1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/PatternMatch.h"
121 #include "llvm/IR/Type.h"
122 #include "llvm/IR/Use.h"
123 #include "llvm/IR/User.h"
124 #include "llvm/IR/Value.h"
125 #include "llvm/IR/ValueHandle.h"
126 #include "llvm/IR/Verifier.h"
127 #include "llvm/InitializePasses.h"
128 #include "llvm/Pass.h"
129 #include "llvm/Support/Casting.h"
130 #include "llvm/Support/CommandLine.h"
131 #include "llvm/Support/Compiler.h"
132 #include "llvm/Support/Debug.h"
133 #include "llvm/Support/ErrorHandling.h"
134 #include "llvm/Support/InstructionCost.h"
135 #include "llvm/Support/MathExtras.h"
136 #include "llvm/Support/raw_ostream.h"
137 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
138 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
139 #include "llvm/Transforms/Utils/LoopSimplify.h"
140 #include "llvm/Transforms/Utils/LoopUtils.h"
141 #include "llvm/Transforms/Utils/LoopVersioning.h"
142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
143 #include "llvm/Transforms/Utils/SizeOpts.h"
144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
145 #include <algorithm>
146 #include <cassert>
147 #include <cstdint>
148 #include <cstdlib>
149 #include <functional>
150 #include <iterator>
151 #include <limits>
152 #include <memory>
153 #include <string>
154 #include <tuple>
155 #include <utility>
156 
157 using namespace llvm;
158 
159 #define LV_NAME "loop-vectorize"
160 #define DEBUG_TYPE LV_NAME
161 
162 #ifndef NDEBUG
163 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
164 #endif
165 
166 /// @{
167 /// Metadata attribute names
168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
169 const char LLVMLoopVectorizeFollowupVectorized[] =
170     "llvm.loop.vectorize.followup_vectorized";
171 const char LLVMLoopVectorizeFollowupEpilogue[] =
172     "llvm.loop.vectorize.followup_epilogue";
173 /// @}
174 
175 STATISTIC(LoopsVectorized, "Number of loops vectorized");
176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
178 
179 static cl::opt<bool> EnableEpilogueVectorization(
180     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
181     cl::desc("Enable vectorization of epilogue loops."));
182 
183 static cl::opt<unsigned> EpilogueVectorizationForceVF(
184     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
185     cl::desc("When epilogue vectorization is enabled, and a value greater than "
186              "1 is specified, forces the given VF for all applicable epilogue "
187              "loops."));
188 
189 static cl::opt<unsigned> EpilogueVectorizationMinVF(
190     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
191     cl::desc("Only loops with vectorization factor equal to or larger than "
192              "the specified value are considered for epilogue vectorization."));
193 
194 /// Loops with a known constant trip count below this number are vectorized only
195 /// if no scalar iteration overheads are incurred.
196 static cl::opt<unsigned> TinyTripCountVectorThreshold(
197     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
198     cl::desc("Loops with a constant trip count that is smaller than this "
199              "value are vectorized only if no scalar iteration overheads "
200              "are incurred."));
201 
202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
203     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
204     cl::desc("The maximum allowed number of runtime memory checks with a "
205              "vectorize(enable) pragma."));
206 
207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
208 // that predication is preferred, and this lists all options. I.e., the
209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
210 // and predicate the instructions accordingly. If tail-folding fails, there are
211 // different fallback strategies depending on these values:
212 namespace PreferPredicateTy {
213   enum Option {
214     ScalarEpilogue = 0,
215     PredicateElseScalarEpilogue,
216     PredicateOrDontVectorize
217   };
218 } // namespace PreferPredicateTy
219 
220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
221     "prefer-predicate-over-epilogue",
222     cl::init(PreferPredicateTy::ScalarEpilogue),
223     cl::Hidden,
224     cl::desc("Tail-folding and predication preferences over creating a scalar "
225              "epilogue loop."),
226     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
227                          "scalar-epilogue",
228                          "Don't tail-predicate loops, create scalar epilogue"),
229               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
230                          "predicate-else-scalar-epilogue",
231                          "prefer tail-folding, create scalar epilogue if tail "
232                          "folding fails."),
233               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
234                          "predicate-dont-vectorize",
235                          "prefers tail-folding, don't attempt vectorization if "
236                          "tail-folding fails.")));
237 
238 static cl::opt<bool> MaximizeBandwidth(
239     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
240     cl::desc("Maximize bandwidth when selecting vectorization factor which "
241              "will be determined by the smallest type in loop."));
242 
243 static cl::opt<bool> EnableInterleavedMemAccesses(
244     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
245     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
246 
247 /// An interleave-group may need masking if it resides in a block that needs
248 /// predication, or in order to mask away gaps.
249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
250     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
251     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
252 
253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
254     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
255     cl::desc("We don't interleave loops with a estimated constant trip count "
256              "below this number"));
257 
258 static cl::opt<unsigned> ForceTargetNumScalarRegs(
259     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
260     cl::desc("A flag that overrides the target's number of scalar registers."));
261 
262 static cl::opt<unsigned> ForceTargetNumVectorRegs(
263     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
264     cl::desc("A flag that overrides the target's number of vector registers."));
265 
266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
267     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
268     cl::desc("A flag that overrides the target's max interleave factor for "
269              "scalar loops."));
270 
271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
272     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
273     cl::desc("A flag that overrides the target's max interleave factor for "
274              "vectorized loops."));
275 
276 static cl::opt<unsigned> ForceTargetInstructionCost(
277     "force-target-instruction-cost", cl::init(0), cl::Hidden,
278     cl::desc("A flag that overrides the target's expected cost for "
279              "an instruction to a single constant value. Mostly "
280              "useful for getting consistent testing."));
281 
282 static cl::opt<bool> ForceTargetSupportsScalableVectors(
283     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
284     cl::desc(
285         "Pretend that scalable vectors are supported, even if the target does "
286         "not support them. This flag should only be used for testing."));
287 
288 static cl::opt<unsigned> SmallLoopCost(
289     "small-loop-cost", cl::init(20), cl::Hidden,
290     cl::desc(
291         "The cost of a loop that is considered 'small' by the interleaver."));
292 
293 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
294     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
295     cl::desc("Enable the use of the block frequency analysis to access PGO "
296              "heuristics minimizing code growth in cold regions and being more "
297              "aggressive in hot regions."));
298 
299 // Runtime interleave loops for load/store throughput.
300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
301     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
302     cl::desc(
303         "Enable runtime interleaving until load/store ports are saturated"));
304 
305 /// Interleave small loops with scalar reductions.
306 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
307     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
308     cl::desc("Enable interleaving for loops with small iteration counts that "
309              "contain scalar reductions to expose ILP."));
310 
311 /// The number of stores in a loop that are allowed to need predication.
312 static cl::opt<unsigned> NumberOfStoresToPredicate(
313     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
314     cl::desc("Max number of stores to be predicated behind an if."));
315 
316 static cl::opt<bool> EnableIndVarRegisterHeur(
317     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
318     cl::desc("Count the induction variable only once when interleaving"));
319 
320 static cl::opt<bool> EnableCondStoresVectorization(
321     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
322     cl::desc("Enable if predication of stores during vectorization."));
323 
324 static cl::opt<unsigned> MaxNestedScalarReductionIC(
325     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
326     cl::desc("The maximum interleave count to use when interleaving a scalar "
327              "reduction in a nested loop."));
328 
329 static cl::opt<bool>
330     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
331                            cl::Hidden,
332                            cl::desc("Prefer in-loop vector reductions, "
333                                     "overriding the targets preference."));
334 
335 cl::opt<bool> EnableStrictReductions(
336     "enable-strict-reductions", cl::init(false), cl::Hidden,
337     cl::desc("Enable the vectorisation of loops with in-order (strict) "
338              "FP reductions"));
339 
340 static cl::opt<bool> PreferPredicatedReductionSelect(
341     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
342     cl::desc(
343         "Prefer predicating a reduction operation over an after loop select."));
344 
345 cl::opt<bool> EnableVPlanNativePath(
346     "enable-vplan-native-path", cl::init(false), cl::Hidden,
347     cl::desc("Enable VPlan-native vectorization path with "
348              "support for outer loop vectorization."));
349 
350 // FIXME: Remove this switch once we have divergence analysis. Currently we
351 // assume divergent non-backedge branches when this switch is true.
352 cl::opt<bool> EnableVPlanPredication(
353     "enable-vplan-predication", cl::init(false), cl::Hidden,
354     cl::desc("Enable VPlan-native vectorization path predicator with "
355              "support for outer loop vectorization."));
356 
357 // This flag enables the stress testing of the VPlan H-CFG construction in the
358 // VPlan-native vectorization path. It must be used in conjuction with
359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
360 // verification of the H-CFGs built.
361 static cl::opt<bool> VPlanBuildStressTest(
362     "vplan-build-stress-test", cl::init(false), cl::Hidden,
363     cl::desc(
364         "Build VPlan for every supported loop nest in the function and bail "
365         "out right after the build (stress test the VPlan H-CFG construction "
366         "in the VPlan-native vectorization path)."));
367 
368 cl::opt<bool> llvm::EnableLoopInterleaving(
369     "interleave-loops", cl::init(true), cl::Hidden,
370     cl::desc("Enable loop interleaving in Loop vectorization passes"));
371 cl::opt<bool> llvm::EnableLoopVectorization(
372     "vectorize-loops", cl::init(true), cl::Hidden,
373     cl::desc("Run the Loop vectorization passes"));
374 
375 cl::opt<bool> PrintVPlansInDotFormat(
376     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
377     cl::desc("Use dot format instead of plain text when dumping VPlans"));
378 
379 /// A helper function that returns true if the given type is irregular. The
380 /// type is irregular if its allocated size doesn't equal the store size of an
381 /// element of the corresponding vector type.
382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
383   // Determine if an array of N elements of type Ty is "bitcast compatible"
384   // with a <N x Ty> vector.
385   // This is only true if there is no padding between the array elements.
386   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
387 }
388 
389 /// A helper function that returns the reciprocal of the block probability of
390 /// predicated blocks. If we return X, we are assuming the predicated block
391 /// will execute once for every X iterations of the loop header.
392 ///
393 /// TODO: We should use actual block probability here, if available. Currently,
394 ///       we always assume predicated blocks have a 50% chance of executing.
395 static unsigned getReciprocalPredBlockProb() { return 2; }
396 
397 /// A helper function that returns an integer or floating-point constant with
398 /// value C.
399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
400   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
401                            : ConstantFP::get(Ty, C);
402 }
403 
404 /// Returns "best known" trip count for the specified loop \p L as defined by
405 /// the following procedure:
406 ///   1) Returns exact trip count if it is known.
407 ///   2) Returns expected trip count according to profile data if any.
408 ///   3) Returns upper bound estimate if it is known.
409 ///   4) Returns None if all of the above failed.
410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
411   // Check if exact trip count is known.
412   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
413     return ExpectedTC;
414 
415   // Check if there is an expected trip count available from profile data.
416   if (LoopVectorizeWithBlockFrequency)
417     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
418       return EstimatedTC;
419 
420   // Check if upper bound estimate is known.
421   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
422     return ExpectedTC;
423 
424   return None;
425 }
426 
427 // Forward declare GeneratedRTChecks.
428 class GeneratedRTChecks;
429 
430 namespace llvm {
431 
432 /// InnerLoopVectorizer vectorizes loops which contain only one basic
433 /// block to a specified vectorization factor (VF).
434 /// This class performs the widening of scalars into vectors, or multiple
435 /// scalars. This class also implements the following features:
436 /// * It inserts an epilogue loop for handling loops that don't have iteration
437 ///   counts that are known to be a multiple of the vectorization factor.
438 /// * It handles the code generation for reduction variables.
439 /// * Scalarization (implementation using scalars) of un-vectorizable
440 ///   instructions.
441 /// InnerLoopVectorizer does not perform any vectorization-legality
442 /// checks, and relies on the caller to check for the different legality
443 /// aspects. The InnerLoopVectorizer relies on the
444 /// LoopVectorizationLegality class to provide information about the induction
445 /// and reduction variables that were found to a given vectorization factor.
446 class InnerLoopVectorizer {
447 public:
448   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
449                       LoopInfo *LI, DominatorTree *DT,
450                       const TargetLibraryInfo *TLI,
451                       const TargetTransformInfo *TTI, AssumptionCache *AC,
452                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
453                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
454                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
455                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
456       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
457         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
458         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
459         PSI(PSI), RTChecks(RTChecks) {
460     // Query this against the original loop and save it here because the profile
461     // of the original loop header may change as the transformation happens.
462     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
463         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
464   }
465 
466   virtual ~InnerLoopVectorizer() = default;
467 
468   /// Create a new empty loop that will contain vectorized instructions later
469   /// on, while the old loop will be used as the scalar remainder. Control flow
470   /// is generated around the vectorized (and scalar epilogue) loops consisting
471   /// of various checks and bypasses. Return the pre-header block of the new
472   /// loop.
473   /// In the case of epilogue vectorization, this function is overriden to
474   /// handle the more complex control flow around the loops.
475   virtual BasicBlock *createVectorizedLoopSkeleton();
476 
477   /// Widen a single instruction within the innermost loop.
478   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
479                         VPTransformState &State);
480 
481   /// Widen a single call instruction within the innermost loop.
482   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
483                             VPTransformState &State);
484 
485   /// Widen a single select instruction within the innermost loop.
486   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
487                               bool InvariantCond, VPTransformState &State);
488 
489   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
490   void fixVectorizedLoop(VPTransformState &State);
491 
492   // Return true if any runtime check is added.
493   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
494 
495   /// A type for vectorized values in the new loop. Each value from the
496   /// original loop, when vectorized, is represented by UF vector values in the
497   /// new unrolled loop, where UF is the unroll factor.
498   using VectorParts = SmallVector<Value *, 2>;
499 
500   /// Vectorize a single GetElementPtrInst based on information gathered and
501   /// decisions taken during planning.
502   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
503                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
504                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
505 
506   /// Vectorize a single first-order recurrence or pointer induction PHINode in
507   /// a block. This method handles the induction variable canonicalization. It
508   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
509   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
510                            VPTransformState &State);
511 
512   /// A helper function to scalarize a single Instruction in the innermost loop.
513   /// Generates a sequence of scalar instances for each lane between \p MinLane
514   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
515   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
516   /// Instr's operands.
517   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
518                             const VPIteration &Instance, bool IfPredicateInstr,
519                             VPTransformState &State);
520 
521   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
522   /// is provided, the integer induction variable will first be truncated to
523   /// the corresponding type.
524   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
525                              VPValue *Def, VPValue *CastDef,
526                              VPTransformState &State);
527 
528   /// Construct the vector value of a scalarized value \p V one lane at a time.
529   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
530                                  VPTransformState &State);
531 
532   /// Try to vectorize interleaved access group \p Group with the base address
533   /// given in \p Addr, optionally masking the vector operations if \p
534   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
535   /// values in the vectorized loop.
536   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
537                                 ArrayRef<VPValue *> VPDefs,
538                                 VPTransformState &State, VPValue *Addr,
539                                 ArrayRef<VPValue *> StoredValues,
540                                 VPValue *BlockInMask = nullptr);
541 
542   /// Vectorize Load and Store instructions with the base address given in \p
543   /// Addr, optionally masking the vector operations if \p BlockInMask is
544   /// non-null. Use \p State to translate given VPValues to IR values in the
545   /// vectorized loop.
546   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
547                                   VPValue *Def, VPValue *Addr,
548                                   VPValue *StoredValue, VPValue *BlockInMask);
549 
550   /// Set the debug location in the builder \p Ptr using the debug location in
551   /// \p V. If \p Ptr is None then it uses the class member's Builder.
552   void setDebugLocFromInst(const Value *V,
553                            Optional<IRBuilder<> *> CustomBuilder = None);
554 
555   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
556   void fixNonInductionPHIs(VPTransformState &State);
557 
558   /// Returns true if the reordering of FP operations is not allowed, but we are
559   /// able to vectorize with strict in-order reductions for the given RdxDesc.
560   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
561 
562   /// Create a broadcast instruction. This method generates a broadcast
563   /// instruction (shuffle) for loop invariant values and for the induction
564   /// value. If this is the induction variable then we extend it to N, N+1, ...
565   /// this is needed because each iteration in the loop corresponds to a SIMD
566   /// element.
567   virtual Value *getBroadcastInstrs(Value *V);
568 
569 protected:
570   friend class LoopVectorizationPlanner;
571 
572   /// A small list of PHINodes.
573   using PhiVector = SmallVector<PHINode *, 4>;
574 
575   /// A type for scalarized values in the new loop. Each value from the
576   /// original loop, when scalarized, is represented by UF x VF scalar values
577   /// in the new unrolled loop, where UF is the unroll factor and VF is the
578   /// vectorization factor.
579   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
580 
581   /// Set up the values of the IVs correctly when exiting the vector loop.
582   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
583                     Value *CountRoundDown, Value *EndValue,
584                     BasicBlock *MiddleBlock);
585 
586   /// Create a new induction variable inside L.
587   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
588                                    Value *Step, Instruction *DL);
589 
590   /// Handle all cross-iteration phis in the header.
591   void fixCrossIterationPHIs(VPTransformState &State);
592 
593   /// Fix a first-order recurrence. This is the second phase of vectorizing
594   /// this phi node.
595   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
596 
597   /// Fix a reduction cross-iteration phi. This is the second phase of
598   /// vectorizing this phi node.
599   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
600 
601   /// Clear NSW/NUW flags from reduction instructions if necessary.
602   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
603                                VPTransformState &State);
604 
605   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
606   /// means we need to add the appropriate incoming value from the middle
607   /// block as exiting edges from the scalar epilogue loop (if present) are
608   /// already in place, and we exit the vector loop exclusively to the middle
609   /// block.
610   void fixLCSSAPHIs(VPTransformState &State);
611 
612   /// Iteratively sink the scalarized operands of a predicated instruction into
613   /// the block that was created for it.
614   void sinkScalarOperands(Instruction *PredInst);
615 
616   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
617   /// represented as.
618   void truncateToMinimalBitwidths(VPTransformState &State);
619 
620   /// This function adds
621   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
622   /// to each vector element of Val. The sequence starts at StartIndex.
623   /// \p Opcode is relevant for FP induction variable.
624   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
625                                Instruction::BinaryOps Opcode =
626                                Instruction::BinaryOpsEnd);
627 
628   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
629   /// variable on which to base the steps, \p Step is the size of the step, and
630   /// \p EntryVal is the value from the original loop that maps to the steps.
631   /// Note that \p EntryVal doesn't have to be an induction variable - it
632   /// can also be a truncate instruction.
633   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
634                         const InductionDescriptor &ID, VPValue *Def,
635                         VPValue *CastDef, VPTransformState &State);
636 
637   /// Create a vector induction phi node based on an existing scalar one. \p
638   /// EntryVal is the value from the original loop that maps to the vector phi
639   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
640   /// truncate instruction, instead of widening the original IV, we widen a
641   /// version of the IV truncated to \p EntryVal's type.
642   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
643                                        Value *Step, Value *Start,
644                                        Instruction *EntryVal, VPValue *Def,
645                                        VPValue *CastDef,
646                                        VPTransformState &State);
647 
648   /// Returns true if an instruction \p I should be scalarized instead of
649   /// vectorized for the chosen vectorization factor.
650   bool shouldScalarizeInstruction(Instruction *I) const;
651 
652   /// Returns true if we should generate a scalar version of \p IV.
653   bool needsScalarInduction(Instruction *IV) const;
654 
655   /// If there is a cast involved in the induction variable \p ID, which should
656   /// be ignored in the vectorized loop body, this function records the
657   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
658   /// cast. We had already proved that the casted Phi is equal to the uncasted
659   /// Phi in the vectorized loop (under a runtime guard), and therefore
660   /// there is no need to vectorize the cast - the same value can be used in the
661   /// vector loop for both the Phi and the cast.
662   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
663   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
664   ///
665   /// \p EntryVal is the value from the original loop that maps to the vector
666   /// phi node and is used to distinguish what is the IV currently being
667   /// processed - original one (if \p EntryVal is a phi corresponding to the
668   /// original IV) or the "newly-created" one based on the proof mentioned above
669   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
670   /// latter case \p EntryVal is a TruncInst and we must not record anything for
671   /// that IV, but it's error-prone to expect callers of this routine to care
672   /// about that, hence this explicit parameter.
673   void recordVectorLoopValueForInductionCast(
674       const InductionDescriptor &ID, const Instruction *EntryVal,
675       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
676       unsigned Part, unsigned Lane = UINT_MAX);
677 
678   /// Generate a shuffle sequence that will reverse the vector Vec.
679   virtual Value *reverseVector(Value *Vec);
680 
681   /// Returns (and creates if needed) the original loop trip count.
682   Value *getOrCreateTripCount(Loop *NewLoop);
683 
684   /// Returns (and creates if needed) the trip count of the widened loop.
685   Value *getOrCreateVectorTripCount(Loop *NewLoop);
686 
687   /// Returns a bitcasted value to the requested vector type.
688   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
689   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
690                                 const DataLayout &DL);
691 
692   /// Emit a bypass check to see if the vector trip count is zero, including if
693   /// it overflows.
694   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
695 
696   /// Emit a bypass check to see if all of the SCEV assumptions we've
697   /// had to make are correct. Returns the block containing the checks or
698   /// nullptr if no checks have been added.
699   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
700 
701   /// Emit bypass checks to check any memory assumptions we may have made.
702   /// Returns the block containing the checks or nullptr if no checks have been
703   /// added.
704   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
705 
706   /// Compute the transformed value of Index at offset StartValue using step
707   /// StepValue.
708   /// For integer induction, returns StartValue + Index * StepValue.
709   /// For pointer induction, returns StartValue[Index * StepValue].
710   /// FIXME: The newly created binary instructions should contain nsw/nuw
711   /// flags, which can be found from the original scalar operations.
712   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
713                               const DataLayout &DL,
714                               const InductionDescriptor &ID) const;
715 
716   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
717   /// vector loop preheader, middle block and scalar preheader. Also
718   /// allocate a loop object for the new vector loop and return it.
719   Loop *createVectorLoopSkeleton(StringRef Prefix);
720 
721   /// Create new phi nodes for the induction variables to resume iteration count
722   /// in the scalar epilogue, from where the vectorized loop left off (given by
723   /// \p VectorTripCount).
724   /// In cases where the loop skeleton is more complicated (eg. epilogue
725   /// vectorization) and the resume values can come from an additional bypass
726   /// block, the \p AdditionalBypass pair provides information about the bypass
727   /// block and the end value on the edge from bypass to this loop.
728   void createInductionResumeValues(
729       Loop *L, Value *VectorTripCount,
730       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
731 
732   /// Complete the loop skeleton by adding debug MDs, creating appropriate
733   /// conditional branches in the middle block, preparing the builder and
734   /// running the verifier. Take in the vector loop \p L as argument, and return
735   /// the preheader of the completed vector loop.
736   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
737 
738   /// Add additional metadata to \p To that was not present on \p Orig.
739   ///
740   /// Currently this is used to add the noalias annotations based on the
741   /// inserted memchecks.  Use this for instructions that are *cloned* into the
742   /// vector loop.
743   void addNewMetadata(Instruction *To, const Instruction *Orig);
744 
745   /// Add metadata from one instruction to another.
746   ///
747   /// This includes both the original MDs from \p From and additional ones (\see
748   /// addNewMetadata).  Use this for *newly created* instructions in the vector
749   /// loop.
750   void addMetadata(Instruction *To, Instruction *From);
751 
752   /// Similar to the previous function but it adds the metadata to a
753   /// vector of instructions.
754   void addMetadata(ArrayRef<Value *> To, Instruction *From);
755 
756   /// Allow subclasses to override and print debug traces before/after vplan
757   /// execution, when trace information is requested.
758   virtual void printDebugTracesAtStart(){};
759   virtual void printDebugTracesAtEnd(){};
760 
761   /// The original loop.
762   Loop *OrigLoop;
763 
764   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
765   /// dynamic knowledge to simplify SCEV expressions and converts them to a
766   /// more usable form.
767   PredicatedScalarEvolution &PSE;
768 
769   /// Loop Info.
770   LoopInfo *LI;
771 
772   /// Dominator Tree.
773   DominatorTree *DT;
774 
775   /// Alias Analysis.
776   AAResults *AA;
777 
778   /// Target Library Info.
779   const TargetLibraryInfo *TLI;
780 
781   /// Target Transform Info.
782   const TargetTransformInfo *TTI;
783 
784   /// Assumption Cache.
785   AssumptionCache *AC;
786 
787   /// Interface to emit optimization remarks.
788   OptimizationRemarkEmitter *ORE;
789 
790   /// LoopVersioning.  It's only set up (non-null) if memchecks were
791   /// used.
792   ///
793   /// This is currently only used to add no-alias metadata based on the
794   /// memchecks.  The actually versioning is performed manually.
795   std::unique_ptr<LoopVersioning> LVer;
796 
797   /// The vectorization SIMD factor to use. Each vector will have this many
798   /// vector elements.
799   ElementCount VF;
800 
801   /// The vectorization unroll factor to use. Each scalar is vectorized to this
802   /// many different vector instructions.
803   unsigned UF;
804 
805   /// The builder that we use
806   IRBuilder<> Builder;
807 
808   // --- Vectorization state ---
809 
810   /// The vector-loop preheader.
811   BasicBlock *LoopVectorPreHeader;
812 
813   /// The scalar-loop preheader.
814   BasicBlock *LoopScalarPreHeader;
815 
816   /// Middle Block between the vector and the scalar.
817   BasicBlock *LoopMiddleBlock;
818 
819   /// The unique ExitBlock of the scalar loop if one exists.  Note that
820   /// there can be multiple exiting edges reaching this block.
821   BasicBlock *LoopExitBlock;
822 
823   /// The vector loop body.
824   BasicBlock *LoopVectorBody;
825 
826   /// The scalar loop body.
827   BasicBlock *LoopScalarBody;
828 
829   /// A list of all bypass blocks. The first block is the entry of the loop.
830   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
831 
832   /// The new Induction variable which was added to the new block.
833   PHINode *Induction = nullptr;
834 
835   /// The induction variable of the old basic block.
836   PHINode *OldInduction = nullptr;
837 
838   /// Store instructions that were predicated.
839   SmallVector<Instruction *, 4> PredicatedInstructions;
840 
841   /// Trip count of the original loop.
842   Value *TripCount = nullptr;
843 
844   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
845   Value *VectorTripCount = nullptr;
846 
847   /// The legality analysis.
848   LoopVectorizationLegality *Legal;
849 
850   /// The profitablity analysis.
851   LoopVectorizationCostModel *Cost;
852 
853   // Record whether runtime checks are added.
854   bool AddedSafetyChecks = false;
855 
856   // Holds the end values for each induction variable. We save the end values
857   // so we can later fix-up the external users of the induction variables.
858   DenseMap<PHINode *, Value *> IVEndValues;
859 
860   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
861   // fixed up at the end of vector code generation.
862   SmallVector<PHINode *, 8> OrigPHIsToFix;
863 
864   /// BFI and PSI are used to check for profile guided size optimizations.
865   BlockFrequencyInfo *BFI;
866   ProfileSummaryInfo *PSI;
867 
868   // Whether this loop should be optimized for size based on profile guided size
869   // optimizatios.
870   bool OptForSizeBasedOnProfile;
871 
872   /// Structure to hold information about generated runtime checks, responsible
873   /// for cleaning the checks, if vectorization turns out unprofitable.
874   GeneratedRTChecks &RTChecks;
875 };
876 
877 class InnerLoopUnroller : public InnerLoopVectorizer {
878 public:
879   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
880                     LoopInfo *LI, DominatorTree *DT,
881                     const TargetLibraryInfo *TLI,
882                     const TargetTransformInfo *TTI, AssumptionCache *AC,
883                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
884                     LoopVectorizationLegality *LVL,
885                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
886                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
887       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
888                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
889                             BFI, PSI, Check) {}
890 
891 private:
892   Value *getBroadcastInstrs(Value *V) override;
893   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
894                        Instruction::BinaryOps Opcode =
895                        Instruction::BinaryOpsEnd) override;
896   Value *reverseVector(Value *Vec) override;
897 };
898 
899 /// Encapsulate information regarding vectorization of a loop and its epilogue.
900 /// This information is meant to be updated and used across two stages of
901 /// epilogue vectorization.
902 struct EpilogueLoopVectorizationInfo {
903   ElementCount MainLoopVF = ElementCount::getFixed(0);
904   unsigned MainLoopUF = 0;
905   ElementCount EpilogueVF = ElementCount::getFixed(0);
906   unsigned EpilogueUF = 0;
907   BasicBlock *MainLoopIterationCountCheck = nullptr;
908   BasicBlock *EpilogueIterationCountCheck = nullptr;
909   BasicBlock *SCEVSafetyCheck = nullptr;
910   BasicBlock *MemSafetyCheck = nullptr;
911   Value *TripCount = nullptr;
912   Value *VectorTripCount = nullptr;
913 
914   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
915                                 unsigned EUF)
916       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
917         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
918     assert(EUF == 1 &&
919            "A high UF for the epilogue loop is likely not beneficial.");
920   }
921 };
922 
923 /// An extension of the inner loop vectorizer that creates a skeleton for a
924 /// vectorized loop that has its epilogue (residual) also vectorized.
925 /// The idea is to run the vplan on a given loop twice, firstly to setup the
926 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
927 /// from the first step and vectorize the epilogue.  This is achieved by
928 /// deriving two concrete strategy classes from this base class and invoking
929 /// them in succession from the loop vectorizer planner.
930 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
931 public:
932   InnerLoopAndEpilogueVectorizer(
933       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
934       DominatorTree *DT, const TargetLibraryInfo *TLI,
935       const TargetTransformInfo *TTI, AssumptionCache *AC,
936       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
937       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
938       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
939       GeneratedRTChecks &Checks)
940       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
941                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
942                             Checks),
943         EPI(EPI) {}
944 
945   // Override this function to handle the more complex control flow around the
946   // three loops.
947   BasicBlock *createVectorizedLoopSkeleton() final override {
948     return createEpilogueVectorizedLoopSkeleton();
949   }
950 
951   /// The interface for creating a vectorized skeleton using one of two
952   /// different strategies, each corresponding to one execution of the vplan
953   /// as described above.
954   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
955 
956   /// Holds and updates state information required to vectorize the main loop
957   /// and its epilogue in two separate passes. This setup helps us avoid
958   /// regenerating and recomputing runtime safety checks. It also helps us to
959   /// shorten the iteration-count-check path length for the cases where the
960   /// iteration count of the loop is so small that the main vector loop is
961   /// completely skipped.
962   EpilogueLoopVectorizationInfo &EPI;
963 };
964 
965 /// A specialized derived class of inner loop vectorizer that performs
966 /// vectorization of *main* loops in the process of vectorizing loops and their
967 /// epilogues.
968 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
969 public:
970   EpilogueVectorizerMainLoop(
971       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
972       DominatorTree *DT, const TargetLibraryInfo *TLI,
973       const TargetTransformInfo *TTI, AssumptionCache *AC,
974       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
975       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
976       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
977       GeneratedRTChecks &Check)
978       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
979                                        EPI, LVL, CM, BFI, PSI, Check) {}
980   /// Implements the interface for creating a vectorized skeleton using the
981   /// *main loop* strategy (ie the first pass of vplan execution).
982   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
983 
984 protected:
985   /// Emits an iteration count bypass check once for the main loop (when \p
986   /// ForEpilogue is false) and once for the epilogue loop (when \p
987   /// ForEpilogue is true).
988   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
989                                              bool ForEpilogue);
990   void printDebugTracesAtStart() override;
991   void printDebugTracesAtEnd() override;
992 };
993 
994 // A specialized derived class of inner loop vectorizer that performs
995 // vectorization of *epilogue* loops in the process of vectorizing loops and
996 // their epilogues.
997 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
998 public:
999   EpilogueVectorizerEpilogueLoop(
1000       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1001       DominatorTree *DT, const TargetLibraryInfo *TLI,
1002       const TargetTransformInfo *TTI, AssumptionCache *AC,
1003       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1004       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1005       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1006       GeneratedRTChecks &Checks)
1007       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1008                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1009   /// Implements the interface for creating a vectorized skeleton using the
1010   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1011   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1012 
1013 protected:
1014   /// Emits an iteration count bypass check after the main vector loop has
1015   /// finished to see if there are any iterations left to execute by either
1016   /// the vector epilogue or the scalar epilogue.
1017   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1018                                                       BasicBlock *Bypass,
1019                                                       BasicBlock *Insert);
1020   void printDebugTracesAtStart() override;
1021   void printDebugTracesAtEnd() override;
1022 };
1023 } // end namespace llvm
1024 
1025 /// Look for a meaningful debug location on the instruction or it's
1026 /// operands.
1027 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1028   if (!I)
1029     return I;
1030 
1031   DebugLoc Empty;
1032   if (I->getDebugLoc() != Empty)
1033     return I;
1034 
1035   for (Use &Op : I->operands()) {
1036     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1037       if (OpInst->getDebugLoc() != Empty)
1038         return OpInst;
1039   }
1040 
1041   return I;
1042 }
1043 
1044 void InnerLoopVectorizer::setDebugLocFromInst(
1045     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1046   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1047   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1048     const DILocation *DIL = Inst->getDebugLoc();
1049 
1050     // When a FSDiscriminator is enabled, we don't need to add the multiply
1051     // factors to the discriminators.
1052     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1053         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1054       // FIXME: For scalable vectors, assume vscale=1.
1055       auto NewDIL =
1056           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1057       if (NewDIL)
1058         B->SetCurrentDebugLocation(NewDIL.getValue());
1059       else
1060         LLVM_DEBUG(dbgs()
1061                    << "Failed to create new discriminator: "
1062                    << DIL->getFilename() << " Line: " << DIL->getLine());
1063     } else
1064       B->SetCurrentDebugLocation(DIL);
1065   } else
1066     B->SetCurrentDebugLocation(DebugLoc());
1067 }
1068 
1069 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1070 /// is passed, the message relates to that particular instruction.
1071 #ifndef NDEBUG
1072 static void debugVectorizationMessage(const StringRef Prefix,
1073                                       const StringRef DebugMsg,
1074                                       Instruction *I) {
1075   dbgs() << "LV: " << Prefix << DebugMsg;
1076   if (I != nullptr)
1077     dbgs() << " " << *I;
1078   else
1079     dbgs() << '.';
1080   dbgs() << '\n';
1081 }
1082 #endif
1083 
1084 /// Create an analysis remark that explains why vectorization failed
1085 ///
1086 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1087 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1088 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1089 /// the location of the remark.  \return the remark object that can be
1090 /// streamed to.
1091 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1092     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1093   Value *CodeRegion = TheLoop->getHeader();
1094   DebugLoc DL = TheLoop->getStartLoc();
1095 
1096   if (I) {
1097     CodeRegion = I->getParent();
1098     // If there is no debug location attached to the instruction, revert back to
1099     // using the loop's.
1100     if (I->getDebugLoc())
1101       DL = I->getDebugLoc();
1102   }
1103 
1104   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1105 }
1106 
1107 /// Return a value for Step multiplied by VF.
1108 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1109   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1110   Constant *StepVal = ConstantInt::get(
1111       Step->getType(),
1112       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1113   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1114 }
1115 
1116 namespace llvm {
1117 
1118 /// Return the runtime value for VF.
1119 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1120   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1121   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1122 }
1123 
1124 void reportVectorizationFailure(const StringRef DebugMsg,
1125                                 const StringRef OREMsg, const StringRef ORETag,
1126                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1127                                 Instruction *I) {
1128   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1129   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1130   ORE->emit(
1131       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1132       << "loop not vectorized: " << OREMsg);
1133 }
1134 
1135 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1136                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1137                              Instruction *I) {
1138   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1139   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1140   ORE->emit(
1141       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1142       << Msg);
1143 }
1144 
1145 } // end namespace llvm
1146 
1147 #ifndef NDEBUG
1148 /// \return string containing a file name and a line # for the given loop.
1149 static std::string getDebugLocString(const Loop *L) {
1150   std::string Result;
1151   if (L) {
1152     raw_string_ostream OS(Result);
1153     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1154       LoopDbgLoc.print(OS);
1155     else
1156       // Just print the module name.
1157       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1158     OS.flush();
1159   }
1160   return Result;
1161 }
1162 #endif
1163 
1164 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1165                                          const Instruction *Orig) {
1166   // If the loop was versioned with memchecks, add the corresponding no-alias
1167   // metadata.
1168   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1169     LVer->annotateInstWithNoAlias(To, Orig);
1170 }
1171 
1172 void InnerLoopVectorizer::addMetadata(Instruction *To,
1173                                       Instruction *From) {
1174   propagateMetadata(To, From);
1175   addNewMetadata(To, From);
1176 }
1177 
1178 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1179                                       Instruction *From) {
1180   for (Value *V : To) {
1181     if (Instruction *I = dyn_cast<Instruction>(V))
1182       addMetadata(I, From);
1183   }
1184 }
1185 
1186 namespace llvm {
1187 
1188 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1189 // lowered.
1190 enum ScalarEpilogueLowering {
1191 
1192   // The default: allowing scalar epilogues.
1193   CM_ScalarEpilogueAllowed,
1194 
1195   // Vectorization with OptForSize: don't allow epilogues.
1196   CM_ScalarEpilogueNotAllowedOptSize,
1197 
1198   // A special case of vectorisation with OptForSize: loops with a very small
1199   // trip count are considered for vectorization under OptForSize, thereby
1200   // making sure the cost of their loop body is dominant, free of runtime
1201   // guards and scalar iteration overheads.
1202   CM_ScalarEpilogueNotAllowedLowTripLoop,
1203 
1204   // Loop hint predicate indicating an epilogue is undesired.
1205   CM_ScalarEpilogueNotNeededUsePredicate,
1206 
1207   // Directive indicating we must either tail fold or not vectorize
1208   CM_ScalarEpilogueNotAllowedUsePredicate
1209 };
1210 
1211 /// ElementCountComparator creates a total ordering for ElementCount
1212 /// for the purposes of using it in a set structure.
1213 struct ElementCountComparator {
1214   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1215     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1216            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1217   }
1218 };
1219 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1220 
1221 /// LoopVectorizationCostModel - estimates the expected speedups due to
1222 /// vectorization.
1223 /// In many cases vectorization is not profitable. This can happen because of
1224 /// a number of reasons. In this class we mainly attempt to predict the
1225 /// expected speedup/slowdowns due to the supported instruction set. We use the
1226 /// TargetTransformInfo to query the different backends for the cost of
1227 /// different operations.
1228 class LoopVectorizationCostModel {
1229 public:
1230   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1231                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1232                              LoopVectorizationLegality *Legal,
1233                              const TargetTransformInfo &TTI,
1234                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1235                              AssumptionCache *AC,
1236                              OptimizationRemarkEmitter *ORE, const Function *F,
1237                              const LoopVectorizeHints *Hints,
1238                              InterleavedAccessInfo &IAI)
1239       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1240         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1241         Hints(Hints), InterleaveInfo(IAI) {}
1242 
1243   /// \return An upper bound for the vectorization factors (both fixed and
1244   /// scalable). If the factors are 0, vectorization and interleaving should be
1245   /// avoided up front.
1246   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1247 
1248   /// \return True if runtime checks are required for vectorization, and false
1249   /// otherwise.
1250   bool runtimeChecksRequired();
1251 
1252   /// \return The most profitable vectorization factor and the cost of that VF.
1253   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1254   /// then this vectorization factor will be selected if vectorization is
1255   /// possible.
1256   VectorizationFactor
1257   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1258 
1259   VectorizationFactor
1260   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1261                                     const LoopVectorizationPlanner &LVP);
1262 
1263   /// Setup cost-based decisions for user vectorization factor.
1264   /// \return true if the UserVF is a feasible VF to be chosen.
1265   bool selectUserVectorizationFactor(ElementCount UserVF) {
1266     collectUniformsAndScalars(UserVF);
1267     collectInstsToScalarize(UserVF);
1268     return expectedCost(UserVF).first.isValid();
1269   }
1270 
1271   /// \return The size (in bits) of the smallest and widest types in the code
1272   /// that needs to be vectorized. We ignore values that remain scalar such as
1273   /// 64 bit loop indices.
1274   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1275 
1276   /// \return The desired interleave count.
1277   /// If interleave count has been specified by metadata it will be returned.
1278   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1279   /// are the selected vectorization factor and the cost of the selected VF.
1280   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1281 
1282   /// Memory access instruction may be vectorized in more than one way.
1283   /// Form of instruction after vectorization depends on cost.
1284   /// This function takes cost-based decisions for Load/Store instructions
1285   /// and collects them in a map. This decisions map is used for building
1286   /// the lists of loop-uniform and loop-scalar instructions.
1287   /// The calculated cost is saved with widening decision in order to
1288   /// avoid redundant calculations.
1289   void setCostBasedWideningDecision(ElementCount VF);
1290 
1291   /// A struct that represents some properties of the register usage
1292   /// of a loop.
1293   struct RegisterUsage {
1294     /// Holds the number of loop invariant values that are used in the loop.
1295     /// The key is ClassID of target-provided register class.
1296     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1297     /// Holds the maximum number of concurrent live intervals in the loop.
1298     /// The key is ClassID of target-provided register class.
1299     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1300   };
1301 
1302   /// \return Returns information about the register usages of the loop for the
1303   /// given vectorization factors.
1304   SmallVector<RegisterUsage, 8>
1305   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1306 
1307   /// Collect values we want to ignore in the cost model.
1308   void collectValuesToIgnore();
1309 
1310   /// Collect all element types in the loop for which widening is needed.
1311   void collectElementTypesForWidening();
1312 
1313   /// Split reductions into those that happen in the loop, and those that happen
1314   /// outside. In loop reductions are collected into InLoopReductionChains.
1315   void collectInLoopReductions();
1316 
1317   /// Returns true if we should use strict in-order reductions for the given
1318   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1319   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1320   /// of FP operations.
1321   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1322     return EnableStrictReductions && !Hints->allowReordering() &&
1323            RdxDesc.isOrdered();
1324   }
1325 
1326   /// \returns The smallest bitwidth each instruction can be represented with.
1327   /// The vector equivalents of these instructions should be truncated to this
1328   /// type.
1329   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1330     return MinBWs;
1331   }
1332 
1333   /// \returns True if it is more profitable to scalarize instruction \p I for
1334   /// vectorization factor \p VF.
1335   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1336     assert(VF.isVector() &&
1337            "Profitable to scalarize relevant only for VF > 1.");
1338 
1339     // Cost model is not run in the VPlan-native path - return conservative
1340     // result until this changes.
1341     if (EnableVPlanNativePath)
1342       return false;
1343 
1344     auto Scalars = InstsToScalarize.find(VF);
1345     assert(Scalars != InstsToScalarize.end() &&
1346            "VF not yet analyzed for scalarization profitability");
1347     return Scalars->second.find(I) != Scalars->second.end();
1348   }
1349 
1350   /// Returns true if \p I is known to be uniform after vectorization.
1351   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1352     if (VF.isScalar())
1353       return true;
1354 
1355     // Cost model is not run in the VPlan-native path - return conservative
1356     // result until this changes.
