1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanTransforms.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 90 #include "llvm/Analysis/ProfileSummaryInfo.h" 91 #include "llvm/Analysis/ScalarEvolution.h" 92 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 93 #include "llvm/Analysis/TargetLibraryInfo.h" 94 #include "llvm/Analysis/TargetTransformInfo.h" 95 #include "llvm/Analysis/ValueTracking.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <map> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 static cl::opt<unsigned> VectorizeMemoryCheckThreshold( 201 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 202 cl::desc("The maximum allowed number of runtime memory checks")); 203 204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 205 // that predication is preferred, and this lists all options. I.e., the 206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 207 // and predicate the instructions accordingly. If tail-folding fails, there are 208 // different fallback strategies depending on these values: 209 namespace PreferPredicateTy { 210 enum Option { 211 ScalarEpilogue = 0, 212 PredicateElseScalarEpilogue, 213 PredicateOrDontVectorize 214 }; 215 } // namespace PreferPredicateTy 216 217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 218 "prefer-predicate-over-epilogue", 219 cl::init(PreferPredicateTy::ScalarEpilogue), 220 cl::Hidden, 221 cl::desc("Tail-folding and predication preferences over creating a scalar " 222 "epilogue loop."), 223 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 224 "scalar-epilogue", 225 "Don't tail-predicate loops, create scalar epilogue"), 226 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 227 "predicate-else-scalar-epilogue", 228 "prefer tail-folding, create scalar epilogue if tail " 229 "folding fails."), 230 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 231 "predicate-dont-vectorize", 232 "prefers tail-folding, don't attempt vectorization if " 233 "tail-folding fails."))); 234 235 static cl::opt<bool> MaximizeBandwidth( 236 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 237 cl::desc("Maximize bandwidth when selecting vectorization factor which " 238 "will be determined by the smallest type in loop.")); 239 240 static cl::opt<bool> EnableInterleavedMemAccesses( 241 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 242 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 243 244 /// An interleave-group may need masking if it resides in a block that needs 245 /// predication, or in order to mask away gaps. 246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 247 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 248 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 249 250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 251 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 252 cl::desc("We don't interleave loops with a estimated constant trip count " 253 "below this number")); 254 255 static cl::opt<unsigned> ForceTargetNumScalarRegs( 256 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 257 cl::desc("A flag that overrides the target's number of scalar registers.")); 258 259 static cl::opt<unsigned> ForceTargetNumVectorRegs( 260 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 261 cl::desc("A flag that overrides the target's number of vector registers.")); 262 263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 264 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 265 cl::desc("A flag that overrides the target's max interleave factor for " 266 "scalar loops.")); 267 268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 269 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 270 cl::desc("A flag that overrides the target's max interleave factor for " 271 "vectorized loops.")); 272 273 static cl::opt<unsigned> ForceTargetInstructionCost( 274 "force-target-instruction-cost", cl::init(0), cl::Hidden, 275 cl::desc("A flag that overrides the target's expected cost for " 276 "an instruction to a single constant value. Mostly " 277 "useful for getting consistent testing.")); 278 279 static cl::opt<bool> ForceTargetSupportsScalableVectors( 280 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 281 cl::desc( 282 "Pretend that scalable vectors are supported, even if the target does " 283 "not support them. This flag should only be used for testing.")); 284 285 static cl::opt<unsigned> SmallLoopCost( 286 "small-loop-cost", cl::init(20), cl::Hidden, 287 cl::desc( 288 "The cost of a loop that is considered 'small' by the interleaver.")); 289 290 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 291 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 292 cl::desc("Enable the use of the block frequency analysis to access PGO " 293 "heuristics minimizing code growth in cold regions and being more " 294 "aggressive in hot regions.")); 295 296 // Runtime interleave loops for load/store throughput. 297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 298 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 299 cl::desc( 300 "Enable runtime interleaving until load/store ports are saturated")); 301 302 /// Interleave small loops with scalar reductions. 303 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 304 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 305 cl::desc("Enable interleaving for loops with small iteration counts that " 306 "contain scalar reductions to expose ILP.")); 307 308 /// The number of stores in a loop that are allowed to need predication. 309 static cl::opt<unsigned> NumberOfStoresToPredicate( 310 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 311 cl::desc("Max number of stores to be predicated behind an if.")); 312 313 static cl::opt<bool> EnableIndVarRegisterHeur( 314 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 315 cl::desc("Count the induction variable only once when interleaving")); 316 317 static cl::opt<bool> EnableCondStoresVectorization( 318 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 319 cl::desc("Enable if predication of stores during vectorization.")); 320 321 static cl::opt<unsigned> MaxNestedScalarReductionIC( 322 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 323 cl::desc("The maximum interleave count to use when interleaving a scalar " 324 "reduction in a nested loop.")); 325 326 static cl::opt<bool> 327 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 328 cl::Hidden, 329 cl::desc("Prefer in-loop vector reductions, " 330 "overriding the targets preference.")); 331 332 static cl::opt<bool> ForceOrderedReductions( 333 "force-ordered-reductions", cl::init(false), cl::Hidden, 334 cl::desc("Enable the vectorisation of loops with in-order (strict) " 335 "FP reductions")); 336 337 static cl::opt<bool> PreferPredicatedReductionSelect( 338 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 339 cl::desc( 340 "Prefer predicating a reduction operation over an after loop select.")); 341 342 cl::opt<bool> EnableVPlanNativePath( 343 "enable-vplan-native-path", cl::init(false), cl::Hidden, 344 cl::desc("Enable VPlan-native vectorization path with " 345 "support for outer loop vectorization.")); 346 347 // This flag enables the stress testing of the VPlan H-CFG construction in the 348 // VPlan-native vectorization path. It must be used in conjuction with 349 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 350 // verification of the H-CFGs built. 351 static cl::opt<bool> VPlanBuildStressTest( 352 "vplan-build-stress-test", cl::init(false), cl::Hidden, 353 cl::desc( 354 "Build VPlan for every supported loop nest in the function and bail " 355 "out right after the build (stress test the VPlan H-CFG construction " 356 "in the VPlan-native vectorization path).")); 357 358 cl::opt<bool> llvm::EnableLoopInterleaving( 359 "interleave-loops", cl::init(true), cl::Hidden, 360 cl::desc("Enable loop interleaving in Loop vectorization passes")); 361 cl::opt<bool> llvm::EnableLoopVectorization( 362 "vectorize-loops", cl::init(true), cl::Hidden, 363 cl::desc("Run the Loop vectorization passes")); 364 365 cl::opt<bool> PrintVPlansInDotFormat( 366 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 367 cl::desc("Use dot format instead of plain text when dumping VPlans")); 368 369 /// A helper function that returns true if the given type is irregular. The 370 /// type is irregular if its allocated size doesn't equal the store size of an 371 /// element of the corresponding vector type. 372 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 373 // Determine if an array of N elements of type Ty is "bitcast compatible" 374 // with a <N x Ty> vector. 375 // This is only true if there is no padding between the array elements. 376 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 377 } 378 379 /// A helper function that returns the reciprocal of the block probability of 380 /// predicated blocks. If we return X, we are assuming the predicated block 381 /// will execute once for every X iterations of the loop header. 382 /// 383 /// TODO: We should use actual block probability here, if available. Currently, 384 /// we always assume predicated blocks have a 50% chance of executing. 385 static unsigned getReciprocalPredBlockProb() { return 2; } 386 387 /// A helper function that returns an integer or floating-point constant with 388 /// value C. 389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 390 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 391 : ConstantFP::get(Ty, C); 392 } 393 394 /// Returns "best known" trip count for the specified loop \p L as defined by 395 /// the following procedure: 396 /// 1) Returns exact trip count if it is known. 397 /// 2) Returns expected trip count according to profile data if any. 398 /// 3) Returns upper bound estimate if it is known. 399 /// 4) Returns None if all of the above failed. 400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 401 // Check if exact trip count is known. 402 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 403 return ExpectedTC; 404 405 // Check if there is an expected trip count available from profile data. 406 if (LoopVectorizeWithBlockFrequency) 407 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 408 return EstimatedTC; 409 410 // Check if upper bound estimate is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 412 return ExpectedTC; 413 414 return None; 415 } 416 417 // Forward declare GeneratedRTChecks. 418 class GeneratedRTChecks; 419 420 namespace llvm { 421 422 AnalysisKey ShouldRunExtraVectorPasses::Key; 423 424 /// InnerLoopVectorizer vectorizes loops which contain only one basic 425 /// block to a specified vectorization factor (VF). 426 /// This class performs the widening of scalars into vectors, or multiple 427 /// scalars. This class also implements the following features: 428 /// * It inserts an epilogue loop for handling loops that don't have iteration 429 /// counts that are known to be a multiple of the vectorization factor. 430 /// * It handles the code generation for reduction variables. 431 /// * Scalarization (implementation using scalars) of un-vectorizable 432 /// instructions. 433 /// InnerLoopVectorizer does not perform any vectorization-legality 434 /// checks, and relies on the caller to check for the different legality 435 /// aspects. The InnerLoopVectorizer relies on the 436 /// LoopVectorizationLegality class to provide information about the induction 437 /// and reduction variables that were found to a given vectorization factor. 438 class InnerLoopVectorizer { 439 public: 440 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 441 LoopInfo *LI, DominatorTree *DT, 442 const TargetLibraryInfo *TLI, 443 const TargetTransformInfo *TTI, AssumptionCache *AC, 444 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 445 ElementCount MinProfitableTripCount, 446 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 447 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 448 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 449 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 450 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 451 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 452 PSI(PSI), RTChecks(RTChecks) { 453 // Query this against the original loop and save it here because the profile 454 // of the original loop header may change as the transformation happens. 455 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 456 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 457 458 if (MinProfitableTripCount.isZero()) 459 this->MinProfitableTripCount = VecWidth; 460 else 461 this->MinProfitableTripCount = MinProfitableTripCount; 462 } 463 464 virtual ~InnerLoopVectorizer() = default; 465 466 /// Create a new empty loop that will contain vectorized instructions later 467 /// on, while the old loop will be used as the scalar remainder. Control flow 468 /// is generated around the vectorized (and scalar epilogue) loops consisting 469 /// of various checks and bypasses. Return the pre-header block of the new 470 /// loop and the start value for the canonical induction, if it is != 0. The 471 /// latter is the case when vectorizing the epilogue loop. In the case of 472 /// epilogue vectorization, this function is overriden to handle the more 473 /// complex control flow around the loops. 474 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 475 476 /// Widen a single call instruction within the innermost loop. 477 void widenCallInstruction(CallInst &CI, VPValue *Def, VPUser &ArgOperands, 478 VPTransformState &State); 479 480 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 481 void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); 482 483 // Return true if any runtime check is added. 484 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 485 486 /// A type for vectorized values in the new loop. Each value from the 487 /// original loop, when vectorized, is represented by UF vector values in the 488 /// new unrolled loop, where UF is the unroll factor. 489 using VectorParts = SmallVector<Value *, 2>; 490 491 /// A helper function to scalarize a single Instruction in the innermost loop. 492 /// Generates a sequence of scalar instances for each lane between \p MinLane 493 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 494 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 495 /// Instr's operands. 496 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 497 const VPIteration &Instance, bool IfPredicateInstr, 498 VPTransformState &State); 499 500 /// Construct the vector value of a scalarized value \p V one lane at a time. 501 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 502 VPTransformState &State); 503 504 /// Try to vectorize interleaved access group \p Group with the base address 505 /// given in \p Addr, optionally masking the vector operations if \p 506 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 507 /// values in the vectorized loop. 508 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 509 ArrayRef<VPValue *> VPDefs, 510 VPTransformState &State, VPValue *Addr, 511 ArrayRef<VPValue *> StoredValues, 512 VPValue *BlockInMask = nullptr); 513 514 /// Fix the non-induction PHIs in \p Plan. 515 void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State); 516 517 /// Returns true if the reordering of FP operations is not allowed, but we are 518 /// able to vectorize with strict in-order reductions for the given RdxDesc. 519 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 520 521 /// Create a broadcast instruction. This method generates a broadcast 522 /// instruction (shuffle) for loop invariant values and for the induction 523 /// value. If this is the induction variable then we extend it to N, N+1, ... 524 /// this is needed because each iteration in the loop corresponds to a SIMD 525 /// element. 526 virtual Value *getBroadcastInstrs(Value *V); 527 528 // Returns the resume value (bc.merge.rdx) for a reduction as 529 // generated by fixReduction. 530 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 531 532 protected: 533 friend class LoopVectorizationPlanner; 534 535 /// A small list of PHINodes. 536 using PhiVector = SmallVector<PHINode *, 4>; 537 538 /// A type for scalarized values in the new loop. Each value from the 539 /// original loop, when scalarized, is represented by UF x VF scalar values 540 /// in the new unrolled loop, where UF is the unroll factor and VF is the 541 /// vectorization factor. 542 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 543 544 /// Set up the values of the IVs correctly when exiting the vector loop. 545 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 546 Value *VectorTripCount, Value *EndValue, 547 BasicBlock *MiddleBlock, BasicBlock *VectorHeader, 548 VPlan &Plan); 549 550 /// Handle all cross-iteration phis in the header. 551 void fixCrossIterationPHIs(VPTransformState &State); 552 553 /// Create the exit value of first order recurrences in the middle block and 554 /// update their users. 555 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 556 VPTransformState &State); 557 558 /// Create code for the loop exit value of the reduction. 559 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 560 561 /// Clear NSW/NUW flags from reduction instructions if necessary. 562 void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 563 VPTransformState &State); 564 565 /// Iteratively sink the scalarized operands of a predicated instruction into 566 /// the block that was created for it. 567 void sinkScalarOperands(Instruction *PredInst); 568 569 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 570 /// represented as. 571 void truncateToMinimalBitwidths(VPTransformState &State); 572 573 /// Returns (and creates if needed) the original loop trip count. 574 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 575 576 /// Returns (and creates if needed) the trip count of the widened loop. 577 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 578 579 /// Returns a bitcasted value to the requested vector type. 580 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 581 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 582 const DataLayout &DL); 583 584 /// Emit a bypass check to see if the vector trip count is zero, including if 585 /// it overflows. 586 void emitIterationCountCheck(BasicBlock *Bypass); 587 588 /// Emit a bypass check to see if all of the SCEV assumptions we've 589 /// had to make are correct. Returns the block containing the checks or 590 /// nullptr if no checks have been added. 591 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 592 593 /// Emit bypass checks to check any memory assumptions we may have made. 594 /// Returns the block containing the checks or nullptr if no checks have been 595 /// added. 596 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 597 598 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 599 /// vector loop preheader, middle block and scalar preheader. 600 void createVectorLoopSkeleton(StringRef Prefix); 601 602 /// Create new phi nodes for the induction variables to resume iteration count 603 /// in the scalar epilogue, from where the vectorized loop left off. 604 /// In cases where the loop skeleton is more complicated (eg. epilogue 605 /// vectorization) and the resume values can come from an additional bypass 606 /// block, the \p AdditionalBypass pair provides information about the bypass 607 /// block and the end value on the edge from bypass to this loop. 608 void createInductionResumeValues( 609 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 610 611 /// Complete the loop skeleton by adding debug MDs, creating appropriate 612 /// conditional branches in the middle block, preparing the builder and 613 /// running the verifier. Return the preheader of the completed vector loop. 614 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 615 616 /// Collect poison-generating recipes that may generate a poison value that is 617 /// used after vectorization, even when their operands are not poison. Those 618 /// recipes meet the following conditions: 619 /// * Contribute to the address computation of a recipe generating a widen 620 /// memory load/store (VPWidenMemoryInstructionRecipe or 621 /// VPInterleaveRecipe). 622 /// * Such a widen memory load/store has at least one underlying Instruction 623 /// that is in a basic block that needs predication and after vectorization 624 /// the generated instruction won't be predicated. 625 void collectPoisonGeneratingRecipes(VPTransformState &State); 626 627 /// Allow subclasses to override and print debug traces before/after vplan 628 /// execution, when trace information is requested. 629 virtual void printDebugTracesAtStart(){}; 630 virtual void printDebugTracesAtEnd(){}; 631 632 /// The original loop. 633 Loop *OrigLoop; 634 635 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 636 /// dynamic knowledge to simplify SCEV expressions and converts them to a 637 /// more usable form. 638 PredicatedScalarEvolution &PSE; 639 640 /// Loop Info. 641 LoopInfo *LI; 642 643 /// Dominator Tree. 644 DominatorTree *DT; 645 646 /// Alias Analysis. 647 AAResults *AA; 648 649 /// Target Library Info. 650 const TargetLibraryInfo *TLI; 651 652 /// Target Transform Info. 653 const TargetTransformInfo *TTI; 654 655 /// Assumption Cache. 656 AssumptionCache *AC; 657 658 /// Interface to emit optimization remarks. 659 OptimizationRemarkEmitter *ORE; 660 661 /// The vectorization SIMD factor to use. Each vector will have this many 662 /// vector elements. 663 ElementCount VF; 664 665 ElementCount MinProfitableTripCount; 666 667 /// The vectorization unroll factor to use. Each scalar is vectorized to this 668 /// many different vector instructions. 669 unsigned UF; 670 671 /// The builder that we use 672 IRBuilder<> Builder; 673 674 // --- Vectorization state --- 675 676 /// The vector-loop preheader. 677 BasicBlock *LoopVectorPreHeader; 678 679 /// The scalar-loop preheader. 680 BasicBlock *LoopScalarPreHeader; 681 682 /// Middle Block between the vector and the scalar. 683 BasicBlock *LoopMiddleBlock; 684 685 /// The unique ExitBlock of the scalar loop if one exists. Note that 686 /// there can be multiple exiting edges reaching this block. 687 BasicBlock *LoopExitBlock; 688 689 /// The scalar loop body. 690 BasicBlock *LoopScalarBody; 691 692 /// A list of all bypass blocks. The first block is the entry of the loop. 693 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 694 695 /// Store instructions that were predicated. 696 SmallVector<Instruction *, 4> PredicatedInstructions; 697 698 /// Trip count of the original loop. 699 Value *TripCount = nullptr; 700 701 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 702 Value *VectorTripCount = nullptr; 703 704 /// The legality analysis. 705 LoopVectorizationLegality *Legal; 706 707 /// The profitablity analysis. 708 LoopVectorizationCostModel *Cost; 709 710 // Record whether runtime checks are added. 711 bool AddedSafetyChecks = false; 712 713 // Holds the end values for each induction variable. We save the end values 714 // so we can later fix-up the external users of the induction variables. 715 DenseMap<PHINode *, Value *> IVEndValues; 716 717 /// BFI and PSI are used to check for profile guided size optimizations. 718 BlockFrequencyInfo *BFI; 719 ProfileSummaryInfo *PSI; 720 721 // Whether this loop should be optimized for size based on profile guided size 722 // optimizatios. 723 bool OptForSizeBasedOnProfile; 724 725 /// Structure to hold information about generated runtime checks, responsible 726 /// for cleaning the checks, if vectorization turns out unprofitable. 727 GeneratedRTChecks &RTChecks; 728 729 // Holds the resume values for reductions in the loops, used to set the 730 // correct start value of reduction PHIs when vectorizing the epilogue. 731 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 732 ReductionResumeValues; 733 }; 734 735 class InnerLoopUnroller : public InnerLoopVectorizer { 736 public: 737 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 738 LoopInfo *LI, DominatorTree *DT, 739 const TargetLibraryInfo *TLI, 740 const TargetTransformInfo *TTI, AssumptionCache *AC, 741 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 742 LoopVectorizationLegality *LVL, 743 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 744 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 745 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 746 ElementCount::getFixed(1), 747 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 748 BFI, PSI, Check) {} 749 750 private: 751 Value *getBroadcastInstrs(Value *V) override; 752 }; 753 754 /// Encapsulate information regarding vectorization of a loop and its epilogue. 755 /// This information is meant to be updated and used across two stages of 756 /// epilogue vectorization. 757 struct EpilogueLoopVectorizationInfo { 758 ElementCount MainLoopVF = ElementCount::getFixed(0); 759 unsigned MainLoopUF = 0; 760 ElementCount EpilogueVF = ElementCount::getFixed(0); 761 unsigned EpilogueUF = 0; 762 BasicBlock *MainLoopIterationCountCheck = nullptr; 763 BasicBlock *EpilogueIterationCountCheck = nullptr; 764 BasicBlock *SCEVSafetyCheck = nullptr; 765 BasicBlock *MemSafetyCheck = nullptr; 766 Value *TripCount = nullptr; 767 Value *VectorTripCount = nullptr; 768 769 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 770 ElementCount EVF, unsigned EUF) 771 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 772 assert(EUF == 1 && 773 "A high UF for the epilogue loop is likely not beneficial."); 774 } 775 }; 776 777 /// An extension of the inner loop vectorizer that creates a skeleton for a 778 /// vectorized loop that has its epilogue (residual) also vectorized. 779 /// The idea is to run the vplan on a given loop twice, firstly to setup the 780 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 781 /// from the first step and vectorize the epilogue. This is achieved by 782 /// deriving two concrete strategy classes from this base class and invoking 783 /// them in succession from the loop vectorizer planner. 784 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 785 public: 786 InnerLoopAndEpilogueVectorizer( 787 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 788 DominatorTree *DT, const TargetLibraryInfo *TLI, 789 const TargetTransformInfo *TTI, AssumptionCache *AC, 790 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 791 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 792 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 793 GeneratedRTChecks &Checks) 794 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 795 EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL, 796 CM, BFI, PSI, Checks), 797 EPI(EPI) {} 798 799 // Override this function to handle the more complex control flow around the 800 // three loops. 801 std::pair<BasicBlock *, Value *> 802 createVectorizedLoopSkeleton() final override { 803 return createEpilogueVectorizedLoopSkeleton(); 804 } 805 806 /// The interface for creating a vectorized skeleton using one of two 807 /// different strategies, each corresponding to one execution of the vplan 808 /// as described above. 809 virtual std::pair<BasicBlock *, Value *> 810 createEpilogueVectorizedLoopSkeleton() = 0; 811 812 /// Holds and updates state information required to vectorize the main loop 813 /// and its epilogue in two separate passes. This setup helps us avoid 814 /// regenerating and recomputing runtime safety checks. It also helps us to 815 /// shorten the iteration-count-check path length for the cases where the 816 /// iteration count of the loop is so small that the main vector loop is 817 /// completely skipped. 818 EpilogueLoopVectorizationInfo &EPI; 819 }; 820 821 /// A specialized derived class of inner loop vectorizer that performs 822 /// vectorization of *main* loops in the process of vectorizing loops and their 823 /// epilogues. 824 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 825 public: 826 EpilogueVectorizerMainLoop( 827 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 828 DominatorTree *DT, const TargetLibraryInfo *TLI, 829 const TargetTransformInfo *TTI, AssumptionCache *AC, 830 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 831 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 832 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 833 GeneratedRTChecks &Check) 834 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 835 EPI, LVL, CM, BFI, PSI, Check) {} 836 /// Implements the interface for creating a vectorized skeleton using the 837 /// *main loop* strategy (ie the first pass of vplan execution). 838 std::pair<BasicBlock *, Value *> 839 createEpilogueVectorizedLoopSkeleton() final override; 840 841 protected: 842 /// Emits an iteration count bypass check once for the main loop (when \p 843 /// ForEpilogue is false) and once for the epilogue loop (when \p 844 /// ForEpilogue is true). 845 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); 846 void printDebugTracesAtStart() override; 847 void printDebugTracesAtEnd() override; 848 }; 849 850 // A specialized derived class of inner loop vectorizer that performs 851 // vectorization of *epilogue* loops in the process of vectorizing loops and 852 // their epilogues. 853 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 854 public: 855 EpilogueVectorizerEpilogueLoop( 856 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 857 DominatorTree *DT, const TargetLibraryInfo *TLI, 858 const TargetTransformInfo *TTI, AssumptionCache *AC, 859 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 860 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 861 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 862 GeneratedRTChecks &Checks) 863 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 864 EPI, LVL, CM, BFI, PSI, Checks) { 865 TripCount = EPI.TripCount; 866 } 867 /// Implements the interface for creating a vectorized skeleton using the 868 /// *epilogue loop* strategy (ie the second pass of vplan execution). 869 std::pair<BasicBlock *, Value *> 870 createEpilogueVectorizedLoopSkeleton() final override; 871 872 protected: 873 /// Emits an iteration count bypass check after the main vector loop has 874 /// finished to see if there are any iterations left to execute by either 875 /// the vector epilogue or the scalar epilogue. 876 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 877 BasicBlock *Bypass, 878 BasicBlock *Insert); 879 void printDebugTracesAtStart() override; 880 void printDebugTracesAtEnd() override; 881 }; 882 } // end namespace llvm 883 884 /// Look for a meaningful debug location on the instruction or it's 885 /// operands. 886 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 887 if (!I) 888 return I; 889 890 DebugLoc Empty; 891 if (I->getDebugLoc() != Empty) 892 return I; 893 894 for (Use &Op : I->operands()) { 895 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 896 if (OpInst->getDebugLoc() != Empty) 897 return OpInst; 898 } 899 900 return I; 901 } 902 903 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 904 /// is passed, the message relates to that particular instruction. 905 #ifndef NDEBUG 906 static void debugVectorizationMessage(const StringRef Prefix, 907 const StringRef DebugMsg, 908 Instruction *I) { 909 dbgs() << "LV: " << Prefix << DebugMsg; 910 if (I != nullptr) 911 dbgs() << " " << *I; 912 else 913 dbgs() << '.'; 914 dbgs() << '\n'; 915 } 916 #endif 917 918 /// Create an analysis remark that explains why vectorization failed 919 /// 920 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 921 /// RemarkName is the identifier for the remark. If \p I is passed it is an 922 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 923 /// the location of the remark. \return the remark object that can be 924 /// streamed to. 925 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 926 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 927 Value *CodeRegion = TheLoop->getHeader(); 928 DebugLoc DL = TheLoop->getStartLoc(); 929 930 if (I) { 931 CodeRegion = I->getParent(); 932 // If there is no debug location attached to the instruction, revert back to 933 // using the loop's. 934 if (I->getDebugLoc()) 935 DL = I->getDebugLoc(); 936 } 937 938 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 939 } 940 941 namespace llvm { 942 943 /// Return a value for Step multiplied by VF. 944 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 945 int64_t Step) { 946 assert(Ty->isIntegerTy() && "Expected an integer step"); 947 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 948 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 949 } 950 951 /// Return the runtime value for VF. 952 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 953 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 954 return VF.isScalable() ? B.CreateVScale(EC) : EC; 955 } 956 957 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 958 ElementCount VF) { 959 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 960 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 961 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 962 return B.CreateUIToFP(RuntimeVF, FTy); 963 } 964 965 void reportVectorizationFailure(const StringRef DebugMsg, 966 const StringRef OREMsg, const StringRef ORETag, 967 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 968 Instruction *I) { 969 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 970 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 971 ORE->emit( 972 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 973 << "loop not vectorized: " << OREMsg); 974 } 975 976 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 977 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 978 Instruction *I) { 979 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 980 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 981 ORE->emit( 982 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 983 << Msg); 984 } 985 986 } // end namespace llvm 987 988 #ifndef NDEBUG 989 /// \return string containing a file name and a line # for the given loop. 990 static std::string getDebugLocString(const Loop *L) { 991 std::string Result; 992 if (L) { 993 raw_string_ostream OS(Result); 994 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 995 LoopDbgLoc.print(OS); 996 else 997 // Just print the module name. 998 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 999 OS.flush(); 1000 } 1001 return Result; 1002 } 1003 #endif 1004 1005 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1006 VPTransformState &State) { 1007 1008 // Collect recipes in the backward slice of `Root` that may generate a poison 1009 // value that is used after vectorization. 1010 SmallPtrSet<VPRecipeBase *, 16> Visited; 1011 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1012 SmallVector<VPRecipeBase *, 16> Worklist; 1013 Worklist.push_back(Root); 1014 1015 // Traverse the backward slice of Root through its use-def chain. 1016 while (!Worklist.empty()) { 1017 VPRecipeBase *CurRec = Worklist.back(); 1018 Worklist.pop_back(); 1019 1020 if (!Visited.insert(CurRec).second) 1021 continue; 1022 1023 // Prune search if we find another recipe generating a widen memory 1024 // instruction. Widen memory instructions involved in address computation 1025 // will lead to gather/scatter instructions, which don't need to be 1026 // handled. 1027 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1028 isa<VPInterleaveRecipe>(CurRec) || 1029 isa<VPScalarIVStepsRecipe>(CurRec) || 1030 isa<VPCanonicalIVPHIRecipe>(CurRec) || 1031 isa<VPActiveLaneMaskPHIRecipe>(CurRec)) 1032 continue; 1033 1034 // This recipe contributes to the address computation of a widen 1035 // load/store. Collect recipe if its underlying instruction has 1036 // poison-generating flags. 1037 Instruction *Instr = CurRec->getUnderlyingInstr(); 1038 if (Instr && Instr->hasPoisonGeneratingFlags()) 1039 State.MayGeneratePoisonRecipes.insert(CurRec); 1040 1041 // Add new definitions to the worklist. 1042 for (VPValue *operand : CurRec->operands()) 1043 if (VPDef *OpDef = operand->getDef()) 1044 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1045 } 1046 }); 1047 1048 // Traverse all the recipes in the VPlan and collect the poison-generating 1049 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1050 // VPInterleaveRecipe. 1051 auto Iter = depth_first( 1052 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1053 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1054 for (VPRecipeBase &Recipe : *VPBB) { 1055 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1056 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1057 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1058 if (AddrDef && WidenRec->isConsecutive() && 1059 Legal->blockNeedsPredication(UnderlyingInstr.getParent())) 1060 collectPoisonGeneratingInstrsInBackwardSlice( 1061 cast<VPRecipeBase>(AddrDef)); 1062 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1063 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1064 if (AddrDef) { 1065 // Check if any member of the interleave group needs predication. 1066 const InterleaveGroup<Instruction> *InterGroup = 1067 InterleaveRec->getInterleaveGroup(); 1068 bool NeedPredication = false; 1069 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1070 I < NumMembers; ++I) { 1071 Instruction *Member = InterGroup->getMember(I); 1072 if (Member) 1073 NeedPredication |= 1074 Legal->blockNeedsPredication(Member->getParent()); 1075 } 1076 1077 if (NeedPredication) 1078 collectPoisonGeneratingInstrsInBackwardSlice( 1079 cast<VPRecipeBase>(AddrDef)); 1080 } 1081 } 1082 } 1083 } 1084 } 1085 1086 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1087 const RecurrenceDescriptor &RdxDesc) { 1088 auto It = ReductionResumeValues.find(&RdxDesc); 1089 assert(It != ReductionResumeValues.end() && 1090 "Expected to find a resume value for the reduction."); 1091 return It->second; 1092 } 1093 1094 namespace llvm { 1095 1096 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1097 // lowered. 1098 enum ScalarEpilogueLowering { 1099 1100 // The default: allowing scalar epilogues. 1101 CM_ScalarEpilogueAllowed, 1102 1103 // Vectorization with OptForSize: don't allow epilogues. 1104 CM_ScalarEpilogueNotAllowedOptSize, 1105 1106 // A special case of vectorisation with OptForSize: loops with a very small 1107 // trip count are considered for vectorization under OptForSize, thereby 1108 // making sure the cost of their loop body is dominant, free of runtime 1109 // guards and scalar iteration overheads. 1110 CM_ScalarEpilogueNotAllowedLowTripLoop, 1111 1112 // Loop hint predicate indicating an epilogue is undesired. 1113 CM_ScalarEpilogueNotNeededUsePredicate, 1114 1115 // Directive indicating we must either tail fold or not vectorize 1116 CM_ScalarEpilogueNotAllowedUsePredicate 1117 }; 1118 1119 /// ElementCountComparator creates a total ordering for ElementCount 1120 /// for the purposes of using it in a set structure. 1121 struct ElementCountComparator { 1122 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1123 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1124 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1125 } 1126 }; 1127 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1128 1129 /// LoopVectorizationCostModel - estimates the expected speedups due to 1130 /// vectorization. 1131 /// In many cases vectorization is not profitable. This can happen because of 1132 /// a number of reasons. In this class we mainly attempt to predict the 1133 /// expected speedup/slowdowns due to the supported instruction set. We use the 1134 /// TargetTransformInfo to query the different backends for the cost of 1135 /// different operations. 1136 class LoopVectorizationCostModel { 1137 public: 1138 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1139 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1140 LoopVectorizationLegality *Legal, 1141 const TargetTransformInfo &TTI, 1142 const TargetLibraryInfo *TLI, DemandedBits *DB, 1143 AssumptionCache *AC, 1144 OptimizationRemarkEmitter *ORE, const Function *F, 1145 const LoopVectorizeHints *Hints, 1146 InterleavedAccessInfo &IAI) 1147 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1148 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1149 Hints(Hints), InterleaveInfo(IAI) {} 1150 1151 /// \return An upper bound for the vectorization factors (both fixed and 1152 /// scalable). If the factors are 0, vectorization and interleaving should be 1153 /// avoided up front. 1154 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1155 1156 /// \return True if runtime checks are required for vectorization, and false 1157 /// otherwise. 1158 bool runtimeChecksRequired(); 1159 1160 /// \return The most profitable vectorization factor and the cost of that VF. 1161 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1162 /// then this vectorization factor will be selected if vectorization is 1163 /// possible. 1164 VectorizationFactor 1165 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1166 1167 VectorizationFactor 1168 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1169 const LoopVectorizationPlanner &LVP); 1170 1171 /// Setup cost-based decisions for user vectorization factor. 1172 /// \return true if the UserVF is a feasible VF to be chosen. 1173 bool selectUserVectorizationFactor(ElementCount UserVF) { 1174 collectUniformsAndScalars(UserVF); 1175 collectInstsToScalarize(UserVF); 1176 return expectedCost(UserVF).first.isValid(); 1177 } 1178 1179 /// \return The size (in bits) of the smallest and widest types in the code 1180 /// that needs to be vectorized. We ignore values that remain scalar such as 1181 /// 64 bit loop indices. 1182 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1183 1184 /// \return The desired interleave count. 1185 /// If interleave count has been specified by metadata it will be returned. 1186 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1187 /// are the selected vectorization factor and the cost of the selected VF. 1188 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1189 1190 /// Memory access instruction may be vectorized in more than one way. 1191 /// Form of instruction after vectorization depends on cost. 1192 /// This function takes cost-based decisions for Load/Store instructions 1193 /// and collects them in a map. This decisions map is used for building 1194 /// the lists of loop-uniform and loop-scalar instructions. 1195 /// The calculated cost is saved with widening decision in order to 1196 /// avoid redundant calculations. 1197 void setCostBasedWideningDecision(ElementCount VF); 1198 1199 /// A struct that represents some properties of the register usage 1200 /// of a loop. 1201 struct RegisterUsage { 1202 /// Holds the number of loop invariant values that are used in the loop. 1203 /// The key is ClassID of target-provided register class. 1204 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1205 /// Holds the maximum number of concurrent live intervals in the loop. 1206 /// The key is ClassID of target-provided register class. 1207 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1208 }; 1209 1210 /// \return Returns information about the register usages of the loop for the 1211 /// given vectorization factors. 1212 SmallVector<RegisterUsage, 8> 1213 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1214 1215 /// Collect values we want to ignore in the cost model. 1216 void collectValuesToIgnore(); 1217 1218 /// Collect all element types in the loop for which widening is needed. 1219 void collectElementTypesForWidening(); 1220 1221 /// Split reductions into those that happen in the loop, and those that happen 1222 /// outside. In loop reductions are collected into InLoopReductionChains. 1223 void collectInLoopReductions(); 1224 1225 /// Returns true if we should use strict in-order reductions for the given 1226 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1227 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1228 /// of FP operations. 1229 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const { 1230 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1231 } 1232 1233 /// \returns The smallest bitwidth each instruction can be represented with. 1234 /// The vector equivalents of these instructions should be truncated to this 1235 /// type. 1236 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1237 return MinBWs; 1238 } 1239 1240 /// \returns True if it is more profitable to scalarize instruction \p I for 1241 /// vectorization factor \p VF. 1242 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1243 assert(VF.isVector() && 1244 "Profitable to scalarize relevant only for VF > 1."); 1245 1246 // Cost model is not run in the VPlan-native path - return conservative 1247 // result until this changes. 1248 if (EnableVPlanNativePath) 1249 return false; 1250 1251 auto Scalars = InstsToScalarize.find(VF); 1252 assert(Scalars != InstsToScalarize.end() && 1253 "VF not yet analyzed for scalarization profitability"); 1254 return Scalars->second.find(I) != Scalars->second.end(); 1255 } 1256 1257 /// Returns true if \p I is known to be uniform after vectorization. 1258 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1259 if (VF.isScalar()) 1260 return true; 1261 1262 // Cost model is not run in the VPlan-native path - return conservative 1263 // result until this changes. 1264 if (EnableVPlanNativePath) 1265 return false; 1266 1267 auto UniformsPerVF = Uniforms.find(VF); 1268 assert(UniformsPerVF != Uniforms.end() && 1269 "VF not yet analyzed for uniformity"); 1270 return UniformsPerVF->second.count(I); 1271 } 1272 1273 /// Returns true if \p I is known to be scalar after vectorization. 1274 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1275 if (VF.isScalar()) 1276 return true; 1277 1278 // Cost model is not run in the VPlan-native path - return conservative 1279 // result until this changes. 1280 if (EnableVPlanNativePath) 1281 return false; 1282 1283 auto ScalarsPerVF = Scalars.find(VF); 1284 assert(ScalarsPerVF != Scalars.end() && 1285 "Scalar values are not calculated for VF"); 1286 return ScalarsPerVF->second.count(I); 1287 } 1288 1289 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1290 /// for vectorization factor \p VF. 1291 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1292 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1293 !isProfitableToScalarize(I, VF) && 1294 !isScalarAfterVectorization(I, VF); 1295 } 1296 1297 /// Decision that was taken during cost calculation for memory instruction. 1298 enum InstWidening { 1299 CM_Unknown, 1300 CM_Widen, // For consecutive accesses with stride +1. 1301 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1302 CM_Interleave, 1303 CM_GatherScatter, 1304 CM_Scalarize 1305 }; 1306 1307 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1308 /// instruction \p I and vector width \p VF. 1309 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1310 InstructionCost Cost) { 1311 assert(VF.isVector() && "Expected VF >=2"); 1312 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1313 } 1314 1315 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1316 /// interleaving group \p Grp and vector width \p VF. 1317 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1318 ElementCount VF, InstWidening W, 1319 InstructionCost Cost) { 1320 assert(VF.isVector() && "Expected VF >=2"); 1321 /// Broadcast this decicion to all instructions inside the group. 1322 /// But the cost will be assigned to one instruction only. 1323 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1324 if (auto *I = Grp->getMember(i)) { 1325 if (Grp->getInsertPos() == I) 1326 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1327 else 1328 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1329 } 1330 } 1331 } 1332 1333 /// Return the cost model decision for the given instruction \p I and vector 1334 /// width \p VF. Return CM_Unknown if this instruction did not pass 1335 /// through the cost modeling. 1336 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1337 assert(VF.isVector() && "Expected VF to be a vector VF"); 1338 // Cost model is not run in the VPlan-native path - return conservative 1339 // result until this changes. 1340 if (EnableVPlanNativePath) 1341 return CM_GatherScatter; 1342 1343 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1344 auto Itr = WideningDecisions.find(InstOnVF); 1345 if (Itr == WideningDecisions.end()) 1346 return CM_Unknown; 1347 return Itr->second.first; 1348 } 1349 1350 /// Return the vectorization cost for the given instruction \p I and vector 1351 /// width \p VF. 1352 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1353 assert(VF.isVector() && "Expected VF >=2"); 1354 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1355 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1356 "The cost is not calculated"); 1357 return WideningDecisions[InstOnVF].second; 1358 } 1359 1360 /// Return True if instruction \p I is an optimizable truncate whose operand 1361 /// is an induction variable. Such a truncate will be removed by adding a new 1362 /// induction variable with the destination type. 1363 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1364 // If the instruction is not a truncate, return false. 1365 auto *Trunc = dyn_cast<TruncInst>(I); 1366 if (!Trunc) 1367 return false; 1368 1369 // Get the source and destination types of the truncate. 1370 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1371 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1372 1373 // If the truncate is free for the given types, return false. Replacing a 1374 // free truncate with an induction variable would add an induction variable 1375 // update instruction to each iteration of the loop. We exclude from this 1376 // check the primary induction variable since it will need an update 1377 // instruction regardless. 1378 Value *Op = Trunc->getOperand(0); 1379 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1380 return false; 1381 1382 // If the truncated value is not an induction variable, return false. 1383 return Legal->isInductionPhi(Op); 1384 } 1385 1386 /// Collects the instructions to scalarize for each predicated instruction in 1387 /// the loop. 1388 void collectInstsToScalarize(ElementCount VF); 1389 1390 /// Collect Uniform and Scalar values for the given \p VF. 1391 /// The sets depend on CM decision for Load/Store instructions 1392 /// that may be vectorized as interleave, gather-scatter or scalarized. 1393 void collectUniformsAndScalars(ElementCount VF) { 1394 // Do the analysis once. 1395 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1396 return; 1397 setCostBasedWideningDecision(VF); 1398 collectLoopUniforms(VF); 1399 collectLoopScalars(VF); 1400 } 1401 1402 /// Returns true if the target machine supports masked store operation 1403 /// for the given \p DataType and kind of access to \p Ptr. 1404 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1405 return Legal->isConsecutivePtr(DataType, Ptr) && 1406 TTI.isLegalMaskedStore(DataType, Alignment); 1407 } 1408 1409 /// Returns true if the target machine supports masked load operation 1410 /// for the given \p DataType and kind of access to \p Ptr. 1411 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1412 return Legal->isConsecutivePtr(DataType, Ptr) && 1413 TTI.isLegalMaskedLoad(DataType, Alignment); 1414 } 1415 1416 /// Returns true if the target machine can represent \p V as a masked gather 1417 /// or scatter operation. 1418 bool isLegalGatherOrScatter(Value *V, 1419 ElementCount VF = ElementCount::getFixed(1)) { 1420 bool LI = isa<LoadInst>(V); 1421 bool SI = isa<StoreInst>(V); 1422 if (!LI && !SI) 1423 return false; 1424 auto *Ty = getLoadStoreType(V); 1425 Align Align = getLoadStoreAlignment(V); 1426 if (VF.isVector()) 1427 Ty = VectorType::get(Ty, VF); 1428 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1429 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1430 } 1431 1432 /// Returns true if the target machine supports all of the reduction 1433 /// variables found for the given VF. 1434 bool canVectorizeReductions(ElementCount VF) const { 1435 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1436 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1437 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1438 })); 1439 } 1440 1441 /// Returns true if \p I is an instruction that will be scalarized with 1442 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1443 /// instructions include conditional stores and instructions that may divide 1444 /// by zero. 1445 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1446 1447 // Returns true if \p I is an instruction that will be predicated either 1448 // through scalar predication or masked load/store or masked gather/scatter. 