostModel &CM, Loop &OrigLoop,
8508                            VFRange &Range) {
8509   // Returns true if an instruction \p I should be scalarized instead of
8510   // vectorized for the chosen vectorization factor.
8511   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8512     return CM.isScalarAfterVectorization(I, VF) ||
8513            CM.isProfitableToScalarize(I, VF);
8514   };
8515 
8516   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8517       [&](ElementCount VF) {
8518         // Returns true if we should generate a scalar version of \p IV.
8519         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8520           return true;
8521         auto isScalarInst = [&](User *U) -> bool {
8522           auto *I = cast<Instruction>(U);
8523           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8524         };
8525         return any_of(PhiOrTrunc->users(), isScalarInst);
8526       },
8527       Range);
8528   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8529       [&](ElementCount VF) {
8530         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8531       },
8532       Range);
8533   assert(IndDesc.getStartValue() ==
8534          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8535   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8536     return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI,
8537                                              NeedsScalarIV, !NeedsScalarIVOnly);
8538   }
8539   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8540   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8541                                            !NeedsScalarIVOnly);
8542 }
8543 
8544 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
8545     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8546 
8547   // Check if this is an integer or fp induction. If so, build the recipe that
8548   // produces its scalar and vector values.
8549   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8550     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop,
8551                                       Range);
8552 
8553   return nullptr;
8554 }
8555 
8556 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8557     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8558     VPlan &Plan) const {
8559   // Optimize the special case where the source is a constant integer
8560   // induction variable. Notice that we can only optimize the 'trunc' case
8561   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8562   // (c) other casts depend on pointer size.
8563 
8564   // Determine whether \p K is a truncation based on an induction variable that
8565   // can be optimized.
8566   auto isOptimizableIVTruncate =
8567       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8568     return [=](ElementCount VF) -> bool {
8569       return CM.isOptimizableIVTruncate(K, VF);
8570     };
8571   };
8572 
8573   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8574           isOptimizableIVTruncate(I), Range)) {
8575 
8576     auto *Phi = cast<PHINode>(I->getOperand(0));
8577     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8578     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8579     return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range);
8580   }
8581   return nullptr;
8582 }
8583 
8584 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8585                                                 ArrayRef<VPValue *> Operands,
8586                                                 VPlanPtr &Plan) {
8587   // If all incoming values are equal, the incoming VPValue can be used directly
8588   // instead of creating a new VPBlendRecipe.
8589   VPValue *FirstIncoming = Operands[0];
8590   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8591         return FirstIncoming == Inc;
8592       })) {
8593     return Operands[0];
8594   }
8595 
8596   unsigned NumIncoming = Phi->getNumIncomingValues();
8597   // For in-loop reductions, we do not need to create an additional select.
8598   VPValue *InLoopVal = nullptr;
8599   for (unsigned In = 0; In < NumIncoming; In++) {
8600     PHINode *PhiOp =
8601         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8602     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8603       assert(!InLoopVal && "Found more than one in-loop reduction!");
8604       InLoopVal = Operands[In];
8605     }
8606   }
8607 
8608   assert((!InLoopVal || NumIncoming == 2) &&
8609          "Found an in-loop reduction for PHI with unexpected number of "
8610          "incoming values");
8611   if (InLoopVal)
8612     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8613 
8614   // We know that all PHIs in non-header blocks are converted into selects, so
8615   // we don't have to worry about the insertion order and we can just use the
8616   // builder. At this point we generate the predication tree. There may be
8617   // duplications since this is a simple recursive scan, but future
8618   // optimizations will clean it up.
8619   SmallVector<VPValue *, 2> OperandsWithMask;
8620 
8621   for (unsigned In = 0; In < NumIncoming; In++) {
8622     VPValue *EdgeMask =
8623       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8624     assert((EdgeMask || NumIncoming == 1) &&
8625            "Multiple predecessors with one having a full mask");
8626     OperandsWithMask.push_back(Operands[In]);
8627     if (EdgeMask)
8628       OperandsWithMask.push_back(EdgeMask);
8629   }
8630   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8631 }
8632 
8633 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8634                                                    ArrayRef<VPValue *> Operands,
8635                                                    VFRange &Range) const {
8636 
8637   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8638       [this, CI](ElementCount VF) {
8639         return CM.isScalarWithPredication(CI, VF);
8640       },
8641       Range);
8642 
8643   if (IsPredicated)
8644     return nullptr;
8645 
8646   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8647   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8648              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8649              ID == Intrinsic::pseudoprobe ||
8650              ID == Intrinsic::experimental_noalias_scope_decl))
8651     return nullptr;
8652 
8653   auto willWiden = [&](ElementCount VF) -> bool {
8654     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8655     // The following case may be scalarized depending on the VF.
8656     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8657     // version of the instruction.
8658     // Is it beneficial to perform intrinsic call compared to lib call?
8659     bool NeedToScalarize = false;
8660     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8661     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8662     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8663     return UseVectorIntrinsic || !NeedToScalarize;
8664   };
8665 
8666   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8667     return nullptr;
8668 
8669   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8670   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8671 }
8672 
8673 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8674   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8675          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8676   // Instruction should be widened, unless it is scalar after vectorization,
8677   // scalarization is profitable or it is predicated.
8678   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8679     return CM.isScalarAfterVectorization(I, VF) ||
8680            CM.isProfitableToScalarize(I, VF) ||
8681            CM.isScalarWithPredication(I, VF);
8682   };
8683   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8684                                                              Range);
8685 }
8686 
8687 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8688                                            ArrayRef<VPValue *> Operands) const {
8689   auto IsVectorizableOpcode = [](unsigned Opcode) {
8690     switch (Opcode) {
8691     case Instruction::Add:
8692     case Instruction::And:
8693     case Instruction::AShr:
8694     case Instruction::BitCast:
8695     case Instruction::FAdd:
8696     case Instruction::FCmp:
8697     case Instruction::FDiv:
8698     case Instruction::FMul:
8699     case Instruction::FNeg:
8700     case Instruction::FPExt:
8701     case Instruction::FPToSI:
8702     case Instruction::FPToUI:
8703     case Instruction::FPTrunc:
8704     case Instruction::FRem:
8705     case Instruction::FSub:
8706     case Instruction::ICmp:
8707     case Instruction::IntToPtr:
8708     case Instruction::LShr:
8709     case Instruction::Mul:
8710     case Instruction::Or:
8711     case Instruction::PtrToInt:
8712     case Instruction::SDiv:
8713     case Instruction::Select:
8714     case Instruction::SExt:
8715     case Instruction::Shl:
8716     case Instruction::SIToFP:
8717     case Instruction::SRem:
8718     case Instruction::Sub:
8719     case Instruction::Trunc:
8720     case Instruction::UDiv:
8721     case Instruction::UIToFP:
8722     case Instruction::URem:
8723     case Instruction::Xor:
8724     case Instruction::ZExt:
8725       return true;
8726     }
8727     return false;
8728   };
8729 
8730   if (!IsVectorizableOpcode(I->getOpcode()))
8731     return nullptr;
8732 
8733   // Success: widen this instruction.
8734   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8735 }
8736 
8737 void VPRecipeBuilder::fixHeaderPhis() {
8738   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8739   for (VPHeaderPHIRecipe *R : PhisToFix) {
8740     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8741     VPRecipeBase *IncR =
8742         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8743     R->addOperand(IncR->getVPSingleValue());
8744   }
8745 }
8746 
8747 VPBasicBlock *VPRecipeBuilder::handleReplication(
8748     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8749     VPlanPtr &Plan) {
8750   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8751       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8752       Range);
8753 
8754   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8755       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8756       Range);
8757 
8758   // Even if the instruction is not marked as uniform, there are certain
8759   // intrinsic calls that can be effectively treated as such, so we check for
8760   // them here. Conservatively, we only do this for scalable vectors, since
8761   // for fixed-width VFs we can always fall back on full scalarization.
8762   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8763     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8764     case Intrinsic::assume:
8765     case Intrinsic::lifetime_start:
8766     case Intrinsic::lifetime_end:
8767       // For scalable vectors if one of the operands is variant then we still
8768       // want to mark as uniform, which will generate one instruction for just
8769       // the first lane of the vector. We can't scalarize the call in the same
8770       // way as for fixed-width vectors because we don't know how many lanes
8771       // there are.
8772       //
8773       // The reasons for doing it this way for scalable vectors are:
8774       //   1. For the assume intrinsic generating the instruction for the first
8775       //      lane is still be better than not generating any at all. For
8776       //      example, the input may be a splat across all lanes.
8777       //   2. For the lifetime start/end intrinsics the pointer operand only
8778       //      does anything useful when the input comes from a stack object,
8779       //      which suggests it should always be uniform. For non-stack objects
8780       //      the effect is to poison the object, which still allows us to
8781       //      remove the call.
8782       IsUniform = true;
8783       break;
8784     default:
8785       break;
8786     }
8787   }
8788 
8789   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8790                                        IsUniform, IsPredicated);
8791   setRecipe(I, Recipe);
8792   Plan->addVPValue(I, Recipe);
8793 
8794   // Find if I uses a predicated instruction. If so, it will use its scalar
8795   // value. Avoid hoisting the insert-element which packs the scalar value into
8796   // a vector value, as that happens iff all users use the vector value.
8797   for (VPValue *Op : Recipe->operands()) {
8798     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8799     if (!PredR)
8800       continue;
8801     auto *RepR =
8802         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8803     assert(RepR->isPredicated() &&
8804            "expected Replicate recipe to be predicated");
8805     RepR->setAlsoPack(false);
8806   }
8807 
8808   // Finalize the recipe for Instr, first if it is not predicated.