1357     if (EnableVPlanNativePath)
1358       return false;
1359 
1360     auto UniformsPerVF = Uniforms.find(VF);
1361     assert(UniformsPerVF != Uniforms.end() &&
1362            "VF not yet analyzed for uniformity");
1363     return UniformsPerVF->second.count(I);
1364   }
1365 
1366   /// Returns true if \p I is known to be scalar after vectorization.
1367   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1368     if (VF.isScalar())
1369       return true;
1370 
1371     // Cost model is not run in the VPlan-native path - return conservative
1372     // result until this changes.
1373     if (EnableVPlanNativePath)
1374       return false;
1375 
1376     auto ScalarsPerVF = Scalars.find(VF);
1377     assert(ScalarsPerVF != Scalars.end() &&
1378            "Scalar values are not calculated for VF");
1379     return ScalarsPerVF->second.count(I);
1380   }
1381 
1382   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1383   /// for vectorization factor \p VF.
1384   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1385     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1386            !isProfitableToScalarize(I, VF) &&
1387            !isScalarAfterVectorization(I, VF);
1388   }
1389 
1390   /// Decision that was taken during cost calculation for memory instruction.
1391   enum InstWidening {
1392     CM_Unknown,
1393     CM_Widen,         // For consecutive accesses with stride +1.
1394     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1395     CM_Interleave,
1396     CM_GatherScatter,
1397     CM_Scalarize
1398   };
1399 
1400   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1401   /// instruction \p I and vector width \p VF.
1402   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1403                            InstructionCost Cost) {
1404     assert(VF.isVector() && "Expected VF >=2");
1405     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1406   }
1407 
1408   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1409   /// interleaving group \p Grp and vector width \p VF.
1410   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1411                            ElementCount VF, InstWidening W,
1412                            InstructionCost Cost) {
1413     assert(VF.isVector() && "Expected VF >=2");
1414     /// Broadcast this decicion to all instructions inside the group.
1415     /// But the cost will be assigned to one instruction only.
1416     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1417       if (auto *I = Grp->getMember(i)) {
1418         if (Grp->getInsertPos() == I)
1419           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1420         else
1421           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1422       }
1423     }
1424   }
1425 
1426   /// Return the cost model decision for the given instruction \p I and vector
1427   /// width \p VF. Return CM_Unknown if this instruction did not pass
1428   /// through the cost modeling.
1429   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1430     assert(VF.isVector() && "Expected VF to be a vector VF");
1431     // Cost model is not run in the VPlan-native path - return conservative
1432     // result until this changes.
1433     if (EnableVPlanNativePath)
1434       return CM_GatherScatter;
1435 
1436     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1437     auto Itr = WideningDecisions.find(InstOnVF);
1438     if (Itr == WideningDecisions.end())
1439       return CM_Unknown;
1440     return Itr->second.first;
1441   }
1442 
1443   /// Return the vectorization cost for the given instruction \p I and vector
1444   /// width \p VF.
1445   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1446     assert(VF.isVector() && "Expected VF >=2");
1447     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1448     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1449            "The cost is not calculated");
1450     return WideningDecisions[InstOnVF].second;
1451   }
1452 
1453   /// Return True if instruction \p I is an optimizable truncate whose operand
1454   /// is an induction variable. Such a truncate will be removed by adding a new
1455   /// induction variable with the destination type.
1456   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1457     // If the instruction is not a truncate, return false.
1458     auto *Trunc = dyn_cast<TruncInst>(I);
1459     if (!Trunc)
1460       return false;
1461 
1462     // Get the source and destination types of the truncate.
1463     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1464     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1465 
1466     // If the truncate is free for the given types, return false. Replacing a
1467     // free truncate with an induction variable would add an induction variable
1468     // update instruction to each iteration of the loop. We exclude from this
1469     // check the primary induction variable since it will need an update
1470     // instruction regardless.
1471     Value *Op = Trunc->getOperand(0);
1472     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1473       return false;
1474 
1475     // If the truncated value is not an induction variable, return false.
1476     return Legal->isInductionPhi(Op);
1477   }
1478 
1479   /// Collects the instructions to scalarize for each predicated instruction in
1480   /// the loop.
1481   void collectInstsToScalarize(ElementCount VF);
1482 
1483   /// Collect Uniform and Scalar values for the given \p VF.
1484   /// The sets depend on CM decision for Load/Store instructions
1485   /// that may be vectorized as interleave, gather-scatter or scalarized.
1486   void collectUniformsAndScalars(ElementCount VF) {
1487     // Do the analysis once.
1488     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1489       return;
1490     setCostBasedWideningDecision(VF);
1491     collectLoopUniforms(VF);
1492     collectLoopScalars(VF);
1493   }
1494 
1495   /// Returns true if the target machine supports masked store operation
1496   /// for the given \p DataType and kind of access to \p Ptr.
1497   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1498     return Legal->isConsecutivePtr(Ptr) &&
1499            TTI.isLegalMaskedStore(DataType, Alignment);
1500   }
1501 
1502   /// Returns true if the target machine supports masked load operation
1503   /// for the given \p DataType and kind of access to \p Ptr.
1504   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1505     return Legal->isConsecutivePtr(Ptr) &&
1506            TTI.isLegalMaskedLoad(DataType, Alignment);
1507   }
1508 
1509   /// Returns true if the target machine can represent \p V as a masked gather
1510   /// or scatter operation.
1511   bool isLegalGatherOrScatter(Value *V) {
1512     bool LI = isa<LoadInst>(V);
1513     bool SI = isa<StoreInst>(V);
1514     if (!LI && !SI)
1515       return false;
1516     auto *Ty = getLoadStoreType(V);
1517     Align Align = getLoadStoreAlignment(V);
1518     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1519            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1520   }
1521 
1522   /// Returns true if the target machine supports all of the reduction
1523   /// variables found for the given VF.
1524   bool canVectorizeReductions(ElementCount VF) const {
1525     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1526       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1527       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1528     }));
1529   }
1530 
1531   /// Returns true if \p I is an instruction that will be scalarized with
1532   /// predication. Such instructions include conditional stores and
1533   /// instructions that may divide by zero.
1534   /// If a non-zero VF has been calculated, we check if I will be scalarized
1535   /// predication for that VF.
1536   bool isScalarWithPredication(Instruction *I) const;
1537 
1538   // Returns true if \p I is an instruction that will be predicated either
1539   // through scalar predication or masked load/store or masked gather/scatter.
1540   // Superset of instructions that return true for isScalarWithPredication.
1541   bool isPredicatedInst(Instruction *I) {
1542     if (!blockNeedsPredication(I->getParent()))
1543       return false;
1544     // Loads and stores that need some form of masked operation are predicated
1545     // instructions.
1546     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1547       return Legal->isMaskRequired(I);
1548     return isScalarWithPredication(I);
1549   }
1550 
1551   /// Returns true if \p I is a memory instruction with consecutive memory
1552   /// access that can be widened.
1553   bool
1554   memoryInstructionCanBeWidened(Instruction *I,
1555                                 ElementCount VF = ElementCount::getFixed(1));
1556 
1557   /// Returns true if \p I is a memory instruction in an interleaved-group
1558   /// of memory accesses that can be vectorized with wide vector loads/stores
1559   /// and shuffles.
1560   bool
1561   interleavedAccessCanBeWidened(Instruction *I,
1562                                 ElementCount VF = ElementCount::getFixed(1));
1563 
1564   /// Check if \p Instr belongs to any interleaved access group.
1565   bool isAccessInterleaved(Instruction *Instr) {
1566     return InterleaveInfo.isInterleaved(Instr);
1567   }
1568 
1569   /// Get the interleaved access group that \p Instr belongs to.
1570   const InterleaveGroup<Instruction> *
1571   getInterleavedAccessGroup(Instruction *Instr) {
1572     return InterleaveInfo.getInterleaveGroup(Instr);
1573   }
1574 
1575   /// Returns true if we're required to use a scalar epilogue for at least
1576   /// the final iteration of the original loop.
1577   bool requiresScalarEpilogue(ElementCount VF) const {
1578     if (!isScalarEpilogueAllowed())
1579       return false;
1580     // If we might exit from anywhere but the latch, must run the exiting
1581     // iteration in scalar form.
1582     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1583       return true;
1584     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1585   }
1586 
1587   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1588   /// loop hint annotation.
1589   bool isScalarEpilogueAllowed() const {
1590     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1591   }
1592 
1593   /// Returns true if all loop blocks should be masked to fold tail loop.
1594   bool foldTailByMasking() const { return FoldTailByMasking; }
1595 
1596   bool blockNeedsPredication(BasicBlock *BB) const {
1597     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1598   }
1599 
1600   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1601   /// nodes to the chain of instructions representing the reductions. Uses a
1602   /// MapVector to ensure deterministic iteration order.
1603   using ReductionChainMap =
1604       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1605 
1606   /// Return the chain of instructions representing an inloop reduction.
1607   const ReductionChainMap &getInLoopReductionChains() const {
1608     return InLoopReductionChains;
1609   }
1610 
1611   /// Returns true if the Phi is part of an inloop reduction.
1612   bool isInLoopReduction(PHINode *Phi) const {
1613     return InLoopReductionChains.count(Phi);
1614   }
1615 
1616   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1617   /// with factor VF.  Return the cost of the instruction, including
1618   /// scalarization overhead if it's needed.
1619   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1620 
1621   /// Estimate cost of a call instruction CI if it were vectorized with factor
1622   /// VF. Return the cost of the instruction, including scalarization overhead
1623   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1624   /// scalarized -
1625   /// i.e. either vector version isn't available, or is too expensive.
1626   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1627                                     bool &NeedToScalarize) const;
1628 
1629   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1630   /// that of B.
1631   bool isMoreProfitable(const VectorizationFactor &A,
1632                         const VectorizationFactor &B) const;
1633 
1634   /// Invalidates decisions already taken by the cost model.
1635   void invalidateCostModelingDecisions() {
1636     WideningDecisions.clear();
1637     Uniforms.clear();
1638     Scalars.clear();
1639   }
1640 
1641 private:
1642   unsigned NumPredStores = 0;
1643 
1644   /// \return An upper bound for the vectorization factors for both
1645   /// fixed and scalable vectorization, where the minimum-known number of
1646   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1647   /// disabled or unsupported, then the scalable part will be equal to
1648   /// ElementCount::getScalable(0).
1649   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1650                                            ElementCount UserVF);
1651 
1652   /// \return the maximized element count based on the targets vector
1653   /// registers and the loop trip-count, but limited to a maximum safe VF.
1654   /// This is a helper function of computeFeasibleMaxVF.
1655   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1656   /// issue that occurred on one of the buildbots which cannot be reproduced
1657   /// without having access to the properietary compiler (see comments on
1658   /// D98509). The issue is currently under investigation and this workaround
1659   /// will be removed as soon as possible.
1660   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1661                                        unsigned SmallestType,
1662                                        unsigned WidestType,
1663                                        const ElementCount &MaxSafeVF);
1664 
1665   /// \return the maximum legal scalable VF, based on the safe max number
1666   /// of elements.
1667   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1668 
1669   /// The vectorization cost is a combination of the cost itself and a boolean
1670   /// indicating whether any of the contributing operations will actually
1671   /// operate on vector values after type legalization in the backend. If this
1672   /// latter value is false, then all operations will be scalarized (i.e. no
1673   /// vectorization has actually taken place).
1674   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1675 
1676   /// Returns the expected execution cost. The unit of the cost does
1677   /// not matter because we use the 'cost' units to compare different
1678   /// vector widths. The cost that is returned is *not* normalized by
1679   /// the factor width. If \p Invalid is not nullptr, this function
1680   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1681   /// each instruction that has an Invalid cost for the given VF.
1682   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1683   VectorizationCostTy
1684   expectedCost(ElementCount VF,
1685                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1686 
1687   /// Returns the execution time cost of an instruction for a given vector
1688   /// width. Vector width of one means scalar.
1689   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1690 
1691   /// The cost-computation logic from getInstructionCost which provides
1692   /// the vector type as an output parameter.
1693   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1694                                      Type *&VectorTy);
1695 
1696   /// Return the cost of instructions in an inloop reduction pattern, if I is
1697   /// part of that pattern.
1698   Optional<InstructionCost>
1699   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1700                           TTI::TargetCostKind CostKind);
1701 
1702   /// Calculate vectorization cost of memory instruction \p I.
1703   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1704 
1705   /// The cost computation for scalarized memory instruction.
1706   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost computation for interleaving group of memory instructions.
1709   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1710 
1711   /// The cost computation for Gather/Scatter instruction.
1712   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1713 
1714   /// The cost computation for widening instruction \p I with consecutive
1715   /// memory access.
1716   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1717 
1718   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1719   /// Load: scalar load + broadcast.
1720   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1721   /// element)
1722   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1723 
1724   /// Estimate the overhead of scalarizing an instruction. This is a
1725   /// convenience wrapper for the type-based getScalarizationOverhead API.
1726   InstructionCost getScalarizationOverhead(Instruction *I,
1727                                            ElementCount VF) const;
1728 
1729   /// Returns whether the instruction is a load or store and will be a emitted
1730   /// as a vector operation.
1731   bool isConsecutiveLoadOrStore(Instruction *I);
1732 
1733   /// Returns true if an artificially high cost for emulated masked memrefs
1734   /// should be used.
1735   bool useEmulatedMaskMemRefHack(Instruction *I);
1736 
1737   /// Map of scalar integer values to the smallest bitwidth they can be legally
1738   /// represented as. The vector equivalents of these values should be truncated
1739   /// to this type.
1740   MapVector<Instruction *, uint64_t> MinBWs;
1741 
1742   /// A type representing the costs for instructions if they were to be
1743   /// scalarized rather than vectorized. The entries are Instruction-Cost
1744   /// pairs.
1745   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1746 
1747   /// A set containing all BasicBlocks that are known to present after
1748   /// vectorization as a predicated block.
1749   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1750 
1751   /// Records whether it is allowed to have the original scalar loop execute at
1752   /// least once. This may be needed as a fallback loop in case runtime
1753   /// aliasing/dependence checks fail, or to handle the tail/remainder
1754   /// iterations when the trip count is unknown or doesn't divide by the VF,
1755   /// or as a peel-loop to handle gaps in interleave-groups.
1756   /// Under optsize and when the trip count is very small we don't allow any
1757   /// iterations to execute in the scalar loop.
1758   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1759 
1760   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1761   bool FoldTailByMasking = false;
1762 
1763   /// A map holding scalar costs for different vectorization factors. The
1764   /// presence of a cost for an instruction in the mapping indicates that the
1765   /// instruction will be scalarized when vectorizing with the associated
1766   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1767   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1768 
1769   /// Holds the instructions known to be uniform after vectorization.
1770   /// The data is collected per VF.
1771   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1772 
1773   /// Holds the instructions known to be scalar after vectorization.
1774   /// The data is collected per VF.
1775   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1776 
1777   /// Holds the instructions (address computations) that are forced to be
1778   /// scalarized.
1779   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1780 
1781   /// PHINodes of the reductions that should be expanded in-loop along with
1782   /// their associated chains of reduction operations, in program order from top
1783   /// (PHI) to bottom
1784   ReductionChainMap InLoopReductionChains;
1785 
1786   /// A Map of inloop reduction operations and their immediate chain operand.
1787   /// FIXME: This can be removed once reductions can be costed correctly in
1788   /// vplan. This was added to allow quick lookup to the inloop operations,
1789   /// without having to loop through InLoopReductionChains.
1790   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1791 
1792   /// Returns the expected difference in cost from scalarizing the expression
1793   /// feeding a predicated instruction \p PredInst. The instructions to
1794   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1795   /// non-negative return value implies the expression will be scalarized.
1796   /// Currently, only single-use chains are considered for scalarization.
1797   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1798                               ElementCount VF);
1799 
1800   /// Collect the instructions that are uniform after vectorization. An
1801   /// instruction is uniform if we represent it with a single scalar value in
1802   /// the vectorized loop corresponding to each vector iteration. Examples of
1803   /// uniform instructions include pointer operands of consecutive or
1804   /// interleaved memory accesses. Note that although uniformity implies an
1805   /// instruction will be scalar, the reverse is not true. In general, a
1806   /// scalarized instruction will be represented by VF scalar values in the
1807   /// vectorized loop, each corresponding to an iteration of the original
1808   /// scalar loop.
1809   void collectLoopUniforms(ElementCount VF);
1810 
1811   /// Collect the instructions that are scalar after vectorization. An
1812   /// instruction is scalar if it is known to be uniform or will be scalarized
1813   /// during vectorization. Non-uniform scalarized instructions will be
1814   /// represented by VF values in the vectorized loop, each corresponding to an
1815   /// iteration of the original scalar loop.
1816   void collectLoopScalars(ElementCount VF);
1817 
1818   /// Keeps cost model vectorization decision and cost for instructions.
1819   /// Right now it is used for memory instructions only.
1820   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1821                                 std::pair<InstWidening, InstructionCost>>;
1822 
1823   DecisionList WideningDecisions;
1824 
1825   /// Returns true if \p V is expected to be vectorized and it needs to be
1826   /// extracted.
1827   bool needsExtract(Value *V, ElementCount VF) const {
1828     Instruction *I = dyn_cast<Instruction>(V);
1829     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1830         TheLoop->isLoopInvariant(I))
1831       return false;
1832 
1833     // Assume we can vectorize V (and hence we need extraction) if the
1834     // scalars are not computed yet. This can happen, because it is called
1835     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1836     // the scalars are collected. That should be a safe assumption in most
1837     // cases, because we check if the operands have vectorizable types
1838     // beforehand in LoopVectorizationLegality.
1839     return Scalars.find(VF) == Scalars.end() ||
1840            !isScalarAfterVectorization(I, VF);
1841   };
1842 
1843   /// Returns a range containing only operands needing to be extracted.
1844   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1845                                                    ElementCount VF) const {
1846     return SmallVector<Value *, 4>(make_filter_range(
1847         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1848   }
1849 
1850   /// Determines if we have the infrastructure to vectorize loop \p L and its
1851   /// epilogue, assuming the main loop is vectorized by \p VF.
1852   bool isCandidateForEpilogueVectorization(const Loop &L,
1853                                            const ElementCount VF) const;
1854 
1855   /// Returns true if epilogue vectorization is considered profitable, and
1856   /// false otherwise.
1857   /// \p VF is the vectorization factor chosen for the original loop.
1858   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1859 
1860 public:
1861   /// The loop that we evaluate.
1862   Loop *TheLoop;
1863 
1864   /// Predicated scalar evolution analysis.
1865   PredicatedScalarEvolution &PSE;
1866 
1867   /// Loop Info analysis.
1868   LoopInfo *LI;
1869 
1870   /// Vectorization legality.
1871   LoopVectorizationLegality *Legal;
1872 
1873   /// Vector target information.
1874   const TargetTransformInfo &TTI;
1875 
1876   /// Target Library Info.
1877   const TargetLibraryInfo *TLI;
1878 
1879   /// Demanded bits analysis.
1880   DemandedBits *DB;
1881 
1882   /// Assumption cache.
1883   AssumptionCache *AC;
1884 
1885   /// Interface to emit optimization remarks.
1886   OptimizationRemarkEmitter *ORE;
1887 
1888   const Function *TheFunction;
1889 
1890   /// Loop Vectorize Hint.
1891   const LoopVectorizeHints *Hints;
1892 
1893   /// The interleave access information contains groups of interleaved accesses
1894   /// with the same stride and close to each other.
1895   InterleavedAccessInfo &InterleaveInfo;
1896 
1897   /// Values to ignore in the cost model.
1898   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1899 
1900   /// Values to ignore in the cost model when VF > 1.
1901   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1902 
1903   /// All element types found in the loop.
1904   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1905 
1906   /// Profitable vector factors.
1907   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1908 };
1909 } // end namespace llvm
1910 
1911 /// Helper struct to manage generating runtime checks for vectorization.
1912 ///
1913 /// The runtime checks are created up-front in temporary blocks to allow better
1914 /// estimating the cost and un-linked from the existing IR. After deciding to
1915 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1916 /// temporary blocks are completely removed.
1917 class GeneratedRTChecks {
1918   /// Basic block which contains the generated SCEV checks, if any.
1919   BasicBlock *SCEVCheckBlock = nullptr;
1920 
1921   /// The value representing the result of the generated SCEV checks. If it is
1922   /// nullptr, either no SCEV checks have been generated or they have been used.
1923   Value *SCEVCheckCond = nullptr;
1924 
1925   /// Basic block which contains the generated memory runtime checks, if any.
1926   BasicBlock *MemCheckBlock = nullptr;
1927 
1928   /// The value representing the result of the generated memory runtime checks.
1929   /// If it is nullptr, either no memory runtime checks have been generated or
1930   /// they have been used.
1931   Instruction *MemRuntimeCheckCond = nullptr;
1932 
1933   DominatorTree *DT;
1934   LoopInfo *LI;
1935 
1936   SCEVExpander SCEVExp;
1937   SCEVExpander MemCheckExp;
1938 
1939 public:
1940   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1941                     const DataLayout &DL)
1942       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1943         MemCheckExp(SE, DL, "scev.check") {}
1944 
1945   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1946   /// accurately estimate the cost of the runtime checks. The blocks are
1947   /// un-linked from the IR and is added back during vector code generation. If
1948   /// there is no vector code generation, the check blocks are removed
1949   /// completely.
1950   void Create(Loop *L, const LoopAccessInfo &LAI,
1951               const SCEVUnionPredicate &UnionPred) {
1952 
1953     BasicBlock *LoopHeader = L->getHeader();
1954     BasicBlock *Preheader = L->getLoopPreheader();
1955 
1956     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1957     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1958     // may be used by SCEVExpander. The blocks will be un-linked from their
1959     // predecessors and removed from LI & DT at the end of the function.
1960     if (!UnionPred.isAlwaysTrue()) {
1961       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1962                                   nullptr, "vector.scevcheck");
1963 
1964       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1965           &UnionPred, SCEVCheckBlock->getTerminator());
1966     }
1967 
1968     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1969     if (RtPtrChecking.Need) {
1970       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1971       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1972                                  "vector.memcheck");
1973 
1974       std::tie(std::ignore, MemRuntimeCheckCond) =
1975           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1976                            RtPtrChecking.getChecks(), MemCheckExp);
1977       assert(MemRuntimeCheckCond &&
1978              "no RT checks generated although RtPtrChecking "
1979              "claimed checks are required");
1980     }
1981 
1982     if (!MemCheckBlock && !SCEVCheckBlock)
1983       return;
1984 
1985     // Unhook the temporary block with the checks, update various places
1986     // accordingly.
1987     if (SCEVCheckBlock)
1988       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1989     if (MemCheckBlock)
1990       MemCheckBlock->replaceAllUsesWith(Preheader);
1991 
1992     if (SCEVCheckBlock) {
1993       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1994       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1995       Preheader->getTerminator()->eraseFromParent();
1996     }
1997     if (MemCheckBlock) {
1998       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1999       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2000       Preheader->getTerminator()->eraseFromParent();
2001     }
2002 
2003     DT->changeImmediateDominator(LoopHeader, Preheader);
2004     if (MemCheckBlock) {
2005       DT->eraseNode(MemCheckBlock);
2006       LI->removeBlock(MemCheckBlock);
2007     }
2008     if (SCEVCheckBlock) {
2009       DT->eraseNode(SCEVCheckBlock);
2010       LI->removeBlock(SCEVCheckBlock);
2011     }
2012   }
2013 
2014   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2015   /// unused.
2016   ~GeneratedRTChecks() {
2017     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2018     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2019     if (!SCEVCheckCond)
2020       SCEVCleaner.markResultUsed();
2021 
2022     if (!MemRuntimeCheckCond)
2023       MemCheckCleaner.markResultUsed();
2024 
2025     if (MemRuntimeCheckCond) {
2026       auto &SE = *MemCheckExp.getSE();
2027       // Memory runtime check generation creates compares that use expanded
2028       // values. Remove them before running the SCEVExpanderCleaners.
2029       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2030         if (MemCheckExp.isInsertedInstruction(&I))
2031           continue;
2032         SE.forgetValue(&I);
2033         SE.eraseValueFromMap(&I);
2034         I.eraseFromParent();
2035       }
2036     }
2037     MemCheckCleaner.cleanup();
2038     SCEVCleaner.cleanup();
2039 
2040     if (SCEVCheckCond)
2041       SCEVCheckBlock->eraseFromParent();
2042     if (MemRuntimeCheckCond)
2043       MemCheckBlock->eraseFromParent();
2044   }
2045 
2046   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2047   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2048   /// depending on the generated condition.
2049   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2050                              BasicBlock *LoopVectorPreHeader,
2051                              BasicBlock *LoopExitBlock) {
2052     if (!SCEVCheckCond)
2053       return nullptr;
2054     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2055       if (C->isZero())
2056         return nullptr;
2057 
2058     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2059 
2060     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2061     // Create new preheader for vector loop.
2062     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2063       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2064 
2065     SCEVCheckBlock->getTerminator()->eraseFromParent();
2066     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2067     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2068                                                 SCEVCheckBlock);
2069 
2070     DT->addNewBlock(SCEVCheckBlock, Pred);
2071     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2072 
2073     ReplaceInstWithInst(
2074         SCEVCheckBlock->getTerminator(),
2075         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2076     // Mark the check as used, to prevent it from being removed during cleanup.
2077     SCEVCheckCond = nullptr;
2078     return SCEVCheckBlock;
2079   }
2080 
2081   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2082   /// the branches to branch to the vector preheader or \p Bypass, depending on
2083   /// the generated condition.
2084   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2085                                    BasicBlock *LoopVectorPreHeader) {
2086     // Check if we generated code that checks in runtime if arrays overlap.
2087     if (!MemRuntimeCheckCond)
2088       return nullptr;
2089 
2090     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2091     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2092                                                 MemCheckBlock);
2093 
2094     DT->addNewBlock(MemCheckBlock, Pred);
2095     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2096     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2097 
2098     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2099       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2100 
2101     ReplaceInstWithInst(
2102         MemCheckBlock->getTerminator(),
2103         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2104     MemCheckBlock->getTerminator()->setDebugLoc(
2105         Pred->getTerminator()->getDebugLoc());
2106 
2107     // Mark the check as used, to prevent it from being removed during cleanup.
2108     MemRuntimeCheckCond = nullptr;
2109     return MemCheckBlock;
2110   }
2111 };
2112 
2113 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2114 // vectorization. The loop needs to be annotated with #pragma omp simd
2115 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2116 // vector length information is not provided, vectorization is not considered
2117 // explicit. Interleave hints are not allowed either. These limitations will be
2118 // relaxed in the future.
2119 // Please, note that we are currently forced to abuse the pragma 'clang
2120 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2121 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2122 // provides *explicit vectorization hints* (LV can bypass legal checks and
2123 // assume that vectorization is legal). However, both hints are implemented
2124 // using the same metadata (llvm.loop.vectorize, processed by
2125 // LoopVectorizeHints). This will be fixed in the future when the native IR
2126 // representation for pragma 'omp simd' is introduced.
2127 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2128                                    OptimizationRemarkEmitter *ORE) {
2129   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2130   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2131 
2132   // Only outer loops with an explicit vectorization hint are supported.
2133   // Unannotated outer loops are ignored.
2134   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2135     return false;
2136 
2137   Function *Fn = OuterLp->getHeader()->getParent();
2138   if (!Hints.allowVectorization(Fn, OuterLp,
2139                                 true /*VectorizeOnlyWhenForced*/)) {
2140     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2141     return false;
2142   }
2143 
2144   if (Hints.getInterleave() > 1) {
2145     // TODO: Interleave support is future work.
2146     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2147                          "outer loops.\n");
2148     Hints.emitRemarkWithHints();
2149     return false;
2150   }
2151 
2152   return true;
2153 }
2154 
2155 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2156                                   OptimizationRemarkEmitter *ORE,
2157                                   SmallVectorImpl<Loop *> &V) {
2158   // Collect inner loops and outer loops without irreducible control flow. For
2159   // now, only collect outer loops that have explicit vectorization hints. If we
2160   // are stress testing the VPlan H-CFG construction, we collect the outermost
2161   // loop of every loop nest.
2162   if (L.isInnermost() || VPlanBuildStressTest ||
2163       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2164     LoopBlocksRPO RPOT(&L);
2165     RPOT.perform(LI);
2166     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2167       V.push_back(&L);
2168       // TODO: Collect inner loops inside marked outer loops in case
2169       // vectorization fails for the outer loop. Do not invoke
2170       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2171       // already known to be reducible. We can use an inherited attribute for
2172       // that.
2173       return;
2174     }
2175   }
2176   for (Loop *InnerL : L)
2177     collectSupportedLoops(*InnerL, LI, ORE, V);
2178 }
2179 
2180 namespace {
2181 
2182 /// The LoopVectorize Pass.
2183 struct LoopVectorize : public FunctionPass {
2184   /// Pass identification, replacement for typeid
2185   static char ID;
2186 
2187   LoopVectorizePass Impl;
2188 
2189   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2190                          bool VectorizeOnlyWhenForced = false)
2191       : FunctionPass(ID),
2192         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2193     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2194   }
2195 
2196   bool runOnFunction(Function &F) override {
2197     if (skipFunction(F))
2198       return false;
2199 
2200     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2201     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2202     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2203     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2204     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2205     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2206     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2207     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2208     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2209     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2210     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2211     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2212     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2213 
2214     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2215         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2216 
2217     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2218                         GetLAA, *ORE, PSI).MadeAnyChange;
2219   }
2220 
2221   void getAnalysisUsage(AnalysisUsage &AU) const override {
2222     AU.addRequired<AssumptionCacheTracker>();
2223     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2224     AU.addRequired<DominatorTreeWrapperPass>();
2225     AU.addRequired<LoopInfoWrapperPass>();
2226     AU.addRequired<ScalarEvolutionWrapperPass>();
2227     AU.addRequired<TargetTransformInfoWrapperPass>();
2228     AU.addRequired<AAResultsWrapperPass>();
2229     AU.addRequired<LoopAccessLegacyAnalysis>();
2230     AU.addRequired<DemandedBitsWrapperPass>();
2231     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2232     AU.addRequired<InjectTLIMappingsLegacy>();
2233 
2234     // We currently do not preserve loopinfo/dominator analyses with outer loop
2235     // vectorization. Until this is addressed, mark these analyses as preserved
2236     // only for non-VPlan-native path.
2237     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2238     if (!EnableVPlanNativePath) {
2239       AU.addPreserved<LoopInfoWrapperPass>();
2240       AU.addPreserved<DominatorTreeWrapperPass>();
2241     }
2242 
2243     AU.addPreserved<BasicAAWrapperPass>();
2244     AU.addPreserved<GlobalsAAWrapperPass>();
2245     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2246   }
2247 };
2248 
2249 } // end anonymous namespace
2250 
2251 //===----------------------------------------------------------------------===//
2252 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2253 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2254 //===----------------------------------------------------------------------===//
2255 
2256 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2257   // We need to place the broadcast of invariant variables outside the loop,
2258   // but only if it's proven safe to do so. Else, broadcast will be inside
2259   // vector loop body.
2260   Instruction *Instr = dyn_cast<Instruction>(V);
2261   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2262                      (!Instr ||
2263                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2264   // Place the code for broadcasting invariant variables in the new preheader.
2265   IRBuilder<>::InsertPointGuard Guard(Builder);
2266   if (SafeToHoist)
2267     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2268 
2269   // Broadcast the scalar into all locations in the vector.
2270   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2271 
2272   return Shuf;
2273 }
2274 
2275 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2276     const InductionDescriptor &II, Value *Step, Value *Start,
2277     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2278     VPTransformState &State) {
2279   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2280          "Expected either an induction phi-node or a truncate of it!");
2281 
2282   // Construct the initial value of the vector IV in the vector loop preheader
2283   auto CurrIP = Builder.saveIP();
2284   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2285   if (isa<TruncInst>(EntryVal)) {
2286     assert(Start->getType()->isIntegerTy() &&
2287            "Truncation requires an integer type");
2288     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2289     Step = Builder.CreateTrunc(Step, TruncType);
2290     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2291   }
2292   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2293   Value *SteppedStart =
2294       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2295 
2296   // We create vector phi nodes for both integer and floating-point induction
2297   // variables. Here, we determine the kind of arithmetic we will perform.
2298   Instruction::BinaryOps AddOp;
2299   Instruction::BinaryOps MulOp;
2300   if (Step->getType()->isIntegerTy()) {
2301     AddOp = Instruction::Add;
2302     MulOp = Instruction::Mul;
2303   } else {
2304     AddOp = II.getInductionOpcode();
2305     MulOp = Instruction::FMul;
2306   }
2307 
2308   // Multiply the vectorization factor by the step using integer or
2309   // floating-point arithmetic as appropriate.
2310   Type *StepType = Step->getType();
2311   if (Step->getType()->isFloatingPointTy())
2312     StepType = IntegerType::get(StepType->getContext(),
2313                                 StepType->getScalarSizeInBits());
2314   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2315   if (Step->getType()->isFloatingPointTy())
2316     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2317   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2318 
2319   // Create a vector splat to use in the induction update.
2320   //
2321   // FIXME: If the step is non-constant, we create the vector splat with
2322   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2323   //        handle a constant vector splat.
2324   Value *SplatVF = isa<Constant>(Mul)
2325                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2326                        : Builder.CreateVectorSplat(VF, Mul);
2327   Builder.restoreIP(CurrIP);
2328 
2329   // We may need to add the step a number of times, depending on the unroll
2330   // factor. The last of those goes into the PHI.
2331   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2332                                     &*LoopVectorBody->getFirstInsertionPt());
2333   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2334   Instruction *LastInduction = VecInd;
2335   for (unsigned Part = 0; Part < UF; ++Part) {
2336     State.set(Def, LastInduction, Part);
2337 
2338     if (isa<TruncInst>(EntryVal))
2339       addMetadata(LastInduction, EntryVal);
2340     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2341                                           State, Part);
2342 
2343     LastInduction = cast<Instruction>(
2344         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2345     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2346   }
2347 
2348   // Move the last step to the end of the latch block. This ensures consistent
2349   // placement of all induction updates.
2350   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2351   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2352   auto *ICmp = cast<Instruction>(Br->getCondition());
2353   LastInduction->moveBefore(ICmp);
2354   LastInduction->setName("vec.ind.next");
2355 
2356   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2357   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2358 }
2359 
2360 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2361   return Cost->isScalarAfterVectorization(I, VF) ||
2362          Cost->isProfitableToScalarize(I, VF);
2363 }
2364 
2365 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2366   if (shouldScalarizeInstruction(IV))
2367     return true;
2368   auto isScalarInst = [&](User *U) -> bool {
2369     auto *I = cast<Instruction>(U);
2370     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2371   };
2372   return llvm::any_of(IV->users(), isScalarInst);
2373 }
2374 
2375 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2376     const InductionDescriptor &ID, const Instruction *EntryVal,
2377     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2378     unsigned Part, unsigned Lane) {
2379   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2380          "Expected either an induction phi-node or a truncate of it!");
2381 
2382   // This induction variable is not the phi from the original loop but the
2383   // newly-created IV based on the proof that casted Phi is equal to the
2384   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2385   // re-uses the same InductionDescriptor that original IV uses but we don't
2386   // have to do any recording in this case - that is done when original IV is
2387   // processed.
2388   if (isa<TruncInst>(EntryVal))
2389     return;
2390 
2391   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2392   if (Casts.empty())
2393     return;
2394   // Only the first Cast instruction in the Casts vector is of interest.
2395   // The rest of the Casts (if exist) have no uses outside the
2396   // induction update chain itself.
2397   if (Lane < UINT_MAX)
2398     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2399   else
2400     State.set(CastDef, VectorLoopVal, Part);
2401 }
2402 
2403 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2404                                                 TruncInst *Trunc, VPValue *Def,
2405                                                 VPValue *CastDef,
2406                                                 VPTransformState &State) {
2407   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2408          "Primary induction variable must have an integer type");
2409 
2410   auto II = Legal->getInductionVars().find(IV);
2411   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2412 
2413   auto ID = II->second;
2414   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2415 
2416   // The value from the original loop to which we are mapping the new induction
2417   // variable.
2418   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2419 
2420   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2421 
2422   // Generate code for the induction step. Note that induction steps are
2423   // required to be loop-invariant
2424   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2425     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2426            "Induction step should be loop invariant");
2427     if (PSE.getSE()->isSCEVable(IV->getType())) {
2428       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2429       return Exp.expandCodeFor(Step, Step->getType(),
2430                                LoopVectorPreHeader->getTerminator());
2431     }
2432     return cast<SCEVUnknown>(Step)->getValue();
2433   };
2434 
2435   // The scalar value to broadcast. This is derived from the canonical
2436   // induction variable. If a truncation type is given, truncate the canonical
2437   // induction variable and step. Otherwise, derive these values from the
2438   // induction descriptor.
2439   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2440     Value *ScalarIV = Induction;
2441     if (IV != OldInduction) {
2442       ScalarIV = IV->getType()->isIntegerTy()
2443                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2444                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2445                                           IV->getType());
2446       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2447       ScalarIV->setName("offset.idx");
2448     }
2449     if (Trunc) {
2450       auto *TruncType = cast<IntegerType>(Trunc->getType());
2451       assert(Step->getType()->isIntegerTy() &&
2452              "Truncation requires an integer step");
2453       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2454       Step = Builder.CreateTrunc(Step, TruncType);
2455     }
2456     return ScalarIV;
2457   };
2458 
2459   // Create the vector values from the scalar IV, in the absence of creating a
2460   // vector IV.
2461   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2462     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2463     for (unsigned Part = 0; Part < UF; ++Part) {
2464       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2465       Value *EntryPart =
2466           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2467                         ID.getInductionOpcode());
2468       State.set(Def, EntryPart, Part);
2469       if (Trunc)
2470         addMetadata(EntryPart, Trunc);
2471       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2472                                             State, Part);
2473     }
2474   };
2475 
2476   // Fast-math-flags propagate from the original induction instruction.
2477   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2478   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2479     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2480 
2481   // Now do the actual transformations, and start with creating the step value.
2482   Value *Step = CreateStepValue(ID.getStep());
2483   if (VF.isZero() || VF.isScalar()) {
2484     Value *ScalarIV = CreateScalarIV(Step);
2485     CreateSplatIV(ScalarIV, Step);
2486     return;
2487   }
2488 
2489   // Determine if we want a scalar version of the induction variable. This is
2490   // true if the induction variable itself is not widened, or if it has at
2491   // least one user in the loop that is not widened.
2492   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2493   if (!NeedsScalarIV) {
2494     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2495                                     State);
2496     return;
2497   }
2498 
2499   // Try to create a new independent vector induction variable. If we can't
2500   // create the phi node, we will splat the scalar induction variable in each
2501   // loop iteration.
2502   if (!shouldScalarizeInstruction(EntryVal)) {
2503     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2504                                     State);
2505     Value *ScalarIV = CreateScalarIV(Step);
2506     // Create scalar steps that can be used by instructions we will later
2507     // scalarize. Note that the addition of the scalar steps will not increase
2508     // the number of instructions in the loop in the common case prior to
2509     // InstCombine. We will be trading one vector extract for each scalar step.
2510     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2511     return;
2512   }
2513 
2514   // All IV users are scalar instructions, so only emit a scalar IV, not a
2515   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2516   // predicate used by the masked loads/stores.
2517   Value *ScalarIV = CreateScalarIV(Step);
2518   if (!Cost->isScalarEpilogueAllowed())
2519     CreateSplatIV(ScalarIV, Step);
2520   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2521 }
2522 
2523 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2524                                           Instruction::BinaryOps BinOp) {
2525   // Create and check the types.
2526   auto *ValVTy = cast<VectorType>(Val->getType());
2527   ElementCount VLen = ValVTy->getElementCount();
2528 
2529   Type *STy = Val->getType()->getScalarType();
2530   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2531          "Induction Step must be an integer or FP");
2532   assert(Step->getType() == STy && "Step has wrong type");
2533 
2534   SmallVector<Constant *, 8> Indices;
2535 
2536   // Create a vector of consecutive numbers from zero to VF.
2537   VectorType *InitVecValVTy = ValVTy;
2538   Type *InitVecValSTy = STy;
2539   if (STy->isFloatingPointTy()) {
2540     InitVecValSTy =
2541         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2542     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2543   }
2544   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2545 
2546   // Add on StartIdx
2547   Value *StartIdxSplat = Builder.CreateVectorSplat(
2548       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2549   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2550 
2551   if (STy->isIntegerTy()) {
2552     Step = Builder.CreateVectorSplat(VLen, Step);
2553     assert(Step->getType() == Val->getType() && "Invalid step vec");
2554     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2555     // which can be found from the original scalar operations.
2556     Step = Builder.CreateMul(InitVec, Step);
2557     return Builder.CreateAdd(Val, Step, "induction");
2558   }
2559 
2560   // Floating point induction.
2561   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2562          "Binary Opcode should be specified for FP induction");
2563   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2564   Step = Builder.CreateVectorSplat(VLen, Step);
2565   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2566   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2567 }
2568 
2569 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2570                                            Instruction *EntryVal,
2571                                            const InductionDescriptor &ID,
2572                                            VPValue *Def, VPValue *CastDef,
2573                                            VPTransformState &State) {
2574   // We shouldn't have to build scalar steps if we aren't vectorizing.
2575   assert(VF.isVector() && "VF should be greater than one");
2576   // Get the value type and ensure it and the step have the same integer type.
2577   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2578   assert(ScalarIVTy == Step->getType() &&
2579          "Val and Step should have the same type");
2580 
2581   // We build scalar steps for both integer and floating-point induction
2582   // variables. Here, we determine the kind of arithmetic we will perform.
2583   Instruction::BinaryOps AddOp;
2584   Instruction::BinaryOps MulOp;
2585   if (ScalarIVTy->isIntegerTy()) {
2586     AddOp = Instruction::Add;
2587     MulOp = Instruction::Mul;
2588   } else {
2589     AddOp = ID.getInductionOpcode();
2590     MulOp = Instruction::FMul;
2591   }
2592 
2593   // Determine the number of scalars we need to generate for each unroll
2594   // iteration. If EntryVal is uniform, we only need to generate the first
2595   // lane. Otherwise, we generate all VF values.
2596   bool IsUniform =
2597       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2598   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2599   // Compute the scalar steps and save the results in State.
2600   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2601                                      ScalarIVTy->getScalarSizeInBits());
2602   Type *VecIVTy = nullptr;
2603   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2604   if (!IsUniform && VF.isScalable()) {
2605     VecIVTy = VectorType::get(ScalarIVTy, VF);
2606     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2607     SplatStep = Builder.CreateVectorSplat(VF, Step);
2608     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2609   }
2610 
2611   for (unsigned Part = 0; Part < UF; ++Part) {
2612     Value *StartIdx0 =
2613         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2614 
2615     if (!IsUniform && VF.isScalable()) {
2616       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2617       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2618       if (ScalarIVTy->isFloatingPointTy())
2619         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2620       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2621       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2622       State.set(Def, Add, Part);
2623       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2624                                             Part);
2625       // It's useful to record the lane values too for the known minimum number
2626       // of elements so we do those below. This improves the code quality when
2627       // trying to extract the first element, for example.