1449 // \p VF is the vectorization factor that will be used to vectorize \p I. 1450 // Superset of instructions that return true for isScalarWithPredication. 1451 bool isPredicatedInst(Instruction *I, ElementCount VF) { 1452 // When we know the load's address is loop invariant and the instruction 1453 // in the original scalar loop was unconditionally executed then we 1454 // don't need to mark it as a predicated instruction. Tail folding may 1455 // introduce additional predication, but we're guaranteed to always have 1456 // at least one active lane. We call Legal->blockNeedsPredication here 1457 // because it doesn't query tail-folding. 1458 if (Legal->isUniformMemOp(*I) && isa<LoadInst>(I) && 1459 !Legal->blockNeedsPredication(I->getParent())) 1460 return false; 1461 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1462 return false; 1463 // Loads and stores that need some form of masked operation are predicated 1464 // instructions. 1465 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1466 return Legal->isMaskRequired(I); 1467 return isScalarWithPredication(I, VF); 1468 } 1469 1470 /// Returns true if \p I is a memory instruction with consecutive memory 1471 /// access that can be widened. 1472 bool 1473 memoryInstructionCanBeWidened(Instruction *I, 1474 ElementCount VF = ElementCount::getFixed(1)); 1475 1476 /// Returns true if \p I is a memory instruction in an interleaved-group 1477 /// of memory accesses that can be vectorized with wide vector loads/stores 1478 /// and shuffles. 1479 bool 1480 interleavedAccessCanBeWidened(Instruction *I, 1481 ElementCount VF = ElementCount::getFixed(1)); 1482 1483 /// Check if \p Instr belongs to any interleaved access group. 1484 bool isAccessInterleaved(Instruction *Instr) { 1485 return InterleaveInfo.isInterleaved(Instr); 1486 } 1487 1488 /// Get the interleaved access group that \p Instr belongs to. 1489 const InterleaveGroup<Instruction> * 1490 getInterleavedAccessGroup(Instruction *Instr) { 1491 return InterleaveInfo.getInterleaveGroup(Instr); 1492 } 1493 1494 /// Returns true if we're required to use a scalar epilogue for at least 1495 /// the final iteration of the original loop. 1496 bool requiresScalarEpilogue(ElementCount VF) const { 1497 if (!isScalarEpilogueAllowed()) 1498 return false; 1499 // If we might exit from anywhere but the latch, must run the exiting 1500 // iteration in scalar form. 1501 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1502 return true; 1503 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1504 } 1505 1506 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1507 /// loop hint annotation. 1508 bool isScalarEpilogueAllowed() const { 1509 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1510 } 1511 1512 /// Returns true if all loop blocks should be masked to fold tail loop. 1513 bool foldTailByMasking() const { return FoldTailByMasking; } 1514 1515 /// Returns true if were tail-folding and want to use the active lane mask 1516 /// for vector loop control flow. 1517 bool useActiveLaneMaskForControlFlow() const { 1518 return FoldTailByMasking && 1519 TTI.emitGetActiveLaneMask() == PredicationStyle::DataAndControlFlow; 1520 } 1521 1522 /// Returns true if the instructions in this block requires predication 1523 /// for any reason, e.g. because tail folding now requires a predicate 1524 /// or because the block in the original loop was predicated. 1525 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1526 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1527 } 1528 1529 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1530 /// nodes to the chain of instructions representing the reductions. Uses a 1531 /// MapVector to ensure deterministic iteration order. 1532 using ReductionChainMap = 1533 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1534 1535 /// Return the chain of instructions representing an inloop reduction. 1536 const ReductionChainMap &getInLoopReductionChains() const { 1537 return InLoopReductionChains; 1538 } 1539 1540 /// Returns true if the Phi is part of an inloop reduction. 1541 bool isInLoopReduction(PHINode *Phi) const { 1542 return InLoopReductionChains.count(Phi); 1543 } 1544 1545 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1546 /// with factor VF. Return the cost of the instruction, including 1547 /// scalarization overhead if it's needed. 1548 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1549 1550 /// Estimate cost of a call instruction CI if it were vectorized with factor 1551 /// VF. Return the cost of the instruction, including scalarization overhead 1552 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1553 /// scalarized - 1554 /// i.e. either vector version isn't available, or is too expensive. 1555 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1556 bool &NeedToScalarize) const; 1557 1558 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1559 /// that of B. 1560 bool isMoreProfitable(const VectorizationFactor &A, 1561 const VectorizationFactor &B) const; 1562 1563 /// Invalidates decisions already taken by the cost model. 1564 void invalidateCostModelingDecisions() { 1565 WideningDecisions.clear(); 1566 Uniforms.clear(); 1567 Scalars.clear(); 1568 } 1569 1570 /// Convenience function that returns the value of vscale_range iff 1571 /// vscale_range.min == vscale_range.max or otherwise returns the value 1572 /// returned by the corresponding TLI method. 1573 Optional<unsigned> getVScaleForTuning() const; 1574 1575 private: 1576 unsigned NumPredStores = 0; 1577 1578 /// \return An upper bound for the vectorization factors for both 1579 /// fixed and scalable vectorization, where the minimum-known number of 1580 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1581 /// disabled or unsupported, then the scalable part will be equal to 1582 /// ElementCount::getScalable(0). 1583 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1584 ElementCount UserVF, 1585 bool FoldTailByMasking); 1586 1587 /// \return the maximized element count based on the targets vector 1588 /// registers and the loop trip-count, but limited to a maximum safe VF. 1589 /// This is a helper function of computeFeasibleMaxVF. 1590 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1591 unsigned SmallestType, 1592 unsigned WidestType, 1593 ElementCount MaxSafeVF, 1594 bool FoldTailByMasking); 1595 1596 /// \return the maximum legal scalable VF, based on the safe max number 1597 /// of elements. 1598 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1599 1600 /// The vectorization cost is a combination of the cost itself and a boolean 1601 /// indicating whether any of the contributing operations will actually 1602 /// operate on vector values after type legalization in the backend. If this 1603 /// latter value is false, then all operations will be scalarized (i.e. no 1604 /// vectorization has actually taken place). 1605 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1606 1607 /// Returns the expected execution cost. The unit of the cost does 1608 /// not matter because we use the 'cost' units to compare different 1609 /// vector widths. The cost that is returned is *not* normalized by 1610 /// the factor width. If \p Invalid is not nullptr, this function 1611 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1612 /// each instruction that has an Invalid cost for the given VF. 1613 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1614 VectorizationCostTy 1615 expectedCost(ElementCount VF, 1616 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1617 1618 /// Returns the execution time cost of an instruction for a given vector 1619 /// width. Vector width of one means scalar. 1620 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1621 1622 /// The cost-computation logic from getInstructionCost which provides 1623 /// the vector type as an output parameter. 1624 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1625 Type *&VectorTy); 1626 1627 /// Return the cost of instructions in an inloop reduction pattern, if I is 1628 /// part of that pattern. 1629 Optional<InstructionCost> 1630 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1631 TTI::TargetCostKind CostKind); 1632 1633 /// Calculate vectorization cost of memory instruction \p I. 1634 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1635 1636 /// The cost computation for scalarized memory instruction. 1637 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1638 1639 /// The cost computation for interleaving group of memory instructions. 1640 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1641 1642 /// The cost computation for Gather/Scatter instruction. 1643 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1644 1645 /// The cost computation for widening instruction \p I with consecutive 1646 /// memory access. 1647 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1648 1649 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1650 /// Load: scalar load + broadcast. 1651 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1652 /// element) 1653 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1654 1655 /// Estimate the overhead of scalarizing an instruction. This is a 1656 /// convenience wrapper for the type-based getScalarizationOverhead API. 1657 InstructionCost getScalarizationOverhead(Instruction *I, 1658 ElementCount VF) const; 1659 1660 /// Returns whether the instruction is a load or store and will be a emitted 1661 /// as a vector operation. 1662 bool isConsecutiveLoadOrStore(Instruction *I); 1663 1664 /// Returns true if an artificially high cost for emulated masked memrefs 1665 /// should be used. 1666 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1667 1668 /// Map of scalar integer values to the smallest bitwidth they can be legally 1669 /// represented as. The vector equivalents of these values should be truncated 1670 /// to this type. 1671 MapVector<Instruction *, uint64_t> MinBWs; 1672 1673 /// A type representing the costs for instructions if they were to be 1674 /// scalarized rather than vectorized. The entries are Instruction-Cost 1675 /// pairs. 1676 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1677 1678 /// A set containing all BasicBlocks that are known to present after 1679 /// vectorization as a predicated block. 1680 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>> 1681 PredicatedBBsAfterVectorization; 1682 1683 /// Records whether it is allowed to have the original scalar loop execute at 1684 /// least once. This may be needed as a fallback loop in case runtime 1685 /// aliasing/dependence checks fail, or to handle the tail/remainder 1686 /// iterations when the trip count is unknown or doesn't divide by the VF, 1687 /// or as a peel-loop to handle gaps in interleave-groups. 1688 /// Under optsize and when the trip count is very small we don't allow any 1689 /// iterations to execute in the scalar loop. 1690 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1691 1692 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1693 bool FoldTailByMasking = false; 1694 1695 /// A map holding scalar costs for different vectorization factors. The 1696 /// presence of a cost for an instruction in the mapping indicates that the 1697 /// instruction will be scalarized when vectorizing with the associated 1698 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1699 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1700 1701 /// Holds the instructions known to be uniform after vectorization. 1702 /// The data is collected per VF. 1703 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1704 1705 /// Holds the instructions known to be scalar after vectorization. 1706 /// The data is collected per VF. 1707 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1708 1709 /// Holds the instructions (address computations) that are forced to be 1710 /// scalarized. 1711 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1712 1713 /// PHINodes of the reductions that should be expanded in-loop along with 1714 /// their associated chains of reduction operations, in program order from top 1715 /// (PHI) to bottom 1716 ReductionChainMap InLoopReductionChains; 1717 1718 /// A Map of inloop reduction operations and their immediate chain operand. 1719 /// FIXME: This can be removed once reductions can be costed correctly in 1720 /// vplan. This was added to allow quick lookup to the inloop operations, 1721 /// without having to loop through InLoopReductionChains. 1722 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1723 1724 /// Returns the expected difference in cost from scalarizing the expression 1725 /// feeding a predicated instruction \p PredInst. The instructions to 1726 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1727 /// non-negative return value implies the expression will be scalarized. 1728 /// Currently, only single-use chains are considered for scalarization. 1729 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1730 ElementCount VF); 1731 1732 /// Collect the instructions that are uniform after vectorization. An 1733 /// instruction is uniform if we represent it with a single scalar value in 1734 /// the vectorized loop corresponding to each vector iteration. Examples of 1735 /// uniform instructions include pointer operands of consecutive or 1736 /// interleaved memory accesses. Note that although uniformity implies an 1737 /// instruction will be scalar, the reverse is not true. In general, a 1738 /// scalarized instruction will be represented by VF scalar values in the 1739 /// vectorized loop, each corresponding to an iteration of the original 1740 /// scalar loop. 1741 void collectLoopUniforms(ElementCount VF); 1742 1743 /// Collect the instructions that are scalar after vectorization. An 1744 /// instruction is scalar if it is known to be uniform or will be scalarized 1745 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1746 /// to the list if they are used by a load/store instruction that is marked as 1747 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1748 /// VF values in the vectorized loop, each corresponding to an iteration of 1749 /// the original scalar loop. 1750 void collectLoopScalars(ElementCount VF); 1751 1752 /// Keeps cost model vectorization decision and cost for instructions. 1753 /// Right now it is used for memory instructions only. 1754 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1755 std::pair<InstWidening, InstructionCost>>; 1756 1757 DecisionList WideningDecisions; 1758 1759 /// Returns true if \p V is expected to be vectorized and it needs to be 1760 /// extracted. 1761 bool needsExtract(Value *V, ElementCount VF) const { 1762 Instruction *I = dyn_cast<Instruction>(V); 1763 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1764 TheLoop->isLoopInvariant(I)) 1765 return false; 1766 1767 // Assume we can vectorize V (and hence we need extraction) if the 1768 // scalars are not computed yet. This can happen, because it is called 1769 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1770 // the scalars are collected. That should be a safe assumption in most 1771 // cases, because we check if the operands have vectorizable types 1772 // beforehand in LoopVectorizationLegality. 1773 return Scalars.find(VF) == Scalars.end() || 1774 !isScalarAfterVectorization(I, VF); 1775 }; 1776 1777 /// Returns a range containing only operands needing to be extracted. 1778 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1779 ElementCount VF) const { 1780 return SmallVector<Value *, 4>(make_filter_range( 1781 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1782 } 1783 1784 /// Determines if we have the infrastructure to vectorize loop \p L and its 1785 /// epilogue, assuming the main loop is vectorized by \p VF. 1786 bool isCandidateForEpilogueVectorization(const Loop &L, 1787 const ElementCount VF) const; 1788 1789 /// Returns true if epilogue vectorization is considered profitable, and 1790 /// false otherwise. 1791 /// \p VF is the vectorization factor chosen for the original loop. 1792 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1793 1794 public: 1795 /// The loop that we evaluate. 1796 Loop *TheLoop; 1797 1798 /// Predicated scalar evolution analysis. 1799 PredicatedScalarEvolution &PSE; 1800 1801 /// Loop Info analysis. 1802 LoopInfo *LI; 1803 1804 /// Vectorization legality. 1805 LoopVectorizationLegality *Legal; 1806 1807 /// Vector target information. 1808 const TargetTransformInfo &TTI; 1809 1810 /// Target Library Info. 1811 const TargetLibraryInfo *TLI; 1812 1813 /// Demanded bits analysis. 1814 DemandedBits *DB; 1815 1816 /// Assumption cache. 1817 AssumptionCache *AC; 1818 1819 /// Interface to emit optimization remarks. 1820 OptimizationRemarkEmitter *ORE; 1821 1822 const Function *TheFunction; 1823 1824 /// Loop Vectorize Hint. 1825 const LoopVectorizeHints *Hints; 1826 1827 /// The interleave access information contains groups of interleaved accesses 1828 /// with the same stride and close to each other. 1829 InterleavedAccessInfo &InterleaveInfo; 1830 1831 /// Values to ignore in the cost model. 1832 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1833 1834 /// Values to ignore in the cost model when VF > 1. 1835 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1836 1837 /// All element types found in the loop. 1838 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1839 1840 /// Profitable vector factors. 1841 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1842 }; 1843 } // end namespace llvm 1844 1845 /// Helper struct to manage generating runtime checks for vectorization. 1846 /// 1847 /// The runtime checks are created up-front in temporary blocks to allow better 1848 /// estimating the cost and un-linked from the existing IR. After deciding to 1849 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1850 /// temporary blocks are completely removed. 1851 class GeneratedRTChecks { 1852 /// Basic block which contains the generated SCEV checks, if any. 1853 BasicBlock *SCEVCheckBlock = nullptr; 1854 1855 /// The value representing the result of the generated SCEV checks. If it is 1856 /// nullptr, either no SCEV checks have been generated or they have been used. 1857 Value *SCEVCheckCond = nullptr; 1858 1859 /// Basic block which contains the generated memory runtime checks, if any. 1860 BasicBlock *MemCheckBlock = nullptr; 1861 1862 /// The value representing the result of the generated memory runtime checks. 1863 /// If it is nullptr, either no memory runtime checks have been generated or 1864 /// they have been used. 1865 Value *MemRuntimeCheckCond = nullptr; 1866 1867 DominatorTree *DT; 1868 LoopInfo *LI; 1869 TargetTransformInfo *TTI; 1870 1871 SCEVExpander SCEVExp; 1872 SCEVExpander MemCheckExp; 1873 1874 bool CostTooHigh = false; 1875 1876 public: 1877 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1878 TargetTransformInfo *TTI, const DataLayout &DL) 1879 : DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"), 1880 MemCheckExp(SE, DL, "scev.check") {} 1881 1882 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1883 /// accurately estimate the cost of the runtime checks. The blocks are 1884 /// un-linked from the IR and is added back during vector code generation. If 1885 /// there is no vector code generation, the check blocks are removed 1886 /// completely. 1887 void Create(Loop *L, const LoopAccessInfo &LAI, 1888 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { 1889 1890 // Hard cutoff to limit compile-time increase in case a very large number of 1891 // runtime checks needs to be generated. 1892 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to 1893 // profile info. 1894 CostTooHigh = 1895 LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold; 1896 if (CostTooHigh) 1897 return; 1898 1899 BasicBlock *LoopHeader = L->getHeader(); 1900 BasicBlock *Preheader = L->getLoopPreheader(); 1901 1902 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1903 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1904 // may be used by SCEVExpander. The blocks will be un-linked from their 1905 // predecessors and removed from LI & DT at the end of the function. 1906 if (!UnionPred.isAlwaysTrue()) { 1907 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1908 nullptr, "vector.scevcheck"); 1909 1910 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1911 &UnionPred, SCEVCheckBlock->getTerminator()); 1912 } 1913 1914 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1915 if (RtPtrChecking.Need) { 1916 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1917 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1918 "vector.memcheck"); 1919 1920 auto DiffChecks = RtPtrChecking.getDiffChecks(); 1921 if (DiffChecks) { 1922 Value *RuntimeVF = nullptr; 1923 MemRuntimeCheckCond = addDiffRuntimeChecks( 1924 MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp, 1925 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) { 1926 if (!RuntimeVF) 1927 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF); 1928 return RuntimeVF; 1929 }, 1930 IC); 1931 } else { 1932 MemRuntimeCheckCond = 1933 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1934 RtPtrChecking.getChecks(), MemCheckExp); 1935 } 1936 assert(MemRuntimeCheckCond && 1937 "no RT checks generated although RtPtrChecking " 1938 "claimed checks are required"); 1939 } 1940 1941 if (!MemCheckBlock && !SCEVCheckBlock) 1942 return; 1943 1944 // Unhook the temporary block with the checks, update various places 1945 // accordingly. 1946 if (SCEVCheckBlock) 1947 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1948 if (MemCheckBlock) 1949 MemCheckBlock->replaceAllUsesWith(Preheader); 1950 1951 if (SCEVCheckBlock) { 1952 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1953 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1954 Preheader->getTerminator()->eraseFromParent(); 1955 } 1956 if (MemCheckBlock) { 1957 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1958 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1959 Preheader->getTerminator()->eraseFromParent(); 1960 } 1961 1962 DT->changeImmediateDominator(LoopHeader, Preheader); 1963 if (MemCheckBlock) { 1964 DT->eraseNode(MemCheckBlock); 1965 LI->removeBlock(MemCheckBlock); 1966 } 1967 if (SCEVCheckBlock) { 1968 DT->eraseNode(SCEVCheckBlock); 1969 LI->removeBlock(SCEVCheckBlock); 1970 } 1971 } 1972 1973 InstructionCost getCost() { 1974 if (SCEVCheckBlock || MemCheckBlock) 1975 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n"); 1976 1977 if (CostTooHigh) { 1978 InstructionCost Cost; 1979 Cost.setInvalid(); 1980 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n"); 1981 return Cost; 1982 } 1983 1984 InstructionCost RTCheckCost = 0; 1985 if (SCEVCheckBlock) 1986 for (Instruction &I : *SCEVCheckBlock) { 1987 if (SCEVCheckBlock->getTerminator() == &I) 1988 continue; 1989 InstructionCost C = 1990 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 1991 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 1992 RTCheckCost += C; 1993 } 1994 if (MemCheckBlock) 1995 for (Instruction &I : *MemCheckBlock) { 1996 if (MemCheckBlock->getTerminator() == &I) 1997 continue; 1998 InstructionCost C = 1999 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 2000 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 2001 RTCheckCost += C; 2002 } 2003 2004 if (SCEVCheckBlock || MemCheckBlock) 2005 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost 2006 << "\n"); 2007 2008 return RTCheckCost; 2009 } 2010 2011 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2012 /// unused. 2013 ~GeneratedRTChecks() { 2014 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2015 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2016 if (!SCEVCheckCond) 2017 SCEVCleaner.markResultUsed(); 2018 2019 if (!MemRuntimeCheckCond) 2020 MemCheckCleaner.markResultUsed(); 2021 2022 if (MemRuntimeCheckCond) { 2023 auto &SE = *MemCheckExp.getSE(); 2024 // Memory runtime check generation creates compares that use expanded 2025 // values. Remove them before running the SCEVExpanderCleaners. 2026 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2027 if (MemCheckExp.isInsertedInstruction(&I)) 2028 continue; 2029 SE.forgetValue(&I); 2030 I.eraseFromParent(); 2031 } 2032 } 2033 MemCheckCleaner.cleanup(); 2034 SCEVCleaner.cleanup(); 2035 2036 if (SCEVCheckCond) 2037 SCEVCheckBlock->eraseFromParent(); 2038 if (MemRuntimeCheckCond) 2039 MemCheckBlock->eraseFromParent(); 2040 } 2041 2042 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2043 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2044 /// depending on the generated condition. 2045 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2046 BasicBlock *LoopVectorPreHeader, 2047 BasicBlock *LoopExitBlock) { 2048 if (!SCEVCheckCond) 2049 return nullptr; 2050 2051 Value *Cond = SCEVCheckCond; 2052 // Mark the check as used, to prevent it from being removed during cleanup. 2053 SCEVCheckCond = nullptr; 2054 if (auto *C = dyn_cast<ConstantInt>(Cond)) 2055 if (C->isZero()) 2056 return nullptr; 2057 2058 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2059 2060 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2061 // Create new preheader for vector loop. 2062 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2063 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2064 2065 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2066 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2067 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2068 SCEVCheckBlock); 2069 2070 DT->addNewBlock(SCEVCheckBlock, Pred); 2071 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2072 2073 ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), 2074 BranchInst::Create(Bypass, LoopVectorPreHeader, Cond)); 2075 return SCEVCheckBlock; 2076 } 2077 2078 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2079 /// the branches to branch to the vector preheader or \p Bypass, depending on 2080 /// the generated condition. 2081 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2082 BasicBlock *LoopVectorPreHeader) { 2083 // Check if we generated code that checks in runtime if arrays overlap. 2084 if (!MemRuntimeCheckCond) 2085 return nullptr; 2086 2087 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2088 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2089 MemCheckBlock); 2090 2091 DT->addNewBlock(MemCheckBlock, Pred); 2092 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2093 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2094 2095 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2096 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2097 2098 ReplaceInstWithInst( 2099 MemCheckBlock->getTerminator(), 2100 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2101 MemCheckBlock->getTerminator()->setDebugLoc( 2102 Pred->getTerminator()->getDebugLoc()); 2103 2104 // Mark the check as used, to prevent it from being removed during cleanup. 2105 MemRuntimeCheckCond = nullptr; 2106 return MemCheckBlock; 2107 } 2108 }; 2109 2110 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2111 // vectorization. The loop needs to be annotated with #pragma omp simd 2112 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2113 // vector length information is not provided, vectorization is not considered 2114 // explicit. Interleave hints are not allowed either. These limitations will be 2115 // relaxed in the future. 2116 // Please, note that we are currently forced to abuse the pragma 'clang 2117 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2118 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2119 // provides *explicit vectorization hints* (LV can bypass legal checks and 2120 // assume that vectorization is legal). However, both hints are implemented 2121 // using the same metadata (llvm.loop.vectorize, processed by 2122 // LoopVectorizeHints). This will be fixed in the future when the native IR 2123 // representation for pragma 'omp simd' is introduced. 2124 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2125 OptimizationRemarkEmitter *ORE) { 2126 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2127 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2128 2129 // Only outer loops with an explicit vectorization hint are supported. 2130 // Unannotated outer loops are ignored. 2131 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2132 return false; 2133 2134 Function *Fn = OuterLp->getHeader()->getParent(); 2135 if (!Hints.allowVectorization(Fn, OuterLp, 2136 true /*VectorizeOnlyWhenForced*/)) { 2137 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2138 return false; 2139 } 2140 2141 if (Hints.getInterleave() > 1) { 2142 // TODO: Interleave support is future work. 2143 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2144 "outer loops.\n"); 2145 Hints.emitRemarkWithHints(); 2146 return false; 2147 } 2148 2149 return true; 2150 } 2151 2152 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2153 OptimizationRemarkEmitter *ORE, 2154 SmallVectorImpl<Loop *> &V) { 2155 // Collect inner loops and outer loops without irreducible control flow. For 2156 // now, only collect outer loops that have explicit vectorization hints. If we 2157 // are stress testing the VPlan H-CFG construction, we collect the outermost 2158 // loop of every loop nest. 2159 if (L.isInnermost() || VPlanBuildStressTest || 2160 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2161 LoopBlocksRPO RPOT(&L); 2162 RPOT.perform(LI); 2163 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2164 V.push_back(&L); 2165 // TODO: Collect inner loops inside marked outer loops in case 2166 // vectorization fails for the outer loop. Do not invoke 2167 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2168 // already known to be reducible. We can use an inherited attribute for 2169 // that. 2170 return; 2171 } 2172 } 2173 for (Loop *InnerL : L) 2174 collectSupportedLoops(*InnerL, LI, ORE, V); 2175 } 2176 2177 namespace { 2178 2179 /// The LoopVectorize Pass. 2180 struct LoopVectorize : public FunctionPass { 2181 /// Pass identification, replacement for typeid 2182 static char ID; 2183 2184 LoopVectorizePass Impl; 2185 2186 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2187 bool VectorizeOnlyWhenForced = false) 2188 : FunctionPass(ID), 2189 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2190 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2191 } 2192 2193 bool runOnFunction(Function &F) override { 2194 if (skipFunction(F)) 2195 return false; 2196 2197 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2198 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2199 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2200 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2201 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2202 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2203 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2204 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2205 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2206 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2207 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2208 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2209 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2210 2211 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2212 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2213 2214 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2215 GetLAA, *ORE, PSI).MadeAnyChange; 2216 } 2217 2218 void getAnalysisUsage(AnalysisUsage &AU) const override { 2219 AU.addRequired<AssumptionCacheTracker>(); 2220 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2221 AU.addRequired<DominatorTreeWrapperPass>(); 2222 AU.addRequired<LoopInfoWrapperPass>(); 2223 AU.addRequired<ScalarEvolutionWrapperPass>(); 2224 AU.addRequired<TargetTransformInfoWrapperPass>(); 2225 AU.addRequired<AAResultsWrapperPass>(); 2226 AU.addRequired<LoopAccessLegacyAnalysis>(); 2227 AU.addRequired<DemandedBitsWrapperPass>(); 2228 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2229 AU.addRequired<InjectTLIMappingsLegacy>(); 2230 2231 // We currently do not preserve loopinfo/dominator analyses with outer loop 2232 // vectorization. Until this is addressed, mark these analyses as preserved 2233 // only for non-VPlan-native path. 2234 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2235 if (!EnableVPlanNativePath) { 2236 AU.addPreserved<LoopInfoWrapperPass>(); 2237 AU.addPreserved<DominatorTreeWrapperPass>(); 2238 } 2239 2240 AU.addPreserved<BasicAAWrapperPass>(); 2241 AU.addPreserved<GlobalsAAWrapperPass>(); 2242 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2243 } 2244 }; 2245 2246 } // end anonymous namespace 2247 2248 //===----------------------------------------------------------------------===// 2249 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2250 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2251 //===----------------------------------------------------------------------===// 2252 2253 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2254 // We need to place the broadcast of invariant variables outside the loop, 2255 // but only if it's proven safe to do so. Else, broadcast will be inside 2256 // vector loop body. 2257 Instruction *Instr = dyn_cast<Instruction>(V); 2258 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2259 (!Instr || 2260 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2261 // Place the code for broadcasting invariant variables in the new preheader. 2262 IRBuilder<>::InsertPointGuard Guard(Builder); 2263 if (SafeToHoist) 2264 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2265 2266 // Broadcast the scalar into all locations in the vector. 2267 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2268 2269 return Shuf; 2270 } 2271 2272 /// This function adds 2273 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2274 /// to each vector element of Val. The sequence starts at StartIndex. 2275 /// \p Opcode is relevant for FP induction variable. 2276 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2277 Instruction::BinaryOps BinOp, ElementCount VF, 2278 IRBuilderBase &Builder) { 2279 assert(VF.isVector() && "only vector VFs are supported"); 2280 2281 // Create and check the types. 2282 auto *ValVTy = cast<VectorType>(Val->getType()); 2283 ElementCount VLen = ValVTy->getElementCount(); 2284 2285 Type *STy = Val->getType()->getScalarType(); 2286 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2287 "Induction Step must be an integer or FP"); 2288 assert(Step->getType() == STy && "Step has wrong type"); 2289 2290 SmallVector<Constant *, 8> Indices; 2291 2292 // Create a vector of consecutive numbers from zero to VF. 2293 VectorType *InitVecValVTy = ValVTy; 2294 if (STy->isFloatingPointTy()) { 2295 Type *InitVecValSTy = 2296 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2297 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2298 } 2299 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2300 2301 // Splat the StartIdx 2302 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2303 2304 if (STy->isIntegerTy()) { 2305 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2306 Step = Builder.CreateVectorSplat(VLen, Step); 2307 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2308 // FIXME: The newly created binary instructions should contain nsw/nuw 2309 // flags, which can be found from the original scalar operations. 2310 Step = Builder.CreateMul(InitVec, Step); 2311 return Builder.CreateAdd(Val, Step, "induction"); 2312 } 2313 2314 // Floating point induction. 2315 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2316 "Binary Opcode should be specified for FP induction"); 2317 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2318 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2319 2320 Step = Builder.CreateVectorSplat(VLen, Step); 2321 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2322 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2323 } 2324 2325 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2326 /// variable on which to base the steps, \p Step is the size of the step. 2327 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2328 const InductionDescriptor &ID, VPValue *Def, 2329 VPTransformState &State) { 2330 IRBuilderBase &Builder = State.Builder; 2331 // We shouldn't have to build scalar steps if we aren't vectorizing. 2332 assert(State.VF.isVector() && "VF should be greater than one"); 2333 // Get the value type and ensure it and the step have the same integer type. 2334 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2335 assert(ScalarIVTy == Step->getType() && 2336 "Val and Step should have the same type"); 2337 2338 // We build scalar steps for both integer and floating-point induction 2339 // variables. Here, we determine the kind of arithmetic we will perform. 2340 Instruction::BinaryOps AddOp; 2341 Instruction::BinaryOps MulOp; 2342 if (ScalarIVTy->isIntegerTy()) { 2343 AddOp = Instruction::Add; 2344 MulOp = Instruction::Mul; 2345 } else { 2346 AddOp = ID.getInductionOpcode(); 2347 MulOp = Instruction::FMul; 2348 } 2349 2350 // Determine the number of scalars we need to generate for each unroll 2351 // iteration. 2352 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2353 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2354 // Compute the scalar steps and save the results in State. 2355 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2356 ScalarIVTy->getScalarSizeInBits()); 2357 Type *VecIVTy = nullptr; 2358 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2359 if (!FirstLaneOnly && State.VF.isScalable()) { 2360 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2361 UnitStepVec = 2362 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2363 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2364 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2365 } 2366 2367 for (unsigned Part = 0; Part < State.UF; ++Part) { 2368 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2369 2370 if (!FirstLaneOnly && State.VF.isScalable()) { 2371 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2372 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2373 if (ScalarIVTy->isFloatingPointTy()) 2374 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2375 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2376 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2377 State.set(Def, Add, Part); 2378 // It's useful to record the lane values too for the known minimum number 2379 // of elements so we do those below. This improves the code quality when 2380 // trying to extract the first element, for example. 2381 } 2382 2383 if (ScalarIVTy->isFloatingPointTy()) 2384 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2385 2386 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2387 Value *StartIdx = Builder.CreateBinOp( 2388 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2389 // The step returned by `createStepForVF` is a runtime-evaluated value 2390 // when VF is scalable. Otherwise, it should be folded into a Constant. 2391 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2392 "Expected StartIdx to be folded to a constant when VF is not " 2393 "scalable"); 2394 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2395 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2396 State.set(Def, Add, VPIteration(Part, Lane)); 2397 } 2398 } 2399 } 2400 2401 // Generate code for the induction step. Note that induction steps are 2402 // required to be loop-invariant 2403 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2404 Instruction *InsertBefore, 2405 Loop *OrigLoop = nullptr) { 2406 const DataLayout &DL = SE.getDataLayout(); 2407 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2408 "Induction step should be loop invariant"); 2409 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2410 return E->getValue(); 2411 2412 SCEVExpander Exp(SE, DL, "induction"); 2413 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2414 } 2415 2416 /// Compute the transformed value of Index at offset StartValue using step 2417 /// StepValue. 2418 /// For integer induction, returns StartValue + Index * StepValue. 2419 /// For pointer induction, returns StartValue[Index * StepValue]. 2420 /// FIXME: The newly created binary instructions should contain nsw/nuw 2421 /// flags, which can be found from the original scalar operations. 2422 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2423 Value *StartValue, Value *Step, 2424 const InductionDescriptor &ID) { 2425 assert(Index->getType()->getScalarType() == Step->getType() && 2426 "Index scalar type does not match StepValue type"); 2427 2428 // Note: the IR at this point is broken. We cannot use SE to create any new 2429 // SCEV and then expand it, hoping that SCEV's simplification will give us 2430 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2431 // lead to various SCEV crashes. So all we can do is to use builder and rely 2432 // on InstCombine for future simplifications. Here we handle some trivial 2433 // cases only. 2434 auto CreateAdd = [&B](Value *X, Value *Y) { 2435 assert(X->getType() == Y->getType() && "Types don't match!"); 2436 if (auto *CX = dyn_cast<ConstantInt>(X)) 2437 if (CX->isZero()) 2438 return Y; 2439 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2440 if (CY->isZero()) 2441 return X; 2442 return B.CreateAdd(X, Y); 2443 }; 2444 2445 // We allow X to be a vector type, in which case Y will potentially be 2446 // splatted into a vector with the same element count. 2447 auto CreateMul = [&B](Value *X, Value *Y) { 2448 assert(X->getType()->getScalarType() == Y->getType() && 2449 "Types don't match!"); 2450 if (auto *CX = dyn_cast<ConstantInt>(X)) 2451 if (CX->isOne()) 2452 return Y; 2453 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2454 if (CY->isOne()) 2455 return X; 2456 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2457 if (XVTy && !isa<VectorType>(Y->getType())) 2458 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2459 return B.CreateMul(X, Y); 2460 }; 2461 2462 switch (ID.getKind()) { 2463 case InductionDescriptor::IK_IntInduction: { 2464 assert(!isa<VectorType>(Index->getType()) && 2465 "Vector indices not supported for integer inductions yet"); 2466 assert(Index->getType() == StartValue->getType() && 2467 "Index type does not match StartValue type"); 2468 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2469 return B.CreateSub(StartValue, Index); 2470 auto *Offset = CreateMul(Index, Step); 2471 return CreateAdd(StartValue, Offset); 2472 } 2473 case InductionDescriptor::IK_PtrInduction: { 2474 assert(isa<Constant>(Step) && 2475 "Expected constant step for pointer induction"); 2476 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2477 } 2478 case InductionDescriptor::IK_FpInduction: { 2479 assert(!isa<VectorType>(Index->getType()) && 2480 "Vector indices not supported for FP inductions yet"); 2481 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2482 auto InductionBinOp = ID.getInductionBinOp(); 2483 assert(InductionBinOp && 2484 (InductionBinOp->getOpcode() == Instruction::FAdd || 2485 InductionBinOp->getOpcode() == Instruction::FSub) && 2486 "Original bin op should be defined for FP induction"); 2487 2488 Value *MulExp = B.CreateFMul(Step, Index); 2489 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2490 "induction"); 2491 } 2492 case InductionDescriptor::IK_NoInduction: 2493 return nullptr; 2494 } 2495 llvm_unreachable("invalid enum"); 2496 } 2497 2498 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2499 const VPIteration &Instance, 2500 VPTransformState &State) { 2501 Value *ScalarInst = State.get(Def, Instance); 2502 Value *VectorValue = State.get(Def, Instance.Part); 2503 VectorValue = Builder.CreateInsertElement( 2504 VectorValue, ScalarInst, 2505 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2506 State.set(Def, VectorValue, Instance.Part); 2507 } 2508 2509 // Return whether we allow using masked interleave-groups (for dealing with 2510 // strided loads/stores that reside in predicated blocks, or for dealing 2511 // with gaps). 2512 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2513 // If an override option has been passed in for interleaved accesses, use it. 2514 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2515 return EnableMaskedInterleavedMemAccesses; 2516 2517 return TTI.enableMaskedInterleavedAccessVectorization(); 2518 } 2519 2520 // Try to vectorize the interleave group that \p Instr belongs to. 2521 // 2522 // E.g. Translate following interleaved load group (factor = 3): 2523 // for (i = 0; i < N; i+=3) { 2524 // R = Pic[i]; // Member of index 0 2525 // G = Pic[i+1]; // Member of index 1 2526 // B = Pic[i+2]; // Member of index 2 2527 // ... // do something to R, G, B 2528 // } 2529 // To: 2530 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2531 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2532 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2533 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2534 // 2535 // Or translate following interleaved store group (factor = 3): 2536 // for (i = 0; i < N; i+=3) { 2537 // ... do something to R, G, B 2538 // Pic[i] = R; // Member of index 0 2539 // Pic[i+1] = G; // Member of index 1 2540 // Pic[i+2] = B; // Member of index 2 2541 // } 2542 // To: 2543 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2544 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2545 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2546 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2547 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2548 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2549 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2550 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2551 VPValue *BlockInMask) { 2552 Instruction *Instr = Group->getInsertPos(); 2553 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2554 2555 // Prepare for the vector type of the interleaved load/store. 2556 Type *ScalarTy = getLoadStoreType(Instr); 2557 unsigned InterleaveFactor = Group->getFactor(); 2558 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2559 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2560 2561 // Prepare for the new pointers. 2562 SmallVector<Value *, 2> AddrParts; 2563 unsigned Index = Group->getIndex(Instr); 2564 2565 // TODO: extend the masked interleaved-group support to reversed access. 2566 assert((!BlockInMask || !Group->isReverse()) && 2567 "Reversed masked interleave-group not supported."); 2568 2569 // If the group is reverse, adjust the index to refer to the last vector lane 2570 // instead of the first. We adjust the index from the first vector lane, 2571 // rather than directly getting the pointer for lane VF - 1, because the 2572 // pointer operand of the interleaved access is supposed to be uniform. For 2573 // uniform instructions, we're only required to generate a value for the 2574 // first vector lane in each unroll iteration. 2575 if (Group->isReverse()) 2576 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2577 2578 for (unsigned Part = 0; Part < UF; Part++) { 2579 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2580 State.setDebugLocFromInst(AddrPart); 2581 2582 // Notice current instruction could be any index. Need to adjust the address 2583 // to the member of index 0. 2584 // 2585 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2586 // b = A[i]; // Member of index 0 2587 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2588 // 2589 // E.g. A[i+1] = a; // Member of index 1 2590 // A[i] = b; // Member of index 0 2591 // A[i+2] = c; // Member of index 2 (Current instruction) 2592 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2593 2594 bool InBounds = false; 2595 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2596 InBounds = gep->isInBounds(); 2597 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2598 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2599 2600 // Cast to the vector pointer type. 2601 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2602 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2603 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2604 } 2605 2606 State.setDebugLocFromInst(Instr); 2607 Value *PoisonVec = PoisonValue::get(VecTy); 2608 2609 Value *MaskForGaps = nullptr; 2610 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2611 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2612 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2613 } 2614 2615 // Vectorize the interleaved load group. 2616 if (isa<LoadInst>(Instr)) { 2617 // For each unroll part, create a wide load for the group. 2618 SmallVector<Value *, 2> NewLoads; 2619 for (unsigned Part = 0; Part < UF; Part++) { 2620 Instruction *NewLoad; 2621 if (BlockInMask || MaskForGaps) { 2622 assert(useMaskedInterleavedAccesses(*TTI) && 2623 "masked interleaved groups are not allowed."); 2624 Value *GroupMask = MaskForGaps; 2625 if (BlockInMask) { 2626 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2627 Value *ShuffledMask = Builder.CreateShuffleVector( 2628 BlockInMaskPart, 2629 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2630 "interleaved.mask"); 2631 GroupMask = MaskForGaps 2632 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2633 MaskForGaps) 2634 : ShuffledMask; 2635 } 2636 NewLoad = 2637 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2638 GroupMask, PoisonVec, "wide.masked.vec"); 2639 } 2640 else 2641 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2642 Group->getAlign(), "wide.vec"); 2643 Group->addMetadata(NewLoad); 2644 NewLoads.push_back(NewLoad); 2645 } 2646 2647 // For each member in the group, shuffle out the appropriate data from the 2648 // wide loads. 2649 unsigned J = 0; 2650 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2651 Instruction *Member = Group->getMember(I); 2652 2653 // Skip the gaps in the group. 2654 if (!Member) 2655 continue; 2656 2657 auto StrideMask = 2658 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2659 for (unsigned Part = 0; Part < UF; Part++) { 2660 Value *StridedVec = Builder.CreateShuffleVector( 2661 NewLoads[Part], StrideMask, "strided.vec"); 2662 2663 // If this member has different type, cast the result type. 2664 if (Member->getType() != ScalarTy) { 2665 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2666 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2667 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2668 } 2669 2670 if (Group->isReverse()) 2671 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2672 2673 State.set(VPDefs[J], StridedVec, Part); 2674 } 2675 ++J; 2676 } 2677 return; 2678 } 2679 2680 // The sub vector type for current instruction. 2681 auto *SubVT = VectorType::get(ScalarTy, VF); 2682 2683 // Vectorize the interleaved store group. 2684 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2685 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2686 "masked interleaved groups are not allowed."); 2687 assert((!MaskForGaps || !VF.isScalable()) && 2688 "masking gaps for scalable vectors is not yet supported."); 2689 for (unsigned Part = 0; Part < UF; Part++) { 2690 // Collect the stored vector from each member. 2691 SmallVector<Value *, 4> StoredVecs; 2692 for (unsigned i = 0; i < InterleaveFactor; i++) { 2693 assert((Group->getMember(i) || MaskForGaps) && 2694 "Fail to get a member from an interleaved store group"); 2695 Instruction *Member = Group->getMember(i); 2696 2697 // Skip the gaps in the group. 2698 if (!Member) { 2699 Value *Undef = PoisonValue::get(SubVT); 2700 StoredVecs.push_back(Undef); 2701 continue; 2702 } 2703 2704 Value *StoredVec = State.get(StoredValues[i], Part); 2705 2706 if (Group->isReverse()) 2707 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2708 2709 // If this member has different type, cast it to a unified type. 2710 2711 if (StoredVec->getType() != SubVT) 2712 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2713 2714 StoredVecs.push_back(StoredVec); 2715 } 2716 2717 // Concatenate all vectors into a wide vector. 2718 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2719 2720 // Interleave the elements in the wide vector. 