1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask);
548 
549   /// Set the debug location in the builder \p Ptr using the debug location in
550   /// \p V. If \p Ptr is None then it uses the class member's Builder.
551   void setDebugLocFromInst(const Value *V,
552                            Optional<IRBuilder<> *> CustomBuilder = None);
553 
554   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
555   void fixNonInductionPHIs(VPTransformState &State);
556 
557   /// Returns true if the reordering of FP operations is not allowed, but we are
558   /// able to vectorize with strict in-order reductions for the given RdxDesc.
559   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
560 
561   /// Create a broadcast instruction. This method generates a broadcast
562   /// instruction (shuffle) for loop invariant values and for the induction
563   /// value. If this is the induction variable then we extend it to N, N+1, ...
564   /// this is needed because each iteration in the loop corresponds to a SIMD
565   /// element.
566   virtual Value *getBroadcastInstrs(Value *V);
567 
568 protected:
569   friend class LoopVectorizationPlanner;
570 
571   /// A small list of PHINodes.
572   using PhiVector = SmallVector<PHINode *, 4>;
573 
574   /// A type for scalarized values in the new loop. Each value from the
575   /// original loop, when scalarized, is represented by UF x VF scalar values
576   /// in the new unrolled loop, where UF is the unroll factor and VF is the
577   /// vectorization factor.
578   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
579 
580   /// Set up the values of the IVs correctly when exiting the vector loop.
581   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
582                     Value *CountRoundDown, Value *EndValue,
583                     BasicBlock *MiddleBlock);
584 
585   /// Create a new induction variable inside L.
586   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
587                                    Value *Step, Instruction *DL);
588 
589   /// Handle all cross-iteration phis in the header.
590   void fixCrossIterationPHIs(VPTransformState &State);
591 
592   /// Create the exit value of first order recurrences in the middle block and
593   /// update their users.
594   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
595 
596   /// Create code for the loop exit value of the reduction.
597   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
598 
599   /// Clear NSW/NUW flags from reduction instructions if necessary.
600   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
601                                VPTransformState &State);
602 
603   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
604   /// means we need to add the appropriate incoming value from the middle
605   /// block as exiting edges from the scalar epilogue loop (if present) are
606   /// already in place, and we exit the vector loop exclusively to the middle
607   /// block.
608   void fixLCSSAPHIs(VPTransformState &State);
609 
610   /// Iteratively sink the scalarized operands of a predicated instruction into
611   /// the block that was created for it.
612   void sinkScalarOperands(Instruction *PredInst);
613 
614   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
615   /// represented as.
616   void truncateToMinimalBitwidths(VPTransformState &State);
617 
618   /// This function adds
619   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
620   /// to each vector element of Val. The sequence starts at StartIndex.
621   /// \p Opcode is relevant for FP induction variable.
622   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
623                                Instruction::BinaryOps Opcode =
624                                Instruction::BinaryOpsEnd);
625 
626   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
627   /// variable on which to base the steps, \p Step is the size of the step, and
628   /// \p EntryVal is the value from the original loop that maps to the steps.
629   /// Note that \p EntryVal doesn't have to be an induction variable - it
630   /// can also be a truncate instruction.
631   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
632                         const InductionDescriptor &ID, VPValue *Def,
633                         VPValue *CastDef, VPTransformState &State);
634 
635   /// Create a vector induction phi node based on an existing scalar one. \p
636   /// EntryVal is the value from the original loop that maps to the vector phi
637   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
638   /// truncate instruction, instead of widening the original IV, we widen a
639   /// version of the IV truncated to \p EntryVal's type.
640   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
641                                        Value *Step, Value *Start,
642                                        Instruction *EntryVal, VPValue *Def,
643                                        VPValue *CastDef,
644                                        VPTransformState &State);
645 
646   /// Returns true if an instruction \p I should be scalarized instead of
647   /// vectorized for the chosen vectorization factor.
648   bool shouldScalarizeInstruction(Instruction *I) const;
649 
650   /// Returns true if we should generate a scalar version of \p IV.
651   bool needsScalarInduction(Instruction *IV) const;
652 
653   /// If there is a cast involved in the induction variable \p ID, which should
654   /// be ignored in the vectorized loop body, this function records the
655   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
656   /// cast. We had already proved that the casted Phi is equal to the uncasted
657   /// Phi in the vectorized loop (under a runtime guard), and therefore
658   /// there is no need to vectorize the cast - the same value can be used in the
659   /// vector loop for both the Phi and the cast.
660   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
661   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
662   ///
663   /// \p EntryVal is the value from the original loop that maps to the vector
664   /// phi node and is used to distinguish what is the IV currently being
665   /// processed - original one (if \p EntryVal is a phi corresponding to the
666   /// original IV) or the "newly-created" one based on the proof mentioned above
667   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
668   /// latter case \p EntryVal is a TruncInst and we must not record anything for
669   /// that IV, but it's error-prone to expect callers of this routine to care
670   /// about that, hence this explicit parameter.
671   void recordVectorLoopValueForInductionCast(
672       const InductionDescriptor &ID, const Instruction *EntryVal,
673       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
674       unsigned Part, unsigned Lane = UINT_MAX);
675 
676   /// Generate a shuffle sequence that will reverse the vector Vec.
677   virtual Value *reverseVector(Value *Vec);
678 
679   /// Returns (and creates if needed) the original loop trip count.
680   Value *getOrCreateTripCount(Loop *NewLoop);
681 
682   /// Returns (and creates if needed) the trip count of the widened loop.
683   Value *getOrCreateVectorTripCount(Loop *NewLoop);
684 
685   /// Returns a bitcasted value to the requested vector type.