8809   if (!IsPredicated) {
8810     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8811     VPBB->appendRecipe(Recipe);
8812     return VPBB;
8813   }
8814   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8815 
8816   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8817   assert(SingleSucc && "VPBB must have a single successor when handling "
8818                        "predicated replication.");
8819   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8820   // Record predicated instructions for above packing optimizations.
8821   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8822   VPBlockUtils::insertBlockAfter(Region, VPBB);
8823   auto *RegSucc = new VPBasicBlock();
8824   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8825   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8826   return RegSucc;
8827 }
8828 
8829 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8830                                                       VPRecipeBase *PredRecipe,
8831                                                       VPlanPtr &Plan) {
8832   // Instructions marked for predication are replicated and placed under an
8833   // if-then construct to prevent side-effects.
8834 
8835   // Generate recipes to compute the block mask for this region.
8836   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8837 
8838   // Build the triangular if-then region.
8839   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8840   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8841   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8842   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8843   auto *PHIRecipe = Instr->getType()->isVoidTy()
8844                         ? nullptr
8845                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8846   if (PHIRecipe) {
8847     Plan->removeVPValueFor(Instr);
8848     Plan->addVPValue(Instr, PHIRecipe);
8849   }
8850   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8851   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8852   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8853 
8854   // Note: first set Entry as region entry and then connect successors starting
8855   // from it in order, to propagate the "parent" of each VPBasicBlock.
8856   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8857   VPBlockUtils::connectBlocks(Pred, Exit);
8858 
8859   return Region;
8860 }
8861 
8862 VPRecipeOrVPValueTy
8863 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8864                                         ArrayRef<VPValue *> Operands,
8865                                         VFRange &Range, VPlanPtr &Plan) {
8866   // First, check for specific widening recipes that deal with calls, memory
8867   // operations, inductions and Phi nodes.
8868   if (auto *CI = dyn_cast<CallInst>(Instr))
8869     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8870 
8871   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8872     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8873 
8874   VPRecipeBase *Recipe;
8875   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8876     if (Phi->getParent() != OrigLoop->getHeader())
8877       return tryToBlend(Phi, Operands, Plan);
8878     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8879       return toVPRecipeResult(Recipe);
8880 
8881     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8882     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8883       VPValue *StartV = Operands[0];
8884       if (Legal->isReductionVariable(Phi)) {
8885         const RecurrenceDescriptor &RdxDesc =
8886             Legal->getReductionVars().find(Phi)->second;
8887         assert(RdxDesc.getRecurrenceStartValue() ==
8888                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8889         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8890                                              CM.isInLoopReduction(Phi),
8891                                              CM.useOrderedReductions(RdxDesc));
8892       } else {
8893         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8894       }
8895 
8896       // Record the incoming value from the backedge, so we can add the incoming
8897       // value from the backedge after all recipes have been created.
8898       recordRecipeOf(cast<Instruction>(
8899           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8900       PhisToFix.push_back(PhiRecipe);
8901     } else {
8902       // TODO: record backedge value for remaining pointer induction phis.
8903       assert(Phi->getType()->isPointerTy() &&
8904              "only pointer phis should be handled here");
8905       assert(Legal->getInductionVars().count(Phi) &&
8906              "Not an induction variable");
8907       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8908       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8909       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8910     }
8911 
8912     return toVPRecipeResult(PhiRecipe);
8913   }
8914 
8915   if (isa<TruncInst>(Instr) &&
8916       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8917                                                Range, *Plan)))
8918     return toVPRecipeResult(Recipe);
8919 
8920   if (!shouldWiden(Instr, Range))
8921     return nullptr;
8922 
8923   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8924     return toVPRecipeResult(new VPWidenGEPRecipe(
8925         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8926 
8927   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8928     bool InvariantCond =
8929         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8930     return toVPRecipeResult(new VPWidenSelectRecipe(
8931         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8932   }
8933 
8934   return toVPRecipeResult(tryToWiden(Instr, Operands));
8935 }
8936 
8937 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8938                                                         ElementCount MaxVF) {
8939   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8940 
8941   // Collect instructions from the original loop that will become trivially dead
8942   // in the vectorized loop. We don't need to vectorize these instructions. For
8943   // example, original induction update instructions can become dead because we
8944   // separately emit induction "steps" when generating code for the new loop.
8945   // Similarly, we create a new latch condition when setting up the structure
8946   // of the new loop, so the old one can become dead.
8947   SmallPtrSet<Instruction *, 4> DeadInstructions;
8948   collectTriviallyDeadInstructions(DeadInstructions);
8949 
8950   // Add assume instructions we need to drop to DeadInstructions, to prevent
8951   // them from being added to the VPlan.
8952   // TODO: We only need to drop assumes in blocks that get flattend. If the
8953   // control flow is preserved, we should keep them.
8954   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8955   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8956 
8957   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8958   // Dead instructions do not need sinking. Remove them from SinkAfter.
8959   for (Instruction *I : DeadInstructions)
8960     SinkAfter.erase(I);
8961 
8962   // Cannot sink instructions after dead instructions (there won't be any
8963   // recipes for them). Instead, find the first non-dead previous instruction.
8964   for (auto &P : Legal->getSinkAfter()) {
8965     Instruction *SinkTarget = P.second;
8966     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8967     (void)FirstInst;
8968     while (DeadInstructions.contains(SinkTarget)) {
8969       assert(
8970           SinkTarget != FirstInst &&
8971           "Must find a live instruction (at least the one feeding the "
8972           "first-order recurrence PHI) before reaching beginning of the block");
8973       SinkTarget = SinkTarget->getPrevNode();
8974       assert(SinkTarget != P.first &&
8975              "sink source equals target, no sinking required");
8976     }
8977     P.second = SinkTarget;
8978   }
8979 
8980   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8981   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8982     VFRange SubRange = {VF, MaxVFPlusOne};
8983     VPlans.push_back(
8984         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8985     VF = SubRange.End;
8986   }
8987 }
8988 
8989 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8990 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8991 // BranchOnCount VPInstruction to the latch.
8992 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8993                                   bool HasNUW, bool IsVPlanNative) {
8994   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8995   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8996 
8997   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8998   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8999   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
9000   if (IsVPlanNative)
9001     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
9002   Header->insert(CanonicalIVPHI, Header->begin());
9003 
9004   auto *CanonicalIVIncrement =
9005       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
9006                                : VPInstruction::CanonicalIVIncrement,
9007                         {CanonicalIVPHI}, DL);
9008   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
9009 
9010   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
9011   if (IsVPlanNative) {
9012     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
9013     EB->setCondBit(nullptr);
9014   }
9015   EB->appendRecipe(CanonicalIVIncrement);
9016 
9017   auto *BranchOnCount =
9018       new VPInstruction(VPInstruction::BranchOnCount,
9019                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
9020   EB->appendRecipe(BranchOnCount);
9021 }
9022 
9023 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9024     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9025     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9026 
9027   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9028 
9029   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9030 
9031   // ---------------------------------------------------------------------------
9032   // Pre-construction: record ingredients whose recipes we'll need to further
9033   // process after constructing the initial VPlan.
9034   // ---------------------------------------------------------------------------
9035 
9036   // Mark instructions we'll need to sink later and their targets as
9037   // ingredients whose recipe we'll need to record.
9038   for (auto &Entry : SinkAfter) {
9039     RecipeBuilder.recordRecipeOf(Entry.first);
9040     RecipeBuilder.recordRecipeOf(Entry.second);
9041   }
9042   for (auto &Reduction : CM.getInLoopReductionChains()) {
9043     PHINode *Phi = Reduction.first;
9044     RecurKind Kind =
9045         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
9046     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9047 
9048     RecipeBuilder.recordRecipeOf(Phi);
9049     for (auto &R : ReductionOperations) {
9050       RecipeBuilder.recordRecipeOf(R);
9051       // For min/max reducitons, where we have a pair of icmp/select, we also
9052       // need to record the ICmp recipe, so it can be removed later.
9053       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9054              "Only min/max recurrences allowed for inloop reductions");
9055       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9056         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9057     }
9058   }
9059 
9060   // For each interleave group which is relevant for this (possibly trimmed)
9061   // Range, add it to the set of groups to be later applied to the VPlan and add
9062   // placeholders for its members' Recipes which we'll be replacing with a
9063   // single VPInterleaveRecipe.
9064   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9065     auto applyIG = [IG, this](ElementCount VF) -> bool {
9066       return (VF.isVector() && // Query is illegal for VF == 1
9067               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9068                   LoopVectorizationCostModel::CM_Interleave);
9069     };
9070     if (!getDecisionAndClampRange(applyIG, Range))
9071       continue;
9072     InterleaveGroups.insert(IG);
9073     for (unsigned i = 0; i < IG->getFactor(); i++)
9074       if (Instruction *Member = IG->getMember(i))
9075         RecipeBuilder.recordRecipeOf(Member);
9076   };
9077 
9078   // ---------------------------------------------------------------------------
9079   // Build initial VPlan: Scan the body of the loop in a topological order to
9080   // visit each basic block after having visited its predecessor basic blocks.
9081   // ---------------------------------------------------------------------------
9082 
9083   // Create initial VPlan skeleton, with separate header and latch blocks.
9084   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
9085   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
9086   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
9087   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
9088   auto Plan = std::make_unique<VPlan>(TopRegion);
9089 
9090   Instruction *DLInst =
9091       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
9092   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
9093                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
9094                         !CM.foldTailByMasking(), false);
9095 
9096   // Scan the body of the loop in a topological order to visit each basic block
9097   // after having visited its predecessor basic blocks.