2721 Value *IVec = Builder.CreateShuffleVector( 2722 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2723 "interleaved.vec"); 2724 2725 Instruction *NewStoreInstr; 2726 if (BlockInMask || MaskForGaps) { 2727 Value *GroupMask = MaskForGaps; 2728 if (BlockInMask) { 2729 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2730 Value *ShuffledMask = Builder.CreateShuffleVector( 2731 BlockInMaskPart, 2732 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2733 "interleaved.mask"); 2734 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2735 ShuffledMask, MaskForGaps) 2736 : ShuffledMask; 2737 } 2738 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2739 Group->getAlign(), GroupMask); 2740 } else 2741 NewStoreInstr = 2742 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2743 2744 Group->addMetadata(NewStoreInstr); 2745 } 2746 } 2747 2748 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2749 VPReplicateRecipe *RepRecipe, 2750 const VPIteration &Instance, 2751 bool IfPredicateInstr, 2752 VPTransformState &State) { 2753 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2754 2755 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2756 // the first lane and part. 2757 if (isa<NoAliasScopeDeclInst>(Instr)) 2758 if (!Instance.isFirstIteration()) 2759 return; 2760 2761 // Does this instruction return a value ? 2762 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2763 2764 Instruction *Cloned = Instr->clone(); 2765 if (!IsVoidRetTy) 2766 Cloned->setName(Instr->getName() + ".cloned"); 2767 2768 // If the scalarized instruction contributes to the address computation of a 2769 // widen masked load/store which was in a basic block that needed predication 2770 // and is not predicated after vectorization, we can't propagate 2771 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2772 // instruction could feed a poison value to the base address of the widen 2773 // load/store. 2774 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2775 Cloned->dropPoisonGeneratingFlags(); 2776 2777 if (Instr->getDebugLoc()) 2778 State.setDebugLocFromInst(Instr); 2779 2780 // Replace the operands of the cloned instructions with their scalar 2781 // equivalents in the new loop. 2782 for (auto &I : enumerate(RepRecipe->operands())) { 2783 auto InputInstance = Instance; 2784 VPValue *Operand = I.value(); 2785 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2786 if (OperandR && OperandR->isUniform()) 2787 InputInstance.Lane = VPLane::getFirstLane(); 2788 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2789 } 2790 State.addNewMetadata(Cloned, Instr); 2791 2792 // Place the cloned scalar in the new loop. 2793 State.Builder.Insert(Cloned); 2794 2795 State.set(RepRecipe, Cloned, Instance); 2796 2797 // If we just cloned a new assumption, add it the assumption cache. 2798 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2799 AC->registerAssumption(II); 2800 2801 // End if-block. 2802 if (IfPredicateInstr) 2803 PredicatedInstructions.push_back(Cloned); 2804 } 2805 2806 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2807 if (TripCount) 2808 return TripCount; 2809 2810 assert(InsertBlock); 2811 IRBuilder<> Builder(InsertBlock->getTerminator()); 2812 // Find the loop boundaries. 2813 ScalarEvolution *SE = PSE.getSE(); 2814 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2815 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2816 "Invalid loop count"); 2817 2818 Type *IdxTy = Legal->getWidestInductionType(); 2819 assert(IdxTy && "No type for induction"); 2820 2821 // The exit count might have the type of i64 while the phi is i32. This can 2822 // happen if we have an induction variable that is sign extended before the 2823 // compare. The only way that we get a backedge taken count is that the 2824 // induction variable was signed and as such will not overflow. In such a case 2825 // truncation is legal. 2826 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2827 IdxTy->getPrimitiveSizeInBits()) 2828 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2829 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2830 2831 // Get the total trip count from the count by adding 1. 2832 const SCEV *ExitCount = SE->getAddExpr( 2833 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2834 2835 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2836 2837 // Expand the trip count and place the new instructions in the preheader. 2838 // Notice that the pre-header does not change, only the loop body. 2839 SCEVExpander Exp(*SE, DL, "induction"); 2840 2841 // Count holds the overall loop count (N). 2842 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2843 InsertBlock->getTerminator()); 2844 2845 if (TripCount->getType()->isPointerTy()) 2846 TripCount = 2847 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2848 InsertBlock->getTerminator()); 2849 2850 return TripCount; 2851 } 2852 2853 Value * 2854 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2855 if (VectorTripCount) 2856 return VectorTripCount; 2857 2858 Value *TC = getOrCreateTripCount(InsertBlock); 2859 IRBuilder<> Builder(InsertBlock->getTerminator()); 2860 2861 Type *Ty = TC->getType(); 2862 // This is where we can make the step a runtime constant. 2863 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2864 2865 // If the tail is to be folded by masking, round the number of iterations N 2866 // up to a multiple of Step instead of rounding down. This is done by first 2867 // adding Step-1 and then rounding down. Note that it's ok if this addition 2868 // overflows: the vector induction variable will eventually wrap to zero given 2869 // that it starts at zero and its Step is a power of two; the loop will then 2870 // exit, with the last early-exit vector comparison also producing all-true. 2871 // For scalable vectors the VF is not guaranteed to be a power of 2, but this 2872 // is accounted for in emitIterationCountCheck that adds an overflow check. 2873 if (Cost->foldTailByMasking()) { 2874 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2875 "VF*UF must be a power of 2 when folding tail by masking"); 2876 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2877 TC = Builder.CreateAdd( 2878 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2879 } 2880 2881 // Now we need to generate the expression for the part of the loop that the 2882 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2883 // iterations are not required for correctness, or N - Step, otherwise. Step 2884 // is equal to the vectorization factor (number of SIMD elements) times the 2885 // unroll factor (number of SIMD instructions). 2886 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2887 2888 // There are cases where we *must* run at least one iteration in the remainder 2889 // loop. See the cost model for when this can happen. If the step evenly 2890 // divides the trip count, we set the remainder to be equal to the step. If 2891 // the step does not evenly divide the trip count, no adjustment is necessary 2892 // since there will already be scalar iterations. Note that the minimum 2893 // iterations check ensures that N >= Step. 2894 if (Cost->requiresScalarEpilogue(VF)) { 2895 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2896 R = Builder.CreateSelect(IsZero, Step, R); 2897 } 2898 2899 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2900 2901 return VectorTripCount; 2902 } 2903 2904 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2905 const DataLayout &DL) { 2906 // Verify that V is a vector type with same number of elements as DstVTy. 2907 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2908 unsigned VF = DstFVTy->getNumElements(); 2909 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2910 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2911 Type *SrcElemTy = SrcVecTy->getElementType(); 2912 Type *DstElemTy = DstFVTy->getElementType(); 2913 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2914 "Vector elements must have same size"); 2915 2916 // Do a direct cast if element types are castable. 2917 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2918 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2919 } 2920 // V cannot be directly casted to desired vector type. 2921 // May happen when V is a floating point vector but DstVTy is a vector of 2922 // pointers or vice-versa. Handle this using a two-step bitcast using an 2923 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2924 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2925 "Only one type should be a pointer type"); 2926 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2927 "Only one type should be a floating point type"); 2928 Type *IntTy = 2929 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2930 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2931 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2932 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2933 } 2934 2935 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { 2936 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2937 // Reuse existing vector loop preheader for TC checks. 2938 // Note that new preheader block is generated for vector loop. 2939 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2940 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2941 2942 // Generate code to check if the loop's trip count is less than VF * UF, or 2943 // equal to it in case a scalar epilogue is required; this implies that the 2944 // vector trip count is zero. This check also covers the case where adding one 2945 // to the backedge-taken count overflowed leading to an incorrect trip count 2946 // of zero. In this case we will also jump to the scalar loop. 2947 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2948 : ICmpInst::ICMP_ULT; 2949 2950 // If tail is to be folded, vector loop takes care of all iterations. 2951 Type *CountTy = Count->getType(); 2952 Value *CheckMinIters = Builder.getFalse(); 2953 auto CreateStep = [&]() -> Value * { 2954 // Create step with max(MinProTripCount, UF * VF). 2955 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue()) 2956 return createStepForVF(Builder, CountTy, VF, UF); 2957 2958 Value *MinProfTC = 2959 createStepForVF(Builder, CountTy, MinProfitableTripCount, 1); 2960 if (!VF.isScalable()) 2961 return MinProfTC; 2962 return Builder.CreateBinaryIntrinsic( 2963 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF)); 2964 }; 2965 2966 if (!Cost->foldTailByMasking()) 2967 CheckMinIters = 2968 Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check"); 2969 else if (VF.isScalable()) { 2970 // vscale is not necessarily a power-of-2, which means we cannot guarantee 2971 // an overflow to zero when updating induction variables and so an 2972 // additional overflow check is required before entering the vector loop. 2973 2974 // Get the maximum unsigned value for the type. 2975 Value *MaxUIntTripCount = 2976 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); 2977 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); 2978 2979 // Don't execute the vector loop if (UMax - n) < (VF * UF). 2980 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep()); 2981 } 2982 2983 // Create new preheader for vector loop. 2984 LoopVectorPreHeader = 2985 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2986 "vector.ph"); 2987 2988 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2989 DT->getNode(Bypass)->getIDom()) && 2990 "TC check is expected to dominate Bypass"); 2991 2992 // Update dominator for Bypass & LoopExit (if needed). 2993 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2994 if (!Cost->requiresScalarEpilogue(VF)) 2995 // If there is an epilogue which must run, there's no edge from the 2996 // middle block to exit blocks and thus no need to update the immediate 2997 // dominator of the exit blocks. 2998 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2999 3000 ReplaceInstWithInst( 3001 TCCheckBlock->getTerminator(), 3002 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3003 LoopBypassBlocks.push_back(TCCheckBlock); 3004 } 3005 3006 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3007 BasicBlock *const SCEVCheckBlock = 3008 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3009 if (!SCEVCheckBlock) 3010 return nullptr; 3011 3012 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3013 (OptForSizeBasedOnProfile && 3014 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3015 "Cannot SCEV check stride or overflow when optimizing for size"); 3016 3017 3018 // Update dominator only if this is first RT check. 3019 if (LoopBypassBlocks.empty()) { 3020 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3021 if (!Cost->requiresScalarEpilogue(VF)) 3022 // If there is an epilogue which must run, there's no edge from the 3023 // middle block to exit blocks and thus no need to update the immediate 3024 // dominator of the exit blocks. 3025 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3026 } 3027 3028 LoopBypassBlocks.push_back(SCEVCheckBlock); 3029 AddedSafetyChecks = true; 3030 return SCEVCheckBlock; 3031 } 3032 3033 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3034 // VPlan-native path does not do any analysis for runtime checks currently. 3035 if (EnableVPlanNativePath) 3036 return nullptr; 3037 3038 BasicBlock *const MemCheckBlock = 3039 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3040 3041 // Check if we generated code that checks in runtime if arrays overlap. We put 3042 // the checks into a separate block to make the more common case of few 3043 // elements faster. 3044 if (!MemCheckBlock) 3045 return nullptr; 3046 3047 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3048 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3049 "Cannot emit memory checks when optimizing for size, unless forced " 3050 "to vectorize."); 3051 ORE->emit([&]() { 3052 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3053 OrigLoop->getStartLoc(), 3054 OrigLoop->getHeader()) 3055 << "Code-size may be reduced by not forcing " 3056 "vectorization, or by source-code modifications " 3057 "eliminating the need for runtime checks " 3058 "(e.g., adding 'restrict')."; 3059 }); 3060 } 3061 3062 LoopBypassBlocks.push_back(MemCheckBlock); 3063 3064 AddedSafetyChecks = true; 3065 3066 return MemCheckBlock; 3067 } 3068 3069 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3070 LoopScalarBody = OrigLoop->getHeader(); 3071 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3072 assert(LoopVectorPreHeader && "Invalid loop structure"); 3073 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3074 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3075 "multiple exit loop without required epilogue?"); 3076 3077 LoopMiddleBlock = 3078 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3079 LI, nullptr, Twine(Prefix) + "middle.block"); 3080 LoopScalarPreHeader = 3081 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3082 nullptr, Twine(Prefix) + "scalar.ph"); 3083 3084 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3085 3086 // Set up the middle block terminator. Two cases: 3087 // 1) If we know that we must execute the scalar epilogue, emit an 3088 // unconditional branch. 3089 // 2) Otherwise, we must have a single unique exit block (due to how we 3090 // implement the multiple exit case). In this case, set up a conditonal 3091 // branch from the middle block to the loop scalar preheader, and the 3092 // exit block. completeLoopSkeleton will update the condition to use an 3093 // iteration check, if required to decide whether to execute the remainder. 3094 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3095 BranchInst::Create(LoopScalarPreHeader) : 3096 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3097 Builder.getTrue()); 3098 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3099 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3100 3101 // Update dominator for loop exit. During skeleton creation, only the vector 3102 // pre-header and the middle block are created. The vector loop is entirely 3103 // created during VPlan exection. 3104 if (!Cost->requiresScalarEpilogue(VF)) 3105 // If there is an epilogue which must run, there's no edge from the 3106 // middle block to exit blocks and thus no need to update the immediate 3107 // dominator of the exit blocks. 3108 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3109 } 3110 3111 void InnerLoopVectorizer::createInductionResumeValues( 3112 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3113 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3114 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3115 "Inconsistent information about additional bypass."); 3116 3117 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3118 assert(VectorTripCount && "Expected valid arguments"); 3119 // We are going to resume the execution of the scalar loop. 3120 // Go over all of the induction variables that we found and fix the 3121 // PHIs that are left in the scalar version of the loop. 3122 // The starting values of PHI nodes depend on the counter of the last 3123 // iteration in the vectorized loop. 3124 // If we come from a bypass edge then we need to start from the original 3125 // start value. 3126 Instruction *OldInduction = Legal->getPrimaryInduction(); 3127 for (auto &InductionEntry : Legal->getInductionVars()) { 3128 PHINode *OrigPhi = InductionEntry.first; 3129 InductionDescriptor II = InductionEntry.second; 3130 3131 Value *&EndValue = IVEndValues[OrigPhi]; 3132 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3133 if (OrigPhi == OldInduction) { 3134 // We know what the end value is. 3135 EndValue = VectorTripCount; 3136 } else { 3137 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3138 3139 // Fast-math-flags propagate from the original induction instruction. 3140 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3141 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3142 3143 Type *StepType = II.getStep()->getType(); 3144 Instruction::CastOps CastOp = 3145 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3146 Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc"); 3147 Value *Step = 3148 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3149 EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3150 EndValue->setName("ind.end"); 3151 3152 // Compute the end value for the additional bypass (if applicable). 3153 if (AdditionalBypass.first) { 3154 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3155 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3156 StepType, true); 3157 Value *Step = 3158 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3159 VTC = 3160 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc"); 3161 EndValueFromAdditionalBypass = 3162 emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3163 EndValueFromAdditionalBypass->setName("ind.end"); 3164 } 3165 } 3166 3167 // Create phi nodes to merge from the backedge-taken check block. 3168 PHINode *BCResumeVal = 3169 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3170 LoopScalarPreHeader->getTerminator()); 3171 // Copy original phi DL over to the new one. 3172 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3173 3174 // The new PHI merges the original incoming value, in case of a bypass, 3175 // or the value at the end of the vectorized loop. 3176 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3177 3178 // Fix the scalar body counter (PHI node). 3179 // The old induction's phi node in the scalar body needs the truncated 3180 // value. 3181 for (BasicBlock *BB : LoopBypassBlocks) 3182 BCResumeVal->addIncoming(II.getStartValue(), BB); 3183 3184 if (AdditionalBypass.first) 3185 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3186 EndValueFromAdditionalBypass); 3187 3188 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3189 } 3190 } 3191 3192 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3193 // The trip counts should be cached by now. 3194 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3195 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3196 3197 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3198 3199 // Add a check in the middle block to see if we have completed 3200 // all of the iterations in the first vector loop. Three cases: 3201 // 1) If we require a scalar epilogue, there is no conditional branch as 3202 // we unconditionally branch to the scalar preheader. Do nothing. 3203 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3204 // Thus if tail is to be folded, we know we don't need to run the 3205 // remainder and we can use the previous value for the condition (true). 3206 // 3) Otherwise, construct a runtime check. 3207 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3208 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3209 Count, VectorTripCount, "cmp.n", 3210 LoopMiddleBlock->getTerminator()); 3211 3212 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3213 // of the corresponding compare because they may have ended up with 3214 // different line numbers and we want to avoid awkward line stepping while 3215 // debugging. Eg. if the compare has got a line number inside the loop. 3216 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3217 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3218 } 3219 3220 #ifdef EXPENSIVE_CHECKS 3221 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3222 #endif 3223 3224 return LoopVectorPreHeader; 3225 } 3226 3227 std::pair<BasicBlock *, Value *> 3228 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3229 /* 3230 In this function we generate a new loop. The new loop will contain 3231 the vectorized instructions while the old loop will continue to run the 3232 scalar remainder. 3233 3234 [ ] <-- loop iteration number check. 3235 / | 3236 / v 3237 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3238 | / | 3239 | / v 3240 || [ ] <-- vector pre header. 3241 |/ | 3242 | v 3243 | [ ] \ 3244 | [ ]_| <-- vector loop (created during VPlan execution). 3245 | | 3246 | v 3247 \ -[ ] <--- middle-block. 3248 \/ | 3249 /\ v 3250 | ->[ ] <--- new preheader. 3251 | | 3252 (opt) v <-- edge from middle to exit iff epilogue is not required. 3253 | [ ] \ 3254 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3255 \ | 3256 \ v 3257 >[ ] <-- exit block(s). 3258 ... 3259 */ 3260 3261 // Get the metadata of the original loop before it gets modified. 3262 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3263 3264 // Workaround! Compute the trip count of the original loop and cache it 3265 // before we start modifying the CFG. This code has a systemic problem 3266 // wherein it tries to run analysis over partially constructed IR; this is 3267 // wrong, and not simply for SCEV. The trip count of the original loop 3268 // simply happens to be prone to hitting this in practice. In theory, we 3269 // can hit the same issue for any SCEV, or ValueTracking query done during 3270 // mutation. See PR49900. 3271 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3272 3273 // Create an empty vector loop, and prepare basic blocks for the runtime 3274 // checks. 3275 createVectorLoopSkeleton(""); 3276 3277 // Now, compare the new count to zero. If it is zero skip the vector loop and 3278 // jump to the scalar loop. This check also covers the case where the 3279 // backedge-taken count is uint##_max: adding one to it will overflow leading 3280 // to an incorrect trip count of zero. In this (rare) case we will also jump 3281 // to the scalar loop. 3282 emitIterationCountCheck(LoopScalarPreHeader); 3283 3284 // Generate the code to check any assumptions that we've made for SCEV 3285 // expressions. 3286 emitSCEVChecks(LoopScalarPreHeader); 3287 3288 // Generate the code that checks in runtime if arrays overlap. We put the 3289 // checks into a separate block to make the more common case of few elements 3290 // faster. 3291 emitMemRuntimeChecks(LoopScalarPreHeader); 3292 3293 // Emit phis for the new starting index of the scalar loop. 3294 createInductionResumeValues(); 3295 3296 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3297 } 3298 3299 // Fix up external users of the induction variable. At this point, we are 3300 // in LCSSA form, with all external PHIs that use the IV having one input value, 3301 // coming from the remainder loop. We need those PHIs to also have a correct 3302 // value for the IV when arriving directly from the middle block. 3303 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3304 const InductionDescriptor &II, 3305 Value *VectorTripCount, Value *EndValue, 3306 BasicBlock *MiddleBlock, 3307 BasicBlock *VectorHeader, VPlan &Plan) { 3308 // There are two kinds of external IV usages - those that use the value 3309 // computed in the last iteration (the PHI) and those that use the penultimate 3310 // value (the value that feeds into the phi from the loop latch). 3311 // We allow both, but they, obviously, have different values. 3312 3313 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3314 3315 DenseMap<Value *, Value *> MissingVals; 3316 3317 // An external user of the last iteration's value should see the value that 3318 // the remainder loop uses to initialize its own IV. 3319 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3320 for (User *U : PostInc->users()) { 3321 Instruction *UI = cast<Instruction>(U); 3322 if (!OrigLoop->contains(UI)) { 3323 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3324 MissingVals[UI] = EndValue; 3325 } 3326 } 3327 3328 // An external user of the penultimate value need to see EndValue - Step. 3329 // The simplest way to get this is to recompute it from the constituent SCEVs, 3330 // that is Start + (Step * (CRD - 1)). 3331 for (User *U : OrigPhi->users()) { 3332 auto *UI = cast<Instruction>(U); 3333 if (!OrigLoop->contains(UI)) { 3334 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3335 3336 IRBuilder<> B(MiddleBlock->getTerminator()); 3337 3338 // Fast-math-flags propagate from the original induction instruction. 3339 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3340 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3341 3342 Value *CountMinusOne = B.CreateSub( 3343 VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); 3344 Value *CMO = 3345 !II.getStep()->getType()->isIntegerTy() 3346 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3347 II.getStep()->getType()) 3348 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3349 CMO->setName("cast.cmo"); 3350 3351 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3352 VectorHeader->getTerminator()); 3353 Value *Escape = 3354 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3355 Escape->setName("ind.escape"); 3356 MissingVals[UI] = Escape; 3357 } 3358 } 3359 3360 for (auto &I : MissingVals) { 3361 PHINode *PHI = cast<PHINode>(I.first); 3362 // One corner case we have to handle is two IVs "chasing" each-other, 3363 // that is %IV2 = phi [...], [ %IV1, %latch ] 3364 // In this case, if IV1 has an external use, we need to avoid adding both 3365 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3366 // don't already have an incoming value for the middle block. 3367 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) { 3368 PHI->addIncoming(I.second, MiddleBlock); 3369 Plan.removeLiveOut(PHI); 3370 } 3371 } 3372 } 3373 3374 namespace { 3375 3376 struct CSEDenseMapInfo { 3377 static bool canHandle(const Instruction *I) { 3378 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3379 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3380 } 3381 3382 static inline Instruction *getEmptyKey() { 3383 return DenseMapInfo<Instruction *>::getEmptyKey(); 3384 } 3385 3386 static inline Instruction *getTombstoneKey() { 3387 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3388 } 3389 3390 static unsigned getHashValue(const Instruction *I) { 3391 assert(canHandle(I) && "Unknown instruction!"); 3392 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3393 I->value_op_end())); 3394 } 3395 3396 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3397 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3398 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3399 return LHS == RHS; 3400 return LHS->isIdenticalTo(RHS); 3401 } 3402 }; 3403 3404 } // end anonymous namespace 3405 3406 ///Perform cse of induction variable instructions. 3407 static void cse(BasicBlock *BB) { 3408 // Perform simple cse. 3409 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3410 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3411 if (!CSEDenseMapInfo::canHandle(&In)) 3412 continue; 3413 3414 // Check if we can replace this instruction with any of the 3415 // visited instructions. 3416 if (Instruction *V = CSEMap.lookup(&In)) { 3417 In.replaceAllUsesWith(V); 3418 In.eraseFromParent(); 3419 continue; 3420 } 3421 3422 CSEMap[&In] = &In; 3423 } 3424 } 3425 3426 InstructionCost 3427 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3428 bool &NeedToScalarize) const { 3429 Function *F = CI->getCalledFunction(); 3430 Type *ScalarRetTy = CI->getType(); 3431 SmallVector<Type *, 4> Tys, ScalarTys; 3432 for (auto &ArgOp : CI->args()) 3433 ScalarTys.push_back(ArgOp->getType()); 3434 3435 // Estimate cost of scalarized vector call. The source operands are assumed 3436 // to be vectors, so we need to extract individual elements from there, 3437 // execute VF scalar calls, and then gather the result into the vector return 3438 // value. 3439 InstructionCost ScalarCallCost = 3440 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3441 if (VF.isScalar()) 3442 return ScalarCallCost; 3443 3444 // Compute corresponding vector type for return value and arguments. 3445 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3446 for (Type *ScalarTy : ScalarTys) 3447 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3448 3449 // Compute costs of unpacking argument values for the scalar calls and 3450 // packing the return values to a vector. 3451 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3452 3453 InstructionCost Cost = 3454 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3455 3456 // If we can't emit a vector call for this function, then the currently found 3457 // cost is the cost we need to return. 3458 NeedToScalarize = true; 3459 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3460 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3461 3462 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3463 return Cost; 3464 3465 // If the corresponding vector cost is cheaper, return its cost. 3466 InstructionCost VectorCallCost = 3467 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3468 if (VectorCallCost < Cost) { 3469 NeedToScalarize = false; 3470 Cost = VectorCallCost; 3471 } 3472 return Cost; 3473 } 3474 3475 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3476 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3477 return Elt; 3478 return VectorType::get(Elt, VF); 3479 } 3480 3481 InstructionCost 3482 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3483 ElementCount VF) const { 3484 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3485 assert(ID && "Expected intrinsic call!"); 3486 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3487 FastMathFlags FMF; 3488 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3489 FMF = FPMO->getFastMathFlags(); 3490 3491 SmallVector<const Value *> Arguments(CI->args()); 3492 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3493 SmallVector<Type *> ParamTys; 3494 std::transform(FTy->param_begin(), FTy->param_end(), 3495 std::back_inserter(ParamTys), 3496 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3497 3498 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3499 dyn_cast<IntrinsicInst>(CI)); 3500 return TTI.getIntrinsicInstrCost(CostAttrs, 3501 TargetTransformInfo::TCK_RecipThroughput); 3502 } 3503 3504 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3505 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3506 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3507 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3508 } 3509 3510 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3511 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3512 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3513 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3514 } 3515 3516 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3517 // For every instruction `I` in MinBWs, truncate the operands, create a 3518 // truncated version of `I` and reextend its result. InstCombine runs 3519 // later and will remove any ext/trunc pairs. 3520 SmallPtrSet<Value *, 4> Erased; 3521 for (const auto &KV : Cost->getMinimalBitwidths()) { 3522 // If the value wasn't vectorized, we must maintain the original scalar 3523 // type. The absence of the value from State indicates that it 3524 // wasn't vectorized. 3525 // FIXME: Should not rely on getVPValue at this point. 3526 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3527 if (!State.hasAnyVectorValue(Def)) 3528 continue; 3529 for (unsigned Part = 0; Part < UF; ++Part) { 3530 Value *I = State.get(Def, Part); 3531 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3532 continue; 3533 Type *OriginalTy = I->getType(); 3534 Type *ScalarTruncatedTy = 3535 IntegerType::get(OriginalTy->getContext(), KV.second); 3536 auto *TruncatedTy = VectorType::get( 3537 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3538 if (TruncatedTy == OriginalTy) 3539 continue; 3540 3541 IRBuilder<> B(cast<Instruction>(I)); 3542 auto ShrinkOperand = [&](Value *V) -> Value * { 3543 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3544 if (ZI->getSrcTy() == TruncatedTy) 3545 return ZI->getOperand(0); 3546 return B.CreateZExtOrTrunc(V, TruncatedTy); 3547 }; 3548 3549 // The actual instruction modification depends on the instruction type, 3550 // unfortunately. 3551 Value *NewI = nullptr; 3552 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3553 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3554 ShrinkOperand(BO->getOperand(1))); 3555 3556 // Any wrapping introduced by shrinking this operation shouldn't be 3557 // considered undefined behavior. So, we can't unconditionally copy 3558 // arithmetic wrapping flags to NewI. 3559 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3560 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3561 NewI = 3562 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3563 ShrinkOperand(CI->getOperand(1))); 3564 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3565 NewI = B.CreateSelect(SI->getCondition(), 3566 ShrinkOperand(SI->getTrueValue()), 3567 ShrinkOperand(SI->getFalseValue())); 3568 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3569 switch (CI->getOpcode()) { 3570 default: 3571 llvm_unreachable("Unhandled cast!"); 3572 case Instruction::Trunc: 3573 NewI = ShrinkOperand(CI->getOperand(0)); 3574 break; 3575 case Instruction::SExt: 3576 NewI = B.CreateSExtOrTrunc( 3577 CI->getOperand(0), 3578 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3579 break; 3580 case Instruction::ZExt: 3581 NewI = B.CreateZExtOrTrunc( 3582 CI->getOperand(0), 3583 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3584 break; 3585 } 3586 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3587 auto Elements0 = 3588 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3589 auto *O0 = B.CreateZExtOrTrunc( 3590 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3591 auto Elements1 = 3592 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3593 auto *O1 = B.CreateZExtOrTrunc( 3594 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3595 3596 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3597 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3598 // Don't do anything with the operands, just extend the result. 3599 continue; 3600 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3601 auto Elements = 3602 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3603 auto *O0 = B.CreateZExtOrTrunc( 3604 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3605 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3606 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3607 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3608 auto Elements = 3609 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3610 auto *O0 = B.CreateZExtOrTrunc( 3611 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3612 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3613 } else { 3614 // If we don't know what to do, be conservative and don't do anything. 3615 continue; 3616 } 3617 3618 // Lastly, extend the result. 3619 NewI->takeName(cast<Instruction>(I)); 3620 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3621 I->replaceAllUsesWith(Res); 3622 cast<Instruction>(I)->eraseFromParent(); 3623 Erased.insert(I); 3624 State.reset(Def, Res, Part); 3625 } 3626 } 3627 3628 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3629 for (const auto &KV : Cost->getMinimalBitwidths()) { 3630 // If the value wasn't vectorized, we must maintain the original scalar 3631 // type. The absence of the value from State indicates that it 3632 // wasn't vectorized. 3633 // FIXME: Should not rely on getVPValue at this point. 3634 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3635 if (!State.hasAnyVectorValue(Def)) 3636 continue; 3637 for (unsigned Part = 0; Part < UF; ++Part) { 3638 Value *I = State.get(Def, Part); 3639 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3640 if (Inst && Inst->use_empty()) { 3641 Value *NewI = Inst->getOperand(0); 3642 Inst->eraseFromParent(); 3643 State.reset(Def, NewI, Part); 3644 } 3645 } 3646 } 3647 } 3648 3649 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, 3650 VPlan &Plan) { 3651 // Insert truncates and extends for any truncated instructions as hints to 3652 // InstCombine. 3653 if (VF.isVector()) 3654 truncateToMinimalBitwidths(State); 3655 3656 // Fix widened non-induction PHIs by setting up the PHI operands. 3657 if (EnableVPlanNativePath) 3658 fixNonInductionPHIs(Plan, State); 3659 3660 // At this point every instruction in the original loop is widened to a 3661 // vector form. Now we need to fix the recurrences in the loop. These PHI 3662 // nodes are currently empty because we did not want to introduce cycles. 3663 // This is the second stage of vectorizing recurrences. 3664 fixCrossIterationPHIs(State); 3665 3666 // Forget the original basic block. 3667 PSE.getSE()->forgetLoop(OrigLoop); 3668 3669 VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock(); 3670 Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); 3671 if (Cost->requiresScalarEpilogue(VF)) { 3672 // No edge from the middle block to the unique exit block has been inserted 3673 // and there is nothing to fix from vector loop; phis should have incoming 3674 // from scalar loop only. 3675 Plan.clearLiveOuts(); 3676 } else { 3677 // If we inserted an edge from the middle block to the unique exit block, 3678 // update uses outside the loop (phis) to account for the newly inserted 3679 // edge. 3680 3681 // Fix-up external users of the induction variables. 3682 for (auto &Entry : Legal->getInductionVars()) 3683 fixupIVUsers(Entry.first, Entry.second, 3684 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3685 IVEndValues[Entry.first], LoopMiddleBlock, 3686 VectorLoop->getHeader(), Plan); 3687 } 3688 3689 // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated 3690 // in the exit block, so update the builder. 3691 State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI()); 3692 for (auto &KV : Plan.getLiveOuts()) 3693 KV.second->fixPhi(Plan, State); 3694 3695 for (Instruction *PI : PredicatedInstructions) 3696 sinkScalarOperands(&*PI); 3697 3698 // Remove redundant induction instructions. 3699 cse(VectorLoop->getHeader()); 3700 3701 // Set/update profile weights for the vector and remainder loops as original 3702 // loop iterations are now distributed among them. Note that original loop 3703 // represented by LoopScalarBody becomes remainder loop after vectorization. 3704 // 3705 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3706 // end up getting slightly roughened result but that should be OK since 3707 // profile is not inherently precise anyway. Note also possible bypass of 3708 // vector code caused by legality checks is ignored, assigning all the weight 3709 // to the vector loop, optimistically. 3710 // 3711 // For scalable vectorization we can't know at compile time how many iterations 3712 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3713 // vscale of '1'. 3714 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3715 LI->getLoopFor(LoopScalarBody), 3716 VF.getKnownMinValue() * UF); 3717 } 3718 3719 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3720 // In order to support recurrences we need to be able to vectorize Phi nodes. 3721 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3722 // stage #2: We now need to fix the recurrences by adding incoming edges to 3723 // the currently empty PHI nodes. At this point every instruction in the 3724 // original loop is widened to a vector form so we can use them to construct 3725 // the incoming edges. 3726 VPBasicBlock *Header = 3727 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3728 for (VPRecipeBase &R : Header->phis()) { 3729 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3730 fixReduction(ReductionPhi, State); 3731 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3732 fixFirstOrderRecurrence(FOR, State); 3733 } 3734 } 3735 3736 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3737 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3738 // This is the second phase of vectorizing first-order recurrences. An 3739 // overview of the transformation is described below. Suppose we have the 3740 // following loop. 3741 // 3742 // for (int i = 0; i < n; ++i) 3743 // b[i] = a[i] - a[i - 1]; 3744 // 3745 // There is a first-order recurrence on "a". For this loop, the shorthand 3746 // scalar IR looks like: 3747 // 3748 // scalar.ph: 3749 // s_init = a[-1] 3750 // br scalar.body 3751 // 3752 // scalar.body: 3753 // i = phi [0, scalar.ph], [i+1, scalar.body] 3754 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3755 // s2 = a[i] 3756 // b[i] = s2 - s1 3757 // br cond, scalar.body, ... 3758 // 3759 // In this example, s1 is a recurrence because it's value depends on the 3760 // previous iteration. In the first phase of vectorization, we created a 3761 // vector phi v1 for s1. We now complete the vectorization and produce the 3762 // shorthand vector IR shown below (for VF = 4, UF = 1). 3763 // 3764 // vector.ph: 3765 // v_init = vector(..., ..., ..., a[-1]) 3766 // br vector.body 3767 // 3768 // vector.body 3769 // i = phi [0, vector.ph], [i+4, vector.body] 3770 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3771 // v2 = a[i, i+1, i+2, i+3]; 3772 // v3 = vector(v1(3), v2(0, 1, 2)) 3773 // b[i, i+1, i+2, i+3] = v2 - v3 3774 // br cond, vector.body, middle.block 3775 // 3776 // middle.block: 3777 // x = v2(3) 3778 // br scalar.ph 3779 // 3780 // scalar.ph: 3781 // s_init = phi [x, middle.block], [a[-1], otherwise] 3782 // br scalar.body 3783 // 3784 // After execution completes the vector loop, we extract the next value of 3785 // the recurrence (x) to use as the initial value in the scalar loop. 3786 3787 // Extract the last vector element in the middle block. This will be the 3788 // initial value for the recurrence when jumping to the scalar loop. 3789 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3790 Value *Incoming = State.get(PreviousDef, UF - 1); 3791 auto *ExtractForScalar = Incoming; 3792 auto *IdxTy = Builder.getInt32Ty(); 3793 if (VF.isVector()) { 3794 auto *One = ConstantInt::get(IdxTy, 1); 3795 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3796 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3797 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3798 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3799 "vector.recur.extract"); 3800 } 3801 // Extract the second last element in the middle block if the 3802 // Phi is used outside the loop. We need to extract the phi itself 3803 // and not the last element (the phi update in the current iteration). This 3804 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3805 // when the scalar loop is not run at all. 3806 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3807 if (VF.isVector()) { 3808 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3809 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3810 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3811 Incoming, Idx, "vector.recur.extract.for.phi"); 3812 } else if (UF > 1) 3813 // When loop is unrolled without vectorizing, initialize 3814 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3815 // of `Incoming`. This is analogous to the vectorized case above: extracting 3816 // the second last element when VF > 1. 3817 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3818 3819 // Fix the initial value of the original recurrence in the scalar loop. 3820 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3821 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3822 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3823 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3824 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3825 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3826 Start->addIncoming(Incoming, BB); 3827 } 3828 3829 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3830 Phi->setName("scalar.recur"); 3831 3832 // Finally, fix users of the recurrence outside the loop. The users will need 3833 // either the last value of the scalar recurrence or the last value of the 3834 // vector recurrence we extracted in the middle block. Since the loop is in 3835 // LCSSA form, we just need to find all the phi nodes for the original scalar 3836 // recurrence in the exit block, and then add an edge for the middle block. 3837 // Note that LCSSA does not imply single entry when the original scalar loop 3838 // had multiple exiting edges (as we always run the last iteration in the 3839 // scalar epilogue); in that case, there is no edge from middle to exit and 3840 // and thus no phis which needed updated. 3841 if (!Cost->requiresScalarEpilogue(VF)) 3842 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3843 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) { 3844 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3845 State.Plan->removeLiveOut(&LCSSAPhi); 3846 } 3847 } 3848 3849 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3850 VPTransformState &State) { 3851 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3852 // Get it's reduction variable descriptor. 3853 assert(Legal->isReductionVariable(OrigPhi) && 3854 "Unable to find the reduction variable"); 3855 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3856 3857 RecurKind RK = RdxDesc.getRecurrenceKind(); 3858 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3859 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3860 State.setDebugLocFromInst(ReductionStartValue); 3861 3862 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3863 // This is the vector-clone of the value that leaves the loop. 3864 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3865 3866 // Wrap flags are in general invalid after vectorization, clear them. 3867 clearReductionWrapFlags(PhiR, State); 3868 3869 // Before each round, move the insertion point right between 3870 // the PHIs and the values we are going to write. 3871 // This allows us to write both PHINodes and the extractelement 3872 // instructions. 3873 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3874 3875 State.setDebugLocFromInst(LoopExitInst); 3876 3877 Type *PhiTy = OrigPhi->getType(); 3878 3879 VPBasicBlock *LatchVPBB = 3880 PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock(); 3881 BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; 3882 // If tail is folded by masking, the vector value to leave the loop should be 3883 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3884 // instead of the former. For an inloop reduction the reduction will already 3885 // be predicated, and does not need to be handled here. 3886 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3887 for (unsigned Part = 0; Part < UF; ++Part) { 3888 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3889 SelectInst *Sel = nullptr; 3890 for (User *U : VecLoopExitInst->users()) { 3891 if (isa<SelectInst>(U)) { 3892 assert(!Sel && "Reduction exit feeding two selects"); 3893 Sel = cast<SelectInst>(U); 3894 } else 3895 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3896 } 3897 assert(Sel && "Reduction exit feeds no select"); 3898 State.reset(LoopExitInstDef, Sel, Part); 3899 3900 if (isa<FPMathOperator>(Sel)) 3901 Sel->setFastMathFlags(RdxDesc.getFastMathFlags()); 3902 3903 // If the target can create a predicated operator for the reduction at no 3904 // extra cost in the loop (for example a predicated vadd), it can be 3905 // cheaper for the select to remain in the loop than be sunk out of it, 3906 // and so use the select value for the phi instead of the old 3907 // LoopExitValue. 3908 if (PreferPredicatedReductionSelect || 3909 TTI->preferPredicatedReductionSelect( 3910 RdxDesc.getOpcode(), PhiTy, 3911 TargetTransformInfo::ReductionFlags())) { 3912 auto *VecRdxPhi = 3913 cast<PHINode>(State.get(PhiR, Part)); 3914 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3915 } 3916 } 3917 } 3918 3919 // If the vector reduction can be performed in a smaller type, we truncate 3920 // then extend the loop exit value to enable InstCombine to evaluate the 3921 // entire expression in the smaller type. 3922 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3923 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3924 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3925 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3926 VectorParts RdxParts(UF); 3927 for (unsigned Part = 0; Part < UF; ++Part) { 3928 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3929 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3930 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3931 : Builder.CreateZExt(Trunc, VecTy); 3932 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3933 if (U != Trunc) { 3934 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3935 RdxParts[Part] = Extnd; 3936 } 3937 } 3938 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3939 for (unsigned Part = 0; Part < UF; ++Part) { 3940 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3941 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3942 } 3943 } 3944 3945 // Reduce all of the unrolled parts into a single vector. 3946 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3947 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3948 3949 // The middle block terminator has already been assigned a DebugLoc here (the 3950 // OrigLoop's single latch terminator). We want the whole middle block to 3951 // appear to execute on this line because: (a) it is all compiler generated, 3952 // (b) these instructions are always executed after evaluating the latch 3953 // conditional branch, and (c) other passes may add new predecessors which 3954 // terminate on this line. This is the easiest way to ensure we don't 3955 // accidentally cause an extra step back into the loop while debugging. 3956 State.setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3957 if (PhiR->isOrdered()) 3958 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3959 else { 3960 // Floating-point operations should have some FMF to enable the reduction. 3961 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3962 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3963 for (unsigned Part = 1; Part < UF; ++Part) { 3964 Value *RdxPart = State.get(LoopExitInstDef, Part); 3965 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3966 ReducedPartRdx = Builder.CreateBinOp( 3967 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3968 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3969 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3970 ReducedPartRdx, RdxPart); 3971 else 3972 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3973 } 3974 } 3975 3976 // Create the reduction after the loop. Note that inloop reductions create the 3977 // target reduction in the loop using a Reduction recipe. 3978 if (VF.isVector() && !PhiR->isInLoop()) { 3979 ReducedPartRdx = 3980 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3981 // If the reduction can be performed in a smaller type, we need to extend 3982 // the reduction to the wider type before we branch to the original loop. 3983 if (PhiTy != RdxDesc.getRecurrenceType()) 3984 ReducedPartRdx = RdxDesc.isSigned() 3985 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3986 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3987 } 3988 3989 PHINode *ResumePhi = 3990 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3991 3992 // Create a phi node that merges control-flow from the backedge-taken check 3993 // block and the middle block. 