686   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
687   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
688                                 const DataLayout &DL);
689 
690   /// Emit a bypass check to see if the vector trip count is zero, including if
691   /// it overflows.
692   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
693 
694   /// Emit a bypass check to see if all of the SCEV assumptions we've
695   /// had to make are correct. Returns the block containing the checks or
696   /// nullptr if no checks have been added.
697   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit bypass checks to check any memory assumptions we may have made.
700   /// Returns the block containing the checks or nullptr if no checks have been
701   /// added.
702   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Compute the transformed value of Index at offset StartValue using step
705   /// StepValue.
706   /// For integer induction, returns StartValue + Index * StepValue.
707   /// For pointer induction, returns StartValue[Index * StepValue].
708   /// FIXME: The newly created binary instructions should contain nsw/nuw
709   /// flags, which can be found from the original scalar operations.
710   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
711                               const DataLayout &DL,
712                               const InductionDescriptor &ID) const;
713 
714   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
715   /// vector loop preheader, middle block and scalar preheader. Also
716   /// allocate a loop object for the new vector loop and return it.
717   Loop *createVectorLoopSkeleton(StringRef Prefix);
718 
719   /// Create new phi nodes for the induction variables to resume iteration count
720   /// in the scalar epilogue, from where the vectorized loop left off (given by
721   /// \p VectorTripCount).
722   /// In cases where the loop skeleton is more complicated (eg. epilogue
723   /// vectorization) and the resume values can come from an additional bypass
724   /// block, the \p AdditionalBypass pair provides information about the bypass
725   /// block and the end value on the edge from bypass to this loop.
726   void createInductionResumeValues(
727       Loop *L, Value *VectorTripCount,
728       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
729 
730   /// Complete the loop skeleton by adding debug MDs, creating appropriate
731   /// conditional branches in the middle block, preparing the builder and
732   /// running the verifier. Take in the vector loop \p L as argument, and return
733   /// the preheader of the completed vector loop.
734   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
735 
736   /// Add additional metadata to \p To that was not present on \p Orig.
737   ///
738   /// Currently this is used to add the noalias annotations based on the
739   /// inserted memchecks.  Use this for instructions that are *cloned* into the
740   /// vector loop.
741   void addNewMetadata(Instruction *To, const Instruction *Orig);
742 
743   /// Add metadata from one instruction to another.
744   ///
745   /// This includes both the original MDs from \p From and additional ones (\see
746   /// addNewMetadata).  Use this for *newly created* instructions in the vector
747   /// loop.
748   void addMetadata(Instruction *To, Instruction *From);
749 
750   /// Similar to the previous function but it adds the metadata to a
751   /// vector of instructions.
752   void addMetadata(ArrayRef<Value *> To, Instruction *From);
753 
754   /// Allow subclasses to override and print debug traces before/after vplan
755   /// execution, when trace information is requested.
756   virtual void printDebugTracesAtStart(){};
757   virtual void printDebugTracesAtEnd(){};
758 
759   /// The original loop.
760   Loop *OrigLoop;
761 
762   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
763   /// dynamic knowledge to simplify SCEV expressions and converts them to a
764   /// more usable form.
765   PredicatedScalarEvolution &PSE;
766 
767   /// Loop Info.
768   LoopInfo *LI;
769 
770   /// Dominator Tree.
771   DominatorTree *DT;
772 
773   /// Alias Analysis.
774   AAResults *AA;
775 
776   /// Target Library Info.
777   const TargetLibraryInfo *TLI;
778 
779   /// Target Transform Info.
780   const TargetTransformInfo *TTI;
781 
782   /// Assumption Cache.
783   AssumptionCache *AC;
784 
785   /// Interface to emit optimization remarks.
786   OptimizationRemarkEmitter *ORE;
787 
788   /// LoopVersioning.  It's only set up (non-null) if memchecks were
789   /// used.
790   ///
791   /// This is currently only used to add no-alias metadata based on the
792   /// memchecks.  The actually versioning is performed manually.
793   std::unique_ptr<LoopVersioning> LVer;
794 
795   /// The vectorization SIMD factor to use. Each vector will have this many
796   /// vector elements.
797   ElementCount VF;
798 
799   /// The vectorization unroll factor to use. Each scalar is vectorized to this
800   /// many different vector instructions.
801   unsigned UF;
802 
803   /// The builder that we use
804   IRBuilder<> Builder;
805 
806   // --- Vectorization state ---
807 
808   /// The vector-loop preheader.
809   BasicBlock *LoopVectorPreHeader;
810 
811   /// The scalar-loop preheader.
812   BasicBlock *LoopScalarPreHeader;
813 
814   /// Middle Block between the vector and the scalar.
815   BasicBlock *LoopMiddleBlock;
816 
817   /// The unique ExitBlock of the scalar loop if one exists.  Note that
818   /// there can be multiple exiting edges reaching this block.
819   BasicBlock *LoopExitBlock;
820 
821   /// The vector loop body.
822   BasicBlock *LoopVectorBody;
823 
824   /// The scalar loop body.
825   BasicBlock *LoopScalarBody;
826 
827   /// A list of all bypass blocks. The first block is the entry of the loop.
828   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
829 
830   /// The new Induction variable which was added to the new block.
831   PHINode *Induction = nullptr;
832 
833   /// The induction variable of the old basic block.
834   PHINode *OldInduction = nullptr;
835 
836   /// Store instructions that were predicated.
837   SmallVector<Instruction *, 4> PredicatedInstructions;
838 
839   /// Trip count of the original loop.
840   Value *TripCount = nullptr;
841 
842   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
843   Value *VectorTripCount = nullptr;
844 
845   /// The legality analysis.