9098   LoopBlocksDFS DFS(OrigLoop);
9099   DFS.perform(LI);
9100 
9101   VPBasicBlock *VPBB = HeaderVPBB;
9102   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9103   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9104     // Relevant instructions from basic block BB will be grouped into VPRecipe
9105     // ingredients and fill a new VPBasicBlock.
9106     unsigned VPBBsForBB = 0;
9107     VPBB->setName(BB->getName());
9108     Builder.setInsertPoint(VPBB);
9109 
9110     // Introduce each ingredient into VPlan.
9111     // TODO: Model and preserve debug instrinsics in VPlan.
9112     for (Instruction &I : BB->instructionsWithoutDebug()) {
9113       Instruction *Instr = &I;
9114 
9115       // First filter out irrelevant instructions, to ensure no recipes are
9116       // built for them.
9117       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9118         continue;
9119 
9120       SmallVector<VPValue *, 4> Operands;
9121       auto *Phi = dyn_cast<PHINode>(Instr);
9122       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9123         Operands.push_back(Plan->getOrAddVPValue(
9124             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9125       } else {
9126         auto OpRange = Plan->mapToVPValues(Instr->operands());
9127         Operands = {OpRange.begin(), OpRange.end()};
9128       }
9129       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9130               Instr, Operands, Range, Plan)) {
9131         // If Instr can be simplified to an existing VPValue, use it.
9132         if (RecipeOrValue.is<VPValue *>()) {
9133           auto *VPV = RecipeOrValue.get<VPValue *>();
9134           Plan->addVPValue(Instr, VPV);
9135           // If the re-used value is a recipe, register the recipe for the
9136           // instruction, in case the recipe for Instr needs to be recorded.
9137           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9138             RecipeBuilder.setRecipe(Instr, R);
9139           continue;
9140         }
9141         // Otherwise, add the new recipe.
9142         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9143         for (auto *Def : Recipe->definedValues()) {
9144           auto *UV = Def->getUnderlyingValue();
9145           Plan->addVPValue(UV, Def);
9146         }
9147 
9148         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9149             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9150           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9151           // of the header block. That can happen for truncates of induction
9152           // variables. Those recipes are moved to the phi section of the header
9153           // block after applying SinkAfter, which relies on the original
9154           // position of the trunc.
9155           assert(isa<TruncInst>(Instr));
9156           InductionsToMove.push_back(
9157               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9158         }
9159         RecipeBuilder.setRecipe(Instr, Recipe);
9160         VPBB->appendRecipe(Recipe);
9161         continue;
9162       }
9163 
9164       // Otherwise, if all widening options failed, Instruction is to be
9165       // replicated. This may create a successor for VPBB.
9166       VPBasicBlock *NextVPBB =
9167           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9168       if (NextVPBB != VPBB) {
9169         VPBB = NextVPBB;
9170         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9171                                     : "");
9172       }
9173     }
9174 
9175     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
9176     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
9177   }
9178 
9179   // Fold the last, empty block into its predecessor.
9180   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
9181   assert(VPBB && "expected to fold last (empty) block");
9182   // After here, VPBB should not be used.
9183   VPBB = nullptr;
9184 
9185   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
9186          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9187          "entry block must be set to a VPRegionBlock having a non-empty entry "
9188          "VPBasicBlock");
9189   RecipeBuilder.fixHeaderPhis();
9190 
9191   // ---------------------------------------------------------------------------
9192   // Transform initial VPlan: Apply previously taken decisions, in order, to
9193   // bring the VPlan to its final state.
9194   // ---------------------------------------------------------------------------
9195 
9196   // Apply Sink-After legal constraints.
9197   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9198     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9199     if (Region && Region->isReplicator()) {
9200       assert(Region->getNumSuccessors() == 1 &&
9201              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9202       assert(R->getParent()->size() == 1 &&
9203              "A recipe in an original replicator region must be the only "
9204              "recipe in its block");
9205       return Region;
9206     }
9207     return nullptr;
9208   };
9209   for (auto &Entry : SinkAfter) {
9210     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9211     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9212 
9213     auto *TargetRegion = GetReplicateRegion(Target);
9214     auto *SinkRegion = GetReplicateRegion(Sink);
9215     if (!SinkRegion) {
9216       // If the sink source is not a replicate region, sink the recipe directly.
9217       if (TargetRegion) {
9218         // The target is in a replication region, make sure to move Sink to
9219         // the block after it, not into the replication region itself.
9220         VPBasicBlock *NextBlock =
9221             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9222         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9223       } else
9224         Sink->moveAfter(Target);
9225       continue;
9226     }
9227 
9228     // The sink source is in a replicate region. Unhook the region from the CFG.
9229     auto *SinkPred = SinkRegion->getSinglePredecessor();
9230     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9231     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9232     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9233     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9234 
9235     if (TargetRegion) {
9236       // The target recipe is also in a replicate region, move the sink region
9237       // after the target region.
9238       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9239       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9240       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9241       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9242     } else {
9243       // The sink source is in a replicate region, we need to move the whole
9244       // replicate region, which should only contain a single recipe in the
9245       // main block.
9246       auto *SplitBlock =
9247           Target->getParent()->splitAt(std::next(Target->getIterator()));
9248 
9249       auto *SplitPred = SplitBlock->getSinglePredecessor();
9250 
9251       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9252       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9253       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9254     }
9255   }
9256 
9257   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
9258   VPlanTransforms::removeRedundantInductionCasts(*Plan);
9259 
9260   // Now that sink-after is done, move induction recipes for optimized truncates
9261   // to the phi section of the header block.
9262   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9263     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9264 
9265   // Adjust the recipes for any inloop reductions.
9266   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
9267                              RecipeBuilder, Range.Start);
9268 
9269   // Introduce a recipe to combine the incoming and previous values of a
9270   // first-order recurrence.
9271   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9272     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9273     if (!RecurPhi)
9274       continue;
9275 
9276     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9277     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9278     auto *Region = GetReplicateRegion(PrevRecipe);
9279     if (Region)
9280       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9281     if (Region || PrevRecipe->isPhi())
9282       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9283     else
9284       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9285 
9286     auto *RecurSplice = cast<VPInstruction>(
9287         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9288                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9289 
9290     RecurPhi->replaceAllUsesWith(RecurSplice);
9291     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9292     // all users.
9293     RecurSplice->setOperand(0, RecurPhi);
9294   }
9295 
9296   // Interleave memory: for each Interleave Group we marked earlier as relevant
9297   // for this VPlan, replace the Recipes widening its memory instructions with a
9298   // single VPInterleaveRecipe at its insertion point.
9299   for (auto IG : InterleaveGroups) {
9300     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9301         RecipeBuilder.getRecipe(IG->getInsertPos()));
9302     SmallVector<VPValue *, 4> StoredValues;
9303     for (unsigned i = 0; i < IG->getFactor(); ++i)
9304       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9305         auto *StoreR =
9306             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9307         StoredValues.push_back(StoreR->getStoredValue());
9308       }
9309 
9310     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9311                                         Recipe->getMask());
9312     VPIG->insertBefore(Recipe);
9313     unsigned J = 0;
9314     for (unsigned i = 0; i < IG->getFactor(); ++i)
9315       if (Instruction *Member = IG->getMember(i)) {
9316         if (!Member->getType()->isVoidTy()) {
9317           VPValue *OriginalV = Plan->getVPValue(Member);
9318           Plan->removeVPValueFor(Member);
9319           Plan->addVPValue(Member, VPIG->getVPValue(J));
9320           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9321           J++;
9322         }
9323         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9324       }
9325   }
9326 
9327   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9328   // in ways that accessing values using original IR values is incorrect.
9329   Plan->disableValue2VPValue();
9330 
9331   VPlanTransforms::sinkScalarOperands(*Plan);
9332   VPlanTransforms::mergeReplicateRegions(*Plan);
9333 
9334   std::string PlanName;
9335   raw_string_ostream RSO(PlanName);
9336   ElementCount VF = Range.Start;
9337   Plan->addVF(VF);
9338   RSO << "Initial VPlan for VF={" << VF;
9339   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9340     Plan->addVF(VF);
9341     RSO << "," << VF;
9342   }
9343   RSO << "},UF>=1";
9344   RSO.flush();
9345   Plan->setName(PlanName);
9346 
9347   // Fold Exit block into its predecessor if possible.
9348   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9349   // VPBasicBlock as exit.
9350   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9351 
9352   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9353   return Plan;
9354 }
9355 
9356 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9357   // Outer loop handling: They may require CFG and instruction level
9358   // transformations before even evaluating whether vectorization is profitable.
9359   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9360   // the vectorization pipeline.
9361   assert(!OrigLoop->isInnermost());
9362   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9363 
9364   // Create new empty VPlan
9365   auto Plan = std::make_unique<VPlan>();
9366 
9367   // Build hierarchical CFG
9368   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9369   HCFGBuilder.buildHierarchicalCFG();
9370 
9371   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9372        VF *= 2)
9373     Plan->addVF(VF);
9374 
9375   if (EnableVPlanPredication) {
9376     VPlanPredicator VPP(*Plan);
9377     VPP.predicate();
9378 
9379     // Avoid running transformation to recipes until masked code generation in
9380     // VPlan-native path is in place.
9381     return Plan;
9382   }
9383 
9384   SmallPtrSet<Instruction *, 1> DeadInstructions;
9385   VPlanTransforms::VPInstructionsToVPRecipes(
9386       OrigLoop, Plan,
9387       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9388       DeadInstructions, *PSE.getSE());
9389 
9390   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9391                         true, true);
9392   return Plan;
9393 }
9394 
9395 // Adjust the recipes for reductions. For in-loop reductions the chain of
9396 // instructions leading from the loop exit instr to the phi need to be converted
9397 // to reductions, with one operand being vector and the other being the scalar
9398 // reduction chain. For other reductions, a select is introduced between the phi
9399 // and live-out recipes when folding the tail.