3994 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 3995 LoopScalarPreHeader->getTerminator()); 3996 3997 // If we are fixing reductions in the epilogue loop then we should already 3998 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 3999 // we carry over the incoming values correctly. 4000 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4001 if (Incoming == LoopMiddleBlock) 4002 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4003 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4004 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4005 Incoming); 4006 else 4007 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4008 } 4009 4010 // Set the resume value for this reduction 4011 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4012 4013 // If there were stores of the reduction value to a uniform memory address 4014 // inside the loop, create the final store here. 4015 if (StoreInst *SI = RdxDesc.IntermediateStore) { 4016 StoreInst *NewSI = 4017 Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); 4018 propagateMetadata(NewSI, SI); 4019 4020 // If the reduction value is used in other places, 4021 // then let the code below create PHI's for that. 4022 } 4023 4024 // Now, we need to fix the users of the reduction variable 4025 // inside and outside of the scalar remainder loop. 4026 4027 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4028 // in the exit blocks. See comment on analogous loop in 4029 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4030 if (!Cost->requiresScalarEpilogue(VF)) 4031 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4032 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) { 4033 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4034 State.Plan->removeLiveOut(&LCSSAPhi); 4035 } 4036 4037 // Fix the scalar loop reduction variable with the incoming reduction sum 4038 // from the vector body and from the backedge value. 4039 int IncomingEdgeBlockIdx = 4040 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4041 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4042 // Pick the other block. 4043 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4044 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4045 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4046 } 4047 4048 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 4049 VPTransformState &State) { 4050 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4051 RecurKind RK = RdxDesc.getRecurrenceKind(); 4052 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4053 return; 4054 4055 SmallVector<VPValue *, 8> Worklist; 4056 SmallPtrSet<VPValue *, 8> Visited; 4057 Worklist.push_back(PhiR); 4058 Visited.insert(PhiR); 4059 4060 while (!Worklist.empty()) { 4061 VPValue *Cur = Worklist.pop_back_val(); 4062 for (unsigned Part = 0; Part < UF; ++Part) { 4063 Value *V = State.get(Cur, Part); 4064 if (!isa<OverflowingBinaryOperator>(V)) 4065 break; 4066 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4067 } 4068 4069 for (VPUser *U : Cur->users()) { 4070 auto *UserRecipe = dyn_cast<VPRecipeBase>(U); 4071 if (!UserRecipe) 4072 continue; 4073 for (VPValue *V : UserRecipe->definedValues()) 4074 if (Visited.insert(V).second) 4075 Worklist.push_back(V); 4076 } 4077 } 4078 } 4079 4080 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4081 // The basic block and loop containing the predicated instruction. 4082 auto *PredBB = PredInst->getParent(); 4083 auto *VectorLoop = LI->getLoopFor(PredBB); 4084 4085 // Initialize a worklist with the operands of the predicated instruction. 4086 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4087 4088 // Holds instructions that we need to analyze again. An instruction may be 4089 // reanalyzed if we don't yet know if we can sink it or not. 4090 SmallVector<Instruction *, 8> InstsToReanalyze; 4091 4092 // Returns true if a given use occurs in the predicated block. Phi nodes use 4093 // their operands in their corresponding predecessor blocks. 4094 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4095 auto *I = cast<Instruction>(U.getUser()); 4096 BasicBlock *BB = I->getParent(); 4097 if (auto *Phi = dyn_cast<PHINode>(I)) 4098 BB = Phi->getIncomingBlock( 4099 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4100 return BB == PredBB; 4101 }; 4102 4103 // Iteratively sink the scalarized operands of the predicated instruction 4104 // into the block we created for it. When an instruction is sunk, it's 4105 // operands are then added to the worklist. The algorithm ends after one pass 4106 // through the worklist doesn't sink a single instruction. 4107 bool Changed; 4108 do { 4109 // Add the instructions that need to be reanalyzed to the worklist, and 4110 // reset the changed indicator. 4111 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4112 InstsToReanalyze.clear(); 4113 Changed = false; 4114 4115 while (!Worklist.empty()) { 4116 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4117 4118 // We can't sink an instruction if it is a phi node, is not in the loop, 4119 // or may have side effects. 4120 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4121 I->mayHaveSideEffects()) 4122 continue; 4123 4124 // If the instruction is already in PredBB, check if we can sink its 4125 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4126 // sinking the scalar instruction I, hence it appears in PredBB; but it 4127 // may have failed to sink I's operands (recursively), which we try 4128 // (again) here. 4129 if (I->getParent() == PredBB) { 4130 Worklist.insert(I->op_begin(), I->op_end()); 4131 continue; 4132 } 4133 4134 // It's legal to sink the instruction if all its uses occur in the 4135 // predicated block. Otherwise, there's nothing to do yet, and we may 4136 // need to reanalyze the instruction. 4137 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4138 InstsToReanalyze.push_back(I); 4139 continue; 4140 } 4141 4142 // Move the instruction to the beginning of the predicated block, and add 4143 // it's operands to the worklist. 4144 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4145 Worklist.insert(I->op_begin(), I->op_end()); 4146 4147 // The sinking may have enabled other instructions to be sunk, so we will 4148 // need to iterate. 4149 Changed = true; 4150 } 4151 } while (Changed); 4152 } 4153 4154 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan, 4155 VPTransformState &State) { 4156 auto Iter = depth_first( 4157 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry())); 4158 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 4159 for (VPRecipeBase &P : VPBB->phis()) { 4160 VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P); 4161 if (!VPPhi) 4162 continue; 4163 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4164 // Make sure the builder has a valid insert point. 4165 Builder.SetInsertPoint(NewPhi); 4166 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4167 VPValue *Inc = VPPhi->getIncomingValue(i); 4168 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4169 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4170 } 4171 } 4172 } 4173 } 4174 4175 bool InnerLoopVectorizer::useOrderedReductions( 4176 const RecurrenceDescriptor &RdxDesc) { 4177 return Cost->useOrderedReductions(RdxDesc); 4178 } 4179 4180 void InnerLoopVectorizer::widenCallInstruction(CallInst &CI, VPValue *Def, 4181 VPUser &ArgOperands, 4182 VPTransformState &State) { 4183 assert(!isa<DbgInfoIntrinsic>(CI) && 4184 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4185 State.setDebugLocFromInst(&CI); 4186 4187 SmallVector<Type *, 4> Tys; 4188 for (Value *ArgOperand : CI.args()) 4189 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4190 4191 Intrinsic::ID ID = getVectorIntrinsicIDForCall(&CI, TLI); 4192 4193 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4194 // version of the instruction. 4195 // Is it beneficial to perform intrinsic call compared to lib call? 4196 bool NeedToScalarize = false; 4197 InstructionCost CallCost = Cost->getVectorCallCost(&CI, VF, NeedToScalarize); 4198 InstructionCost IntrinsicCost = 4199 ID ? Cost->getVectorIntrinsicCost(&CI, VF) : 0; 4200 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4201 assert((UseVectorIntrinsic || !NeedToScalarize) && 4202 "Instruction should be scalarized elsewhere."); 4203 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4204 "Either the intrinsic cost or vector call cost must be valid"); 4205 4206 for (unsigned Part = 0; Part < UF; ++Part) { 4207 SmallVector<Type *, 2> TysForDecl = {CI.getType()}; 4208 SmallVector<Value *, 4> Args; 4209 for (auto &I : enumerate(ArgOperands.operands())) { 4210 // Some intrinsics have a scalar argument - don't replace it with a 4211 // vector. 4212 Value *Arg; 4213 if (!UseVectorIntrinsic || 4214 !isVectorIntrinsicWithScalarOpAtArg(ID, I.index())) 4215 Arg = State.get(I.value(), Part); 4216 else 4217 Arg = State.get(I.value(), VPIteration(0, 0)); 4218 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index())) 4219 TysForDecl.push_back(Arg->getType()); 4220 Args.push_back(Arg); 4221 } 4222 4223 Function *VectorF; 4224 if (UseVectorIntrinsic) { 4225 // Use vector version of the intrinsic. 4226 if (VF.isVector()) 4227 TysForDecl[0] = VectorType::get(CI.getType()->getScalarType(), VF); 4228 Module *M = State.Builder.GetInsertBlock()->getModule(); 4229 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4230 assert(VectorF && "Can't retrieve vector intrinsic."); 4231 } else { 4232 // Use vector version of the function call. 4233 const VFShape Shape = VFShape::get(CI, VF, false /*HasGlobalPred*/); 4234 #ifndef NDEBUG 4235 assert(VFDatabase(CI).getVectorizedFunction(Shape) != nullptr && 4236 "Can't create vector function."); 4237 #endif 4238 VectorF = VFDatabase(CI).getVectorizedFunction(Shape); 4239 } 4240 SmallVector<OperandBundleDef, 1> OpBundles; 4241 CI.getOperandBundlesAsDefs(OpBundles); 4242 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4243 4244 if (isa<FPMathOperator>(V)) 4245 V->copyFastMathFlags(&CI); 4246 4247 State.set(Def, V, Part); 4248 State.addMetadata(V, &CI); 4249 } 4250 } 4251 4252 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4253 // We should not collect Scalars more than once per VF. Right now, this 4254 // function is called from collectUniformsAndScalars(), which already does 4255 // this check. Collecting Scalars for VF=1 does not make any sense. 4256 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4257 "This function should not be visited twice for the same VF"); 4258 4259 // This avoids any chances of creating a REPLICATE recipe during planning 4260 // since that would result in generation of scalarized code during execution, 4261 // which is not supported for scalable vectors. 4262 if (VF.isScalable()) { 4263 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4264 return; 4265 } 4266 4267 SmallSetVector<Instruction *, 8> Worklist; 4268 4269 // These sets are used to seed the analysis with pointers used by memory 4270 // accesses that will remain scalar. 4271 SmallSetVector<Instruction *, 8> ScalarPtrs; 4272 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4273 auto *Latch = TheLoop->getLoopLatch(); 4274 4275 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4276 // The pointer operands of loads and stores will be scalar as long as the 4277 // memory access is not a gather or scatter operation. The value operand of a 4278 // store will remain scalar if the store is scalarized. 4279 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4280 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4281 assert(WideningDecision != CM_Unknown && 4282 "Widening decision should be ready at this moment"); 4283 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4284 if (Ptr == Store->getValueOperand()) 4285 return WideningDecision == CM_Scalarize; 4286 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4287 "Ptr is neither a value or pointer operand"); 4288 return WideningDecision != CM_GatherScatter; 4289 }; 4290 4291 // A helper that returns true if the given value is a bitcast or 4292 // getelementptr instruction contained in the loop. 4293 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4294 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4295 isa<GetElementPtrInst>(V)) && 4296 !TheLoop->isLoopInvariant(V); 4297 }; 4298 4299 // A helper that evaluates a memory access's use of a pointer. If the use will 4300 // be a scalar use and the pointer is only used by memory accesses, we place 4301 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4302 // PossibleNonScalarPtrs. 4303 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4304 // We only care about bitcast and getelementptr instructions contained in 4305 // the loop. 4306 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4307 return; 4308 4309 // If the pointer has already been identified as scalar (e.g., if it was 4310 // also identified as uniform), there's nothing to do. 4311 auto *I = cast<Instruction>(Ptr); 4312 if (Worklist.count(I)) 4313 return; 4314 4315 // If the use of the pointer will be a scalar use, and all users of the 4316 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4317 // place the pointer in PossibleNonScalarPtrs. 4318 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4319 return isa<LoadInst>(U) || isa<StoreInst>(U); 4320 })) 4321 ScalarPtrs.insert(I); 4322 else 4323 PossibleNonScalarPtrs.insert(I); 4324 }; 4325 4326 // We seed the scalars analysis with three classes of instructions: (1) 4327 // instructions marked uniform-after-vectorization and (2) bitcast, 4328 // getelementptr and (pointer) phi instructions used by memory accesses 4329 // requiring a scalar use. 4330 // 4331 // (1) Add to the worklist all instructions that have been identified as 4332 // uniform-after-vectorization. 4333 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4334 4335 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4336 // memory accesses requiring a scalar use. The pointer operands of loads and 4337 // stores will be scalar as long as the memory accesses is not a gather or 4338 // scatter operation. The value operand of a store will remain scalar if the 4339 // store is scalarized. 4340 for (auto *BB : TheLoop->blocks()) 4341 for (auto &I : *BB) { 4342 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4343 evaluatePtrUse(Load, Load->getPointerOperand()); 4344 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4345 evaluatePtrUse(Store, Store->getPointerOperand()); 4346 evaluatePtrUse(Store, Store->getValueOperand()); 4347 } 4348 } 4349 for (auto *I : ScalarPtrs) 4350 if (!PossibleNonScalarPtrs.count(I)) { 4351 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4352 Worklist.insert(I); 4353 } 4354 4355 // Insert the forced scalars. 4356 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector 4357 // induction variable when the PHI user is scalarized. 4358 auto ForcedScalar = ForcedScalars.find(VF); 4359 if (ForcedScalar != ForcedScalars.end()) 4360 for (auto *I : ForcedScalar->second) 4361 Worklist.insert(I); 4362 4363 // Expand the worklist by looking through any bitcasts and getelementptr 4364 // instructions we've already identified as scalar. This is similar to the 4365 // expansion step in collectLoopUniforms(); however, here we're only 4366 // expanding to include additional bitcasts and getelementptr instructions. 4367 unsigned Idx = 0; 4368 while (Idx != Worklist.size()) { 4369 Instruction *Dst = Worklist[Idx++]; 4370 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4371 continue; 4372 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4373 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4374 auto *J = cast<Instruction>(U); 4375 return !TheLoop->contains(J) || Worklist.count(J) || 4376 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4377 isScalarUse(J, Src)); 4378 })) { 4379 Worklist.insert(Src); 4380 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4381 } 4382 } 4383 4384 // An induction variable will remain scalar if all users of the induction 4385 // variable and induction variable update remain scalar. 4386 for (auto &Induction : Legal->getInductionVars()) { 4387 auto *Ind = Induction.first; 4388 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4389 4390 // If tail-folding is applied, the primary induction variable will be used 4391 // to feed a vector compare. 4392 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4393 continue; 4394 4395 // Returns true if \p Indvar is a pointer induction that is used directly by 4396 // load/store instruction \p I. 4397 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4398 Instruction *I) { 4399 return Induction.second.getKind() == 4400 InductionDescriptor::IK_PtrInduction && 4401 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4402 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4403 }; 4404 4405 // Determine if all users of the induction variable are scalar after 4406 // vectorization. 4407 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4408 auto *I = cast<Instruction>(U); 4409 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4410 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4411 }); 4412 if (!ScalarInd) 4413 continue; 4414 4415 // Determine if all users of the induction variable update instruction are 4416 // scalar after vectorization. 4417 auto ScalarIndUpdate = 4418 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4419 auto *I = cast<Instruction>(U); 4420 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4421 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4422 }); 4423 if (!ScalarIndUpdate) 4424 continue; 4425 4426 // The induction variable and its update instruction will remain scalar. 4427 Worklist.insert(Ind); 4428 Worklist.insert(IndUpdate); 4429 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4430 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4431 << "\n"); 4432 } 4433 4434 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4435 } 4436 4437 bool LoopVectorizationCostModel::isScalarWithPredication( 4438 Instruction *I, ElementCount VF) const { 4439 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4440 return false; 4441 switch(I->getOpcode()) { 4442 default: 4443 break; 4444 case Instruction::Load: 4445 case Instruction::Store: { 4446 if (!Legal->isMaskRequired(I)) 4447 return false; 4448 auto *Ptr = getLoadStorePointerOperand(I); 4449 auto *Ty = getLoadStoreType(I); 4450 Type *VTy = Ty; 4451 if (VF.isVector()) 4452 VTy = VectorType::get(Ty, VF); 4453 const Align Alignment = getLoadStoreAlignment(I); 4454 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4455 TTI.isLegalMaskedGather(VTy, Alignment)) 4456 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4457 TTI.isLegalMaskedScatter(VTy, Alignment)); 4458 } 4459 case Instruction::UDiv: 4460 case Instruction::SDiv: 4461 case Instruction::SRem: 4462 case Instruction::URem: 4463 // TODO: We can use the loop-preheader as context point here and get 4464 // context sensitive reasoning 4465 return !isSafeToSpeculativelyExecute(I); 4466 } 4467 return false; 4468 } 4469 4470 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4471 Instruction *I, ElementCount VF) { 4472 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4473 assert(getWideningDecision(I, VF) == CM_Unknown && 4474 "Decision should not be set yet."); 4475 auto *Group = getInterleavedAccessGroup(I); 4476 assert(Group && "Must have a group."); 4477 4478 // If the instruction's allocated size doesn't equal it's type size, it 4479 // requires padding and will be scalarized. 4480 auto &DL = I->getModule()->getDataLayout(); 4481 auto *ScalarTy = getLoadStoreType(I); 4482 if (hasIrregularType(ScalarTy, DL)) 4483 return false; 4484 4485 // If the group involves a non-integral pointer, we may not be able to 4486 // losslessly cast all values to a common type. 4487 unsigned InterleaveFactor = Group->getFactor(); 4488 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4489 for (unsigned i = 0; i < InterleaveFactor; i++) { 4490 Instruction *Member = Group->getMember(i); 4491 if (!Member) 4492 continue; 4493 auto *MemberTy = getLoadStoreType(Member); 4494 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4495 // Don't coerce non-integral pointers to integers or vice versa. 4496 if (MemberNI != ScalarNI) { 4497 // TODO: Consider adding special nullptr value case here 4498 return false; 4499 } else if (MemberNI && ScalarNI && 4500 ScalarTy->getPointerAddressSpace() != 4501 MemberTy->getPointerAddressSpace()) { 4502 return false; 4503 } 4504 } 4505 4506 // Check if masking is required. 4507 // A Group may need masking for one of two reasons: it resides in a block that 4508 // needs predication, or it was decided to use masking to deal with gaps 4509 // (either a gap at the end of a load-access that may result in a speculative 4510 // load, or any gaps in a store-access). 4511 bool PredicatedAccessRequiresMasking = 4512 blockNeedsPredicationForAnyReason(I->getParent()) && 4513 Legal->isMaskRequired(I); 4514 bool LoadAccessWithGapsRequiresEpilogMasking = 4515 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4516 !isScalarEpilogueAllowed(); 4517 bool StoreAccessWithGapsRequiresMasking = 4518 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4519 if (!PredicatedAccessRequiresMasking && 4520 !LoadAccessWithGapsRequiresEpilogMasking && 4521 !StoreAccessWithGapsRequiresMasking) 4522 return true; 4523 4524 // If masked interleaving is required, we expect that the user/target had 4525 // enabled it, because otherwise it either wouldn't have been created or 4526 // it should have been invalidated by the CostModel. 4527 assert(useMaskedInterleavedAccesses(TTI) && 4528 "Masked interleave-groups for predicated accesses are not enabled."); 4529 4530 if (Group->isReverse()) 4531 return false; 4532 4533 auto *Ty = getLoadStoreType(I); 4534 const Align Alignment = getLoadStoreAlignment(I); 4535 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4536 : TTI.isLegalMaskedStore(Ty, Alignment); 4537 } 4538 4539 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4540 Instruction *I, ElementCount VF) { 4541 // Get and ensure we have a valid memory instruction. 4542 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4543 4544 auto *Ptr = getLoadStorePointerOperand(I); 4545 auto *ScalarTy = getLoadStoreType(I); 4546 4547 // In order to be widened, the pointer should be consecutive, first of all. 4548 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4549 return false; 4550 4551 // If the instruction is a store located in a predicated block, it will be 4552 // scalarized. 4553 if (isScalarWithPredication(I, VF)) 4554 return false; 4555 4556 // If the instruction's allocated size doesn't equal it's type size, it 4557 // requires padding and will be scalarized. 4558 auto &DL = I->getModule()->getDataLayout(); 4559 if (hasIrregularType(ScalarTy, DL)) 4560 return false; 4561 4562 return true; 4563 } 4564 4565 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4566 // We should not collect Uniforms more than once per VF. Right now, 4567 // this function is called from collectUniformsAndScalars(), which 4568 // already does this check. Collecting Uniforms for VF=1 does not make any 4569 // sense. 4570 4571 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4572 "This function should not be visited twice for the same VF"); 4573 4574 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4575 // not analyze again. Uniforms.count(VF) will return 1. 4576 Uniforms[VF].clear(); 4577 4578 // We now know that the loop is vectorizable! 4579 // Collect instructions inside the loop that will remain uniform after 4580 // vectorization. 4581 4582 // Global values, params and instructions outside of current loop are out of 4583 // scope. 4584 auto isOutOfScope = [&](Value *V) -> bool { 4585 Instruction *I = dyn_cast<Instruction>(V); 4586 return (!I || !TheLoop->contains(I)); 4587 }; 4588 4589 // Worklist containing uniform instructions demanding lane 0. 4590 SetVector<Instruction *> Worklist; 4591 BasicBlock *Latch = TheLoop->getLoopLatch(); 4592 4593 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4594 // that are scalar with predication must not be considered uniform after 4595 // vectorization, because that would create an erroneous replicating region 4596 // where only a single instance out of VF should be formed. 4597 // TODO: optimize such seldom cases if found important, see PR40816. 4598 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4599 if (isOutOfScope(I)) { 4600 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4601 << *I << "\n"); 4602 return; 4603 } 4604 if (isScalarWithPredication(I, VF)) { 4605 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4606 << *I << "\n"); 4607 return; 4608 } 4609 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4610 Worklist.insert(I); 4611 }; 4612 4613 // Start with the conditional branch. If the branch condition is an 4614 // instruction contained in the loop that is only used by the branch, it is 4615 // uniform. 4616 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4617 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4618 addToWorklistIfAllowed(Cmp); 4619 4620 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4621 InstWidening WideningDecision = getWideningDecision(I, VF); 4622 assert(WideningDecision != CM_Unknown && 4623 "Widening decision should be ready at this moment"); 4624 4625 // A uniform memory op is itself uniform. We exclude uniform stores 4626 // here as they demand the last lane, not the first one. 4627 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4628 assert(WideningDecision == CM_Scalarize); 4629 return true; 4630 } 4631 4632 return (WideningDecision == CM_Widen || 4633 WideningDecision == CM_Widen_Reverse || 4634 WideningDecision == CM_Interleave); 4635 }; 4636 4637 4638 // Returns true if Ptr is the pointer operand of a memory access instruction 4639 // I, and I is known to not require scalarization. 4640 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4641 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4642 }; 4643 4644 // Holds a list of values which are known to have at least one uniform use. 4645 // Note that there may be other uses which aren't uniform. A "uniform use" 4646 // here is something which only demands lane 0 of the unrolled iterations; 4647 // it does not imply that all lanes produce the same value (e.g. this is not 4648 // the usual meaning of uniform) 4649 SetVector<Value *> HasUniformUse; 4650 4651 // Scan the loop for instructions which are either a) known to have only 4652 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4653 for (auto *BB : TheLoop->blocks()) 4654 for (auto &I : *BB) { 4655 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4656 switch (II->getIntrinsicID()) { 4657 case Intrinsic::sideeffect: 4658 case Intrinsic::experimental_noalias_scope_decl: 4659 case Intrinsic::assume: 4660 case Intrinsic::lifetime_start: 4661 case Intrinsic::lifetime_end: 4662 if (TheLoop->hasLoopInvariantOperands(&I)) 4663 addToWorklistIfAllowed(&I); 4664 break; 4665 default: 4666 break; 4667 } 4668 } 4669 4670 // ExtractValue instructions must be uniform, because the operands are 4671 // known to be loop-invariant. 4672 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4673 assert(isOutOfScope(EVI->getAggregateOperand()) && 4674 "Expected aggregate value to be loop invariant"); 4675 addToWorklistIfAllowed(EVI); 4676 continue; 4677 } 4678 4679 // If there's no pointer operand, there's nothing to do. 4680 auto *Ptr = getLoadStorePointerOperand(&I); 4681 if (!Ptr) 4682 continue; 4683 4684 // A uniform memory op is itself uniform. We exclude uniform stores 4685 // here as they demand the last lane, not the first one. 4686 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4687 addToWorklistIfAllowed(&I); 4688 4689 if (isUniformDecision(&I, VF)) { 4690 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4691 HasUniformUse.insert(Ptr); 4692 } 4693 } 4694 4695 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4696 // demanding) users. Since loops are assumed to be in LCSSA form, this 4697 // disallows uses outside the loop as well. 4698 for (auto *V : HasUniformUse) { 4699 if (isOutOfScope(V)) 4700 continue; 4701 auto *I = cast<Instruction>(V); 4702 auto UsersAreMemAccesses = 4703 llvm::all_of(I->users(), [&](User *U) -> bool { 4704 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4705 }); 4706 if (UsersAreMemAccesses) 4707 addToWorklistIfAllowed(I); 4708 } 4709 4710 // Expand Worklist in topological order: whenever a new instruction 4711 // is added , its users should be already inside Worklist. It ensures 4712 // a uniform instruction will only be used by uniform instructions. 4713 unsigned idx = 0; 4714 while (idx != Worklist.size()) { 4715 Instruction *I = Worklist[idx++]; 4716 4717 for (auto OV : I->operand_values()) { 4718 // isOutOfScope operands cannot be uniform instructions. 4719 if (isOutOfScope(OV)) 4720 continue; 4721 // First order recurrence Phi's should typically be considered 4722 // non-uniform. 4723 auto *OP = dyn_cast<PHINode>(OV); 4724 if (OP && Legal->isFirstOrderRecurrence(OP)) 4725 continue; 4726 // If all the users of the operand are uniform, then add the 4727 // operand into the uniform worklist. 4728 auto *OI = cast<Instruction>(OV); 4729 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4730 auto *J = cast<Instruction>(U); 4731 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4732 })) 4733 addToWorklistIfAllowed(OI); 4734 } 4735 } 4736 4737 // For an instruction to be added into Worklist above, all its users inside 4738 // the loop should also be in Worklist. However, this condition cannot be 4739 // true for phi nodes that form a cyclic dependence. We must process phi 4740 // nodes separately. An induction variable will remain uniform if all users 4741 // of the induction variable and induction variable update remain uniform. 4742 // The code below handles both pointer and non-pointer induction variables. 4743 for (auto &Induction : Legal->getInductionVars()) { 4744 auto *Ind = Induction.first; 4745 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4746 4747 // Determine if all users of the induction variable are uniform after 4748 // vectorization. 4749 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4750 auto *I = cast<Instruction>(U); 4751 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4752 isVectorizedMemAccessUse(I, Ind); 4753 }); 4754 if (!UniformInd) 4755 continue; 4756 4757 // Determine if all users of the induction variable update instruction are 4758 // uniform after vectorization. 4759 auto UniformIndUpdate = 4760 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4761 auto *I = cast<Instruction>(U); 4762 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4763 isVectorizedMemAccessUse(I, IndUpdate); 4764 }); 4765 if (!UniformIndUpdate) 4766 continue; 4767 4768 // The induction variable and its update instruction will remain uniform. 4769 addToWorklistIfAllowed(Ind); 4770 addToWorklistIfAllowed(IndUpdate); 4771 } 4772 4773 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4774 } 4775 4776 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4777 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4778 4779 if (Legal->getRuntimePointerChecking()->Need) { 4780 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4781 "runtime pointer checks needed. Enable vectorization of this " 4782 "loop with '#pragma clang loop vectorize(enable)' when " 4783 "compiling with -Os/-Oz", 4784 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4785 return true; 4786 } 4787 4788 if (!PSE.getPredicate().isAlwaysTrue()) { 4789 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4790 "runtime SCEV checks needed. Enable vectorization of this " 4791 "loop with '#pragma clang loop vectorize(enable)' when " 4792 "compiling with -Os/-Oz", 4793 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4794 return true; 4795 } 4796 4797 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4798 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4799 reportVectorizationFailure("Runtime stride check for small trip count", 4800 "runtime stride == 1 checks needed. Enable vectorization of " 4801 "this loop without such check by compiling with -Os/-Oz", 4802 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4803 return true; 4804 } 4805 4806 return false; 4807 } 4808 4809 ElementCount 4810 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4811 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4812 return ElementCount::getScalable(0); 4813 4814 if (Hints->isScalableVectorizationDisabled()) { 4815 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4816 "ScalableVectorizationDisabled", ORE, TheLoop); 4817 return ElementCount::getScalable(0); 4818 } 4819 4820 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4821 4822 auto MaxScalableVF = ElementCount::getScalable( 4823 std::numeric_limits<ElementCount::ScalarTy>::max()); 4824 4825 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4826 // FIXME: While for scalable vectors this is currently sufficient, this should 4827 // be replaced by a more detailed mechanism that filters out specific VFs, 4828 // instead of invalidating vectorization for a whole set of VFs based on the 4829 // MaxVF. 4830 4831 // Disable scalable vectorization if the loop contains unsupported reductions. 4832 if (!canVectorizeReductions(MaxScalableVF)) { 4833 reportVectorizationInfo( 4834 "Scalable vectorization not supported for the reduction " 4835 "operations found in this loop.", 4836 "ScalableVFUnfeasible", ORE, TheLoop); 4837 return ElementCount::getScalable(0); 4838 } 4839 4840 // Disable scalable vectorization if the loop contains any instructions 4841 // with element types not supported for scalable vectors. 4842 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4843 return !Ty->isVoidTy() && 4844 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4845 })) { 4846 reportVectorizationInfo("Scalable vectorization is not supported " 4847 "for all element types found in this loop.", 4848 "ScalableVFUnfeasible", ORE, TheLoop); 4849 return ElementCount::getScalable(0); 4850 } 4851 4852 if (Legal->isSafeForAnyVectorWidth()) 4853 return MaxScalableVF; 4854 4855 // Limit MaxScalableVF by the maximum safe dependence distance. 4856 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4857 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4858 MaxVScale = 4859 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4860 MaxScalableVF = ElementCount::getScalable( 4861 MaxVScale ? (MaxSafeElements / MaxVScale.value()) : 0); 4862 if (!MaxScalableVF) 4863 reportVectorizationInfo( 4864 "Max legal vector width too small, scalable vectorization " 4865 "unfeasible.", 4866 "ScalableVFUnfeasible", ORE, TheLoop); 4867 4868 return MaxScalableVF; 4869 } 4870 4871 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4872 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4873 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4874 unsigned SmallestType, WidestType; 4875 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4876 4877 // Get the maximum safe dependence distance in bits computed by LAA. 4878 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4879 // the memory accesses that is most restrictive (involved in the smallest 4880 // dependence distance). 4881 unsigned MaxSafeElements = 4882 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4883 4884 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4885 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4886 4887 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4888 << ".\n"); 4889 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4890 << ".\n"); 4891 4892 // First analyze the UserVF, fall back if the UserVF should be ignored. 4893 if (UserVF) { 4894 auto MaxSafeUserVF = 4895 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4896 4897 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4898 // If `VF=vscale x N` is safe, then so is `VF=N` 4899 if (UserVF.isScalable()) 4900 return FixedScalableVFPair( 4901 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4902 else 4903 return UserVF; 4904 } 4905 4906 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4907 4908 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4909 // is better to ignore the hint and let the compiler choose a suitable VF. 4910 if (!UserVF.isScalable()) { 4911 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4912 << " is unsafe, clamping to max safe VF=" 4913 << MaxSafeFixedVF << ".\n"); 4914 ORE->emit([&]() { 4915 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4916 TheLoop->getStartLoc(), 4917 TheLoop->getHeader()) 4918 << "User-specified vectorization factor " 4919 << ore::NV("UserVectorizationFactor", UserVF) 4920 << " is unsafe, clamping to maximum safe vectorization factor " 4921 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4922 }); 4923 return MaxSafeFixedVF; 4924 } 4925 4926 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4927 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4928 << " is ignored because scalable vectors are not " 4929 "available.\n"); 4930 ORE->emit([&]() { 4931 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4932 TheLoop->getStartLoc(), 4933 TheLoop->getHeader()) 4934 << "User-specified vectorization factor " 4935 << ore::NV("UserVectorizationFactor", UserVF) 4936 << " is ignored because the target does not support scalable " 4937 "vectors. The compiler will pick a more suitable value."; 4938 }); 4939 } else { 4940 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4941 << " is unsafe. Ignoring scalable UserVF.\n"); 4942 ORE->emit([&]() { 4943 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4944 TheLoop->getStartLoc(), 4945 TheLoop->getHeader()) 4946 << "User-specified vectorization factor " 4947 << ore::NV("UserVectorizationFactor", UserVF) 4948 << " is unsafe. Ignoring the hint to let the compiler pick a " 4949 "more suitable value."; 4950 }); 4951 } 4952 } 4953 4954 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4955 << " / " << WidestType << " bits.\n"); 4956 4957 FixedScalableVFPair Result(ElementCount::getFixed(1), 4958 ElementCount::getScalable(0)); 4959 if (auto MaxVF = 4960 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4961 MaxSafeFixedVF, FoldTailByMasking)) 4962 Result.FixedVF = MaxVF; 4963 4964 if (auto MaxVF = 4965 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4966 MaxSafeScalableVF, FoldTailByMasking)) 4967 if (MaxVF.isScalable()) { 4968 Result.ScalableVF = MaxVF; 4969 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 4970 << "\n"); 4971 } 4972 4973 return Result; 4974 } 4975 4976 FixedScalableVFPair 4977 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 4978 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4979 // TODO: It may by useful to do since it's still likely to be dynamically 4980 // uniform if the target can skip. 4981 reportVectorizationFailure( 4982 "Not inserting runtime ptr check for divergent target", 4983 "runtime pointer checks needed. Not enabled for divergent target", 4984 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4985 return FixedScalableVFPair::getNone(); 4986 } 4987 4988 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4989 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4990 if (TC == 1) { 4991 reportVectorizationFailure("Single iteration (non) loop", 4992 "loop trip count is one, irrelevant for vectorization", 4993 "SingleIterationLoop", ORE, TheLoop); 4994 return FixedScalableVFPair::getNone(); 4995 } 4996 4997 switch (ScalarEpilogueStatus) { 4998 case CM_ScalarEpilogueAllowed: 4999 return computeFeasibleMaxVF(TC, UserVF, false); 5000 case CM_ScalarEpilogueNotAllowedUsePredicate: 5001 LLVM_FALLTHROUGH; 5002 case CM_ScalarEpilogueNotNeededUsePredicate: 5003 LLVM_DEBUG( 5004 dbgs() << "LV: vector predicate hint/switch found.\n" 5005 << "LV: Not allowing scalar epilogue, creating predicated " 5006 << "vector loop.\n"); 5007 break; 5008 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5009 // fallthrough as a special case of OptForSize 5010 case CM_ScalarEpilogueNotAllowedOptSize: 5011 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5012 LLVM_DEBUG( 5013 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5014 else 5015 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5016 << "count.\n"); 5017 5018 // Bail if runtime checks are required, which are not good when optimising 5019 // for size. 5020 if (runtimeChecksRequired()) 5021 return FixedScalableVFPair::getNone(); 5022 5023 break; 5024 } 5025 5026 // The only loops we can vectorize without a scalar epilogue, are loops with 5027 // a bottom-test and a single exiting block. We'd have to handle the fact 5028 // that not every instruction executes on the last iteration. This will 5029 // require a lane mask which varies through the vector loop body. (TODO) 5030 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5031 // If there was a tail-folding hint/switch, but we can't fold the tail by 5032 // masking, fallback to a vectorization with a scalar epilogue. 5033 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5034 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5035 "scalar epilogue instead.\n"); 5036 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5037 return computeFeasibleMaxVF(TC, UserVF, false); 5038 } 5039 return FixedScalableVFPair::getNone(); 5040 } 5041 5042 // Now try the tail folding 5043 5044 // Invalidate interleave groups that require an epilogue if we can't mask 5045 // the interleave-group. 5046 if (!useMaskedInterleavedAccesses(TTI)) { 5047 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5048 "No decisions should have been taken at this point"); 5049 // Note: There is no need to invalidate any cost modeling decisions here, as 5050 // non where taken so far. 5051 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5052 } 5053 5054 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5055 // Avoid tail folding if the trip count is known to be a multiple of any VF 5056 // we chose. 5057 // FIXME: The condition below pessimises the case for fixed-width vectors, 5058 // when scalable VFs are also candidates for vectorization. 5059 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5060 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5061 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5062 "MaxFixedVF must be a power of 2"); 5063 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5064 : MaxFixedVF.getFixedValue(); 5065 ScalarEvolution *SE = PSE.getSE(); 5066 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5067 const SCEV *ExitCount = SE->getAddExpr( 5068 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5069 const SCEV *Rem = SE->getURemExpr( 5070 SE->applyLoopGuards(ExitCount, TheLoop), 5071 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5072 if (Rem->isZero()) { 5073 // Accept MaxFixedVF if we do not have a tail. 5074 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5075 return MaxFactors; 5076 } 5077 } 5078 5079 // If we don't know the precise trip count, or if the trip count that we 5080 // found modulo the vectorization factor is not zero, try to fold the tail 5081 // by masking. 5082 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5083 if (Legal->prepareToFoldTailByMasking()) { 5084 FoldTailByMasking = true; 5085 return MaxFactors; 5086 } 5087 5088 // If there was a tail-folding hint/switch, but we can't fold the tail by 5089 // masking, fallback to a vectorization with a scalar epilogue. 5090 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5091 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5092 "scalar epilogue instead.\n"); 5093 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5094 return MaxFactors; 5095 } 5096 5097 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5098 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5099 return FixedScalableVFPair::getNone(); 5100 } 5101 5102 if (TC == 0) { 5103 reportVectorizationFailure( 5104 "Unable to calculate the loop count due to complex control flow", 5105 "unable to calculate the loop count due to complex control flow", 5106 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5107 return FixedScalableVFPair::getNone(); 5108 } 5109 5110 reportVectorizationFailure( 5111 "Cannot optimize for size and vectorize at the same time.", 5112 "cannot optimize for size and vectorize at the same time. " 5113 "Enable vectorization of this loop with '#pragma clang loop " 5114 "vectorize(enable)' when compiling with -Os/-Oz", 5115 "NoTailLoopWithOptForSize", ORE, TheLoop); 5116 return FixedScalableVFPair::getNone(); 5117 } 5118 5119 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5120 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5121 ElementCount MaxSafeVF, bool FoldTailByMasking) { 5122 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5123 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5124 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5125 : TargetTransformInfo::RGK_FixedWidthVector); 5126 5127 // Convenience function to return the minimum of two ElementCounts. 5128 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5129 assert((LHS.isScalable() == RHS.isScalable()) && 5130 "Scalable flags must match"); 5131 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5132 }; 5133 5134 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5135 // Note that both WidestRegister and WidestType may not be a powers of 2. 5136 auto MaxVectorElementCount = ElementCount::get( 5137 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5138 ComputeScalableMaxVF); 5139 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5140 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5141 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5142 5143 if (!MaxVectorElementCount) { 5144 LLVM_DEBUG(dbgs() << "LV: The target has no " 5145 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5146 << " vector registers.\n"); 5147 return ElementCount::getFixed(1); 5148 } 5149 5150 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5151 if (ConstTripCount && 5152 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5153 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5154 // If loop trip count (TC) is known at compile time there is no point in 5155 // choosing VF greater than TC (as done in the loop below). Select maximum 5156 // power of two which doesn't exceed TC. 5157 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5158 // when the TC is less than or equal to the known number of lanes. 5159 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5160 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5161 "exceeding the constant trip count: " 5162 << ClampedConstTripCount << "\n"); 5163 return ElementCount::getFixed(ClampedConstTripCount); 5164 } 5165 5166 TargetTransformInfo::RegisterKind RegKind = 5167 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5168 : TargetTransformInfo::RGK_FixedWidthVector; 5169 ElementCount MaxVF = MaxVectorElementCount; 5170 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5171 TTI.shouldMaximizeVectorBandwidth(RegKind))) { 5172 auto MaxVectorElementCountMaxBW = ElementCount::get( 5173 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5174 ComputeScalableMaxVF); 5175 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5176 5177 // Collect all viable vectorization factors larger than the default MaxVF 5178 // (i.e. MaxVectorElementCount). 5179 SmallVector<ElementCount, 8> VFs; 5180 for (ElementCount VS = MaxVectorElementCount * 2; 5181 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5182 VFs.push_back(VS); 5183 5184 // For each VF calculate its register usage. 5185 auto RUs = calculateRegisterUsage(VFs); 5186 5187 // Select the largest VF which doesn't require more registers than existing 5188 // ones. 5189 for (int i = RUs.size() - 1; i >= 0; --i) { 5190 bool Selected = true; 5191 for (auto &pair : RUs[i].MaxLocalUsers) { 5192 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5193 if (pair.second > TargetNumRegisters) 5194 Selected = false; 5195 } 5196 if (Selected) { 5197 MaxVF = VFs[i]; 5198 break; 5199 } 5200 } 5201 if (ElementCount MinVF = 5202 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5203 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5204 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5205 << ") with target's minimum: " << MinVF << '\n'); 5206 MaxVF = MinVF; 5207 } 5208 } 5209 5210 // Invalidate any widening decisions we might have made, in case the loop 5211 // requires prediction (decided later), but we have already made some 5212 // load/store widening decisions. 5213 invalidateCostModelingDecisions(); 5214 } 5215 return MaxVF; 5216 } 5217 5218 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5219 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5220 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5221 auto Min = Attr.getVScaleRangeMin(); 5222 auto Max = Attr.getVScaleRangeMax(); 5223 if (Max && Min == Max) 5224 return Max; 5225 } 5226 5227 return TTI.getVScaleForTuning(); 5228 } 5229 5230 bool LoopVectorizationCostModel::isMoreProfitable( 5231 const VectorizationFactor &A, const VectorizationFactor &B) const { 5232 InstructionCost CostA = A.Cost; 5233 InstructionCost CostB = B.Cost; 5234 5235 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5236 5237 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5238 MaxTripCount) { 5239 // If we are folding the tail and the trip count is a known (possibly small) 5240 // constant, the trip count will be rounded up to an integer number of 5241 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5242 // which we compare directly. When not folding the tail, the total cost will 5243 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5244 // approximated with the per-lane cost below instead of using the tripcount 5245 // as here. 5246 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5247 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5248 return RTCostA < RTCostB; 5249 } 5250 5251 // Improve estimate for the vector width if it is scalable. 5252 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5253 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5254 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5255 if (A.Width.isScalable()) 5256 EstimatedWidthA *= VScale.value(); 5257 if (B.Width.isScalable()) 5258 EstimatedWidthB *= VScale.value(); 5259 } 5260 5261 // Assume vscale may be larger than 1 (or the value being tuned for), 5262 // so that scalable vectorization is slightly favorable over fixed-width 5263 // vectorization. 5264 if (A.Width.isScalable() && !B.Width.isScalable()) 5265 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5266 5267 // To avoid the need for FP division: 5268 // (CostA / A.Width) < (CostB / B.Width) 5269 // <=> (CostA * B.Width) < (CostB * A.Width) 5270 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5271 } 5272 5273 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5274 const ElementCountSet &VFCandidates) { 5275 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5276 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5277 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5278 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5279 "Expected Scalar VF to be a candidate"); 5280 5281 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost, 5282 ExpectedCost); 5283 VectorizationFactor ChosenFactor = ScalarCost; 5284 5285 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5286 if (ForceVectorization && VFCandidates.size() > 1) { 5287 // Ignore scalar width, because the user explicitly wants vectorization. 5288 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5289 // evaluation. 5290 ChosenFactor.Cost = InstructionCost::getMax(); 5291 } 5292 5293 SmallVector<InstructionVFPair> InvalidCosts; 5294 for (const auto &i : VFCandidates) { 5295 // The cost for scalar VF=1 is already calculated, so ignore it. 5296 if (i.isScalar()) 5297 continue; 5298 5299 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5300 VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost); 5301 5302 #ifndef NDEBUG 5303 unsigned AssumedMinimumVscale = 1; 5304 if (Optional<unsigned> VScale = getVScaleForTuning()) 5305 AssumedMinimumVscale = *VScale; 5306 unsigned Width = 5307 Candidate.Width.isScalable() 5308 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5309 : Candidate.Width.getFixedValue(); 5310 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5311 << " costs: " << (Candidate.Cost / Width)); 5312 if (i.isScalable()) 5313 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5314 << AssumedMinimumVscale << ")"); 5315 LLVM_DEBUG(dbgs() << ".