846   LoopVectorizationLegality *Legal;
847 
848   /// The profitablity analysis.
849   LoopVectorizationCostModel *Cost;
850 
851   // Record whether runtime checks are added.
852   bool AddedSafetyChecks = false;
853 
854   // Holds the end values for each induction variable. We save the end values
855   // so we can later fix-up the external users of the induction variables.
856   DenseMap<PHINode *, Value *> IVEndValues;
857 
858   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
859   // fixed up at the end of vector code generation.
860   SmallVector<PHINode *, 8> OrigPHIsToFix;
861 
862   /// BFI and PSI are used to check for profile guided size optimizations.
863   BlockFrequencyInfo *BFI;
864   ProfileSummaryInfo *PSI;
865 
866   // Whether this loop should be optimized for size based on profile guided size
867   // optimizatios.
868   bool OptForSizeBasedOnProfile;
869 
870   /// Structure to hold information about generated runtime checks, responsible
871   /// for cleaning the checks, if vectorization turns out unprofitable.
872   GeneratedRTChecks &RTChecks;
873 };
874 
875 class InnerLoopUnroller : public InnerLoopVectorizer {
876 public:
877   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
878                     LoopInfo *LI, DominatorTree *DT,
879                     const TargetLibraryInfo *TLI,
880                     const TargetTransformInfo *TTI, AssumptionCache *AC,
881                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
882                     LoopVectorizationLegality *LVL,
883                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
884                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
885       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
886                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
887                             BFI, PSI, Check) {}
888 
889 private:
890   Value *getBroadcastInstrs(Value *V) override;
891   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
892                        Instruction::BinaryOps Opcode =
893                        Instruction::BinaryOpsEnd) override;
894   Value *reverseVector(Value *Vec) override;
895 };
896 
897 /// Encapsulate information regarding vectorization of a loop and its epilogue.
898 /// This information is meant to be updated and used across two stages of
899 /// epilogue vectorization.
900 struct EpilogueLoopVectorizationInfo {
901   ElementCount MainLoopVF = ElementCount::getFixed(0);
902   unsigned MainLoopUF = 0;
903   ElementCount EpilogueVF = ElementCount::getFixed(0);
904   unsigned EpilogueUF = 0;
905   BasicBlock *MainLoopIterationCountCheck = nullptr;
906   BasicBlock *EpilogueIterationCountCheck = nullptr;
907   BasicBlock *SCEVSafetyCheck = nullptr;
908   BasicBlock *MemSafetyCheck = nullptr;
909   Value *TripCount = nullptr;
910   Value *VectorTripCount = nullptr;
911 
912   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
913                                 ElementCount EVF, unsigned EUF)
914       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
915     assert(EUF == 1 &&
916            "A high UF for the epilogue loop is likely not beneficial.");
917   }
918 };
919 
920 /// An extension of the inner loop vectorizer that creates a skeleton for a
921 /// vectorized loop that has its epilogue (residual) also vectorized.
922 /// The idea is to run the vplan on a given loop twice, firstly to setup the
923 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
924 /// from the first step and vectorize the epilogue.  This is achieved by
925 /// deriving two concrete strategy classes from this base class and invoking
926 /// them in succession from the loop vectorizer planner.
927 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
928 public:
929   InnerLoopAndEpilogueVectorizer(
930       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
931       DominatorTree *DT, const TargetLibraryInfo *TLI,
932       const TargetTransformInfo *TTI, AssumptionCache *AC,
933       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
934       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
935       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
936       GeneratedRTChecks &Checks)
937       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
938                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
939                             Checks),
940         EPI(EPI) {}
941 
942   // Override this function to handle the more complex control flow around the
943   // three loops.
944   BasicBlock *createVectorizedLoopSkeleton() final override {
945     return createEpilogueVectorizedLoopSkeleton();
946   }
947 
948   /// The interface for creating a vectorized skeleton using one of two
949   /// different strategies, each corresponding to one execution of the vplan
950   /// as described above.
951   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
952 
953   /// Holds and updates state information required to vectorize the main loop
954   /// and its epilogue in two separate passes. This setup helps us avoid
955   /// regenerating and recomputing runtime safety checks. It also helps us to
956   /// shorten the iteration-count-check path length for the cases where the
957   /// iteration count of the loop is so small that the main vector loop is
958   /// completely skipped.
959   EpilogueLoopVectorizationInfo &EPI;
960 };
961 
962 /// A specialized derived class of inner loop vectorizer that performs
963 /// vectorization of *main* loops in the process of vectorizing loops and their
964 /// epilogues.
965 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
966 public:
967   EpilogueVectorizerMainLoop(
968       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
969       DominatorTree *DT, const TargetLibraryInfo *TLI,
970       const TargetTransformInfo *TTI, AssumptionCache *AC,
971       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
972       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
973       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
974       GeneratedRTChecks &Check)
975       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
976                                        EPI, LVL, CM, BFI, PSI, Check) {}
977   /// Implements the interface for creating a vectorized skeleton using the
978   /// *main loop* strategy (ie the first pass of vplan execution).
979   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
980 
981 protected:
982   /// Emits an iteration count bypass check once for the main loop (when \p
983   /// ForEpilogue is false) and once for the epilogue loop (when \p
984   /// ForEpilogue is true).
985   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
986                                              bool ForEpilogue);
987   void printDebugTracesAtStart() override;
988   void printDebugTracesAtEnd() override;
989 };
990 
991 // A specialized derived class of inner loop vectorizer that performs
992 // vectorization of *epilogue* loops in the process of vectorizing loops and
993 // their epilogues.