2628     }
2629 
2630     if (ScalarIVTy->isFloatingPointTy())
2631       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2632 
2633     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2634       Value *StartIdx = Builder.CreateBinOp(
2635           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2636       // The step returned by `createStepForVF` is a runtime-evaluated value
2637       // when VF is scalable. Otherwise, it should be folded into a Constant.
2638       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2639              "Expected StartIdx to be folded to a constant when VF is not "
2640              "scalable");
2641       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2642       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2643       State.set(Def, Add, VPIteration(Part, Lane));
2644       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2645                                             Part, Lane);
2646     }
2647   }
2648 }
2649 
2650 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2651                                                     const VPIteration &Instance,
2652                                                     VPTransformState &State) {
2653   Value *ScalarInst = State.get(Def, Instance);
2654   Value *VectorValue = State.get(Def, Instance.Part);
2655   VectorValue = Builder.CreateInsertElement(
2656       VectorValue, ScalarInst,
2657       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2658   State.set(Def, VectorValue, Instance.Part);
2659 }
2660 
2661 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2662   assert(Vec->getType()->isVectorTy() && "Invalid type");
2663   return Builder.CreateVectorReverse(Vec, "reverse");
2664 }
2665 
2666 // Return whether we allow using masked interleave-groups (for dealing with
2667 // strided loads/stores that reside in predicated blocks, or for dealing
2668 // with gaps).
2669 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2670   // If an override option has been passed in for interleaved accesses, use it.
2671   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2672     return EnableMaskedInterleavedMemAccesses;
2673 
2674   return TTI.enableMaskedInterleavedAccessVectorization();
2675 }
2676 
2677 // Try to vectorize the interleave group that \p Instr belongs to.
2678 //
2679 // E.g. Translate following interleaved load group (factor = 3):
2680 //   for (i = 0; i < N; i+=3) {
2681 //     R = Pic[i];             // Member of index 0
2682 //     G = Pic[i+1];           // Member of index 1
2683 //     B = Pic[i+2];           // Member of index 2
2684 //     ... // do something to R, G, B
2685 //   }
2686 // To:
2687 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2688 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2689 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2690 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2691 //
2692 // Or translate following interleaved store group (factor = 3):
2693 //   for (i = 0; i < N; i+=3) {
2694 //     ... do something to R, G, B
2695 //     Pic[i]   = R;           // Member of index 0
2696 //     Pic[i+1] = G;           // Member of index 1
2697 //     Pic[i+2] = B;           // Member of index 2
2698 //   }
2699 // To:
2700 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2701 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2702 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2703 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2704 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2705 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2706     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2707     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2708     VPValue *BlockInMask) {
2709   Instruction *Instr = Group->getInsertPos();
2710   const DataLayout &DL = Instr->getModule()->getDataLayout();
2711 
2712   // Prepare for the vector type of the interleaved load/store.
2713   Type *ScalarTy = getLoadStoreType(Instr);
2714   unsigned InterleaveFactor = Group->getFactor();
2715   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2716   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2717 
2718   // Prepare for the new pointers.
2719   SmallVector<Value *, 2> AddrParts;
2720   unsigned Index = Group->getIndex(Instr);
2721 
2722   // TODO: extend the masked interleaved-group support to reversed access.
2723   assert((!BlockInMask || !Group->isReverse()) &&
2724          "Reversed masked interleave-group not supported.");
2725 
2726   // If the group is reverse, adjust the index to refer to the last vector lane
2727   // instead of the first. We adjust the index from the first vector lane,
2728   // rather than directly getting the pointer for lane VF - 1, because the
2729   // pointer operand of the interleaved access is supposed to be uniform. For
2730   // uniform instructions, we're only required to generate a value for the
2731   // first vector lane in each unroll iteration.
2732   if (Group->isReverse())
2733     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2734 
2735   for (unsigned Part = 0; Part < UF; Part++) {
2736     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2737     setDebugLocFromInst(AddrPart);
2738 
2739     // Notice current instruction could be any index. Need to adjust the address
2740     // to the member of index 0.
2741     //
2742     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2743     //       b = A[i];       // Member of index 0
2744     // Current pointer is pointed to A[i+1], adjust it to A[i].
2745     //
2746     // E.g.  A[i+1] = a;     // Member of index 1
2747     //       A[i]   = b;     // Member of index 0
2748     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2749     // Current pointer is pointed to A[i+2], adjust it to A[i].
2750 
2751     bool InBounds = false;
2752     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2753       InBounds = gep->isInBounds();
2754     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2755     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2756 
2757     // Cast to the vector pointer type.
2758     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2759     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2760     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2761   }
2762 
2763   setDebugLocFromInst(Instr);
2764   Value *PoisonVec = PoisonValue::get(VecTy);
2765 
2766   Value *MaskForGaps = nullptr;
2767   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2768     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2769     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2770   }
2771 
2772   // Vectorize the interleaved load group.
2773   if (isa<LoadInst>(Instr)) {
2774     // For each unroll part, create a wide load for the group.
2775     SmallVector<Value *, 2> NewLoads;
2776     for (unsigned Part = 0; Part < UF; Part++) {
2777       Instruction *NewLoad;
2778       if (BlockInMask || MaskForGaps) {
2779         assert(useMaskedInterleavedAccesses(*TTI) &&
2780                "masked interleaved groups are not allowed.");
2781         Value *GroupMask = MaskForGaps;
2782         if (BlockInMask) {
2783           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2784           Value *ShuffledMask = Builder.CreateShuffleVector(
2785               BlockInMaskPart,
2786               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2787               "interleaved.mask");
2788           GroupMask = MaskForGaps
2789                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2790                                                 MaskForGaps)
2791                           : ShuffledMask;
2792         }
2793         NewLoad =
2794             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2795                                      GroupMask, PoisonVec, "wide.masked.vec");
2796       }
2797       else
2798         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2799                                             Group->getAlign(), "wide.vec");
2800       Group->addMetadata(NewLoad);
2801       NewLoads.push_back(NewLoad);
2802     }
2803 
2804     // For each member in the group, shuffle out the appropriate data from the
2805     // wide loads.
2806     unsigned J = 0;
2807     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2808       Instruction *Member = Group->getMember(I);
2809 
2810       // Skip the gaps in the group.
2811       if (!Member)
2812         continue;
2813 
2814       auto StrideMask =
2815           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2816       for (unsigned Part = 0; Part < UF; Part++) {
2817         Value *StridedVec = Builder.CreateShuffleVector(
2818             NewLoads[Part], StrideMask, "strided.vec");
2819 
2820         // If this member has different type, cast the result type.
2821         if (Member->getType() != ScalarTy) {
2822           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2823           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2824           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2825         }
2826 
2827         if (Group->isReverse())
2828           StridedVec = reverseVector(StridedVec);
2829 
2830         State.set(VPDefs[J], StridedVec, Part);
2831       }
2832       ++J;
2833     }
2834     return;
2835   }
2836 
2837   // The sub vector type for current instruction.
2838   auto *SubVT = VectorType::get(ScalarTy, VF);
2839 
2840   // Vectorize the interleaved store group.
2841   for (unsigned Part = 0; Part < UF; Part++) {
2842     // Collect the stored vector from each member.
2843     SmallVector<Value *, 4> StoredVecs;
2844     for (unsigned i = 0; i < InterleaveFactor; i++) {
2845       // Interleaved store group doesn't allow a gap, so each index has a member
2846       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2847 
2848       Value *StoredVec = State.get(StoredValues[i], Part);
2849 
2850       if (Group->isReverse())
2851         StoredVec = reverseVector(StoredVec);
2852 
2853       // If this member has different type, cast it to a unified type.
2854 
2855       if (StoredVec->getType() != SubVT)
2856         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2857 
2858       StoredVecs.push_back(StoredVec);
2859     }
2860 
2861     // Concatenate all vectors into a wide vector.
2862     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2863 
2864     // Interleave the elements in the wide vector.
2865     Value *IVec = Builder.CreateShuffleVector(
2866         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2867         "interleaved.vec");
2868 
2869     Instruction *NewStoreInstr;
2870     if (BlockInMask) {
2871       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2872       Value *ShuffledMask = Builder.CreateShuffleVector(
2873           BlockInMaskPart,
2874           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2875           "interleaved.mask");
2876       NewStoreInstr = Builder.CreateMaskedStore(
2877           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2878     }
2879     else
2880       NewStoreInstr =
2881           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2882 
2883     Group->addMetadata(NewStoreInstr);
2884   }
2885 }
2886 
2887 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2888     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2889     VPValue *StoredValue, VPValue *BlockInMask) {
2890   // Attempt to issue a wide load.
2891   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2892   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2893 
2894   assert((LI || SI) && "Invalid Load/Store instruction");
2895   assert((!SI || StoredValue) && "No stored value provided for widened store");
2896   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2897 
2898   LoopVectorizationCostModel::InstWidening Decision =
2899       Cost->getWideningDecision(Instr, VF);
2900   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2901           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2902           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2903          "CM decision is not to widen the memory instruction");
2904 
2905   Type *ScalarDataTy = getLoadStoreType(Instr);
2906 
2907   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2908   const Align Alignment = getLoadStoreAlignment(Instr);
2909 
2910   // Determine if the pointer operand of the access is either consecutive or
2911   // reverse consecutive.
2912   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2913   bool ConsecutiveStride =
2914       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2915   bool CreateGatherScatter =
2916       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2917 
2918   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2919   // gather/scatter. Otherwise Decision should have been to Scalarize.
2920   assert((ConsecutiveStride || CreateGatherScatter) &&
2921          "The instruction should be scalarized");
2922   (void)ConsecutiveStride;
2923 
2924   VectorParts BlockInMaskParts(UF);
2925   bool isMaskRequired = BlockInMask;
2926   if (isMaskRequired)
2927     for (unsigned Part = 0; Part < UF; ++Part)
2928       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2929 
2930   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2931     // Calculate the pointer for the specific unroll-part.
2932     GetElementPtrInst *PartPtr = nullptr;
2933 
2934     bool InBounds = false;
2935     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2936       InBounds = gep->isInBounds();
2937     if (Reverse) {
2938       // If the address is consecutive but reversed, then the
2939       // wide store needs to start at the last vector element.
2940       // RunTimeVF =  VScale * VF.getKnownMinValue()
2941       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2942       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2943       // NumElt = -Part * RunTimeVF
2944       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2945       // LastLane = 1 - RunTimeVF
2946       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2947       PartPtr =
2948           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2949       PartPtr->setIsInBounds(InBounds);
2950       PartPtr = cast<GetElementPtrInst>(
2951           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2952       PartPtr->setIsInBounds(InBounds);
2953       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2954         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2955     } else {
2956       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2957       PartPtr = cast<GetElementPtrInst>(
2958           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2959       PartPtr->setIsInBounds(InBounds);
2960     }
2961 
2962     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2963     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2964   };
2965 
2966   // Handle Stores:
2967   if (SI) {
2968     setDebugLocFromInst(SI);
2969 
2970     for (unsigned Part = 0; Part < UF; ++Part) {
2971       Instruction *NewSI = nullptr;
2972       Value *StoredVal = State.get(StoredValue, Part);
2973       if (CreateGatherScatter) {
2974         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2975         Value *VectorGep = State.get(Addr, Part);
2976         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2977                                             MaskPart);
2978       } else {
2979         if (Reverse) {
2980           // If we store to reverse consecutive memory locations, then we need
2981           // to reverse the order of elements in the stored value.
2982           StoredVal = reverseVector(StoredVal);
2983           // We don't want to update the value in the map as it might be used in
2984           // another expression. So don't call resetVectorValue(StoredVal).
2985         }
2986         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2987         if (isMaskRequired)
2988           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2989                                             BlockInMaskParts[Part]);
2990         else
2991           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2992       }
2993       addMetadata(NewSI, SI);
2994     }
2995     return;
2996   }
2997 
2998   // Handle loads.
2999   assert(LI && "Must have a load instruction");
3000   setDebugLocFromInst(LI);
3001   for (unsigned Part = 0; Part < UF; ++Part) {
3002     Value *NewLI;
3003     if (CreateGatherScatter) {
3004       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3005       Value *VectorGep = State.get(Addr, Part);
3006       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3007                                          nullptr, "wide.masked.gather");
3008       addMetadata(NewLI, LI);
3009     } else {
3010       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3011       if (isMaskRequired)
3012         NewLI = Builder.CreateMaskedLoad(
3013             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3014             PoisonValue::get(DataTy), "wide.masked.load");
3015       else
3016         NewLI =
3017             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3018 
3019       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3020       addMetadata(NewLI, LI);
3021       if (Reverse)
3022         NewLI = reverseVector(NewLI);
3023     }
3024 
3025     State.set(Def, NewLI, Part);
3026   }
3027 }
3028 
3029 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3030                                                VPUser &User,
3031                                                const VPIteration &Instance,
3032                                                bool IfPredicateInstr,
3033                                                VPTransformState &State) {
3034   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3035 
3036   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3037   // the first lane and part.
3038   if (isa<NoAliasScopeDeclInst>(Instr))
3039     if (!Instance.isFirstIteration())
3040       return;
3041 
3042   setDebugLocFromInst(Instr);
3043 
3044   // Does this instruction return a value ?
3045   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3046 
3047   Instruction *Cloned = Instr->clone();
3048   if (!IsVoidRetTy)
3049     Cloned->setName(Instr->getName() + ".cloned");
3050 
3051   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3052                                Builder.GetInsertPoint());
3053   // Replace the operands of the cloned instructions with their scalar
3054   // equivalents in the new loop.
3055   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3056     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3057     auto InputInstance = Instance;
3058     if (!Operand || !OrigLoop->contains(Operand) ||
3059         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3060       InputInstance.Lane = VPLane::getFirstLane();
3061     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3062     Cloned->setOperand(op, NewOp);
3063   }
3064   addNewMetadata(Cloned, Instr);
3065 
3066   // Place the cloned scalar in the new loop.
3067   Builder.Insert(Cloned);
3068 
3069   State.set(Def, Cloned, Instance);
3070 
3071   // If we just cloned a new assumption, add it the assumption cache.
3072   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3073     AC->registerAssumption(II);
3074 
3075   // End if-block.
3076   if (IfPredicateInstr)
3077     PredicatedInstructions.push_back(Cloned);
3078 }
3079 
3080 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3081                                                       Value *End, Value *Step,
3082                                                       Instruction *DL) {
3083   BasicBlock *Header = L->getHeader();
3084   BasicBlock *Latch = L->getLoopLatch();
3085   // As we're just creating this loop, it's possible no latch exists
3086   // yet. If so, use the header as this will be a single block loop.
3087   if (!Latch)
3088     Latch = Header;
3089 
3090   IRBuilder<> B(&*Header->getFirstInsertionPt());
3091   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3092   setDebugLocFromInst(OldInst, &B);
3093   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3094 
3095   B.SetInsertPoint(Latch->getTerminator());
3096   setDebugLocFromInst(OldInst, &B);
3097 
3098   // Create i+1 and fill the PHINode.
3099   //
3100   // If the tail is not folded, we know that End - Start >= Step (either
3101   // statically or through the minimum iteration checks). We also know that both
3102   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3103   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3104   // overflows and we can mark the induction increment as NUW.
3105   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3106                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3107   Induction->addIncoming(Start, L->getLoopPreheader());
3108   Induction->addIncoming(Next, Latch);
3109   // Create the compare.
3110   Value *ICmp = B.CreateICmpEQ(Next, End);
3111   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3112 
3113   // Now we have two terminators. Remove the old one from the block.
3114   Latch->getTerminator()->eraseFromParent();
3115 
3116   return Induction;
3117 }
3118 
3119 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3120   if (TripCount)
3121     return TripCount;
3122 
3123   assert(L && "Create Trip Count for null loop.");
3124   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3125   // Find the loop boundaries.
3126   ScalarEvolution *SE = PSE.getSE();
3127   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3128   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3129          "Invalid loop count");
3130 
3131   Type *IdxTy = Legal->getWidestInductionType();
3132   assert(IdxTy && "No type for induction");
3133 
3134   // The exit count might have the type of i64 while the phi is i32. This can
3135   // happen if we have an induction variable that is sign extended before the
3136   // compare. The only way that we get a backedge taken count is that the
3137   // induction variable was signed and as such will not overflow. In such a case
3138   // truncation is legal.
3139   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3140       IdxTy->getPrimitiveSizeInBits())
3141     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3142   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3143 
3144   // Get the total trip count from the count by adding 1.
3145   const SCEV *ExitCount = SE->getAddExpr(
3146       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3147 
3148   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3149 
3150   // Expand the trip count and place the new instructions in the preheader.
3151   // Notice that the pre-header does not change, only the loop body.
3152   SCEVExpander Exp(*SE, DL, "induction");
3153 
3154   // Count holds the overall loop count (N).
3155   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3156                                 L->getLoopPreheader()->getTerminator());
3157 
3158   if (TripCount->getType()->isPointerTy())
3159     TripCount =
3160         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3161                                     L->getLoopPreheader()->getTerminator());
3162 
3163   return TripCount;
3164 }
3165 
3166 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3167   if (VectorTripCount)
3168     return VectorTripCount;
3169 
3170   Value *TC = getOrCreateTripCount(L);
3171   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3172 
3173   Type *Ty = TC->getType();
3174   // This is where we can make the step a runtime constant.
3175   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3176 
3177   // If the tail is to be folded by masking, round the number of iterations N
3178   // up to a multiple of Step instead of rounding down. This is done by first
3179   // adding Step-1 and then rounding down. Note that it's ok if this addition
3180   // overflows: the vector induction variable will eventually wrap to zero given
3181   // that it starts at zero and its Step is a power of two; the loop will then
3182   // exit, with the last early-exit vector comparison also producing all-true.
3183   if (Cost->foldTailByMasking()) {
3184     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3185            "VF*UF must be a power of 2 when folding tail by masking");
3186     assert(!VF.isScalable() &&
3187            "Tail folding not yet supported for scalable vectors");
3188     TC = Builder.CreateAdd(
3189         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3190   }
3191 
3192   // Now we need to generate the expression for the part of the loop that the
3193   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3194   // iterations are not required for correctness, or N - Step, otherwise. Step
3195   // is equal to the vectorization factor (number of SIMD elements) times the
3196   // unroll factor (number of SIMD instructions).
3197   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3198 
3199   // There are cases where we *must* run at least one iteration in the remainder
3200   // loop.  See the cost model for when this can happen.  If the step evenly
3201   // divides the trip count, we set the remainder to be equal to the step. If
3202   // the step does not evenly divide the trip count, no adjustment is necessary
3203   // since there will already be scalar iterations. Note that the minimum
3204   // iterations check ensures that N >= Step.
3205   if (Cost->requiresScalarEpilogue(VF)) {
3206     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3207     R = Builder.CreateSelect(IsZero, Step, R);
3208   }
3209 
3210   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3211 
3212   return VectorTripCount;
3213 }
3214 
3215 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3216                                                    const DataLayout &DL) {
3217   // Verify that V is a vector type with same number of elements as DstVTy.
3218   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3219   unsigned VF = DstFVTy->getNumElements();
3220   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3221   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3222   Type *SrcElemTy = SrcVecTy->getElementType();
3223   Type *DstElemTy = DstFVTy->getElementType();
3224   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3225          "Vector elements must have same size");
3226 
3227   // Do a direct cast if element types are castable.
3228   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3229     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3230   }
3231   // V cannot be directly casted to desired vector type.
3232   // May happen when V is a floating point vector but DstVTy is a vector of
3233   // pointers or vice-versa. Handle this using a two-step bitcast using an
3234   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3235   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3236          "Only one type should be a pointer type");
3237   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3238          "Only one type should be a floating point type");
3239   Type *IntTy =
3240       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3241   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3242   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3243   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3244 }
3245 
3246 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3247                                                          BasicBlock *Bypass) {
3248   Value *Count = getOrCreateTripCount(L);
3249   // Reuse existing vector loop preheader for TC checks.
3250   // Note that new preheader block is generated for vector loop.
3251   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3252   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3253 
3254   // Generate code to check if the loop's trip count is less than VF * UF, or
3255   // equal to it in case a scalar epilogue is required; this implies that the
3256   // vector trip count is zero. This check also covers the case where adding one
3257   // to the backedge-taken count overflowed leading to an incorrect trip count
3258   // of zero. In this case we will also jump to the scalar loop.
3259   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3260                                             : ICmpInst::ICMP_ULT;
3261 
3262   // If tail is to be folded, vector loop takes care of all iterations.
3263   Value *CheckMinIters = Builder.getFalse();
3264   if (!Cost->foldTailByMasking()) {
3265     Value *Step =
3266         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3267     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3268   }
3269   // Create new preheader for vector loop.
3270   LoopVectorPreHeader =
3271       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3272                  "vector.ph");
3273 
3274   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3275                                DT->getNode(Bypass)->getIDom()) &&
3276          "TC check is expected to dominate Bypass");
3277 
3278   // Update dominator for Bypass & LoopExit (if needed).
3279   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3280   if (!Cost->requiresScalarEpilogue(VF))
3281     // If there is an epilogue which must run, there's no edge from the
3282     // middle block to exit blocks  and thus no need to update the immediate
3283     // dominator of the exit blocks.
3284     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3285 
3286   ReplaceInstWithInst(
3287       TCCheckBlock->getTerminator(),
3288       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3289   LoopBypassBlocks.push_back(TCCheckBlock);
3290 }
3291 
3292 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3293 
3294   BasicBlock *const SCEVCheckBlock =
3295       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3296   if (!SCEVCheckBlock)
3297     return nullptr;
3298 
3299   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3300            (OptForSizeBasedOnProfile &&
3301             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3302          "Cannot SCEV check stride or overflow when optimizing for size");
3303 
3304 
3305   // Update dominator only if this is first RT check.
3306   if (LoopBypassBlocks.empty()) {
3307     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3308     if (!Cost->requiresScalarEpilogue(VF))
3309       // If there is an epilogue which must run, there's no edge from the
3310       // middle block to exit blocks  and thus no need to update the immediate
3311       // dominator of the exit blocks.
3312       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3313   }
3314 
3315   LoopBypassBlocks.push_back(SCEVCheckBlock);
3316   AddedSafetyChecks = true;
3317   return SCEVCheckBlock;
3318 }
3319 
3320 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3321                                                       BasicBlock *Bypass) {
3322   // VPlan-native path does not do any analysis for runtime checks currently.
3323   if (EnableVPlanNativePath)
3324     return nullptr;
3325 
3326   BasicBlock *const MemCheckBlock =
3327       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3328 
3329   // Check if we generated code that checks in runtime if arrays overlap. We put
3330   // the checks into a separate block to make the more common case of few
3331   // elements faster.
3332   if (!MemCheckBlock)
3333     return nullptr;
3334 
3335   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3336     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3337            "Cannot emit memory checks when optimizing for size, unless forced "
3338            "to vectorize.");
3339     ORE->emit([&]() {
3340       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3341                                         L->getStartLoc(), L->getHeader())
3342              << "Code-size may be reduced by not forcing "
3343                 "vectorization, or by source-code modifications "
3344                 "eliminating the need for runtime checks "
3345                 "(e.g., adding 'restrict').";
3346     });
3347   }
3348 
3349   LoopBypassBlocks.push_back(MemCheckBlock);
3350 
3351   AddedSafetyChecks = true;
3352 
3353   // We currently don't use LoopVersioning for the actual loop cloning but we
3354   // still use it to add the noalias metadata.
3355   LVer = std::make_unique<LoopVersioning>(
3356       *Legal->getLAI(),
3357       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3358       DT, PSE.getSE());
3359   LVer->prepareNoAliasMetadata();
3360   return MemCheckBlock;
3361 }
3362 
3363 Value *InnerLoopVectorizer::emitTransformedIndex(
3364     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3365     const InductionDescriptor &ID) const {
3366 
3367   SCEVExpander Exp(*SE, DL, "induction");
3368   auto Step = ID.getStep();
3369   auto StartValue = ID.getStartValue();
3370   assert(Index->getType()->getScalarType() == Step->getType() &&
3371          "Index scalar type does not match StepValue type");
3372 
3373   // Note: the IR at this point is broken. We cannot use SE to create any new
3374   // SCEV and then expand it, hoping that SCEV's simplification will give us
3375   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3376   // lead to various SCEV crashes. So all we can do is to use builder and rely
3377   // on InstCombine for future simplifications. Here we handle some trivial
3378   // cases only.
3379   auto CreateAdd = [&B](Value *X, Value *Y) {
3380     assert(X->getType() == Y->getType() && "Types don't match!");
3381     if (auto *CX = dyn_cast<ConstantInt>(X))
3382       if (CX->isZero())
3383         return Y;
3384     if (auto *CY = dyn_cast<ConstantInt>(Y))
3385       if (CY->isZero())
3386         return X;
3387     return B.CreateAdd(X, Y);
3388   };
3389 
3390   // We allow X to be a vector type, in which case Y will potentially be
3391   // splatted into a vector with the same element count.
3392   auto CreateMul = [&B](Value *X, Value *Y) {
3393     assert(X->getType()->getScalarType() == Y->getType() &&
3394            "Types don't match!");
3395     if (auto *CX = dyn_cast<ConstantInt>(X))
3396       if (CX->isOne())
3397         return Y;
3398     if (auto *CY = dyn_cast<ConstantInt>(Y))
3399       if (CY->isOne())
3400         return X;
3401     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3402     if (XVTy && !isa<VectorType>(Y->getType()))
3403       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3404     return B.CreateMul(X, Y);
3405   };
3406 
3407   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3408   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3409   // the DomTree is not kept up-to-date for additional blocks generated in the
3410   // vector loop. By using the header as insertion point, we guarantee that the
3411   // expanded instructions dominate all their uses.
3412   auto GetInsertPoint = [this, &B]() {
3413     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3414     if (InsertBB != LoopVectorBody &&
3415         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3416       return LoopVectorBody->getTerminator();
3417     return &*B.GetInsertPoint();
3418   };
3419 
3420   switch (ID.getKind()) {
3421   case InductionDescriptor::IK_IntInduction: {
3422     assert(!isa<VectorType>(Index->getType()) &&
3423            "Vector indices not supported for integer inductions yet");
3424     assert(Index->getType() == StartValue->getType() &&
3425            "Index type does not match StartValue type");
3426     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3427       return B.CreateSub(StartValue, Index);
3428     auto *Offset = CreateMul(
3429         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3430     return CreateAdd(StartValue, Offset);
3431   }
3432   case InductionDescriptor::IK_PtrInduction: {
3433     assert(isa<SCEVConstant>(Step) &&
3434            "Expected constant step for pointer induction");
3435     return B.CreateGEP(
3436         StartValue->getType()->getPointerElementType(), StartValue,
3437         CreateMul(Index,
3438                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3439                                     GetInsertPoint())));
3440   }
3441   case InductionDescriptor::IK_FpInduction: {
3442     assert(!isa<VectorType>(Index->getType()) &&
3443            "Vector indices not supported for FP inductions yet");
3444     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3445     auto InductionBinOp = ID.getInductionBinOp();
3446     assert(InductionBinOp &&
3447            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3448             InductionBinOp->getOpcode() == Instruction::FSub) &&
3449            "Original bin op should be defined for FP induction");
3450 
3451     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3452     Value *MulExp = B.CreateFMul(StepValue, Index);
3453     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3454                          "induction");
3455   }
3456   case InductionDescriptor::IK_NoInduction:
3457     return nullptr;
3458   }
3459   llvm_unreachable("invalid enum");
3460 }
3461 
3462 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3463   LoopScalarBody = OrigLoop->getHeader();
3464   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3465   assert(LoopVectorPreHeader && "Invalid loop structure");
3466   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3467   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3468          "multiple exit loop without required epilogue?");
3469 
3470   LoopMiddleBlock =
3471       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3472                  LI, nullptr, Twine(Prefix) + "middle.block");
3473   LoopScalarPreHeader =
3474       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3475                  nullptr, Twine(Prefix) + "scalar.ph");
3476 
3477   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3478 
3479   // Set up the middle block terminator.  Two cases:
3480   // 1) If we know that we must execute the scalar epilogue, emit an
3481   //    unconditional branch.
3482   // 2) Otherwise, we must have a single unique exit block (due to how we
3483   //    implement the multiple exit case).  In this case, set up a conditonal
3484   //    branch from the middle block to the loop scalar preheader, and the
3485   //    exit block.  completeLoopSkeleton will update the condition to use an
3486   //    iteration check, if required to decide whether to execute the remainder.
3487   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3488     BranchInst::Create(LoopScalarPreHeader) :
3489     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3490                        Builder.getTrue());
3491   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3492   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3493 
3494   // We intentionally don't let SplitBlock to update LoopInfo since
3495   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3496   // LoopVectorBody is explicitly added to the correct place few lines later.
3497   LoopVectorBody =
3498       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3499                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3500 
3501   // Update dominator for loop exit.
3502   if (!Cost->requiresScalarEpilogue(VF))
3503     // If there is an epilogue which must run, there's no edge from the
3504     // middle block to exit blocks  and thus no need to update the immediate
3505     // dominator of the exit blocks.
3506     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3507 
3508   // Create and register the new vector loop.
3509   Loop *Lp = LI->AllocateLoop();
3510   Loop *ParentLoop = OrigLoop->getParentLoop();
3511 
3512   // Insert the new loop into the loop nest and register the new basic blocks
3513   // before calling any utilities such as SCEV that require valid LoopInfo.
3514   if (ParentLoop) {
3515     ParentLoop->addChildLoop(Lp);
3516   } else {
3517     LI->addTopLevelLoop(Lp);
3518   }
3519   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3520   return Lp;
3521 }
3522 
3523 void InnerLoopVectorizer::createInductionResumeValues(
3524     Loop *L, Value *VectorTripCount,
3525     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3526   assert(VectorTripCount && L && "Expected valid arguments");
3527   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3528           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3529          "Inconsistent information about additional bypass.");
3530   // We are going to resume the execution of the scalar loop.
3531   // Go over all of the induction variables that we found and fix the
3532   // PHIs that are left in the scalar version of the loop.
3533   // The starting values of PHI nodes depend on the counter of the last
3534   // iteration in the vectorized loop.
3535   // If we come from a bypass edge then we need to start from the original
3536   // start value.
3537   for (auto &InductionEntry : Legal->getInductionVars()) {
3538     PHINode *OrigPhi = InductionEntry.first;
3539     InductionDescriptor II = InductionEntry.second;
3540 
3541     // Create phi nodes to merge from the  backedge-taken check block.
3542     PHINode *BCResumeVal =
3543         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3544                         LoopScalarPreHeader->getTerminator());
3545     // Copy original phi DL over to the new one.
3546     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3547     Value *&EndValue = IVEndValues[OrigPhi];
3548     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3549     if (OrigPhi == OldInduction) {
3550       // We know what the end value is.
3551       EndValue = VectorTripCount;
3552     } else {
3553       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3554 
3555       // Fast-math-flags propagate from the original induction instruction.
3556       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3557         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3558 
3559       Type *StepType = II.getStep()->getType();
3560       Instruction::CastOps CastOp =
3561           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3562       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3563       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3564       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3565       EndValue->setName("ind.end");
3566 
3567       // Compute the end value for the additional bypass (if applicable).
3568       if (AdditionalBypass.first) {
3569         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3570         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3571                                          StepType, true);
3572         CRD =
3573             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3574         EndValueFromAdditionalBypass =
3575             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3576         EndValueFromAdditionalBypass->setName("ind.end");
3577       }
3578     }
3579     // The new PHI merges the original incoming value, in case of a bypass,
3580     // or the value at the end of the vectorized loop.
3581     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3582 
3583     // Fix the scalar body counter (PHI node).
3584     // The old induction's phi node in the scalar body needs the truncated
3585     // value.
3586     for (BasicBlock *BB : LoopBypassBlocks)
3587       BCResumeVal->addIncoming(II.getStartValue(), BB);
3588 
3589     if (AdditionalBypass.first)
3590       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3591                                             EndValueFromAdditionalBypass);
3592 
3593     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3594   }
3595 }
3596 
3597 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3598                                                       MDNode *OrigLoopID) {
3599   assert(L && "Expected valid loop.");
3600 
3601   // The trip counts should be cached by now.
3602   Value *Count = getOrCreateTripCount(L);
3603   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3604 
3605   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3606 
3607   // Add a check in the middle block to see if we have completed
3608   // all of the iterations in the first vector loop.  Three cases:
3609   // 1) If we require a scalar epilogue, there is no conditional branch as
3610   //    we unconditionally branch to the scalar preheader.  Do nothing.
3611   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3612   //    Thus if tail is to be folded, we know we don't need to run the
3613   //    remainder and we can use the previous value for the condition (true).
3614   // 3) Otherwise, construct a runtime check.
3615   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3616     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3617                                         Count, VectorTripCount, "cmp.n",
3618                                         LoopMiddleBlock->getTerminator());
3619 
3620     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3621     // of the corresponding compare because they may have ended up with
3622     // different line numbers and we want to avoid awkward line stepping while
3623     // debugging. Eg. if the compare has got a line number inside the loop.
3624     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3625     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3626   }
3627 
3628   // Get ready to start creating new instructions into the vectorized body.
3629   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3630          "Inconsistent vector loop preheader");
3631   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3632 
3633   Optional<MDNode *> VectorizedLoopID =
3634       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3635                                       LLVMLoopVectorizeFollowupVectorized});
3636   if (VectorizedLoopID.hasValue()) {
3637     L->setLoopID(VectorizedLoopID.getValue());
3638 
3639     // Do not setAlreadyVectorized if loop attributes have been defined
3640     // explicitly.
3641     return LoopVectorPreHeader;
3642   }
3643 
3644   // Keep all loop hints from the original loop on the vector loop (we'll
3645   // replace the vectorizer-specific hints below).
3646   if (MDNode *LID = OrigLoop->getLoopID())
3647     L->setLoopID(LID);
3648 
3649   LoopVectorizeHints Hints(L, true, *ORE);
3650   Hints.setAlreadyVectorized();
3651 
3652 #ifdef EXPENSIVE_CHECKS
3653   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3654   LI->verify(*DT);
3655 #endif
3656 
3657   return LoopVectorPreHeader;
3658 }
3659 
3660 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3661   /*
3662    In this function we generate a new loop. The new loop will contain
3663    the vectorized instructions while the old loop will continue to run the
3664    scalar remainder.
3665 
3666        [ ] <-- loop iteration number check.
3667     /   |
3668    /    v
3669   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3670   |  /  |
3671   | /   v
3672   ||   [ ]     <-- vector pre header.
3673   |/    |
3674   |     v
3675   |    [  ] \
3676   |    [  ]_|   <-- vector loop.
3677   |     |
3678   |     v
3679   \   -[ ]   <--- middle-block.
3680    \/   |
3681    /\   v
3682    | ->[ ]     <--- new preheader.
3683    |    |
3684  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3685    |   [ ] \
3686    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3687     \   |
3688      \  v
3689       >[ ]     <-- exit block(s).
3690    ...
3691    */
3692 
3693   // Get the metadata of the original loop before it gets modified.
3694   MDNode *OrigLoopID = OrigLoop->getLoopID();
3695 
3696   // Workaround!  Compute the trip count of the original loop and cache it
3697   // before we start modifying the CFG.  This code has a systemic problem
3698   // wherein it tries to run analysis over partially constructed IR; this is
3699   // wrong, and not simply for SCEV.  The trip count of the original loop
3700   // simply happens to be prone to hitting this in practice.  In theory, we
3701   // can hit the same issue for any SCEV, or ValueTracking query done during
3702   // mutation.  See PR49900.
3703   getOrCreateTripCount(OrigLoop);
3704 
3705   // Create an empty vector loop, and prepare basic blocks for the runtime
3706   // checks.
3707   Loop *Lp = createVectorLoopSkeleton("");
3708 
3709   // Now, compare the new count to zero. If it is zero skip the vector loop and
3710   // jump to the scalar loop. This check also covers the case where the
3711   // backedge-taken count is uint##_max: adding one to it will overflow leading
3712   // to an incorrect trip count of zero. In this (rare) case we will also jump
3713   // to the scalar loop.
3714   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3715 
3716   // Generate the code to check any assumptions that we've made for SCEV
3717   // expressions.
3718   emitSCEVChecks(Lp, LoopScalarPreHeader);
3719 
3720   // Generate the code that checks in runtime if arrays overlap. We put the
3721   // checks into a separate block to make the more common case of few elements
3722   // faster.
3723   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3724 
3725   // Some loops have a single integer induction variable, while other loops
3726   // don't. One example is c++ iterators that often have multiple pointer
3727   // induction variables. In the code below we also support a case where we
3728   // don't have a single induction variable.
3729   //
3730   // We try to obtain an induction variable from the original loop as hard
3731   // as possible. However if we don't find one that:
3732   //   - is an integer
3733   //   - counts from zero, stepping by one
3734   //   - is the size of the widest induction variable type
3735   // then we create a new one.
3736   OldInduction = Legal->getPrimaryInduction();
3737   Type *IdxTy = Legal->getWidestInductionType();
3738   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3739   // The loop step is equal to the vectorization factor (num of SIMD elements)
3740   // times the unroll factor (num of SIMD instructions).
3741   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3742   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3743   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3744   Induction =
3745       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3746                               getDebugLocFromInstOrOperands(OldInduction));
3747 
3748   // Emit phis for the new starting index of the scalar loop.
3749   createInductionResumeValues(Lp, CountRoundDown);
3750 
3751   return completeLoopSkeleton(Lp, OrigLoopID);
3752 }
3753 
3754 // Fix up external users of the induction variable. At this point, we are
3755 // in LCSSA form, with all external PHIs that use the IV having one input value,
3756 // coming from the remainder loop. We need those PHIs to also have a correct
3757 // value for the IV when arriving directly from the middle block.
3758 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3759                                        const InductionDescriptor &II,
3760                                        Value *CountRoundDown, Value *EndValue,
3761                                        BasicBlock *MiddleBlock) {
3762   // There are two kinds of external IV usages - those that use the value
3763   // computed in the last iteration (the PHI) and those that use the penultimate
3764   // value (the value that feeds into the phi from the loop latch).
3765   // We allow both, but they, obviously, have different values.
3766 
3767   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3768 
3769   DenseMap<Value *, Value *> MissingVals;
3770 
3771   // An external user of the last iteration's value should see the value that
3772   // the remainder loop uses to initialize its own IV.
3773   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3774   for (User *U : PostInc->users()) {
3775     Instruction *UI = cast<Instruction>(U);
3776     if (!OrigLoop->contains(UI)) {
3777       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3778       MissingVals[UI] = EndValue;
3779     }
3780   }
3781 
3782   // An external user of the penultimate value need to see EndValue - Step.
3783   // The simplest way to get this is to recompute it from the constituent SCEVs,
3784   // that is Start + (Step * (CRD - 1)).
3785   for (User *U : OrigPhi->users()) {
3786     auto *UI = cast<Instruction>(U);
3787     if (!OrigLoop->contains(UI)) {
3788       const DataLayout &DL =
3789           OrigLoop->getHeader()->getModule()->getDataLayout();
3790       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3791 
3792       IRBuilder<> B(MiddleBlock->getTerminator());
3793 
3794       // Fast-math-flags propagate from the original induction instruction.
3795       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3796         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3797 
3798       Value *CountMinusOne = B.CreateSub(
3799           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3800       Value *CMO =
3801           !II.getStep()->getType()->isIntegerTy()
3802               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3803                              II.getStep()->getType())
3804               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3805       CMO->setName("cast.cmo");
3806       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3807       Escape->setName("ind.escape");
3808       MissingVals[UI] = Escape;
3809     }
3810   }
3811 
3812   for (auto &I : MissingVals) {
3813     PHINode *PHI = cast<PHINode>(I.first);
3814     // One corner case we have to handle is two IVs "chasing" each-other,
3815     // that is %IV2 = phi [...], [ %IV1, %latch ]
3816     // In this case, if IV1 has an external use, we need to avoid adding both
3817     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3818     // don't already have an incoming value for the middle block.
3819     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3820       PHI->addIncoming(I.second, MiddleBlock);
3821   }
3822 }
3823 
3824 namespace {
3825 
3826 struct CSEDenseMapInfo {
3827   static bool canHandle(const Instruction *I) {
3828     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3829            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3830   }
3831 
3832   static inline Instruction *getEmptyKey() {
3833     return DenseMapInfo<Instruction *>::getEmptyKey();
3834   }
3835 
3836   static inline Instruction *getTombstoneKey() {
3837     return DenseMapInfo<Instruction *>::getTombstoneKey();
3838   }
3839 
3840   static unsigned getHashValue(const Instruction *I) {
3841     assert(canHandle(I) && "Unknown instruction!");
3842     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3843                                                            I->value_op_end()));
3844   }
3845 
3846   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3847     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3848         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3849       return LHS == RHS;
3850     return LHS->isIdenticalTo(RHS);
3851   }
3852 };
3853 
3854 } // end anonymous namespace
3855 
3856 ///Perform cse of induction variable instructions.
3857 static void cse(BasicBlock *BB) {
3858   // Perform simple cse.
3859   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3860   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3861     Instruction *In = &*I++;
3862 
3863     if (!CSEDenseMapInfo::canHandle(In))
3864       continue;
3865 
3866     // Check if we can replace this instruction with any of the
3867     // visited instructions.
3868     if (Instruction *V = CSEMap.lookup(In)) {
3869       In->replaceAllUsesWith(V);
3870       In->eraseFromParent();
3871       continue;
3872     }
3873 
3874     CSEMap[In] = In;
3875   }
3876 }
3877 
3878 InstructionCost
3879 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3880                                               bool &NeedToScalarize) const {
3881   Function *F = CI->getCalledFunction();
3882   Type *ScalarRetTy = CI->getType();
3883   SmallVector<Type *, 4> Tys, ScalarTys;
3884   for (auto &ArgOp : CI->arg_operands())
3885     ScalarTys.push_back(ArgOp->getType());
3886 
3887   // Estimate cost of scalarized vector call. The source operands are assumed
3888   // to be vectors, so we need to extract individual elements from there,
3889   // execute VF scalar calls, and then gather the result into the vector return
3890   // value.
3891   InstructionCost ScalarCallCost =
3892       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3893   if (VF.isScalar())
3894     return ScalarCallCost;
3895 
3896   // Compute corresponding vector type for return value and arguments.
3897   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3898   for (Type *ScalarTy : ScalarTys)
3899     Tys.push_back(ToVectorTy(ScalarTy, VF));
3900 
3901   // Compute costs of unpacking argument values for the scalar calls and
3902   // packing the return values to a vector.
3903   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3904 
3905   InstructionCost Cost =
3906       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3907 
3908   // If we can't emit a vector call for this function, then the currently found
3909   // cost is the cost we need to return.
3910   NeedToScalarize = true;
3911   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3912   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3913 
3914   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3915     return Cost;
3916 
3917   // If the corresponding vector cost is cheaper, return its cost.