\n"); 5316 #endif 5317 5318 if (!C.second && !ForceVectorization) { 5319 LLVM_DEBUG( 5320 dbgs() << "LV: Not considering vector loop of width " << i 5321 << " because it will not generate any vector instructions.\n"); 5322 continue; 5323 } 5324 5325 // If profitable add it to ProfitableVF list. 5326 if (isMoreProfitable(Candidate, ScalarCost)) 5327 ProfitableVFs.push_back(Candidate); 5328 5329 if (isMoreProfitable(Candidate, ChosenFactor)) 5330 ChosenFactor = Candidate; 5331 } 5332 5333 // Emit a report of VFs with invalid costs in the loop. 5334 if (!InvalidCosts.empty()) { 5335 // Group the remarks per instruction, keeping the instruction order from 5336 // InvalidCosts. 5337 std::map<Instruction *, unsigned> Numbering; 5338 unsigned I = 0; 5339 for (auto &Pair : InvalidCosts) 5340 if (!Numbering.count(Pair.first)) 5341 Numbering[Pair.first] = I++; 5342 5343 // Sort the list, first on instruction(number) then on VF. 5344 llvm::sort(InvalidCosts, 5345 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5346 if (Numbering[A.first] != Numbering[B.first]) 5347 return Numbering[A.first] < Numbering[B.first]; 5348 ElementCountComparator ECC; 5349 return ECC(A.second, B.second); 5350 }); 5351 5352 // For a list of ordered instruction-vf pairs: 5353 // [(load, vf1), (load, vf2), (store, vf1)] 5354 // Group the instructions together to emit separate remarks for: 5355 // load (vf1, vf2) 5356 // store (vf1) 5357 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5358 auto Subset = ArrayRef<InstructionVFPair>(); 5359 do { 5360 if (Subset.empty()) 5361 Subset = Tail.take_front(1); 5362 5363 Instruction *I = Subset.front().first; 5364 5365 // If the next instruction is different, or if there are no other pairs, 5366 // emit a remark for the collated subset. e.g. 5367 // [(load, vf1), (load, vf2))] 5368 // to emit: 5369 // remark: invalid costs for 'load' at VF=(vf, vf2) 5370 if (Subset == Tail || Tail[Subset.size()].first != I) { 5371 std::string OutString; 5372 raw_string_ostream OS(OutString); 5373 assert(!Subset.empty() && "Unexpected empty range"); 5374 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5375 for (auto &Pair : Subset) 5376 OS << (Pair.second == Subset.front().second ? "" : ", ") 5377 << Pair.second; 5378 OS << "):"; 5379 if (auto *CI = dyn_cast<CallInst>(I)) 5380 OS << " call to " << CI->getCalledFunction()->getName(); 5381 else 5382 OS << " " << I->getOpcodeName(); 5383 OS.flush(); 5384 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5385 Tail = Tail.drop_front(Subset.size()); 5386 Subset = {}; 5387 } else 5388 // Grow the subset by one element 5389 Subset = Tail.take_front(Subset.size() + 1); 5390 } while (!Tail.empty()); 5391 } 5392 5393 if (!EnableCondStoresVectorization && NumPredStores) { 5394 reportVectorizationFailure("There are conditional stores.", 5395 "store that is conditionally executed prevents vectorization", 5396 "ConditionalStore", ORE, TheLoop); 5397 ChosenFactor = ScalarCost; 5398 } 5399 5400 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5401 !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs() 5402 << "LV: Vectorization seems to be not beneficial, " 5403 << "but was forced by a user.\n"); 5404 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5405 return ChosenFactor; 5406 } 5407 5408 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5409 const Loop &L, ElementCount VF) const { 5410 // Cross iteration phis such as reductions need special handling and are 5411 // currently unsupported. 5412 if (any_of(L.getHeader()->phis(), 5413 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5414 return false; 5415 5416 // Phis with uses outside of the loop require special handling and are 5417 // currently unsupported. 5418 for (auto &Entry : Legal->getInductionVars()) { 5419 // Look for uses of the value of the induction at the last iteration. 5420 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5421 for (User *U : PostInc->users()) 5422 if (!L.contains(cast<Instruction>(U))) 5423 return false; 5424 // Look for uses of penultimate value of the induction. 5425 for (User *U : Entry.first->users()) 5426 if (!L.contains(cast<Instruction>(U))) 5427 return false; 5428 } 5429 5430 // Induction variables that are widened require special handling that is 5431 // currently not supported. 5432 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5433 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5434 this->isProfitableToScalarize(Entry.first, VF)); 5435 })) 5436 return false; 5437 5438 // Epilogue vectorization code has not been auditted to ensure it handles 5439 // non-latch exits properly. It may be fine, but it needs auditted and 5440 // tested. 5441 if (L.getExitingBlock() != L.getLoopLatch()) 5442 return false; 5443 5444 return true; 5445 } 5446 5447 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5448 const ElementCount VF) const { 5449 // FIXME: We need a much better cost-model to take different parameters such 5450 // as register pressure, code size increase and cost of extra branches into 5451 // account. For now we apply a very crude heuristic and only consider loops 5452 // with vectorization factors larger than a certain value. 5453 // We also consider epilogue vectorization unprofitable for targets that don't 5454 // consider interleaving beneficial (eg. MVE). 5455 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5456 return false; 5457 // FIXME: We should consider changing the threshold for scalable 5458 // vectors to take VScaleForTuning into account. 5459 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5460 return true; 5461 return false; 5462 } 5463 5464 VectorizationFactor 5465 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5466 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5467 VectorizationFactor Result = VectorizationFactor::Disabled(); 5468 if (!EnableEpilogueVectorization) { 5469 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5470 return Result; 5471 } 5472 5473 if (!isScalarEpilogueAllowed()) { 5474 LLVM_DEBUG( 5475 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5476 "allowed.\n";); 5477 return Result; 5478 } 5479 5480 // Not really a cost consideration, but check for unsupported cases here to 5481 // simplify the logic. 5482 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5483 LLVM_DEBUG( 5484 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5485 "not a supported candidate.\n";); 5486 return Result; 5487 } 5488 5489 if (EpilogueVectorizationForceVF > 1) { 5490 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5491 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5492 if (LVP.hasPlanWithVF(ForcedEC)) 5493 return {ForcedEC, 0, 0}; 5494 else { 5495 LLVM_DEBUG( 5496 dbgs() 5497 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5498 return Result; 5499 } 5500 } 5501 5502 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5503 TheLoop->getHeader()->getParent()->hasMinSize()) { 5504 LLVM_DEBUG( 5505 dbgs() 5506 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5507 return Result; 5508 } 5509 5510 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5511 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5512 "this loop\n"); 5513 return Result; 5514 } 5515 5516 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5517 // the main loop handles 8 lanes per iteration. We could still benefit from 5518 // vectorizing the epilogue loop with VF=4. 5519 ElementCount EstimatedRuntimeVF = MainLoopVF; 5520 if (MainLoopVF.isScalable()) { 5521 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5522 if (Optional<unsigned> VScale = getVScaleForTuning()) 5523 EstimatedRuntimeVF *= *VScale; 5524 } 5525 5526 for (auto &NextVF : ProfitableVFs) 5527 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5528 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5529 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5530 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5531 LVP.hasPlanWithVF(NextVF.Width)) 5532 Result = NextVF; 5533 5534 if (Result != VectorizationFactor::Disabled()) 5535 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5536 << Result.Width << "\n";); 5537 return Result; 5538 } 5539 5540 std::pair<unsigned, unsigned> 5541 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5542 unsigned MinWidth = -1U; 5543 unsigned MaxWidth = 8; 5544 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5545 // For in-loop reductions, no element types are added to ElementTypesInLoop 5546 // if there are no loads/stores in the loop. In this case, check through the 5547 // reduction variables to determine the maximum width. 5548 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5549 // Reset MaxWidth so that we can find the smallest type used by recurrences 5550 // in the loop. 5551 MaxWidth = -1U; 5552 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5553 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5554 // When finding the min width used by the recurrence we need to account 5555 // for casts on the input operands of the recurrence. 5556 MaxWidth = std::min<unsigned>( 5557 MaxWidth, std::min<unsigned>( 5558 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5559 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5560 } 5561 } else { 5562 for (Type *T : ElementTypesInLoop) { 5563 MinWidth = std::min<unsigned>( 5564 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5565 MaxWidth = std::max<unsigned>( 5566 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5567 } 5568 } 5569 return {MinWidth, MaxWidth}; 5570 } 5571 5572 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5573 ElementTypesInLoop.clear(); 5574 // For each block. 5575 for (BasicBlock *BB : TheLoop->blocks()) { 5576 // For each instruction in the loop. 5577 for (Instruction &I : BB->instructionsWithoutDebug()) { 5578 Type *T = I.getType(); 5579 5580 // Skip ignored values. 5581 if (ValuesToIgnore.count(&I)) 5582 continue; 5583 5584 // Only examine Loads, Stores and PHINodes. 5585 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5586 continue; 5587 5588 // Examine PHI nodes that are reduction variables. Update the type to 5589 // account for the recurrence type. 5590 if (auto *PN = dyn_cast<PHINode>(&I)) { 5591 if (!Legal->isReductionVariable(PN)) 5592 continue; 5593 const RecurrenceDescriptor &RdxDesc = 5594 Legal->getReductionVars().find(PN)->second; 5595 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5596 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5597 RdxDesc.getRecurrenceType(), 5598 TargetTransformInfo::ReductionFlags())) 5599 continue; 5600 T = RdxDesc.getRecurrenceType(); 5601 } 5602 5603 // Examine the stored values. 5604 if (auto *ST = dyn_cast<StoreInst>(&I)) 5605 T = ST->getValueOperand()->getType(); 5606 5607 assert(T->isSized() && 5608 "Expected the load/store/recurrence type to be sized"); 5609 5610 ElementTypesInLoop.insert(T); 5611 } 5612 } 5613 } 5614 5615 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5616 unsigned LoopCost) { 5617 // -- The interleave heuristics -- 5618 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5619 // There are many micro-architectural considerations that we can't predict 5620 // at this level. For example, frontend pressure (on decode or fetch) due to 5621 // code size, or the number and capabilities of the execution ports. 5622 // 5623 // We use the following heuristics to select the interleave count: 5624 // 1. If the code has reductions, then we interleave to break the cross 5625 // iteration dependency. 5626 // 2. If the loop is really small, then we interleave to reduce the loop 5627 // overhead. 5628 // 3. We don't interleave if we think that we will spill registers to memory 5629 // due to the increased register pressure. 5630 5631 if (!isScalarEpilogueAllowed()) 5632 return 1; 5633 5634 // We used the distance for the interleave count. 5635 if (Legal->getMaxSafeDepDistBytes() != -1U) 5636 return 1; 5637 5638 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5639 const bool HasReductions = !Legal->getReductionVars().empty(); 5640 // Do not interleave loops with a relatively small known or estimated trip 5641 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5642 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5643 // because with the above conditions interleaving can expose ILP and break 5644 // cross iteration dependences for reductions. 5645 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5646 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5647 return 1; 5648 5649 // If we did not calculate the cost for VF (because the user selected the VF) 5650 // then we calculate the cost of VF here. 5651 if (LoopCost == 0) { 5652 InstructionCost C = expectedCost(VF).first; 5653 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5654 LoopCost = *C.getValue(); 5655 5656 // Loop body is free and there is no need for interleaving. 5657 if (LoopCost == 0) 5658 return 1; 5659 } 5660 5661 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5662 // We divide by these constants so assume that we have at least one 5663 // instruction that uses at least one register. 5664 for (auto& pair : R.MaxLocalUsers) { 5665 pair.second = std::max(pair.second, 1U); 5666 } 5667 5668 // We calculate the interleave count using the following formula. 5669 // Subtract the number of loop invariants from the number of available 5670 // registers. These registers are used by all of the interleaved instances. 5671 // Next, divide the remaining registers by the number of registers that is 5672 // required by the loop, in order to estimate how many parallel instances 5673 // fit without causing spills. All of this is rounded down if necessary to be 5674 // a power of two. We want power of two interleave count to simplify any 5675 // addressing operations or alignment considerations. 5676 // We also want power of two interleave counts to ensure that the induction 5677 // variable of the vector loop wraps to zero, when tail is folded by masking; 5678 // this currently happens when OptForSize, in which case IC is set to 1 above. 5679 unsigned IC = UINT_MAX; 5680 5681 for (auto& pair : R.MaxLocalUsers) { 5682 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5683 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5684 << " registers of " 5685 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5686 if (VF.isScalar()) { 5687 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5688 TargetNumRegisters = ForceTargetNumScalarRegs; 5689 } else { 5690 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5691 TargetNumRegisters = ForceTargetNumVectorRegs; 5692 } 5693 unsigned MaxLocalUsers = pair.second; 5694 unsigned LoopInvariantRegs = 0; 5695 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5696 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5697 5698 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5699 // Don't count the induction variable as interleaved. 5700 if (EnableIndVarRegisterHeur) { 5701 TmpIC = 5702 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5703 std::max(1U, (MaxLocalUsers - 1))); 5704 } 5705 5706 IC = std::min(IC, TmpIC); 5707 } 5708 5709 // Clamp the interleave ranges to reasonable counts. 5710 unsigned MaxInterleaveCount = 5711 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5712 5713 // Check if the user has overridden the max. 5714 if (VF.isScalar()) { 5715 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5716 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5717 } else { 5718 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5719 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5720 } 5721 5722 // If trip count is known or estimated compile time constant, limit the 5723 // interleave count to be less than the trip count divided by VF, provided it 5724 // is at least 1. 5725 // 5726 // For scalable vectors we can't know if interleaving is beneficial. It may 5727 // not be beneficial for small loops if none of the lanes in the second vector 5728 // iterations is enabled. However, for larger loops, there is likely to be a 5729 // similar benefit as for fixed-width vectors. For now, we choose to leave 5730 // the InterleaveCount as if vscale is '1', although if some information about 5731 // the vector is known (e.g. min vector size), we can make a better decision. 5732 if (BestKnownTC) { 5733 MaxInterleaveCount = 5734 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5735 // Make sure MaxInterleaveCount is greater than 0. 5736 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5737 } 5738 5739 assert(MaxInterleaveCount > 0 && 5740 "Maximum interleave count must be greater than 0"); 5741 5742 // Clamp the calculated IC to be between the 1 and the max interleave count 5743 // that the target and trip count allows. 5744 if (IC > MaxInterleaveCount) 5745 IC = MaxInterleaveCount; 5746 else 5747 // Make sure IC is greater than 0. 5748 IC = std::max(1u, IC); 5749 5750 assert(IC > 0 && "Interleave count must be greater than 0."); 5751 5752 // Interleave if we vectorized this loop and there is a reduction that could 5753 // benefit from interleaving. 5754 if (VF.isVector() && HasReductions) { 5755 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5756 return IC; 5757 } 5758 5759 // For any scalar loop that either requires runtime checks or predication we 5760 // are better off leaving this to the unroller. Note that if we've already 5761 // vectorized the loop we will have done the runtime check and so interleaving 5762 // won't require further checks. 5763 bool ScalarInterleavingRequiresPredication = 5764 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5765 return Legal->blockNeedsPredication(BB); 5766 })); 5767 bool ScalarInterleavingRequiresRuntimePointerCheck = 5768 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5769 5770 // We want to interleave small loops in order to reduce the loop overhead and 5771 // potentially expose ILP opportunities. 5772 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5773 << "LV: IC is " << IC << '\n' 5774 << "LV: VF is " << VF << '\n'); 5775 const bool AggressivelyInterleaveReductions = 5776 TTI.enableAggressiveInterleaving(HasReductions); 5777 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5778 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5779 // We assume that the cost overhead is 1 and we use the cost model 5780 // to estimate the cost of the loop and interleave until the cost of the 5781 // loop overhead is about 5% of the cost of the loop. 5782 unsigned SmallIC = 5783 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5784 5785 // Interleave until store/load ports (estimated by max interleave count) are 5786 // saturated. 5787 unsigned NumStores = Legal->getNumStores(); 5788 unsigned NumLoads = Legal->getNumLoads(); 5789 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5790 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5791 5792 // There is little point in interleaving for reductions containing selects 5793 // and compares when VF=1 since it may just create more overhead than it's 5794 // worth for loops with small trip counts. This is because we still have to 5795 // do the final reduction after the loop. 5796 bool HasSelectCmpReductions = 5797 HasReductions && 5798 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5799 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5800 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5801 RdxDesc.getRecurrenceKind()); 5802 }); 5803 if (HasSelectCmpReductions) { 5804 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5805 return 1; 5806 } 5807 5808 // If we have a scalar reduction (vector reductions are already dealt with 5809 // by this point), we can increase the critical path length if the loop 5810 // we're interleaving is inside another loop. For tree-wise reductions 5811 // set the limit to 2, and for ordered reductions it's best to disable 5812 // interleaving entirely. 5813 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5814 bool HasOrderedReductions = 5815 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5816 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5817 return RdxDesc.isOrdered(); 5818 }); 5819 if (HasOrderedReductions) { 5820 LLVM_DEBUG( 5821 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5822 return 1; 5823 } 5824 5825 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5826 SmallIC = std::min(SmallIC, F); 5827 StoresIC = std::min(StoresIC, F); 5828 LoadsIC = std::min(LoadsIC, F); 5829 } 5830 5831 if (EnableLoadStoreRuntimeInterleave && 5832 std::max(StoresIC, LoadsIC) > SmallIC) { 5833 LLVM_DEBUG( 5834 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5835 return std::max(StoresIC, LoadsIC); 5836 } 5837 5838 // If there are scalar reductions and TTI has enabled aggressive 5839 // interleaving for reductions, we will interleave to expose ILP. 5840 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5841 AggressivelyInterleaveReductions) { 5842 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5843 // Interleave no less than SmallIC but not as aggressive as the normal IC 5844 // to satisfy the rare situation when resources are too limited. 5845 return std::max(IC / 2, SmallIC); 5846 } else { 5847 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5848 return SmallIC; 5849 } 5850 } 5851 5852 // Interleave if this is a large loop (small loops are already dealt with by 5853 // this point) that could benefit from interleaving. 5854 if (AggressivelyInterleaveReductions) { 5855 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5856 return IC; 5857 } 5858 5859 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5860 return 1; 5861 } 5862 5863 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5864 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5865 // This function calculates the register usage by measuring the highest number 5866 // of values that are alive at a single location. Obviously, this is a very 5867 // rough estimation. We scan the loop in a topological order in order and 5868 // assign a number to each instruction. We use RPO to ensure that defs are 5869 // met before their users. We assume that each instruction that has in-loop 5870 // users starts an interval. We record every time that an in-loop value is 5871 // used, so we have a list of the first and last occurrences of each 5872 // instruction. Next, we transpose this data structure into a multi map that 5873 // holds the list of intervals that *end* at a specific location. This multi 5874 // map allows us to perform a linear search. We scan the instructions linearly 5875 // and record each time that a new interval starts, by placing it in a set. 5876 // If we find this value in the multi-map then we remove it from the set. 5877 // The max register usage is the maximum size of the set. 5878 // We also search for instructions that are defined outside the loop, but are 5879 // used inside the loop. We need this number separately from the max-interval 5880 // usage number because when we unroll, loop-invariant values do not take 5881 // more register. 5882 LoopBlocksDFS DFS(TheLoop); 5883 DFS.perform(LI); 5884 5885 RegisterUsage RU; 5886 5887 // Each 'key' in the map opens a new interval. The values 5888 // of the map are the index of the 'last seen' usage of the 5889 // instruction that is the key. 5890 using IntervalMap = DenseMap<Instruction *, unsigned>; 5891 5892 // Maps instruction to its index. 5893 SmallVector<Instruction *, 64> IdxToInstr; 5894 // Marks the end of each interval. 5895 IntervalMap EndPoint; 5896 // Saves the list of instruction indices that are used in the loop. 5897 SmallPtrSet<Instruction *, 8> Ends; 5898 // Saves the list of values that are used in the loop but are 5899 // defined outside the loop, such as arguments and constants. 5900 SmallPtrSet<Value *, 8> LoopInvariants; 5901 5902 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5903 for (Instruction &I : BB->instructionsWithoutDebug()) { 5904 IdxToInstr.push_back(&I); 5905 5906 // Save the end location of each USE. 5907 for (Value *U : I.operands()) { 5908 auto *Instr = dyn_cast<Instruction>(U); 5909 5910 // Ignore non-instruction values such as arguments, constants, etc. 5911 if (!Instr) 5912 continue; 5913 5914 // If this instruction is outside the loop then record it and continue. 5915 if (!TheLoop->contains(Instr)) { 5916 LoopInvariants.insert(Instr); 5917 continue; 5918 } 5919 5920 // Overwrite previous end points. 5921 EndPoint[Instr] = IdxToInstr.size(); 5922 Ends.insert(Instr); 5923 } 5924 } 5925 } 5926 5927 // Saves the list of intervals that end with the index in 'key'. 5928 using InstrList = SmallVector<Instruction *, 2>; 5929 DenseMap<unsigned, InstrList> TransposeEnds; 5930 5931 // Transpose the EndPoints to a list of values that end at each index. 5932 for (auto &Interval : EndPoint) 5933 TransposeEnds[Interval.second].push_back(Interval.first); 5934 5935 SmallPtrSet<Instruction *, 8> OpenIntervals; 5936 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5937 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5938 5939 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5940 5941 const auto &TTICapture = TTI; 5942 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 5943 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5944 return 0; 5945 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 5946 }; 5947 5948 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5949 Instruction *I = IdxToInstr[i]; 5950 5951 // Remove all of the instructions that end at this location. 5952 InstrList &List = TransposeEnds[i]; 5953 for (Instruction *ToRemove : List) 5954 OpenIntervals.erase(ToRemove); 5955 5956 // Ignore instructions that are never used within the loop. 5957 if (!Ends.count(I)) 5958 continue; 5959 5960 // Skip ignored values. 5961 if (ValuesToIgnore.count(I)) 5962 continue; 5963 5964 // For each VF find the maximum usage of registers. 5965 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5966 // Count the number of live intervals. 5967 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5968 5969 if (VFs[j].isScalar()) { 5970 for (auto Inst : OpenIntervals) { 5971 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5972 if (RegUsage.find(ClassID) == RegUsage.end()) 5973 RegUsage[ClassID] = 1; 5974 else 5975 RegUsage[ClassID] += 1; 5976 } 5977 } else { 5978 collectUniformsAndScalars(VFs[j]); 5979 for (auto Inst : OpenIntervals) { 5980 // Skip ignored values for VF > 1. 5981 if (VecValuesToIgnore.count(Inst)) 5982 continue; 5983 if (isScalarAfterVectorization(Inst, VFs[j])) { 5984 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5985 if (RegUsage.find(ClassID) == RegUsage.end()) 5986 RegUsage[ClassID] = 1; 5987 else 5988 RegUsage[ClassID] += 1; 5989 } else { 5990 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5991 if (RegUsage.find(ClassID) == RegUsage.end()) 5992 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5993 else 5994 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5995 } 5996 } 5997 } 5998 5999 for (auto& pair : RegUsage) { 6000 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6001 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6002 else 6003 MaxUsages[j][pair.first] = pair.second; 6004 } 6005 } 6006 6007 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6008 << OpenIntervals.size() << '\n'); 6009 6010 // Add the current instruction to the list of open intervals. 6011 OpenIntervals.insert(I); 6012 } 6013 6014 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6015 SmallMapVector<unsigned, unsigned, 4> Invariant; 6016 6017 for (auto Inst : LoopInvariants) { 6018 unsigned Usage = 6019 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6020 unsigned ClassID = 6021 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6022 if (Invariant.find(ClassID) == Invariant.end()) 6023 Invariant[ClassID] = Usage; 6024 else 6025 Invariant[ClassID] += Usage; 6026 } 6027 6028 LLVM_DEBUG({ 6029 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6030 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6031 << " item\n"; 6032 for (const auto &pair : MaxUsages[i]) { 6033 dbgs() << "LV(REG): RegisterClass: " 6034 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6035 << " registers\n"; 6036 } 6037 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6038 << " item\n"; 6039 for (const auto &pair : Invariant) { 6040 dbgs() << "LV(REG): RegisterClass: " 6041 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6042 << " registers\n"; 6043 } 6044 }); 6045 6046 RU.LoopInvariantRegs = Invariant; 6047 RU.MaxLocalUsers = MaxUsages[i]; 6048 RUs[i] = RU; 6049 } 6050 6051 return RUs; 6052 } 6053 6054 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6055 ElementCount VF) { 6056 // TODO: Cost model for emulated masked load/store is completely 6057 // broken. This hack guides the cost model to use an artificially 6058 // high enough value to practically disable vectorization with such 6059 // operations, except where previously deployed legality hack allowed 6060 // using very low cost values. This is to avoid regressions coming simply 6061 // from moving "masked load/store" check from legality to cost model. 6062 // Masked Load/Gather emulation was previously never allowed. 6063 // Limited number of Masked Store/Scatter emulation was allowed. 6064 assert((isPredicatedInst(I, VF) || Legal->isUniformMemOp(*I)) && 6065 "Expecting a scalar emulated instruction"); 6066 return isa<LoadInst>(I) || 6067 (isa<StoreInst>(I) && 6068 NumPredStores > NumberOfStoresToPredicate); 6069 } 6070 6071 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6072 // If we aren't vectorizing the loop, or if we've already collected the 6073 // instructions to scalarize, there's nothing to do. Collection may already 6074 // have occurred if we have a user-selected VF and are now computing the 6075 // expected cost for interleaving. 6076 if (VF.isScalar() || VF.isZero() || 6077 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6078 return; 6079 6080 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6081 // not profitable to scalarize any instructions, the presence of VF in the 6082 // map will indicate that we've analyzed it already. 6083 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6084 6085 PredicatedBBsAfterVectorization[VF].clear(); 6086 6087 // Find all the instructions that are scalar with predication in the loop and 6088 // determine if it would be better to not if-convert the blocks they are in. 6089 // If so, we also record the instructions to scalarize. 6090 for (BasicBlock *BB : TheLoop->blocks()) { 6091 if (!blockNeedsPredicationForAnyReason(BB)) 6092 continue; 6093 for (Instruction &I : *BB) 6094 if (isScalarWithPredication(&I, VF)) { 6095 ScalarCostsTy ScalarCosts; 6096 // Do not apply discount if scalable, because that would lead to 6097 // invalid scalarization costs. 6098 // Do not apply discount logic if hacked cost is needed 6099 // for emulated masked memrefs. 6100 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6101 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6102 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6103 // Remember that BB will remain after vectorization. 6104 PredicatedBBsAfterVectorization[VF].insert(BB); 6105 } 6106 } 6107 } 6108 6109 int LoopVectorizationCostModel::computePredInstDiscount( 6110 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6111 assert(!isUniformAfterVectorization(PredInst, VF) && 6112 "Instruction marked uniform-after-vectorization will be predicated"); 6113 6114 // Initialize the discount to zero, meaning that the scalar version and the 6115 // vector version cost the same. 6116 InstructionCost Discount = 0; 6117 6118 // Holds instructions to analyze. The instructions we visit are mapped in 6119 // ScalarCosts. Those instructions are the ones that would be scalarized if 6120 // we find that the scalar version costs less. 6121 SmallVector<Instruction *, 8> Worklist; 6122 6123 // Returns true if the given instruction can be scalarized. 6124 auto canBeScalarized = [&](Instruction *I) -> bool { 6125 // We only attempt to scalarize instructions forming a single-use chain 6126 // from the original predicated block that would otherwise be vectorized. 6127 // Although not strictly necessary, we give up on instructions we know will 6128 // already be scalar to avoid traversing chains that are unlikely to be 6129 // beneficial. 6130 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6131 isScalarAfterVectorization(I, VF)) 6132 return false; 6133 6134 // If the instruction is scalar with predication, it will be analyzed 6135 // separately. We ignore it within the context of PredInst. 6136 if (isScalarWithPredication(I, VF)) 6137 return false; 6138 6139 // If any of the instruction's operands are uniform after vectorization, 6140 // the instruction cannot be scalarized. This prevents, for example, a 6141 // masked load from being scalarized. 6142 // 6143 // We assume we will only emit a value for lane zero of an instruction 6144 // marked uniform after vectorization, rather than VF identical values. 6145 // Thus, if we scalarize an instruction that uses a uniform, we would 6146 // create uses of values corresponding to the lanes we aren't emitting code 6147 // for. This behavior can be changed by allowing getScalarValue to clone 6148 // the lane zero values for uniforms rather than asserting. 6149 for (Use &U : I->operands()) 6150 if (auto *J = dyn_cast<Instruction>(U.get())) 6151 if (isUniformAfterVectorization(J, VF)) 6152 return false; 6153 6154 // Otherwise, we can scalarize the instruction. 6155 return true; 6156 }; 6157 6158 // Compute the expected cost discount from scalarizing the entire expression 6159 // feeding the predicated instruction. We currently only consider expressions 6160 // that are single-use instruction chains. 6161 Worklist.push_back(PredInst); 6162 while (!Worklist.empty()) { 6163 Instruction *I = Worklist.pop_back_val(); 6164 6165 // If we've already analyzed the instruction, there's nothing to do. 6166 if (ScalarCosts.find(I) != ScalarCosts.end()) 6167 continue; 6168 6169 // Compute the cost of the vector instruction. Note that this cost already 6170 // includes the scalarization overhead of the predicated instruction. 6171 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6172 6173 // Compute the cost of the scalarized instruction. This cost is the cost of 6174 // the instruction as if it wasn't if-converted and instead remained in the 6175 // predicated block. We will scale this cost by block probability after 6176 // computing the scalarization overhead. 6177 InstructionCost ScalarCost = 6178 VF.getFixedValue() * 6179 getInstructionCost(I, ElementCount::getFixed(1)).first; 6180 6181 // Compute the scalarization overhead of needed insertelement instructions 6182 // and phi nodes. 6183 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6184 ScalarCost += TTI.getScalarizationOverhead( 6185 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6186 APInt::getAllOnes(VF.getFixedValue()), true, false); 6187 ScalarCost += 6188 VF.getFixedValue() * 6189 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6190 } 6191 6192 // Compute the scalarization overhead of needed extractelement 6193 // instructions. For each of the instruction's operands, if the operand can 6194 // be scalarized, add it to the worklist; otherwise, account for the 6195 // overhead. 6196 for (Use &U : I->operands()) 6197 if (auto *J = dyn_cast<Instruction>(U.get())) { 6198 assert(VectorType::isValidElementType(J->getType()) && 6199 "Instruction has non-scalar type"); 6200 if (canBeScalarized(J)) 6201 Worklist.push_back(J); 6202 else if (needsExtract(J, VF)) { 6203 ScalarCost += TTI.getScalarizationOverhead( 6204 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6205 APInt::getAllOnes(VF.getFixedValue()), false, true); 6206 } 6207 } 6208 6209 // Scale the total scalar cost by block probability. 6210 ScalarCost /= getReciprocalPredBlockProb(); 6211 6212 // Compute the discount. A non-negative discount means the vector version 6213 // of the instruction costs more, and scalarizing would be beneficial. 6214 Discount += VectorCost - ScalarCost; 6215 ScalarCosts[I] = ScalarCost; 6216 } 6217 6218 return *Discount.getValue(); 6219 } 6220 6221 LoopVectorizationCostModel::VectorizationCostTy 6222 LoopVectorizationCostModel::expectedCost( 6223 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6224 VectorizationCostTy Cost; 6225 6226 // For each block. 6227 for (BasicBlock *BB : TheLoop->blocks()) { 6228 VectorizationCostTy BlockCost; 6229 6230 // For each instruction in the old loop. 6231 for (Instruction &I : BB->instructionsWithoutDebug()) { 6232 // Skip ignored values. 6233 if (ValuesToIgnore.count(&I) || 6234 (VF.isVector() && VecValuesToIgnore.count(&I))) 6235 continue; 6236 6237 VectorizationCostTy C = getInstructionCost(&I, VF); 6238 6239 // Check if we should override the cost. 6240 if (C.first.isValid() && 6241 ForceTargetInstructionCost.getNumOccurrences() > 0) 6242 C.first = InstructionCost(ForceTargetInstructionCost); 6243 6244 // Keep a list of instructions with invalid costs. 6245 if (Invalid && !C.first.isValid()) 6246 Invalid->emplace_back(&I, VF); 6247 6248 BlockCost.first += C.first; 6249 BlockCost.second |= C.second; 6250 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6251 << " for VF " << VF << " For instruction: " << I 6252 << '\n'); 6253 } 6254 6255 // If we are vectorizing a predicated block, it will have been 6256 // if-converted. This means that the block's instructions (aside from 6257 // stores and instructions that may divide by zero) will now be 6258 // unconditionally executed. For the scalar case, we may not always execute 6259 // the predicated block, if it is an if-else block. Thus, scale the block's 6260 // cost by the probability of executing it. blockNeedsPredication from 6261 // Legal is used so as to not include all blocks in tail folded loops. 6262 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6263 BlockCost.first /= getReciprocalPredBlockProb(); 6264 6265 Cost.first += BlockCost.first; 6266 Cost.second |= BlockCost.second; 6267 } 6268 6269 return Cost; 6270 } 6271 6272 /// Gets Address Access SCEV after verifying that the access pattern 6273 /// is loop invariant except the induction variable dependence. 6274 /// 6275 /// This SCEV can be sent to the Target in order to estimate the address 6276 /// calculation cost. 6277 static const SCEV *getAddressAccessSCEV( 6278 Value *Ptr, 6279 LoopVectorizationLegality *Legal, 6280 PredicatedScalarEvolution &PSE, 6281 const Loop *TheLoop) { 6282 6283 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6284 if (!Gep) 6285 return nullptr; 6286 6287 // We are looking for a gep with all loop invariant indices except for one 6288 // which should be an induction variable. 6289 auto SE = PSE.getSE(); 6290 unsigned NumOperands = Gep->getNumOperands(); 6291 for (unsigned i = 1; i < NumOperands; ++i) { 6292 Value *Opd = Gep->getOperand(i); 6293 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6294 !Legal->isInductionVariable(Opd)) 6295 return nullptr; 6296 } 6297 6298 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6299 return PSE.getSCEV(Ptr); 6300 } 6301 6302 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6303 return Legal->hasStride(I->getOperand(0)) || 6304 Legal->hasStride(I->getOperand(1)); 6305 } 6306 6307 InstructionCost 6308 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6309 ElementCount VF) { 6310 assert(VF.isVector() && 6311 "Scalarization cost of instruction implies vectorization."); 6312 if (VF.isScalable()) 6313 return InstructionCost::getInvalid(); 6314 6315 Type *ValTy = getLoadStoreType(I); 6316 auto SE = PSE.getSE(); 6317 6318 unsigned AS = getLoadStoreAddressSpace(I); 6319 Value *Ptr = getLoadStorePointerOperand(I); 6320 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6321 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6322 // that it is being called from this specific place. 6323 6324 // Figure out whether the access is strided and get the stride value 6325 // if it's known in compile time 6326 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6327 6328 // Get the cost of the scalar memory instruction and address computation. 6329 InstructionCost Cost = 6330 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6331 6332 // Don't pass *I here, since it is scalar but will actually be part of a 6333 // vectorized loop where the user of it is a vectorized instruction. 6334 const Align Alignment = getLoadStoreAlignment(I); 6335 Cost += VF.getKnownMinValue() * 6336 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6337 AS, TTI::TCK_RecipThroughput); 6338 6339 // Get the overhead of the extractelement and insertelement instructions 6340 // we might create due to scalarization. 6341 Cost += getScalarizationOverhead(I, VF); 6342 6343 // If we have a predicated load/store, it will need extra i1 extracts and 6344 // conditional branches, but may not be executed for each vector lane. Scale 6345 // the cost by the probability of executing the predicated block. 6346 if (isPredicatedInst(I, VF)) { 6347 Cost /= getReciprocalPredBlockProb(); 6348 6349 // Add the cost of an i1 extract and a branch 6350 auto *Vec_i1Ty = 6351 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6352 Cost += TTI.getScalarizationOverhead( 6353 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6354 /*Insert=*/false, /*Extract=*/true); 6355 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6356 6357 if (useEmulatedMaskMemRefHack(I, VF)) 6358 // Artificially setting to a high enough value to practically disable 6359 // vectorization with such operations. 6360 Cost = 3000000; 6361 } 6362 6363 return Cost; 6364 } 6365 6366 InstructionCost 6367 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6368 ElementCount VF) { 6369 Type *ValTy = getLoadStoreType(I); 6370 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6371 Value *Ptr = getLoadStorePointerOperand(I); 6372 unsigned AS = getLoadStoreAddressSpace(I); 6373 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6374 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6375 6376 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6377 "Stride should be 1 or -1 for consecutive memory access"); 6378 const Align Alignment = getLoadStoreAlignment(I); 6379 InstructionCost Cost = 0; 6380 if (Legal->isMaskRequired(I)) 6381 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6382 CostKind); 6383 else 6384 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6385 CostKind, I); 6386 6387 bool Reverse = ConsecutiveStride < 0; 6388 if (Reverse) 6389 Cost += 6390 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6391 return Cost; 6392 } 6393 6394 InstructionCost 6395 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6396 ElementCount VF) { 6397 assert(Legal->isUniformMemOp(*I)); 6398 6399 Type *ValTy = getLoadStoreType(I); 6400 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6401 const Align Alignment = getLoadStoreAlignment(I); 6402 unsigned AS = getLoadStoreAddressSpace(I); 6403 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6404 if (isa<LoadInst>(I)) { 6405 return TTI.getAddressComputationCost(ValTy) + 6406 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6407 CostKind) + 6408 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6409 } 6410 StoreInst *SI = cast<StoreInst>(I); 6411 6412 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6413 return TTI.getAddressComputationCost(ValTy) + 6414 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6415 CostKind) + 6416 (isLoopInvariantStoreValue 6417 ? 0 6418 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6419 VF.getKnownMinValue() - 1)); 6420 } 6421 6422 InstructionCost 6423 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6424 ElementCount VF) { 6425 Type *ValTy = getLoadStoreType(I); 6426 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6427 const Align Alignment = getLoadStoreAlignment(I); 6428 const Value *Ptr = getLoadStorePointerOperand(I); 6429 6430 return TTI.getAddressComputationCost(VectorTy) + 6431 TTI.getGatherScatterOpCost( 6432 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6433 TargetTransformInfo::TCK_RecipThroughput, I); 6434 } 6435 6436 InstructionCost 6437 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6438 ElementCount VF) { 6439 // TODO: Once we have support for interleaving with scalable vectors 6440 // we can calculate the cost properly here. 6441 if (VF.isScalable()) 6442 return InstructionCost::getInvalid(); 6443 6444 Type *ValTy = getLoadStoreType(I); 6445 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6446 unsigned AS = getLoadStoreAddressSpace(I); 6447 6448 auto Group = getInterleavedAccessGroup(I); 6449 assert(Group && "Fail to get an interleaved access group."); 6450 6451 unsigned InterleaveFactor = Group->getFactor(); 6452 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6453 6454 // Holds the indices of existing members in the interleaved group. 6455 SmallVector<unsigned, 4> Indices; 6456 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6457 if (Group->getMember(IF)) 6458 Indices.push_back(IF); 6459 6460 // Calculate the cost of the whole interleaved group. 6461 bool UseMaskForGaps = 6462 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6463 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6464 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6465 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6466 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6467 6468 if (Group->isReverse()) { 6469 // TODO: Add support for reversed masked interleaved access. 6470 assert(!Legal->isMaskRequired(I) && 6471 "Reverse masked interleaved access not supported."); 6472 Cost += 6473 Group->getNumMembers() * 6474 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6475 } 6476 return Cost; 6477 } 6478 6479 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6480 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6481 using namespace llvm::PatternMatch; 6482 // Early exit for no inloop reductions 6483 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6484 return None; 6485 auto *VectorTy = cast<VectorType>(Ty); 6486 6487 // We are looking for a pattern of, and finding the minimal acceptable cost: 6488 // reduce(mul(ext(A), ext(B))) or 6489 // reduce(mul(A, B)) or 6490 // reduce(ext(A)) or 6491 // reduce(A). 6492 // The basic idea is that we walk down the tree to do that, finding the root 6493 // reduction instruction in InLoopReductionImmediateChains. From there we find 6494 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6495 // of the components. If the reduction cost is lower then we return it for the 6496 // reduction instruction and 0 for the other instructions in the pattern. If 6497 // it is not we return an invalid cost specifying the orignal cost method 6498 // should be used. 6499 Instruction *RetI = I; 6500 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6501 if (!RetI->hasOneUser()) 6502 return None; 6503 RetI = RetI->user_back(); 6504 } 6505 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6506 RetI->user_back()->getOpcode() == Instruction::Add) { 6507 if (!RetI->hasOneUser()) 6508 return None; 6509 RetI = RetI->user_back(); 6510 } 6511 6512 // Test if the found instruction is a reduction, and if not return an invalid 6513 // cost specifying the parent to use the original cost modelling. 6514 if (!InLoopReductionImmediateChains.count(RetI)) 6515 return None; 6516 6517 // Find the reduction this chain is a part of and calculate the basic cost of 6518 // the reduction on its own. 6519 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6520 Instruction *ReductionPhi = LastChain; 6521 while (!isa<PHINode>(ReductionPhi)) 6522 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6523 6524 const RecurrenceDescriptor &RdxDesc = 6525 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6526 6527 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6528 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6529 6530 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6531 // normal fmul instruction to the cost of the fadd reduction. 6532 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6533 BaseCost += 6534 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6535 6536 // If we're using ordered reductions then we can just return the base cost 6537 // here, since getArithmeticReductionCost calculates the full ordered 6538 // reduction cost when FP reassociation is not allowed. 6539 if (useOrderedReductions(RdxDesc)) 6540 return BaseCost; 6541 6542 // Get the operand that was not the reduction chain and match it to one of the 6543 // patterns, returning the better cost if it is found. 6544 Instruction *RedOp = RetI->getOperand(1) == LastChain 6545 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6546 : dyn_cast<Instruction>(RetI->getOperand(1)); 6547 6548 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6549 6550 Instruction *Op0, *Op1; 6551 if (RedOp && 6552 match(RedOp, 6553 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6554 match(Op0, m_ZExtOrSExt(m_Value())) && 6555 Op0->getOpcode() == Op1->getOpcode() && 6556 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6557 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6558 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6559 6560 // Matched reduce(ext(mul(ext(A), ext(B))) 6561 // Note that the extend opcodes need to all match, or if A==B they will have 6562 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6563 // which is equally fine. 6564 bool IsUnsigned = isa<ZExtInst>(Op0); 6565 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6566 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6567 6568 InstructionCost ExtCost = 6569 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6570 TTI::CastContextHint::None, CostKind, Op0); 6571 InstructionCost MulCost = 6572 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6573 InstructionCost Ext2Cost = 6574 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6575 TTI::CastContextHint::None, CostKind, RedOp); 6576 6577 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6578 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6579 CostKind); 6580 6581 if (RedCost.isValid() && 6582 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6583 return I == RetI ? RedCost : 0; 6584 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6585 !TheLoop->isLoopInvariant(RedOp)) { 6586 // Matched reduce(ext(A)) 6587 bool IsUnsigned = isa<ZExtInst>(RedOp); 6588 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6589 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6590 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6591 CostKind); 6592 6593 InstructionCost ExtCost = 6594 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6595 TTI::CastContextHint::None, CostKind, RedOp); 6596 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6597 return I == RetI ? RedCost : 0; 6598 } else if (RedOp && 6599 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6600 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6601 Op0->getOpcode() == Op1->getOpcode() && 6602 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6603 bool IsUnsigned = isa<ZExtInst>(Op0); 6604 Type *Op0Ty = Op0->getOperand(0)->getType(); 6605 Type *Op1Ty = Op1->getOperand(0)->getType(); 6606 Type *LargestOpTy = 6607 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6608 : Op0Ty; 6609 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6610 6611 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6612 // different sizes. We take the largest type as the ext to reduce, and add 6613 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6614 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6615 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6616 TTI::CastContextHint::None, CostKind, Op0); 6617 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6618 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6619 TTI::CastContextHint::None, CostKind, Op1); 6620 InstructionCost MulCost = 6621 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6622 6623 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6624 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6625 CostKind); 6626 InstructionCost ExtraExtCost = 0; 6627 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6628 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6629 ExtraExtCost = TTI.getCastInstrCost( 6630 ExtraExtOp->getOpcode(), ExtType, 6631 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6632 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6633 } 6634 6635 if (RedCost.isValid() && 6636 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6637 return I == RetI ? RedCost : 0; 6638 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6639 // Matched reduce(mul()) 6640 InstructionCost MulCost = 6641 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6642 6643 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6644 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6645 CostKind); 6646 6647 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6648 return I == RetI ? RedCost : 0; 6649 } 6650 } 6651 6652 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6653 } 6654 6655 InstructionCost 6656 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6657 ElementCount VF) { 6658 // Calculate scalar cost only. Vectorization cost should be ready at this 6659 // moment. 