9400 void LoopVectorizationPlanner::adjustRecipesForReductions(
9401     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9402     ElementCount MinVF) {
9403   for (auto &Reduction : CM.getInLoopReductionChains()) {
9404     PHINode *Phi = Reduction.first;
9405     const RecurrenceDescriptor &RdxDesc =
9406         Legal->getReductionVars().find(Phi)->second;
9407     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9408 
9409     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9410       continue;
9411 
9412     // ReductionOperations are orders top-down from the phi's use to the
9413     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9414     // which of the two operands will remain scalar and which will be reduced.
9415     // For minmax the chain will be the select instructions.
9416     Instruction *Chain = Phi;
9417     for (Instruction *R : ReductionOperations) {
9418       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9419       RecurKind Kind = RdxDesc.getRecurrenceKind();
9420 
9421       VPValue *ChainOp = Plan->getVPValue(Chain);
9422       unsigned FirstOpId;
9423       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9424              "Only min/max recurrences allowed for inloop reductions");
9425       // Recognize a call to the llvm.fmuladd intrinsic.
9426       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9427       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9428              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9429       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9430         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9431                "Expected to replace a VPWidenSelectSC");
9432         FirstOpId = 1;
9433       } else {
9434         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9435                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9436                "Expected to replace a VPWidenSC");
9437         FirstOpId = 0;
9438       }
9439       unsigned VecOpId =
9440           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9441       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9442 
9443       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9444                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9445                          : nullptr;
9446 
9447       if (IsFMulAdd) {
9448         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9449         // need to create an fmul recipe to use as the vector operand for the
9450         // fadd reduction.
9451         VPInstruction *FMulRecipe = new VPInstruction(
9452             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9453         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9454         WidenRecipe->getParent()->insert(FMulRecipe,
9455                                          WidenRecipe->getIterator());
9456         VecOp = FMulRecipe;
9457       }
9458       VPReductionRecipe *RedRecipe =
9459           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9460       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9461       Plan->removeVPValueFor(R);
9462       Plan->addVPValue(R, RedRecipe);
9463       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9464       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9465       WidenRecipe->eraseFromParent();
9466 
9467       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9468         VPRecipeBase *CompareRecipe =
9469             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9470         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9471                "Expected to replace a VPWidenSC");
9472         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9473                "Expected no remaining users");
9474         CompareRecipe->eraseFromParent();
9475       }
9476       Chain = R;
9477     }
9478   }
9479 
9480   // If tail is folded by masking, introduce selects between the phi
9481   // and the live-out instruction of each reduction, at the beginning of the
9482   // dedicated latch block.
9483   if (CM.foldTailByMasking()) {
9484     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9485     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9486       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9487       if (!PhiR || PhiR->isInLoop())
9488         continue;
9489       VPValue *Cond =
9490           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9491       VPValue *Red = PhiR->getBackedgeValue();
9492       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9493              "reduction recipe must be defined before latch");
9494       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9495     }
9496   }
9497 }
9498 
9499 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9500 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9501                                VPSlotTracker &SlotTracker) const {
9502   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9503   IG->getInsertPos()->printAsOperand(O, false);
9504   O << ", ";
9505   getAddr()->printAsOperand(O, SlotTracker);
9506   VPValue *Mask = getMask();
9507   if (Mask) {
9508     O << ", ";
9509     Mask->printAsOperand(O, SlotTracker);
9510   }
9511 
9512   unsigned OpIdx = 0;
9513   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9514     if (!IG->getMember(i))
9515       continue;
9516     if (getNumStoreOperands() > 0) {
9517       O << "\n" << Indent << "  store ";
9518       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9519       O << " to index " << i;
9520     } else {
9521       O << "\n" << Indent << "  ";
9522       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9523       O << " = load from index " << i;
9524     }
9525     ++OpIdx;
9526   }
9527 }
9528 #endif
9529 
9530 void VPWidenCallRecipe::execute(VPTransformState &State) {
9531   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9532                                   *this, State);
9533 }
9534 
9535 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9536   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9537   State.ILV->setDebugLocFromInst(&I);
9538 
9539   // The condition can be loop invariant  but still defined inside the
9540   // loop. This means that we can't just use the original 'cond' value.
9541   // We have to take the 'vectorized' value and pick the first lane.
9542   // Instcombine will make this a no-op.
9543   auto *InvarCond =
9544       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9545 
9546   for (unsigned Part = 0; Part < State.UF; ++Part) {
9547     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9548     Value *Op0 = State.get(getOperand(1), Part);
9549     Value *Op1 = State.get(getOperand(2), Part);
9550     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9551     State.set(this, Sel, Part);
9552     State.ILV->addMetadata(Sel, &I);
9553   }
9554 }
9555 
9556 void VPWidenRecipe::execute(VPTransformState &State) {
9557   auto &I = *cast<Instruction>(getUnderlyingValue());
9558   auto &Builder = State.Builder;
9559   switch (I.getOpcode()) {
9560   case Instruction::Call:
9561   case Instruction::Br:
9562   case Instruction::PHI:
9563   case Instruction::GetElementPtr:
9564   case Instruction::Select:
9565     llvm_unreachable("This instruction is handled by a different recipe.");
9566   case Instruction::UDiv:
9567   case Instruction::SDiv:
9568   case Instruction::SRem:
9569   case Instruction::URem:
9570   case Instruction::Add:
9571   case Instruction::FAdd:
9572   case Instruction::Sub:
9573   case Instruction::FSub:
9574   case Instruction::FNeg:
9575   case Instruction::Mul:
9576   case Instruction::FMul:
9577   case Instruction::FDiv:
9578   case Instruction::FRem:
9579   case Instruction::Shl:
9580   case Instruction::LShr:
9581   case Instruction::AShr:
9582   case Instruction::And:
9583   case Instruction::Or:
9584   case Instruction::Xor: {
9585     // Just widen unops and binops.
9586     State.ILV->setDebugLocFromInst(&I);
9587 
9588     for (unsigned Part = 0; Part < State.UF; ++Part) {
9589       SmallVector<Value *, 2> Ops;
9590       for (VPValue *VPOp : operands())
9591         Ops.push_back(State.get(VPOp, Part));
9592 
9593       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9594 
9595       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9596         VecOp->copyIRFlags(&I);
9597 
9598         // If the instruction is vectorized and was in a basic block that needed
9599         // predication, we can't propagate poison-generating flags (nuw/nsw,
9600         // exact, etc.). The control flow has been linearized and the
9601         // instruction is no longer guarded by the predicate, which could make
9602         // the flag properties to no longer hold.
9603         if (State.MayGeneratePoisonRecipes.contains(this))
9604           VecOp->dropPoisonGeneratingFlags();
9605       }
9606 
9607       // Use this vector value for all users of the original instruction.
9608       State.set(this, V, Part);
9609       State.ILV->addMetadata(V, &I);
9610     }
9611 
9612     break;
9613   }
9614   case Instruction::ICmp:
9615   case Instruction::FCmp: {
9616     // Widen compares. Generate vector compares.
9617     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9618     auto *Cmp = cast<CmpInst>(&I);
9619     State.ILV->setDebugLocFromInst(Cmp);
9620     for (unsigned Part = 0; Part < State.UF; ++Part) {
9621       Value *A = State.get(getOperand(0), Part);
9622       Value *B = State.get(getOperand(1), Part);
9623       Value *C = nullptr;
9624       if (FCmp) {
9625         // Propagate fast math flags.
9626         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9627         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9628         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9629       } else {
9630         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9631       }
9632       State.set(this, C, Part);
9633       State.ILV->addMetadata(C, &I);
9634     }
9635 
9636     break;
9637   }
9638 
9639   case Instruction::ZExt:
9640   case Instruction::SExt:
9641   case Instruction::FPToUI:
9642   case Instruction::FPToSI:
9643   case Instruction::FPExt:
9644   case Instruction::PtrToInt:
9645   case Instruction::IntToPtr:
9646   case Instruction::SIToFP:
9647   case Instruction::UIToFP:
9648   case Instruction::Trunc:
9649   case Instruction::FPTrunc:
9650   case Instruction::BitCast: {
9651     auto *CI = cast<CastInst>(&I);
9652     State.ILV->setDebugLocFromInst(CI);
9653 
9654     /// Vectorize casts.
9655     Type *DestTy = (State.VF.isScalar())
9656                        ? CI->getType()
9657                        : VectorType::get(CI->getType(), State.VF);
9658 
9659     for (unsigned Part = 0; Part < State.UF; ++Part) {
9660       Value *A = State.get(getOperand(0), Part);
9661       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9662       State.set(this, Cast, Part);
9663       State.ILV->addMetadata(Cast, &I);
9664     }
9665     break;
9666   }
9667   default:
9668     // This instruction is not vectorized by simple widening.
9669     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9670     llvm_unreachable("Unhandled instruction!");
9671   } // end of switch.
9672 }
9673 
9674 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9675   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9676   // Construct a vector GEP by widening the operands of the scalar GEP as
9677   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9678   // results in a vector of pointers when at least one operand of the GEP
9679   // is vector-typed. Thus, to keep the representation compact, we only use
9680   // vector-typed operands for loop-varying values.
9681 
9682   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9683     // If we are vectorizing, but the GEP has only loop-invariant operands,
9684     // the GEP we build (by only using vector-typed operands for
9685     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9686     // produce a vector of pointers, we need to either arbitrarily pick an
9687     // operand to broadcast, or broadcast a clone of the original GEP.
9688     // Here, we broadcast a clone of the original.