3918   InstructionCost VectorCallCost =
3919       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3920   if (VectorCallCost < Cost) {
3921     NeedToScalarize = false;
3922     Cost = VectorCallCost;
3923   }
3924   return Cost;
3925 }
3926 
3927 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3928   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3929     return Elt;
3930   return VectorType::get(Elt, VF);
3931 }
3932 
3933 InstructionCost
3934 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3935                                                    ElementCount VF) const {
3936   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3937   assert(ID && "Expected intrinsic call!");
3938   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3939   FastMathFlags FMF;
3940   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3941     FMF = FPMO->getFastMathFlags();
3942 
3943   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3944   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3945   SmallVector<Type *> ParamTys;
3946   std::transform(FTy->param_begin(), FTy->param_end(),
3947                  std::back_inserter(ParamTys),
3948                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3949 
3950   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3951                                     dyn_cast<IntrinsicInst>(CI));
3952   return TTI.getIntrinsicInstrCost(CostAttrs,
3953                                    TargetTransformInfo::TCK_RecipThroughput);
3954 }
3955 
3956 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3957   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3958   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3959   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3960 }
3961 
3962 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3963   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3964   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3965   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3966 }
3967 
3968 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3969   // For every instruction `I` in MinBWs, truncate the operands, create a
3970   // truncated version of `I` and reextend its result. InstCombine runs
3971   // later and will remove any ext/trunc pairs.
3972   SmallPtrSet<Value *, 4> Erased;
3973   for (const auto &KV : Cost->getMinimalBitwidths()) {
3974     // If the value wasn't vectorized, we must maintain the original scalar
3975     // type. The absence of the value from State indicates that it
3976     // wasn't vectorized.
3977     VPValue *Def = State.Plan->getVPValue(KV.first);
3978     if (!State.hasAnyVectorValue(Def))
3979       continue;
3980     for (unsigned Part = 0; Part < UF; ++Part) {
3981       Value *I = State.get(Def, Part);
3982       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3983         continue;
3984       Type *OriginalTy = I->getType();
3985       Type *ScalarTruncatedTy =
3986           IntegerType::get(OriginalTy->getContext(), KV.second);
3987       auto *TruncatedTy = VectorType::get(
3988           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3989       if (TruncatedTy == OriginalTy)
3990         continue;
3991 
3992       IRBuilder<> B(cast<Instruction>(I));
3993       auto ShrinkOperand = [&](Value *V) -> Value * {
3994         if (auto *ZI = dyn_cast<ZExtInst>(V))
3995           if (ZI->getSrcTy() == TruncatedTy)
3996             return ZI->getOperand(0);
3997         return B.CreateZExtOrTrunc(V, TruncatedTy);
3998       };
3999 
4000       // The actual instruction modification depends on the instruction type,
4001       // unfortunately.
4002       Value *NewI = nullptr;
4003       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4004         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4005                              ShrinkOperand(BO->getOperand(1)));
4006 
4007         // Any wrapping introduced by shrinking this operation shouldn't be
4008         // considered undefined behavior. So, we can't unconditionally copy
4009         // arithmetic wrapping flags to NewI.
4010         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4011       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4012         NewI =
4013             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4014                          ShrinkOperand(CI->getOperand(1)));
4015       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4016         NewI = B.CreateSelect(SI->getCondition(),
4017                               ShrinkOperand(SI->getTrueValue()),
4018                               ShrinkOperand(SI->getFalseValue()));
4019       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4020         switch (CI->getOpcode()) {
4021         default:
4022           llvm_unreachable("Unhandled cast!");
4023         case Instruction::Trunc:
4024           NewI = ShrinkOperand(CI->getOperand(0));
4025           break;
4026         case Instruction::SExt:
4027           NewI = B.CreateSExtOrTrunc(
4028               CI->getOperand(0),
4029               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4030           break;
4031         case Instruction::ZExt:
4032           NewI = B.CreateZExtOrTrunc(
4033               CI->getOperand(0),
4034               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4035           break;
4036         }
4037       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4038         auto Elements0 =
4039             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4040         auto *O0 = B.CreateZExtOrTrunc(
4041             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4042         auto Elements1 =
4043             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4044         auto *O1 = B.CreateZExtOrTrunc(
4045             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4046 
4047         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4048       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4049         // Don't do anything with the operands, just extend the result.
4050         continue;
4051       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4052         auto Elements =
4053             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4054         auto *O0 = B.CreateZExtOrTrunc(
4055             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4056         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4057         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4058       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4059         auto Elements =
4060             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4061         auto *O0 = B.CreateZExtOrTrunc(
4062             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4063         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4064       } else {
4065         // If we don't know what to do, be conservative and don't do anything.
4066         continue;
4067       }
4068 
4069       // Lastly, extend the result.
4070       NewI->takeName(cast<Instruction>(I));
4071       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4072       I->replaceAllUsesWith(Res);
4073       cast<Instruction>(I)->eraseFromParent();
4074       Erased.insert(I);
4075       State.reset(Def, Res, Part);
4076     }
4077   }
4078 
4079   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4080   for (const auto &KV : Cost->getMinimalBitwidths()) {
4081     // If the value wasn't vectorized, we must maintain the original scalar
4082     // type. The absence of the value from State indicates that it
4083     // wasn't vectorized.
4084     VPValue *Def = State.Plan->getVPValue(KV.first);
4085     if (!State.hasAnyVectorValue(Def))
4086       continue;
4087     for (unsigned Part = 0; Part < UF; ++Part) {
4088       Value *I = State.get(Def, Part);
4089       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4090       if (Inst && Inst->use_empty()) {
4091         Value *NewI = Inst->getOperand(0);
4092         Inst->eraseFromParent();
4093         State.reset(Def, NewI, Part);
4094       }
4095     }
4096   }
4097 }
4098 
4099 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4100   // Insert truncates and extends for any truncated instructions as hints to
4101   // InstCombine.
4102   if (VF.isVector())
4103     truncateToMinimalBitwidths(State);
4104 
4105   // Fix widened non-induction PHIs by setting up the PHI operands.
4106   if (OrigPHIsToFix.size()) {
4107     assert(EnableVPlanNativePath &&
4108            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4109     fixNonInductionPHIs(State);
4110   }
4111 
4112   // At this point every instruction in the original loop is widened to a
4113   // vector form. Now we need to fix the recurrences in the loop. These PHI
4114   // nodes are currently empty because we did not want to introduce cycles.
4115   // This is the second stage of vectorizing recurrences.
4116   fixCrossIterationPHIs(State);
4117 
4118   // Forget the original basic block.
4119   PSE.getSE()->forgetLoop(OrigLoop);
4120 
4121   // If we inserted an edge from the middle block to the unique exit block,
4122   // update uses outside the loop (phis) to account for the newly inserted
4123   // edge.
4124   if (!Cost->requiresScalarEpilogue(VF)) {
4125     // Fix-up external users of the induction variables.
4126     for (auto &Entry : Legal->getInductionVars())
4127       fixupIVUsers(Entry.first, Entry.second,
4128                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4129                    IVEndValues[Entry.first], LoopMiddleBlock);
4130 
4131     fixLCSSAPHIs(State);
4132   }
4133 
4134   for (Instruction *PI : PredicatedInstructions)
4135     sinkScalarOperands(&*PI);
4136 
4137   // Remove redundant induction instructions.
4138   cse(LoopVectorBody);
4139 
4140   // Set/update profile weights for the vector and remainder loops as original
4141   // loop iterations are now distributed among them. Note that original loop
4142   // represented by LoopScalarBody becomes remainder loop after vectorization.
4143   //
4144   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4145   // end up getting slightly roughened result but that should be OK since
4146   // profile is not inherently precise anyway. Note also possible bypass of
4147   // vector code caused by legality checks is ignored, assigning all the weight
4148   // to the vector loop, optimistically.
4149   //
4150   // For scalable vectorization we can't know at compile time how many iterations
4151   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4152   // vscale of '1'.
4153   setProfileInfoAfterUnrolling(
4154       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4155       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4156 }
4157 
4158 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4159   // In order to support recurrences we need to be able to vectorize Phi nodes.
4160   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4161   // stage #2: We now need to fix the recurrences by adding incoming edges to
4162   // the currently empty PHI nodes. At this point every instruction in the
4163   // original loop is widened to a vector form so we can use them to construct
4164   // the incoming edges.
4165   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4166   for (VPRecipeBase &R : Header->phis()) {
4167     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4168       fixReduction(ReductionPhi, State);
4169     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4170       fixFirstOrderRecurrence(FOR, State);
4171   }
4172 }
4173 
4174 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4175                                                   VPTransformState &State) {
4176   // This is the second phase of vectorizing first-order recurrences. An
4177   // overview of the transformation is described below. Suppose we have the
4178   // following loop.
4179   //
4180   //   for (int i = 0; i < n; ++i)
4181   //     b[i] = a[i] - a[i - 1];
4182   //
4183   // There is a first-order recurrence on "a". For this loop, the shorthand
4184   // scalar IR looks like:
4185   //
4186   //   scalar.ph:
4187   //     s_init = a[-1]
4188   //     br scalar.body
4189   //
4190   //   scalar.body:
4191   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4192   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4193   //     s2 = a[i]
4194   //     b[i] = s2 - s1
4195   //     br cond, scalar.body, ...
4196   //
4197   // In this example, s1 is a recurrence because it's value depends on the
4198   // previous iteration. In the first phase of vectorization, we created a
4199   // vector phi v1 for s1. We now complete the vectorization and produce the
4200   // shorthand vector IR shown below (for VF = 4, UF = 1).
4201   //
4202   //   vector.ph:
4203   //     v_init = vector(..., ..., ..., a[-1])
4204   //     br vector.body
4205   //
4206   //   vector.body
4207   //     i = phi [0, vector.ph], [i+4, vector.body]
4208   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4209   //     v2 = a[i, i+1, i+2, i+3];
4210   //     v3 = vector(v1(3), v2(0, 1, 2))
4211   //     b[i, i+1, i+2, i+3] = v2 - v3
4212   //     br cond, vector.body, middle.block
4213   //
4214   //   middle.block:
4215   //     x = v2(3)
4216   //     br scalar.ph
4217   //
4218   //   scalar.ph:
4219   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4220   //     br scalar.body
4221   //
4222   // After execution completes the vector loop, we extract the next value of
4223   // the recurrence (x) to use as the initial value in the scalar loop.
4224 
4225   auto *IdxTy = Builder.getInt32Ty();
4226   auto *VecPhi = cast<PHINode>(State.get(PhiR, 0));
4227 
4228   // Fix the latch value of the new recurrence in the vector loop.
4229   VPValue *PreviousDef = PhiR->getBackedgeValue();
4230   Value *Incoming = State.get(PreviousDef, UF - 1);
4231   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4232 
4233   // Extract the last vector element in the middle block. This will be the
4234   // initial value for the recurrence when jumping to the scalar loop.
4235   auto *ExtractForScalar = Incoming;
4236   if (VF.isVector()) {
4237     auto *One = ConstantInt::get(IdxTy, 1);
4238     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4239     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4240     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4241     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4242                                                     "vector.recur.extract");
4243   }
4244   // Extract the second last element in the middle block if the
4245   // Phi is used outside the loop. We need to extract the phi itself
4246   // and not the last element (the phi update in the current iteration). This
4247   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4248   // when the scalar loop is not run at all.
4249   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4250   if (VF.isVector()) {
4251     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4252     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4253     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4254         Incoming, Idx, "vector.recur.extract.for.phi");
4255   } else if (UF > 1)
4256     // When loop is unrolled without vectorizing, initialize
4257     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4258     // of `Incoming`. This is analogous to the vectorized case above: extracting
4259     // the second last element when VF > 1.
4260     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4261 
4262   // Fix the initial value of the original recurrence in the scalar loop.
4263   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4264   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4265   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4266   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4267   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4268     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4269     Start->addIncoming(Incoming, BB);
4270   }
4271 
4272   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4273   Phi->setName("scalar.recur");
4274 
4275   // Finally, fix users of the recurrence outside the loop. The users will need
4276   // either the last value of the scalar recurrence or the last value of the
4277   // vector recurrence we extracted in the middle block. Since the loop is in
4278   // LCSSA form, we just need to find all the phi nodes for the original scalar
4279   // recurrence in the exit block, and then add an edge for the middle block.
4280   // Note that LCSSA does not imply single entry when the original scalar loop
4281   // had multiple exiting edges (as we always run the last iteration in the
4282   // scalar epilogue); in that case, there is no edge from middle to exit and
4283   // and thus no phis which needed updated.
4284   if (!Cost->requiresScalarEpilogue(VF))
4285     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4286       if (any_of(LCSSAPhi.incoming_values(),
4287                  [Phi](Value *V) { return V == Phi; }))
4288         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4289 }
4290 
4291 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4292                                        VPTransformState &State) {
4293   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4294   // Get it's reduction variable descriptor.
4295   assert(Legal->isReductionVariable(OrigPhi) &&
4296          "Unable to find the reduction variable");
4297   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4298 
4299   RecurKind RK = RdxDesc.getRecurrenceKind();
4300   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4301   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4302   setDebugLocFromInst(ReductionStartValue);
4303 
4304   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4305   // This is the vector-clone of the value that leaves the loop.
4306   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4307 
4308   // Wrap flags are in general invalid after vectorization, clear them.
4309   clearReductionWrapFlags(RdxDesc, State);
4310 
4311   // Fix the vector-loop phi.
4312 
4313   // Reductions do not have to start at zero. They can start with
4314   // any loop invariant values.
4315   BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4316 
4317   unsigned LastPartForNewPhi = PhiR->isOrdered() ? 1 : UF;
4318   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
4319     Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part);
4320     Value *Val = State.get(PhiR->getBackedgeValue(), Part);
4321     if (PhiR->isOrdered())
4322       Val = State.get(PhiR->getBackedgeValue(), UF - 1);
4323 
4324     cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch);
4325   }
4326 
4327   // Before each round, move the insertion point right between
4328   // the PHIs and the values we are going to write.
4329   // This allows us to write both PHINodes and the extractelement
4330   // instructions.
4331   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4332 
4333   setDebugLocFromInst(LoopExitInst);
4334 
4335   Type *PhiTy = OrigPhi->getType();
4336   // If tail is folded by masking, the vector value to leave the loop should be
4337   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4338   // instead of the former. For an inloop reduction the reduction will already
4339   // be predicated, and does not need to be handled here.
4340   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4341     for (unsigned Part = 0; Part < UF; ++Part) {
4342       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4343       Value *Sel = nullptr;
4344       for (User *U : VecLoopExitInst->users()) {
4345         if (isa<SelectInst>(U)) {
4346           assert(!Sel && "Reduction exit feeding two selects");
4347           Sel = U;
4348         } else
4349           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4350       }
4351       assert(Sel && "Reduction exit feeds no select");
4352       State.reset(LoopExitInstDef, Sel, Part);
4353 
4354       // If the target can create a predicated operator for the reduction at no
4355       // extra cost in the loop (for example a predicated vadd), it can be
4356       // cheaper for the select to remain in the loop than be sunk out of it,
4357       // and so use the select value for the phi instead of the old
4358       // LoopExitValue.
4359       if (PreferPredicatedReductionSelect ||
4360           TTI->preferPredicatedReductionSelect(
4361               RdxDesc.getOpcode(), PhiTy,
4362               TargetTransformInfo::ReductionFlags())) {
4363         auto *VecRdxPhi =
4364             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4365         VecRdxPhi->setIncomingValueForBlock(
4366             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4367       }
4368     }
4369   }
4370 
4371   // If the vector reduction can be performed in a smaller type, we truncate
4372   // then extend the loop exit value to enable InstCombine to evaluate the
4373   // entire expression in the smaller type.
4374   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4375     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4376     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4377     Builder.SetInsertPoint(
4378         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4379     VectorParts RdxParts(UF);
4380     for (unsigned Part = 0; Part < UF; ++Part) {
4381       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4382       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4383       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4384                                         : Builder.CreateZExt(Trunc, VecTy);
4385       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4386            UI != RdxParts[Part]->user_end();)
4387         if (*UI != Trunc) {
4388           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4389           RdxParts[Part] = Extnd;
4390         } else {
4391           ++UI;
4392         }
4393     }
4394     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4395     for (unsigned Part = 0; Part < UF; ++Part) {
4396       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4397       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4398     }
4399   }
4400 
4401   // Reduce all of the unrolled parts into a single vector.
4402   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4403   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4404 
4405   // The middle block terminator has already been assigned a DebugLoc here (the
4406   // OrigLoop's single latch terminator). We want the whole middle block to
4407   // appear to execute on this line because: (a) it is all compiler generated,
4408   // (b) these instructions are always executed after evaluating the latch
4409   // conditional branch, and (c) other passes may add new predecessors which
4410   // terminate on this line. This is the easiest way to ensure we don't
4411   // accidentally cause an extra step back into the loop while debugging.
4412   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4413   if (PhiR->isOrdered())
4414     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4415   else {
4416     // Floating-point operations should have some FMF to enable the reduction.
4417     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4418     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4419     for (unsigned Part = 1; Part < UF; ++Part) {
4420       Value *RdxPart = State.get(LoopExitInstDef, Part);
4421       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4422         ReducedPartRdx = Builder.CreateBinOp(
4423             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4424       } else {
4425         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4426       }
4427     }
4428   }
4429 
4430   // Create the reduction after the loop. Note that inloop reductions create the
4431   // target reduction in the loop using a Reduction recipe.
4432   if (VF.isVector() && !PhiR->isInLoop()) {
4433     ReducedPartRdx =
4434         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4435     // If the reduction can be performed in a smaller type, we need to extend
4436     // the reduction to the wider type before we branch to the original loop.
4437     if (PhiTy != RdxDesc.getRecurrenceType())
4438       ReducedPartRdx = RdxDesc.isSigned()
4439                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4440                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4441   }
4442 
4443   // Create a phi node that merges control-flow from the backedge-taken check
4444   // block and the middle block.
4445   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4446                                         LoopScalarPreHeader->getTerminator());
4447   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4448     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4449   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4450 
4451   // Now, we need to fix the users of the reduction variable
4452   // inside and outside of the scalar remainder loop.
4453 
4454   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4455   // in the exit blocks.  See comment on analogous loop in
4456   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4457   if (!Cost->requiresScalarEpilogue(VF))
4458     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4459       if (any_of(LCSSAPhi.incoming_values(),
4460                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4461         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4462 
4463   // Fix the scalar loop reduction variable with the incoming reduction sum
4464   // from the vector body and from the backedge value.
4465   int IncomingEdgeBlockIdx =
4466       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4467   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4468   // Pick the other block.
4469   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4470   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4471   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4472 }
4473 
4474 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4475                                                   VPTransformState &State) {
4476   RecurKind RK = RdxDesc.getRecurrenceKind();
4477   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4478     return;
4479 
4480   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4481   assert(LoopExitInstr && "null loop exit instruction");
4482   SmallVector<Instruction *, 8> Worklist;
4483   SmallPtrSet<Instruction *, 8> Visited;
4484   Worklist.push_back(LoopExitInstr);
4485   Visited.insert(LoopExitInstr);
4486 
4487   while (!Worklist.empty()) {
4488     Instruction *Cur = Worklist.pop_back_val();
4489     if (isa<OverflowingBinaryOperator>(Cur))
4490       for (unsigned Part = 0; Part < UF; ++Part) {
4491         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4492         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4493       }
4494 
4495     for (User *U : Cur->users()) {
4496       Instruction *UI = cast<Instruction>(U);
4497       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4498           Visited.insert(UI).second)
4499         Worklist.push_back(UI);
4500     }
4501   }
4502 }
4503 
4504 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4505   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4506     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4507       // Some phis were already hand updated by the reduction and recurrence
4508       // code above, leave them alone.
4509       continue;
4510 
4511     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4512     // Non-instruction incoming values will have only one value.
4513 
4514     VPLane Lane = VPLane::getFirstLane();
4515     if (isa<Instruction>(IncomingValue) &&
4516         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4517                                            VF))
4518       Lane = VPLane::getLastLaneForVF(VF);
4519 
4520     // Can be a loop invariant incoming value or the last scalar value to be
4521     // extracted from the vectorized loop.
4522     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4523     Value *lastIncomingValue =
4524         OrigLoop->isLoopInvariant(IncomingValue)
4525             ? IncomingValue
4526             : State.get(State.Plan->getVPValue(IncomingValue),
4527                         VPIteration(UF - 1, Lane));
4528     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4529   }
4530 }
4531 
4532 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4533   // The basic block and loop containing the predicated instruction.
4534   auto *PredBB = PredInst->getParent();
4535   auto *VectorLoop = LI->getLoopFor(PredBB);
4536 
4537   // Initialize a worklist with the operands of the predicated instruction.
4538   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4539 
4540   // Holds instructions that we need to analyze again. An instruction may be
4541   // reanalyzed if we don't yet know if we can sink it or not.
4542   SmallVector<Instruction *, 8> InstsToReanalyze;
4543 
4544   // Returns true if a given use occurs in the predicated block. Phi nodes use
4545   // their operands in their corresponding predecessor blocks.
4546   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4547     auto *I = cast<Instruction>(U.getUser());
4548     BasicBlock *BB = I->getParent();
4549     if (auto *Phi = dyn_cast<PHINode>(I))
4550       BB = Phi->getIncomingBlock(
4551           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4552     return BB == PredBB;
4553   };
4554 
4555   // Iteratively sink the scalarized operands of the predicated instruction
4556   // into the block we created for it. When an instruction is sunk, it's
4557   // operands are then added to the worklist. The algorithm ends after one pass
4558   // through the worklist doesn't sink a single instruction.
4559   bool Changed;
4560   do {
4561     // Add the instructions that need to be reanalyzed to the worklist, and
4562     // reset the changed indicator.
4563     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4564     InstsToReanalyze.clear();
4565     Changed = false;
4566 
4567     while (!Worklist.empty()) {
4568       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4569 
4570       // We can't sink an instruction if it is a phi node, is not in the loop,
4571       // or may have side effects.
4572       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4573           I->mayHaveSideEffects())
4574         continue;
4575 
4576       // If the instruction is already in PredBB, check if we can sink its
4577       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4578       // sinking the scalar instruction I, hence it appears in PredBB; but it
4579       // may have failed to sink I's operands (recursively), which we try
4580       // (again) here.
4581       if (I->getParent() == PredBB) {
4582         Worklist.insert(I->op_begin(), I->op_end());
4583         continue;
4584       }
4585 
4586       // It's legal to sink the instruction if all its uses occur in the
4587       // predicated block. Otherwise, there's nothing to do yet, and we may
4588       // need to reanalyze the instruction.
4589       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4590         InstsToReanalyze.push_back(I);
4591         continue;
4592       }
4593 
4594       // Move the instruction to the beginning of the predicated block, and add
4595       // it's operands to the worklist.
4596       I->moveBefore(&*PredBB->getFirstInsertionPt());
4597       Worklist.insert(I->op_begin(), I->op_end());
4598 
4599       // The sinking may have enabled other instructions to be sunk, so we will
4600       // need to iterate.
4601       Changed = true;
4602     }
4603   } while (Changed);
4604 }
4605 
4606 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4607   for (PHINode *OrigPhi : OrigPHIsToFix) {
4608     VPWidenPHIRecipe *VPPhi =
4609         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4610     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4611     // Make sure the builder has a valid insert point.
4612     Builder.SetInsertPoint(NewPhi);
4613     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4614       VPValue *Inc = VPPhi->getIncomingValue(i);
4615       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4616       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4617     }
4618   }
4619 }
4620 
4621 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4622   return Cost->useOrderedReductions(RdxDesc);
4623 }
4624 
4625 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4626                                    VPUser &Operands, unsigned UF,
4627                                    ElementCount VF, bool IsPtrLoopInvariant,
4628                                    SmallBitVector &IsIndexLoopInvariant,
4629                                    VPTransformState &State) {
4630   // Construct a vector GEP by widening the operands of the scalar GEP as
4631   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4632   // results in a vector of pointers when at least one operand of the GEP
4633   // is vector-typed. Thus, to keep the representation compact, we only use
4634   // vector-typed operands for loop-varying values.
4635 
4636   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4637     // If we are vectorizing, but the GEP has only loop-invariant operands,
4638     // the GEP we build (by only using vector-typed operands for
4639     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4640     // produce a vector of pointers, we need to either arbitrarily pick an
4641     // operand to broadcast, or broadcast a clone of the original GEP.
4642     // Here, we broadcast a clone of the original.
4643     //
4644     // TODO: If at some point we decide to scalarize instructions having
4645     //       loop-invariant operands, this special case will no longer be
4646     //       required. We would add the scalarization decision to
4647     //       collectLoopScalars() and teach getVectorValue() to broadcast
4648     //       the lane-zero scalar value.
4649     auto *Clone = Builder.Insert(GEP->clone());
4650     for (unsigned Part = 0; Part < UF; ++Part) {
4651       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4652       State.set(VPDef, EntryPart, Part);
4653       addMetadata(EntryPart, GEP);
4654     }
4655   } else {
4656     // If the GEP has at least one loop-varying operand, we are sure to
4657     // produce a vector of pointers. But if we are only unrolling, we want
4658     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4659     // produce with the code below will be scalar (if VF == 1) or vector
4660     // (otherwise). Note that for the unroll-only case, we still maintain
4661     // values in the vector mapping with initVector, as we do for other
4662     // instructions.
4663     for (unsigned Part = 0; Part < UF; ++Part) {
4664       // The pointer operand of the new GEP. If it's loop-invariant, we
4665       // won't broadcast it.
4666       auto *Ptr = IsPtrLoopInvariant
4667                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4668                       : State.get(Operands.getOperand(0), Part);
4669 
4670       // Collect all the indices for the new GEP. If any index is
4671       // loop-invariant, we won't broadcast it.
4672       SmallVector<Value *, 4> Indices;
4673       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4674         VPValue *Operand = Operands.getOperand(I);
4675         if (IsIndexLoopInvariant[I - 1])
4676           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4677         else
4678           Indices.push_back(State.get(Operand, Part));
4679       }
4680 
4681       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4682       // but it should be a vector, otherwise.
4683       auto *NewGEP =
4684           GEP->isInBounds()
4685               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4686                                           Indices)
4687               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4688       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4689              "NewGEP is not a pointer vector");
4690       State.set(VPDef, NewGEP, Part);
4691       addMetadata(NewGEP, GEP);
4692     }
4693   }
4694 }
4695 
4696 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4697                                               VPWidenPHIRecipe *PhiR,
4698                                               VPTransformState &State) {
4699   PHINode *P = cast<PHINode>(PN);
4700   if (EnableVPlanNativePath) {
4701     // Currently we enter here in the VPlan-native path for non-induction
4702     // PHIs where all control flow is uniform. We simply widen these PHIs.
4703     // Create a vector phi with no operands - the vector phi operands will be
4704     // set at the end of vector code generation.
4705     Type *VecTy = (State.VF.isScalar())
4706                       ? PN->getType()
4707                       : VectorType::get(PN->getType(), State.VF);
4708     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4709     State.set(PhiR, VecPhi, 0);
4710     OrigPHIsToFix.push_back(P);
4711 
4712     return;
4713   }
4714 
4715   assert(PN->getParent() == OrigLoop->getHeader() &&
4716          "Non-header phis should have been handled elsewhere");
4717 
4718   // In order to support recurrences we need to be able to vectorize Phi nodes.
4719   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4720   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4721   // this value when we vectorize all of the instructions that use the PHI.
4722 
4723   assert(!Legal->isReductionVariable(P) &&
4724          "reductions should be handled elsewhere");
4725 
4726   setDebugLocFromInst(P);
4727 
4728   // This PHINode must be an induction variable.
4729   // Make sure that we know about it.
4730   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4731 
4732   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4733   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4734 
4735   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4736   // which can be found from the original scalar operations.
4737   switch (II.getKind()) {
4738   case InductionDescriptor::IK_NoInduction:
4739     llvm_unreachable("Unknown induction");
4740   case InductionDescriptor::IK_IntInduction:
4741   case InductionDescriptor::IK_FpInduction:
4742     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4743   case InductionDescriptor::IK_PtrInduction: {
4744     // Handle the pointer induction variable case.
4745     assert(P->getType()->isPointerTy() && "Unexpected type.");
4746 
4747     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4748       // This is the normalized GEP that starts counting at zero.
4749       Value *PtrInd =
4750           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4751       // Determine the number of scalars we need to generate for each unroll
4752       // iteration. If the instruction is uniform, we only need to generate the
4753       // first lane. Otherwise, we generate all VF values.
4754       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4755       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4756 
4757       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4758       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4759       if (NeedsVectorIndex) {
4760         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4761         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4762         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4763       }
4764 
4765       for (unsigned Part = 0; Part < UF; ++Part) {
4766         Value *PartStart = createStepForVF(
4767             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4768 
4769         if (NeedsVectorIndex) {
4770           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4771           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4772           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4773           Value *SclrGep =
4774               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4775           SclrGep->setName("next.gep");
4776           State.set(PhiR, SclrGep, Part);
4777           // We've cached the whole vector, which means we can support the
4778           // extraction of any lane.
4779           continue;
4780         }
4781 
4782         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4783           Value *Idx = Builder.CreateAdd(
4784               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4785           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4786           Value *SclrGep =
4787               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4788           SclrGep->setName("next.gep");
4789           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4790         }
4791       }
4792       return;
4793     }
4794     assert(isa<SCEVConstant>(II.getStep()) &&
4795            "Induction step not a SCEV constant!");
4796     Type *PhiType = II.getStep()->getType();
4797 
4798     // Build a pointer phi
4799     Value *ScalarStartValue = II.getStartValue();
4800     Type *ScStValueType = ScalarStartValue->getType();
4801     PHINode *NewPointerPhi =
4802         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4803     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4804 
4805     // A pointer induction, performed by using a gep
4806     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4807     Instruction *InductionLoc = LoopLatch->getTerminator();
4808     const SCEV *ScalarStep = II.getStep();
4809     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4810     Value *ScalarStepValue =
4811         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4812     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4813     Value *NumUnrolledElems =
4814         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4815     Value *InductionGEP = GetElementPtrInst::Create(
4816         ScStValueType->getPointerElementType(), NewPointerPhi,
4817         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4818         InductionLoc);
4819     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4820 
4821     // Create UF many actual address geps that use the pointer
4822     // phi as base and a vectorized version of the step value
4823     // (<step*0, ..., step*N>) as offset.
4824     for (unsigned Part = 0; Part < State.UF; ++Part) {
4825       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4826       Value *StartOffsetScalar =
4827           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4828       Value *StartOffset =
4829           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4830       // Create a vector of consecutive numbers from zero to VF.
4831       StartOffset =
4832           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4833 
4834       Value *GEP = Builder.CreateGEP(
4835           ScStValueType->getPointerElementType(), NewPointerPhi,
4836           Builder.CreateMul(
4837               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4838               "vector.gep"));
4839       State.set(PhiR, GEP, Part);
4840     }
4841   }
4842   }
4843 }
4844 
4845 /// A helper function for checking whether an integer division-related
4846 /// instruction may divide by zero (in which case it must be predicated if
4847 /// executed conditionally in the scalar code).
4848 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4849 /// Non-zero divisors that are non compile-time constants will not be
4850 /// converted into multiplication, so we will still end up scalarizing
4851 /// the division, but can do so w/o predication.
4852 static bool mayDivideByZero(Instruction &I) {
4853   assert((I.getOpcode() == Instruction::UDiv ||
4854           I.getOpcode() == Instruction::SDiv ||
4855           I.getOpcode() == Instruction::URem ||
4856           I.getOpcode() == Instruction::SRem) &&
4857          "Unexpected instruction");
4858   Value *Divisor = I.getOperand(1);
4859   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4860   return !CInt || CInt->isZero();
4861 }
4862 
4863 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4864                                            VPUser &User,
4865                                            VPTransformState &State) {
4866   switch (I.getOpcode()) {
4867   case Instruction::Call:
4868   case Instruction::Br:
4869   case Instruction::PHI:
4870   case Instruction::GetElementPtr:
4871   case Instruction::Select:
4872     llvm_unreachable("This instruction is handled by a different recipe.");
4873   case Instruction::UDiv:
4874   case Instruction::SDiv:
4875   case Instruction::SRem:
4876   case Instruction::URem:
4877   case Instruction::Add:
4878   case Instruction::FAdd:
4879   case Instruction::Sub:
4880   case Instruction::FSub:
4881   case Instruction::FNeg:
4882   case Instruction::Mul:
4883   case Instruction::FMul:
4884   case Instruction::FDiv:
4885   case Instruction::FRem:
4886   case Instruction::Shl:
4887   case Instruction::LShr:
4888   case Instruction::AShr:
4889   case Instruction::And:
4890   case Instruction::Or:
4891   case Instruction::Xor: {
4892     // Just widen unops and binops.
4893     setDebugLocFromInst(&I);
4894 
4895     for (unsigned Part = 0; Part < UF; ++Part) {
4896       SmallVector<Value *, 2> Ops;
4897       for (VPValue *VPOp : User.operands())
4898         Ops.push_back(State.get(VPOp, Part));
4899 
4900       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4901 
4902       if (auto *VecOp = dyn_cast<Instruction>(V))
4903         VecOp->copyIRFlags(&I);
4904 
4905       // Use this vector value for all users of the original instruction.
4906       State.set(Def, V, Part);
4907       addMetadata(V, &I);
4908     }
4909 
4910     break;
4911   }
4912   case Instruction::ICmp:
4913   case Instruction::FCmp: {
4914     // Widen compares. Generate vector compares.
4915     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4916     auto *Cmp = cast<CmpInst>(&I);
4917     setDebugLocFromInst(Cmp);
4918     for (unsigned Part = 0; Part < UF; ++Part) {
4919       Value *A = State.get(User.getOperand(0), Part);
4920       Value *B = State.get(User.getOperand(1), Part);
4921       Value *C = nullptr;
4922       if (FCmp) {
4923         // Propagate fast math flags.
4924         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4925         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4926         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4927       } else {
4928         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4929       }
4930       State.set(Def, C, Part);
4931       addMetadata(C, &I);
4932     }
4933 
4934     break;
4935   }
4936 
4937   case Instruction::ZExt:
4938   case Instruction::SExt:
4939   case Instruction::FPToUI:
4940   case Instruction::FPToSI:
4941   case Instruction::FPExt:
4942   case Instruction::PtrToInt:
4943   case Instruction::IntToPtr:
4944   case Instruction::SIToFP:
4945   case Instruction::UIToFP:
4946   case Instruction::Trunc:
4947   case Instruction::FPTrunc:
4948   case Instruction::BitCast: {
4949     auto *CI = cast<CastInst>(&I);
4950     setDebugLocFromInst(CI);
4951 
4952     /// Vectorize casts.
4953     Type *DestTy =
4954         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4955 
4956     for (unsigned Part = 0; Part < UF; ++Part) {
4957       Value *A = State.get(User.getOperand(0), Part);
4958       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4959       State.set(Def, Cast, Part);
4960       addMetadata(Cast, &I);
4961     }
4962     break;
4963   }
4964   default:
4965     // This instruction is not vectorized by simple widening.
4966     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4967     llvm_unreachable("Unhandled instruction!");
4968   } // end of switch.
4969 }
4970 
4971 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4972                                                VPUser &ArgOperands,
4973                                                VPTransformState &State) {
4974   assert(!isa<DbgInfoIntrinsic>(I) &&
4975          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4976   setDebugLocFromInst(&I);
4977 
4978   Module *M = I.getParent()->getParent()->getParent();
4979   auto *CI = cast<CallInst>(&I);
4980 
4981   SmallVector<Type *, 4> Tys;
4982   for (Value *ArgOperand : CI->arg_operands())
4983     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4984 
4985   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4986 
4987   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4988   // version of the instruction.
4989   // Is it beneficial to perform intrinsic call compared to lib call?
4990   bool NeedToScalarize = false;
4991   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4992   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4993   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4994   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4995          "Instruction should be scalarized elsewhere.");
4996   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4997          "Either the intrinsic cost or vector call cost must be valid");
4998 
4999   for (unsigned Part = 0; Part < UF; ++Part) {
5000     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5001     SmallVector<Value *, 4> Args;
5002     for (auto &I : enumerate(ArgOperands.operands())) {
5003       // Some intrinsics have a scalar argument - don't replace it with a
5004       // vector.
5005       Value *Arg;
5006       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5007         Arg = State.get(I.value(), Part);
5008       else {
5009         Arg = State.get(I.value(), VPIteration(0, 0));
5010         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5011           TysForDecl.push_back(Arg->getType());
5012       }
5013       Args.push_back(Arg);
5014     }
5015 
5016     Function *VectorF;
5017     if (UseVectorIntrinsic) {
5018       // Use vector version of the intrinsic.
5019       if (VF.isVector())
5020         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5021       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5022       assert(VectorF && "Can't retrieve vector intrinsic.");
5023     } else {
5024       // Use vector version of the function call.
5025       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5026 #ifndef NDEBUG
5027       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5028              "Can't create vector function.");
5029 #endif
5030         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5031     }
5032       SmallVector<OperandBundleDef, 1> OpBundles;
5033       CI->getOperandBundlesAsDefs(OpBundles);
5034       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5035 
5036       if (isa<FPMathOperator>(V))
5037         V->copyFastMathFlags(CI);
5038 
5039       State.set(Def, V, Part);
5040       addMetadata(V, &I);
5041   }
5042 }
5043 
5044 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5045                                                  VPUser &Operands,
5046                                                  bool InvariantCond,
5047                                                  VPTransformState &State) {
5048   setDebugLocFromInst(&I);
5049 
5050   // The condition can be loop invariant  but still defined inside the
5051   // loop. This means that we can't just use the original 'cond' value.
5052   // We have to take the 'vectorized' value and pick the first lane.
5053   // Instcombine will make this a no-op.
5054   auto *InvarCond = InvariantCond
5055                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5056                         : nullptr;
5057 
5058   for (unsigned Part = 0; Part < UF; ++Part) {
5059     Value *Cond =
5060         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5061     Value *Op0 = State.get(Operands.getOperand(1), Part);
5062     Value *Op1 = State.get(Operands.getOperand(2), Part);
5063     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5064     State.set(VPDef, Sel, Part);
5065     addMetadata(Sel, &I);
5066   }
5067 }
5068 
5069 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5070   // We should not collect Scalars more than once per VF. Right now, this
5071   // function is called from collectUniformsAndScalars(), which already does
5072   // this check. Collecting Scalars for VF=1 does not make any sense.
5073   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5074          "This function should not be visited twice for the same VF");
5075 
5076   SmallSetVector<Instruction *, 8> Worklist;
5077 
5078   // These sets are used to seed the analysis with pointers used by memory
5079   // accesses that will remain scalar.
5080   SmallSetVector<Instruction *, 8> ScalarPtrs;
5081   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5082   auto *Latch = TheLoop->getLoopLatch();
5083 
5084   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5085   // The pointer operands of loads and stores will be scalar as long as the
5086   // memory access is not a gather or scatter operation. The value operand of a
5087   // store will remain scalar if the store is scalarized.
5088   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5089     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5090     assert(WideningDecision != CM_Unknown &&
5091            "Widening decision should be ready at this moment");
5092     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5093       if (Ptr == Store->getValueOperand())
5094         return WideningDecision == CM_Scalarize;
5095     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5096            "Ptr is neither a value or pointer operand");
5097     return WideningDecision != CM_GatherScatter;
5098   };
5099 
5100   // A helper that returns true if the given value is a bitcast or
5101   // getelementptr instruction contained in the loop.
5102   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5103     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5104             isa<GetElementPtrInst>(V)) &&
5105            !TheLoop->isLoopInvariant(V);
5106   };
5107 
5108   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5109     if (!isa<PHINode>(Ptr) ||
5110         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5111       return false;
5112     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5113     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5114       return false;
5115     return isScalarUse(MemAccess, Ptr);
5116   };
5117 
5118   // A helper that evaluates a memory access's use of a pointer. If the
5119   // pointer is actually the pointer induction of a loop, it is being
5120   // inserted into Worklist. If the use will be a scalar use, and the
5121   // pointer is only used by memory accesses, we place the pointer in
5122   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5123   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5124     if (isScalarPtrInduction(MemAccess, Ptr)) {
5125       Worklist.insert(cast<Instruction>(Ptr));
5126       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5127                         << "\n");
5128 
5129       Instruction *Update = cast<Instruction>(
5130           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5131       ScalarPtrs.insert(Update);
5132       return;
5133     }
5134     // We only care about bitcast and getelementptr instructions contained in
5135     // the loop.
5136     if (!isLoopVaryingBitCastOrGEP(Ptr))
5137       return;
5138 
5139     // If the pointer has already been identified as scalar (e.g., if it was
5140     // also identified as uniform), there's nothing to do.
5141     auto *I = cast<Instruction>(Ptr);
5142     if (Worklist.count(I))
5143       return;
5144 
5145     // If all users of the pointer will be memory accesses and scalar, place the
5146     // pointer in ScalarPtrs. Otherwise, place the pointer in
5147     // PossibleNonScalarPtrs.
5148     if (llvm::all_of(I->users(), [&](User *U) {
5149           return (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
5150                  isScalarUse(cast<Instruction>(U), Ptr);
5151         }))
5152       ScalarPtrs.insert(I);
5153     else
5154       PossibleNonScalarPtrs.insert(I);
5155   };
5156 
5157   // We seed the scalars analysis with three classes of instructions: (1)
5158   // instructions marked uniform-after-vectorization and (2) bitcast,
5159   // getelementptr and (pointer) phi instructions used by memory accesses
5160   // requiring a scalar use.
5161   //
5162   // (1) Add to the worklist all instructions that have been identified as
5163   // uniform-after-vectorization.
5164   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5165 
5166   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5167   // memory accesses requiring a scalar use. The pointer operands of loads and
5168   // stores will be scalar as long as the memory accesses is not a gather or
5169   // scatter operation. The value operand of a store will remain scalar if the
5170   // store is scalarized.
5171   for (auto *BB : TheLoop->blocks())
5172     for (auto &I : *BB) {
5173       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5174         evaluatePtrUse(Load, Load->getPointerOperand());
5175       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5176         evaluatePtrUse(Store, Store->getPointerOperand());
5177         evaluatePtrUse(Store, Store->getValueOperand());
5178       }
5179     }
5180   for (auto *I : ScalarPtrs)
5181     if (!PossibleNonScalarPtrs.count(I)) {
5182       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5183       Worklist.insert(I);
5184     }
5185 
5186   // Insert the forced scalars.
5187   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5188   // induction variable when the PHI user is scalarized.
5189   auto ForcedScalar = ForcedScalars.find(VF);
5190   if (ForcedScalar != ForcedScalars.end())
5191     for (auto *I : ForcedScalar->second)
5192       Worklist.insert(I);
5193 
5194   // Expand the worklist by looking through any bitcasts and getelementptr
5195   // instructions we've already identified as scalar. This is similar to the
5196   // expansion step in collectLoopUniforms(); however, here we're only
5197   // expanding to include additional bitcasts and getelementptr instructions.