6660 if (VF.isScalar()) { 6661 Type *ValTy = getLoadStoreType(I); 6662 const Align Alignment = getLoadStoreAlignment(I); 6663 unsigned AS = getLoadStoreAddressSpace(I); 6664 6665 return TTI.getAddressComputationCost(ValTy) + 6666 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6667 TTI::TCK_RecipThroughput, I); 6668 } 6669 return getWideningCost(I, VF); 6670 } 6671 6672 LoopVectorizationCostModel::VectorizationCostTy 6673 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6674 ElementCount VF) { 6675 // If we know that this instruction will remain uniform, check the cost of 6676 // the scalar version. 6677 if (isUniformAfterVectorization(I, VF)) 6678 VF = ElementCount::getFixed(1); 6679 6680 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6681 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6682 6683 // Forced scalars do not have any scalarization overhead. 6684 auto ForcedScalar = ForcedScalars.find(VF); 6685 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6686 auto InstSet = ForcedScalar->second; 6687 if (InstSet.count(I)) 6688 return VectorizationCostTy( 6689 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6690 VF.getKnownMinValue()), 6691 false); 6692 } 6693 6694 Type *VectorTy; 6695 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6696 6697 bool TypeNotScalarized = false; 6698 if (VF.isVector() && VectorTy->isVectorTy()) { 6699 if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) { 6700 if (VF.isScalable()) 6701 // <vscale x 1 x iN> is assumed to be profitable over iN because 6702 // scalable registers are a distinct register class from scalar ones. 6703 // If we ever find a target which wants to lower scalable vectors 6704 // back to scalars, we'll need to update this code to explicitly 6705 // ask TTI about the register class uses for each part. 6706 TypeNotScalarized = NumParts <= VF.getKnownMinValue(); 6707 else 6708 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6709 } else 6710 C = InstructionCost::getInvalid(); 6711 } 6712 return VectorizationCostTy(C, TypeNotScalarized); 6713 } 6714 6715 InstructionCost 6716 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6717 ElementCount VF) const { 6718 6719 // There is no mechanism yet to create a scalable scalarization loop, 6720 // so this is currently Invalid. 6721 if (VF.isScalable()) 6722 return InstructionCost::getInvalid(); 6723 6724 if (VF.isScalar()) 6725 return 0; 6726 6727 InstructionCost Cost = 0; 6728 Type *RetTy = ToVectorTy(I->getType(), VF); 6729 if (!RetTy->isVoidTy() && 6730 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6731 Cost += TTI.getScalarizationOverhead( 6732 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6733 false); 6734 6735 // Some targets keep addresses scalar. 6736 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6737 return Cost; 6738 6739 // Some targets support efficient element stores. 6740 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6741 return Cost; 6742 6743 // Collect operands to consider. 6744 CallInst *CI = dyn_cast<CallInst>(I); 6745 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6746 6747 // Skip operands that do not require extraction/scalarization and do not incur 6748 // any overhead. 6749 SmallVector<Type *> Tys; 6750 for (auto *V : filterExtractingOperands(Ops, VF)) 6751 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6752 return Cost + TTI.getOperandsScalarizationOverhead( 6753 filterExtractingOperands(Ops, VF), Tys); 6754 } 6755 6756 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6757 if (VF.isScalar()) 6758 return; 6759 NumPredStores = 0; 6760 for (BasicBlock *BB : TheLoop->blocks()) { 6761 // For each instruction in the old loop. 6762 for (Instruction &I : *BB) { 6763 Value *Ptr = getLoadStorePointerOperand(&I); 6764 if (!Ptr) 6765 continue; 6766 6767 // TODO: We should generate better code and update the cost model for 6768 // predicated uniform stores. Today they are treated as any other 6769 // predicated store (see added test cases in 6770 // invariant-store-vectorization.ll). 6771 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6772 NumPredStores++; 6773 6774 if (Legal->isUniformMemOp(I)) { 6775 // Lowering story for uniform memory ops is currently a bit complicated. 6776 // Scalarization works for everything which isn't a store with scalable 6777 // VF. Fixed len VFs just scalarize and then DCE later; scalarization 6778 // knows how to handle uniform-per-part values (i.e. the first lane 6779 // in each unrolled VF) and can thus handle scalable loads too. For 6780 // scalable stores, we use a scatter if legal. If not, we have no way 6781 // to lower (currently) and thus have to abort vectorization. 6782 if (isa<StoreInst>(&I) && VF.isScalable()) { 6783 if (isLegalGatherOrScatter(&I, VF)) 6784 setWideningDecision(&I, VF, CM_GatherScatter, 6785 getGatherScatterCost(&I, VF)); 6786 else 6787 // Error case, abort vectorization 6788 setWideningDecision(&I, VF, CM_Scalarize, 6789 InstructionCost::getInvalid()); 6790 continue; 6791 } 6792 // Load: Scalar load + broadcast 6793 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6794 // TODO: Avoid replicating loads and stores instead of relying on 6795 // instcombine to remove them. 6796 setWideningDecision(&I, VF, CM_Scalarize, 6797 getUniformMemOpCost(&I, VF)); 6798 continue; 6799 } 6800 6801 // We assume that widening is the best solution when possible. 6802 if (memoryInstructionCanBeWidened(&I, VF)) { 6803 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6804 int ConsecutiveStride = Legal->isConsecutivePtr( 6805 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6806 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6807 "Expected consecutive stride."); 6808 InstWidening Decision = 6809 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6810 setWideningDecision(&I, VF, Decision, Cost); 6811 continue; 6812 } 6813 6814 // Choose between Interleaving, Gather/Scatter or Scalarization. 6815 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6816 unsigned NumAccesses = 1; 6817 if (isAccessInterleaved(&I)) { 6818 auto Group = getInterleavedAccessGroup(&I); 6819 assert(Group && "Fail to get an interleaved access group."); 6820 6821 // Make one decision for the whole group. 6822 if (getWideningDecision(&I, VF) != CM_Unknown) 6823 continue; 6824 6825 NumAccesses = Group->getNumMembers(); 6826 if (interleavedAccessCanBeWidened(&I, VF)) 6827 InterleaveCost = getInterleaveGroupCost(&I, VF); 6828 } 6829 6830 InstructionCost GatherScatterCost = 6831 isLegalGatherOrScatter(&I, VF) 6832 ? getGatherScatterCost(&I, VF) * NumAccesses 6833 : InstructionCost::getInvalid(); 6834 6835 InstructionCost ScalarizationCost = 6836 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6837 6838 // Choose better solution for the current VF, 6839 // write down this decision and use it during vectorization. 6840 InstructionCost Cost; 6841 InstWidening Decision; 6842 if (InterleaveCost <= GatherScatterCost && 6843 InterleaveCost < ScalarizationCost) { 6844 Decision = CM_Interleave; 6845 Cost = InterleaveCost; 6846 } else if (GatherScatterCost < ScalarizationCost) { 6847 Decision = CM_GatherScatter; 6848 Cost = GatherScatterCost; 6849 } else { 6850 Decision = CM_Scalarize; 6851 Cost = ScalarizationCost; 6852 } 6853 // If the instructions belongs to an interleave group, the whole group 6854 // receives the same decision. The whole group receives the cost, but 6855 // the cost will actually be assigned to one instruction. 6856 if (auto Group = getInterleavedAccessGroup(&I)) 6857 setWideningDecision(Group, VF, Decision, Cost); 6858 else 6859 setWideningDecision(&I, VF, Decision, Cost); 6860 } 6861 } 6862 6863 // Make sure that any load of address and any other address computation 6864 // remains scalar unless there is gather/scatter support. This avoids 6865 // inevitable extracts into address registers, and also has the benefit of 6866 // activating LSR more, since that pass can't optimize vectorized 6867 // addresses. 6868 if (TTI.prefersVectorizedAddressing()) 6869 return; 6870 6871 // Start with all scalar pointer uses. 6872 SmallPtrSet<Instruction *, 8> AddrDefs; 6873 for (BasicBlock *BB : TheLoop->blocks()) 6874 for (Instruction &I : *BB) { 6875 Instruction *PtrDef = 6876 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6877 if (PtrDef && TheLoop->contains(PtrDef) && 6878 getWideningDecision(&I, VF) != CM_GatherScatter) 6879 AddrDefs.insert(PtrDef); 6880 } 6881 6882 // Add all instructions used to generate the addresses. 6883 SmallVector<Instruction *, 4> Worklist; 6884 append_range(Worklist, AddrDefs); 6885 while (!Worklist.empty()) { 6886 Instruction *I = Worklist.pop_back_val(); 6887 for (auto &Op : I->operands()) 6888 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6889 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6890 AddrDefs.insert(InstOp).second) 6891 Worklist.push_back(InstOp); 6892 } 6893 6894 for (auto *I : AddrDefs) { 6895 if (isa<LoadInst>(I)) { 6896 // Setting the desired widening decision should ideally be handled in 6897 // by cost functions, but since this involves the task of finding out 6898 // if the loaded register is involved in an address computation, it is 6899 // instead changed here when we know this is the case. 6900 InstWidening Decision = getWideningDecision(I, VF); 6901 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6902 // Scalarize a widened load of address. 6903 setWideningDecision( 6904 I, VF, CM_Scalarize, 6905 (VF.getKnownMinValue() * 6906 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6907 else if (auto Group = getInterleavedAccessGroup(I)) { 6908 // Scalarize an interleave group of address loads. 6909 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6910 if (Instruction *Member = Group->getMember(I)) 6911 setWideningDecision( 6912 Member, VF, CM_Scalarize, 6913 (VF.getKnownMinValue() * 6914 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6915 } 6916 } 6917 } else 6918 // Make sure I gets scalarized and a cost estimate without 6919 // scalarization overhead. 6920 ForcedScalars[VF].insert(I); 6921 } 6922 } 6923 6924 InstructionCost 6925 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6926 Type *&VectorTy) { 6927 Type *RetTy = I->getType(); 6928 if (canTruncateToMinimalBitwidth(I, VF)) 6929 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6930 auto SE = PSE.getSE(); 6931 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6932 6933 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6934 ElementCount VF) -> bool { 6935 if (VF.isScalar()) 6936 return true; 6937 6938 auto Scalarized = InstsToScalarize.find(VF); 6939 assert(Scalarized != InstsToScalarize.end() && 6940 "VF not yet analyzed for scalarization profitability"); 6941 return !Scalarized->second.count(I) && 6942 llvm::all_of(I->users(), [&](User *U) { 6943 auto *UI = cast<Instruction>(U); 6944 return !Scalarized->second.count(UI); 6945 }); 6946 }; 6947 (void) hasSingleCopyAfterVectorization; 6948 6949 if (isScalarAfterVectorization(I, VF)) { 6950 // With the exception of GEPs and PHIs, after scalarization there should 6951 // only be one copy of the instruction generated in the loop. This is 6952 // because the VF is either 1, or any instructions that need scalarizing 6953 // have already been dealt with by the the time we get here. As a result, 6954 // it means we don't have to multiply the instruction cost by VF. 6955 assert(I->getOpcode() == Instruction::GetElementPtr || 6956 I->getOpcode() == Instruction::PHI || 6957 (I->getOpcode() == Instruction::BitCast && 6958 I->getType()->isPointerTy()) || 6959 hasSingleCopyAfterVectorization(I, VF)); 6960 VectorTy = RetTy; 6961 } else 6962 VectorTy = ToVectorTy(RetTy, VF); 6963 6964 // TODO: We need to estimate the cost of intrinsic calls. 6965 switch (I->getOpcode()) { 6966 case Instruction::GetElementPtr: 6967 // We mark this instruction as zero-cost because the cost of GEPs in 6968 // vectorized code depends on whether the corresponding memory instruction 6969 // is scalarized or not. Therefore, we handle GEPs with the memory 6970 // instruction cost. 6971 return 0; 6972 case Instruction::Br: { 6973 // In cases of scalarized and predicated instructions, there will be VF 6974 // predicated blocks in the vectorized loop. Each branch around these 6975 // blocks requires also an extract of its vector compare i1 element. 6976 bool ScalarPredicatedBB = false; 6977 BranchInst *BI = cast<BranchInst>(I); 6978 if (VF.isVector() && BI->isConditional() && 6979 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) || 6980 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1)))) 6981 ScalarPredicatedBB = true; 6982 6983 if (ScalarPredicatedBB) { 6984 // Not possible to scalarize scalable vector with predicated instructions. 6985 if (VF.isScalable()) 6986 return InstructionCost::getInvalid(); 6987 // Return cost for branches around scalarized and predicated blocks. 6988 auto *Vec_i1Ty = 6989 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6990 return ( 6991 TTI.getScalarizationOverhead( 6992 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 6993 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 6994 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6995 // The back-edge branch will remain, as will all scalar branches. 6996 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6997 else 6998 // This branch will be eliminated by if-conversion. 6999 return 0; 7000 // Note: We currently assume zero cost for an unconditional branch inside 7001 // a predicated block since it will become a fall-through, although we 7002 // may decide in the future to call TTI for all branches. 7003 } 7004 case Instruction::PHI: { 7005 auto *Phi = cast<PHINode>(I); 7006 7007 // First-order recurrences are replaced by vector shuffles inside the loop. 7008 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7009 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7010 return TTI.getShuffleCost( 7011 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7012 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7013 7014 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7015 // converted into select instructions. We require N - 1 selects per phi 7016 // node, where N is the number of incoming values. 7017 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7018 return (Phi->getNumIncomingValues() - 1) * 7019 TTI.getCmpSelInstrCost( 7020 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7021 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7022 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7023 7024 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7025 } 7026 case Instruction::UDiv: 7027 case Instruction::SDiv: 7028 case Instruction::URem: 7029 case Instruction::SRem: 7030 // If we have a predicated instruction, it may not be executed for each 7031 // vector lane. Get the scalarization cost and scale this amount by the 7032 // probability of executing the predicated block. If the instruction is not 7033 // predicated, we fall through to the next case. 7034 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7035 InstructionCost Cost = 0; 7036 7037 // These instructions have a non-void type, so account for the phi nodes 7038 // that we will create. This cost is likely to be zero. The phi node 7039 // cost, if any, should be scaled by the block probability because it 7040 // models a copy at the end of each predicated block. 7041 Cost += VF.getKnownMinValue() * 7042 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7043 7044 // The cost of the non-predicated instruction. 7045 Cost += VF.getKnownMinValue() * 7046 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7047 7048 // The cost of insertelement and extractelement instructions needed for 7049 // scalarization. 7050 Cost += getScalarizationOverhead(I, VF); 7051 7052 // Scale the cost by the probability of executing the predicated blocks. 7053 // This assumes the predicated block for each vector lane is equally 7054 // likely. 7055 return Cost / getReciprocalPredBlockProb(); 7056 } 7057 LLVM_FALLTHROUGH; 7058 case Instruction::Add: 7059 case Instruction::FAdd: 7060 case Instruction::Sub: 7061 case Instruction::FSub: 7062 case Instruction::Mul: 7063 case Instruction::FMul: 7064 case Instruction::FDiv: 7065 case Instruction::FRem: 7066 case Instruction::Shl: 7067 case Instruction::LShr: 7068 case Instruction::AShr: 7069 case Instruction::And: 7070 case Instruction::Or: 7071 case Instruction::Xor: { 7072 // Since we will replace the stride by 1 the multiplication should go away. 7073 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7074 return 0; 7075 7076 // Detect reduction patterns 7077 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7078 return *RedCost; 7079 7080 // Certain instructions can be cheaper to vectorize if they have a constant 7081 // second vector operand. One example of this are shifts on x86. 7082 Value *Op2 = I->getOperand(1); 7083 TargetTransformInfo::OperandValueProperties Op2VP; 7084 TargetTransformInfo::OperandValueKind Op2VK = 7085 TTI.getOperandInfo(Op2, Op2VP); 7086 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7087 Op2VK = TargetTransformInfo::OK_UniformValue; 7088 7089 SmallVector<const Value *, 4> Operands(I->operand_values()); 7090 return TTI.getArithmeticInstrCost( 7091 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7092 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7093 } 7094 case Instruction::FNeg: { 7095 return TTI.getArithmeticInstrCost( 7096 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7097 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7098 TargetTransformInfo::OP_None, I->getOperand(0), I); 7099 } 7100 case Instruction::Select: { 7101 SelectInst *SI = cast<SelectInst>(I); 7102 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7103 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7104 7105 const Value *Op0, *Op1; 7106 using namespace llvm::PatternMatch; 7107 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7108 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7109 // select x, y, false --> x & y 7110 // select x, true, y --> x | y 7111 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7112 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7113 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7114 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7115 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7116 Op1->getType()->getScalarSizeInBits() == 1); 7117 7118 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7119 return TTI.getArithmeticInstrCost( 7120 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7121 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7122 } 7123 7124 Type *CondTy = SI->getCondition()->getType(); 7125 if (!ScalarCond) 7126 CondTy = VectorType::get(CondTy, VF); 7127 7128 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7129 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7130 Pred = Cmp->getPredicate(); 7131 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7132 CostKind, I); 7133 } 7134 case Instruction::ICmp: 7135 case Instruction::FCmp: { 7136 Type *ValTy = I->getOperand(0)->getType(); 7137 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7138 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7139 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7140 VectorTy = ToVectorTy(ValTy, VF); 7141 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7142 cast<CmpInst>(I)->getPredicate(), CostKind, 7143 I); 7144 } 7145 case Instruction::Store: 7146 case Instruction::Load: { 7147 ElementCount Width = VF; 7148 if (Width.isVector()) { 7149 InstWidening Decision = getWideningDecision(I, Width); 7150 assert(Decision != CM_Unknown && 7151 "CM decision should be taken at this point"); 7152 if (getWideningCost(I, VF) == InstructionCost::getInvalid()) 7153 return InstructionCost::getInvalid(); 7154 if (Decision == CM_Scalarize) 7155 Width = ElementCount::getFixed(1); 7156 } 7157 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7158 return getMemoryInstructionCost(I, VF); 7159 } 7160 case Instruction::BitCast: 7161 if (I->getType()->isPointerTy()) 7162 return 0; 7163 LLVM_FALLTHROUGH; 7164 case Instruction::ZExt: 7165 case Instruction::SExt: 7166 case Instruction::FPToUI: 7167 case Instruction::FPToSI: 7168 case Instruction::FPExt: 7169 case Instruction::PtrToInt: 7170 case Instruction::IntToPtr: 7171 case Instruction::SIToFP: 7172 case Instruction::UIToFP: 7173 case Instruction::Trunc: 7174 case Instruction::FPTrunc: { 7175 // Computes the CastContextHint from a Load/Store instruction. 7176 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7177 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7178 "Expected a load or a store!"); 7179 7180 if (VF.isScalar() || !TheLoop->contains(I)) 7181 return TTI::CastContextHint::Normal; 7182 7183 switch (getWideningDecision(I, VF)) { 7184 case LoopVectorizationCostModel::CM_GatherScatter: 7185 return TTI::CastContextHint::GatherScatter; 7186 case LoopVectorizationCostModel::CM_Interleave: 7187 return TTI::CastContextHint::Interleave; 7188 case LoopVectorizationCostModel::CM_Scalarize: 7189 case LoopVectorizationCostModel::CM_Widen: 7190 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7191 : TTI::CastContextHint::Normal; 7192 case LoopVectorizationCostModel::CM_Widen_Reverse: 7193 return TTI::CastContextHint::Reversed; 7194 case LoopVectorizationCostModel::CM_Unknown: 7195 llvm_unreachable("Instr did not go through cost modelling?"); 7196 } 7197 7198 llvm_unreachable("Unhandled case!"); 7199 }; 7200 7201 unsigned Opcode = I->getOpcode(); 7202 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7203 // For Trunc, the context is the only user, which must be a StoreInst. 7204 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7205 if (I->hasOneUse()) 7206 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7207 CCH = ComputeCCH(Store); 7208 } 7209 // For Z/Sext, the context is the operand, which must be a LoadInst. 7210 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7211 Opcode == Instruction::FPExt) { 7212 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7213 CCH = ComputeCCH(Load); 7214 } 7215 7216 // We optimize the truncation of induction variables having constant 7217 // integer steps. The cost of these truncations is the same as the scalar 7218 // operation. 7219 if (isOptimizableIVTruncate(I, VF)) { 7220 auto *Trunc = cast<TruncInst>(I); 7221 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7222 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7223 } 7224 7225 // Detect reduction patterns 7226 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7227 return *RedCost; 7228 7229 Type *SrcScalarTy = I->getOperand(0)->getType(); 7230 Type *SrcVecTy = 7231 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7232 if (canTruncateToMinimalBitwidth(I, VF)) { 7233 // This cast is going to be shrunk. This may remove the cast or it might 7234 // turn it into slightly different cast. For example, if MinBW == 16, 7235 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7236 // 7237 // Calculate the modified src and dest types. 7238 Type *MinVecTy = VectorTy; 7239 if (Opcode == Instruction::Trunc) { 7240 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7241 VectorTy = 7242 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7243 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7244 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7245 VectorTy = 7246 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7247 } 7248 } 7249 7250 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7251 } 7252 case Instruction::Call: { 7253 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7254 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7255 return *RedCost; 7256 bool NeedToScalarize; 7257 CallInst *CI = cast<CallInst>(I); 7258 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7259 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7260 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7261 return std::min(CallCost, IntrinsicCost); 7262 } 7263 return CallCost; 7264 } 7265 case Instruction::ExtractValue: 7266 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7267 case Instruction::Alloca: 7268 // We cannot easily widen alloca to a scalable alloca, as 7269 // the result would need to be a vector of pointers. 7270 if (VF.isScalable()) 7271 return InstructionCost::getInvalid(); 7272 LLVM_FALLTHROUGH; 7273 default: 7274 // This opcode is unknown. Assume that it is the same as 'mul'. 7275 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7276 } // end of switch. 7277 } 7278 7279 char LoopVectorize::ID = 0; 7280 7281 static const char lv_name[] = "Loop Vectorization"; 7282 7283 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7284 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7285 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7286 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7287 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7288 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7289 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7290 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7291 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7292 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7293 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7294 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7295 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7296 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7297 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7298 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7299 7300 namespace llvm { 7301 7302 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7303 7304 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7305 bool VectorizeOnlyWhenForced) { 7306 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7307 } 7308 7309 } // end namespace llvm 7310 7311 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7312 // Check if the pointer operand of a load or store instruction is 7313 // consecutive. 7314 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7315 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7316 return false; 7317 } 7318 7319 void LoopVectorizationCostModel::collectValuesToIgnore() { 7320 // Ignore ephemeral values. 7321 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7322 7323 // Find all stores to invariant variables. Since they are going to sink 7324 // outside the loop we do not need calculate cost for them. 7325 for (BasicBlock *BB : TheLoop->blocks()) 7326 for (Instruction &I : *BB) { 7327 StoreInst *SI; 7328 if ((SI = dyn_cast<StoreInst>(&I)) && 7329 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 7330 ValuesToIgnore.insert(&I); 7331 } 7332 7333 // Ignore type-promoting instructions we identified during reduction 7334 // detection. 7335 for (auto &Reduction : Legal->getReductionVars()) { 7336 const RecurrenceDescriptor &RedDes = Reduction.second; 7337 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7338 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7339 } 7340 // Ignore type-casting instructions we identified during induction 7341 // detection. 7342 for (auto &Induction : Legal->getInductionVars()) { 7343 const InductionDescriptor &IndDes = Induction.second; 7344 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7345 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7346 } 7347 } 7348 7349 void LoopVectorizationCostModel::collectInLoopReductions() { 7350 for (auto &Reduction : Legal->getReductionVars()) { 7351 PHINode *Phi = Reduction.first; 7352 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7353 7354 // We don't collect reductions that are type promoted (yet). 7355 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7356 continue; 7357 7358 // If the target would prefer this reduction to happen "in-loop", then we 7359 // want to record it as such. 7360 unsigned Opcode = RdxDesc.getOpcode(); 7361 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7362 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7363 TargetTransformInfo::ReductionFlags())) 7364 continue; 7365 7366 // Check that we can correctly put the reductions into the loop, by 7367 // finding the chain of operations that leads from the phi to the loop 7368 // exit value. 7369 SmallVector<Instruction *, 4> ReductionOperations = 7370 RdxDesc.getReductionOpChain(Phi, TheLoop); 7371 bool InLoop = !ReductionOperations.empty(); 7372 if (InLoop) { 7373 InLoopReductionChains[Phi] = ReductionOperations; 7374 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7375 Instruction *LastChain = Phi; 7376 for (auto *I : ReductionOperations) { 7377 InLoopReductionImmediateChains[I] = LastChain; 7378 LastChain = I; 7379 } 7380 } 7381 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7382 << " reduction for phi: " << *Phi << "\n"); 7383 } 7384 } 7385 7386 // TODO: we could return a pair of values that specify the max VF and 7387 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7388 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7389 // doesn't have a cost model that can choose which plan to execute if 7390 // more than one is generated. 7391 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7392 LoopVectorizationCostModel &CM) { 7393 unsigned WidestType; 7394 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7395 return WidestVectorRegBits / WidestType; 7396 } 7397 7398 VectorizationFactor 7399 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7400 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7401 ElementCount VF = UserVF; 7402 // Outer loop handling: They may require CFG and instruction level 7403 // transformations before even evaluating whether vectorization is profitable. 7404 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7405 // the vectorization pipeline. 7406 if (!OrigLoop->isInnermost()) { 7407 // If the user doesn't provide a vectorization factor, determine a 7408 // reasonable one. 7409 if (UserVF.isZero()) { 7410 VF = ElementCount::getFixed(determineVPlanVF( 7411 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7412 .getFixedSize(), 7413 CM)); 7414 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7415 7416 // Make sure we have a VF > 1 for stress testing. 7417 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7418 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7419 << "overriding computed VF.\n"); 7420 VF = ElementCount::getFixed(4); 7421 } 7422 } 7423 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7424 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7425 "VF needs to be a power of two"); 7426 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7427 << "VF " << VF << " to build VPlans.\n"); 7428 buildVPlans(VF, VF); 7429 7430 // For VPlan build stress testing, we bail out after VPlan construction. 7431 if (VPlanBuildStressTest) 7432 return VectorizationFactor::Disabled(); 7433 7434 return {VF, 0 /*Cost*/, 0 /* ScalarCost */}; 7435 } 7436 7437 LLVM_DEBUG( 7438 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7439 "VPlan-native path.\n"); 7440 return VectorizationFactor::Disabled(); 7441 } 7442 7443 Optional<VectorizationFactor> 7444 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7445 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7446 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7447 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7448 return None; 7449 7450 // Invalidate interleave groups if all blocks of loop will be predicated. 7451 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7452 !useMaskedInterleavedAccesses(*TTI)) { 7453 LLVM_DEBUG( 7454 dbgs() 7455 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7456 "which requires masked-interleaved support.\n"); 7457 if (CM.InterleaveInfo.invalidateGroups()) 7458 // Invalidating interleave groups also requires invalidating all decisions 7459 // based on them, which includes widening decisions and uniform and scalar 7460 // values. 7461 CM.invalidateCostModelingDecisions(); 7462 } 7463 7464 ElementCount MaxUserVF = 7465 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7466 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7467 if (!UserVF.isZero() && UserVFIsLegal) { 7468 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7469 "VF needs to be a power of two"); 7470 // Collect the instructions (and their associated costs) that will be more 7471 // profitable to scalarize. 7472 if (CM.selectUserVectorizationFactor(UserVF)) { 7473 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7474 CM.collectInLoopReductions(); 7475 buildVPlansWithVPRecipes(UserVF, UserVF); 7476 LLVM_DEBUG(printPlans(dbgs())); 7477 return {{UserVF, 0, 0}}; 7478 } else 7479 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7480 "InvalidCost", ORE, OrigLoop); 7481 } 7482 7483 // Populate the set of Vectorization Factor Candidates. 7484 ElementCountSet VFCandidates; 7485 for (auto VF = ElementCount::getFixed(1); 7486 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7487 VFCandidates.insert(VF); 7488 for (auto VF = ElementCount::getScalable(1); 7489 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7490 VFCandidates.insert(VF); 7491 7492 for (const auto &VF : VFCandidates) { 7493 // Collect Uniform and Scalar instructions after vectorization with VF. 7494 CM.collectUniformsAndScalars(VF); 7495 7496 // Collect the instructions (and their associated costs) that will be more 7497 // profitable to scalarize. 7498 if (VF.isVector()) 7499 CM.collectInstsToScalarize(VF); 7500 } 7501 7502 CM.collectInLoopReductions(); 7503 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7504 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7505 7506 LLVM_DEBUG(printPlans(dbgs())); 7507 if (!MaxFactors.hasVector()) 7508 return VectorizationFactor::Disabled(); 7509 7510 // Select the optimal vectorization factor. 7511 VectorizationFactor VF = CM.selectVectorizationFactor(VFCandidates); 7512 assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero."); 7513 return VF; 7514 } 7515 7516 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7517 assert(count_if(VPlans, 7518 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7519 1 && 7520 "Best VF has not a single VPlan."); 7521 7522 for (const VPlanPtr &Plan : VPlans) { 7523 if (Plan->hasVF(VF)) 7524 return *Plan.get(); 7525 } 7526 llvm_unreachable("No plan found!"); 7527 } 7528 7529 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7530 SmallVector<Metadata *, 4> MDs; 7531 // Reserve first location for self reference to the LoopID metadata node. 7532 MDs.push_back(nullptr); 7533 bool IsUnrollMetadata = false; 7534 MDNode *LoopID = L->getLoopID(); 7535 if (LoopID) { 7536 // First find existing loop unrolling disable metadata. 7537 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7538 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7539 if (MD) { 7540 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7541 IsUnrollMetadata = 7542 S && S->getString().startswith("llvm.loop.unroll.disable"); 7543 } 7544 MDs.push_back(LoopID->getOperand(i)); 7545 } 7546 } 7547 7548 if (!IsUnrollMetadata) { 7549 // Add runtime unroll disable metadata. 7550 LLVMContext &Context = L->getHeader()->getContext(); 7551 SmallVector<Metadata *, 1> DisableOperands; 7552 DisableOperands.push_back( 7553 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7554 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7555 MDs.push_back(DisableNode); 7556 MDNode *NewLoopID = MDNode::get(Context, MDs); 7557 // Set operand 0 to refer to the loop id itself. 7558 NewLoopID->replaceOperandWith(0, NewLoopID); 7559 L->setLoopID(NewLoopID); 7560 } 7561 } 7562 7563 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7564 VPlan &BestVPlan, 7565 InnerLoopVectorizer &ILV, 7566 DominatorTree *DT, 7567 bool IsEpilogueVectorization) { 7568 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7569 << '\n'); 7570 7571 // Perform the actual loop transformation. 7572 7573 // 1. Set up the skeleton for vectorization, including vector pre-header and 7574 // middle block. The vector loop is created during VPlan execution. 7575 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7576 Value *CanonicalIVStartValue; 7577 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7578 ILV.createVectorizedLoopSkeleton(); 7579 7580 // Only use noalias metadata when using memory checks guaranteeing no overlap 7581 // across all iterations. 7582 const LoopAccessInfo *LAI = ILV.Legal->getLAI(); 7583 if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() && 7584 !LAI->getRuntimePointerChecking()->getDiffChecks()) { 7585 7586 // We currently don't use LoopVersioning for the actual loop cloning but we 7587 // still use it to add the noalias metadata. 7588 // TODO: Find a better way to re-use LoopVersioning functionality to add 7589 // metadata. 7590 State.LVer = std::make_unique<LoopVersioning>( 7591 *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT, 7592 PSE.getSE()); 7593 State.LVer->prepareNoAliasMetadata(); 7594 } 7595 7596 ILV.collectPoisonGeneratingRecipes(State); 7597 7598 ILV.printDebugTracesAtStart(); 7599 7600 //===------------------------------------------------===// 7601 // 7602 // Notice: any optimization or new instruction that go 7603 // into the code below should also be implemented in 7604 // the cost-model. 7605 // 7606 //===------------------------------------------------===// 7607 7608 // 2. Copy and widen instructions from the old loop into the new loop. 7609 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7610 ILV.getOrCreateVectorTripCount(nullptr), 7611 CanonicalIVStartValue, State, 7612 IsEpilogueVectorization); 7613 7614 BestVPlan.execute(&State); 7615 7616 // Keep all loop hints from the original loop on the vector loop (we'll 7617 // replace the vectorizer-specific hints below). 7618 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7619 7620 Optional<MDNode *> VectorizedLoopID = 7621 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7622 LLVMLoopVectorizeFollowupVectorized}); 7623 7624 VPBasicBlock *HeaderVPBB = 7625 BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); 7626 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7627 if (VectorizedLoopID) 7628 L->setLoopID(VectorizedLoopID.value()); 7629 else { 7630 // Keep all loop hints from the original loop on the vector loop (we'll 7631 // replace the vectorizer-specific hints below). 7632 if (MDNode *LID = OrigLoop->getLoopID()) 7633 L->setLoopID(LID); 7634 7635 LoopVectorizeHints Hints(L, true, *ORE); 7636 Hints.setAlreadyVectorized(); 7637 } 7638 // Disable runtime unrolling when vectorizing the epilogue loop. 7639 if (CanonicalIVStartValue) 7640 AddRuntimeUnrollDisableMetaData(L); 7641 7642 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7643 // predication, updating analyses. 7644 ILV.fixVectorizedLoop(State, BestVPlan); 7645 7646 ILV.printDebugTracesAtEnd(); 7647 } 7648 7649 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7650 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7651 for (const auto &Plan : VPlans) 7652 if (PrintVPlansInDotFormat) 7653 Plan->printDOT(O); 7654 else 7655 Plan->print(O); 7656 } 7657 #endif 7658 7659 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7660 7661 //===--------------------------------------------------------------------===// 7662 // EpilogueVectorizerMainLoop 7663 //===--------------------------------------------------------------------===// 7664 7665 /// This function is partially responsible for generating the control flow 7666 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7667 std::pair<BasicBlock *, Value *> 7668 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7669 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7670 7671 // Workaround! Compute the trip count of the original loop and cache it 7672 // before we start modifying the CFG. This code has a systemic problem 7673 // wherein it tries to run analysis over partially constructed IR; this is 7674 // wrong, and not simply for SCEV. The trip count of the original loop 7675 // simply happens to be prone to hitting this in practice. In theory, we 7676 // can hit the same issue for any SCEV, or ValueTracking query done during 7677 // mutation. See PR49900. 7678 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7679 createVectorLoopSkeleton(""); 7680 7681 // Generate the code to check the minimum iteration count of the vector 7682 // epilogue (see below). 7683 EPI.EpilogueIterationCountCheck = 7684 emitIterationCountCheck(LoopScalarPreHeader, true); 7685 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7686 7687 // Generate the code to check any assumptions that we've made for SCEV 7688 // expressions. 7689 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7690 7691 // Generate the code that checks at runtime if arrays overlap. We put the 7692 // checks into a separate block to make the more common case of few elements 7693 // faster. 7694 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7695 7696 // Generate the iteration count check for the main loop, *after* the check 7697 // for the epilogue loop, so that the path-length is shorter for the case 7698 // that goes directly through the vector epilogue. The longer-path length for 7699 // the main loop is compensated for, by the gain from vectorizing the larger 7700 // trip count. Note: the branch will get updated later on when we vectorize 7701 // the epilogue. 7702 EPI.MainLoopIterationCountCheck = 7703 emitIterationCountCheck(LoopScalarPreHeader, false); 7704 7705 // Generate the induction variable. 7706 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7707 7708 // Skip induction resume value creation here because they will be created in 7709 // the second pass. If we created them here, they wouldn't be used anyway, 7710 // because the vplan in the second pass still contains the inductions from the 7711 // original loop. 7712 7713 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7714 } 7715 7716 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7717 LLVM_DEBUG({ 7718 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7719 << "Main Loop VF:" << EPI.MainLoopVF 7720 << ", Main Loop UF:" << EPI.MainLoopUF 7721 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7722 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7723 }); 7724 } 7725 7726 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7727 DEBUG_WITH_TYPE(VerboseDebug, { 7728 dbgs() << "intermediate fn:\n" 7729 << *OrigLoop->getHeader()->getParent() << "\n"; 7730 }); 7731 } 7732 7733 BasicBlock * 7734 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, 7735 bool ForEpilogue) { 7736 assert(Bypass && "Expected valid bypass basic block."); 7737 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7738 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7739 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7740 // Reuse existing vector loop preheader for TC checks. 7741 // Note that new preheader block is generated for vector loop. 7742 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7743 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7744 7745 // Generate code to check if the loop's trip count is less than VF * UF of the 7746 // main vector loop. 7747 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7748 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7749 7750 Value *CheckMinIters = Builder.CreateICmp( 7751 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7752 "min.iters.check"); 7753 7754 if (!ForEpilogue) 7755 TCCheckBlock->setName("vector.main.loop.iter.check"); 7756 7757 // Create new preheader for vector loop. 7758 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7759 DT, LI, nullptr, "vector.ph"); 7760 7761 if (ForEpilogue) { 7762 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7763 DT->getNode(Bypass)->getIDom()) && 7764 "TC check is expected to dominate Bypass"); 7765 7766 // Update dominator for Bypass & LoopExit. 7767 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7768 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7769 // For loops with multiple exits, there's no edge from the middle block 7770 // to exit blocks (as the epilogue must run) and thus no need to update 7771 // the immediate dominator of the exit blocks. 7772 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7773 7774 LoopBypassBlocks.push_back(TCCheckBlock); 7775 7776 // Save the trip count so we don't have to regenerate it in the 7777 // vec.epilog.iter.check. This is safe to do because the trip count 7778 // generated here dominates the vector epilog iter check. 7779 EPI.TripCount = Count; 7780 } 7781 7782 ReplaceInstWithInst( 7783 TCCheckBlock->getTerminator(), 7784 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7785 7786 return TCCheckBlock; 7787 } 7788 7789 //===--------------------------------------------------------------------===// 7790 // EpilogueVectorizerEpilogueLoop 7791 //===--------------------------------------------------------------------===// 7792 7793 /// This function is partially responsible for generating the control flow 7794 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7795 std::pair<BasicBlock *, Value *> 7796 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7797 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7798 createVectorLoopSkeleton("vec.epilog."); 7799 7800 // Now, compare the remaining count and if there aren't enough iterations to 7801 // execute the vectorized epilogue skip to the scalar part. 7802 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7803 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7804 LoopVectorPreHeader = 7805 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7806 LI, nullptr, "vec.epilog.ph"); 7807 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7808 VecEpilogueIterationCountCheck); 7809 7810 // Adjust the control flow taking the state info from the main loop 7811 // vectorization into account. 7812 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7813 "expected this to be saved from the previous pass."); 7814 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7815 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7816 7817 DT->changeImmediateDominator(LoopVectorPreHeader, 7818 EPI.MainLoopIterationCountCheck); 7819 7820 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7821 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7822 7823 if (EPI.SCEVSafetyCheck) 7824 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7825 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7826 if (EPI.MemSafetyCheck) 7827 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7828 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7829 7830 DT->changeImmediateDominator( 7831 VecEpilogueIterationCountCheck, 7832 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7833 7834 DT->changeImmediateDominator(LoopScalarPreHeader, 7835 EPI.EpilogueIterationCountCheck); 7836 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7837 // If there is an epilogue which must run, there's no edge from the 7838 // middle block to exit blocks and thus no need to update the immediate 7839 // dominator of the exit blocks. 7840 DT->changeImmediateDominator(LoopExitBlock, 7841 EPI.EpilogueIterationCountCheck); 7842 7843 // Keep track of bypass blocks, as they feed start values to the induction 7844 // phis in the scalar loop preheader. 7845 if (EPI.SCEVSafetyCheck) 7846 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7847 if (EPI.MemSafetyCheck) 7848 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7849 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7850 7851 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7852 // merge control-flow from the latch block and the middle block. Update the 7853 // incoming values here and move the Phi into the preheader. 7854 SmallVector<PHINode *, 4> PhisInBlock; 7855 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7856 PhisInBlock.push_back(&Phi); 7857 7858 for (PHINode *Phi : PhisInBlock) { 7859 Phi->replaceIncomingBlockWith( 7860 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7861 VecEpilogueIterationCountCheck); 7862 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7863 if (EPI.SCEVSafetyCheck) 7864 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7865 if (EPI.MemSafetyCheck) 7866 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7867 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7868 } 7869 7870 // Generate a resume induction for the vector epilogue and put it in the 7871 // vector epilogue preheader 7872 Type *IdxTy = Legal->getWidestInductionType(); 7873 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7874 LoopVectorPreHeader->getFirstNonPHI()); 7875 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7876 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7877 EPI.MainLoopIterationCountCheck); 7878 7879 // Generate induction resume values. These variables save the new starting 7880 // indexes for the scalar loop. They are used to test if there are any tail 7881 // iterations left once the vector loop has completed. 7882 // Note that when the vectorized epilogue is skipped due to iteration count 7883 // check, then the resume value for the induction variable comes from 7884 // the trip count of the main vector loop, hence passing the AdditionalBypass 7885 // argument. 7886 createInductionResumeValues({VecEpilogueIterationCountCheck, 7887 EPI.VectorTripCount} /* AdditionalBypass */); 7888 7889 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7890 } 7891 7892 BasicBlock * 7893 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7894 BasicBlock *Bypass, BasicBlock *Insert) { 7895 7896 assert(EPI.TripCount && 7897 "Expected trip count to have been safed in the first pass."); 7898 assert( 7899 (!isa<Instruction>(EPI.TripCount) || 7900 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7901 "saved trip count does not dominate insertion point."); 7902 Value *TC = EPI.TripCount; 7903 IRBuilder<> Builder(Insert->getTerminator()); 7904 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7905 7906 // Generate code to check if the loop's trip count is less than VF * UF of the 7907 // vector epilogue loop. 7908 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7909 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7910 7911 Value *CheckMinIters = 7912 Builder.CreateICmp(P, Count, 7913 createStepForVF(Builder, Count->getType(), 7914 EPI.EpilogueVF, EPI.EpilogueUF), 7915 "min.epilog.iters.check"); 7916 7917 ReplaceInstWithInst( 7918 Insert->getTerminator(), 7919 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7920 7921 LoopBypassBlocks.push_back(Insert); 7922 return Insert; 7923 } 7924 7925 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7926 LLVM_DEBUG({ 7927 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7928 << "Epilogue Loop VF:" << EPI.EpilogueVF 7929 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7930 }); 7931 } 7932 7933 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7934 DEBUG_WITH_TYPE(VerboseDebug, { 7935 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 7936 }); 7937 } 7938 7939 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7940 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7941 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7942 bool PredicateAtRangeStart = Predicate(Range.Start); 7943 7944 for (ElementCount TmpVF = Range.Start * 2; 7945 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7946 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7947 Range.End = TmpVF; 7948 break; 7949 } 7950 7951 return PredicateAtRangeStart; 7952 } 7953 7954 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7955 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7956 /// of VF's starting at a given VF and extending it as much as possible. Each 7957 /// vectorization decision can potentially shorten this sub-range during 7958 /// buildVPlan(). 