994 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
995 public:
996   EpilogueVectorizerEpilogueLoop(
997       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
998       DominatorTree *DT, const TargetLibraryInfo *TLI,
999       const TargetTransformInfo *TTI, AssumptionCache *AC,
1000       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1001       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1002       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1003       GeneratedRTChecks &Checks)
1004       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1005                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1006   /// Implements the interface for creating a vectorized skeleton using the
1007   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1008   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1009 
1010 protected:
1011   /// Emits an iteration count bypass check after the main vector loop has
1012   /// finished to see if there are any iterations left to execute by either
1013   /// the vector epilogue or the scalar epilogue.
1014   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1015                                                       BasicBlock *Bypass,
1016                                                       BasicBlock *Insert);
1017   void printDebugTracesAtStart() override;
1018   void printDebugTracesAtEnd() override;
1019 };
1020 } // end namespace llvm
1021 
1022 /// Look for a meaningful debug location on the instruction or it's
1023 /// operands.
1024 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1025   if (!I)
1026     return I;
1027 
1028   DebugLoc Empty;
1029   if (I->getDebugLoc() != Empty)
1030     return I;
1031 
1032   for (Use &Op : I->operands()) {
1033     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1034       if (OpInst->getDebugLoc() != Empty)
1035         return OpInst;
1036   }
1037 
1038   return I;
1039 }
1040 
1041 void InnerLoopVectorizer::setDebugLocFromInst(
1042     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1043   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1044   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1045     const DILocation *DIL = Inst->getDebugLoc();
1046 
1047     // When a FSDiscriminator is enabled, we don't need to add the multiply
1048     // factors to the discriminators.
1049     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1050         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1051       // FIXME: For scalable vectors, assume vscale=1.
1052       auto NewDIL =
1053           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1054       if (NewDIL)
1055         B->SetCurrentDebugLocation(NewDIL.getValue());
1056       else
1057         LLVM_DEBUG(dbgs()
1058                    << "Failed to create new discriminator: "
1059                    << DIL->getFilename() << " Line: " << DIL->getLine());
1060     } else
1061       B->SetCurrentDebugLocation(DIL);
1062   } else
1063     B->SetCurrentDebugLocation(DebugLoc());
1064 }
1065 
1066 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1067 /// is passed, the message relates to that particular instruction.
1068 #ifndef NDEBUG
1069 static void debugVectorizationMessage(const StringRef Prefix,
1070                                       const StringRef DebugMsg,
1071                                       Instruction *I) {
1072   dbgs() << "LV: " << Prefix << DebugMsg;
1073   if (I != nullptr)
1074     dbgs() << " " << *I;
1075   else
1076     dbgs() << '.';
1077   dbgs() << '\n';
1078 }
1079 #endif
1080 
1081 /// Create an analysis remark that explains why vectorization failed
1082 ///
1083 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1084 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1085 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1086 /// the location of the remark.  \return the remark object that can be
1087 /// streamed to.
1088 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1089     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1090   Value *CodeRegion = TheLoop->getHeader();
1091   DebugLoc DL = TheLoop->getStartLoc();
1092 
1093   if (I) {
1094     CodeRegion = I->getParent();
1095     // If there is no debug location attached to the instruction, revert back to
1096     // using the loop's.
1097     if (I->getDebugLoc())
1098       DL = I->getDebugLoc();
1099   }
1100 
1101   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1102 }
1103 
1104 /// Return a value for Step multiplied by VF.
1105 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1106   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1107   Constant *StepVal = ConstantInt::get(
1108       Step->getType(),
1109       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1110   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1111 }
1112 
1113 namespace llvm {
1114 
1115 /// Return the runtime value for VF.
1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1117   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1118   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1119 }
1120 
1121 void reportVectorizationFailure(const StringRef DebugMsg,
1122                                 const StringRef OREMsg, const StringRef ORETag,
1123                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1124                                 Instruction *I) {
1125   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1126   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1127   ORE->emit(
1128       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1129       << "loop not vectorized: " << OREMsg);
1130 }
1131 
1132 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1133                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1134                              Instruction *I) {
1135   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1136   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1137   ORE->emit(
1138       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1139       << Msg);
1140 }
1141 
1142 } // end namespace llvm
1143 
1144 #ifndef NDEBUG
1145 /// \return string containing a file name and a line # for the given loop.
1146 static std::string getDebugLocString(const Loop *L) {
1147   std::string Result;
1148   if (L) {
1149     raw_string_ostream OS(Result);
1150     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1151       LoopDbgLoc.print(OS);
1152     else
1153       // Just print the module name.
1154       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1155     OS.flush();
1156   }
1157   return Result;
1158 }
1159 #endif
1160 
1161 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1162                                          const Instruction *Orig) {
1163   // If the loop was versioned with memchecks, add the corresponding no-alias
1164   // metadata.
1165   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1166     LVer->annotateInstWithNoAlias(To, Orig);
1167 }
1168 
1169 void InnerLoopVectorizer::addMetadata(Instruction *To,
1170                                       Instruction *From) {
1171   propagateMetadata(To, From);
1172   addNewMetadata(To, From);
1173 }
1174 
1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1176                                       Instruction *From) {
1177   for (Value *V : To) {
1178     if (Instruction *I = dyn_cast<Instruction>(V))
1179       addMetadata(I, From);
1180   }
1181 }
1182 
1183 namespace llvm {
1184 
1185 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1186 // lowered.
1187 enum ScalarEpilogueLowering {
1188 
1189   // The default: allowing scalar epilogues.
1190   CM_ScalarEpilogueAllowed,
1191 
1192   // Vectorization with OptForSize: don't allow epilogues.