5198   unsigned Idx = 0;
5199   while (Idx != Worklist.size()) {
5200     Instruction *Dst = Worklist[Idx++];
5201     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5202       continue;
5203     auto *Src = cast<Instruction>(Dst->getOperand(0));
5204     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5205           auto *J = cast<Instruction>(U);
5206           return !TheLoop->contains(J) || Worklist.count(J) ||
5207                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5208                   isScalarUse(J, Src));
5209         })) {
5210       Worklist.insert(Src);
5211       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5212     }
5213   }
5214 
5215   // An induction variable will remain scalar if all users of the induction
5216   // variable and induction variable update remain scalar.
5217   for (auto &Induction : Legal->getInductionVars()) {
5218     auto *Ind = Induction.first;
5219     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5220 
5221     // If tail-folding is applied, the primary induction variable will be used
5222     // to feed a vector compare.
5223     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5224       continue;
5225 
5226     // Determine if all users of the induction variable are scalar after
5227     // vectorization.
5228     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5229       auto *I = cast<Instruction>(U);
5230       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5231     });
5232     if (!ScalarInd)
5233       continue;
5234 
5235     // Determine if all users of the induction variable update instruction are
5236     // scalar after vectorization.
5237     auto ScalarIndUpdate =
5238         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5239           auto *I = cast<Instruction>(U);
5240           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5241         });
5242     if (!ScalarIndUpdate)
5243       continue;
5244 
5245     // The induction variable and its update instruction will remain scalar.
5246     Worklist.insert(Ind);
5247     Worklist.insert(IndUpdate);
5248     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5249     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5250                       << "\n");
5251   }
5252 
5253   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5254 }
5255 
5256 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5257   if (!blockNeedsPredication(I->getParent()))
5258     return false;
5259   switch(I->getOpcode()) {
5260   default:
5261     break;
5262   case Instruction::Load:
5263   case Instruction::Store: {
5264     if (!Legal->isMaskRequired(I))
5265       return false;
5266     auto *Ptr = getLoadStorePointerOperand(I);
5267     auto *Ty = getLoadStoreType(I);
5268     const Align Alignment = getLoadStoreAlignment(I);
5269     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5270                                 TTI.isLegalMaskedGather(Ty, Alignment))
5271                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5272                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5273   }
5274   case Instruction::UDiv:
5275   case Instruction::SDiv:
5276   case Instruction::SRem:
5277   case Instruction::URem:
5278     return mayDivideByZero(*I);
5279   }
5280   return false;
5281 }
5282 
5283 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5284     Instruction *I, ElementCount VF) {
5285   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5286   assert(getWideningDecision(I, VF) == CM_Unknown &&
5287          "Decision should not be set yet.");
5288   auto *Group = getInterleavedAccessGroup(I);
5289   assert(Group && "Must have a group.");
5290 
5291   // If the instruction's allocated size doesn't equal it's type size, it
5292   // requires padding and will be scalarized.
5293   auto &DL = I->getModule()->getDataLayout();
5294   auto *ScalarTy = getLoadStoreType(I);
5295   if (hasIrregularType(ScalarTy, DL))
5296     return false;
5297 
5298   // Check if masking is required.
5299   // A Group may need masking for one of two reasons: it resides in a block that
5300   // needs predication, or it was decided to use masking to deal with gaps.
5301   bool PredicatedAccessRequiresMasking =
5302       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5303   bool AccessWithGapsRequiresMasking =
5304       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5305   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5306     return true;
5307 
5308   // If masked interleaving is required, we expect that the user/target had
5309   // enabled it, because otherwise it either wouldn't have been created or
5310   // it should have been invalidated by the CostModel.
5311   assert(useMaskedInterleavedAccesses(TTI) &&
5312          "Masked interleave-groups for predicated accesses are not enabled.");
5313 
5314   auto *Ty = getLoadStoreType(I);
5315   const Align Alignment = getLoadStoreAlignment(I);
5316   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5317                           : TTI.isLegalMaskedStore(Ty, Alignment);
5318 }
5319 
5320 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5321     Instruction *I, ElementCount VF) {
5322   // Get and ensure we have a valid memory instruction.
5323   LoadInst *LI = dyn_cast<LoadInst>(I);
5324   StoreInst *SI = dyn_cast<StoreInst>(I);
5325   assert((LI || SI) && "Invalid memory instruction");
5326 
5327   auto *Ptr = getLoadStorePointerOperand(I);
5328 
5329   // In order to be widened, the pointer should be consecutive, first of all.
5330   if (!Legal->isConsecutivePtr(Ptr))
5331     return false;
5332 
5333   // If the instruction is a store located in a predicated block, it will be
5334   // scalarized.
5335   if (isScalarWithPredication(I))
5336     return false;
5337 
5338   // If the instruction's allocated size doesn't equal it's type size, it
5339   // requires padding and will be scalarized.
5340   auto &DL = I->getModule()->getDataLayout();
5341   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5342   if (hasIrregularType(ScalarTy, DL))
5343     return false;
5344 
5345   return true;
5346 }
5347 
5348 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5349   // We should not collect Uniforms more than once per VF. Right now,
5350   // this function is called from collectUniformsAndScalars(), which
5351   // already does this check. Collecting Uniforms for VF=1 does not make any
5352   // sense.
5353 
5354   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5355          "This function should not be visited twice for the same VF");
5356 
5357   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5358   // not analyze again.  Uniforms.count(VF) will return 1.
5359   Uniforms[VF].clear();
5360 
5361   // We now know that the loop is vectorizable!
5362   // Collect instructions inside the loop that will remain uniform after
5363   // vectorization.
5364 
5365   // Global values, params and instructions outside of current loop are out of
5366   // scope.
5367   auto isOutOfScope = [&](Value *V) -> bool {
5368     Instruction *I = dyn_cast<Instruction>(V);
5369     return (!I || !TheLoop->contains(I));
5370   };
5371 
5372   SetVector<Instruction *> Worklist;
5373   BasicBlock *Latch = TheLoop->getLoopLatch();
5374 
5375   // Instructions that are scalar with predication must not be considered
5376   // uniform after vectorization, because that would create an erroneous
5377   // replicating region where only a single instance out of VF should be formed.
5378   // TODO: optimize such seldom cases if found important, see PR40816.
5379   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5380     if (isOutOfScope(I)) {
5381       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5382                         << *I << "\n");
5383       return;
5384     }
5385     if (isScalarWithPredication(I)) {
5386       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5387                         << *I << "\n");
5388       return;
5389     }
5390     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5391     Worklist.insert(I);
5392   };
5393 
5394   // Start with the conditional branch. If the branch condition is an
5395   // instruction contained in the loop that is only used by the branch, it is
5396   // uniform.
5397   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5398   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5399     addToWorklistIfAllowed(Cmp);
5400 
5401   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5402     InstWidening WideningDecision = getWideningDecision(I, VF);
5403     assert(WideningDecision != CM_Unknown &&
5404            "Widening decision should be ready at this moment");
5405 
5406     // A uniform memory op is itself uniform.  We exclude uniform stores
5407     // here as they demand the last lane, not the first one.
5408     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5409       assert(WideningDecision == CM_Scalarize);
5410       return true;
5411     }
5412 
5413     return (WideningDecision == CM_Widen ||
5414             WideningDecision == CM_Widen_Reverse ||
5415             WideningDecision == CM_Interleave);
5416   };
5417 
5418 
5419   // Returns true if Ptr is the pointer operand of a memory access instruction
5420   // I, and I is known to not require scalarization.
5421   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5422     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5423   };
5424 
5425   // Holds a list of values which are known to have at least one uniform use.
5426   // Note that there may be other uses which aren't uniform.  A "uniform use"
5427   // here is something which only demands lane 0 of the unrolled iterations;
5428   // it does not imply that all lanes produce the same value (e.g. this is not
5429   // the usual meaning of uniform)
5430   SetVector<Value *> HasUniformUse;
5431 
5432   // Scan the loop for instructions which are either a) known to have only
5433   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5434   for (auto *BB : TheLoop->blocks())
5435     for (auto &I : *BB) {
5436       // If there's no pointer operand, there's nothing to do.
5437       auto *Ptr = getLoadStorePointerOperand(&I);
5438       if (!Ptr)
5439         continue;
5440 
5441       // A uniform memory op is itself uniform.  We exclude uniform stores
5442       // here as they demand the last lane, not the first one.
5443       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5444         addToWorklistIfAllowed(&I);
5445 
5446       if (isUniformDecision(&I, VF)) {
5447         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5448         HasUniformUse.insert(Ptr);
5449       }
5450     }
5451 
5452   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5453   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5454   // disallows uses outside the loop as well.
5455   for (auto *V : HasUniformUse) {
5456     if (isOutOfScope(V))
5457       continue;
5458     auto *I = cast<Instruction>(V);
5459     auto UsersAreMemAccesses =
5460       llvm::all_of(I->users(), [&](User *U) -> bool {
5461         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5462       });
5463     if (UsersAreMemAccesses)
5464       addToWorklistIfAllowed(I);
5465   }
5466 
5467   // Expand Worklist in topological order: whenever a new instruction
5468   // is added , its users should be already inside Worklist.  It ensures
5469   // a uniform instruction will only be used by uniform instructions.
5470   unsigned idx = 0;
5471   while (idx != Worklist.size()) {
5472     Instruction *I = Worklist[idx++];
5473 
5474     for (auto OV : I->operand_values()) {
5475       // isOutOfScope operands cannot be uniform instructions.
5476       if (isOutOfScope(OV))
5477         continue;
5478       // First order recurrence Phi's should typically be considered
5479       // non-uniform.
5480       auto *OP = dyn_cast<PHINode>(OV);
5481       if (OP && Legal->isFirstOrderRecurrence(OP))
5482         continue;
5483       // If all the users of the operand are uniform, then add the
5484       // operand into the uniform worklist.
5485       auto *OI = cast<Instruction>(OV);
5486       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5487             auto *J = cast<Instruction>(U);
5488             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5489           }))
5490         addToWorklistIfAllowed(OI);
5491     }
5492   }
5493 
5494   // For an instruction to be added into Worklist above, all its users inside
5495   // the loop should also be in Worklist. However, this condition cannot be
5496   // true for phi nodes that form a cyclic dependence. We must process phi
5497   // nodes separately. An induction variable will remain uniform if all users
5498   // of the induction variable and induction variable update remain uniform.
5499   // The code below handles both pointer and non-pointer induction variables.
5500   for (auto &Induction : Legal->getInductionVars()) {
5501     auto *Ind = Induction.first;
5502     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5503 
5504     // Determine if all users of the induction variable are uniform after
5505     // vectorization.
5506     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5507       auto *I = cast<Instruction>(U);
5508       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5509              isVectorizedMemAccessUse(I, Ind);
5510     });
5511     if (!UniformInd)
5512       continue;
5513 
5514     // Determine if all users of the induction variable update instruction are
5515     // uniform after vectorization.
5516     auto UniformIndUpdate =
5517         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5518           auto *I = cast<Instruction>(U);
5519           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5520                  isVectorizedMemAccessUse(I, IndUpdate);
5521         });
5522     if (!UniformIndUpdate)
5523       continue;
5524 
5525     // The induction variable and its update instruction will remain uniform.
5526     addToWorklistIfAllowed(Ind);
5527     addToWorklistIfAllowed(IndUpdate);
5528   }
5529 
5530   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5531 }
5532 
5533 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5534   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5535 
5536   if (Legal->getRuntimePointerChecking()->Need) {
5537     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5538         "runtime pointer checks needed. Enable vectorization of this "
5539         "loop with '#pragma clang loop vectorize(enable)' when "
5540         "compiling with -Os/-Oz",
5541         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5542     return true;
5543   }
5544 
5545   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5546     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5547         "runtime SCEV checks needed. Enable vectorization of this "
5548         "loop with '#pragma clang loop vectorize(enable)' when "
5549         "compiling with -Os/-Oz",
5550         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5551     return true;
5552   }
5553 
5554   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5555   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5556     reportVectorizationFailure("Runtime stride check for small trip count",
5557         "runtime stride == 1 checks needed. Enable vectorization of "
5558         "this loop without such check by compiling with -Os/-Oz",
5559         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5560     return true;
5561   }
5562 
5563   return false;
5564 }
5565 
5566 ElementCount
5567 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5568   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5569     reportVectorizationInfo(
5570         "Disabling scalable vectorization, because target does not "
5571         "support scalable vectors.",
5572         "ScalableVectorsUnsupported", ORE, TheLoop);
5573     return ElementCount::getScalable(0);
5574   }
5575 
5576   if (Hints->isScalableVectorizationDisabled()) {
5577     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5578                             "ScalableVectorizationDisabled", ORE, TheLoop);
5579     return ElementCount::getScalable(0);
5580   }
5581 
5582   auto MaxScalableVF = ElementCount::getScalable(
5583       std::numeric_limits<ElementCount::ScalarTy>::max());
5584 
5585   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5586   // FIXME: While for scalable vectors this is currently sufficient, this should
5587   // be replaced by a more detailed mechanism that filters out specific VFs,
5588   // instead of invalidating vectorization for a whole set of VFs based on the
5589   // MaxVF.
5590 
5591   // Disable scalable vectorization if the loop contains unsupported reductions.
5592   if (!canVectorizeReductions(MaxScalableVF)) {
5593     reportVectorizationInfo(
5594         "Scalable vectorization not supported for the reduction "
5595         "operations found in this loop.",
5596         "ScalableVFUnfeasible", ORE, TheLoop);
5597     return ElementCount::getScalable(0);
5598   }
5599 
5600   // Disable scalable vectorization if the loop contains any instructions
5601   // with element types not supported for scalable vectors.
5602   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5603         return !Ty->isVoidTy() &&
5604                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5605       })) {
5606     reportVectorizationInfo("Scalable vectorization is not supported "
5607                             "for all element types found in this loop.",
5608                             "ScalableVFUnfeasible", ORE, TheLoop);
5609     return ElementCount::getScalable(0);
5610   }
5611 
5612   if (Legal->isSafeForAnyVectorWidth())
5613     return MaxScalableVF;
5614 
5615   // Limit MaxScalableVF by the maximum safe dependence distance.
5616   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5617   MaxScalableVF = ElementCount::getScalable(
5618       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5619   if (!MaxScalableVF)
5620     reportVectorizationInfo(
5621         "Max legal vector width too small, scalable vectorization "
5622         "unfeasible.",
5623         "ScalableVFUnfeasible", ORE, TheLoop);
5624 
5625   return MaxScalableVF;
5626 }
5627 
5628 FixedScalableVFPair
5629 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5630                                                  ElementCount UserVF) {
5631   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5632   unsigned SmallestType, WidestType;
5633   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5634 
5635   // Get the maximum safe dependence distance in bits computed by LAA.
5636   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5637   // the memory accesses that is most restrictive (involved in the smallest
5638   // dependence distance).
5639   unsigned MaxSafeElements =
5640       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5641 
5642   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5643   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5644 
5645   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5646                     << ".\n");
5647   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5648                     << ".\n");
5649 
5650   // First analyze the UserVF, fall back if the UserVF should be ignored.
5651   if (UserVF) {
5652     auto MaxSafeUserVF =
5653         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5654 
5655     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5656       // If `VF=vscale x N` is safe, then so is `VF=N`
5657       if (UserVF.isScalable())
5658         return FixedScalableVFPair(
5659             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5660       else
5661         return UserVF;
5662     }
5663 
5664     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5665 
5666     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5667     // is better to ignore the hint and let the compiler choose a suitable VF.
5668     if (!UserVF.isScalable()) {
5669       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5670                         << " is unsafe, clamping to max safe VF="
5671                         << MaxSafeFixedVF << ".\n");
5672       ORE->emit([&]() {
5673         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5674                                           TheLoop->getStartLoc(),
5675                                           TheLoop->getHeader())
5676                << "User-specified vectorization factor "
5677                << ore::NV("UserVectorizationFactor", UserVF)
5678                << " is unsafe, clamping to maximum safe vectorization factor "
5679                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5680       });
5681       return MaxSafeFixedVF;
5682     }
5683 
5684     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5685                       << " is unsafe. Ignoring scalable UserVF.\n");
5686     ORE->emit([&]() {
5687       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5688                                         TheLoop->getStartLoc(),
5689                                         TheLoop->getHeader())
5690              << "User-specified vectorization factor "
5691              << ore::NV("UserVectorizationFactor", UserVF)
5692              << " is unsafe. Ignoring the hint to let the compiler pick a "
5693                 "suitable VF.";
5694     });
5695   }
5696 
5697   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5698                     << " / " << WidestType << " bits.\n");
5699 
5700   FixedScalableVFPair Result(ElementCount::getFixed(1),
5701                              ElementCount::getScalable(0));
5702   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5703                                            WidestType, MaxSafeFixedVF))
5704     Result.FixedVF = MaxVF;
5705 
5706   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5707                                            WidestType, MaxSafeScalableVF))
5708     if (MaxVF.isScalable()) {
5709       Result.ScalableVF = MaxVF;
5710       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5711                         << "\n");
5712     }
5713 
5714   return Result;
5715 }
5716 
5717 FixedScalableVFPair
5718 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5719   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5720     // TODO: It may by useful to do since it's still likely to be dynamically
5721     // uniform if the target can skip.
5722     reportVectorizationFailure(
5723         "Not inserting runtime ptr check for divergent target",
5724         "runtime pointer checks needed. Not enabled for divergent target",
5725         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5726     return FixedScalableVFPair::getNone();
5727   }
5728 
5729   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5730   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5731   if (TC == 1) {
5732     reportVectorizationFailure("Single iteration (non) loop",
5733         "loop trip count is one, irrelevant for vectorization",
5734         "SingleIterationLoop", ORE, TheLoop);
5735     return FixedScalableVFPair::getNone();
5736   }
5737 
5738   switch (ScalarEpilogueStatus) {
5739   case CM_ScalarEpilogueAllowed:
5740     return computeFeasibleMaxVF(TC, UserVF);
5741   case CM_ScalarEpilogueNotAllowedUsePredicate:
5742     LLVM_FALLTHROUGH;
5743   case CM_ScalarEpilogueNotNeededUsePredicate:
5744     LLVM_DEBUG(
5745         dbgs() << "LV: vector predicate hint/switch found.\n"
5746                << "LV: Not allowing scalar epilogue, creating predicated "
5747                << "vector loop.\n");
5748     break;
5749   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5750     // fallthrough as a special case of OptForSize
5751   case CM_ScalarEpilogueNotAllowedOptSize:
5752     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5753       LLVM_DEBUG(
5754           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5755     else
5756       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5757                         << "count.\n");
5758 
5759     // Bail if runtime checks are required, which are not good when optimising
5760     // for size.
5761     if (runtimeChecksRequired())
5762       return FixedScalableVFPair::getNone();
5763 
5764     break;
5765   }
5766 
5767   // The only loops we can vectorize without a scalar epilogue, are loops with
5768   // a bottom-test and a single exiting block. We'd have to handle the fact
5769   // that not every instruction executes on the last iteration.  This will
5770   // require a lane mask which varies through the vector loop body.  (TODO)
5771   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5772     // If there was a tail-folding hint/switch, but we can't fold the tail by
5773     // masking, fallback to a vectorization with a scalar epilogue.
5774     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5775       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5776                            "scalar epilogue instead.\n");
5777       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5778       return computeFeasibleMaxVF(TC, UserVF);
5779     }
5780     return FixedScalableVFPair::getNone();
5781   }
5782 
5783   // Now try the tail folding
5784 
5785   // Invalidate interleave groups that require an epilogue if we can't mask
5786   // the interleave-group.
5787   if (!useMaskedInterleavedAccesses(TTI)) {
5788     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5789            "No decisions should have been taken at this point");
5790     // Note: There is no need to invalidate any cost modeling decisions here, as
5791     // non where taken so far.
5792     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5793   }
5794 
5795   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5796   // Avoid tail folding if the trip count is known to be a multiple of any VF
5797   // we chose.
5798   // FIXME: The condition below pessimises the case for fixed-width vectors,
5799   // when scalable VFs are also candidates for vectorization.
5800   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5801     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5802     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5803            "MaxFixedVF must be a power of 2");
5804     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5805                                    : MaxFixedVF.getFixedValue();
5806     ScalarEvolution *SE = PSE.getSE();
5807     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5808     const SCEV *ExitCount = SE->getAddExpr(
5809         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5810     const SCEV *Rem = SE->getURemExpr(
5811         SE->applyLoopGuards(ExitCount, TheLoop),
5812         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5813     if (Rem->isZero()) {
5814       // Accept MaxFixedVF if we do not have a tail.
5815       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5816       return MaxFactors;
5817     }
5818   }
5819 
5820   // If we don't know the precise trip count, or if the trip count that we
5821   // found modulo the vectorization factor is not zero, try to fold the tail
5822   // by masking.
5823   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5824   if (Legal->prepareToFoldTailByMasking()) {
5825     FoldTailByMasking = true;
5826     return MaxFactors;
5827   }
5828 
5829   // If there was a tail-folding hint/switch, but we can't fold the tail by
5830   // masking, fallback to a vectorization with a scalar epilogue.
5831   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5832     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5833                          "scalar epilogue instead.\n");
5834     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5835     return MaxFactors;
5836   }
5837 
5838   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5839     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5840     return FixedScalableVFPair::getNone();
5841   }
5842 
5843   if (TC == 0) {
5844     reportVectorizationFailure(
5845         "Unable to calculate the loop count due to complex control flow",
5846         "unable to calculate the loop count due to complex control flow",
5847         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5848     return FixedScalableVFPair::getNone();
5849   }
5850 
5851   reportVectorizationFailure(
5852       "Cannot optimize for size and vectorize at the same time.",
5853       "cannot optimize for size and vectorize at the same time. "
5854       "Enable vectorization of this loop with '#pragma clang loop "
5855       "vectorize(enable)' when compiling with -Os/-Oz",
5856       "NoTailLoopWithOptForSize", ORE, TheLoop);
5857   return FixedScalableVFPair::getNone();
5858 }
5859 
5860 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5861     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5862     const ElementCount &MaxSafeVF) {
5863   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5864   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5865       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5866                            : TargetTransformInfo::RGK_FixedWidthVector);
5867 
5868   // Convenience function to return the minimum of two ElementCounts.
5869   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5870     assert((LHS.isScalable() == RHS.isScalable()) &&
5871            "Scalable flags must match");
5872     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5873   };
5874 
5875   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5876   // Note that both WidestRegister and WidestType may not be a powers of 2.
5877   auto MaxVectorElementCount = ElementCount::get(
5878       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5879       ComputeScalableMaxVF);
5880   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5881   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5882                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5883 
5884   if (!MaxVectorElementCount) {
5885     LLVM_DEBUG(dbgs() << "LV: The target has no "
5886                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5887                       << " vector registers.\n");
5888     return ElementCount::getFixed(1);
5889   }
5890 
5891   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5892   if (ConstTripCount &&
5893       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5894       isPowerOf2_32(ConstTripCount)) {
5895     // We need to clamp the VF to be the ConstTripCount. There is no point in
5896     // choosing a higher viable VF as done in the loop below. If
5897     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5898     // the TC is less than or equal to the known number of lanes.
5899     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5900                       << ConstTripCount << "\n");
5901     return TripCountEC;
5902   }
5903 
5904   ElementCount MaxVF = MaxVectorElementCount;
5905   if (TTI.shouldMaximizeVectorBandwidth() ||
5906       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5907     auto MaxVectorElementCountMaxBW = ElementCount::get(
5908         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5909         ComputeScalableMaxVF);
5910     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5911 
5912     // Collect all viable vectorization factors larger than the default MaxVF
5913     // (i.e. MaxVectorElementCount).
5914     SmallVector<ElementCount, 8> VFs;
5915     for (ElementCount VS = MaxVectorElementCount * 2;
5916          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5917       VFs.push_back(VS);
5918 
5919     // For each VF calculate its register usage.
5920     auto RUs = calculateRegisterUsage(VFs);
5921 
5922     // Select the largest VF which doesn't require more registers than existing
5923     // ones.
5924     for (int i = RUs.size() - 1; i >= 0; --i) {
5925       bool Selected = true;
5926       for (auto &pair : RUs[i].MaxLocalUsers) {
5927         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5928         if (pair.second > TargetNumRegisters)
5929           Selected = false;
5930       }
5931       if (Selected) {
5932         MaxVF = VFs[i];
5933         break;
5934       }
5935     }
5936     if (ElementCount MinVF =
5937             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5938       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5939         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5940                           << ") with target's minimum: " << MinVF << '\n');
5941         MaxVF = MinVF;
5942       }
5943     }
5944   }
5945   return MaxVF;
5946 }
5947 
5948 bool LoopVectorizationCostModel::isMoreProfitable(
5949     const VectorizationFactor &A, const VectorizationFactor &B) const {
5950   InstructionCost CostA = A.Cost;
5951   InstructionCost CostB = B.Cost;
5952 
5953   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5954 
5955   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5956       MaxTripCount) {
5957     // If we are folding the tail and the trip count is a known (possibly small)
5958     // constant, the trip count will be rounded up to an integer number of
5959     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5960     // which we compare directly. When not folding the tail, the total cost will
5961     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5962     // approximated with the per-lane cost below instead of using the tripcount
5963     // as here.
5964     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5965     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5966     return RTCostA < RTCostB;
5967   }
5968 
5969   // When set to preferred, for now assume vscale may be larger than 1, so
5970   // that scalable vectorization is slightly favorable over fixed-width
5971   // vectorization.
5972   if (Hints->isScalableVectorizationPreferred())
5973     if (A.Width.isScalable() && !B.Width.isScalable())
5974       return (CostA * B.Width.getKnownMinValue()) <=
5975              (CostB * A.Width.getKnownMinValue());
5976 
5977   // To avoid the need for FP division:
5978   //      (CostA / A.Width) < (CostB / B.Width)
5979   // <=>  (CostA * B.Width) < (CostB * A.Width)
5980   return (CostA * B.Width.getKnownMinValue()) <
5981          (CostB * A.Width.getKnownMinValue());
5982 }
5983 
5984 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5985     const ElementCountSet &VFCandidates) {
5986   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5987   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5988   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5989   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5990          "Expected Scalar VF to be a candidate");
5991 
5992   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5993   VectorizationFactor ChosenFactor = ScalarCost;
5994 
5995   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5996   if (ForceVectorization && VFCandidates.size() > 1) {
5997     // Ignore scalar width, because the user explicitly wants vectorization.
5998     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5999     // evaluation.
6000     ChosenFactor.Cost = InstructionCost::getMax();
6001   }
6002 
6003   SmallVector<InstructionVFPair> InvalidCosts;
6004   for (const auto &i : VFCandidates) {
6005     // The cost for scalar VF=1 is already calculated, so ignore it.
6006     if (i.isScalar())
6007       continue;
6008 
6009     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6010     VectorizationFactor Candidate(i, C.first);
6011     LLVM_DEBUG(
6012         dbgs() << "LV: Vector loop of width " << i << " costs: "
6013                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6014                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6015                << ".\n");
6016 
6017     if (!C.second && !ForceVectorization) {
6018       LLVM_DEBUG(
6019           dbgs() << "LV: Not considering vector loop of width " << i
6020                  << " because it will not generate any vector instructions.\n");
6021       continue;
6022     }
6023 
6024     // If profitable add it to ProfitableVF list.
6025     if (isMoreProfitable(Candidate, ScalarCost))
6026       ProfitableVFs.push_back(Candidate);
6027 
6028     if (isMoreProfitable(Candidate, ChosenFactor))
6029       ChosenFactor = Candidate;
6030   }
6031 
6032   // Emit a report of VFs with invalid costs in the loop.
6033   if (!InvalidCosts.empty()) {
6034     // Group the remarks per instruction, keeping the instruction order from
6035     // InvalidCosts.
6036     std::map<Instruction *, unsigned> Numbering;
6037     unsigned I = 0;
6038     for (auto &Pair : InvalidCosts)
6039       if (!Numbering.count(Pair.first))
6040         Numbering[Pair.first] = I++;
6041 
6042     // Sort the list, first on instruction(number) then on VF.
6043     llvm::sort(InvalidCosts,
6044                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6045                  if (Numbering[A.first] != Numbering[B.first])
6046                    return Numbering[A.first] < Numbering[B.first];
6047                  ElementCountComparator ECC;
6048                  return ECC(A.second, B.second);
6049                });
6050 
6051     // For a list of ordered instruction-vf pairs:
6052     //   [(load, vf1), (load, vf2), (store, vf1)]
6053     // Group the instructions together to emit separate remarks for:
6054     //   load  (vf1, vf2)
6055     //   store (vf1)
6056     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6057     auto Subset = ArrayRef<InstructionVFPair>();
6058     do {
6059       if (Subset.empty())
6060         Subset = Tail.take_front(1);
6061 
6062       Instruction *I = Subset.front().first;
6063 
6064       // If the next instruction is different, or if there are no other pairs,
6065       // emit a remark for the collated subset. e.g.
6066       //   [(load, vf1), (load, vf2))]
6067       // to emit:
6068       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6069       if (Subset == Tail || Tail[Subset.size()].first != I) {
6070         std::string OutString;
6071         raw_string_ostream OS(OutString);
6072         assert(!Subset.empty() && "Unexpected empty range");
6073         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6074         for (auto &Pair : Subset)
6075           OS << (Pair.second == Subset.front().second ? "" : ", ")
6076              << Pair.second;
6077         OS << "):";
6078         if (auto *CI = dyn_cast<CallInst>(I))
6079           OS << " call to " << CI->getCalledFunction()->getName();
6080         else
6081           OS << " " << I->getOpcodeName();
6082         OS.flush();
6083         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6084         Tail = Tail.drop_front(Subset.size());
6085         Subset = {};
6086       } else
6087         // Grow the subset by one element
6088         Subset = Tail.take_front(Subset.size() + 1);
6089     } while (!Tail.empty());
6090   }
6091 
6092   if (!EnableCondStoresVectorization && NumPredStores) {
6093     reportVectorizationFailure("There are conditional stores.",
6094         "store that is conditionally executed prevents vectorization",
6095         "ConditionalStore", ORE, TheLoop);
6096     ChosenFactor = ScalarCost;
6097   }
6098 
6099   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6100                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6101              << "LV: Vectorization seems to be not beneficial, "
6102              << "but was forced by a user.\n");
6103   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6104   return ChosenFactor;
6105 }
6106 
6107 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6108     const Loop &L, ElementCount VF) const {
6109   // Cross iteration phis such as reductions need special handling and are
6110   // currently unsupported.
6111   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6112         return Legal->isFirstOrderRecurrence(&Phi) ||
6113                Legal->isReductionVariable(&Phi);
6114       }))
6115     return false;
6116 
6117   // Phis with uses outside of the loop require special handling and are
6118   // currently unsupported.
6119   for (auto &Entry : Legal->getInductionVars()) {
6120     // Look for uses of the value of the induction at the last iteration.
6121     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6122     for (User *U : PostInc->users())
6123       if (!L.contains(cast<Instruction>(U)))
6124         return false;
6125     // Look for uses of penultimate value of the induction.
6126     for (User *U : Entry.first->users())
6127       if (!L.contains(cast<Instruction>(U)))
6128         return false;
6129   }
6130 
6131   // Induction variables that are widened require special handling that is
6132   // currently not supported.
6133   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6134         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6135                  this->isProfitableToScalarize(Entry.first, VF));
6136       }))
6137     return false;
6138 
6139   // Epilogue vectorization code has not been auditted to ensure it handles
6140   // non-latch exits properly.  It may be fine, but it needs auditted and
6141   // tested.
6142   if (L.getExitingBlock() != L.getLoopLatch())
6143     return false;
6144 
6145   return true;
6146 }
6147 
6148 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6149     const ElementCount VF) const {
6150   // FIXME: We need a much better cost-model to take different parameters such
6151   // as register pressure, code size increase and cost of extra branches into
6152   // account. For now we apply a very crude heuristic and only consider loops
6153   // with vectorization factors larger than a certain value.
6154   // We also consider epilogue vectorization unprofitable for targets that don't
6155   // consider interleaving beneficial (eg. MVE).
6156   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6157     return false;
6158   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6159     return true;
6160   return false;
6161 }
6162 
6163 VectorizationFactor
6164 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6165     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6166   VectorizationFactor Result = VectorizationFactor::Disabled();
6167   if (!EnableEpilogueVectorization) {
6168     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6169     return Result;
6170   }
6171 
6172   if (!isScalarEpilogueAllowed()) {
6173     LLVM_DEBUG(
6174         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6175                   "allowed.\n";);
6176     return Result;
6177   }
6178 
6179   // FIXME: This can be fixed for scalable vectors later, because at this stage
6180   // the LoopVectorizer will only consider vectorizing a loop with scalable
6181   // vectors when the loop has a hint to enable vectorization for a given VF.
6182   if (MainLoopVF.isScalable()) {
6183     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6184                          "yet supported.\n");
6185     return Result;
6186   }
6187 
6188   // Not really a cost consideration, but check for unsupported cases here to
6189   // simplify the logic.
6190   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6191     LLVM_DEBUG(
6192         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6193                   "not a supported candidate.\n";);
6194     return Result;
6195   }
6196 
6197   if (EpilogueVectorizationForceVF > 1) {
6198     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6199     if (LVP.hasPlanWithVFs(
6200             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6201       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6202     else {
6203       LLVM_DEBUG(
6204           dbgs()
6205               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6206       return Result;
6207     }
6208   }
6209 
6210   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6211       TheLoop->getHeader()->getParent()->hasMinSize()) {
6212     LLVM_DEBUG(
6213         dbgs()
6214             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6215     return Result;
6216   }
6217 
6218   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6219     return Result;
6220 
6221   for (auto &NextVF : ProfitableVFs)
6222     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6223         (Result.Width.getFixedValue() == 1 ||
6224          isMoreProfitable(NextVF, Result)) &&
6225         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6226       Result = NextVF;
6227 
6228   if (Result != VectorizationFactor::Disabled())
6229     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6230                       << Result.Width.getFixedValue() << "\n";);
6231   return Result;
6232 }
6233 
6234 std::pair<unsigned, unsigned>
6235 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6236   unsigned MinWidth = -1U;
6237   unsigned MaxWidth = 8;
6238   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6239   for (Type *T : ElementTypesInLoop) {
6240     MinWidth = std::min<unsigned>(
6241         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6242     MaxWidth = std::max<unsigned>(
6243         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6244   }
6245   return {MinWidth, MaxWidth};
6246 }
6247 
6248 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6249   ElementTypesInLoop.clear();
6250   // For each block.
6251   for (BasicBlock *BB : TheLoop->blocks()) {
6252     // For each instruction in the loop.
6253     for (Instruction &I : BB->instructionsWithoutDebug()) {
6254       Type *T = I.getType();
6255 
6256       // Skip ignored values.
6257       if (ValuesToIgnore.count(&I))
6258         continue;
6259 
6260       // Only examine Loads, Stores and PHINodes.
6261       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6262         continue;
6263 
6264       // Examine PHI nodes that are reduction variables. Update the type to
6265       // account for the recurrence type.
6266       if (auto *PN = dyn_cast<PHINode>(&I)) {
6267         if (!Legal->isReductionVariable(PN))
6268           continue;
6269         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6270         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6271             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6272                                       RdxDesc.getRecurrenceType(),
6273                                       TargetTransformInfo::ReductionFlags()))
6274           continue;
6275         T = RdxDesc.getRecurrenceType();
6276       }
6277 
6278       // Examine the stored values.
6279       if (auto *ST = dyn_cast<StoreInst>(&I))
6280         T = ST->getValueOperand()->getType();
6281 
6282       // Ignore loaded pointer types and stored pointer types that are not
6283       // vectorizable.
6284       //
6285       // FIXME: The check here attempts to predict whether a load or store will
6286       //        be vectorized. We only know this for certain after a VF has
6287       //        been selected. Here, we assume that if an access can be
6288       //        vectorized, it will be. We should also look at extending this
6289       //        optimization to non-pointer types.
6290       //
6291       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6292           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6293         continue;
6294 
6295       ElementTypesInLoop.insert(T);
6296     }
6297   }
6298 }
6299 
6300 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6301                                                            unsigned LoopCost) {
6302   // -- The interleave heuristics --
6303   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6304   // There are many micro-architectural considerations that we can't predict
6305   // at this level. For example, frontend pressure (on decode or fetch) due to
6306   // code size, or the number and capabilities of the execution ports.
6307   //
6308   // We use the following heuristics to select the interleave count:
6309   // 1. If the code has reductions, then we interleave to break the cross
6310   // iteration dependency.
6311   // 2. If the loop is really small, then we interleave to reduce the loop
6312   // overhead.
6313   // 3. We don't interleave if we think that we will spill registers to memory
6314   // due to the increased register pressure.
6315 
6316   if (!isScalarEpilogueAllowed())
6317     return 1;
6318 
6319   // We used the distance for the interleave count.
6320   if (Legal->getMaxSafeDepDistBytes() != -1U)
6321     return 1;
6322 
6323   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6324   const bool HasReductions = !Legal->getReductionVars().empty();
6325   // Do not interleave loops with a relatively small known or estimated trip
6326   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6327   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6328   // because with the above conditions interleaving can expose ILP and break
6329   // cross iteration dependences for reductions.
6330   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6331       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6332     return 1;
6333 
6334   RegisterUsage R = calculateRegisterUsage({VF})[0];
6335   // We divide by these constants so assume that we have at least one
6336   // instruction that uses at least one register.
6337   for (auto& pair : R.MaxLocalUsers) {
6338     pair.second = std::max(pair.second, 1U);
6339   }
6340 
6341   // We calculate the interleave count using the following formula.
6342   // Subtract the number of loop invariants from the number of available
6343   // registers. These registers are used by all of the interleaved instances.
6344   // Next, divide the remaining registers by the number of registers that is
6345   // required by the loop, in order to estimate how many parallel instances
6346   // fit without causing spills. All of this is rounded down if necessary to be
6347   // a power of two. We want power of two interleave count to simplify any
6348   // addressing operations or alignment considerations.
6349   // We also want power of two interleave counts to ensure that the induction
6350   // variable of the vector loop wraps to zero, when tail is folded by masking;
6351   // this currently happens when OptForSize, in which case IC is set to 1 above.
6352   unsigned IC = UINT_MAX;
6353 
6354   for (auto& pair : R.MaxLocalUsers) {
6355     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6356     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6357                       << " registers of "
6358                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6359     if (VF.isScalar()) {
6360       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6361         TargetNumRegisters = ForceTargetNumScalarRegs;
6362     } else {
6363       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6364         TargetNumRegisters = ForceTargetNumVectorRegs;
6365     }
6366     unsigned MaxLocalUsers = pair.second;
6367     unsigned LoopInvariantRegs = 0;
6368     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6369       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6370 
6371     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6372     // Don't count the induction variable as interleaved.
6373     if (EnableIndVarRegisterHeur) {
6374       TmpIC =
6375           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6376                         std::max(1U, (MaxLocalUsers - 1)));
6377     }
6378 
6379     IC = std::min(IC, TmpIC);
6380   }
6381 
6382   // Clamp the interleave ranges to reasonable counts.
6383   unsigned MaxInterleaveCount =
6384       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6385 
6386   // Check if the user has overridden the max.
6387   if (VF.isScalar()) {
6388     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6389       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6390   } else {
6391     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6392       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6393   }
6394 
6395   // If trip count is known or estimated compile time constant, limit the
6396   // interleave count to be less than the trip count divided by VF, provided it
6397   // is at least 1.
6398   //
6399   // For scalable vectors we can't know if interleaving is beneficial. It may
6400   // not be beneficial for small loops if none of the lanes in the second vector
6401   // iterations is enabled. However, for larger loops, there is likely to be a
6402   // similar benefit as for fixed-width vectors. For now, we choose to leave
6403   // the InterleaveCount as if vscale is '1', although if some information about
6404   // the vector is known (e.g. min vector size), we can make a better decision.
6405   if (BestKnownTC) {
6406     MaxInterleaveCount =
6407         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6408     // Make sure MaxInterleaveCount is greater than 0.
6409     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6410   }
6411 
6412   assert(MaxInterleaveCount > 0 &&
6413          "Maximum interleave count must be greater than 0");
6414 
6415   // Clamp the calculated IC to be between the 1 and the max interleave count
6416   // that the target and trip count allows.
6417   if (IC > MaxInterleaveCount)
6418     IC = MaxInterleaveCount;
6419   else
6420     // Make sure IC is greater than 0.
6421     IC = std::max(1u, IC);
6422 
6423   assert(IC > 0 && "Interleave count must be greater than 0.");
6424 
6425   // If we did not calculate the cost for VF (because the user selected the VF)
6426   // then we calculate the cost of VF here.
6427   if (LoopCost == 0) {
6428     InstructionCost C = expectedCost(VF).first;
6429     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6430     LoopCost = *C.getValue();
6431   }
6432 
6433   assert(LoopCost && "Non-zero loop cost expected");
6434 
6435   // Interleave if we vectorized this loop and there is a reduction that could
6436   // benefit from interleaving.
6437   if (VF.isVector() && HasReductions) {
6438     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6439     return IC;
6440   }
6441 
6442   // Note that if we've already vectorized the loop we will have done the
6443   // runtime check and so interleaving won't require further checks.
6444   bool InterleavingRequiresRuntimePointerCheck =
6445       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6446 
6447   // We want to interleave small loops in order to reduce the loop overhead and
6448   // potentially expose ILP opportunities.
6449   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6450                     << "LV: IC is " << IC << '\n'
6451                     << "LV: VF is " << VF << '\n');
6452   const bool AggressivelyInterleaveReductions =
6453       TTI.enableAggressiveInterleaving(HasReductions);
6454   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6455     // We assume that the cost overhead is 1 and we use the cost model
6456     // to estimate the cost of the loop and interleave until the cost of the
6457     // loop overhead is about 5% of the cost of the loop.
6458     unsigned SmallIC =
6459         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6460 
6461     // Interleave until store/load ports (estimated by max interleave count) are
6462     // saturated.
6463     unsigned NumStores = Legal->getNumStores();
6464     unsigned NumLoads = Legal->getNumLoads();
6465     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6466     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6467 
6468     // If we have a scalar reduction (vector reductions are already dealt with
6469     // by this point), we can increase the critical path length if the loop
6470     // we're interleaving is inside another loop. Limit, by default to 2, so the
6471     // critical path only gets increased by one reduction operation.
6472     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6473       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6474       SmallIC = std::min(SmallIC, F);
6475       StoresIC = std::min(StoresIC, F);
6476       LoadsIC = std::min(LoadsIC, F);
6477     }
6478 
6479     if (EnableLoadStoreRuntimeInterleave &&
6480         std::max(StoresIC, LoadsIC) > SmallIC) {
6481       LLVM_DEBUG(
6482           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6483       return std::max(StoresIC, LoadsIC);
6484     }
6485 
6486     // If there are scalar reductions and TTI has enabled aggressive
6487     // interleaving for reductions, we will interleave to expose ILP.
6488     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6489         AggressivelyInterleaveReductions) {
6490       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6491       // Interleave no less than SmallIC but not as aggressive as the normal IC
6492       // to satisfy the rare situation when resources are too limited.
6493       return std::max(IC / 2, SmallIC);
6494     } else {
6495       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6496       return SmallIC;
6497     }
6498   }
6499 
6500   // Interleave if this is a large loop (small loops are already dealt with by
6501   // this point) that could benefit from interleaving.