7959 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7960 ElementCount MaxVF) { 7961 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7962 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7963 VFRange SubRange = {VF, MaxVFPlusOne}; 7964 VPlans.push_back(buildVPlan(SubRange)); 7965 VF = SubRange.End; 7966 } 7967 } 7968 7969 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7970 VPlanPtr &Plan) { 7971 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7972 7973 // Look for cached value. 7974 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7975 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7976 if (ECEntryIt != EdgeMaskCache.end()) 7977 return ECEntryIt->second; 7978 7979 VPValue *SrcMask = createBlockInMask(Src, Plan); 7980 7981 // The terminator has to be a branch inst! 7982 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7983 assert(BI && "Unexpected terminator found"); 7984 7985 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7986 return EdgeMaskCache[Edge] = SrcMask; 7987 7988 // If source is an exiting block, we know the exit edge is dynamically dead 7989 // in the vector loop, and thus we don't need to restrict the mask. Avoid 7990 // adding uses of an otherwise potentially dead instruction. 7991 if (OrigLoop->isLoopExiting(Src)) 7992 return EdgeMaskCache[Edge] = SrcMask; 7993 7994 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 7995 assert(EdgeMask && "No Edge Mask found for condition"); 7996 7997 if (BI->getSuccessor(0) != Dst) 7998 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 7999 8000 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8001 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8002 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8003 // The select version does not introduce new UB if SrcMask is false and 8004 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8005 VPValue *False = Plan->getOrAddVPValue( 8006 ConstantInt::getFalse(BI->getCondition()->getType())); 8007 EdgeMask = 8008 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8009 } 8010 8011 return EdgeMaskCache[Edge] = EdgeMask; 8012 } 8013 8014 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8015 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8016 8017 // Look for cached value. 8018 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8019 if (BCEntryIt != BlockMaskCache.end()) 8020 return BCEntryIt->second; 8021 8022 // All-one mask is modelled as no-mask following the convention for masked 8023 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8024 VPValue *BlockMask = nullptr; 8025 8026 if (OrigLoop->getHeader() == BB) { 8027 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8028 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8029 8030 assert(CM.foldTailByMasking() && "must fold the tail"); 8031 8032 // If we're using the active lane mask for control flow, then we get the 8033 // mask from the active lane mask PHI that is cached in the VPlan. 8034 PredicationStyle EmitGetActiveLaneMask = CM.TTI.emitGetActiveLaneMask(); 8035 if (EmitGetActiveLaneMask == PredicationStyle::DataAndControlFlow) 8036 return BlockMaskCache[BB] = Plan->getActiveLaneMaskPhi(); 8037 8038 // Introduce the early-exit compare IV <= BTC to form header block mask. 8039 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8040 // constructing the desired canonical IV in the header block as its first 8041 // non-phi instructions. 8042 8043 VPBasicBlock *HeaderVPBB = 8044 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8045 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8046 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8047 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8048 8049 VPBuilder::InsertPointGuard Guard(Builder); 8050 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8051 if (EmitGetActiveLaneMask != PredicationStyle::None) { 8052 VPValue *TC = Plan->getOrCreateTripCount(); 8053 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}, 8054 nullptr, "active.lane.mask"); 8055 } else { 8056 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8057 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8058 } 8059 return BlockMaskCache[BB] = BlockMask; 8060 } 8061 8062 // This is the block mask. We OR all incoming edges. 8063 for (auto *Predecessor : predecessors(BB)) { 8064 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8065 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8066 return BlockMaskCache[BB] = EdgeMask; 8067 8068 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8069 BlockMask = EdgeMask; 8070 continue; 8071 } 8072 8073 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8074 } 8075 8076 return BlockMaskCache[BB] = BlockMask; 8077 } 8078 8079 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8080 ArrayRef<VPValue *> Operands, 8081 VFRange &Range, 8082 VPlanPtr &Plan) { 8083 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8084 "Must be called with either a load or store"); 8085 8086 auto willWiden = [&](ElementCount VF) -> bool { 8087 LoopVectorizationCostModel::InstWidening Decision = 8088 CM.getWideningDecision(I, VF); 8089 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8090 "CM decision should be taken at this point."); 8091 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8092 return true; 8093 if (CM.isScalarAfterVectorization(I, VF) || 8094 CM.isProfitableToScalarize(I, VF)) 8095 return false; 8096 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8097 }; 8098 8099 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8100 return nullptr; 8101 8102 VPValue *Mask = nullptr; 8103 if (Legal->isMaskRequired(I)) 8104 Mask = createBlockInMask(I->getParent(), Plan); 8105 8106 // Determine if the pointer operand of the access is either consecutive or 8107 // reverse consecutive. 8108 LoopVectorizationCostModel::InstWidening Decision = 8109 CM.getWideningDecision(I, Range.Start); 8110 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8111 bool Consecutive = 8112 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8113 8114 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8115 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8116 Consecutive, Reverse); 8117 8118 StoreInst *Store = cast<StoreInst>(I); 8119 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8120 Mask, Consecutive, Reverse); 8121 } 8122 8123 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8124 /// insert a recipe to expand the step for the induction recipe. 8125 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( 8126 PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, 8127 const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, 8128 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { 8129 // Returns true if an instruction \p I should be scalarized instead of 8130 // vectorized for the chosen vectorization factor. 8131 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8132 return CM.isScalarAfterVectorization(I, VF) || 8133 CM.isProfitableToScalarize(I, VF); 8134 }; 8135 8136 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8137 [&](ElementCount VF) { 8138 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8139 }, 8140 Range); 8141 assert(IndDesc.getStartValue() == 8142 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8143 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8144 "step must be loop invariant"); 8145 8146 VPValue *Step = 8147 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8148 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8149 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, 8150 !NeedsScalarIVOnly); 8151 } 8152 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8153 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, 8154 !NeedsScalarIVOnly); 8155 } 8156 8157 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8158 PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { 8159 8160 // Check if this is an integer or fp induction. If so, build the recipe that 8161 // produces its scalar and vector values. 8162 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8163 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, 8164 *PSE.getSE(), *OrigLoop, Range); 8165 8166 // Check if this is pointer induction. If so, build the recipe for it. 8167 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8168 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8169 *PSE.getSE()); 8170 return nullptr; 8171 } 8172 8173 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8174 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { 8175 // Optimize the special case where the source is a constant integer 8176 // induction variable. Notice that we can only optimize the 'trunc' case 8177 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8178 // (c) other casts depend on pointer size. 8179 8180 // Determine whether \p K is a truncation based on an induction variable that 8181 // can be optimized. 8182 auto isOptimizableIVTruncate = 8183 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8184 return [=](ElementCount VF) -> bool { 8185 return CM.isOptimizableIVTruncate(K, VF); 8186 }; 8187 }; 8188 8189 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8190 isOptimizableIVTruncate(I), Range)) { 8191 8192 auto *Phi = cast<PHINode>(I->getOperand(0)); 8193 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8194 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8195 return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, 8196 *PSE.getSE(), *OrigLoop, Range); 8197 } 8198 return nullptr; 8199 } 8200 8201 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8202 ArrayRef<VPValue *> Operands, 8203 VPlanPtr &Plan) { 8204 // If all incoming values are equal, the incoming VPValue can be used directly 8205 // instead of creating a new VPBlendRecipe. 8206 VPValue *FirstIncoming = Operands[0]; 8207 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8208 return FirstIncoming == Inc; 8209 })) { 8210 return Operands[0]; 8211 } 8212 8213 unsigned NumIncoming = Phi->getNumIncomingValues(); 8214 // For in-loop reductions, we do not need to create an additional select. 8215 VPValue *InLoopVal = nullptr; 8216 for (unsigned In = 0; In < NumIncoming; In++) { 8217 PHINode *PhiOp = 8218 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8219 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8220 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8221 InLoopVal = Operands[In]; 8222 } 8223 } 8224 8225 assert((!InLoopVal || NumIncoming == 2) && 8226 "Found an in-loop reduction for PHI with unexpected number of " 8227 "incoming values"); 8228 if (InLoopVal) 8229 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8230 8231 // We know that all PHIs in non-header blocks are converted into selects, so 8232 // we don't have to worry about the insertion order and we can just use the 8233 // builder. At this point we generate the predication tree. There may be 8234 // duplications since this is a simple recursive scan, but future 8235 // optimizations will clean it up. 8236 SmallVector<VPValue *, 2> OperandsWithMask; 8237 8238 for (unsigned In = 0; In < NumIncoming; In++) { 8239 VPValue *EdgeMask = 8240 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8241 assert((EdgeMask || NumIncoming == 1) && 8242 "Multiple predecessors with one having a full mask"); 8243 OperandsWithMask.push_back(Operands[In]); 8244 if (EdgeMask) 8245 OperandsWithMask.push_back(EdgeMask); 8246 } 8247 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8248 } 8249 8250 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8251 ArrayRef<VPValue *> Operands, 8252 VFRange &Range) const { 8253 8254 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8255 [this, CI](ElementCount VF) { 8256 return CM.isScalarWithPredication(CI, VF); 8257 }, 8258 Range); 8259 8260 if (IsPredicated) 8261 return nullptr; 8262 8263 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8264 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8265 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8266 ID == Intrinsic::pseudoprobe || 8267 ID == Intrinsic::experimental_noalias_scope_decl)) 8268 return nullptr; 8269 8270 auto willWiden = [&](ElementCount VF) -> bool { 8271 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8272 // The following case may be scalarized depending on the VF. 8273 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8274 // version of the instruction. 8275 // Is it beneficial to perform intrinsic call compared to lib call? 8276 bool NeedToScalarize = false; 8277 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8278 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8279 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8280 return UseVectorIntrinsic || !NeedToScalarize; 8281 }; 8282 8283 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8284 return nullptr; 8285 8286 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8287 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8288 } 8289 8290 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8291 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8292 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8293 // Instruction should be widened, unless it is scalar after vectorization, 8294 // scalarization is profitable or it is predicated. 8295 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8296 return CM.isScalarAfterVectorization(I, VF) || 8297 CM.isProfitableToScalarize(I, VF) || 8298 CM.isScalarWithPredication(I, VF); 8299 }; 8300 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8301 Range); 8302 } 8303 8304 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8305 ArrayRef<VPValue *> Operands) const { 8306 auto IsVectorizableOpcode = [](unsigned Opcode) { 8307 switch (Opcode) { 8308 case Instruction::Add: 8309 case Instruction::And: 8310 case Instruction::AShr: 8311 case Instruction::BitCast: 8312 case Instruction::FAdd: 8313 case Instruction::FCmp: 8314 case Instruction::FDiv: 8315 case Instruction::FMul: 8316 case Instruction::FNeg: 8317 case Instruction::FPExt: 8318 case Instruction::FPToSI: 8319 case Instruction::FPToUI: 8320 case Instruction::FPTrunc: 8321 case Instruction::FRem: 8322 case Instruction::FSub: 8323 case Instruction::ICmp: 8324 case Instruction::IntToPtr: 8325 case Instruction::LShr: 8326 case Instruction::Mul: 8327 case Instruction::Or: 8328 case Instruction::PtrToInt: 8329 case Instruction::SDiv: 8330 case Instruction::Select: 8331 case Instruction::SExt: 8332 case Instruction::Shl: 8333 case Instruction::SIToFP: 8334 case Instruction::SRem: 8335 case Instruction::Sub: 8336 case Instruction::Trunc: 8337 case Instruction::UDiv: 8338 case Instruction::UIToFP: 8339 case Instruction::URem: 8340 case Instruction::Xor: 8341 case Instruction::ZExt: 8342 case Instruction::Freeze: 8343 return true; 8344 } 8345 return false; 8346 }; 8347 8348 if (!IsVectorizableOpcode(I->getOpcode())) 8349 return nullptr; 8350 8351 // Success: widen this instruction. 8352 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8353 } 8354 8355 void VPRecipeBuilder::fixHeaderPhis() { 8356 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8357 for (VPHeaderPHIRecipe *R : PhisToFix) { 8358 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8359 VPRecipeBase *IncR = 8360 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8361 R->addOperand(IncR->getVPSingleValue()); 8362 } 8363 } 8364 8365 VPBasicBlock *VPRecipeBuilder::handleReplication( 8366 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8367 VPlanPtr &Plan) { 8368 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8369 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8370 Range); 8371 8372 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8373 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF); }, 8374 Range); 8375 8376 // Even if the instruction is not marked as uniform, there are certain 8377 // intrinsic calls that can be effectively treated as such, so we check for 8378 // them here. Conservatively, we only do this for scalable vectors, since 8379 // for fixed-width VFs we can always fall back on full scalarization. 8380 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8381 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8382 case Intrinsic::assume: 8383 case Intrinsic::lifetime_start: 8384 case Intrinsic::lifetime_end: 8385 // For scalable vectors if one of the operands is variant then we still 8386 // want to mark as uniform, which will generate one instruction for just 8387 // the first lane of the vector. We can't scalarize the call in the same 8388 // way as for fixed-width vectors because we don't know how many lanes 8389 // there are. 8390 // 8391 // The reasons for doing it this way for scalable vectors are: 8392 // 1. For the assume intrinsic generating the instruction for the first 8393 // lane is still be better than not generating any at all. For 8394 // example, the input may be a splat across all lanes. 8395 // 2. For the lifetime start/end intrinsics the pointer operand only 8396 // does anything useful when the input comes from a stack object, 8397 // which suggests it should always be uniform. For non-stack objects 8398 // the effect is to poison the object, which still allows us to 8399 // remove the call. 8400 IsUniform = true; 8401 break; 8402 default: 8403 break; 8404 } 8405 } 8406 8407 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8408 IsUniform, IsPredicated); 8409 8410 // Find if I uses a predicated instruction. If so, it will use its scalar 8411 // value. Avoid hoisting the insert-element which packs the scalar value into 8412 // a vector value, as that happens iff all users use the vector value. 8413 for (VPValue *Op : Recipe->operands()) { 8414 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8415 if (!PredR) 8416 continue; 8417 auto *RepR = 8418 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8419 assert(RepR->isPredicated() && 8420 "expected Replicate recipe to be predicated"); 8421 RepR->setAlsoPack(false); 8422 } 8423 8424 // Finalize the recipe for Instr, first if it is not predicated. 8425 if (!IsPredicated) { 8426 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8427 setRecipe(I, Recipe); 8428 Plan->addVPValue(I, Recipe); 8429 VPBB->appendRecipe(Recipe); 8430 return VPBB; 8431 } 8432 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8433 8434 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8435 assert(SingleSucc && "VPBB must have a single successor when handling " 8436 "predicated replication."); 8437 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8438 // Record predicated instructions for above packing optimizations. 8439 VPBlockBase *Region = createReplicateRegion(Recipe, Plan); 8440 VPBlockUtils::insertBlockAfter(Region, VPBB); 8441 auto *RegSucc = new VPBasicBlock(); 8442 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8443 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8444 return RegSucc; 8445 } 8446 8447 VPRegionBlock * 8448 VPRecipeBuilder::createReplicateRegion(VPReplicateRecipe *PredRecipe, 8449 VPlanPtr &Plan) { 8450 Instruction *Instr = PredRecipe->getUnderlyingInstr(); 8451 // Instructions marked for predication are replicated and placed under an 8452 // if-then construct to prevent side-effects. 8453 // Generate recipes to compute the block mask for this region. 8454 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8455 8456 // Build the triangular if-then region. 8457 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8458 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8459 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8460 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8461 auto *PHIRecipe = Instr->getType()->isVoidTy() 8462 ? nullptr 8463 : new VPPredInstPHIRecipe(PredRecipe); 8464 if (PHIRecipe) { 8465 setRecipe(Instr, PHIRecipe); 8466 Plan->addVPValue(Instr, PHIRecipe); 8467 } else { 8468 setRecipe(Instr, PredRecipe); 8469 Plan->addVPValue(Instr, PredRecipe); 8470 } 8471 8472 auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8473 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8474 VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true); 8475 8476 // Note: first set Entry as region entry and then connect successors starting 8477 // from it in order, to propagate the "parent" of each VPBasicBlock. 8478 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 8479 VPBlockUtils::connectBlocks(Pred, Exiting); 8480 8481 return Region; 8482 } 8483 8484 VPRecipeOrVPValueTy 8485 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8486 ArrayRef<VPValue *> Operands, 8487 VFRange &Range, VPlanPtr &Plan) { 8488 // First, check for specific widening recipes that deal with inductions, Phi 8489 // nodes, calls and memory operations. 8490 VPRecipeBase *Recipe; 8491 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8492 if (Phi->getParent() != OrigLoop->getHeader()) 8493 return tryToBlend(Phi, Operands, Plan); 8494 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) 8495 return toVPRecipeResult(Recipe); 8496 8497 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8498 assert((Legal->isReductionVariable(Phi) || 8499 Legal->isFirstOrderRecurrence(Phi)) && 8500 "can only widen reductions and first-order recurrences here"); 8501 VPValue *StartV = Operands[0]; 8502 if (Legal->isReductionVariable(Phi)) { 8503 const RecurrenceDescriptor &RdxDesc = 8504 Legal->getReductionVars().find(Phi)->second; 8505 assert(RdxDesc.getRecurrenceStartValue() == 8506 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8507 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8508 CM.isInLoopReduction(Phi), 8509 CM.useOrderedReductions(RdxDesc)); 8510 } else { 8511 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8512 } 8513 8514 // Record the incoming value from the backedge, so we can add the incoming 8515 // value from the backedge after all recipes have been created. 8516 recordRecipeOf(cast<Instruction>( 8517 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8518 PhisToFix.push_back(PhiRecipe); 8519 return toVPRecipeResult(PhiRecipe); 8520 } 8521 8522 if (isa<TruncInst>(Instr) && 8523 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8524 Range, *Plan))) 8525 return toVPRecipeResult(Recipe); 8526 8527 // All widen recipes below deal only with VF > 1. 8528 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8529 [&](ElementCount VF) { return VF.isScalar(); }, Range)) 8530 return nullptr; 8531 8532 if (auto *CI = dyn_cast<CallInst>(Instr)) 8533 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8534 8535 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8536 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8537 8538 if (!shouldWiden(Instr, Range)) 8539 return nullptr; 8540 8541 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8542 return toVPRecipeResult(new VPWidenGEPRecipe( 8543 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8544 8545 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8546 bool InvariantCond = 8547 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8548 return toVPRecipeResult(new VPWidenSelectRecipe( 8549 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8550 } 8551 8552 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8553 } 8554 8555 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8556 ElementCount MaxVF) { 8557 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8558 8559 // Add assume instructions we need to drop to DeadInstructions, to prevent 8560 // them from being added to the VPlan. 8561 // TODO: We only need to drop assumes in blocks that get flattend. If the 8562 // control flow is preserved, we should keep them. 8563 SmallPtrSet<Instruction *, 4> DeadInstructions; 8564 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8565 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8566 8567 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8568 // Dead instructions do not need sinking. Remove them from SinkAfter. 8569 for (Instruction *I : DeadInstructions) 8570 SinkAfter.erase(I); 8571 8572 // Cannot sink instructions after dead instructions (there won't be any 8573 // recipes for them). Instead, find the first non-dead previous instruction. 8574 for (auto &P : Legal->getSinkAfter()) { 8575 Instruction *SinkTarget = P.second; 8576 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8577 (void)FirstInst; 8578 while (DeadInstructions.contains(SinkTarget)) { 8579 assert( 8580 SinkTarget != FirstInst && 8581 "Must find a live instruction (at least the one feeding the " 8582 "first-order recurrence PHI) before reaching beginning of the block"); 8583 SinkTarget = SinkTarget->getPrevNode(); 8584 assert(SinkTarget != P.first && 8585 "sink source equals target, no sinking required"); 8586 } 8587 P.second = SinkTarget; 8588 } 8589 8590 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8591 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8592 VFRange SubRange = {VF, MaxVFPlusOne}; 8593 VPlans.push_back( 8594 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8595 VF = SubRange.End; 8596 } 8597 } 8598 8599 // Add the necessary canonical IV and branch recipes required to control the 8600 // loop. 8601 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8602 bool HasNUW, 8603 bool UseLaneMaskForLoopControlFlow) { 8604 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8605 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8606 8607 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header. 8608 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8609 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8610 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8611 Header->insert(CanonicalIVPHI, Header->begin()); 8612 8613 // Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar 8614 // IV by VF * UF. 8615 auto *CanonicalIVIncrement = 8616 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8617 : VPInstruction::CanonicalIVIncrement, 8618 {CanonicalIVPHI}, DL, "index.next"); 8619 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8620 8621 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 8622 EB->appendRecipe(CanonicalIVIncrement); 8623 8624 if (UseLaneMaskForLoopControlFlow) { 8625 // Create the active lane mask instruction in the vplan preheader. 8626 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 8627 8628 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since 8629 // we have to take unrolling into account. Each part needs to start at 8630 // Part * VF 8631 auto *CanonicalIVIncrementParts = 8632 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW 8633 : VPInstruction::CanonicalIVIncrementForPart, 8634 {StartV}, DL, "index.part.next"); 8635 Preheader->appendRecipe(CanonicalIVIncrementParts); 8636 8637 // Create the ActiveLaneMask instruction using the correct start values. 8638 VPValue *TC = Plan.getOrCreateTripCount(); 8639 auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask, 8640 {CanonicalIVIncrementParts, TC}, DL, 8641 "active.lane.mask.entry"); 8642 Preheader->appendRecipe(EntryALM); 8643 8644 // Now create the ActiveLaneMaskPhi recipe in the main loop using the 8645 // preheader ActiveLaneMask instruction. 8646 auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); 8647 Header->insert(LaneMaskPhi, Header->getFirstNonPhi()); 8648 8649 // Create the active lane mask for the next iteration of the loop. 8650 CanonicalIVIncrementParts = 8651 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW 8652 : VPInstruction::CanonicalIVIncrementForPart, 8653 {CanonicalIVIncrement}, DL); 8654 EB->appendRecipe(CanonicalIVIncrementParts); 8655 8656 auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask, 8657 {CanonicalIVIncrementParts, TC}, DL, 8658 "active.lane.mask.next"); 8659 EB->appendRecipe(ALM); 8660 LaneMaskPhi->addOperand(ALM); 8661 8662 // We have to invert the mask here because a true condition means jumping 8663 // to the exit block. 8664 auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL); 8665 EB->appendRecipe(NotMask); 8666 8667 VPInstruction *BranchBack = 8668 new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL); 8669 EB->appendRecipe(BranchBack); 8670 } else { 8671 // Add the BranchOnCount VPInstruction to the latch. 8672 VPInstruction *BranchBack = new VPInstruction( 8673 VPInstruction::BranchOnCount, 8674 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8675 EB->appendRecipe(BranchBack); 8676 } 8677 } 8678 8679 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the 8680 // original exit block. 8681 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB, 8682 VPBasicBlock *MiddleVPBB, Loop *OrigLoop, 8683 VPlan &Plan) { 8684 BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock(); 8685 BasicBlock *ExitingBB = OrigLoop->getExitingBlock(); 8686 // Only handle single-exit loops with unique exit blocks for now. 8687 if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB) 8688 return; 8689 8690 // Introduce VPUsers modeling the exit values. 8691 for (PHINode &ExitPhi : ExitBB->phis()) { 8692 Value *IncomingValue = 8693 ExitPhi.getIncomingValueForBlock(ExitingBB); 8694 VPValue *V = Plan.getOrAddVPValue(IncomingValue, true); 8695 Plan.addLiveOut(&ExitPhi, V); 8696 } 8697 } 8698 8699 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8700 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8701 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8702 8703 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8704 8705 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8706 8707 // --------------------------------------------------------------------------- 8708 // Pre-construction: record ingredients whose recipes we'll need to further 8709 // process after constructing the initial VPlan. 8710 // --------------------------------------------------------------------------- 8711 8712 // Mark instructions we'll need to sink later and their targets as 8713 // ingredients whose recipe we'll need to record. 8714 for (auto &Entry : SinkAfter) { 8715 RecipeBuilder.recordRecipeOf(Entry.first); 8716 RecipeBuilder.recordRecipeOf(Entry.second); 8717 } 8718 for (auto &Reduction : CM.getInLoopReductionChains()) { 8719 PHINode *Phi = Reduction.first; 8720 RecurKind Kind = 8721 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8722 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8723 8724 RecipeBuilder.recordRecipeOf(Phi); 8725 for (auto &R : ReductionOperations) { 8726 RecipeBuilder.recordRecipeOf(R); 8727 // For min/max reductions, where we have a pair of icmp/select, we also 8728 // need to record the ICmp recipe, so it can be removed later. 8729 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8730 "Only min/max recurrences allowed for inloop reductions"); 8731 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8732 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8733 } 8734 } 8735 8736 // For each interleave group which is relevant for this (possibly trimmed) 8737 // Range, add it to the set of groups to be later applied to the VPlan and add 8738 // placeholders for its members' Recipes which we'll be replacing with a 8739 // single VPInterleaveRecipe. 8740 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8741 auto applyIG = [IG, this](ElementCount VF) -> bool { 8742 return (VF.isVector() && // Query is illegal for VF == 1 8743 CM.getWideningDecision(IG->getInsertPos(), VF) == 8744 LoopVectorizationCostModel::CM_Interleave); 8745 }; 8746 if (!getDecisionAndClampRange(applyIG, Range)) 8747 continue; 8748 InterleaveGroups.insert(IG); 8749 for (unsigned i = 0; i < IG->getFactor(); i++) 8750 if (Instruction *Member = IG->getMember(i)) 8751 RecipeBuilder.recordRecipeOf(Member); 8752 }; 8753 8754 // --------------------------------------------------------------------------- 8755 // Build initial VPlan: Scan the body of the loop in a topological order to 8756 // visit each basic block after having visited its predecessor basic blocks. 8757 // --------------------------------------------------------------------------- 8758 8759 // Create initial VPlan skeleton, starting with a block for the pre-header, 8760 // followed by a region for the vector loop, followed by the middle block. The 8761 // skeleton vector loop region contains a header and latch block. 8762 VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); 8763 auto Plan = std::make_unique<VPlan>(Preheader); 8764 8765 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 8766 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8767 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8768 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8769 VPBlockUtils::insertBlockAfter(TopRegion, Preheader); 8770 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 8771 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 8772 8773 Instruction *DLInst = 8774 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8775 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8776 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8777 !CM.foldTailByMasking(), 8778 CM.useActiveLaneMaskForControlFlow()); 8779 8780 // Scan the body of the loop in a topological order to visit each basic block 8781 // after having visited its predecessor basic blocks. 8782 LoopBlocksDFS DFS(OrigLoop); 8783 DFS.perform(LI); 8784 8785 VPBasicBlock *VPBB = HeaderVPBB; 8786 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8787 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8788 // Relevant instructions from basic block BB will be grouped into VPRecipe 8789 // ingredients and fill a new VPBasicBlock. 8790 unsigned VPBBsForBB = 0; 8791 if (VPBB != HeaderVPBB) 8792 VPBB->setName(BB->getName()); 8793 Builder.setInsertPoint(VPBB); 8794 8795 // Introduce each ingredient into VPlan. 8796 // TODO: Model and preserve debug intrinsics in VPlan. 8797 for (Instruction &I : BB->instructionsWithoutDebug()) { 8798 Instruction *Instr = &I; 8799 8800 // First filter out irrelevant instructions, to ensure no recipes are 8801 // built for them. 8802 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8803 continue; 8804 8805 SmallVector<VPValue *, 4> Operands; 8806 auto *Phi = dyn_cast<PHINode>(Instr); 8807 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8808 Operands.push_back(Plan->getOrAddVPValue( 8809 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8810 } else { 8811 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8812 Operands = {OpRange.begin(), OpRange.end()}; 8813 } 8814 8815 // Invariant stores inside loop will be deleted and a single store 8816 // with the final reduction value will be added to the exit block 8817 StoreInst *SI; 8818 if ((SI = dyn_cast<StoreInst>(&I)) && 8819 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 8820 continue; 8821 8822 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8823 Instr, Operands, Range, Plan)) { 8824 // If Instr can be simplified to an existing VPValue, use it. 8825 if (RecipeOrValue.is<VPValue *>()) { 8826 auto *VPV = RecipeOrValue.get<VPValue *>(); 8827 Plan->addVPValue(Instr, VPV); 8828 // If the re-used value is a recipe, register the recipe for the 8829 // instruction, in case the recipe for Instr needs to be recorded. 8830 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8831 RecipeBuilder.setRecipe(Instr, R); 8832 continue; 8833 } 8834 // Otherwise, add the new recipe. 8835 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8836 for (auto *Def : Recipe->definedValues()) { 8837 auto *UV = Def->getUnderlyingValue(); 8838 Plan->addVPValue(UV, Def); 8839 } 8840 8841 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8842 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8843 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8844 // of the header block. That can happen for truncates of induction 8845 // variables. Those recipes are moved to the phi section of the header 8846 // block after applying SinkAfter, which relies on the original 8847 // position of the trunc. 8848 assert(isa<TruncInst>(Instr)); 8849 InductionsToMove.push_back( 8850 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8851 } 8852 RecipeBuilder.setRecipe(Instr, Recipe); 8853 VPBB->appendRecipe(Recipe); 8854 continue; 8855 } 8856 8857 // Otherwise, if all widening options failed, Instruction is to be 8858 // replicated. This may create a successor for VPBB. 8859 VPBasicBlock *NextVPBB = 8860 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8861 if (NextVPBB != VPBB) { 8862 VPBB = NextVPBB; 8863 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8864 : ""); 8865 } 8866 } 8867 8868 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8869 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8870 } 8871 8872 HeaderVPBB->setName("vector.body"); 8873 8874 // Fold the last, empty block into its predecessor. 8875 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8876 assert(VPBB && "expected to fold last (empty) block"); 8877 // After here, VPBB should not be used. 8878 VPBB = nullptr; 8879 8880 addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan); 8881 8882 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8883 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8884 "entry block must be set to a VPRegionBlock having a non-empty entry " 8885 "VPBasicBlock"); 8886 RecipeBuilder.fixHeaderPhis(); 8887 8888 // --------------------------------------------------------------------------- 8889 // Transform initial VPlan: Apply previously taken decisions, in order, to 8890 // bring the VPlan to its final state. 8891 // --------------------------------------------------------------------------- 8892 8893 // Apply Sink-After legal constraints. 8894 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8895 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8896 if (Region && Region->isReplicator()) { 8897 assert(Region->getNumSuccessors() == 1 && 8898 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8899 assert(R->getParent()->size() == 1 && 8900 "A recipe in an original replicator region must be the only " 8901 "recipe in its block"); 8902 return Region; 8903 } 8904 return nullptr; 8905 }; 8906 for (auto &Entry : SinkAfter) { 8907 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8908 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8909 8910 auto *TargetRegion = GetReplicateRegion(Target); 8911 auto *SinkRegion = GetReplicateRegion(Sink); 8912 if (!SinkRegion) { 8913 // If the sink source is not a replicate region, sink the recipe directly. 8914 if (TargetRegion) { 8915 // The target is in a replication region, make sure to move Sink to 8916 // the block after it, not into the replication region itself. 8917 VPBasicBlock *NextBlock = 8918 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8919 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8920 } else 8921 Sink->moveAfter(Target); 8922 continue; 8923 } 8924 8925 // The sink source is in a replicate region. Unhook the region from the CFG. 8926 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8927 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8928 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8929 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8930 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8931 8932 if (TargetRegion) { 8933 // The target recipe is also in a replicate region, move the sink region 8934 // after the target region. 8935 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8936 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8937 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8938 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8939 } else { 8940 // The sink source is in a replicate region, we need to move the whole 8941 // replicate region, which should only contain a single recipe in the 8942 // main block. 8943 auto *SplitBlock = 8944 Target->getParent()->splitAt(std::next(Target->getIterator())); 8945 8946 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8947 8948 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8949 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8950 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8951 } 8952 } 8953 8954 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8955 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8956 8957 // Now that sink-after is done, move induction recipes for optimized truncates 8958 // to the phi section of the header block. 8959 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8960 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8961 8962 // Adjust the recipes for any inloop reductions. 8963 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan, 8964 RecipeBuilder, Range.Start); 8965 8966 // Introduce a recipe to combine the incoming and previous values of a 8967 // first-order recurrence. 8968 for (VPRecipeBase &R : 8969 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8970 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8971 if (!RecurPhi) 8972 continue; 8973 8974 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8975 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8976 auto *Region = GetReplicateRegion(PrevRecipe); 8977 if (Region) 8978 InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor()); 8979 if (!InsertBlock) { 8980 InsertBlock = new VPBasicBlock(Region->getName() + ".succ"); 8981 VPBlockUtils::insertBlockAfter(InsertBlock, Region); 8982 } 8983 if (Region || PrevRecipe->isPhi()) 8984 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8985 else 8986 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8987 8988 auto *RecurSplice = cast<VPInstruction>( 8989 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 8990 {RecurPhi, RecurPhi->getBackedgeValue()})); 8991 8992 RecurPhi->replaceAllUsesWith(RecurSplice); 8993 // Set the first operand of RecurSplice to RecurPhi again, after replacing 8994 // all users. 8995 RecurSplice->setOperand(0, RecurPhi); 8996 } 8997 8998 // Interleave memory: for each Interleave Group we marked earlier as relevant 8999 // for this VPlan, replace the Recipes widening its memory instructions with a 9000 // single VPInterleaveRecipe at its insertion point. 9001 for (auto IG : InterleaveGroups) { 9002 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9003 RecipeBuilder.getRecipe(IG->getInsertPos())); 9004 SmallVector<VPValue *, 4> StoredValues; 9005 for (unsigned i = 0; i < IG->getFactor(); ++i) 9006 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9007 auto *StoreR = 9008 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9009 StoredValues.push_back(StoreR->getStoredValue()); 9010 } 9011 9012 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9013 Recipe->getMask()); 9014 VPIG->insertBefore(Recipe); 9015 unsigned J = 0; 9016 for (unsigned i = 0; i < IG->getFactor(); ++i) 9017 if (Instruction *Member = IG->getMember(i)) { 9018 if (!Member->getType()->isVoidTy()) { 9019 VPValue *OriginalV = Plan->getVPValue(Member); 9020 Plan->removeVPValueFor(Member); 9021 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9022 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9023 J++; 9024 } 9025 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9026 } 9027 } 9028 9029 std::string PlanName; 9030 raw_string_ostream RSO(PlanName); 9031 ElementCount VF = Range.Start; 9032 Plan->addVF(VF); 9033 RSO << "Initial VPlan for VF={" << VF; 9034 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9035 Plan->addVF(VF); 9036 RSO << "," << VF; 9037 } 9038 RSO << "},UF>=1"; 9039 RSO.flush(); 9040 Plan->setName(PlanName); 9041 9042 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9043 // in ways that accessing values using original IR values is incorrect. 9044 Plan->disableValue2VPValue(); 9045 9046 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9047 VPlanTransforms::sinkScalarOperands(*Plan); 9048 VPlanTransforms::removeDeadRecipes(*Plan); 9049 VPlanTransforms::mergeReplicateRegions(*Plan); 9050 VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); 9051 9052 // Fold Exit block into its predecessor if possible. 9053 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9054 // VPBasicBlock as exit. 9055 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting()); 9056 9057 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9058 return Plan; 9059 } 9060 9061 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9062 // Outer loop handling: They may require CFG and instruction level 9063 // transformations before even evaluating whether vectorization is profitable. 9064 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9065 // the vectorization pipeline. 9066 assert(!OrigLoop->isInnermost()); 9067 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9068 9069 // Create new empty VPlan 9070 auto Plan = std::make_unique<VPlan>(); 9071 9072 // Build hierarchical CFG 9073 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9074 HCFGBuilder.buildHierarchicalCFG(); 9075 9076 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9077 VF *= 2) 9078 Plan->addVF(VF); 9079 9080 SmallPtrSet<Instruction *, 1> DeadInstructions; 9081 VPlanTransforms::VPInstructionsToVPRecipes( 9082 OrigLoop, Plan, 9083 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9084 DeadInstructions, *PSE.getSE()); 9085 9086 // Remove the existing terminator of the exiting block of the top-most region. 9087 // A BranchOnCount will be added instead when adding the canonical IV recipes. 9088 auto *Term = 9089 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator(); 9090 Term->eraseFromParent(); 9091 9092 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9093 true, CM.useActiveLaneMaskForControlFlow()); 9094 return Plan; 9095 } 9096 9097 // Adjust the recipes for reductions. For in-loop reductions the chain of 9098 // instructions leading from the loop exit instr to the phi need to be converted 9099 // to reductions, with one operand being vector and the other being the scalar 9100 // reduction chain. For other reductions, a select is introduced between the phi 9101 // and live-out recipes when folding the tail. 9102 void LoopVectorizationPlanner::adjustRecipesForReductions( 9103 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9104 ElementCount MinVF) { 9105 for (auto &Reduction : CM.getInLoopReductionChains()) { 9106 PHINode *Phi = Reduction.first; 9107 const RecurrenceDescriptor &RdxDesc = 9108 Legal->getReductionVars().find(Phi)->second; 9109 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9110 9111 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9112 continue; 9113 9114 // ReductionOperations are orders top-down from the phi's use to the 9115 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9116 // which of the two operands will remain scalar and which will be reduced. 9117 // For minmax the chain will be the select instructions. 9118 Instruction *Chain = Phi; 9119 for (Instruction *R : ReductionOperations) { 9120 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9121 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9122 9123 VPValue *ChainOp = Plan->getVPValue(Chain); 9124 unsigned FirstOpId; 9125 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9126 "Only min/max recurrences allowed for inloop reductions"); 9127 // Recognize a call to the llvm.fmuladd intrinsic. 9128 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9129 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9130 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9131 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9132 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9133 "Expected to replace a VPWidenSelectSC"); 9134 FirstOpId = 1; 9135 } else { 9136 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9137 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9138 "Expected to replace a VPWidenSC"); 9139 FirstOpId = 0; 9140 } 9141 unsigned VecOpId = 9142 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9143 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9144 9145 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9146 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9147 : nullptr; 9148 9149 if (IsFMulAdd) { 9150 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9151 // need to create an fmul recipe to use as the vector operand for the 9152 // fadd reduction. 9153 VPInstruction *FMulRecipe = new VPInstruction( 9154 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9155 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9156 WidenRecipe->getParent()->insert(FMulRecipe, 9157 WidenRecipe->getIterator()); 9158 VecOp = FMulRecipe; 9159 } 9160 VPReductionRecipe *RedRecipe = 9161 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9162 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9163 Plan->removeVPValueFor(R); 9164 Plan->addVPValue(R, RedRecipe); 9165 // Append the recipe to the end of the VPBasicBlock because we need to 9166 // ensure that it comes after all of it's inputs, including CondOp. 9167 WidenRecipe->getParent()->appendRecipe(RedRecipe); 9168 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9169 WidenRecipe->eraseFromParent(); 9170 9171 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9172 VPRecipeBase *CompareRecipe = 9173 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9174 assert(isa<VPWidenRecipe>(CompareRecipe) && 9175 "Expected to replace a VPWidenSC"); 9176 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9177 "Expected no remaining users"); 9178 CompareRecipe->eraseFromParent(); 9179 } 9180 Chain = R; 9181 } 9182 } 9183 9184 // If tail is folded by masking, introduce selects between the phi 9185 // and the live-out instruction of each reduction, at the beginning of the 9186 // dedicated latch block. 9187 if (CM.foldTailByMasking()) { 9188 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9189 for (VPRecipeBase &R : 9190 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9191 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9192 if (!PhiR || PhiR->isInLoop()) 9193 continue; 9194 VPValue *Cond = 9195 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9196 VPValue *Red = PhiR->getBackedgeValue(); 9197 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9198 "reduction recipe must be defined before latch"); 9199 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9200 } 9201 } 9202 } 9203 9204 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9205 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9206 VPSlotTracker &SlotTracker) const { 9207 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9208 IG->getInsertPos()->printAsOperand(O, false); 9209 O << ", "; 9210 getAddr()->printAsOperand(O, SlotTracker); 9211 VPValue *Mask = getMask(); 9212 if (Mask) { 9213 O << ", "; 9214 Mask->printAsOperand(O, SlotTracker); 9215 } 9216 9217 unsigned OpIdx = 0; 9218 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9219 if (!IG->getMember(i)) 9220 continue; 9221 if (getNumStoreOperands() > 0) { 9222 O << "\n" << Indent << " store "; 9223 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9224 O << " to index " << i; 9225 } else { 9226 O << "\n" << Indent << " "; 9227 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9228 O << " = load from index " << i; 9229 } 9230 ++OpIdx; 9231 } 9232 } 9233 #endif 9234 9235 void VPWidenCallRecipe::execute(VPTransformState &State) { 9236 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9237 *this, State); 9238 } 9239 9240 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9241 assert(!State.Instance && "Int or FP induction being replicated."); 9242 9243 Value *Start = getStartValue()->getLiveInIRValue(); 9244 const InductionDescriptor &ID = getInductionDescriptor(); 9245 TruncInst *Trunc = getTruncInst(); 9246 IRBuilderBase &Builder = State.Builder; 9247 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9248 assert(State.VF.isVector() && "must have vector VF"); 9249 9250 // The value from the original loop to which we are mapping the new induction 9251 // variable. 9252 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9253 9254 // Fast-math-flags propagate from the original induction instruction. 9255 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9256 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9257 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9258 9259 // Now do the actual transformations, and start with fetching the step value. 