1193   CM_ScalarEpilogueNotAllowedOptSize,
1194 
1195   // A special case of vectorisation with OptForSize: loops with a very small
1196   // trip count are considered for vectorization under OptForSize, thereby
1197   // making sure the cost of their loop body is dominant, free of runtime
1198   // guards and scalar iteration overheads.
1199   CM_ScalarEpilogueNotAllowedLowTripLoop,
1200 
1201   // Loop hint predicate indicating an epilogue is undesired.
1202   CM_ScalarEpilogueNotNeededUsePredicate,
1203 
1204   // Directive indicating we must either tail fold or not vectorize
1205   CM_ScalarEpilogueNotAllowedUsePredicate
1206 };
1207 
1208 /// ElementCountComparator creates a total ordering for ElementCount
1209 /// for the purposes of using it in a set structure.
1210 struct ElementCountComparator {
1211   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1212     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1213            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1214   }
1215 };
1216 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1217 
1218 /// LoopVectorizationCostModel - estimates the expected speedups due to
1219 /// vectorization.
1220 /// In many cases vectorization is not profitable. This can happen because of
1221 /// a number of reasons. In this class we mainly attempt to predict the
1222 /// expected speedup/slowdowns due to the supported instruction set. We use the
1223 /// TargetTransformInfo to query the different backends for the cost of
1224 /// different operations.
1225 class LoopVectorizationCostModel {
1226 public:
1227   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1228                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1229                              LoopVectorizationLegality *Legal,
1230                              const TargetTransformInfo &TTI,
1231                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1232                              AssumptionCache *AC,
1233                              OptimizationRemarkEmitter *ORE, const Function *F,
1234                              const LoopVectorizeHints *Hints,
1235                              InterleavedAccessInfo &IAI)
1236       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1237         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1238         Hints(Hints), InterleaveInfo(IAI) {}
1239 
1240   /// \return An upper bound for the vectorization factors (both fixed and
1241   /// scalable). If the factors are 0, vectorization and interleaving should be
1242   /// avoided up front.
1243   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1244 
1245   /// \return True if runtime checks are required for vectorization, and false
1246   /// otherwise.
1247   bool runtimeChecksRequired();
1248 
1249   /// \return The most profitable vectorization factor and the cost of that VF.
1250   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1251   /// then this vectorization factor will be selected if vectorization is
1252   /// possible.
1253   VectorizationFactor
1254   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1255 
1256   VectorizationFactor
1257   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1258                                     const LoopVectorizationPlanner &LVP);
1259 
1260   /// Setup cost-based decisions for user vectorization factor.
1261   /// \return true if the UserVF is a feasible VF to be chosen.
1262   bool selectUserVectorizationFactor(ElementCount UserVF) {
1263     collectUniformsAndScalars(UserVF);
1264     collectInstsToScalarize(UserVF);
1265     return expectedCost(UserVF).first.isValid();
1266   }
1267 
1268   /// \return The size (in bits) of the smallest and widest types in the code
1269   /// that needs to be vectorized. We ignore values that remain scalar such as
1270   /// 64 bit loop indices.
1271   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1272 
1273   /// \return The desired interleave count.
1274   /// If interleave count has been specified by metadata it will be returned.
1275   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1276   /// are the selected vectorization factor and the cost of the selected VF.
1277   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1278 
1279   /// Memory access instruction may be vectorized in more than one way.
1280   /// Form of instruction after vectorization depends on cost.
1281   /// This function takes cost-based decisions for Load/Store instructions
1282   /// and collects them in a map. This decisions map is used for building
1283   /// the lists of loop-uniform and loop-scalar instructions.
1284   /// The calculated cost is saved with widening decision in order to
1285   /// avoid redundant calculations.
1286   void setCostBasedWideningDecision(ElementCount VF);
1287 
1288   /// A struct that represents some properties of the register usage
1289   /// of a loop.
1290   struct RegisterUsage {
1291     /// Holds the number of loop invariant values that are used in the loop.
1292     /// The key is ClassID of target-provided register class.
1293     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1294     /// Holds the maximum number of concurrent live intervals in the loop.
1295     /// The key is ClassID of target-provided register class.
1296     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1297   };
1298 
1299   /// \return Returns information about the register usages of the loop for the
1300   /// given vectorization factors.
1301   SmallVector<RegisterUsage, 8>
1302   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1303 
1304   /// Collect values we want to ignore in the cost model.
1305   void collectValuesToIgnore();
1306 
1307   /// Collect all element types in the loop for which widening is needed.
1308   void collectElementTypesForWidening();
1309 
1310   /// Split reductions into those that happen in the loop, and those that happen
1311   /// outside. In loop reductions are collected into InLoopReductionChains.
1312   void collectInLoopReductions();
1313 
1314   /// Returns true if we should use strict in-order reductions for the given
1315   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1316   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1317   /// of FP operations.
1318   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1319     return !Hints->allowReordering() && RdxDesc.isOrdered();
1320   }
1321 
1322   /// \returns The smallest bitwidth each instruction can be represented with.
1323   /// The vector equivalents of these instructions should be truncated to this
1324   /// type.
1325   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1326     return MinBWs;
1327   }
1328 
1329   /// \returns True if it is more profitable to scalarize instruction \p I for
1330   /// vectorization factor \p VF.
1331   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1332     assert(VF.isVector() &&
1333            "Profitable to scalarize relevant only for VF > 1.");
1334 
1335     // Cost model is not run in the VPlan-native path - return conservative
1336     // result until this changes.