6502   if (AggressivelyInterleaveReductions) {
6503     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6504     return IC;
6505   }
6506 
6507   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6508   return 1;
6509 }
6510 
6511 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6512 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6513   // This function calculates the register usage by measuring the highest number
6514   // of values that are alive at a single location. Obviously, this is a very
6515   // rough estimation. We scan the loop in a topological order in order and
6516   // assign a number to each instruction. We use RPO to ensure that defs are
6517   // met before their users. We assume that each instruction that has in-loop
6518   // users starts an interval. We record every time that an in-loop value is
6519   // used, so we have a list of the first and last occurrences of each
6520   // instruction. Next, we transpose this data structure into a multi map that
6521   // holds the list of intervals that *end* at a specific location. This multi
6522   // map allows us to perform a linear search. We scan the instructions linearly
6523   // and record each time that a new interval starts, by placing it in a set.
6524   // If we find this value in the multi-map then we remove it from the set.
6525   // The max register usage is the maximum size of the set.
6526   // We also search for instructions that are defined outside the loop, but are
6527   // used inside the loop. We need this number separately from the max-interval
6528   // usage number because when we unroll, loop-invariant values do not take
6529   // more register.
6530   LoopBlocksDFS DFS(TheLoop);
6531   DFS.perform(LI);
6532 
6533   RegisterUsage RU;
6534 
6535   // Each 'key' in the map opens a new interval. The values
6536   // of the map are the index of the 'last seen' usage of the
6537   // instruction that is the key.
6538   using IntervalMap = DenseMap<Instruction *, unsigned>;
6539 
6540   // Maps instruction to its index.
6541   SmallVector<Instruction *, 64> IdxToInstr;
6542   // Marks the end of each interval.
6543   IntervalMap EndPoint;
6544   // Saves the list of instruction indices that are used in the loop.
6545   SmallPtrSet<Instruction *, 8> Ends;
6546   // Saves the list of values that are used in the loop but are
6547   // defined outside the loop, such as arguments and constants.
6548   SmallPtrSet<Value *, 8> LoopInvariants;
6549 
6550   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6551     for (Instruction &I : BB->instructionsWithoutDebug()) {
6552       IdxToInstr.push_back(&I);
6553 
6554       // Save the end location of each USE.
6555       for (Value *U : I.operands()) {
6556         auto *Instr = dyn_cast<Instruction>(U);
6557 
6558         // Ignore non-instruction values such as arguments, constants, etc.
6559         if (!Instr)
6560           continue;
6561 
6562         // If this instruction is outside the loop then record it and continue.
6563         if (!TheLoop->contains(Instr)) {
6564           LoopInvariants.insert(Instr);
6565           continue;
6566         }
6567 
6568         // Overwrite previous end points.
6569         EndPoint[Instr] = IdxToInstr.size();
6570         Ends.insert(Instr);
6571       }
6572     }
6573   }
6574 
6575   // Saves the list of intervals that end with the index in 'key'.
6576   using InstrList = SmallVector<Instruction *, 2>;
6577   DenseMap<unsigned, InstrList> TransposeEnds;
6578 
6579   // Transpose the EndPoints to a list of values that end at each index.
6580   for (auto &Interval : EndPoint)
6581     TransposeEnds[Interval.second].push_back(Interval.first);
6582 
6583   SmallPtrSet<Instruction *, 8> OpenIntervals;
6584   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6585   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6586 
6587   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6588 
6589   // A lambda that gets the register usage for the given type and VF.
6590   const auto &TTICapture = TTI;
6591   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6592     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6593       return 0;
6594     InstructionCost::CostType RegUsage =
6595         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6596     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6597            "Nonsensical values for register usage.");
6598     return RegUsage;
6599   };
6600 
6601   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6602     Instruction *I = IdxToInstr[i];
6603 
6604     // Remove all of the instructions that end at this location.
6605     InstrList &List = TransposeEnds[i];
6606     for (Instruction *ToRemove : List)
6607       OpenIntervals.erase(ToRemove);
6608 
6609     // Ignore instructions that are never used within the loop.
6610     if (!Ends.count(I))
6611       continue;
6612 
6613     // Skip ignored values.
6614     if (ValuesToIgnore.count(I))
6615       continue;
6616 
6617     // For each VF find the maximum usage of registers.
6618     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6619       // Count the number of live intervals.
6620       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6621 
6622       if (VFs[j].isScalar()) {
6623         for (auto Inst : OpenIntervals) {
6624           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6625           if (RegUsage.find(ClassID) == RegUsage.end())
6626             RegUsage[ClassID] = 1;
6627           else
6628             RegUsage[ClassID] += 1;
6629         }
6630       } else {
6631         collectUniformsAndScalars(VFs[j]);
6632         for (auto Inst : OpenIntervals) {
6633           // Skip ignored values for VF > 1.
6634           if (VecValuesToIgnore.count(Inst))
6635             continue;
6636           if (isScalarAfterVectorization(Inst, VFs[j])) {
6637             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6638             if (RegUsage.find(ClassID) == RegUsage.end())
6639               RegUsage[ClassID] = 1;
6640             else
6641               RegUsage[ClassID] += 1;
6642           } else {
6643             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6644             if (RegUsage.find(ClassID) == RegUsage.end())
6645               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6646             else
6647               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6648           }
6649         }
6650       }
6651 
6652       for (auto& pair : RegUsage) {
6653         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6654           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6655         else
6656           MaxUsages[j][pair.first] = pair.second;
6657       }
6658     }
6659 
6660     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6661                       << OpenIntervals.size() << '\n');
6662 
6663     // Add the current instruction to the list of open intervals.
6664     OpenIntervals.insert(I);
6665   }
6666 
6667   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6668     SmallMapVector<unsigned, unsigned, 4> Invariant;
6669 
6670     for (auto Inst : LoopInvariants) {
6671       unsigned Usage =
6672           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6673       unsigned ClassID =
6674           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6675       if (Invariant.find(ClassID) == Invariant.end())
6676         Invariant[ClassID] = Usage;
6677       else
6678         Invariant[ClassID] += Usage;
6679     }
6680 
6681     LLVM_DEBUG({
6682       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6683       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6684              << " item\n";
6685       for (const auto &pair : MaxUsages[i]) {
6686         dbgs() << "LV(REG): RegisterClass: "
6687                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6688                << " registers\n";
6689       }
6690       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6691              << " item\n";
6692       for (const auto &pair : Invariant) {
6693         dbgs() << "LV(REG): RegisterClass: "
6694                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6695                << " registers\n";
6696       }
6697     });
6698 
6699     RU.LoopInvariantRegs = Invariant;
6700     RU.MaxLocalUsers = MaxUsages[i];
6701     RUs[i] = RU;
6702   }
6703 
6704   return RUs;
6705 }
6706 
6707 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6708   // TODO: Cost model for emulated masked load/store is completely
6709   // broken. This hack guides the cost model to use an artificially
6710   // high enough value to practically disable vectorization with such
6711   // operations, except where previously deployed legality hack allowed
6712   // using very low cost values. This is to avoid regressions coming simply
6713   // from moving "masked load/store" check from legality to cost model.
6714   // Masked Load/Gather emulation was previously never allowed.
6715   // Limited number of Masked Store/Scatter emulation was allowed.
6716   assert(isPredicatedInst(I) &&
6717          "Expecting a scalar emulated instruction");
6718   return isa<LoadInst>(I) ||
6719          (isa<StoreInst>(I) &&
6720           NumPredStores > NumberOfStoresToPredicate);
6721 }
6722 
6723 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6724   // If we aren't vectorizing the loop, or if we've already collected the
6725   // instructions to scalarize, there's nothing to do. Collection may already
6726   // have occurred if we have a user-selected VF and are now computing the
6727   // expected cost for interleaving.
6728   if (VF.isScalar() || VF.isZero() ||
6729       InstsToScalarize.find(VF) != InstsToScalarize.end())
6730     return;
6731 
6732   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6733   // not profitable to scalarize any instructions, the presence of VF in the
6734   // map will indicate that we've analyzed it already.
6735   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6736 
6737   // Find all the instructions that are scalar with predication in the loop and
6738   // determine if it would be better to not if-convert the blocks they are in.
6739   // If so, we also record the instructions to scalarize.
6740   for (BasicBlock *BB : TheLoop->blocks()) {
6741     if (!blockNeedsPredication(BB))
6742       continue;
6743     for (Instruction &I : *BB)
6744       if (isScalarWithPredication(&I)) {
6745         ScalarCostsTy ScalarCosts;
6746         // Do not apply discount if scalable, because that would lead to
6747         // invalid scalarization costs.
6748         // Do not apply discount logic if hacked cost is needed
6749         // for emulated masked memrefs.
6750         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6751             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6752           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6753         // Remember that BB will remain after vectorization.
6754         PredicatedBBsAfterVectorization.insert(BB);
6755       }
6756   }
6757 }
6758 
6759 int LoopVectorizationCostModel::computePredInstDiscount(
6760     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6761   assert(!isUniformAfterVectorization(PredInst, VF) &&
6762          "Instruction marked uniform-after-vectorization will be predicated");
6763 
6764   // Initialize the discount to zero, meaning that the scalar version and the
6765   // vector version cost the same.
6766   InstructionCost Discount = 0;
6767 
6768   // Holds instructions to analyze. The instructions we visit are mapped in
6769   // ScalarCosts. Those instructions are the ones that would be scalarized if
6770   // we find that the scalar version costs less.
6771   SmallVector<Instruction *, 8> Worklist;
6772 
6773   // Returns true if the given instruction can be scalarized.
6774   auto canBeScalarized = [&](Instruction *I) -> bool {
6775     // We only attempt to scalarize instructions forming a single-use chain
6776     // from the original predicated block that would otherwise be vectorized.
6777     // Although not strictly necessary, we give up on instructions we know will
6778     // already be scalar to avoid traversing chains that are unlikely to be
6779     // beneficial.
6780     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6781         isScalarAfterVectorization(I, VF))
6782       return false;
6783 
6784     // If the instruction is scalar with predication, it will be analyzed
6785     // separately. We ignore it within the context of PredInst.
6786     if (isScalarWithPredication(I))
6787       return false;
6788 
6789     // If any of the instruction's operands are uniform after vectorization,
6790     // the instruction cannot be scalarized. This prevents, for example, a
6791     // masked load from being scalarized.
6792     //
6793     // We assume we will only emit a value for lane zero of an instruction
6794     // marked uniform after vectorization, rather than VF identical values.
6795     // Thus, if we scalarize an instruction that uses a uniform, we would
6796     // create uses of values corresponding to the lanes we aren't emitting code
6797     // for. This behavior can be changed by allowing getScalarValue to clone
6798     // the lane zero values for uniforms rather than asserting.
6799     for (Use &U : I->operands())
6800       if (auto *J = dyn_cast<Instruction>(U.get()))
6801         if (isUniformAfterVectorization(J, VF))
6802           return false;
6803 
6804     // Otherwise, we can scalarize the instruction.
6805     return true;
6806   };
6807 
6808   // Compute the expected cost discount from scalarizing the entire expression
6809   // feeding the predicated instruction. We currently only consider expressions
6810   // that are single-use instruction chains.
6811   Worklist.push_back(PredInst);
6812   while (!Worklist.empty()) {
6813     Instruction *I = Worklist.pop_back_val();
6814 
6815     // If we've already analyzed the instruction, there's nothing to do.
6816     if (ScalarCosts.find(I) != ScalarCosts.end())
6817       continue;
6818 
6819     // Compute the cost of the vector instruction. Note that this cost already
6820     // includes the scalarization overhead of the predicated instruction.
6821     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6822 
6823     // Compute the cost of the scalarized instruction. This cost is the cost of
6824     // the instruction as if it wasn't if-converted and instead remained in the
6825     // predicated block. We will scale this cost by block probability after
6826     // computing the scalarization overhead.
6827     InstructionCost ScalarCost =
6828         VF.getFixedValue() *
6829         getInstructionCost(I, ElementCount::getFixed(1)).first;
6830 
6831     // Compute the scalarization overhead of needed insertelement instructions
6832     // and phi nodes.
6833     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6834       ScalarCost += TTI.getScalarizationOverhead(
6835           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6836           APInt::getAllOnesValue(VF.getFixedValue()), true, false);
6837       ScalarCost +=
6838           VF.getFixedValue() *
6839           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6840     }
6841 
6842     // Compute the scalarization overhead of needed extractelement
6843     // instructions. For each of the instruction's operands, if the operand can
6844     // be scalarized, add it to the worklist; otherwise, account for the
6845     // overhead.
6846     for (Use &U : I->operands())
6847       if (auto *J = dyn_cast<Instruction>(U.get())) {
6848         assert(VectorType::isValidElementType(J->getType()) &&
6849                "Instruction has non-scalar type");
6850         if (canBeScalarized(J))
6851           Worklist.push_back(J);
6852         else if (needsExtract(J, VF)) {
6853           ScalarCost += TTI.getScalarizationOverhead(
6854               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6855               APInt::getAllOnesValue(VF.getFixedValue()), false, true);
6856         }
6857       }
6858 
6859     // Scale the total scalar cost by block probability.
6860     ScalarCost /= getReciprocalPredBlockProb();
6861 
6862     // Compute the discount. A non-negative discount means the vector version
6863     // of the instruction costs more, and scalarizing would be beneficial.
6864     Discount += VectorCost - ScalarCost;
6865     ScalarCosts[I] = ScalarCost;
6866   }
6867 
6868   return *Discount.getValue();
6869 }
6870 
6871 LoopVectorizationCostModel::VectorizationCostTy
6872 LoopVectorizationCostModel::expectedCost(
6873     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6874   VectorizationCostTy Cost;
6875 
6876   // For each block.
6877   for (BasicBlock *BB : TheLoop->blocks()) {
6878     VectorizationCostTy BlockCost;
6879 
6880     // For each instruction in the old loop.
6881     for (Instruction &I : BB->instructionsWithoutDebug()) {
6882       // Skip ignored values.
6883       if (ValuesToIgnore.count(&I) ||
6884           (VF.isVector() && VecValuesToIgnore.count(&I)))
6885         continue;
6886 
6887       VectorizationCostTy C = getInstructionCost(&I, VF);
6888 
6889       // Check if we should override the cost.
6890       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6891         C.first = InstructionCost(ForceTargetInstructionCost);
6892 
6893       // Keep a list of instructions with invalid costs.
6894       if (Invalid && !C.first.isValid())
6895         Invalid->emplace_back(&I, VF);
6896 
6897       BlockCost.first += C.first;
6898       BlockCost.second |= C.second;
6899       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6900                         << " for VF " << VF << " For instruction: " << I
6901                         << '\n');
6902     }
6903 
6904     // If we are vectorizing a predicated block, it will have been
6905     // if-converted. This means that the block's instructions (aside from
6906     // stores and instructions that may divide by zero) will now be
6907     // unconditionally executed. For the scalar case, we may not always execute
6908     // the predicated block, if it is an if-else block. Thus, scale the block's
6909     // cost by the probability of executing it. blockNeedsPredication from
6910     // Legal is used so as to not include all blocks in tail folded loops.
6911     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6912       BlockCost.first /= getReciprocalPredBlockProb();
6913 
6914     Cost.first += BlockCost.first;
6915     Cost.second |= BlockCost.second;
6916   }
6917 
6918   return Cost;
6919 }
6920 
6921 /// Gets Address Access SCEV after verifying that the access pattern
6922 /// is loop invariant except the induction variable dependence.
6923 ///
6924 /// This SCEV can be sent to the Target in order to estimate the address
6925 /// calculation cost.
6926 static const SCEV *getAddressAccessSCEV(
6927               Value *Ptr,
6928               LoopVectorizationLegality *Legal,
6929               PredicatedScalarEvolution &PSE,
6930               const Loop *TheLoop) {
6931 
6932   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6933   if (!Gep)
6934     return nullptr;
6935 
6936   // We are looking for a gep with all loop invariant indices except for one
6937   // which should be an induction variable.
6938   auto SE = PSE.getSE();
6939   unsigned NumOperands = Gep->getNumOperands();
6940   for (unsigned i = 1; i < NumOperands; ++i) {
6941     Value *Opd = Gep->getOperand(i);
6942     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6943         !Legal->isInductionVariable(Opd))
6944       return nullptr;
6945   }
6946 
6947   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6948   return PSE.getSCEV(Ptr);
6949 }
6950 
6951 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6952   return Legal->hasStride(I->getOperand(0)) ||
6953          Legal->hasStride(I->getOperand(1));
6954 }
6955 
6956 InstructionCost
6957 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6958                                                         ElementCount VF) {
6959   assert(VF.isVector() &&
6960          "Scalarization cost of instruction implies vectorization.");
6961   if (VF.isScalable())
6962     return InstructionCost::getInvalid();
6963 
6964   Type *ValTy = getLoadStoreType(I);
6965   auto SE = PSE.getSE();
6966 
6967   unsigned AS = getLoadStoreAddressSpace(I);
6968   Value *Ptr = getLoadStorePointerOperand(I);
6969   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6970 
6971   // Figure out whether the access is strided and get the stride value
6972   // if it's known in compile time
6973   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6974 
6975   // Get the cost of the scalar memory instruction and address computation.
6976   InstructionCost Cost =
6977       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6978 
6979   // Don't pass *I here, since it is scalar but will actually be part of a
6980   // vectorized loop where the user of it is a vectorized instruction.
6981   const Align Alignment = getLoadStoreAlignment(I);
6982   Cost += VF.getKnownMinValue() *
6983           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6984                               AS, TTI::TCK_RecipThroughput);
6985 
6986   // Get the overhead of the extractelement and insertelement instructions
6987   // we might create due to scalarization.
6988   Cost += getScalarizationOverhead(I, VF);
6989 
6990   // If we have a predicated load/store, it will need extra i1 extracts and
6991   // conditional branches, but may not be executed for each vector lane. Scale
6992   // the cost by the probability of executing the predicated block.
6993   if (isPredicatedInst(I)) {
6994     Cost /= getReciprocalPredBlockProb();
6995 
6996     // Add the cost of an i1 extract and a branch
6997     auto *Vec_i1Ty =
6998         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6999     Cost += TTI.getScalarizationOverhead(
7000         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7001         /*Insert=*/false, /*Extract=*/true);
7002     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7003 
7004     if (useEmulatedMaskMemRefHack(I))
7005       // Artificially setting to a high enough value to practically disable
7006       // vectorization with such operations.
7007       Cost = 3000000;
7008   }
7009 
7010   return Cost;
7011 }
7012 
7013 InstructionCost
7014 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7015                                                     ElementCount VF) {
7016   Type *ValTy = getLoadStoreType(I);
7017   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7018   Value *Ptr = getLoadStorePointerOperand(I);
7019   unsigned AS = getLoadStoreAddressSpace(I);
7020   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7021   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7022 
7023   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7024          "Stride should be 1 or -1 for consecutive memory access");
7025   const Align Alignment = getLoadStoreAlignment(I);
7026   InstructionCost Cost = 0;
7027   if (Legal->isMaskRequired(I))
7028     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7029                                       CostKind);
7030   else
7031     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7032                                 CostKind, I);
7033 
7034   bool Reverse = ConsecutiveStride < 0;
7035   if (Reverse)
7036     Cost +=
7037         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7038   return Cost;
7039 }
7040 
7041 InstructionCost
7042 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7043                                                 ElementCount VF) {
7044   assert(Legal->isUniformMemOp(*I));
7045 
7046   Type *ValTy = getLoadStoreType(I);
7047   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7048   const Align Alignment = getLoadStoreAlignment(I);
7049   unsigned AS = getLoadStoreAddressSpace(I);
7050   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7051   if (isa<LoadInst>(I)) {
7052     return TTI.getAddressComputationCost(ValTy) +
7053            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7054                                CostKind) +
7055            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7056   }
7057   StoreInst *SI = cast<StoreInst>(I);
7058 
7059   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7060   return TTI.getAddressComputationCost(ValTy) +
7061          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7062                              CostKind) +
7063          (isLoopInvariantStoreValue
7064               ? 0
7065               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7066                                        VF.getKnownMinValue() - 1));
7067 }
7068 
7069 InstructionCost
7070 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7071                                                  ElementCount VF) {
7072   Type *ValTy = getLoadStoreType(I);
7073   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7074   const Align Alignment = getLoadStoreAlignment(I);
7075   const Value *Ptr = getLoadStorePointerOperand(I);
7076 
7077   return TTI.getAddressComputationCost(VectorTy) +
7078          TTI.getGatherScatterOpCost(
7079              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7080              TargetTransformInfo::TCK_RecipThroughput, I);
7081 }
7082 
7083 InstructionCost
7084 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7085                                                    ElementCount VF) {
7086   // TODO: Once we have support for interleaving with scalable vectors
7087   // we can calculate the cost properly here.
7088   if (VF.isScalable())
7089     return InstructionCost::getInvalid();
7090 
7091   Type *ValTy = getLoadStoreType(I);
7092   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7093   unsigned AS = getLoadStoreAddressSpace(I);
7094 
7095   auto Group = getInterleavedAccessGroup(I);
7096   assert(Group && "Fail to get an interleaved access group.");
7097 
7098   unsigned InterleaveFactor = Group->getFactor();
7099   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7100 
7101   // Holds the indices of existing members in an interleaved load group.
7102   // An interleaved store group doesn't need this as it doesn't allow gaps.
7103   SmallVector<unsigned, 4> Indices;
7104   if (isa<LoadInst>(I)) {
7105     for (unsigned i = 0; i < InterleaveFactor; i++)
7106       if (Group->getMember(i))
7107         Indices.push_back(i);
7108   }
7109 
7110   // Calculate the cost of the whole interleaved group.
7111   bool UseMaskForGaps =
7112       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
7113   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7114       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7115       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7116 
7117   if (Group->isReverse()) {
7118     // TODO: Add support for reversed masked interleaved access.
7119     assert(!Legal->isMaskRequired(I) &&
7120            "Reverse masked interleaved access not supported.");
7121     Cost +=
7122         Group->getNumMembers() *
7123         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7124   }
7125   return Cost;
7126 }
7127 
7128 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7129     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7130   using namespace llvm::PatternMatch;
7131   // Early exit for no inloop reductions
7132   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7133     return None;
7134   auto *VectorTy = cast<VectorType>(Ty);
7135 
7136   // We are looking for a pattern of, and finding the minimal acceptable cost:
7137   //  reduce(mul(ext(A), ext(B))) or
7138   //  reduce(mul(A, B)) or
7139   //  reduce(ext(A)) or
7140   //  reduce(A).
7141   // The basic idea is that we walk down the tree to do that, finding the root
7142   // reduction instruction in InLoopReductionImmediateChains. From there we find
7143   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7144   // of the components. If the reduction cost is lower then we return it for the
7145   // reduction instruction and 0 for the other instructions in the pattern. If
7146   // it is not we return an invalid cost specifying the orignal cost method
7147   // should be used.
7148   Instruction *RetI = I;
7149   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7150     if (!RetI->hasOneUser())
7151       return None;
7152     RetI = RetI->user_back();
7153   }
7154   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7155       RetI->user_back()->getOpcode() == Instruction::Add) {
7156     if (!RetI->hasOneUser())
7157       return None;
7158     RetI = RetI->user_back();
7159   }
7160 
7161   // Test if the found instruction is a reduction, and if not return an invalid
7162   // cost specifying the parent to use the original cost modelling.
7163   if (!InLoopReductionImmediateChains.count(RetI))
7164     return None;
7165 
7166   // Find the reduction this chain is a part of and calculate the basic cost of
7167   // the reduction on its own.
7168   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7169   Instruction *ReductionPhi = LastChain;
7170   while (!isa<PHINode>(ReductionPhi))
7171     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7172 
7173   const RecurrenceDescriptor &RdxDesc =
7174       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7175 
7176   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7177       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7178 
7179   // If we're using ordered reductions then we can just return the base cost
7180   // here, since getArithmeticReductionCost calculates the full ordered
7181   // reduction cost when FP reassociation is not allowed.
7182   if (useOrderedReductions(RdxDesc))
7183     return BaseCost;
7184 
7185   // Get the operand that was not the reduction chain and match it to one of the
7186   // patterns, returning the better cost if it is found.
7187   Instruction *RedOp = RetI->getOperand(1) == LastChain
7188                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7189                            : dyn_cast<Instruction>(RetI->getOperand(1));
7190 
7191   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7192 
7193   Instruction *Op0, *Op1;
7194   if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7195       !TheLoop->isLoopInvariant(RedOp)) {
7196     // Matched reduce(ext(A))
7197     bool IsUnsigned = isa<ZExtInst>(RedOp);
7198     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7199     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7200         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7201         CostKind);
7202 
7203     InstructionCost ExtCost =
7204         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7205                              TTI::CastContextHint::None, CostKind, RedOp);
7206     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7207       return I == RetI ? RedCost : 0;
7208   } else if (RedOp &&
7209              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7210     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7211         Op0->getOpcode() == Op1->getOpcode() &&
7212         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7213         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7214       bool IsUnsigned = isa<ZExtInst>(Op0);
7215       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7216       // Matched reduce(mul(ext, ext))
7217       InstructionCost ExtCost =
7218           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7219                                TTI::CastContextHint::None, CostKind, Op0);
7220       InstructionCost MulCost =
7221           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7222 
7223       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7224           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7225           CostKind);
7226 
7227       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7228         return I == RetI ? RedCost : 0;
7229     } else {
7230       // Matched reduce(mul())
7231       InstructionCost MulCost =
7232           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7233 
7234       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7235           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7236           CostKind);
7237 
7238       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7239         return I == RetI ? RedCost : 0;
7240     }
7241   }
7242 
7243   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7244 }
7245 
7246 InstructionCost
7247 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7248                                                      ElementCount VF) {
7249   // Calculate scalar cost only. Vectorization cost should be ready at this
7250   // moment.
7251   if (VF.isScalar()) {
7252     Type *ValTy = getLoadStoreType(I);
7253     const Align Alignment = getLoadStoreAlignment(I);
7254     unsigned AS = getLoadStoreAddressSpace(I);
7255 
7256     return TTI.getAddressComputationCost(ValTy) +
7257            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7258                                TTI::TCK_RecipThroughput, I);
7259   }
7260   return getWideningCost(I, VF);
7261 }
7262 
7263 LoopVectorizationCostModel::VectorizationCostTy
7264 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7265                                                ElementCount VF) {
7266   // If we know that this instruction will remain uniform, check the cost of
7267   // the scalar version.
7268   if (isUniformAfterVectorization(I, VF))
7269     VF = ElementCount::getFixed(1);
7270 
7271   if (VF.isVector() && isProfitableToScalarize(I, VF))
7272     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7273 
7274   // Forced scalars do not have any scalarization overhead.
7275   auto ForcedScalar = ForcedScalars.find(VF);
7276   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7277     auto InstSet = ForcedScalar->second;
7278     if (InstSet.count(I))
7279       return VectorizationCostTy(
7280           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7281            VF.getKnownMinValue()),
7282           false);
7283   }
7284 
7285   Type *VectorTy;
7286   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7287 
7288   bool TypeNotScalarized =
7289       VF.isVector() && VectorTy->isVectorTy() &&
7290       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7291   return VectorizationCostTy(C, TypeNotScalarized);
7292 }
7293 
7294 InstructionCost
7295 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7296                                                      ElementCount VF) const {
7297 
7298   // There is no mechanism yet to create a scalable scalarization loop,
7299   // so this is currently Invalid.
7300   if (VF.isScalable())
7301     return InstructionCost::getInvalid();
7302 
7303   if (VF.isScalar())
7304     return 0;
7305 
7306   InstructionCost Cost = 0;
7307   Type *RetTy = ToVectorTy(I->getType(), VF);
7308   if (!RetTy->isVoidTy() &&
7309       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7310     Cost += TTI.getScalarizationOverhead(
7311         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7312         true, false);
7313 
7314   // Some targets keep addresses scalar.
7315   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7316     return Cost;
7317 
7318   // Some targets support efficient element stores.
7319   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7320     return Cost;
7321 
7322   // Collect operands to consider.
7323   CallInst *CI = dyn_cast<CallInst>(I);
7324   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7325 
7326   // Skip operands that do not require extraction/scalarization and do not incur
7327   // any overhead.
7328   SmallVector<Type *> Tys;
7329   for (auto *V : filterExtractingOperands(Ops, VF))
7330     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7331   return Cost + TTI.getOperandsScalarizationOverhead(
7332                     filterExtractingOperands(Ops, VF), Tys);
7333 }
7334 
7335 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7336   if (VF.isScalar())
7337     return;
7338   NumPredStores = 0;
7339   for (BasicBlock *BB : TheLoop->blocks()) {
7340     // For each instruction in the old loop.
7341     for (Instruction &I : *BB) {
7342       Value *Ptr =  getLoadStorePointerOperand(&I);
7343       if (!Ptr)
7344         continue;
7345 
7346       // TODO: We should generate better code and update the cost model for
7347       // predicated uniform stores. Today they are treated as any other
7348       // predicated store (see added test cases in
7349       // invariant-store-vectorization.ll).
7350       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7351         NumPredStores++;
7352 
7353       if (Legal->isUniformMemOp(I)) {
7354         // TODO: Avoid replicating loads and stores instead of
7355         // relying on instcombine to remove them.
7356         // Load: Scalar load + broadcast
7357         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7358         InstructionCost Cost;
7359         if (isa<StoreInst>(&I) && VF.isScalable() &&
7360             isLegalGatherOrScatter(&I)) {
7361           Cost = getGatherScatterCost(&I, VF);
7362           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7363         } else {
7364           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7365                  "Cannot yet scalarize uniform stores");
7366           Cost = getUniformMemOpCost(&I, VF);
7367           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7368         }
7369         continue;
7370       }
7371 
7372       // We assume that widening is the best solution when possible.
7373       if (memoryInstructionCanBeWidened(&I, VF)) {
7374         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7375         int ConsecutiveStride =
7376                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7377         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7378                "Expected consecutive stride.");
7379         InstWidening Decision =
7380             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7381         setWideningDecision(&I, VF, Decision, Cost);
7382         continue;
7383       }
7384 
7385       // Choose between Interleaving, Gather/Scatter or Scalarization.
7386       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7387       unsigned NumAccesses = 1;
7388       if (isAccessInterleaved(&I)) {
7389         auto Group = getInterleavedAccessGroup(&I);
7390         assert(Group && "Fail to get an interleaved access group.");
7391 
7392         // Make one decision for the whole group.
7393         if (getWideningDecision(&I, VF) != CM_Unknown)
7394           continue;
7395 
7396         NumAccesses = Group->getNumMembers();
7397         if (interleavedAccessCanBeWidened(&I, VF))
7398           InterleaveCost = getInterleaveGroupCost(&I, VF);
7399       }
7400 
7401       InstructionCost GatherScatterCost =
7402           isLegalGatherOrScatter(&I)
7403               ? getGatherScatterCost(&I, VF) * NumAccesses
7404               : InstructionCost::getInvalid();
7405 
7406       InstructionCost ScalarizationCost =
7407           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7408 
7409       // Choose better solution for the current VF,
7410       // write down this decision and use it during vectorization.
7411       InstructionCost Cost;
7412       InstWidening Decision;
7413       if (InterleaveCost <= GatherScatterCost &&
7414           InterleaveCost < ScalarizationCost) {
7415         Decision = CM_Interleave;
7416         Cost = InterleaveCost;
7417       } else if (GatherScatterCost < ScalarizationCost) {
7418         Decision = CM_GatherScatter;
7419         Cost = GatherScatterCost;
7420       } else {
7421         Decision = CM_Scalarize;
7422         Cost = ScalarizationCost;
7423       }
7424       // If the instructions belongs to an interleave group, the whole group
7425       // receives the same decision. The whole group receives the cost, but
7426       // the cost will actually be assigned to one instruction.
7427       if (auto Group = getInterleavedAccessGroup(&I))
7428         setWideningDecision(Group, VF, Decision, Cost);
7429       else
7430         setWideningDecision(&I, VF, Decision, Cost);
7431     }
7432   }
7433 
7434   // Make sure that any load of address and any other address computation
7435   // remains scalar unless there is gather/scatter support. This avoids
7436   // inevitable extracts into address registers, and also has the benefit of
7437   // activating LSR more, since that pass can't optimize vectorized
7438   // addresses.
7439   if (TTI.prefersVectorizedAddressing())
7440     return;
7441 
7442   // Start with all scalar pointer uses.
7443   SmallPtrSet<Instruction *, 8> AddrDefs;
7444   for (BasicBlock *BB : TheLoop->blocks())
7445     for (Instruction &I : *BB) {
7446       Instruction *PtrDef =
7447         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7448       if (PtrDef && TheLoop->contains(PtrDef) &&
7449           getWideningDecision(&I, VF) != CM_GatherScatter)
7450         AddrDefs.insert(PtrDef);
7451     }
7452 
7453   // Add all instructions used to generate the addresses.
7454   SmallVector<Instruction *, 4> Worklist;
7455   append_range(Worklist, AddrDefs);
7456   while (!Worklist.empty()) {
7457     Instruction *I = Worklist.pop_back_val();
7458     for (auto &Op : I->operands())
7459       if (auto *InstOp = dyn_cast<Instruction>(Op))
7460         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7461             AddrDefs.insert(InstOp).second)
7462           Worklist.push_back(InstOp);
7463   }
7464 
7465   for (auto *I : AddrDefs) {
7466     if (isa<LoadInst>(I)) {
7467       // Setting the desired widening decision should ideally be handled in
7468       // by cost functions, but since this involves the task of finding out
7469       // if the loaded register is involved in an address computation, it is
7470       // instead changed here when we know this is the case.
7471       InstWidening Decision = getWideningDecision(I, VF);
7472       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7473         // Scalarize a widened load of address.
7474         setWideningDecision(
7475             I, VF, CM_Scalarize,
7476             (VF.getKnownMinValue() *
7477              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7478       else if (auto Group = getInterleavedAccessGroup(I)) {
7479         // Scalarize an interleave group of address loads.
7480         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7481           if (Instruction *Member = Group->getMember(I))
7482             setWideningDecision(
7483                 Member, VF, CM_Scalarize,
7484                 (VF.getKnownMinValue() *
7485                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7486         }
7487       }
7488     } else
7489       // Make sure I gets scalarized and a cost estimate without
7490       // scalarization overhead.
7491       ForcedScalars[VF].insert(I);
7492   }
7493 }
7494 
7495 InstructionCost
7496 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7497                                                Type *&VectorTy) {
7498   Type *RetTy = I->getType();
7499   if (canTruncateToMinimalBitwidth(I, VF))
7500     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7501   auto SE = PSE.getSE();
7502   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7503 
7504   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7505                                                 ElementCount VF) -> bool {
7506     if (VF.isScalar())
7507       return true;
7508 
7509     auto Scalarized = InstsToScalarize.find(VF);
7510     assert(Scalarized != InstsToScalarize.end() &&
7511            "VF not yet analyzed for scalarization profitability");
7512     return !Scalarized->second.count(I) &&
7513            llvm::all_of(I->users(), [&](User *U) {
7514              auto *UI = cast<Instruction>(U);
7515              return !Scalarized->second.count(UI);
7516            });
7517   };
7518   (void) hasSingleCopyAfterVectorization;
7519 
7520   if (isScalarAfterVectorization(I, VF)) {
7521     // With the exception of GEPs and PHIs, after scalarization there should
7522     // only be one copy of the instruction generated in the loop. This is
7523     // because the VF is either 1, or any instructions that need scalarizing
7524     // have already been dealt with by the the time we get here. As a result,
7525     // it means we don't have to multiply the instruction cost by VF.
7526     assert(I->getOpcode() == Instruction::GetElementPtr ||
7527            I->getOpcode() == Instruction::PHI ||
7528            (I->getOpcode() == Instruction::BitCast &&
7529             I->getType()->isPointerTy()) ||
7530            hasSingleCopyAfterVectorization(I, VF));
7531     VectorTy = RetTy;
7532   } else
7533     VectorTy = ToVectorTy(RetTy, VF);
7534 
7535   // TODO: We need to estimate the cost of intrinsic calls.
7536   switch (I->getOpcode()) {
7537   case Instruction::GetElementPtr:
7538     // We mark this instruction as zero-cost because the cost of GEPs in
7539     // vectorized code depends on whether the corresponding memory instruction
7540     // is scalarized or not. Therefore, we handle GEPs with the memory
7541     // instruction cost.
7542     return 0;
7543   case Instruction::Br: {
7544     // In cases of scalarized and predicated instructions, there will be VF
7545     // predicated blocks in the vectorized loop. Each branch around these
7546     // blocks requires also an extract of its vector compare i1 element.
7547     bool ScalarPredicatedBB = false;
7548     BranchInst *BI = cast<BranchInst>(I);
7549     if (VF.isVector() && BI->isConditional() &&
7550         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7551          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7552       ScalarPredicatedBB = true;
7553 
7554     if (ScalarPredicatedBB) {
7555       // Not possible to scalarize scalable vector with predicated instructions.
7556       if (VF.isScalable())
7557         return InstructionCost::getInvalid();
7558       // Return cost for branches around scalarized and predicated blocks.
7559       auto *Vec_i1Ty =
7560           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7561       return (
7562           TTI.getScalarizationOverhead(
7563               Vec_i1Ty, APInt::getAllOnesValue(VF.getFixedValue()), false,
7564               true) +
7565           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7566     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7567       // The back-edge branch will remain, as will all scalar branches.
7568       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7569     else
7570       // This branch will be eliminated by if-conversion.
7571       return 0;
7572     // Note: We currently assume zero cost for an unconditional branch inside
7573     // a predicated block since it will become a fall-through, although we
7574     // may decide in the future to call TTI for all branches.
7575   }
7576   case Instruction::PHI: {
7577     auto *Phi = cast<PHINode>(I);
7578 
7579     // First-order recurrences are replaced by vector shuffles inside the loop.
7580     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7581     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7582       return TTI.getShuffleCost(
7583           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7584           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7585 
7586     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7587     // converted into select instructions. We require N - 1 selects per phi
7588     // node, where N is the number of incoming values.
7589     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7590       return (Phi->getNumIncomingValues() - 1) *
7591              TTI.getCmpSelInstrCost(
7592                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7593                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7594                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7595 
7596     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7597   }
7598   case Instruction::UDiv:
7599   case Instruction::SDiv:
7600   case Instruction::URem:
7601   case Instruction::SRem:
7602     // If we have a predicated instruction, it may not be executed for each
7603     // vector lane. Get the scalarization cost and scale this amount by the
7604     // probability of executing the predicated block. If the instruction is not
7605     // predicated, we fall through to the next case.
7606     if (VF.isVector() && isScalarWithPredication(I)) {
7607       InstructionCost Cost = 0;
7608 
7609       // These instructions have a non-void type, so account for the phi nodes
7610       // that we will create. This cost is likely to be zero. The phi node
7611       // cost, if any, should be scaled by the block probability because it
7612       // models a copy at the end of each predicated block.
7613       Cost += VF.getKnownMinValue() *
7614               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7615 
7616       // The cost of the non-predicated instruction.
7617       Cost += VF.getKnownMinValue() *
7618               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7619 
7620       // The cost of insertelement and extractelement instructions needed for
7621       // scalarization.
7622       Cost += getScalarizationOverhead(I, VF);
7623 
7624       // Scale the cost by the probability of executing the predicated blocks.
7625       // This assumes the predicated block for each vector lane is equally
7626       // likely.
7627       return Cost / getReciprocalPredBlockProb();
7628     }
7629     LLVM_FALLTHROUGH;
7630   case Instruction::Add:
7631   case Instruction::FAdd:
7632   case Instruction::Sub:
7633   case Instruction::FSub:
7634   case Instruction::Mul:
7635   case Instruction::FMul:
7636   case Instruction::FDiv:
7637   case Instruction::FRem:
7638   case Instruction::Shl:
7639   case Instruction::LShr:
7640   case Instruction::AShr:
7641   case Instruction::And:
7642   case Instruction::Or:
7643   case Instruction::Xor: {
7644     // Since we will replace the stride by 1 the multiplication should go away.
7645     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7646       return 0;
7647 
7648     // Detect reduction patterns
7649     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7650       return *RedCost;
7651 
7652     // Certain instructions can be cheaper to vectorize if they have a constant
7653     // second vector operand. One example of this are shifts on x86.
7654     Value *Op2 = I->getOperand(1);
7655     TargetTransformInfo::OperandValueProperties Op2VP;
7656     TargetTransformInfo::OperandValueKind Op2VK =
7657         TTI.getOperandInfo(Op2, Op2VP);
7658     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7659       Op2VK = TargetTransformInfo::OK_UniformValue;
7660 
7661     SmallVector<const Value *, 4> Operands(I->operand_values());
7662     return TTI.getArithmeticInstrCost(
7663         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7664         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7665   }
7666   case Instruction::FNeg: {
7667     return TTI.getArithmeticInstrCost(
7668         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7669         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7670         TargetTransformInfo::OP_None, I->getOperand(0), I);
7671   }
7672   case Instruction::Select: {
7673     SelectInst *SI = cast<SelectInst>(I);
7674     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7675     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7676 
7677     const Value *Op0, *Op1;
7678     using namespace llvm::PatternMatch;
7679     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7680                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7681       // select x, y, false --> x & y
7682       // select x, true, y --> x | y
7683       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7684       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7685       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7686       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7687       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7688               Op1->getType()->getScalarSizeInBits() == 1);
7689 
7690       SmallVector<const Value *, 2> Operands{Op0, Op1};
7691       return TTI.getArithmeticInstrCost(
7692           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7693           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7694     }
7695 
7696     Type *CondTy = SI->getCondition()->getType();
7697     if (!ScalarCond)
7698       CondTy = VectorType::get(CondTy, VF);
7699     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7700                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7701   }
7702   case Instruction::ICmp:
7703   case Instruction::FCmp: {
7704     Type *ValTy = I->getOperand(0)->getType();
7705     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7706     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7707       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7708     VectorTy = ToVectorTy(ValTy, VF);
7709     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7710                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7711   }
7712   case Instruction::Store:
7713   case Instruction::Load: {
7714     ElementCount Width = VF;
7715     if (Width.isVector()) {
7716       InstWidening Decision = getWideningDecision(I, Width);
7717       assert(Decision != CM_Unknown &&
7718              "CM decision should be taken at this point");
7719       if (Decision == CM_Scalarize)
7720         Width = ElementCount::getFixed(1);
7721     }
7722     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7723     return getMemoryInstructionCost(I, VF);
7724   }
7725   case Instruction::BitCast:
7726     if (I->getType()->isPointerTy())
7727       return 0;
7728     LLVM_FALLTHROUGH;
7729   case Instruction::ZExt:
7730   case Instruction::SExt:
7731   case Instruction::FPToUI:
7732   case Instruction::FPToSI:
7733   case Instruction::FPExt:
7734   case Instruction::PtrToInt:
7735   case Instruction::IntToPtr:
7736   case Instruction::SIToFP:
7737   case Instruction::UIToFP:
7738   case Instruction::Trunc:
7739   case Instruction::FPTrunc: {
7740     // Computes the CastContextHint from a Load/Store instruction.