9260 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9261 9262 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9263 "Expected either an induction phi-node or a truncate of it!"); 9264 9265 // Construct the initial value of the vector IV in the vector loop preheader 9266 auto CurrIP = Builder.saveIP(); 9267 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9268 Builder.SetInsertPoint(VectorPH->getTerminator()); 9269 if (isa<TruncInst>(EntryVal)) { 9270 assert(Start->getType()->isIntegerTy() && 9271 "Truncation requires an integer type"); 9272 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9273 Step = Builder.CreateTrunc(Step, TruncType); 9274 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9275 } 9276 9277 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9278 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9279 Value *SteppedStart = getStepVector( 9280 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9281 9282 // We create vector phi nodes for both integer and floating-point induction 9283 // variables. Here, we determine the kind of arithmetic we will perform. 9284 Instruction::BinaryOps AddOp; 9285 Instruction::BinaryOps MulOp; 9286 if (Step->getType()->isIntegerTy()) { 9287 AddOp = Instruction::Add; 9288 MulOp = Instruction::Mul; 9289 } else { 9290 AddOp = ID.getInductionOpcode(); 9291 MulOp = Instruction::FMul; 9292 } 9293 9294 // Multiply the vectorization factor by the step using integer or 9295 // floating-point arithmetic as appropriate. 9296 Type *StepType = Step->getType(); 9297 Value *RuntimeVF; 9298 if (Step->getType()->isFloatingPointTy()) 9299 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9300 else 9301 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9302 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9303 9304 // Create a vector splat to use in the induction update. 9305 // 9306 // FIXME: If the step is non-constant, we create the vector splat with 9307 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9308 // handle a constant vector splat. 9309 Value *SplatVF = isa<Constant>(Mul) 9310 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9311 : Builder.CreateVectorSplat(State.VF, Mul); 9312 Builder.restoreIP(CurrIP); 9313 9314 // We may need to add the step a number of times, depending on the unroll 9315 // factor. The last of those goes into the PHI. 9316 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9317 &*State.CFG.PrevBB->getFirstInsertionPt()); 9318 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9319 Instruction *LastInduction = VecInd; 9320 for (unsigned Part = 0; Part < State.UF; ++Part) { 9321 State.set(this, LastInduction, Part); 9322 9323 if (isa<TruncInst>(EntryVal)) 9324 State.addMetadata(LastInduction, EntryVal); 9325 9326 LastInduction = cast<Instruction>( 9327 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9328 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9329 } 9330 9331 LastInduction->setName("vec.ind.next"); 9332 VecInd->addIncoming(SteppedStart, VectorPH); 9333 // Add induction update using an incorrect block temporarily. The phi node 9334 // will be fixed after VPlan execution. Note that at this point the latch 9335 // block cannot be used, as it does not exist yet. 9336 // TODO: Model increment value in VPlan, by turning the recipe into a 9337 // multi-def and a subclass of VPHeaderPHIRecipe. 9338 VecInd->addIncoming(LastInduction, VectorPH); 9339 } 9340 9341 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9342 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9343 "Not a pointer induction according to InductionDescriptor!"); 9344 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9345 "Unexpected type."); 9346 9347 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9348 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9349 9350 if (onlyScalarsGenerated(State.VF)) { 9351 // This is the normalized GEP that starts counting at zero. 9352 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9353 CanonicalIV, IndDesc.getStep()->getType()); 9354 // Determine the number of scalars we need to generate for each unroll 9355 // iteration. If the instruction is uniform, we only need to generate the 9356 // first lane. Otherwise, we generate all VF values. 9357 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9358 assert((IsUniform || !State.VF.isScalable()) && 9359 "Cannot scalarize a scalable VF"); 9360 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9361 9362 for (unsigned Part = 0; Part < State.UF; ++Part) { 9363 Value *PartStart = 9364 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9365 9366 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9367 Value *Idx = State.Builder.CreateAdd( 9368 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9369 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9370 9371 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9372 State.CFG.PrevBB->getTerminator()); 9373 Value *SclrGep = emitTransformedIndex( 9374 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9375 SclrGep->setName("next.gep"); 9376 State.set(this, SclrGep, VPIteration(Part, Lane)); 9377 } 9378 } 9379 return; 9380 } 9381 9382 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9383 "Induction step not a SCEV constant!"); 9384 Type *PhiType = IndDesc.getStep()->getType(); 9385 9386 // Build a pointer phi 9387 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9388 Type *ScStValueType = ScalarStartValue->getType(); 9389 PHINode *NewPointerPhi = 9390 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9391 9392 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9393 NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); 9394 9395 // A pointer induction, performed by using a gep 9396 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9397 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9398 9399 const SCEV *ScalarStep = IndDesc.getStep(); 9400 SCEVExpander Exp(SE, DL, "induction"); 9401 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9402 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9403 Value *NumUnrolledElems = 9404 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9405 Value *InductionGEP = GetElementPtrInst::Create( 9406 IndDesc.getElementType(), NewPointerPhi, 9407 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9408 InductionLoc); 9409 // Add induction update using an incorrect block temporarily. The phi node 9410 // will be fixed after VPlan execution. Note that at this point the latch 9411 // block cannot be used, as it does not exist yet. 9412 // TODO: Model increment value in VPlan, by turning the recipe into a 9413 // multi-def and a subclass of VPHeaderPHIRecipe. 9414 NewPointerPhi->addIncoming(InductionGEP, VectorPH); 9415 9416 // Create UF many actual address geps that use the pointer 9417 // phi as base and a vectorized version of the step value 9418 // (<step*0, ..., step*N>) as offset. 9419 for (unsigned Part = 0; Part < State.UF; ++Part) { 9420 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9421 Value *StartOffsetScalar = 9422 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9423 Value *StartOffset = 9424 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9425 // Create a vector of consecutive numbers from zero to VF. 9426 StartOffset = State.Builder.CreateAdd( 9427 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9428 9429 Value *GEP = State.Builder.CreateGEP( 9430 IndDesc.getElementType(), NewPointerPhi, 9431 State.Builder.CreateMul( 9432 StartOffset, 9433 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9434 "vector.gep")); 9435 State.set(this, GEP, Part); 9436 } 9437 } 9438 9439 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9440 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9441 9442 // Fast-math-flags propagate from the original induction instruction. 9443 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9444 if (IndDesc.getInductionBinOp() && 9445 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9446 State.Builder.setFastMathFlags( 9447 IndDesc.getInductionBinOp()->getFastMathFlags()); 9448 9449 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9450 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9451 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9452 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9453 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9454 ScalarIV = 9455 Ty->isIntegerTy() 9456 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9457 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9458 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9459 getStartValue()->getLiveInIRValue(), Step, 9460 IndDesc); 9461 ScalarIV->setName("offset.idx"); 9462 } 9463 if (TruncToTy) { 9464 assert(Step->getType()->isIntegerTy() && 9465 "Truncation requires an integer step"); 9466 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9467 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9468 } 9469 return ScalarIV; 9470 }; 9471 9472 Value *ScalarIV = CreateScalarIV(Step); 9473 if (State.VF.isVector()) { 9474 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9475 return; 9476 } 9477 9478 for (unsigned Part = 0; Part < State.UF; ++Part) { 9479 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9480 Value *EntryPart; 9481 if (Step->getType()->isFloatingPointTy()) { 9482 Value *StartIdx = 9483 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9484 // Floating-point operations inherit FMF via the builder's flags. 9485 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9486 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9487 ScalarIV, MulOp); 9488 } else { 9489 Value *StartIdx = 9490 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9491 EntryPart = State.Builder.CreateAdd( 9492 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9493 } 9494 State.set(this, EntryPart, Part); 9495 } 9496 } 9497 9498 void VPInterleaveRecipe::execute(VPTransformState &State) { 9499 assert(!State.Instance && "Interleave group being replicated."); 9500 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9501 getStoredValues(), getMask()); 9502 } 9503 9504 void VPReductionRecipe::execute(VPTransformState &State) { 9505 assert(!State.Instance && "Reduction being replicated."); 9506 Value *PrevInChain = State.get(getChainOp(), 0); 9507 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9508 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9509 // Propagate the fast-math flags carried by the underlying instruction. 9510 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9511 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9512 for (unsigned Part = 0; Part < State.UF; ++Part) { 9513 Value *NewVecOp = State.get(getVecOp(), Part); 9514 if (VPValue *Cond = getCondOp()) { 9515 Value *NewCond = State.get(Cond, Part); 9516 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9517 Value *Iden = RdxDesc->getRecurrenceIdentity( 9518 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9519 Value *IdenVec = 9520 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9521 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9522 NewVecOp = Select; 9523 } 9524 Value *NewRed; 9525 Value *NextInChain; 9526 if (IsOrdered) { 9527 if (State.VF.isVector()) 9528 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9529 PrevInChain); 9530 else 9531 NewRed = State.Builder.CreateBinOp( 9532 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9533 NewVecOp); 9534 PrevInChain = NewRed; 9535 } else { 9536 PrevInChain = State.get(getChainOp(), Part); 9537 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9538 } 9539 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9540 NextInChain = 9541 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9542 NewRed, PrevInChain); 9543 } else if (IsOrdered) 9544 NextInChain = NewRed; 9545 else 9546 NextInChain = State.Builder.CreateBinOp( 9547 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9548 PrevInChain); 9549 State.set(this, NextInChain, Part); 9550 } 9551 } 9552 9553 void VPReplicateRecipe::execute(VPTransformState &State) { 9554 if (State.Instance) { // Generate a single instance. 9555 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9556 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9557 IsPredicated, State); 9558 // Insert scalar instance packing it into a vector. 9559 if (AlsoPack && State.VF.isVector()) { 9560 // If we're constructing lane 0, initialize to start from poison. 9561 if (State.Instance->Lane.isFirstLane()) { 9562 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9563 Value *Poison = PoisonValue::get( 9564 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9565 State.set(this, Poison, State.Instance->Part); 9566 } 9567 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9568 } 9569 return; 9570 } 9571 9572 if (IsUniform) { 9573 // Uniform within VL means we need to generate lane 0 only for each 9574 // unrolled copy. 9575 for (unsigned Part = 0; Part < State.UF; ++Part) 9576 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9577 VPIteration(Part, 0), IsPredicated, 9578 State); 9579 return; 9580 } 9581 9582 // Generate scalar instances for all VF lanes of all UF parts. 9583 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9584 const unsigned EndLane = State.VF.getKnownMinValue(); 9585 for (unsigned Part = 0; Part < State.UF; ++Part) 9586 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9587 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9588 VPIteration(Part, Lane), IsPredicated, 9589 State); 9590 } 9591 9592 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9593 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9594 9595 // Attempt to issue a wide load. 9596 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9597 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9598 9599 assert((LI || SI) && "Invalid Load/Store instruction"); 9600 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9601 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9602 9603 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9604 9605 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9606 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9607 bool CreateGatherScatter = !Consecutive; 9608 9609 auto &Builder = State.Builder; 9610 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9611 bool isMaskRequired = getMask(); 9612 if (isMaskRequired) 9613 for (unsigned Part = 0; Part < State.UF; ++Part) 9614 BlockInMaskParts[Part] = State.get(getMask(), Part); 9615 9616 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9617 // Calculate the pointer for the specific unroll-part. 9618 GetElementPtrInst *PartPtr = nullptr; 9619 9620 bool InBounds = false; 9621 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9622 InBounds = gep->isInBounds(); 9623 if (Reverse) { 9624 // If the address is consecutive but reversed, then the 9625 // wide store needs to start at the last vector element. 9626 // RunTimeVF = VScale * VF.getKnownMinValue() 9627 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9628 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9629 // NumElt = -Part * RunTimeVF 9630 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9631 // LastLane = 1 - RunTimeVF 9632 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9633 PartPtr = 9634 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9635 PartPtr->setIsInBounds(InBounds); 9636 PartPtr = cast<GetElementPtrInst>( 9637 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9638 PartPtr->setIsInBounds(InBounds); 9639 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9640 BlockInMaskParts[Part] = 9641 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9642 } else { 9643 Value *Increment = 9644 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9645 PartPtr = cast<GetElementPtrInst>( 9646 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9647 PartPtr->setIsInBounds(InBounds); 9648 } 9649 9650 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9651 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9652 }; 9653 9654 // Handle Stores: 9655 if (SI) { 9656 State.setDebugLocFromInst(SI); 9657 9658 for (unsigned Part = 0; Part < State.UF; ++Part) { 9659 Instruction *NewSI = nullptr; 9660 Value *StoredVal = State.get(StoredValue, Part); 9661 if (CreateGatherScatter) { 9662 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9663 Value *VectorGep = State.get(getAddr(), Part); 9664 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9665 MaskPart); 9666 } else { 9667 if (Reverse) { 9668 // If we store to reverse consecutive memory locations, then we need 9669 // to reverse the order of elements in the stored value. 9670 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9671 // We don't want to update the value in the map as it might be used in 9672 // another expression. So don't call resetVectorValue(StoredVal). 9673 } 9674 auto *VecPtr = 9675 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9676 if (isMaskRequired) 9677 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9678 BlockInMaskParts[Part]); 9679 else 9680 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 9681 } 9682 State.addMetadata(NewSI, SI); 9683 } 9684 return; 9685 } 9686 9687 // Handle loads. 9688 assert(LI && "Must have a load instruction"); 9689 State.setDebugLocFromInst(LI); 9690 for (unsigned Part = 0; Part < State.UF; ++Part) { 9691 Value *NewLI; 9692 if (CreateGatherScatter) { 9693 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9694 Value *VectorGep = State.get(getAddr(), Part); 9695 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 9696 nullptr, "wide.masked.gather"); 9697 State.addMetadata(NewLI, LI); 9698 } else { 9699 auto *VecPtr = 9700 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9701 if (isMaskRequired) 9702 NewLI = Builder.CreateMaskedLoad( 9703 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 9704 PoisonValue::get(DataTy), "wide.masked.load"); 9705 else 9706 NewLI = 9707 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 9708 9709 // Add metadata to the load, but setVectorValue to the reverse shuffle. 9710 State.addMetadata(NewLI, LI); 9711 if (Reverse) 9712 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 9713 } 9714 9715 State.set(getVPSingleValue(), NewLI, Part); 9716 } 9717 } 9718 9719 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9720 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9721 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9722 // for predication. 9723 static ScalarEpilogueLowering getScalarEpilogueLowering( 9724 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9725 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9726 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9727 LoopVectorizationLegality &LVL) { 9728 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9729 // don't look at hints or options, and don't request a scalar epilogue. 9730 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9731 // LoopAccessInfo (due to code dependency and not being able to reliably get 9732 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9733 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9734 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9735 // back to the old way and vectorize with versioning when forced. See D81345.) 9736 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9737 PGSOQueryType::IRPass) && 9738 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9739 return CM_ScalarEpilogueNotAllowedOptSize; 9740 9741 // 2) If set, obey the directives 9742 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9743 switch (PreferPredicateOverEpilogue) { 9744 case PreferPredicateTy::ScalarEpilogue: 9745 return CM_ScalarEpilogueAllowed; 9746 case PreferPredicateTy::PredicateElseScalarEpilogue: 9747 return CM_ScalarEpilogueNotNeededUsePredicate; 9748 case PreferPredicateTy::PredicateOrDontVectorize: 9749 return CM_ScalarEpilogueNotAllowedUsePredicate; 9750 }; 9751 } 9752 9753 // 3) If set, obey the hints 9754 switch (Hints.getPredicate()) { 9755 case LoopVectorizeHints::FK_Enabled: 9756 return CM_ScalarEpilogueNotNeededUsePredicate; 9757 case LoopVectorizeHints::FK_Disabled: 9758 return CM_ScalarEpilogueAllowed; 9759 }; 9760 9761 // 4) if the TTI hook indicates this is profitable, request predication. 9762 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, &LVL)) 9763 return CM_ScalarEpilogueNotNeededUsePredicate; 9764 9765 return CM_ScalarEpilogueAllowed; 9766 } 9767 9768 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9769 // If Values have been set for this Def return the one relevant for \p Part. 9770 if (hasVectorValue(Def, Part)) 9771 return Data.PerPartOutput[Def][Part]; 9772 9773 if (!hasScalarValue(Def, {Part, 0})) { 9774 Value *IRV = Def->getLiveInIRValue(); 9775 Value *B = ILV->getBroadcastInstrs(IRV); 9776 set(Def, B, Part); 9777 return B; 9778 } 9779 9780 Value *ScalarValue = get(Def, {Part, 0}); 9781 // If we aren't vectorizing, we can just copy the scalar map values over 9782 // to the vector map. 9783 if (VF.isScalar()) { 9784 set(Def, ScalarValue, Part); 9785 return ScalarValue; 9786 } 9787 9788 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9789 bool IsUniform = RepR && RepR->isUniform(); 9790 9791 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9792 // Check if there is a scalar value for the selected lane. 9793 if (!hasScalarValue(Def, {Part, LastLane})) { 9794 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9795 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 9796 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 9797 "unexpected recipe found to be invariant"); 9798 IsUniform = true; 9799 LastLane = 0; 9800 } 9801 9802 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9803 // Set the insert point after the last scalarized instruction or after the 9804 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9805 // will directly follow the scalar definitions. 9806 auto OldIP = Builder.saveIP(); 9807 auto NewIP = 9808 isa<PHINode>(LastInst) 9809 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9810 : std::next(BasicBlock::iterator(LastInst)); 9811 Builder.SetInsertPoint(&*NewIP); 9812 9813 // However, if we are vectorizing, we need to construct the vector values. 9814 // If the value is known to be uniform after vectorization, we can just 9815 // broadcast the scalar value corresponding to lane zero for each unroll 9816 // iteration. Otherwise, we construct the vector values using 9817 // insertelement instructions. Since the resulting vectors are stored in 9818 // State, we will only generate the insertelements once. 9819 Value *VectorValue = nullptr; 9820 if (IsUniform) { 9821 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9822 set(Def, VectorValue, Part); 9823 } else { 9824 // Initialize packing with insertelements to start from undef. 9825 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9826 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9827 set(Def, Undef, Part); 9828 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9829 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9830 VectorValue = get(Def, Part); 9831 } 9832 Builder.restoreIP(OldIP); 9833 return VectorValue; 9834 } 9835 9836 // Process the loop in the VPlan-native vectorization path. This path builds 9837 // VPlan upfront in the vectorization pipeline, which allows to apply 9838 // VPlan-to-VPlan transformations from the very beginning without modifying the 9839 // input LLVM IR. 9840 static bool processLoopInVPlanNativePath( 9841 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9842 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9843 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9844 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9845 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9846 LoopVectorizationRequirements &Requirements) { 9847 9848 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9849 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9850 return false; 9851 } 9852 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9853 Function *F = L->getHeader()->getParent(); 9854 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9855 9856 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9857 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9858 9859 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9860 &Hints, IAI); 9861 // Use the planner for outer loop vectorization. 9862 // TODO: CM is not used at this point inside the planner. Turn CM into an 9863 // optional argument if we don't need it in the future. 9864 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, ORE); 9865 9866 // Get user vectorization factor. 9867 ElementCount UserVF = Hints.getWidth(); 9868 9869 CM.collectElementTypesForWidening(); 9870 9871 // Plan how to best vectorize, return the best VF and its cost. 9872 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9873 9874 // If we are stress testing VPlan builds, do not attempt to generate vector 9875 // code. Masked vector code generation support will follow soon. 9876 // Also, do not attempt to vectorize if no vector code will be produced. 9877 if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF) 9878 return false; 9879 9880 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 9881 9882 { 9883 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, 9884 F->getParent()->getDataLayout()); 9885 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 9886 VF.Width, 1, LVL, &CM, BFI, PSI, Checks); 9887 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9888 << L->getHeader()->getParent()->getName() << "\"\n"); 9889 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false); 9890 } 9891 9892 // Mark the loop as already vectorized to avoid vectorizing again. 9893 Hints.setAlreadyVectorized(); 9894 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9895 return true; 9896 } 9897 9898 // Emit a remark if there are stores to floats that required a floating point 9899 // extension. If the vectorized loop was generated with floating point there 9900 // will be a performance penalty from the conversion overhead and the change in 9901 // the vector width. 9902 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9903 SmallVector<Instruction *, 4> Worklist; 9904 for (BasicBlock *BB : L->getBlocks()) { 9905 for (Instruction &Inst : *BB) { 9906 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9907 if (S->getValueOperand()->getType()->isFloatTy()) 9908 Worklist.push_back(S); 9909 } 9910 } 9911 } 9912 9913 // Traverse the floating point stores upwards searching, for floating point 9914 // conversions. 9915 SmallPtrSet<const Instruction *, 4> Visited; 9916 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9917 while (!Worklist.empty()) { 9918 auto *I = Worklist.pop_back_val(); 9919 if (!L->contains(I)) 9920 continue; 9921 if (!Visited.insert(I).second) 9922 continue; 9923 9924 // Emit a remark if the floating point store required a floating 9925 // point conversion. 9926 // TODO: More work could be done to identify the root cause such as a 9927 // constant or a function return type and point the user to it. 9928 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9929 ORE->emit([&]() { 9930 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9931 I->getDebugLoc(), L->getHeader()) 9932 << "floating point conversion changes vector width. " 9933 << "Mixed floating point precision requires an up/down " 9934 << "cast that will negatively impact performance."; 9935 }); 9936 9937 for (Use &Op : I->operands()) 9938 if (auto *OpI = dyn_cast<Instruction>(Op)) 9939 Worklist.push_back(OpI); 9940 } 9941 } 9942 9943 static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, 9944 VectorizationFactor &VF, 9945 Optional<unsigned> VScale, Loop *L, 9946 ScalarEvolution &SE) { 9947 InstructionCost CheckCost = Checks.getCost(); 9948 if (!CheckCost.isValid()) 9949 return false; 9950 9951 // When interleaving only scalar and vector cost will be equal, which in turn 9952 // would lead to a divide by 0. Fall back to hard threshold. 9953 if (VF.Width.isScalar()) { 9954 if (CheckCost > VectorizeMemoryCheckThreshold) { 9955 LLVM_DEBUG( 9956 dbgs() 9957 << "LV: Interleaving only is not profitable due to runtime checks\n"); 9958 return false; 9959 } 9960 return true; 9961 } 9962 9963 // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated. 9964 double ScalarC = *VF.ScalarCost.getValue(); 9965 if (ScalarC == 0) 9966 return true; 9967 9968 // First, compute the minimum iteration count required so that the vector 9969 // loop outperforms the scalar loop. 9970 // The total cost of the scalar loop is 9971 // ScalarC * TC 9972 // where 9973 // * TC is the actual trip count of the loop. 9974 // * ScalarC is the cost of a single scalar iteration. 9975 // 9976 // The total cost of the vector loop is 9977 // RtC + VecC * (TC / VF) + EpiC 9978 // where 9979 // * RtC is the cost of the generated runtime checks 9980 // * VecC is the cost of a single vector iteration. 9981 // * TC is the actual trip count of the loop 9982 // * VF is the vectorization factor 9983 // * EpiCost is the cost of the generated epilogue, including the cost 9984 // of the remaining scalar operations. 9985 // 9986 // Vectorization is profitable once the total vector cost is less than the 9987 // total scalar cost: 9988 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC 9989 // 9990 // Now we can compute the minimum required trip count TC as 9991 // (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC 9992 // 9993 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that 9994 // the computations are performed on doubles, not integers and the result 9995 // is rounded up, hence we get an upper estimate of the TC. 9996 unsigned IntVF = VF.Width.getKnownMinValue(); 9997 if (VF.Width.isScalable()) { 9998 unsigned AssumedMinimumVscale = 1; 9999 if (VScale) 10000 AssumedMinimumVscale = *VScale; 10001 IntVF *= AssumedMinimumVscale; 10002 } 10003 double VecCOverVF = double(*VF.Cost.getValue()) / IntVF; 10004 double RtC = *CheckCost.getValue(); 10005 double MinTC1 = RtC / (ScalarC - VecCOverVF); 10006 10007 // Second, compute a minimum iteration count so that the cost of the 10008 // runtime checks is only a fraction of the total scalar loop cost. This 10009 // adds a loop-dependent bound on the overhead incurred if the runtime 10010 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC 10011 // * TC. To bound the runtime check to be a fraction 1/X of the scalar 10012 // cost, compute 10013 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC 10014 double MinTC2 = RtC * 10 / ScalarC; 10015 10016 // Now pick the larger minimum. If it is not a multiple of VF, choose the 10017 // next closest multiple of VF. This should partly compensate for ignoring 10018 // the epilogue cost. 10019 uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2)); 10020 VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF)); 10021 10022 LLVM_DEBUG( 10023 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:" 10024 << VF.MinProfitableTripCount << "\n"); 10025 10026 // Skip vectorization if the expected trip count is less than the minimum 10027 // required trip count. 10028 if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) { 10029 if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC), 10030 VF.MinProfitableTripCount)) { 10031 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected " 10032 "trip count < minimum profitable VF (" 10033 << *ExpectedTC << " < " << VF.MinProfitableTripCount 10034 << ")\n"); 10035 10036 return false; 10037 } 10038 } 10039 return true; 10040 } 10041 10042 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10043 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10044 !EnableLoopInterleaving), 10045 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10046 !EnableLoopVectorization) {} 10047 10048 bool LoopVectorizePass::processLoop(Loop *L) { 10049 assert((EnableVPlanNativePath || L->isInnermost()) && 10050 "VPlan-native path is not enabled. Only process inner loops."); 10051 10052 #ifndef NDEBUG 10053 const std::string DebugLocStr = getDebugLocString(L); 10054 #endif /* NDEBUG */ 10055 10056 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10057 << L->getHeader()->getParent()->getName() << "' from " 10058 << DebugLocStr << "\n"); 10059 10060 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10061 10062 LLVM_DEBUG( 10063 dbgs() << "LV: Loop hints:" 10064 << " force=" 10065 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10066 ? "disabled" 10067 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10068 ? "enabled" 10069 : "?")) 10070 << " width=" << Hints.getWidth() 10071 << " interleave=" << Hints.getInterleave() << "\n"); 10072 10073 // Function containing loop 10074 Function *F = L->getHeader()->getParent(); 10075 10076 // Looking at the diagnostic output is the only way to determine if a loop 10077 // was vectorized (other than looking at the IR or machine code), so it 10078 // is important to generate an optimization remark for each loop. Most of 10079 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10080 // generated as OptimizationRemark and OptimizationRemarkMissed are 10081 // less verbose reporting vectorized loops and unvectorized loops that may 10082 // benefit from vectorization, respectively. 10083 10084 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10085 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10086 return false; 10087 } 10088 10089 PredicatedScalarEvolution PSE(*SE, *L); 10090 10091 // Check if it is legal to vectorize the loop. 10092 LoopVectorizationRequirements Requirements; 10093 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10094 &Requirements, &Hints, DB, AC, BFI, PSI); 10095 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10096 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10097 Hints.emitRemarkWithHints(); 10098 return false; 10099 } 10100 10101 // Check the function attributes and profiles to find out if this function 10102 // should be optimized for size. 10103 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10104 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10105 10106 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10107 // here. They may require CFG and instruction level transformations before 10108 // even evaluating whether vectorization is profitable. Since we cannot modify 10109 // the incoming IR, we need to build VPlan upfront in the vectorization 10110 // pipeline. 10111 if (!L->isInnermost()) 10112 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10113 ORE, BFI, PSI, Hints, Requirements); 10114 10115 assert(L->isInnermost() && "Inner loop expected."); 10116 10117 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10118 // count by optimizing for size, to minimize overheads. 10119 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10120 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10121 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10122 << "This loop is worth vectorizing only if no scalar " 10123 << "iteration overheads are incurred."); 10124 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10125 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10126 else { 10127 LLVM_DEBUG(dbgs() << "\n"); 10128 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10129 } 10130 } 10131 10132 // Check the function attributes to see if implicit floats are allowed. 10133 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10134 // an integer loop and the vector instructions selected are purely integer 10135 // vector instructions? 10136 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10137 reportVectorizationFailure( 10138 "Can't vectorize when the NoImplicitFloat attribute is used", 10139 "loop not vectorized due to NoImplicitFloat attribute", 10140 "NoImplicitFloat", ORE, L); 10141 Hints.emitRemarkWithHints(); 10142 return false; 10143 } 10144 10145 // Check if the target supports potentially unsafe FP vectorization. 10146 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10147 // for the target we're vectorizing for, to make sure none of the 10148 // additional fp-math flags can help. 10149 if (Hints.isPotentiallyUnsafe() && 10150 TTI->isFPVectorizationPotentiallyUnsafe()) { 10151 reportVectorizationFailure( 10152 "Potentially unsafe FP op prevents vectorization", 10153 "loop not vectorized due to unsafe FP support.", 10154 "UnsafeFP", ORE, L); 10155 Hints.emitRemarkWithHints(); 10156 return false; 10157 } 10158 10159 bool AllowOrderedReductions; 10160 // If the flag is set, use that instead and override the TTI behaviour. 10161 if (ForceOrderedReductions.getNumOccurrences() > 0) 10162 AllowOrderedReductions = ForceOrderedReductions; 10163 else 10164 AllowOrderedReductions = TTI->enableOrderedReductions(); 10165 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10166 ORE->emit([&]() { 10167 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10168 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10169 ExactFPMathInst->getDebugLoc(), 10170 ExactFPMathInst->getParent()) 10171 << "loop not vectorized: cannot prove it is safe to reorder " 10172 "floating-point operations"; 10173 }); 10174 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10175 "reorder floating-point operations\n"); 10176 Hints.emitRemarkWithHints(); 10177 return false; 10178 } 10179 10180 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10181 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10182 10183 // If an override option has been passed in for interleaved accesses, use it. 10184 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10185 UseInterleaved = EnableInterleavedMemAccesses; 10186 10187 // Analyze interleaved memory accesses. 10188 if (UseInterleaved) { 10189 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10190 } 10191 10192 // Use the cost model. 10193 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10194 F, &Hints, IAI); 10195 CM.collectValuesToIgnore(); 10196 CM.collectElementTypesForWidening(); 10197 10198 // Use the planner for vectorization. 10199 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, ORE); 10200 10201 // Get user vectorization factor and interleave count. 10202 ElementCount UserVF = Hints.getWidth(); 10203 unsigned UserIC = Hints.getInterleave(); 10204 10205 // Plan how to best vectorize, return the best VF and its cost. 10206 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10207 10208 VectorizationFactor VF = VectorizationFactor::Disabled(); 10209 unsigned IC = 1; 10210 10211 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, 10212 F->getParent()->getDataLayout()); 10213 if (MaybeVF) { 10214 VF = *MaybeVF; 10215 // Select the interleave count. 10216 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10217 10218 unsigned SelectedIC = std::max(IC, UserIC); 10219 // Optimistically generate runtime checks if they are needed. Drop them if 10220 // they turn out to not be profitable. 10221 if (VF.Width.isVector() || SelectedIC > 1) 10222 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC); 10223 10224 // Check if it is profitable to vectorize with runtime checks. 10225 bool ForceVectorization = 10226 Hints.getForce() == LoopVectorizeHints::FK_Enabled; 10227 if (!ForceVectorization && 10228 !areRuntimeChecksProfitable(Checks, VF, CM.getVScaleForTuning(), L, 10229 *PSE.getSE())) { 10230 ORE->emit([&]() { 10231 return OptimizationRemarkAnalysisAliasing( 10232 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(), 10233 L->getHeader()) 10234 << "loop not vectorized: cannot prove it is safe to reorder " 10235 "memory operations"; 10236 }); 10237 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 10238 Hints.emitRemarkWithHints(); 10239 return false; 10240 } 10241 } 10242 10243 // Identify the diagnostic messages that should be produced. 10244 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10245 bool VectorizeLoop = true, InterleaveLoop = true; 10246 if (VF.Width.isScalar()) { 10247 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10248 VecDiagMsg = std::make_pair( 10249 "VectorizationNotBeneficial", 10250 "the cost-model indicates that vectorization is not beneficial"); 10251 VectorizeLoop = false; 10252 } 10253 10254 if (!MaybeVF && UserIC > 1) { 10255 // Tell the user interleaving was avoided up-front, despite being explicitly 10256 // requested. 10257 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10258 "interleaving should be avoided up front\n"); 10259 IntDiagMsg = std::make_pair( 10260 "InterleavingAvoided", 10261 "Ignoring UserIC, because interleaving was avoided up front"); 10262 InterleaveLoop = false; 10263 } else if (IC == 1 && UserIC <= 1) { 10264 // Tell the user interleaving is not beneficial. 10265 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10266 IntDiagMsg = std::make_pair( 10267 "InterleavingNotBeneficial", 10268 "the cost-model indicates that interleaving is not beneficial"); 10269 InterleaveLoop = false; 10270 if (UserIC == 1) { 10271 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10272 IntDiagMsg.second += 10273 " and is explicitly disabled or interleave count is set to 1"; 10274 } 10275 } else if (IC > 1 && UserIC == 1) { 10276 // Tell the user interleaving is beneficial, but it explicitly disabled. 10277 LLVM_DEBUG( 10278 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10279 IntDiagMsg = std::make_pair( 10280 "InterleavingBeneficialButDisabled", 10281 "the cost-model indicates that interleaving is beneficial " 10282 "but is explicitly disabled or interleave count is set to 1"); 10283 InterleaveLoop = false; 10284 } 10285 10286 // Override IC if user provided an interleave count. 10287 IC = UserIC > 0 ? UserIC : IC; 10288 10289 // Emit diagnostic messages, if any. 10290 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10291 if (!VectorizeLoop && !InterleaveLoop) { 10292 // Do not vectorize or interleaving the loop. 10293 ORE->emit([&]() { 10294 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10295 L->getStartLoc(), L->getHeader()) 10296 << VecDiagMsg.second; 10297 }); 10298 ORE->emit([&]() { 10299 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10300 L->getStartLoc(), L->getHeader()) 10301 << IntDiagMsg.second; 10302 }); 10303 return false; 10304 } else if (!VectorizeLoop && InterleaveLoop) { 10305 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10306 ORE->emit([&]() { 10307 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10308 L->getStartLoc(), L->getHeader()) 10309 << VecDiagMsg.second; 10310 }); 10311 } else if (VectorizeLoop && !InterleaveLoop) { 10312 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10313 << ") in " << DebugLocStr << '\n'); 10314 ORE->emit([&]() { 10315 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10316 L->getStartLoc(), L->getHeader()) 10317 << IntDiagMsg.second; 10318 }); 10319 } else if (VectorizeLoop && InterleaveLoop) { 10320 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10321 << ") in " << DebugLocStr << '\n'); 10322 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10323 } 10324 10325 bool DisableRuntimeUnroll = false; 10326 MDNode *OrigLoopID = L->getLoopID(); 10327 { 10328 using namespace ore; 10329 if (!VectorizeLoop) { 10330 assert(IC > 1 && "interleave count should not be 1 or 0"); 10331 // If we decided that it is not legal to vectorize the loop, then 10332 // interleave it. 10333 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10334 &CM, BFI, PSI, Checks); 10335 10336 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10337 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false); 10338 10339 ORE->emit([&]() { 10340 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10341 L->getHeader()) 10342 << "interleaved loop (interleaved count: " 10343 << NV("InterleaveCount", IC) << ")"; 10344 }); 10345 } else { 10346 // If we decided that it is *legal* to vectorize the loop, then do it. 10347 10348 // Consider vectorizing the epilogue too if it's profitable. 10349 VectorizationFactor EpilogueVF = 10350 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10351 if (EpilogueVF.Width.isVector()) { 10352 10353 // The first pass vectorizes the main loop and creates a scalar epilogue 10354 // to be vectorized by executing the plan (potentially with a different 10355 // factor) again shortly afterwards. 10356 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10357 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10358 EPI, &LVL, &CM, BFI, PSI, Checks); 10359 10360 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10361 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10362 DT, true); 10363 ++LoopsVectorized; 10364 10365 // Second pass vectorizes the epilogue and adjusts the control flow 10366 // edges from the first pass. 10367 EPI.MainLoopVF = EPI.EpilogueVF; 10368 EPI.MainLoopUF = EPI.EpilogueUF; 10369 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10370 ORE, EPI, &LVL, &CM, BFI, PSI, 10371 Checks); 10372 10373 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10374 VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion(); 10375 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); 10376 Header->setName("vec.epilog.vector.body"); 10377 10378 // Ensure that the start values for any VPReductionPHIRecipes are 10379 // updated before vectorising the epilogue loop. 10380 for (VPRecipeBase &R : Header->phis()) { 10381 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10382 if (auto *Resume = MainILV.getReductionResumeValue( 10383 ReductionPhi->getRecurrenceDescriptor())) { 10384 VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume); 10385 ReductionPhi->setOperand(0, StartVal); 10386 } 10387 } 10388 } 10389 10390 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10391 DT, true); 10392 ++LoopsEpilogueVectorized; 10393 10394 if (!MainILV.areSafetyChecksAdded()) 10395 DisableRuntimeUnroll = true; 10396 } else { 10397 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 10398 VF.MinProfitableTripCount, IC, &LVL, &CM, BFI, 10399 PSI, Checks); 10400 10401 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10402 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false); 10403 ++LoopsVectorized; 10404 10405 // Add metadata to disable runtime unrolling a scalar loop when there 10406 // are no runtime checks about strides and memory. A scalar loop that is 10407 // rarely used is not worth unrolling. 10408 if (!LB.areSafetyChecksAdded()) 10409 DisableRuntimeUnroll = true; 10410 } 10411 // Report the vectorization decision. 10412 ORE->emit([&]() { 10413 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10414 L->getHeader()) 10415 << "vectorized loop (vectorization width: " 10416 << NV("VectorizationFactor", VF.Width) 10417 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10418 }); 10419 } 10420 10421 if (ORE->allowExtraAnalysis(LV_NAME)) 10422 checkMixedPrecision(L, ORE); 10423 } 10424 10425 Optional<MDNode *> RemainderLoopID = 10426 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10427 LLVMLoopVectorizeFollowupEpilogue}); 10428 if (RemainderLoopID) { 10429 L->setLoopID(RemainderLoopID.value()); 10430 } else { 10431 if (DisableRuntimeUnroll) 10432 AddRuntimeUnrollDisableMetaData(L); 10433 10434 // Mark the loop as already vectorized to avoid vectorizing again. 10435 Hints.setAlreadyVectorized(); 10436 } 10437 10438 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10439 return true; 10440 } 10441 10442 LoopVectorizeResult LoopVectorizePass::runImpl( 10443 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10444 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10445 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10446 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10447 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10448 SE = &SE_; 10449 LI = &LI_; 10450 TTI = &TTI_; 10451 DT = &DT_; 10452 BFI = &BFI_; 10453 TLI = TLI_; 10454 AA = &AA_; 10455 AC = &AC_; 10456 GetLAA = &GetLAA_; 10457 DB = &DB_; 10458 ORE = &ORE_; 10459 PSI = PSI_; 10460 10461 // Don't attempt if 10462 // 1. the target claims to have no vector registers, and 10463 // 2. interleaving won't help ILP. 10464 // 10465 // The second condition is necessary because, even if the target has no 10466 // vector registers, loop vectorization may still enable scalar 10467 // interleaving. 10468 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10469 TTI->getMaxInterleaveFactor(1) < 2) 10470 return LoopVectorizeResult(false, false); 10471 10472 bool Changed = false, CFGChanged = false; 10473 10474 // The vectorizer requires loops to be in simplified form. 10475 // Since simplification may add new inner loops, it has to run before the 10476 // legality and profitability checks. This means running the loop vectorizer 10477 // will simplify all loops, regardless of whether anything end up being 10478 // vectorized. 10479 for (auto &L : *LI) 10480 Changed |= CFGChanged |= 10481 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10482 10483 // Build up a worklist of inner-loops to vectorize. This is necessary as 10484 // the act of vectorizing or partially unrolling a loop creates new loops 10485 // and can invalidate iterators across the loops. 10486 SmallVector<Loop *, 8> Worklist; 10487 10488 for (Loop *L : *LI) 10489 collectSupportedLoops(*L, LI, ORE, Worklist); 10490 10491 LoopsAnalyzed += Worklist.size(); 10492 10493 // Now walk the identified inner loops. 10494 while (!Worklist.empty()) { 10495 Loop *L = Worklist.pop_back_val(); 10496 10497 // For the inner loops we actually process, form LCSSA to simplify the 10498 // transform. 10499 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10500 10501 Changed |= CFGChanged |= processLoop(L); 10502 } 10503 10504 // Process each loop nest in the function. 10505 return LoopVectorizeResult(Changed, CFGChanged); 10506 } 10507 10508 PreservedAnalyses LoopVectorizePass::run(Function &F, 10509 FunctionAnalysisManager &AM) { 10510 auto &LI = AM.getResult<LoopAnalysis>(F); 10511 // There are no loops in the function. Return before computing other expensive 10512 // analyses. 10513 if (LI.empty()) 10514 return PreservedAnalyses::all(); 10515 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10516 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10517 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10518 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10519 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10520 auto &AA = AM.getResult<AAManager>(F); 10521 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10522 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10523 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10524 10525 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10526 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10527 [&](Loop &L) -> const LoopAccessInfo & { 10528 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10529 TLI, TTI, nullptr, nullptr, nullptr}; 10530 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10531 }; 10532 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10533 ProfileSummaryInfo *PSI = 10534 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10535 LoopVectorizeResult Result = 10536 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10537 if (!Result.MadeAnyChange) 10538 return PreservedAnalyses::all(); 10539 PreservedAnalyses PA; 10540 10541 // We currently do not preserve loopinfo/dominator analyses with outer loop 10542 // vectorization. Until this is addressed, mark these analyses as preserved 10543 // only for non-VPlan-native path. 10544 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10545 if (!EnableVPlanNativePath) { 10546 PA.preserve<LoopAnalysis>(); 10547 PA.preserve<DominatorTreeAnalysis>(); 10548 } 10549 10550 if (Result.MadeCFGChange) { 10551 // Making CFG changes likely means a loop got vectorized. Indicate that 10552 // extra simplification passes should be run. 10553 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10554 // be run if runtime checks have been added. 10555 AM.getResult<ShouldRunExtraVectorPasses>(F); 10556 PA.preserve<ShouldRunExtraVectorPasses>(); 10557 } else { 10558 PA.preserveSet<CFGAnalyses>(); 10559 } 10560 return PA; 10561 } 10562 10563 void LoopVectorizePass::printPipeline( 10564 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10565 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10566 OS, MapClassName2PassName); 10567 10568 OS << "<"; 10569 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10570 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10571 OS << ">"; 10572 } 10573