1337     if (EnableVPlanNativePath)
1338       return false;
1339 
1340     auto Scalars = InstsToScalarize.find(VF);
1341     assert(Scalars != InstsToScalarize.end() &&
1342            "VF not yet analyzed for scalarization profitability");
1343     return Scalars->second.find(I) != Scalars->second.end();
1344   }
1345 
1346   /// Returns true if \p I is known to be uniform after vectorization.
1347   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1348     if (VF.isScalar())
1349       return true;
1350 
1351     // Cost model is not run in the VPlan-native path - return conservative
1352     // result until this changes.
1353     if (EnableVPlanNativePath)
1354       return false;
1355 
1356     auto UniformsPerVF = Uniforms.find(VF);
1357     assert(UniformsPerVF != Uniforms.end() &&
1358            "VF not yet analyzed for uniformity");
1359     return UniformsPerVF->second.count(I);
1360   }
1361 
1362   /// Returns true if \p I is known to be scalar after vectorization.
1363   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1364     if (VF.isScalar())
1365       return true;
1366 
1367     // Cost model is not run in the VPlan-native path - return conservative
1368     // result until this changes.
1369     if (EnableVPlanNativePath)
1370       return false;
1371 
1372     auto ScalarsPerVF = Scalars.find(VF);
1373     assert(ScalarsPerVF != Scalars.end() &&
1374            "Scalar values are not calculated for VF");
1375     return ScalarsPerVF->second.count(I);
1376   }
1377 
1378   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1379   /// for vectorization factor \p VF.
1380   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1381     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1382            !isProfitableToScalarize(I, VF) &&
1383            !isScalarAfterVectorization(I, VF);
1384   }
1385 
1386   /// Decision that was taken during cost calculation for memory instruction.
1387   enum InstWidening {
1388     CM_Unknown,
1389     CM_Widen,         // For consecutive accesses with stride +1.
1390     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1391     CM_Interleave,
1392     CM_GatherScatter,
1393     CM_Scalarize
1394   };
1395 
1396   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1397   /// instruction \p I and vector width \p VF.
1398   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1399                            InstructionCost Cost) {
1400     assert(VF.isVector() && "Expected VF >=2");
1401     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1402   }
1403 
1404   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1405   /// interleaving group \p Grp and vector width \p VF.
1406   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1407                            ElementCount VF, InstWidening W,
1408                            InstructionCost Cost) {
1409     assert(VF.isVector() && "Expected VF >=2");
1410     /// Broadcast this decicion to all instructions inside the group.
1411     /// But the cost will be assigned to one instruction only.
1412     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1413       if (auto *I = Grp->getMember(i)) {
1414         if (Grp->getInsertPos() == I)
1415           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1416         else
1417           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1418       }
1419     }
1420   }
1421 
1422   /// Return the cost model decision for the given instruction \p I and vector
1423   /// width \p VF. Return CM_Unknown if this instruction did not pass
1424   /// through the cost modeling.
1425   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1426     assert(VF.isVector() && "Expected VF to be a vector VF");
1427     // Cost model is not run in the VPlan-native path - return conservative
1428     // result until this changes.
1429     if (EnableVPlanNativePath)
1430       return CM_GatherScatter;
1431 
1432     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1433     auto Itr = WideningDecisions.find(InstOnVF);
1434     if (Itr == WideningDecisions.end())
1435       return CM_Unknown;
1436     return Itr->second.first;
1437   }
1438 
1439   /// Return the vectorization cost for the given instruction \p I and vector
1440   /// width \p VF.
1441   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1442     assert(VF.isVector() && "Expected VF >=2");
1443     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1444     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1445            "The cost is not calculated");
1446     return WideningDecisions[InstOnVF].second;
1447   }
1448 
1449   /// Return True if instruction \p I is an optimizable truncate whose operand
1450   /// is an induction variable. Such a truncate will be removed by adding a new
1451   /// induction variable with the destination type.
1452   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1453     // If the instruction is not a truncate, return false.
1454     auto *Trunc = dyn_cast<TruncInst>(I);
1455     if (!Trunc)
1456       return false;
1457 
1458     // Get the source and destination types of the truncate.
1459     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1460     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1461 
1462     // If the truncate is free for the given types, return false. Replacing a
1463     // free truncate with an induction variable would add an induction variable
1464     // update instruction to each iteration of the loop. We exclude from this
1465     // check the primary induction variable since it will need an update
1466     // instruction regardless.
1467     Value *Op = Trunc->getOperand(0);
1468     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1469       return false;
1470 
1471     // If the truncated value is not an induction variable, return false.
1472     return Legal->isInductionPhi(Op);
1473   }
1474 
1475   /// Collects the instructions to scalarize for each predicated instruction in
1476   /// the loop.
1477   void collectInstsToScalarize(ElementCount VF);
1478 
1479   /// Collect Uniform and Scalar values for the given \p VF.
1480   /// The sets depend on CM decision for Load/Store instructions
1481   /// that may be vectorized as interleave, gather-scatter or scalarized.
1482   void collectUniformsAndScalars(ElementCount VF) {
1483     // Do the analysis once.
1484     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1485       return;
1486     setCostBasedWideningDecision(VF);
1487     collectLoopUniforms(VF);
1488     collectLoopScalars(VF);
1489   }
1490 
1491   /// Returns true if the target machine supports masked store operation
1492   /// for the given \p DataType and kind of access to \p Ptr.
1493   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1494     return Legal->isConsecutivePtr(DataType, Ptr) &&
1495            TTI.isLegalMaskedStore(DataType, Alignment);
1496   }
1497 
1498   /// Returns true if the target machine supports masked load operation
1499   /// for the given \p DataType and kind of access to \p Ptr.