9689     //
9690     // TODO: If at some point we decide to scalarize instructions having
9691     //       loop-invariant operands, this special case will no longer be
9692     //       required. We would add the scalarization decision to
9693     //       collectLoopScalars() and teach getVectorValue() to broadcast
9694     //       the lane-zero scalar value.
9695     auto *Clone = State.Builder.Insert(GEP->clone());
9696     for (unsigned Part = 0; Part < State.UF; ++Part) {
9697       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9698       State.set(this, EntryPart, Part);
9699       State.ILV->addMetadata(EntryPart, GEP);
9700     }
9701   } else {
9702     // If the GEP has at least one loop-varying operand, we are sure to
9703     // produce a vector of pointers. But if we are only unrolling, we want
9704     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9705     // produce with the code below will be scalar (if VF == 1) or vector
9706     // (otherwise). Note that for the unroll-only case, we still maintain
9707     // values in the vector mapping with initVector, as we do for other
9708     // instructions.
9709     for (unsigned Part = 0; Part < State.UF; ++Part) {
9710       // The pointer operand of the new GEP. If it's loop-invariant, we
9711       // won't broadcast it.
9712       auto *Ptr = IsPtrLoopInvariant
9713                       ? State.get(getOperand(0), VPIteration(0, 0))
9714                       : State.get(getOperand(0), Part);
9715 
9716       // Collect all the indices for the new GEP. If any index is
9717       // loop-invariant, we won't broadcast it.
9718       SmallVector<Value *, 4> Indices;
9719       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9720         VPValue *Operand = getOperand(I);
9721         if (IsIndexLoopInvariant[I - 1])
9722           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9723         else
9724           Indices.push_back(State.get(Operand, Part));
9725       }
9726 
9727       // If the GEP instruction is vectorized and was in a basic block that
9728       // needed predication, we can't propagate the poison-generating 'inbounds'
9729       // flag. The control flow has been linearized and the GEP is no longer
9730       // guarded by the predicate, which could make the 'inbounds' properties to
9731       // no longer hold.
9732       bool IsInBounds =
9733           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9734 
9735       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9736       // but it should be a vector, otherwise.
9737       auto *NewGEP = IsInBounds
9738                          ? State.Builder.CreateInBoundsGEP(
9739                                GEP->getSourceElementType(), Ptr, Indices)
9740                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9741                                                    Ptr, Indices);
9742       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9743              "NewGEP is not a pointer vector");
9744       State.set(this, NewGEP, Part);
9745       State.ILV->addMetadata(NewGEP, GEP);
9746     }
9747   }
9748 }
9749 
9750 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9751   assert(!State.Instance && "Int or FP induction being replicated.");
9752   auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9753   State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV);
9754 }
9755 
9756 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9757   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9758                                  State);
9759 }
9760 
9761 void VPBlendRecipe::execute(VPTransformState &State) {
9762   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9763   // We know that all PHIs in non-header blocks are converted into
9764   // selects, so we don't have to worry about the insertion order and we
9765   // can just use the builder.
9766   // At this point we generate the predication tree. There may be
9767   // duplications since this is a simple recursive scan, but future
9768   // optimizations will clean it up.
9769 
9770   unsigned NumIncoming = getNumIncomingValues();
9771 
9772   // Generate a sequence of selects of the form:
9773   // SELECT(Mask3, In3,
9774   //        SELECT(Mask2, In2,
9775   //               SELECT(Mask1, In1,
9776   //                      In0)))
9777   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9778   // are essentially undef are taken from In0.
9779   InnerLoopVectorizer::VectorParts Entry(State.UF);
9780   for (unsigned In = 0; In < NumIncoming; ++In) {
9781     for (unsigned Part = 0; Part < State.UF; ++Part) {
9782       // We might have single edge PHIs (blocks) - use an identity
9783       // 'select' for the first PHI operand.
9784       Value *In0 = State.get(getIncomingValue(In), Part);
9785       if (In == 0)
9786         Entry[Part] = In0; // Initialize with the first incoming value.
9787       else {
9788         // Select between the current value and the previous incoming edge
9789         // based on the incoming mask.
9790         Value *Cond = State.get(getMask(In), Part);
9791         Entry[Part] =
9792             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9793       }
9794     }
9795   }
9796   for (unsigned Part = 0; Part < State.UF; ++Part)
9797     State.set(this, Entry[Part], Part);
9798 }
9799 
9800 void VPInterleaveRecipe::execute(VPTransformState &State) {
9801   assert(!State.Instance && "Interleave group being replicated.");
9802   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9803                                       getStoredValues(), getMask());
9804 }
9805 
9806 void VPReductionRecipe::execute(VPTransformState &State) {
9807   assert(!State.Instance && "Reduction being replicated.");
9808   Value *PrevInChain = State.get(getChainOp(), 0);
9809   RecurKind Kind = RdxDesc->getRecurrenceKind();
9810   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9811   // Propagate the fast-math flags carried by the underlying instruction.
9812   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9813   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9814   for (unsigned Part = 0; Part < State.UF; ++Part) {
9815     Value *NewVecOp = State.get(getVecOp(), Part);
9816     if (VPValue *Cond = getCondOp()) {
9817       Value *NewCond = State.get(Cond, Part);
9818       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9819       Value *Iden = RdxDesc->getRecurrenceIdentity(
9820           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9821       Value *IdenVec =
9822           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9823       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9824       NewVecOp = Select;
9825     }
9826     Value *NewRed;
9827     Value *NextInChain;
9828     if (IsOrdered) {
9829       if (State.VF.isVector())
9830         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9831                                         PrevInChain);
9832       else
9833         NewRed = State.Builder.CreateBinOp(
9834             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9835             NewVecOp);
9836       PrevInChain = NewRed;
9837     } else {
9838       PrevInChain = State.get(getChainOp(), Part);
9839       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9840     }
9841     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9842       NextInChain =
9843           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9844                          NewRed, PrevInChain);
9845     } else if (IsOrdered)
9846       NextInChain = NewRed;
9847     else
9848       NextInChain = State.Builder.CreateBinOp(
9849           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9850           PrevInChain);
9851     State.set(this, NextInChain, Part);
9852   }
9853 }
9854 
9855 void VPReplicateRecipe::execute(VPTransformState &State) {
9856   if (State.Instance) { // Generate a single instance.
9857     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9858     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9859                                     IsPredicated, State);
9860     // Insert scalar instance packing it into a vector.
9861     if (AlsoPack && State.VF.isVector()) {
9862       // If we're constructing lane 0, initialize to start from poison.
9863       if (State.Instance->Lane.isFirstLane()) {
9864         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9865         Value *Poison = PoisonValue::get(
9866             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9867         State.set(this, Poison, State.Instance->Part);
9868       }
9869       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9870     }
9871     return;
9872   }
9873 
9874   // Generate scalar instances for all VF lanes of all UF parts, unless the
9875   // instruction is uniform inwhich case generate only the first lane for each
9876   // of the UF parts.
9877   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9878   assert((!State.VF.isScalable() || IsUniform) &&
9879          "Can't scalarize a scalable vector");
9880   for (unsigned Part = 0; Part < State.UF; ++Part)
9881     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9882       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9883                                       VPIteration(Part, Lane), IsPredicated,
9884                                       State);
9885 }
9886 
9887 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9888   assert(State.Instance && "Branch on Mask works only on single instance.");
9889 
9890   unsigned Part = State.Instance->Part;
9891   unsigned Lane = State.Instance->Lane.getKnownLane();
9892 
9893   Value *ConditionBit = nullptr;
9894   VPValue *BlockInMask = getMask();
9895   if (BlockInMask) {
9896     ConditionBit = State.get(BlockInMask, Part);
9897     if (ConditionBit->getType()->isVectorTy())
9898       ConditionBit = State.Builder.CreateExtractElement(
9899           ConditionBit, State.Builder.getInt32(Lane));
9900   } else // Block in mask is all-one.
9901     ConditionBit = State.Builder.getTrue();
9902 
9903   // Replace the temporary unreachable terminator with a new conditional branch,
9904   // whose two destinations will be set later when they are created.
9905   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9906   assert(isa<UnreachableInst>(CurrentTerminator) &&
9907          "Expected to replace unreachable terminator with conditional branch.");
9908   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9909   CondBr->setSuccessor(0, nullptr);
9910   ReplaceInstWithInst(CurrentTerminator, CondBr);
9911 }
9912 
9913 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9914   assert(State.Instance && "Predicated instruction PHI works per instance.");
9915   Instruction *ScalarPredInst =
9916       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9917   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9918   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9919   assert(PredicatingBB && "Predicated block has no single predecessor.");
9920   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9921          "operand must be VPReplicateRecipe");
9922 
9923   // By current pack/unpack logic we need to generate only a single phi node: if
9924   // a vector value for the predicated instruction exists at this point it means
9925   // the instruction has vector users only, and a phi for the vector value is
9926   // needed. In this case the recipe of the predicated instruction is marked to
9927   // also do that packing, thereby "hoisting" the insert-element sequence.
9928   // Otherwise, a phi node for the scalar value is needed.
9929   unsigned Part = State.Instance->Part;
9930   if (State.hasVectorValue(getOperand(0), Part)) {
9931     Value *VectorValue = State.get(getOperand(0), Part);
9932     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9933     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9934     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9935     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9936     if (State.hasVectorValue(this, Part))
9937       State.reset(this, VPhi, Part);
9938     else
9939       State.set(this, VPhi, Part);
9940     // NOTE: Currently we need to update the value of the operand, so the next
9941     // predicated iteration inserts its generated value in the correct vector.