7741     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7742       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7743              "Expected a load or a store!");
7744 
7745       if (VF.isScalar() || !TheLoop->contains(I))
7746         return TTI::CastContextHint::Normal;
7747 
7748       switch (getWideningDecision(I, VF)) {
7749       case LoopVectorizationCostModel::CM_GatherScatter:
7750         return TTI::CastContextHint::GatherScatter;
7751       case LoopVectorizationCostModel::CM_Interleave:
7752         return TTI::CastContextHint::Interleave;
7753       case LoopVectorizationCostModel::CM_Scalarize:
7754       case LoopVectorizationCostModel::CM_Widen:
7755         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7756                                         : TTI::CastContextHint::Normal;
7757       case LoopVectorizationCostModel::CM_Widen_Reverse:
7758         return TTI::CastContextHint::Reversed;
7759       case LoopVectorizationCostModel::CM_Unknown:
7760         llvm_unreachable("Instr did not go through cost modelling?");
7761       }
7762 
7763       llvm_unreachable("Unhandled case!");
7764     };
7765 
7766     unsigned Opcode = I->getOpcode();
7767     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7768     // For Trunc, the context is the only user, which must be a StoreInst.
7769     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7770       if (I->hasOneUse())
7771         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7772           CCH = ComputeCCH(Store);
7773     }
7774     // For Z/Sext, the context is the operand, which must be a LoadInst.
7775     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7776              Opcode == Instruction::FPExt) {
7777       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7778         CCH = ComputeCCH(Load);
7779     }
7780 
7781     // We optimize the truncation of induction variables having constant
7782     // integer steps. The cost of these truncations is the same as the scalar
7783     // operation.
7784     if (isOptimizableIVTruncate(I, VF)) {
7785       auto *Trunc = cast<TruncInst>(I);
7786       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7787                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7788     }
7789 
7790     // Detect reduction patterns
7791     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7792       return *RedCost;
7793 
7794     Type *SrcScalarTy = I->getOperand(0)->getType();
7795     Type *SrcVecTy =
7796         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7797     if (canTruncateToMinimalBitwidth(I, VF)) {
7798       // This cast is going to be shrunk. This may remove the cast or it might
7799       // turn it into slightly different cast. For example, if MinBW == 16,
7800       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7801       //
7802       // Calculate the modified src and dest types.
7803       Type *MinVecTy = VectorTy;
7804       if (Opcode == Instruction::Trunc) {
7805         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7806         VectorTy =
7807             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7808       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7809         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7810         VectorTy =
7811             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7812       }
7813     }
7814 
7815     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7816   }
7817   case Instruction::Call: {
7818     bool NeedToScalarize;
7819     CallInst *CI = cast<CallInst>(I);
7820     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7821     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7822       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7823       return std::min(CallCost, IntrinsicCost);
7824     }
7825     return CallCost;
7826   }
7827   case Instruction::ExtractValue:
7828     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7829   case Instruction::Alloca:
7830     // We cannot easily widen alloca to a scalable alloca, as
7831     // the result would need to be a vector of pointers.
7832     if (VF.isScalable())
7833       return InstructionCost::getInvalid();
7834     LLVM_FALLTHROUGH;
7835   default:
7836     // This opcode is unknown. Assume that it is the same as 'mul'.
7837     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7838   } // end of switch.
7839 }
7840 
7841 char LoopVectorize::ID = 0;
7842 
7843 static const char lv_name[] = "Loop Vectorization";
7844 
7845 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7846 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7847 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7848 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7849 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7850 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7851 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7852 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7853 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7854 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7855 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7856 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7857 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7858 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7859 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7860 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7861 
7862 namespace llvm {
7863 
7864 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7865 
7866 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7867                               bool VectorizeOnlyWhenForced) {
7868   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7869 }
7870 
7871 } // end namespace llvm
7872 
7873 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7874   // Check if the pointer operand of a load or store instruction is
7875   // consecutive.
7876   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7877     return Legal->isConsecutivePtr(Ptr);
7878   return false;
7879 }
7880 
7881 void LoopVectorizationCostModel::collectValuesToIgnore() {
7882   // Ignore ephemeral values.
7883   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7884 
7885   // Ignore type-promoting instructions we identified during reduction
7886   // detection.
7887   for (auto &Reduction : Legal->getReductionVars()) {
7888     RecurrenceDescriptor &RedDes = Reduction.second;
7889     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7890     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7891   }
7892   // Ignore type-casting instructions we identified during induction
7893   // detection.
7894   for (auto &Induction : Legal->getInductionVars()) {
7895     InductionDescriptor &IndDes = Induction.second;
7896     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7897     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7898   }
7899 }
7900 
7901 void LoopVectorizationCostModel::collectInLoopReductions() {
7902   for (auto &Reduction : Legal->getReductionVars()) {
7903     PHINode *Phi = Reduction.first;
7904     RecurrenceDescriptor &RdxDesc = Reduction.second;
7905 
7906     // We don't collect reductions that are type promoted (yet).
7907     if (RdxDesc.getRecurrenceType() != Phi->getType())
7908       continue;
7909 
7910     // If the target would prefer this reduction to happen "in-loop", then we
7911     // want to record it as such.
7912     unsigned Opcode = RdxDesc.getOpcode();
7913     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7914         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7915                                    TargetTransformInfo::ReductionFlags()))
7916       continue;
7917 
7918     // Check that we can correctly put the reductions into the loop, by
7919     // finding the chain of operations that leads from the phi to the loop
7920     // exit value.
7921     SmallVector<Instruction *, 4> ReductionOperations =
7922         RdxDesc.getReductionOpChain(Phi, TheLoop);
7923     bool InLoop = !ReductionOperations.empty();
7924     if (InLoop) {
7925       InLoopReductionChains[Phi] = ReductionOperations;
7926       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7927       Instruction *LastChain = Phi;
7928       for (auto *I : ReductionOperations) {
7929         InLoopReductionImmediateChains[I] = LastChain;
7930         LastChain = I;
7931       }
7932     }
7933     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7934                       << " reduction for phi: " << *Phi << "\n");
7935   }
7936 }
7937 
7938 // TODO: we could return a pair of values that specify the max VF and
7939 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7940 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7941 // doesn't have a cost model that can choose which plan to execute if
7942 // more than one is generated.
7943 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7944                                  LoopVectorizationCostModel &CM) {
7945   unsigned WidestType;
7946   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7947   return WidestVectorRegBits / WidestType;
7948 }
7949 
7950 VectorizationFactor
7951 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7952   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7953   ElementCount VF = UserVF;
7954   // Outer loop handling: They may require CFG and instruction level
7955   // transformations before even evaluating whether vectorization is profitable.
7956   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7957   // the vectorization pipeline.
7958   if (!OrigLoop->isInnermost()) {
7959     // If the user doesn't provide a vectorization factor, determine a
7960     // reasonable one.
7961     if (UserVF.isZero()) {
7962       VF = ElementCount::getFixed(determineVPlanVF(
7963           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7964               .getFixedSize(),
7965           CM));
7966       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7967 
7968       // Make sure we have a VF > 1 for stress testing.
7969       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7970         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7971                           << "overriding computed VF.\n");
7972         VF = ElementCount::getFixed(4);
7973       }
7974     }
7975     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7976     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7977            "VF needs to be a power of two");
7978     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7979                       << "VF " << VF << " to build VPlans.\n");
7980     buildVPlans(VF, VF);
7981 
7982     // For VPlan build stress testing, we bail out after VPlan construction.
7983     if (VPlanBuildStressTest)
7984       return VectorizationFactor::Disabled();
7985 
7986     return {VF, 0 /*Cost*/};
7987   }
7988 
7989   LLVM_DEBUG(
7990       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7991                 "VPlan-native path.\n");
7992   return VectorizationFactor::Disabled();
7993 }
7994 
7995 Optional<VectorizationFactor>
7996 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7997   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7998   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7999   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8000     return None;
8001 
8002   // Invalidate interleave groups if all blocks of loop will be predicated.
8003   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8004       !useMaskedInterleavedAccesses(*TTI)) {
8005     LLVM_DEBUG(
8006         dbgs()
8007         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8008            "which requires masked-interleaved support.\n");
8009     if (CM.InterleaveInfo.invalidateGroups())
8010       // Invalidating interleave groups also requires invalidating all decisions
8011       // based on them, which includes widening decisions and uniform and scalar
8012       // values.
8013       CM.invalidateCostModelingDecisions();
8014   }
8015 
8016   ElementCount MaxUserVF =
8017       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8018   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8019   if (!UserVF.isZero() && UserVFIsLegal) {
8020     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8021            "VF needs to be a power of two");
8022     // Collect the instructions (and their associated costs) that will be more
8023     // profitable to scalarize.
8024     if (CM.selectUserVectorizationFactor(UserVF)) {
8025       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8026       CM.collectInLoopReductions();
8027       buildVPlansWithVPRecipes(UserVF, UserVF);
8028       LLVM_DEBUG(printPlans(dbgs()));
8029       return {{UserVF, 0}};
8030     } else
8031       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8032                               "InvalidCost", ORE, OrigLoop);
8033   }
8034 
8035   // Populate the set of Vectorization Factor Candidates.
8036   ElementCountSet VFCandidates;
8037   for (auto VF = ElementCount::getFixed(1);
8038        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8039     VFCandidates.insert(VF);
8040   for (auto VF = ElementCount::getScalable(1);
8041        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8042     VFCandidates.insert(VF);
8043 
8044   for (const auto &VF : VFCandidates) {
8045     // Collect Uniform and Scalar instructions after vectorization with VF.
8046     CM.collectUniformsAndScalars(VF);
8047 
8048     // Collect the instructions (and their associated costs) that will be more
8049     // profitable to scalarize.
8050     if (VF.isVector())
8051       CM.collectInstsToScalarize(VF);
8052   }
8053 
8054   CM.collectInLoopReductions();
8055   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8056   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8057 
8058   LLVM_DEBUG(printPlans(dbgs()));
8059   if (!MaxFactors.hasVector())
8060     return VectorizationFactor::Disabled();
8061 
8062   // Select the optimal vectorization factor.
8063   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8064 
8065   // Check if it is profitable to vectorize with runtime checks.
8066   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8067   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8068     bool PragmaThresholdReached =
8069         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8070     bool ThresholdReached =
8071         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8072     if ((ThresholdReached && !Hints.allowReordering()) ||
8073         PragmaThresholdReached) {
8074       ORE->emit([&]() {
8075         return OptimizationRemarkAnalysisAliasing(
8076                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8077                    OrigLoop->getHeader())
8078                << "loop not vectorized: cannot prove it is safe to reorder "
8079                   "memory operations";
8080       });
8081       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8082       Hints.emitRemarkWithHints();
8083       return VectorizationFactor::Disabled();
8084     }
8085   }
8086   return SelectedVF;
8087 }
8088 
8089 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8090   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8091                     << '\n');
8092   BestVF = VF;
8093   BestUF = UF;
8094 
8095   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8096     return !Plan->hasVF(VF);
8097   });
8098   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8099 }
8100 
8101 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8102                                            DominatorTree *DT) {
8103   // Perform the actual loop transformation.
8104 
8105   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8106   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8107   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8108 
8109   VPTransformState State{
8110       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8111   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8112   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8113   State.CanonicalIV = ILV.Induction;
8114 
8115   ILV.printDebugTracesAtStart();
8116 
8117   //===------------------------------------------------===//
8118   //
8119   // Notice: any optimization or new instruction that go
8120   // into the code below should also be implemented in
8121   // the cost-model.
8122   //
8123   //===------------------------------------------------===//
8124 
8125   // 2. Copy and widen instructions from the old loop into the new loop.
8126   VPlans.front()->execute(&State);
8127 
8128   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8129   //    predication, updating analyses.
8130   ILV.fixVectorizedLoop(State);
8131 
8132   ILV.printDebugTracesAtEnd();
8133 }
8134 
8135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8136 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8137   for (const auto &Plan : VPlans)
8138     if (PrintVPlansInDotFormat)
8139       Plan->printDOT(O);
8140     else
8141       Plan->print(O);
8142 }
8143 #endif
8144 
8145 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8146     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8147 
8148   // We create new control-flow for the vectorized loop, so the original exit
8149   // conditions will be dead after vectorization if it's only used by the
8150   // terminator
8151   SmallVector<BasicBlock*> ExitingBlocks;
8152   OrigLoop->getExitingBlocks(ExitingBlocks);
8153   for (auto *BB : ExitingBlocks) {
8154     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8155     if (!Cmp || !Cmp->hasOneUse())
8156       continue;
8157 
8158     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8159     if (!DeadInstructions.insert(Cmp).second)
8160       continue;
8161 
8162     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8163     // TODO: can recurse through operands in general
8164     for (Value *Op : Cmp->operands()) {
8165       if (isa<TruncInst>(Op) && Op->hasOneUse())
8166           DeadInstructions.insert(cast<Instruction>(Op));
8167     }
8168   }
8169 
8170   // We create new "steps" for induction variable updates to which the original
8171   // induction variables map. An original update instruction will be dead if
8172   // all its users except the induction variable are dead.
8173   auto *Latch = OrigLoop->getLoopLatch();
8174   for (auto &Induction : Legal->getInductionVars()) {
8175     PHINode *Ind = Induction.first;
8176     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8177 
8178     // If the tail is to be folded by masking, the primary induction variable,
8179     // if exists, isn't dead: it will be used for masking. Don't kill it.
8180     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8181       continue;
8182 
8183     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8184           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8185         }))
8186       DeadInstructions.insert(IndUpdate);
8187 
8188     // We record as "Dead" also the type-casting instructions we had identified
8189     // during induction analysis. We don't need any handling for them in the
8190     // vectorized loop because we have proven that, under a proper runtime
8191     // test guarding the vectorized loop, the value of the phi, and the casted
8192     // value of the phi, are the same. The last instruction in this casting chain
8193     // will get its scalar/vector/widened def from the scalar/vector/widened def
8194     // of the respective phi node. Any other casts in the induction def-use chain
8195     // have no other uses outside the phi update chain, and will be ignored.
8196     InductionDescriptor &IndDes = Induction.second;
8197     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8198     DeadInstructions.insert(Casts.begin(), Casts.end());
8199   }
8200 }
8201 
8202 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8203 
8204 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8205 
8206 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8207                                         Instruction::BinaryOps BinOp) {
8208   // When unrolling and the VF is 1, we only need to add a simple scalar.
8209   Type *Ty = Val->getType();
8210   assert(!Ty->isVectorTy() && "Val must be a scalar");
8211 
8212   if (Ty->isFloatingPointTy()) {
8213     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8214 
8215     // Floating-point operations inherit FMF via the builder's flags.
8216     Value *MulOp = Builder.CreateFMul(C, Step);
8217     return Builder.CreateBinOp(BinOp, Val, MulOp);
8218   }
8219   Constant *C = ConstantInt::get(Ty, StartIdx);
8220   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8221 }
8222 
8223 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8224   SmallVector<Metadata *, 4> MDs;
8225   // Reserve first location for self reference to the LoopID metadata node.
8226   MDs.push_back(nullptr);
8227   bool IsUnrollMetadata = false;
8228   MDNode *LoopID = L->getLoopID();
8229   if (LoopID) {
8230     // First find existing loop unrolling disable metadata.
8231     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8232       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8233       if (MD) {
8234         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8235         IsUnrollMetadata =
8236             S && S->getString().startswith("llvm.loop.unroll.disable");
8237       }
8238       MDs.push_back(LoopID->getOperand(i));
8239     }
8240   }
8241 
8242   if (!IsUnrollMetadata) {
8243     // Add runtime unroll disable metadata.
8244     LLVMContext &Context = L->getHeader()->getContext();
8245     SmallVector<Metadata *, 1> DisableOperands;
8246     DisableOperands.push_back(
8247         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8248     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8249     MDs.push_back(DisableNode);
8250     MDNode *NewLoopID = MDNode::get(Context, MDs);
8251     // Set operand 0 to refer to the loop id itself.
8252     NewLoopID->replaceOperandWith(0, NewLoopID);
8253     L->setLoopID(NewLoopID);
8254   }
8255 }
8256 
8257 //===--------------------------------------------------------------------===//
8258 // EpilogueVectorizerMainLoop
8259 //===--------------------------------------------------------------------===//
8260 
8261 /// This function is partially responsible for generating the control flow
8262 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8263 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8264   MDNode *OrigLoopID = OrigLoop->getLoopID();
8265   Loop *Lp = createVectorLoopSkeleton("");
8266 
8267   // Generate the code to check the minimum iteration count of the vector
8268   // epilogue (see below).
8269   EPI.EpilogueIterationCountCheck =
8270       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8271   EPI.EpilogueIterationCountCheck->setName("iter.check");
8272 
8273   // Generate the code to check any assumptions that we've made for SCEV
8274   // expressions.
8275   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8276 
8277   // Generate the code that checks at runtime if arrays overlap. We put the
8278   // checks into a separate block to make the more common case of few elements
8279   // faster.
8280   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8281 
8282   // Generate the iteration count check for the main loop, *after* the check
8283   // for the epilogue loop, so that the path-length is shorter for the case
8284   // that goes directly through the vector epilogue. The longer-path length for
8285   // the main loop is compensated for, by the gain from vectorizing the larger
8286   // trip count. Note: the branch will get updated later on when we vectorize
8287   // the epilogue.
8288   EPI.MainLoopIterationCountCheck =
8289       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8290 
8291   // Generate the induction variable.
8292   OldInduction = Legal->getPrimaryInduction();
8293   Type *IdxTy = Legal->getWidestInductionType();
8294   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8295   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8296   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8297   EPI.VectorTripCount = CountRoundDown;
8298   Induction =
8299       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8300                               getDebugLocFromInstOrOperands(OldInduction));
8301 
8302   // Skip induction resume value creation here because they will be created in
8303   // the second pass. If we created them here, they wouldn't be used anyway,
8304   // because the vplan in the second pass still contains the inductions from the
8305   // original loop.
8306 
8307   return completeLoopSkeleton(Lp, OrigLoopID);
8308 }
8309 
8310 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8311   LLVM_DEBUG({
8312     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8313            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8314            << ", Main Loop UF:" << EPI.MainLoopUF
8315            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8316            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8317   });
8318 }
8319 
8320 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8321   DEBUG_WITH_TYPE(VerboseDebug, {
8322     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8323   });
8324 }
8325 
8326 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8327     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8328   assert(L && "Expected valid Loop.");
8329   assert(Bypass && "Expected valid bypass basic block.");
8330   unsigned VFactor =
8331       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8332   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8333   Value *Count = getOrCreateTripCount(L);
8334   // Reuse existing vector loop preheader for TC checks.
8335   // Note that new preheader block is generated for vector loop.
8336   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8337   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8338 
8339   // Generate code to check if the loop's trip count is less than VF * UF of the
8340   // main vector loop.
8341   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8342       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8343 
8344   Value *CheckMinIters = Builder.CreateICmp(
8345       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8346       "min.iters.check");
8347 
8348   if (!ForEpilogue)
8349     TCCheckBlock->setName("vector.main.loop.iter.check");
8350 
8351   // Create new preheader for vector loop.
8352   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8353                                    DT, LI, nullptr, "vector.ph");
8354 
8355   if (ForEpilogue) {
8356     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8357                                  DT->getNode(Bypass)->getIDom()) &&
8358            "TC check is expected to dominate Bypass");
8359 
8360     // Update dominator for Bypass & LoopExit.
8361     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8362     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8363       // For loops with multiple exits, there's no edge from the middle block
8364       // to exit blocks (as the epilogue must run) and thus no need to update
8365       // the immediate dominator of the exit blocks.
8366       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8367 
8368     LoopBypassBlocks.push_back(TCCheckBlock);
8369 
8370     // Save the trip count so we don't have to regenerate it in the
8371     // vec.epilog.iter.check. This is safe to do because the trip count
8372     // generated here dominates the vector epilog iter check.
8373     EPI.TripCount = Count;
8374   }
8375 
8376   ReplaceInstWithInst(
8377       TCCheckBlock->getTerminator(),
8378       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8379 
8380   return TCCheckBlock;
8381 }
8382 
8383 //===--------------------------------------------------------------------===//
8384 // EpilogueVectorizerEpilogueLoop
8385 //===--------------------------------------------------------------------===//
8386 
8387 /// This function is partially responsible for generating the control flow
8388 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8389 BasicBlock *
8390 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8391   MDNode *OrigLoopID = OrigLoop->getLoopID();
8392   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8393 
8394   // Now, compare the remaining count and if there aren't enough iterations to
8395   // execute the vectorized epilogue skip to the scalar part.
8396   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8397   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8398   LoopVectorPreHeader =
8399       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8400                  LI, nullptr, "vec.epilog.ph");
8401   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8402                                           VecEpilogueIterationCountCheck);
8403 
8404   // Adjust the control flow taking the state info from the main loop
8405   // vectorization into account.
8406   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8407          "expected this to be saved from the previous pass.");
8408   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8409       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8410 
8411   DT->changeImmediateDominator(LoopVectorPreHeader,
8412                                EPI.MainLoopIterationCountCheck);
8413 
8414   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8415       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8416 
8417   if (EPI.SCEVSafetyCheck)
8418     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8419         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8420   if (EPI.MemSafetyCheck)
8421     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8422         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8423 
8424   DT->changeImmediateDominator(
8425       VecEpilogueIterationCountCheck,
8426       VecEpilogueIterationCountCheck->getSinglePredecessor());
8427 
8428   DT->changeImmediateDominator(LoopScalarPreHeader,
8429                                EPI.EpilogueIterationCountCheck);
8430   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8431     // If there is an epilogue which must run, there's no edge from the
8432     // middle block to exit blocks  and thus no need to update the immediate
8433     // dominator of the exit blocks.
8434     DT->changeImmediateDominator(LoopExitBlock,
8435                                  EPI.EpilogueIterationCountCheck);
8436 
8437   // Keep track of bypass blocks, as they feed start values to the induction
8438   // phis in the scalar loop preheader.
8439   if (EPI.SCEVSafetyCheck)
8440     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8441   if (EPI.MemSafetyCheck)
8442     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8443   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8444 
8445   // Generate a resume induction for the vector epilogue and put it in the
8446   // vector epilogue preheader
8447   Type *IdxTy = Legal->getWidestInductionType();
8448   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8449                                          LoopVectorPreHeader->getFirstNonPHI());
8450   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8451   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8452                            EPI.MainLoopIterationCountCheck);
8453 
8454   // Generate the induction variable.
8455   OldInduction = Legal->getPrimaryInduction();
8456   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8457   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8458   Value *StartIdx = EPResumeVal;
8459   Induction =
8460       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8461                               getDebugLocFromInstOrOperands(OldInduction));
8462 
8463   // Generate induction resume values. These variables save the new starting
8464   // indexes for the scalar loop. They are used to test if there are any tail
8465   // iterations left once the vector loop has completed.
8466   // Note that when the vectorized epilogue is skipped due to iteration count
8467   // check, then the resume value for the induction variable comes from
8468   // the trip count of the main vector loop, hence passing the AdditionalBypass
8469   // argument.
8470   createInductionResumeValues(Lp, CountRoundDown,
8471                               {VecEpilogueIterationCountCheck,
8472                                EPI.VectorTripCount} /* AdditionalBypass */);
8473 
8474   AddRuntimeUnrollDisableMetaData(Lp);
8475   return completeLoopSkeleton(Lp, OrigLoopID);
8476 }
8477 
8478 BasicBlock *
8479 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8480     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8481 
8482   assert(EPI.TripCount &&
8483          "Expected trip count to have been safed in the first pass.");
8484   assert(
8485       (!isa<Instruction>(EPI.TripCount) ||
8486        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8487       "saved trip count does not dominate insertion point.");
8488   Value *TC = EPI.TripCount;
8489   IRBuilder<> Builder(Insert->getTerminator());
8490   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8491 
8492   // Generate code to check if the loop's trip count is less than VF * UF of the
8493   // vector epilogue loop.
8494   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8495       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8496 
8497   Value *CheckMinIters = Builder.CreateICmp(
8498       P, Count,
8499       ConstantInt::get(Count->getType(),
8500                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8501       "min.epilog.iters.check");
8502 
8503   ReplaceInstWithInst(
8504       Insert->getTerminator(),
8505       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8506 
8507   LoopBypassBlocks.push_back(Insert);
8508   return Insert;
8509 }
8510 
8511 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8512   LLVM_DEBUG({
8513     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8514            << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8515            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8516   });
8517 }
8518 
8519 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8520   DEBUG_WITH_TYPE(VerboseDebug, {
8521     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8522   });
8523 }
8524 
8525 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8526     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8527   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8528   bool PredicateAtRangeStart = Predicate(Range.Start);
8529 
8530   for (ElementCount TmpVF = Range.Start * 2;
8531        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8532     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8533       Range.End = TmpVF;
8534       break;
8535     }
8536 
8537   return PredicateAtRangeStart;
8538 }
8539 
8540 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8541 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8542 /// of VF's starting at a given VF and extending it as much as possible. Each
8543 /// vectorization decision can potentially shorten this sub-range during
8544 /// buildVPlan().
8545 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8546                                            ElementCount MaxVF) {
8547   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8548   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8549     VFRange SubRange = {VF, MaxVFPlusOne};
8550     VPlans.push_back(buildVPlan(SubRange));
8551     VF = SubRange.End;
8552   }
8553 }
8554 
8555 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8556                                          VPlanPtr &Plan) {
8557   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8558 
8559   // Look for cached value.
8560   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8561   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8562   if (ECEntryIt != EdgeMaskCache.end())
8563     return ECEntryIt->second;
8564 
8565   VPValue *SrcMask = createBlockInMask(Src, Plan);
8566 
8567   // The terminator has to be a branch inst!
8568   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8569   assert(BI && "Unexpected terminator found");
8570 
8571   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8572     return EdgeMaskCache[Edge] = SrcMask;
8573 
8574   // If source is an exiting block, we know the exit edge is dynamically dead
8575   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8576   // adding uses of an otherwise potentially dead instruction.
8577   if (OrigLoop->isLoopExiting(Src))
8578     return EdgeMaskCache[Edge] = SrcMask;
8579 
8580   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8581   assert(EdgeMask && "No Edge Mask found for condition");
8582 
8583   if (BI->getSuccessor(0) != Dst)
8584     EdgeMask = Builder.createNot(EdgeMask);
8585 
8586   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8587     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8588     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8589     // The select version does not introduce new UB if SrcMask is false and
8590     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8591     VPValue *False = Plan->getOrAddVPValue(
8592         ConstantInt::getFalse(BI->getCondition()->getType()));
8593     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8594   }
8595 
8596   return EdgeMaskCache[Edge] = EdgeMask;
8597 }
8598 
8599 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8600   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8601 
8602   // Look for cached value.
8603   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8604   if (BCEntryIt != BlockMaskCache.end())
8605     return BCEntryIt->second;
8606 
8607   // All-one mask is modelled as no-mask following the convention for masked
8608   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8609   VPValue *BlockMask = nullptr;
8610 
8611   if (OrigLoop->getHeader() == BB) {
8612     if (!CM.blockNeedsPredication(BB))
8613       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8614 
8615     // Create the block in mask as the first non-phi instruction in the block.
8616     VPBuilder::InsertPointGuard Guard(Builder);
8617     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8618     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8619 
8620     // Introduce the early-exit compare IV <= BTC to form header block mask.
8621     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8622     // Start by constructing the desired canonical IV.
8623     VPValue *IV = nullptr;
8624     if (Legal->getPrimaryInduction())
8625       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8626     else {
8627       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8628       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8629       IV = IVRecipe->getVPSingleValue();
8630     }
8631     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8632     bool TailFolded = !CM.isScalarEpilogueAllowed();
8633 
8634     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8635       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8636       // as a second argument, we only pass the IV here and extract the
8637       // tripcount from the transform state where codegen of the VP instructions
8638       // happen.
8639       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8640     } else {
8641       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8642     }
8643     return BlockMaskCache[BB] = BlockMask;
8644   }
8645 
8646   // This is the block mask. We OR all incoming edges.
8647   for (auto *Predecessor : predecessors(BB)) {
8648     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8649     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8650       return BlockMaskCache[BB] = EdgeMask;
8651 
8652     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8653       BlockMask = EdgeMask;
8654       continue;
8655     }
8656 
8657     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8658   }
8659 
8660   return BlockMaskCache[BB] = BlockMask;
8661 }
8662 
8663 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8664                                                 ArrayRef<VPValue *> Operands,
8665                                                 VFRange &Range,
8666                                                 VPlanPtr &Plan) {
8667   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8668          "Must be called with either a load or store");
8669 
8670   auto willWiden = [&](ElementCount VF) -> bool {
8671     if (VF.isScalar())
8672       return false;
8673     LoopVectorizationCostModel::InstWidening Decision =
8674         CM.getWideningDecision(I, VF);
8675     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8676            "CM decision should be taken at this point.");
8677     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8678       return true;
8679     if (CM.isScalarAfterVectorization(I, VF) ||
8680         CM.isProfitableToScalarize(I, VF))
8681       return false;
8682     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8683   };
8684 
8685   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8686     return nullptr;
8687 
8688   VPValue *Mask = nullptr;
8689   if (Legal->isMaskRequired(I))
8690     Mask = createBlockInMask(I->getParent(), Plan);
8691 
8692   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8693     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8694 
8695   StoreInst *Store = cast<StoreInst>(I);
8696   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8697                                             Mask);
8698 }
8699 
8700 VPWidenIntOrFpInductionRecipe *
8701 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8702                                            ArrayRef<VPValue *> Operands) const {
8703   // Check if this is an integer or fp induction. If so, build the recipe that
8704   // produces its scalar and vector values.
8705   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8706   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8707       II.getKind() == InductionDescriptor::IK_FpInduction) {
8708     assert(II.getStartValue() ==
8709            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8710     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8711     return new VPWidenIntOrFpInductionRecipe(
8712         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8713   }
8714 
8715   return nullptr;
8716 }
8717 
8718 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8719     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8720     VPlan &Plan) const {
8721   // Optimize the special case where the source is a constant integer
8722   // induction variable. Notice that we can only optimize the 'trunc' case
8723   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8724   // (c) other casts depend on pointer size.
8725 
8726   // Determine whether \p K is a truncation based on an induction variable that
8727   // can be optimized.
8728   auto isOptimizableIVTruncate =
8729       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8730     return [=](ElementCount VF) -> bool {
8731       return CM.isOptimizableIVTruncate(K, VF);
8732     };
8733   };
8734 
8735   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8736           isOptimizableIVTruncate(I), Range)) {
8737 
8738     InductionDescriptor II =
8739         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8740     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8741     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8742                                              Start, nullptr, I);
8743   }
8744   return nullptr;
8745 }
8746 
8747 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8748                                                 ArrayRef<VPValue *> Operands,
8749                                                 VPlanPtr &Plan) {
8750   // If all incoming values are equal, the incoming VPValue can be used directly
8751   // instead of creating a new VPBlendRecipe.
8752   VPValue *FirstIncoming = Operands[0];
8753   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8754         return FirstIncoming == Inc;
8755       })) {
8756     return Operands[0];
8757   }
8758 
8759   // We know that all PHIs in non-header blocks are converted into selects, so
8760   // we don't have to worry about the insertion order and we can just use the
8761   // builder. At this point we generate the predication tree. There may be
8762   // duplications since this is a simple recursive scan, but future
8763   // optimizations will clean it up.
8764   SmallVector<VPValue *, 2> OperandsWithMask;
8765   unsigned NumIncoming = Phi->getNumIncomingValues();
8766 
8767   for (unsigned In = 0; In < NumIncoming; In++) {
8768     VPValue *EdgeMask =
8769       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8770     assert((EdgeMask || NumIncoming == 1) &&
8771            "Multiple predecessors with one having a full mask");
8772     OperandsWithMask.push_back(Operands[In]);
8773     if (EdgeMask)
8774       OperandsWithMask.push_back(EdgeMask);
8775   }
8776   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8777 }
8778 
8779 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8780                                                    ArrayRef<VPValue *> Operands,
8781                                                    VFRange &Range) const {
8782 
8783   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8784       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8785       Range);
8786 
8787   if (IsPredicated)
8788     return nullptr;
8789 
8790   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8791   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8792              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8793              ID == Intrinsic::pseudoprobe ||
8794              ID == Intrinsic::experimental_noalias_scope_decl))
8795     return nullptr;
8796 
8797   auto willWiden = [&](ElementCount VF) -> bool {
8798     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8799     // The following case may be scalarized depending on the VF.
8800     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8801     // version of the instruction.
8802     // Is it beneficial to perform intrinsic call compared to lib call?
8803     bool NeedToScalarize = false;
8804     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8805     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8806     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8807     return UseVectorIntrinsic || !NeedToScalarize;
8808   };
8809 
8810   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8811     return nullptr;
8812 
8813   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8814   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8815 }
8816 
8817 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8818   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8819          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8820   // Instruction should be widened, unless it is scalar after vectorization,
8821   // scalarization is profitable or it is predicated.
8822   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8823     return CM.isScalarAfterVectorization(I, VF) ||
8824            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8825   };
8826   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8827                                                              Range);
8828 }
8829 
8830 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8831                                            ArrayRef<VPValue *> Operands) const {
8832   auto IsVectorizableOpcode = [](unsigned Opcode) {
8833     switch (Opcode) {
8834     case Instruction::Add:
8835     case Instruction::And:
8836     case Instruction::AShr:
8837     case Instruction::BitCast:
8838     case Instruction::FAdd:
8839     case Instruction::FCmp:
8840     case Instruction::FDiv:
8841     case Instruction::FMul:
8842     case Instruction::FNeg:
8843     case Instruction::FPExt:
8844     case Instruction::FPToSI:
8845     case Instruction::FPToUI:
8846     case Instruction::FPTrunc:
8847     case Instruction::FRem:
8848     case Instruction::FSub:
8849     case Instruction::ICmp:
8850     case Instruction::IntToPtr:
8851     case Instruction::LShr:
8852     case Instruction::Mul:
8853     case Instruction::Or:
8854     case Instruction::PtrToInt:
8855     case Instruction::SDiv:
8856     case Instruction::Select:
8857     case Instruction::SExt:
8858     case Instruction::Shl:
8859     case Instruction::SIToFP:
8860     case Instruction::SRem:
8861     case Instruction::Sub:
8862     case Instruction::Trunc:
8863     case Instruction::UDiv:
8864     case Instruction::UIToFP:
8865     case Instruction::URem:
8866     case Instruction::Xor:
8867     case Instruction::ZExt:
8868       return true;
8869     }
8870     return false;
8871   };
8872 
8873   if (!IsVectorizableOpcode(I->getOpcode()))
8874     return nullptr;
8875 
8876   // Success: widen this instruction.
8877   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8878 }
8879 
8880 void VPRecipeBuilder::fixHeaderPhis() {
8881   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8882   for (VPWidenPHIRecipe *R : PhisToFix) {
8883     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8884     VPRecipeBase *IncR =
8885         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8886     R->addOperand(IncR->getVPSingleValue());
8887   }
8888 }
8889 
8890 VPBasicBlock *VPRecipeBuilder::handleReplication(
8891     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8892     VPlanPtr &Plan) {
8893   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8894       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8895       Range);
8896 
8897   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8898       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8899 
8900   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8901                                        IsUniform, IsPredicated);
8902   setRecipe(I, Recipe);
8903   Plan->addVPValue(I, Recipe);
8904 
8905   // Find if I uses a predicated instruction. If so, it will use its scalar
8906   // value. Avoid hoisting the insert-element which packs the scalar value into
8907   // a vector value, as that happens iff all users use the vector value.
8908   for (VPValue *Op : Recipe->operands()) {
8909     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8910     if (!PredR)
8911       continue;
8912     auto *RepR =
8913         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8914     assert(RepR->isPredicated() &&
8915            "expected Replicate recipe to be predicated");
8916     RepR->setAlsoPack(false);
8917   }
8918 
8919   // Finalize the recipe for Instr, first if it is not predicated.
8920   if (!IsPredicated) {
8921     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8922     VPBB->appendRecipe(Recipe);
8923     return VPBB;
8924   }
8925   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8926   assert(VPBB->getSuccessors().empty() &&
8927          "VPBB has successors when handling predicated replication.");
8928   // Record predicated instructions for above packing optimizations.
8929   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8930   VPBlockUtils::insertBlockAfter(Region, VPBB);
8931   auto *RegSucc = new VPBasicBlock();
8932   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8933   return RegSucc;
8934 }
8935 
8936 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8937                                                       VPRecipeBase *PredRecipe,
8938                                                       VPlanPtr &Plan) {
8939   // Instructions marked for predication are replicated and placed under an
8940   // if-then construct to prevent side-effects.
8941 
8942   // Generate recipes to compute the block mask for this region.
8943   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8944 
8945   // Build the triangular if-then region.
8946   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8947   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8948   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8949   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8950   auto *PHIRecipe = Instr->getType()->isVoidTy()
8951                         ? nullptr
8952                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8953   if (PHIRecipe) {
8954     Plan->removeVPValueFor(Instr);
8955     Plan->addVPValue(Instr, PHIRecipe);
8956   }
8957   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8958   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8959   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8960 
8961   // Note: first set Entry as region entry and then connect successors starting
8962   // from it in order, to propagate the "parent" of each VPBasicBlock.
8963   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8964   VPBlockUtils::connectBlocks(Pred, Exit);
8965 
8966   return Region;
8967 }
8968 
8969 VPRecipeOrVPValueTy
8970 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8971                                         ArrayRef<VPValue *> Operands,
8972                                         VFRange &Range, VPlanPtr &Plan) {
8973   // First, check for specific widening recipes that deal with calls, memory
8974   // operations, inductions and Phi nodes.
8975   if (auto *CI = dyn_cast<CallInst>(Instr))
8976     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8977 
8978   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8979     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8980 
8981   VPRecipeBase *Recipe;
8982   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8983     if (Phi->getParent() != OrigLoop->getHeader())
8984       return tryToBlend(Phi, Operands, Plan);
8985     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
8986       return toVPRecipeResult(Recipe);
8987 
8988     VPWidenPHIRecipe *PhiRecipe = nullptr;
8989     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8990       VPValue *StartV = Operands[0];
8991       if (Legal->isReductionVariable(Phi)) {
8992         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8993         assert(RdxDesc.getRecurrenceStartValue() ==
8994                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8995         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8996                                              CM.isInLoopReduction(Phi),
8997                                              CM.useOrderedReductions(RdxDesc));
8998       } else {
8999         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9000       }
9001 
9002       // Record the incoming value from the backedge, so we can add the incoming
9003       // value from the backedge after all recipes have been created.
9004       recordRecipeOf(cast<Instruction>(
9005           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9006       PhisToFix.push_back(PhiRecipe);
9007     } else {
9008       // TODO: record start and backedge value for remaining pointer induction
9009       // phis.
9010       assert(Phi->getType()->isPointerTy() &&
9011              "only pointer phis should be handled here");
9012       PhiRecipe = new VPWidenPHIRecipe(Phi);
9013     }
9014 
9015     return toVPRecipeResult(PhiRecipe);
9016   }
9017 
9018   if (isa<TruncInst>(Instr) &&
9019       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9020                                                Range, *Plan)))
9021     return toVPRecipeResult(Recipe);
9022 
9023   if (!shouldWiden(Instr, Range))
9024     return nullptr;
9025 
9026   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9027     return toVPRecipeResult(new VPWidenGEPRecipe(
9028         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9029 
9030   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9031     bool InvariantCond =
9032         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9033     return toVPRecipeResult(new VPWidenSelectRecipe(
9034         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9035   }
9036 
9037   return toVPRecipeResult(tryToWiden(Instr, Operands));
9038 }
9039 
9040 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9041                                                         ElementCount MaxVF) {
9042   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9043 
9044   // Collect instructions from the original loop that will become trivially dead
9045   // in the vectorized loop. We don't need to vectorize these instructions. For
9046   // example, original induction update instructions can become dead because we
9047   // separately emit induction "steps" when generating code for the new loop.
9048   // Similarly, we create a new latch condition when setting up the structure
9049   // of the new loop, so the old one can become dead.
9050   SmallPtrSet<Instruction *, 4> DeadInstructions;
9051   collectTriviallyDeadInstructions(DeadInstructions);
9052 
9053   // Add assume instructions we need to drop to DeadInstructions, to prevent
9054   // them from being added to the VPlan.
9055   // TODO: We only need to drop assumes in blocks that get flattend. If the
9056   // control flow is preserved, we should keep them.
9057   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9058   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9059 
9060   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9061   // Dead instructions do not need sinking. Remove them from SinkAfter.
9062   for (Instruction *I : DeadInstructions)
9063     SinkAfter.erase(I);
9064 
9065   // Cannot sink instructions after dead instructions (there won't be any
9066   // recipes for them). Instead, find the first non-dead previous instruction.
9067   for (auto &P : Legal->getSinkAfter()) {
9068     Instruction *SinkTarget = P.second;
9069     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9070     (void)FirstInst;
9071     while (DeadInstructions.contains(SinkTarget)) {
9072       assert(
9073           SinkTarget != FirstInst &&
9074           "Must find a live instruction (at least the one feeding the "
9075           "first-order recurrence PHI) before reaching beginning of the block");
9076       SinkTarget = SinkTarget->getPrevNode();
9077       assert(SinkTarget != P.first &&
9078              "sink source equals target, no sinking required");
9079     }
9080     P.second = SinkTarget;
9081   }
9082 
9083   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9084   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9085     VFRange SubRange = {VF, MaxVFPlusOne};
9086     VPlans.push_back(
9087         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9088     VF = SubRange.End;
9089   }
9090 }
9091 
9092 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9093     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9094     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9095 
9096   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9097 
9098   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9099 
9100   // ---------------------------------------------------------------------------
9101   // Pre-construction: record ingredients whose recipes we'll need to further
9102   // process after constructing the initial VPlan.
9103   // ---------------------------------------------------------------------------
9104 
9105   // Mark instructions we'll need to sink later and their targets as
9106   // ingredients whose recipe we'll need to record.
9107   for (auto &Entry : SinkAfter) {
9108     RecipeBuilder.recordRecipeOf(Entry.first);
9109     RecipeBuilder.recordRecipeOf(Entry.second);
9110   }
9111   for (auto &Reduction : CM.getInLoopReductionChains()) {
9112     PHINode *Phi = Reduction.first;
9113     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9114     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9115 
9116     RecipeBuilder.recordRecipeOf(Phi);
9117     for (auto &R : ReductionOperations) {
9118       RecipeBuilder.recordRecipeOf(R);
9119       // For min/max reducitons, where we have a pair of icmp/select, we also
9120       // need to record the ICmp recipe, so it can be removed later.
9121       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9122         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9123     }
9124   }
9125 
9126   // For each interleave group which is relevant for this (possibly trimmed)
9127   // Range, add it to the set of groups to be later applied to the VPlan and add
9128   // placeholders for its members' Recipes which we'll be replacing with a
9129   // single VPInterleaveRecipe.