1500   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1501     return Legal->isConsecutivePtr(DataType, Ptr) &&
1502            TTI.isLegalMaskedLoad(DataType, Alignment);
1503   }
1504 
1505   /// Returns true if the target machine can represent \p V as a masked gather
1506   /// or scatter operation.
1507   bool isLegalGatherOrScatter(Value *V) {
1508     bool LI = isa<LoadInst>(V);
1509     bool SI = isa<StoreInst>(V);
1510     if (!LI && !SI)
1511       return false;
1512     auto *Ty = getLoadStoreType(V);
1513     Align Align = getLoadStoreAlignment(V);
1514     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1515            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1516   }
1517 
1518   /// Returns true if the target machine supports all of the reduction
1519   /// variables found for the given VF.
1520   bool canVectorizeReductions(ElementCount VF) const {
1521     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1522       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1523       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1524     }));
1525   }
1526 
1527   /// Returns true if \p I is an instruction that will be scalarized with
1528   /// predication. Such instructions include conditional stores and
1529   /// instructions that may divide by zero.
1530   /// If a non-zero VF has been calculated, we check if I will be scalarized
1531   /// predication for that VF.
1532   bool isScalarWithPredication(Instruction *I) const;
1533 
1534   // Returns true if \p I is an instruction that will be predicated either
1535   // through scalar predication or masked load/store or masked gather/scatter.
1536   // Superset of instructions that return true for isScalarWithPredication.
1537   bool isPredicatedInst(Instruction *I) {
1538     if (!blockNeedsPredication(I->getParent()))
1539       return false;
1540     // Loads and stores that need some form of masked operation are predicated
1541     // instructions.
1542     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1543       return Legal->isMaskRequired(I);
1544     return isScalarWithPredication(I);
1545   }
1546 
1547   /// Returns true if \p I is a memory instruction with consecutive memory
1548   /// access that can be widened.
1549   bool
1550   memoryInstructionCanBeWidened(Instruction *I,
1551                                 ElementCount VF = ElementCount::getFixed(1));
1552 
1553   /// Returns true if \p I is a memory instruction in an interleaved-group
1554   /// of memory accesses that can be vectorized with wide vector loads/stores
1555   /// and shuffles.
1556   bool
1557   interleavedAccessCanBeWidened(Instruction *I,
1558                                 ElementCount VF = ElementCount::getFixed(1));
1559 
1560   /// Check if \p Instr belongs to any interleaved access group.
1561   bool isAccessInterleaved(Instruction *Instr) {
1562     return InterleaveInfo.isInterleaved(Instr);
1563   }
1564 
1565   /// Get the interleaved access group that \p Instr belongs to.
1566   const InterleaveGroup<Instruction> *
1567   getInterleavedAccessGroup(Instruction *Instr) {
1568     return InterleaveInfo.getInterleaveGroup(Instr);
1569   }
1570 
1571   /// Returns true if we're required to use a scalar epilogue for at least
1572   /// the final iteration of the original loop.
1573   bool requiresScalarEpilogue(ElementCount VF) const {
1574     if (!isScalarEpilogueAllowed())
1575       return false;
1576     // If we might exit from anywhere but the latch, must run the exiting
1577     // iteration in scalar form.
1578     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1579       return true;
1580     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1581   }
1582 
1583   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1584   /// loop hint annotation.
1585   bool isScalarEpilogueAllowed() const {
1586     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1587   }
1588 
1589   /// Returns true if all loop blocks should be masked to fold tail loop.
1590   bool foldTailByMasking() const { return FoldTailByMasking; }
1591 
1592   bool blockNeedsPredication(BasicBlock *BB) const {
1593     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1594   }
1595 
1596   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1597   /// nodes to the chain of instructions representing the reductions. Uses a
1598   /// MapVector to ensure deterministic iteration order.
1599   using ReductionChainMap =
1600       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1601 
1602   /// Return the chain of instructions representing an inloop reduction.
1603   const ReductionChainMap &getInLoopReductionChains() const {
1604     return InLoopReductionChains;
1605   }
1606 
1607   /// Returns true if the Phi is part of an inloop reduction.
1608   bool isInLoopReduction(PHINode *Phi) const {
1609     return InLoopReductionChains.count(Phi);
1610   }
1611 
1612   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1613   /// with factor VF.  Return the cost of the instruction, including
1614   /// scalarization overhead if it's needed.
1615   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1616 
1617   /// Estimate cost of a call instruction CI if it were vectorized with factor
1618   /// VF. Return the cost of the instruction, including scalarization overhead
1619   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1620   /// scalarized -
1621   /// i.e. either vector version isn't available, or is too expensive.
1622   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1623                                     bool &NeedToScalarize) const;
1624 
1625   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1626   /// that of B.
1627   bool isMoreProfitable(const VectorizationFactor &A,
1628                         const VectorizationFactor &B) const;
1629 
1630   /// Invalidates decisions already taken by the cost model.
1631   void invalidateCostModelingDecisions() {
1632     WideningDecisions.clear();
1633     Uniforms.clear();
1634     Scalars.clear();
1635   }
1636 
1637 private:
1638   unsigned NumPredStores = 0;
1639 
1640   /// \return An upper bound for the vectorization factors for both
1641   /// fixed and scalable vectorization, where the minimum-known number of
1642   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1643   /// disabled or unsupported, then the scalable part will be equal to
1644   /// ElementCount::getScalable(0).
1645   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1646                                            ElementCount UserVF);
1647 
1648   /// \return the maximized element count based on the targets vector
1649   /// registers and the loop trip-count, but limited to a maximum safe VF.
1650   /// This is a helper function of computeFeasibleMaxVF.