9942     State.reset(getOperand(0), VPhi, Part);
9943   } else {
9944     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9945     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9946     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9947                      PredicatingBB);
9948     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9949     if (State.hasScalarValue(this, *State.Instance))
9950       State.reset(this, Phi, *State.Instance);
9951     else
9952       State.set(this, Phi, *State.Instance);
9953     // NOTE: Currently we need to update the value of the operand, so the next
9954     // predicated iteration inserts its generated value in the correct vector.
9955     State.reset(getOperand(0), Phi, *State.Instance);
9956   }
9957 }
9958 
9959 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9960   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9961 
9962   // Attempt to issue a wide load.
9963   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9964   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9965 
9966   assert((LI || SI) && "Invalid Load/Store instruction");
9967   assert((!SI || StoredValue) && "No stored value provided for widened store");
9968   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9969 
9970   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9971 
9972   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9973   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9974   bool CreateGatherScatter = !Consecutive;
9975 
9976   auto &Builder = State.Builder;
9977   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9978   bool isMaskRequired = getMask();
9979   if (isMaskRequired)
9980     for (unsigned Part = 0; Part < State.UF; ++Part)
9981       BlockInMaskParts[Part] = State.get(getMask(), Part);
9982 
9983   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9984     // Calculate the pointer for the specific unroll-part.
9985     GetElementPtrInst *PartPtr = nullptr;
9986 
9987     bool InBounds = false;
9988     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9989       InBounds = gep->isInBounds();
9990     if (Reverse) {
9991       // If the address is consecutive but reversed, then the
9992       // wide store needs to start at the last vector element.
9993       // RunTimeVF =  VScale * VF.getKnownMinValue()
9994       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9995       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9996       // NumElt = -Part * RunTimeVF
9997       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9998       // LastLane = 1 - RunTimeVF
9999       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
10000       PartPtr =
10001           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
10002       PartPtr->setIsInBounds(InBounds);
10003       PartPtr = cast<GetElementPtrInst>(
10004           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
10005       PartPtr->setIsInBounds(InBounds);
10006       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
10007         BlockInMaskParts[Part] =
10008             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
10009     } else {
10010       Value *Increment =
10011           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
10012       PartPtr = cast<GetElementPtrInst>(
10013           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
10014       PartPtr->setIsInBounds(InBounds);
10015     }
10016 
10017     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
10018     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
10019   };
10020 
10021   // Handle Stores:
10022   if (SI) {
10023     State.ILV->setDebugLocFromInst(SI);
10024 
10025     for (unsigned Part = 0; Part < State.UF; ++Part) {
10026       Instruction *NewSI = nullptr;
10027       Value *StoredVal = State.get(StoredValue, Part);
10028       if (CreateGatherScatter) {
10029         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10030         Value *VectorGep = State.get(getAddr(), Part);
10031         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
10032                                             MaskPart);
10033       } else {
10034         if (Reverse) {
10035           // If we store to reverse consecutive memory locations, then we need
10036           // to reverse the order of elements in the stored value.
10037           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
10038           // We don't want to update the value in the map as it might be used in
10039           // another expression. So don't call resetVectorValue(StoredVal).
10040         }
10041         auto *VecPtr =
10042             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10043         if (isMaskRequired)
10044           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
10045                                             BlockInMaskParts[Part]);
10046         else
10047           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
10048       }
10049       State.ILV->addMetadata(NewSI, SI);
10050     }
10051     return;
10052   }
10053 
10054   // Handle loads.
10055   assert(LI && "Must have a load instruction");
10056   State.ILV->setDebugLocFromInst(LI);
10057   for (unsigned Part = 0; Part < State.UF; ++Part) {
10058     Value *NewLI;
10059     if (CreateGatherScatter) {
10060       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10061       Value *VectorGep = State.get(getAddr(), Part);
10062       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10063                                          nullptr, "wide.masked.gather");
10064       State.ILV->addMetadata(NewLI, LI);
10065     } else {
10066       auto *VecPtr =
10067           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10068       if (isMaskRequired)
10069         NewLI = Builder.CreateMaskedLoad(
10070             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10071             PoisonValue::get(DataTy), "wide.masked.load");
10072       else
10073         NewLI =
10074             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10075 
10076       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10077       State.ILV->addMetadata(NewLI, LI);
10078       if (Reverse)
10079         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10080     }
10081 
10082     State.set(this, NewLI, Part);
10083   }
10084 }
10085 
10086 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10087 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10088 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10089 // for predication.
10090 static ScalarEpilogueLowering getScalarEpilogueLowering(
10091     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10092     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10093     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10094     LoopVectorizationLegality &LVL) {
10095   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10096   // don't look at hints or options, and don't request a scalar epilogue.
10097   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10098   // LoopAccessInfo (due to code dependency and not being able to reliably get
10099   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10100   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10101   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10102   // back to the old way and vectorize with versioning when forced. See D81345.)
10103   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10104                                                       PGSOQueryType::IRPass) &&
10105                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10106     return CM_ScalarEpilogueNotAllowedOptSize;
10107 
10108   // 2) If set, obey the directives
10109   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10110     switch (PreferPredicateOverEpilogue) {
10111     case PreferPredicateTy::ScalarEpilogue:
10112       return CM_ScalarEpilogueAllowed;
10113     case PreferPredicateTy::PredicateElseScalarEpilogue:
10114       return CM_ScalarEpilogueNotNeededUsePredicate;
10115     case PreferPredicateTy::PredicateOrDontVectorize:
10116       return CM_ScalarEpilogueNotAllowedUsePredicate;
10117     };
10118   }
10119 
10120   // 3) If set, obey the hints
10121   switch (Hints.getPredicate()) {
10122   case LoopVectorizeHints::FK_Enabled:
10123     return CM_ScalarEpilogueNotNeededUsePredicate;
10124   case LoopVectorizeHints::FK_Disabled:
10125     return CM_ScalarEpilogueAllowed;
10126   };
10127 
10128   // 4) if the TTI hook indicates this is profitable, request predication.
10129   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10130                                        LVL.getLAI()))
10131     return CM_ScalarEpilogueNotNeededUsePredicate;
10132 
10133   return CM_ScalarEpilogueAllowed;
10134 }
10135 
10136 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10137   // If Values have been set for this Def return the one relevant for \p Part.
10138   if (hasVectorValue(Def, Part))
10139     return Data.PerPartOutput[Def][Part];
10140 
10141   if (!hasScalarValue(Def, {Part, 0})) {
10142     Value *IRV = Def->getLiveInIRValue();
10143     Value *B = ILV->getBroadcastInstrs(IRV);
10144     set(Def, B, Part);
10145     return B;
10146   }
10147 
10148   Value *ScalarValue = get(Def, {Part, 0});
10149   // If we aren't vectorizing, we can just copy the scalar map values over
10150   // to the vector map.
10151   if (VF.isScalar()) {
10152     set(Def, ScalarValue, Part);
10153     return ScalarValue;
10154   }
10155 
10156   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10157   bool IsUniform = RepR && RepR->isUniform();
10158 
10159   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10160   // Check if there is a scalar value for the selected lane.
10161   if (!hasScalarValue(Def, {Part, LastLane})) {
10162     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10163     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10164            "unexpected recipe found to be invariant");
10165     IsUniform = true;
10166     LastLane = 0;
10167   }
10168 
10169   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10170   // Set the insert point after the last scalarized instruction or after the
10171   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10172   // will directly follow the scalar definitions.
10173   auto OldIP = Builder.saveIP();
10174   auto NewIP =
10175       isa<PHINode>(LastInst)
10176           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10177           : std::next(BasicBlock::iterator(LastInst));
10178   Builder.SetInsertPoint(&*NewIP);
10179 
10180   // However, if we are vectorizing, we need to construct the vector values.
10181   // If the value is known to be uniform after vectorization, we can just
10182   // broadcast the scalar value corresponding to lane zero for each unroll
10183   // iteration. Otherwise, we construct the vector values using
10184   // insertelement instructions. Since the resulting vectors are stored in
10185   // State, we will only generate the insertelements once.
10186   Value *VectorValue = nullptr;
10187   if (IsUniform) {
10188     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10189     set(Def, VectorValue, Part);
10190   } else {
10191     // Initialize packing with insertelements to start from undef.
10192     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10193     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10194     set(Def, Undef, Part);
10195     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10196       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10197     VectorValue = get(Def, Part);
10198   }
10199   Builder.restoreIP(OldIP);
10200   return VectorValue;
10201 }
10202 
10203 // Process the loop in the VPlan-native vectorization path. This path builds
10204 // VPlan upfront in the vectorization pipeline, which allows to apply
10205 // VPlan-to-VPlan transformations from the very beginning without modifying the
10206 // input LLVM IR.
10207 static bool processLoopInVPlanNativePath(
10208     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10209     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10210     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10211     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10212     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10213     LoopVectorizationRequirements &Requirements) {
10214 
10215   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10216     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10217     return false;
10218   }
10219   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10220   Function *F = L->getHeader()->getParent();
10221   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10222 
10223   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10224       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10225 
10226   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10227                                 &Hints, IAI);
10228   // Use the planner for outer loop vectorization.
10229   // TODO: CM is not used at this point inside the planner. Turn CM into an
10230   // optional argument if we don't need it in the future.
10231   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10232                                Requirements, ORE);
10233 
10234   // Get user vectorization factor.
10235   ElementCount UserVF = Hints.getWidth();
10236 
10237   CM.collectElementTypesForWidening();
10238 
10239   // Plan how to best vectorize, return the best VF and its cost.
10240   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10241 
10242   // If we are stress testing VPlan builds, do not attempt to generate vector
10243   // code. Masked vector code generation support will follow soon.
10244   // Also, do not attempt to vectorize if no vector code will be produced.