9130   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9131     auto applyIG = [IG, this](ElementCount VF) -> bool {
9132       return (VF.isVector() && // Query is illegal for VF == 1
9133               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9134                   LoopVectorizationCostModel::CM_Interleave);
9135     };
9136     if (!getDecisionAndClampRange(applyIG, Range))
9137       continue;
9138     InterleaveGroups.insert(IG);
9139     for (unsigned i = 0; i < IG->getFactor(); i++)
9140       if (Instruction *Member = IG->getMember(i))
9141         RecipeBuilder.recordRecipeOf(Member);
9142   };
9143 
9144   // ---------------------------------------------------------------------------
9145   // Build initial VPlan: Scan the body of the loop in a topological order to
9146   // visit each basic block after having visited its predecessor basic blocks.
9147   // ---------------------------------------------------------------------------
9148 
9149   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9150   auto Plan = std::make_unique<VPlan>();
9151   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9152   Plan->setEntry(VPBB);
9153 
9154   // Scan the body of the loop in a topological order to visit each basic block
9155   // after having visited its predecessor basic blocks.
9156   LoopBlocksDFS DFS(OrigLoop);
9157   DFS.perform(LI);
9158 
9159   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9160     // Relevant instructions from basic block BB will be grouped into VPRecipe
9161     // ingredients and fill a new VPBasicBlock.
9162     unsigned VPBBsForBB = 0;
9163     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9164     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9165     VPBB = FirstVPBBForBB;
9166     Builder.setInsertPoint(VPBB);
9167 
9168     // Introduce each ingredient into VPlan.
9169     // TODO: Model and preserve debug instrinsics in VPlan.
9170     for (Instruction &I : BB->instructionsWithoutDebug()) {
9171       Instruction *Instr = &I;
9172 
9173       // First filter out irrelevant instructions, to ensure no recipes are
9174       // built for them.
9175       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9176         continue;
9177 
9178       SmallVector<VPValue *, 4> Operands;
9179       auto *Phi = dyn_cast<PHINode>(Instr);
9180       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9181         Operands.push_back(Plan->getOrAddVPValue(
9182             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9183       } else {
9184         auto OpRange = Plan->mapToVPValues(Instr->operands());
9185         Operands = {OpRange.begin(), OpRange.end()};
9186       }
9187       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9188               Instr, Operands, Range, Plan)) {
9189         // If Instr can be simplified to an existing VPValue, use it.
9190         if (RecipeOrValue.is<VPValue *>()) {
9191           auto *VPV = RecipeOrValue.get<VPValue *>();
9192           Plan->addVPValue(Instr, VPV);
9193           // If the re-used value is a recipe, register the recipe for the
9194           // instruction, in case the recipe for Instr needs to be recorded.
9195           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9196             RecipeBuilder.setRecipe(Instr, R);
9197           continue;
9198         }
9199         // Otherwise, add the new recipe.
9200         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9201         for (auto *Def : Recipe->definedValues()) {
9202           auto *UV = Def->getUnderlyingValue();
9203           Plan->addVPValue(UV, Def);
9204         }
9205 
9206         RecipeBuilder.setRecipe(Instr, Recipe);
9207         VPBB->appendRecipe(Recipe);
9208         continue;
9209       }
9210 
9211       // Otherwise, if all widening options failed, Instruction is to be
9212       // replicated. This may create a successor for VPBB.
9213       VPBasicBlock *NextVPBB =
9214           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9215       if (NextVPBB != VPBB) {
9216         VPBB = NextVPBB;
9217         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9218                                     : "");
9219       }
9220     }
9221   }
9222 
9223   RecipeBuilder.fixHeaderPhis();
9224 
9225   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9226   // may also be empty, such as the last one VPBB, reflecting original
9227   // basic-blocks with no recipes.
9228   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9229   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9230   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9231   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9232   delete PreEntry;
9233 
9234   // ---------------------------------------------------------------------------
9235   // Transform initial VPlan: Apply previously taken decisions, in order, to
9236   // bring the VPlan to its final state.
9237   // ---------------------------------------------------------------------------
9238 
9239   // Apply Sink-After legal constraints.
9240   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9241     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9242     if (Region && Region->isReplicator()) {
9243       assert(Region->getNumSuccessors() == 1 &&
9244              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9245       assert(R->getParent()->size() == 1 &&
9246              "A recipe in an original replicator region must be the only "
9247              "recipe in its block");
9248       return Region;
9249     }
9250     return nullptr;
9251   };
9252   for (auto &Entry : SinkAfter) {
9253     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9254     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9255 
9256     auto *TargetRegion = GetReplicateRegion(Target);
9257     auto *SinkRegion = GetReplicateRegion(Sink);
9258     if (!SinkRegion) {
9259       // If the sink source is not a replicate region, sink the recipe directly.
9260       if (TargetRegion) {
9261         // The target is in a replication region, make sure to move Sink to
9262         // the block after it, not into the replication region itself.
9263         VPBasicBlock *NextBlock =
9264             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9265         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9266       } else
9267         Sink->moveAfter(Target);
9268       continue;
9269     }
9270 
9271     // The sink source is in a replicate region. Unhook the region from the CFG.
9272     auto *SinkPred = SinkRegion->getSinglePredecessor();
9273     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9274     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9275     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9276     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9277 
9278     if (TargetRegion) {
9279       // The target recipe is also in a replicate region, move the sink region
9280       // after the target region.
9281       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9282       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9283       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9284       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9285     } else {
9286       // The sink source is in a replicate region, we need to move the whole
9287       // replicate region, which should only contain a single recipe in the
9288       // main block.
9289       auto *SplitBlock =
9290           Target->getParent()->splitAt(std::next(Target->getIterator()));
9291 
9292       auto *SplitPred = SplitBlock->getSinglePredecessor();
9293 
9294       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9295       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9296       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9297       if (VPBB == SplitPred)
9298         VPBB = SplitBlock;
9299     }
9300   }
9301 
9302   // Introduce a recipe to combine the incoming and previous values of a
9303   // first-order recurrence.
9304   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9305     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9306     if (!RecurPhi)
9307       continue;
9308 
9309     auto *RecurSplice = cast<VPInstruction>(
9310         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9311                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9312 
9313     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9314     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9315       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9316       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9317     } else
9318       RecurSplice->moveAfter(PrevRecipe);
9319     RecurPhi->replaceAllUsesWith(RecurSplice);
9320     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9321     // all users.
9322     RecurSplice->setOperand(0, RecurPhi);
9323   }
9324 
9325   // Interleave memory: for each Interleave Group we marked earlier as relevant
9326   // for this VPlan, replace the Recipes widening its memory instructions with a
9327   // single VPInterleaveRecipe at its insertion point.
9328   for (auto IG : InterleaveGroups) {
9329     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9330         RecipeBuilder.getRecipe(IG->getInsertPos()));
9331     SmallVector<VPValue *, 4> StoredValues;
9332     for (unsigned i = 0; i < IG->getFactor(); ++i)
9333       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9334         auto *StoreR =
9335             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9336         StoredValues.push_back(StoreR->getStoredValue());
9337       }
9338 
9339     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9340                                         Recipe->getMask());
9341     VPIG->insertBefore(Recipe);
9342     unsigned J = 0;
9343     for (unsigned i = 0; i < IG->getFactor(); ++i)
9344       if (Instruction *Member = IG->getMember(i)) {
9345         if (!Member->getType()->isVoidTy()) {
9346           VPValue *OriginalV = Plan->getVPValue(Member);
9347           Plan->removeVPValueFor(Member);
9348           Plan->addVPValue(Member, VPIG->getVPValue(J));
9349           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9350           J++;
9351         }
9352         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9353       }
9354   }
9355 
9356   // Adjust the recipes for any inloop reductions.
9357   adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start);
9358 
9359   // Finally, if tail is folded by masking, introduce selects between the phi
9360   // and the live-out instruction of each reduction, at the end of the latch.
9361   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
9362     Builder.setInsertPoint(VPBB);
9363     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9364     for (auto &Reduction : Legal->getReductionVars()) {
9365       if (CM.isInLoopReduction(Reduction.first))
9366         continue;
9367       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
9368       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
9369       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
9370     }
9371   }
9372 
9373   VPlanTransforms::sinkScalarOperands(*Plan);
9374   VPlanTransforms::mergeReplicateRegions(*Plan);
9375 
9376   std::string PlanName;
9377   raw_string_ostream RSO(PlanName);
9378   ElementCount VF = Range.Start;
9379   Plan->addVF(VF);
9380   RSO << "Initial VPlan for VF={" << VF;
9381   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9382     Plan->addVF(VF);
9383     RSO << "," << VF;
9384   }
9385   RSO << "},UF>=1";
9386   RSO.flush();
9387   Plan->setName(PlanName);
9388 
9389   return Plan;
9390 }
9391 
9392 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9393   // Outer loop handling: They may require CFG and instruction level
9394   // transformations before even evaluating whether vectorization is profitable.
9395   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9396   // the vectorization pipeline.
9397   assert(!OrigLoop->isInnermost());
9398   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9399 
9400   // Create new empty VPlan
9401   auto Plan = std::make_unique<VPlan>();
9402 
9403   // Build hierarchical CFG
9404   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9405   HCFGBuilder.buildHierarchicalCFG();
9406 
9407   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9408        VF *= 2)
9409     Plan->addVF(VF);
9410 
9411   if (EnableVPlanPredication) {
9412     VPlanPredicator VPP(*Plan);
9413     VPP.predicate();
9414 
9415     // Avoid running transformation to recipes until masked code generation in
9416     // VPlan-native path is in place.
9417     return Plan;
9418   }
9419 
9420   SmallPtrSet<Instruction *, 1> DeadInstructions;
9421   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9422                                              Legal->getInductionVars(),
9423                                              DeadInstructions, *PSE.getSE());
9424   return Plan;
9425 }
9426 
9427 // Adjust the recipes for any inloop reductions. The chain of instructions
9428 // leading from the loop exit instr to the phi need to be converted to
9429 // reductions, with one operand being vector and the other being the scalar
9430 // reduction chain.
9431 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
9432     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
9433   for (auto &Reduction : CM.getInLoopReductionChains()) {
9434     PHINode *Phi = Reduction.first;
9435     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9436     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9437 
9438     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9439       continue;
9440 
9441     // ReductionOperations are orders top-down from the phi's use to the
9442     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9443     // which of the two operands will remain scalar and which will be reduced.
9444     // For minmax the chain will be the select instructions.
9445     Instruction *Chain = Phi;
9446     for (Instruction *R : ReductionOperations) {
9447       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9448       RecurKind Kind = RdxDesc.getRecurrenceKind();
9449 
9450       VPValue *ChainOp = Plan->getVPValue(Chain);
9451       unsigned FirstOpId;
9452       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9453         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9454                "Expected to replace a VPWidenSelectSC");
9455         FirstOpId = 1;
9456       } else {
9457         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9458                "Expected to replace a VPWidenSC");
9459         FirstOpId = 0;
9460       }
9461       unsigned VecOpId =
9462           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9463       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9464 
9465       auto *CondOp = CM.foldTailByMasking()
9466                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9467                          : nullptr;
9468       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9469           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9470       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9471       Plan->removeVPValueFor(R);
9472       Plan->addVPValue(R, RedRecipe);
9473       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9474       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9475       WidenRecipe->eraseFromParent();
9476 
9477       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9478         VPRecipeBase *CompareRecipe =
9479             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9480         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9481                "Expected to replace a VPWidenSC");
9482         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9483                "Expected no remaining users");
9484         CompareRecipe->eraseFromParent();
9485       }
9486       Chain = R;
9487     }
9488   }
9489 }
9490 
9491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9492 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9493                                VPSlotTracker &SlotTracker) const {
9494   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9495   IG->getInsertPos()->printAsOperand(O, false);
9496   O << ", ";
9497   getAddr()->printAsOperand(O, SlotTracker);
9498   VPValue *Mask = getMask();
9499   if (Mask) {
9500     O << ", ";
9501     Mask->printAsOperand(O, SlotTracker);
9502   }
9503   for (unsigned i = 0; i < IG->getFactor(); ++i)
9504     if (Instruction *I = IG->getMember(i))
9505       O << "\n" << Indent << "  " << VPlanIngredient(I) << " " << i;
9506 }
9507 #endif
9508 
9509 void VPWidenCallRecipe::execute(VPTransformState &State) {
9510   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9511                                   *this, State);
9512 }
9513 
9514 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9515   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9516                                     this, *this, InvariantCond, State);
9517 }
9518 
9519 void VPWidenRecipe::execute(VPTransformState &State) {
9520   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9521 }
9522 
9523 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9524   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9525                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9526                       IsIndexLoopInvariant, State);
9527 }
9528 
9529 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9530   assert(!State.Instance && "Int or FP induction being replicated.");
9531   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9532                                    getTruncInst(), getVPValue(0),
9533                                    getCastValue(), State);
9534 }
9535 
9536 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9537   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9538                                  State);
9539 }
9540 
9541 void VPBlendRecipe::execute(VPTransformState &State) {
9542   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9543   // We know that all PHIs in non-header blocks are converted into
9544   // selects, so we don't have to worry about the insertion order and we
9545   // can just use the builder.
9546   // At this point we generate the predication tree. There may be
9547   // duplications since this is a simple recursive scan, but future
9548   // optimizations will clean it up.
9549 
9550   unsigned NumIncoming = getNumIncomingValues();
9551 
9552   // Generate a sequence of selects of the form:
9553   // SELECT(Mask3, In3,
9554   //        SELECT(Mask2, In2,
9555   //               SELECT(Mask1, In1,
9556   //                      In0)))
9557   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9558   // are essentially undef are taken from In0.
9559   InnerLoopVectorizer::VectorParts Entry(State.UF);
9560   for (unsigned In = 0; In < NumIncoming; ++In) {
9561     for (unsigned Part = 0; Part < State.UF; ++Part) {
9562       // We might have single edge PHIs (blocks) - use an identity
9563       // 'select' for the first PHI operand.
9564       Value *In0 = State.get(getIncomingValue(In), Part);
9565       if (In == 0)
9566         Entry[Part] = In0; // Initialize with the first incoming value.
9567       else {
9568         // Select between the current value and the previous incoming edge
9569         // based on the incoming mask.
9570         Value *Cond = State.get(getMask(In), Part);
9571         Entry[Part] =
9572             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9573       }
9574     }
9575   }
9576   for (unsigned Part = 0; Part < State.UF; ++Part)
9577     State.set(this, Entry[Part], Part);
9578 }
9579 
9580 void VPInterleaveRecipe::execute(VPTransformState &State) {
9581   assert(!State.Instance && "Interleave group being replicated.");
9582   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9583                                       getStoredValues(), getMask());
9584 }
9585 
9586 void VPReductionRecipe::execute(VPTransformState &State) {
9587   assert(!State.Instance && "Reduction being replicated.");
9588   Value *PrevInChain = State.get(getChainOp(), 0);
9589   for (unsigned Part = 0; Part < State.UF; ++Part) {
9590     RecurKind Kind = RdxDesc->getRecurrenceKind();
9591     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9592     Value *NewVecOp = State.get(getVecOp(), Part);
9593     if (VPValue *Cond = getCondOp()) {
9594       Value *NewCond = State.get(Cond, Part);
9595       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9596       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9597           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9598       Constant *IdenVec =
9599           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9600       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9601       NewVecOp = Select;
9602     }
9603     Value *NewRed;
9604     Value *NextInChain;
9605     if (IsOrdered) {
9606       if (State.VF.isVector())
9607         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9608                                         PrevInChain);
9609       else
9610         NewRed = State.Builder.CreateBinOp(
9611             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9612             PrevInChain, NewVecOp);
9613       PrevInChain = NewRed;
9614     } else {
9615       PrevInChain = State.get(getChainOp(), Part);
9616       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9617     }
9618     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9619       NextInChain =
9620           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9621                          NewRed, PrevInChain);
9622     } else if (IsOrdered)
9623       NextInChain = NewRed;
9624     else {
9625       NextInChain = State.Builder.CreateBinOp(
9626           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9627           PrevInChain);
9628     }
9629     State.set(this, NextInChain, Part);
9630   }
9631 }
9632 
9633 void VPReplicateRecipe::execute(VPTransformState &State) {
9634   if (State.Instance) { // Generate a single instance.
9635     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9636     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9637                                     *State.Instance, IsPredicated, State);
9638     // Insert scalar instance packing it into a vector.
9639     if (AlsoPack && State.VF.isVector()) {
9640       // If we're constructing lane 0, initialize to start from poison.
9641       if (State.Instance->Lane.isFirstLane()) {
9642         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9643         Value *Poison = PoisonValue::get(
9644             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9645         State.set(this, Poison, State.Instance->Part);
9646       }
9647       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9648     }
9649     return;
9650   }
9651 
9652   // Generate scalar instances for all VF lanes of all UF parts, unless the
9653   // instruction is uniform inwhich case generate only the first lane for each
9654   // of the UF parts.
9655   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9656   assert((!State.VF.isScalable() || IsUniform) &&
9657          "Can't scalarize a scalable vector");
9658   for (unsigned Part = 0; Part < State.UF; ++Part)
9659     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9660       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9661                                       VPIteration(Part, Lane), IsPredicated,
9662                                       State);
9663 }
9664 
9665 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9666   assert(State.Instance && "Branch on Mask works only on single instance.");
9667 
9668   unsigned Part = State.Instance->Part;
9669   unsigned Lane = State.Instance->Lane.getKnownLane();
9670 
9671   Value *ConditionBit = nullptr;
9672   VPValue *BlockInMask = getMask();
9673   if (BlockInMask) {
9674     ConditionBit = State.get(BlockInMask, Part);
9675     if (ConditionBit->getType()->isVectorTy())
9676       ConditionBit = State.Builder.CreateExtractElement(
9677           ConditionBit, State.Builder.getInt32(Lane));
9678   } else // Block in mask is all-one.
9679     ConditionBit = State.Builder.getTrue();
9680 
9681   // Replace the temporary unreachable terminator with a new conditional branch,
9682   // whose two destinations will be set later when they are created.
9683   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9684   assert(isa<UnreachableInst>(CurrentTerminator) &&
9685          "Expected to replace unreachable terminator with conditional branch.");
9686   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9687   CondBr->setSuccessor(0, nullptr);
9688   ReplaceInstWithInst(CurrentTerminator, CondBr);
9689 }
9690 
9691 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9692   assert(State.Instance && "Predicated instruction PHI works per instance.");
9693   Instruction *ScalarPredInst =
9694       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9695   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9696   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9697   assert(PredicatingBB && "Predicated block has no single predecessor.");
9698   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9699          "operand must be VPReplicateRecipe");
9700 
9701   // By current pack/unpack logic we need to generate only a single phi node: if
9702   // a vector value for the predicated instruction exists at this point it means
9703   // the instruction has vector users only, and a phi for the vector value is
9704   // needed. In this case the recipe of the predicated instruction is marked to
9705   // also do that packing, thereby "hoisting" the insert-element sequence.
9706   // Otherwise, a phi node for the scalar value is needed.
9707   unsigned Part = State.Instance->Part;
9708   if (State.hasVectorValue(getOperand(0), Part)) {
9709     Value *VectorValue = State.get(getOperand(0), Part);
9710     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9711     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9712     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9713     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9714     if (State.hasVectorValue(this, Part))
9715       State.reset(this, VPhi, Part);
9716     else
9717       State.set(this, VPhi, Part);
9718     // NOTE: Currently we need to update the value of the operand, so the next
9719     // predicated iteration inserts its generated value in the correct vector.
9720     State.reset(getOperand(0), VPhi, Part);
9721   } else {
9722     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9723     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9724     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9725                      PredicatingBB);
9726     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9727     if (State.hasScalarValue(this, *State.Instance))
9728       State.reset(this, Phi, *State.Instance);
9729     else
9730       State.set(this, Phi, *State.Instance);
9731     // NOTE: Currently we need to update the value of the operand, so the next
9732     // predicated iteration inserts its generated value in the correct vector.
9733     State.reset(getOperand(0), Phi, *State.Instance);
9734   }
9735 }
9736 
9737 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9738   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9739   State.ILV->vectorizeMemoryInstruction(
9740       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9741       StoredValue, getMask());
9742 }
9743 
9744 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9745 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9746 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9747 // for predication.
9748 static ScalarEpilogueLowering getScalarEpilogueLowering(
9749     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9750     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9751     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9752     LoopVectorizationLegality &LVL) {
9753   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9754   // don't look at hints or options, and don't request a scalar epilogue.
9755   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9756   // LoopAccessInfo (due to code dependency and not being able to reliably get
9757   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9758   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9759   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9760   // back to the old way and vectorize with versioning when forced. See D81345.)
9761   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9762                                                       PGSOQueryType::IRPass) &&
9763                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9764     return CM_ScalarEpilogueNotAllowedOptSize;
9765 
9766   // 2) If set, obey the directives
9767   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9768     switch (PreferPredicateOverEpilogue) {
9769     case PreferPredicateTy::ScalarEpilogue:
9770       return CM_ScalarEpilogueAllowed;
9771     case PreferPredicateTy::PredicateElseScalarEpilogue:
9772       return CM_ScalarEpilogueNotNeededUsePredicate;
9773     case PreferPredicateTy::PredicateOrDontVectorize:
9774       return CM_ScalarEpilogueNotAllowedUsePredicate;
9775     };
9776   }
9777 
9778   // 3) If set, obey the hints
9779   switch (Hints.getPredicate()) {
9780   case LoopVectorizeHints::FK_Enabled:
9781     return CM_ScalarEpilogueNotNeededUsePredicate;
9782   case LoopVectorizeHints::FK_Disabled:
9783     return CM_ScalarEpilogueAllowed;
9784   };
9785 
9786   // 4) if the TTI hook indicates this is profitable, request predication.
9787   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9788                                        LVL.getLAI()))
9789     return CM_ScalarEpilogueNotNeededUsePredicate;
9790 
9791   return CM_ScalarEpilogueAllowed;
9792 }
9793 
9794 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9795   // If Values have been set for this Def return the one relevant for \p Part.
9796   if (hasVectorValue(Def, Part))
9797     return Data.PerPartOutput[Def][Part];
9798 
9799   if (!hasScalarValue(Def, {Part, 0})) {
9800     Value *IRV = Def->getLiveInIRValue();
9801     Value *B = ILV->getBroadcastInstrs(IRV);
9802     set(Def, B, Part);
9803     return B;
9804   }
9805 
9806   Value *ScalarValue = get(Def, {Part, 0});
9807   // If we aren't vectorizing, we can just copy the scalar map values over
9808   // to the vector map.
9809   if (VF.isScalar()) {
9810     set(Def, ScalarValue, Part);
9811     return ScalarValue;
9812   }
9813 
9814   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9815   bool IsUniform = RepR && RepR->isUniform();
9816 
9817   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9818   // Check if there is a scalar value for the selected lane.
9819   if (!hasScalarValue(Def, {Part, LastLane})) {
9820     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9821     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9822            "unexpected recipe found to be invariant");
9823     IsUniform = true;
9824     LastLane = 0;
9825   }
9826 
9827   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9828   // Set the insert point after the last scalarized instruction or after the
9829   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9830   // will directly follow the scalar definitions.
9831   auto OldIP = Builder.saveIP();
9832   auto NewIP =
9833       isa<PHINode>(LastInst)
9834           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9835           : std::next(BasicBlock::iterator(LastInst));
9836   Builder.SetInsertPoint(&*NewIP);
9837 
9838   // However, if we are vectorizing, we need to construct the vector values.
9839   // If the value is known to be uniform after vectorization, we can just
9840   // broadcast the scalar value corresponding to lane zero for each unroll
9841   // iteration. Otherwise, we construct the vector values using
9842   // insertelement instructions. Since the resulting vectors are stored in
9843   // State, we will only generate the insertelements once.
9844   Value *VectorValue = nullptr;
9845   if (IsUniform) {
9846     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9847     set(Def, VectorValue, Part);
9848   } else {
9849     // Initialize packing with insertelements to start from undef.
9850     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9851     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9852     set(Def, Undef, Part);
9853     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9854       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9855     VectorValue = get(Def, Part);
9856   }
9857   Builder.restoreIP(OldIP);
9858   return VectorValue;
9859 }
9860 
9861 // Process the loop in the VPlan-native vectorization path. This path builds
9862 // VPlan upfront in the vectorization pipeline, which allows to apply
9863 // VPlan-to-VPlan transformations from the very beginning without modifying the
9864 // input LLVM IR.
9865 static bool processLoopInVPlanNativePath(
9866     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9867     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9868     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9869     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9870     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9871     LoopVectorizationRequirements &Requirements) {
9872 
9873   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9874     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9875     return false;
9876   }
9877   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9878   Function *F = L->getHeader()->getParent();
9879   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9880 
9881   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9882       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9883 
9884   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9885                                 &Hints, IAI);
9886   // Use the planner for outer loop vectorization.
9887   // TODO: CM is not used at this point inside the planner. Turn CM into an
9888   // optional argument if we don't need it in the future.
9889   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
9890                                Requirements, ORE);
9891 
9892   // Get user vectorization factor.
9893   ElementCount UserVF = Hints.getWidth();
9894 
9895   CM.collectElementTypesForWidening();
9896 
9897   // Plan how to best vectorize, return the best VF and its cost.
9898   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9899 
9900   // If we are stress testing VPlan builds, do not attempt to generate vector
9901   // code. Masked vector code generation support will follow soon.
9902   // Also, do not attempt to vectorize if no vector code will be produced.
9903   if (VPlanBuildStressTest || EnableVPlanPredication ||
9904       VectorizationFactor::Disabled() == VF)
9905     return false;
9906 
9907   LVP.setBestPlan(VF.Width, 1);
9908 
9909   {
9910     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9911                              F->getParent()->getDataLayout());
9912     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9913                            &CM, BFI, PSI, Checks);
9914     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9915                       << L->getHeader()->getParent()->getName() << "\"\n");
9916     LVP.executePlan(LB, DT);
9917   }
9918 
9919   // Mark the loop as already vectorized to avoid vectorizing again.
9920   Hints.setAlreadyVectorized();
9921   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9922   return true;
9923 }
9924 
9925 // Emit a remark if there are stores to floats that required a floating point
9926 // extension. If the vectorized loop was generated with floating point there
9927 // will be a performance penalty from the conversion overhead and the change in
9928 // the vector width.
9929 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9930   SmallVector<Instruction *, 4> Worklist;
9931   for (BasicBlock *BB : L->getBlocks()) {
9932     for (Instruction &Inst : *BB) {
9933       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9934         if (S->getValueOperand()->getType()->isFloatTy())
9935           Worklist.push_back(S);
9936       }
9937     }
9938   }
9939 
9940   // Traverse the floating point stores upwards searching, for floating point
9941   // conversions.
9942   SmallPtrSet<const Instruction *, 4> Visited;
9943   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9944   while (!Worklist.empty()) {
9945     auto *I = Worklist.pop_back_val();
9946     if (!L->contains(I))
9947       continue;
9948     if (!Visited.insert(I).second)
9949       continue;
9950 
9951     // Emit a remark if the floating point store required a floating
9952     // point conversion.
9953     // TODO: More work could be done to identify the root cause such as a
9954     // constant or a function return type and point the user to it.
9955     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9956       ORE->emit([&]() {
9957         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9958                                           I->getDebugLoc(), L->getHeader())
9959                << "floating point conversion changes vector width. "
9960                << "Mixed floating point precision requires an up/down "
9961                << "cast that will negatively impact performance.";
9962       });
9963 
9964     for (Use &Op : I->operands())
9965       if (auto *OpI = dyn_cast<Instruction>(Op))
9966         Worklist.push_back(OpI);
9967   }
9968 }
9969 
9970 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
9971     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9972                                !EnableLoopInterleaving),
9973       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9974                               !EnableLoopVectorization) {}
9975 
9976 bool LoopVectorizePass::processLoop(Loop *L) {
9977   assert((EnableVPlanNativePath || L->isInnermost()) &&
9978          "VPlan-native path is not enabled. Only process inner loops.");
9979 
9980 #ifndef NDEBUG
9981   const std::string DebugLocStr = getDebugLocString(L);
9982 #endif /* NDEBUG */
9983 
9984   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
9985                     << L->getHeader()->getParent()->getName() << "\" from "
9986                     << DebugLocStr << "\n");
9987 
9988   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
9989 
9990   LLVM_DEBUG(
9991       dbgs() << "LV: Loop hints:"
9992              << " force="
9993              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
9994                      ? "disabled"
9995                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
9996                             ? "enabled"
9997                             : "?"))
9998              << " width=" << Hints.getWidth()
9999              << " interleave=" << Hints.getInterleave() << "\n");
10000 
10001   // Function containing loop
10002   Function *F = L->getHeader()->getParent();
10003 
10004   // Looking at the diagnostic output is the only way to determine if a loop
10005   // was vectorized (other than looking at the IR or machine code), so it
10006   // is important to generate an optimization remark for each loop. Most of
10007   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10008   // generated as OptimizationRemark and OptimizationRemarkMissed are
10009   // less verbose reporting vectorized loops and unvectorized loops that may
10010   // benefit from vectorization, respectively.
10011 
10012   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10013     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10014     return false;
10015   }
10016 
10017   PredicatedScalarEvolution PSE(*SE, *L);
10018 
10019   // Check if it is legal to vectorize the loop.
10020   LoopVectorizationRequirements Requirements;
10021   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10022                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10023   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10024     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10025     Hints.emitRemarkWithHints();
10026     return false;
10027   }
10028 
10029   // Check the function attributes and profiles to find out if this function
10030   // should be optimized for size.
10031   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10032       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10033 
10034   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10035   // here. They may require CFG and instruction level transformations before
10036   // even evaluating whether vectorization is profitable. Since we cannot modify
10037   // the incoming IR, we need to build VPlan upfront in the vectorization
10038   // pipeline.
10039   if (!L->isInnermost())
10040     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10041                                         ORE, BFI, PSI, Hints, Requirements);
10042 
10043   assert(L->isInnermost() && "Inner loop expected.");
10044 
10045   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10046   // count by optimizing for size, to minimize overheads.
10047   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10048   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10049     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10050                       << "This loop is worth vectorizing only if no scalar "
10051                       << "iteration overheads are incurred.");
10052     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10053       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10054     else {
10055       LLVM_DEBUG(dbgs() << "\n");
10056       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10057     }
10058   }
10059 
10060   // Check the function attributes to see if implicit floats are allowed.
10061   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10062   // an integer loop and the vector instructions selected are purely integer
10063   // vector instructions?
10064   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10065     reportVectorizationFailure(
10066         "Can't vectorize when the NoImplicitFloat attribute is used",
10067         "loop not vectorized due to NoImplicitFloat attribute",
10068         "NoImplicitFloat", ORE, L);
10069     Hints.emitRemarkWithHints();
10070     return false;
10071   }
10072 
10073   // Check if the target supports potentially unsafe FP vectorization.
10074   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10075   // for the target we're vectorizing for, to make sure none of the
10076   // additional fp-math flags can help.
10077   if (Hints.isPotentiallyUnsafe() &&
10078       TTI->isFPVectorizationPotentiallyUnsafe()) {
10079     reportVectorizationFailure(
10080         "Potentially unsafe FP op prevents vectorization",
10081         "loop not vectorized due to unsafe FP support.",
10082         "UnsafeFP", ORE, L);
10083     Hints.emitRemarkWithHints();
10084     return false;
10085   }
10086 
10087   if (!LVL.canVectorizeFPMath(EnableStrictReductions)) {
10088     ORE->emit([&]() {
10089       auto *ExactFPMathInst = Requirements.getExactFPInst();
10090       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10091                                                  ExactFPMathInst->getDebugLoc(),
10092                                                  ExactFPMathInst->getParent())
10093              << "loop not vectorized: cannot prove it is safe to reorder "
10094                 "floating-point operations";
10095     });
10096     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10097                          "reorder floating-point operations\n");
10098     Hints.emitRemarkWithHints();
10099     return false;
10100   }
10101 
10102   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10103   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10104 
10105   // If an override option has been passed in for interleaved accesses, use it.
10106   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10107     UseInterleaved = EnableInterleavedMemAccesses;
10108 
10109   // Analyze interleaved memory accesses.
10110   if (UseInterleaved) {
10111     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10112   }
10113 
10114   // Use the cost model.
10115   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10116                                 F, &Hints, IAI);
10117   CM.collectValuesToIgnore();
10118   CM.collectElementTypesForWidening();
10119 
10120   // Use the planner for vectorization.
10121   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10122                                Requirements, ORE);
10123 
10124   // Get user vectorization factor and interleave count.
10125   ElementCount UserVF = Hints.getWidth();
10126   unsigned UserIC = Hints.getInterleave();
10127 
10128   // Plan how to best vectorize, return the best VF and its cost.
10129   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10130 
10131   VectorizationFactor VF = VectorizationFactor::Disabled();
10132   unsigned IC = 1;
10133 
10134   if (MaybeVF) {
10135     VF = *MaybeVF;
10136     // Select the interleave count.
10137     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10138   }
10139 
10140   // Identify the diagnostic messages that should be produced.
10141   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10142   bool VectorizeLoop = true, InterleaveLoop = true;
10143   if (VF.Width.isScalar()) {
10144     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10145     VecDiagMsg = std::make_pair(
10146         "VectorizationNotBeneficial",
10147         "the cost-model indicates that vectorization is not beneficial");
10148     VectorizeLoop = false;
10149   }
10150 
10151   if (!MaybeVF && UserIC > 1) {
10152     // Tell the user interleaving was avoided up-front, despite being explicitly
10153     // requested.
10154     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10155                          "interleaving should be avoided up front\n");
10156     IntDiagMsg = std::make_pair(
10157         "InterleavingAvoided",
10158         "Ignoring UserIC, because interleaving was avoided up front");
10159     InterleaveLoop = false;
10160   } else if (IC == 1 && UserIC <= 1) {
10161     // Tell the user interleaving is not beneficial.
10162     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10163     IntDiagMsg = std::make_pair(
10164         "InterleavingNotBeneficial",
10165         "the cost-model indicates that interleaving is not beneficial");
10166     InterleaveLoop = false;
10167     if (UserIC == 1) {
10168       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10169       IntDiagMsg.second +=
10170           " and is explicitly disabled or interleave count is set to 1";
10171     }
10172   } else if (IC > 1 && UserIC == 1) {
10173     // Tell the user interleaving is beneficial, but it explicitly disabled.
10174     LLVM_DEBUG(
10175         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10176     IntDiagMsg = std::make_pair(
10177         "InterleavingBeneficialButDisabled",
10178         "the cost-model indicates that interleaving is beneficial "
10179         "but is explicitly disabled or interleave count is set to 1");
10180     InterleaveLoop = false;
10181   }
10182 
10183   // Override IC if user provided an interleave count.
10184   IC = UserIC > 0 ? UserIC : IC;
10185 
10186   // Emit diagnostic messages, if any.
10187   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10188   if (!VectorizeLoop && !InterleaveLoop) {
10189     // Do not vectorize or interleaving the loop.
10190     ORE->emit([&]() {
10191       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10192                                       L->getStartLoc(), L->getHeader())
10193              << VecDiagMsg.second;
10194     });
10195     ORE->emit([&]() {
10196       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10197                                       L->getStartLoc(), L->getHeader())
10198              << IntDiagMsg.second;
10199     });
10200     return false;
10201   } else if (!VectorizeLoop && InterleaveLoop) {
10202     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10203     ORE->emit([&]() {
10204       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10205                                         L->getStartLoc(), L->getHeader())
10206              << VecDiagMsg.second;
10207     });
10208   } else if (VectorizeLoop && !InterleaveLoop) {
10209     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10210                       << ") in " << DebugLocStr << '\n');
10211     ORE->emit([&]() {
10212       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10213                                         L->getStartLoc(), L->getHeader())
10214              << IntDiagMsg.second;
10215     });
10216   } else if (VectorizeLoop && InterleaveLoop) {
10217     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10218                       << ") in " << DebugLocStr << '\n');
10219     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10220   }
10221 
10222   bool DisableRuntimeUnroll = false;
10223   MDNode *OrigLoopID = L->getLoopID();
10224   {
10225     // Optimistically generate runtime checks. Drop them if they turn out to not
10226     // be profitable. Limit the scope of Checks, so the cleanup happens
10227     // immediately after vector codegeneration is done.
10228     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10229                              F->getParent()->getDataLayout());
10230     if (!VF.Width.isScalar() || IC > 1)
10231       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10232     LVP.setBestPlan(VF.Width, IC);
10233 
10234     using namespace ore;
10235     if (!VectorizeLoop) {
10236       assert(IC > 1 && "interleave count should not be 1 or 0");
10237       // If we decided that it is not legal to vectorize the loop, then
10238       // interleave it.
10239       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10240                                  &CM, BFI, PSI, Checks);
10241       LVP.executePlan(Unroller, DT);
10242 
10243       ORE->emit([&]() {
10244         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10245                                   L->getHeader())
10246                << "interleaved loop (interleaved count: "
10247                << NV("InterleaveCount", IC) << ")";
10248       });
10249     } else {
10250       // If we decided that it is *legal* to vectorize the loop, then do it.
10251 
10252       // Consider vectorizing the epilogue too if it's profitable.
10253       VectorizationFactor EpilogueVF =
10254           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10255       if (EpilogueVF.Width.isVector()) {
10256 
10257         // The first pass vectorizes the main loop and creates a scalar epilogue
10258         // to be vectorized by executing the plan (potentially with a different
10259         // factor) again shortly afterwards.
10260         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10261                                           EpilogueVF.Width.getKnownMinValue(),
10262                                           1);
10263         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10264                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10265 
10266         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10267         LVP.executePlan(MainILV, DT);
10268         ++LoopsVectorized;
10269 
10270         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10271         formLCSSARecursively(*L, *DT, LI, SE);
10272 
10273         // Second pass vectorizes the epilogue and adjusts the control flow
10274         // edges from the first pass.
10275         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10276         EPI.MainLoopVF = EPI.EpilogueVF;
10277         EPI.MainLoopUF = EPI.EpilogueUF;
10278         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10279                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10280                                                  Checks);
10281         LVP.executePlan(EpilogILV, DT);
10282         ++LoopsEpilogueVectorized;
10283 
10284         if (!MainILV.areSafetyChecksAdded())
10285           DisableRuntimeUnroll = true;
10286       } else {
10287         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10288                                &LVL, &CM, BFI, PSI, Checks);
10289         LVP.executePlan(LB, DT);
10290         ++LoopsVectorized;
10291 
10292         // Add metadata to disable runtime unrolling a scalar loop when there
10293         // are no runtime checks about strides and memory. A scalar loop that is
10294         // rarely used is not worth unrolling.
10295         if (!LB.areSafetyChecksAdded())
10296           DisableRuntimeUnroll = true;
10297       }
10298       // Report the vectorization decision.
10299       ORE->emit([&]() {
10300         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10301                                   L->getHeader())
10302                << "vectorized loop (vectorization width: "
10303                << NV("VectorizationFactor", VF.Width)
10304                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10305       });
10306     }
10307 
10308     if (ORE->allowExtraAnalysis(LV_NAME))
10309       checkMixedPrecision(L, ORE);
10310   }
10311 
10312   Optional<MDNode *> RemainderLoopID =
10313       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10314                                       LLVMLoopVectorizeFollowupEpilogue});
10315   if (RemainderLoopID.hasValue()) {
10316     L->setLoopID(RemainderLoopID.getValue());
10317   } else {
10318     if (DisableRuntimeUnroll)
10319       AddRuntimeUnrollDisableMetaData(L);
10320 
10321     // Mark the loop as already vectorized to avoid vectorizing again.
10322     Hints.setAlreadyVectorized();
10323   }
10324 
10325   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10326   return true;
10327 }
10328 
10329 LoopVectorizeResult LoopVectorizePass::runImpl(
10330     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10331     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10332     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10333     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10334     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10335   SE = &SE_;
10336   LI = &LI_;
10337   TTI = &TTI_;
10338   DT = &DT_;
10339   BFI = &BFI_;
10340   TLI = TLI_;
10341   AA = &AA_;
10342   AC = &AC_;
10343   GetLAA = &GetLAA_;
10344   DB = &DB_;
10345   ORE = &ORE_;
10346   PSI = PSI_;
10347 
10348   // Don't attempt if
10349   // 1. the target claims to have no vector registers, and
10350   // 2. interleaving won't help ILP.
10351   //
10352   // The second condition is necessary because, even if the target has no
10353   // vector registers, loop vectorization may still enable scalar
10354   // interleaving.
10355   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10356       TTI->getMaxInterleaveFactor(1) < 2)
10357     return LoopVectorizeResult(false, false);
10358 
10359   bool Changed = false, CFGChanged = false;
10360 
10361   // The vectorizer requires loops to be in simplified form.
10362   // Since simplification may add new inner loops, it has to run before the
10363   // legality and profitability checks. This means running the loop vectorizer
10364   // will simplify all loops, regardless of whether anything end up being
10365   // vectorized.
10366   for (auto &L : *LI)
10367     Changed |= CFGChanged |=
10368         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10369 
10370   // Build up a worklist of inner-loops to vectorize. This is necessary as
10371   // the act of vectorizing or partially unrolling a loop creates new loops
10372   // and can invalidate iterators across the loops.
10373   SmallVector<Loop *, 8> Worklist;
10374 
10375   for (Loop *L : *LI)
10376     collectSupportedLoops(*L, LI, ORE, Worklist);
10377 
10378   LoopsAnalyzed += Worklist.size();
10379 
10380   // Now walk the identified inner loops.
10381   while (!Worklist.empty()) {
10382     Loop *L = Worklist.pop_back_val();
10383 
10384     // For the inner loops we actually process, form LCSSA to simplify the
10385     // transform.
10386     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10387 
10388     Changed |= CFGChanged |= processLoop(L);
10389   }
10390 
10391   // Process each loop nest in the function.
10392   return LoopVectorizeResult(Changed, CFGChanged);
10393 }
10394 
10395 PreservedAnalyses LoopVectorizePass::run(Function &F,
10396                                          FunctionAnalysisManager &AM) {
10397     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10398     auto &LI = AM.getResult<LoopAnalysis>(F);
10399     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10400     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10401     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10402     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10403     auto &AA = AM.getResult<AAManager>(F);
10404     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10405     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10406     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10407     MemorySSA *MSSA = EnableMSSALoopDependency
10408                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
10409                           : nullptr;
10410 
10411     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10412     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10413         [&](Loop &L) -> const LoopAccessInfo & {
10414       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10415                                         TLI, TTI, nullptr, MSSA};
10416       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10417     };
10418     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10419     ProfileSummaryInfo *PSI =
10420         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10421     LoopVectorizeResult Result =
10422         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10423     if (!Result.MadeAnyChange)
10424       return PreservedAnalyses::all();
10425     PreservedAnalyses PA;
10426 
10427     // We currently do not preserve loopinfo/dominator analyses with outer loop
10428     // vectorization. Until this is addressed, mark these analyses as preserved
10429     // only for non-VPlan-native path.
10430     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10431     if (!EnableVPlanNativePath) {
10432       PA.preserve<LoopAnalysis>();
10433       PA.preserve<DominatorTreeAnalysis>();
10434     }
10435     if (!Result.MadeCFGChange)
10436       PA.preserveSet<CFGAnalyses>();
10437     return PA;
10438 }
10439