10245   if (VPlanBuildStressTest || EnableVPlanPredication ||
10246       VectorizationFactor::Disabled() == VF)
10247     return false;
10248 
10249   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10250 
10251   {
10252     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10253                              F->getParent()->getDataLayout());
10254     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10255                            &CM, BFI, PSI, Checks);
10256     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10257                       << L->getHeader()->getParent()->getName() << "\"\n");
10258     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10259   }
10260 
10261   // Mark the loop as already vectorized to avoid vectorizing again.
10262   Hints.setAlreadyVectorized();
10263   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10264   return true;
10265 }
10266 
10267 // Emit a remark if there are stores to floats that required a floating point
10268 // extension. If the vectorized loop was generated with floating point there
10269 // will be a performance penalty from the conversion overhead and the change in
10270 // the vector width.
10271 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10272   SmallVector<Instruction *, 4> Worklist;
10273   for (BasicBlock *BB : L->getBlocks()) {
10274     for (Instruction &Inst : *BB) {
10275       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10276         if (S->getValueOperand()->getType()->isFloatTy())
10277           Worklist.push_back(S);
10278       }
10279     }
10280   }
10281 
10282   // Traverse the floating point stores upwards searching, for floating point
10283   // conversions.
10284   SmallPtrSet<const Instruction *, 4> Visited;
10285   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10286   while (!Worklist.empty()) {
10287     auto *I = Worklist.pop_back_val();
10288     if (!L->contains(I))
10289       continue;
10290     if (!Visited.insert(I).second)
10291       continue;
10292 
10293     // Emit a remark if the floating point store required a floating
10294     // point conversion.
10295     // TODO: More work could be done to identify the root cause such as a
10296     // constant or a function return type and point the user to it.
10297     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10298       ORE->emit([&]() {
10299         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10300                                           I->getDebugLoc(), L->getHeader())
10301                << "floating point conversion changes vector width. "
10302                << "Mixed floating point precision requires an up/down "
10303                << "cast that will negatively impact performance.";
10304       });
10305 
10306     for (Use &Op : I->operands())
10307       if (auto *OpI = dyn_cast<Instruction>(Op))
10308         Worklist.push_back(OpI);
10309   }
10310 }
10311 
10312 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10313     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10314                                !EnableLoopInterleaving),
10315       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10316                               !EnableLoopVectorization) {}
10317 
10318 bool LoopVectorizePass::processLoop(Loop *L) {
10319   assert((EnableVPlanNativePath || L->isInnermost()) &&
10320          "VPlan-native path is not enabled. Only process inner loops.");
10321 
10322 #ifndef NDEBUG
10323   const std::string DebugLocStr = getDebugLocString(L);
10324 #endif /* NDEBUG */
10325 
10326   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10327                     << L->getHeader()->getParent()->getName() << "\" from "
10328                     << DebugLocStr << "\n");
10329 
10330   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10331 
10332   LLVM_DEBUG(
10333       dbgs() << "LV: Loop hints:"
10334              << " force="
10335              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10336                      ? "disabled"
10337                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10338                             ? "enabled"
10339                             : "?"))
10340              << " width=" << Hints.getWidth()
10341              << " interleave=" << Hints.getInterleave() << "\n");
10342 
10343   // Function containing loop
10344   Function *F = L->getHeader()->getParent();
10345 
10346   // Looking at the diagnostic output is the only way to determine if a loop
10347   // was vectorized (other than looking at the IR or machine code), so it
10348   // is important to generate an optimization remark for each loop. Most of
10349   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10350   // generated as OptimizationRemark and OptimizationRemarkMissed are
10351   // less verbose reporting vectorized loops and unvectorized loops that may
10352   // benefit from vectorization, respectively.
10353 
10354   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10355     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10356     return false;
10357   }
10358 
10359   PredicatedScalarEvolution PSE(*SE, *L);
10360 
10361   // Check if it is legal to vectorize the loop.
10362   LoopVectorizationRequirements Requirements;
10363   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10364                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10365   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10366     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10367     Hints.emitRemarkWithHints();
10368     return false;
10369   }
10370 
10371   // Check the function attributes and profiles to find out if this function
10372   // should be optimized for size.
10373   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10374       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10375 
10376   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10377   // here. They may require CFG and instruction level transformations before
10378   // even evaluating whether vectorization is profitable. Since we cannot modify
10379   // the incoming IR, we need to build VPlan upfront in the vectorization
10380   // pipeline.
10381   if (!L->isInnermost())
10382     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10383                                         ORE, BFI, PSI, Hints, Requirements);
10384 
10385   assert(L->isInnermost() && "Inner loop expected.");
10386 
10387   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10388   // count by optimizing for size, to minimize overheads.
10389   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10390   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10391     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10392                       << "This loop is worth vectorizing only if no scalar "
10393                       << "iteration overheads are incurred.");
10394     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10395       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10396     else {
10397       LLVM_DEBUG(dbgs() << "\n");
10398       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10399     }
10400   }
10401 
10402   // Check the function attributes to see if implicit floats are allowed.
10403   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10404   // an integer loop and the vector instructions selected are purely integer
10405   // vector instructions?
10406   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10407     reportVectorizationFailure(
10408         "Can't vectorize when the NoImplicitFloat attribute is used",
10409         "loop not vectorized due to NoImplicitFloat attribute",
10410         "NoImplicitFloat", ORE, L);
10411     Hints.emitRemarkWithHints();
10412     return false;
10413   }
10414 
10415   // Check if the target supports potentially unsafe FP vectorization.
10416   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10417   // for the target we're vectorizing for, to make sure none of the
10418   // additional fp-math flags can help.
10419   if (Hints.isPotentiallyUnsafe() &&
10420       TTI->isFPVectorizationPotentiallyUnsafe()) {
10421     reportVectorizationFailure(
10422         "Potentially unsafe FP op prevents vectorization",
10423         "loop not vectorized due to unsafe FP support.",
10424         "UnsafeFP", ORE, L);
10425     Hints.emitRemarkWithHints();
10426     return false;
10427   }
10428 
10429   bool AllowOrderedReductions;
10430   // If the flag is set, use that instead and override the TTI behaviour.
10431   if (ForceOrderedReductions.getNumOccurrences() > 0)
10432     AllowOrderedReductions = ForceOrderedReductions;
10433   else
10434     AllowOrderedReductions = TTI->enableOrderedReductions();
10435   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10436     ORE->emit([&]() {
10437       auto *ExactFPMathInst = Requirements.getExactFPInst();
10438       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10439                                                  ExactFPMathInst->getDebugLoc(),
10440                                                  ExactFPMathInst->getParent())
10441              << "loop not vectorized: cannot prove it is safe to reorder "
10442                 "floating-point operations";
10443     });
10444     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10445                          "reorder floating-point operations\n");
10446     Hints.emitRemarkWithHints();
10447     return false;
10448   }
10449 
10450   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10451   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10452 
10453   // If an override option has been passed in for interleaved accesses, use it.
10454   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10455     UseInterleaved = EnableInterleavedMemAccesses;
10456 
10457   // Analyze interleaved memory accesses.
10458   if (UseInterleaved) {
10459     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10460   }
10461 
10462   // Use the cost model.
10463   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10464                                 F, &Hints, IAI);
10465   CM.collectValuesToIgnore();
10466   CM.collectElementTypesForWidening();
10467 
10468   // Use the planner for vectorization.
10469   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10470                                Requirements, ORE);
10471 
10472   // Get user vectorization factor and interleave count.
10473   ElementCount UserVF = Hints.getWidth();
10474   unsigned UserIC = Hints.getInterleave();
10475 
10476   // Plan how to best vectorize, return the best VF and its cost.
10477   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10478 
10479   VectorizationFactor VF = VectorizationFactor::Disabled();
10480   unsigned IC = 1;
10481 
10482   if (MaybeVF) {
10483     VF = *MaybeVF;
10484     // Select the interleave count.
10485     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10486   }
10487 
10488   // Identify the diagnostic messages that should be produced.
10489   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10490   bool VectorizeLoop = true, InterleaveLoop = true;
10491   if (VF.Width.isScalar()) {
10492     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10493     VecDiagMsg = std::make_pair(
10494         "VectorizationNotBeneficial",
10495         "the cost-model indicates that vectorization is not beneficial");
10496     VectorizeLoop = false;
10497   }
10498 
10499   if (!MaybeVF && UserIC > 1) {
10500     // Tell the user interleaving was avoided up-front, despite being explicitly
10501     // requested.
10502     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10503                          "interleaving should be avoided up front\n");
10504     IntDiagMsg = std::make_pair(
10505         "InterleavingAvoided",
10506         "Ignoring UserIC, because interleaving was avoided up front");
10507     InterleaveLoop = false;
10508   } else if (IC == 1 && UserIC <= 1) {
10509     // Tell the user interleaving is not beneficial.
10510     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10511     IntDiagMsg = std::make_pair(
10512         "InterleavingNotBeneficial",
10513         "the cost-model indicates that interleaving is not beneficial");
10514     InterleaveLoop = false;
10515     if (UserIC == 1) {
10516       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10517       IntDiagMsg.second +=
10518           " and is explicitly disabled or interleave count is set to 1";
10519     }
10520   } else if (IC > 1 && UserIC == 1) {
10521     // Tell the user interleaving is beneficial, but it explicitly disabled.
10522     LLVM_DEBUG(
10523         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10524     IntDiagMsg = std::make_pair(
10525         "InterleavingBeneficialButDisabled",
10526         "the cost-model indicates that interleaving is beneficial "
10527         "but is explicitly disabled or interleave count is set to 1");
10528     InterleaveLoop = false;
10529   }
10530 
10531   // Override IC if user provided an interleave count.
10532   IC = UserIC > 0 ? UserIC : IC;
10533 
10534   // Emit diagnostic messages, if any.
10535   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10536   if (!VectorizeLoop && !InterleaveLoop) {
10537     // Do not vectorize or interleaving the loop.
10538     ORE->emit([&]() {
10539       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10540                                       L->getStartLoc(), L->getHeader())
10541              << VecDiagMsg.second;
10542     });
10543     ORE->emit([&]() {
10544       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10545                                       L->getStartLoc(), L->getHeader())
10546              << IntDiagMsg.second;
10547     });
10548     return false;
10549   } else if (!VectorizeLoop && InterleaveLoop) {
10550     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10551     ORE->emit([&]() {
10552       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10553                                         L->getStartLoc(), L->getHeader())
10554              << VecDiagMsg.second;
10555     });
10556   } else if (VectorizeLoop && !InterleaveLoop) {
10557     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10558                       << ") in " << DebugLocStr << '\n');
10559     ORE->emit([&]() {
10560       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10561                                         L->getStartLoc(), L->getHeader())
10562              << IntDiagMsg.second;
10563     });
10564   } else if (VectorizeLoop && InterleaveLoop) {
10565     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10566                       << ") in " << DebugLocStr << '\n');
10567     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10568   }
10569 
10570   bool DisableRuntimeUnroll = false;
10571   MDNode *OrigLoopID = L->getLoopID();
10572   {
10573     // Optimistically generate runtime checks. Drop them if they turn out to not
10574     // be profitable. Limit the scope of Checks, so the cleanup happens
10575     // immediately after vector codegeneration is done.
10576     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10577                              F->getParent()->getDataLayout());
10578     if (!VF.Width.isScalar() || IC > 1)
10579       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate());
10580 
10581     using namespace ore;
10582     if (!VectorizeLoop) {
10583       assert(IC > 1 && "interleave count should not be 1 or 0");
10584       // If we decided that it is not legal to vectorize the loop, then
10585       // interleave it.
10586       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10587                                  &CM, BFI, PSI, Checks);
10588 
10589       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10590       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10591 
10592       ORE->emit([&]() {
10593         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10594                                   L->getHeader())
10595                << "interleaved loop (interleaved count: "
10596                << NV("InterleaveCount", IC) << ")";
10597       });
10598     } else {
10599       // If we decided that it is *legal* to vectorize the loop, then do it.
10600 
10601       // Consider vectorizing the epilogue too if it's profitable.
10602       VectorizationFactor EpilogueVF =
10603           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10604       if (EpilogueVF.Width.isVector()) {
10605 
10606         // The first pass vectorizes the main loop and creates a scalar epilogue
10607         // to be vectorized by executing the plan (potentially with a different
10608         // factor) again shortly afterwards.
10609         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10610         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10611                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10612 
10613         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10614         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10615                         DT);
10616         ++LoopsVectorized;
10617 
10618         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10619         formLCSSARecursively(*L, *DT, LI, SE);
10620 
10621         // Second pass vectorizes the epilogue and adjusts the control flow
10622         // edges from the first pass.
10623         EPI.MainLoopVF = EPI.EpilogueVF;
10624         EPI.MainLoopUF = EPI.EpilogueUF;
10625         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10626                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10627                                                  Checks);
10628 
10629         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10630 
10631         // Ensure that the start values for any VPReductionPHIRecipes are
10632         // updated before vectorising the epilogue loop.
10633         VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock();
10634         for (VPRecipeBase &R : Header->phis()) {
10635           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10636             if (auto *Resume = MainILV.getReductionResumeValue(
10637                     ReductionPhi->getRecurrenceDescriptor())) {
10638               VPValue *StartVal = new VPValue(Resume);
10639               BestEpiPlan.addExternalDef(StartVal);
10640               ReductionPhi->setOperand(0, StartVal);
10641             }
10642           }
10643         }
10644 
10645         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10646                         DT);
10647         ++LoopsEpilogueVectorized;
10648 
10649         if (!MainILV.areSafetyChecksAdded())
10650           DisableRuntimeUnroll = true;
10651       } else {
10652         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10653                                &LVL, &CM, BFI, PSI, Checks);
10654 
10655         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10656         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10657         ++LoopsVectorized;
10658 
10659         // Add metadata to disable runtime unrolling a scalar loop when there
10660         // are no runtime checks about strides and memory. A scalar loop that is
10661         // rarely used is not worth unrolling.
10662         if (!LB.areSafetyChecksAdded())
10663           DisableRuntimeUnroll = true;
10664       }
10665       // Report the vectorization decision.
10666       ORE->emit([&]() {
10667         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10668                                   L->getHeader())
10669                << "vectorized loop (vectorization width: "
10670                << NV("VectorizationFactor", VF.Width)
10671                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10672       });
10673     }
10674 
10675     if (ORE->allowExtraAnalysis(LV_NAME))
10676       checkMixedPrecision(L, ORE);
10677   }
10678 
10679   Optional<MDNode *> RemainderLoopID =
10680       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10681                                       LLVMLoopVectorizeFollowupEpilogue});
10682   if (RemainderLoopID.hasValue()) {
10683     L->setLoopID(RemainderLoopID.getValue());
10684   } else {
10685     if (DisableRuntimeUnroll)
10686       AddRuntimeUnrollDisableMetaData(L);
10687 
10688     // Mark the loop as already vectorized to avoid vectorizing again.
10689     Hints.setAlreadyVectorized();
10690   }
10691 
10692   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10693   return true;
10694 }
10695 
10696 LoopVectorizeResult LoopVectorizePass::runImpl(
10697     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10698     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10699     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10700     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10701     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10702   SE = &SE_;
10703   LI = &LI_;
10704   TTI = &TTI_;
10705   DT = &DT_;
10706   BFI = &BFI_;
10707   TLI = TLI_;
10708   AA = &AA_;
10709   AC = &AC_;
10710   GetLAA = &GetLAA_;
10711   DB = &DB_;
10712   ORE = &ORE_;
10713   PSI = PSI_;
10714 
10715   // Don't attempt if
10716   // 1. the target claims to have no vector registers, and
10717   // 2. interleaving won't help ILP.
10718   //
10719   // The second condition is necessary because, even if the target has no
10720   // vector registers, loop vectorization may still enable scalar
10721   // interleaving.
10722   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10723       TTI->getMaxInterleaveFactor(1) < 2)
10724     return LoopVectorizeResult(false, false);
10725 
10726   bool Changed = false, CFGChanged = false;
10727 
10728   // The vectorizer requires loops to be in simplified form.
10729   // Since simplification may add new inner loops, it has to run before the
10730   // legality and profitability checks. This means running the loop vectorizer
10731   // will simplify all loops, regardless of whether anything end up being
10732   // vectorized.
10733   for (auto &L : *LI)
10734     Changed |= CFGChanged |=
10735         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10736 
10737   // Build up a worklist of inner-loops to vectorize. This is necessary as
10738   // the act of vectorizing or partially unrolling a loop creates new loops
10739   // and can invalidate iterators across the loops.
10740   SmallVector<Loop *, 8> Worklist;
10741 
10742   for (Loop *L : *LI)
10743     collectSupportedLoops(*L, LI, ORE, Worklist);
10744 
10745   LoopsAnalyzed += Worklist.size();
10746 
10747   // Now walk the identified inner loops.
10748   while (!Worklist.empty()) {
10749     Loop *L = Worklist.pop_back_val();
10750 
10751     // For the inner loops we actually process, form LCSSA to simplify the
10752     // transform.
10753     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10754 
10755     Changed |= CFGChanged |= processLoop(L);
10756   }
10757 
10758   // Process each loop nest in the function.
10759   return LoopVectorizeResult(Changed, CFGChanged);
10760 }
10761 
10762 PreservedAnalyses LoopVectorizePass::run(Function &F,
10763                                          FunctionAnalysisManager &AM) {
10764     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10765     auto &LI = AM.getResult<LoopAnalysis>(F);
10766     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10767     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10768     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10769     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10770     auto &AA = AM.getResult<AAManager>(F);
10771     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10772     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10773     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10774 
10775     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10776     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10777         [&](Loop &L) -> const LoopAccessInfo & {
10778       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10779                                         TLI, TTI, nullptr, nullptr, nullptr};
10780       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10781     };
10782     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10783     ProfileSummaryInfo *PSI =
10784         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10785     LoopVectorizeResult Result =
10786         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10787     if (!Result.MadeAnyChange)
10788       return PreservedAnalyses::all();
10789     PreservedAnalyses PA;
10790 
10791     // We currently do not preserve loopinfo/dominator analyses with outer loop
10792     // vectorization. Until this is addressed, mark these analyses as preserved
10793     // only for non-VPlan-native path.
10794     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10795     if (!EnableVPlanNativePath) {
10796       PA.preserve<LoopAnalysis>();
10797       PA.preserve<DominatorTreeAnalysis>();
10798     }
10799 
10800     if (Result.MadeCFGChange) {
10801       // Making CFG changes likely means a loop got vectorized. Indicate that
10802       // extra simplification passes should be run.
10803       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10804       // be run if runtime checks have been added.
10805       AM.getResult<ShouldRunExtraVectorPasses>(F);
10806       PA.preserve<ShouldRunExtraVectorPasses>();
10807     } else {
10808       PA.preserveSet<CFGAnalyses>();
10809     }
10810     return PA;
10811 }
10812 
10813 void LoopVectorizePass::printPipeline(
10814     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10815   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10816       OS, MapClassName2PassName);
10817 
10818   OS << "<";
10819   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10820   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10821   OS << ">";
10822 }
10823