1651   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1652   /// issue that occurred on one of the buildbots which cannot be reproduced
1653   /// without having access to the properietary compiler (see comments on
1654   /// D98509). The issue is currently under investigation and this workaround
1655   /// will be removed as soon as possible.
1656   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1657                                        unsigned SmallestType,
1658                                        unsigned WidestType,
1659                                        const ElementCount &MaxSafeVF);
1660 
1661   /// \return the maximum legal scalable VF, based on the safe max number
1662   /// of elements.
1663   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1664 
1665   /// The vectorization cost is a combination of the cost itself and a boolean
1666   /// indicating whether any of the contributing operations will actually
1667   /// operate on vector values after type legalization in the backend. If this
1668   /// latter value is false, then all operations will be scalarized (i.e. no
1669   /// vectorization has actually taken place).
1670   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1671 
1672   /// Returns the expected execution cost. The unit of the cost does
1673   /// not matter because we use the 'cost' units to compare different
1674   /// vector widths. The cost that is returned is *not* normalized by
1675   /// the factor width. If \p Invalid is not nullptr, this function
1676   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1677   /// each instruction that has an Invalid cost for the given VF.
1678   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1679   VectorizationCostTy
1680   expectedCost(ElementCount VF,
1681                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1682 
1683   /// Returns the execution time cost of an instruction for a given vector
1684   /// width. Vector width of one means scalar.
1685   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1686 
1687   /// The cost-computation logic from getInstructionCost which provides
1688   /// the vector type as an output parameter.
1689   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1690                                      Type *&VectorTy);
1691 
1692   /// Return the cost of instructions in an inloop reduction pattern, if I is
1693   /// part of that pattern.
1694   Optional<InstructionCost>
1695   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1696                           TTI::TargetCostKind CostKind);
1697 
1698   /// Calculate vectorization cost of memory instruction \p I.
1699   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1700 
1701   /// The cost computation for scalarized memory instruction.
1702   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1703 
1704   /// The cost computation for interleaving group of memory instructions.
1705   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1706 
1707   /// The cost computation for Gather/Scatter instruction.
1708   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1709 
1710   /// The cost computation for widening instruction \p I with consecutive
1711   /// memory access.
1712   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1713 
1714   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1715   /// Load: scalar load + broadcast.
1716   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1717   /// element)
1718   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1719 
1720   /// Estimate the overhead of scalarizing an instruction. This is a
1721   /// convenience wrapper for the type-based getScalarizationOverhead API.
1722   InstructionCost getScalarizationOverhead(Instruction *I,
1723                                            ElementCount VF) const;
1724 
1725   /// Returns whether the instruction is a load or store and will be a emitted
1726   /// as a vector operation.
1727   bool isConsecutiveLoadOrStore(Instruction *I);
1728 
1729   /// Returns true if an artificially high cost for emulated masked memrefs
1730   /// should be used.
1731   bool useEmulatedMaskMemRefHack(Instruction *I);
1732 
1733   /// Map of scalar integer values to the smallest bitwidth they can be legally
1734   /// represented as. The vector equivalents of these values should be truncated
1735   /// to this type.
1736   MapVector<Instruction *, uint64_t> MinBWs;
1737 
1738   /// A type representing the costs for instructions if they were to be
1739   /// scalarized rather than vectorized. The entries are Instruction-Cost
1740   /// pairs.
1741   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1742 
1743   /// A set containing all BasicBlocks that are known to present after
1744   /// vectorization as a predicated block.
1745   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1746 
1747   /// Records whether it is allowed to have the original scalar loop execute at
1748   /// least once. This may be needed as a fallback loop in case runtime
1749   /// aliasing/dependence checks fail, or to handle the tail/remainder
1750   /// iterations when the trip count is unknown or doesn't divide by the VF,
1751   /// or as a peel-loop to handle gaps in interleave-groups.
1752   /// Under optsize and when the trip count is very small we don't allow any
1753   /// iterations to execute in the scalar loop.
1754   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1755 
1756   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1757   bool FoldTailByMasking = false;
1758 
1759   /// A map holding scalar costs for different vectorization factors. The
1760   /// presence of a cost for an instruction in the mapping indicates that the
1761   /// instruction will be scalarized when vectorizing with the associated
1762   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1763   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1764 
1765   /// Holds the instructions known to be uniform after vectorization.
1766   /// The data is collected per VF.
1767   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1768 
1769   /// Holds the instructions known to be scalar after vectorization.
1770   /// The data is collected per VF.
1771   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1772 
1773   /// Holds the instructions (address computations) that are forced to be
1774   /// scalarized.
1775   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1776 
1777   /// PHINodes of the reductions that should be expanded in-loop along with
1778   /// their associated chains of reduction operations, in program order from top
1779   /// (PHI) to bottom
1780   ReductionChainMap InLoopReductionChains;
1781 
1782   /// A Map of inloop reduction operations and their immediate chain operand.
1783   /// FIXME: This can be removed once reductions can be costed correctly in
1784   /// vplan. This was added to allow quick lookup to the inloop operations,
1785   /// without having to loop through InLoopReductionChains.
1786   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1787 
1788   /// Returns the expected difference in cost from scalarizing the expression
1789   /// feeding a predicated instruction \p PredInst. The instructions to
1790   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1791   /// non-negative return value implies the expression will be scalarized.
1792   /// Currently, only single-use chains are considered for scalarization.
1793   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1794                               ElementCount VF);
1795 
1796   /// Collect the instructions that are uniform after vectorization. An
1797   /// instruction is uniform if we represent it with a single scalar value in
1798   /// the vectorized loop corresponding to each vector iteration. Examples of
1799   /// uniform instructions include pointer operands of consecutive or
1800   /// interleaved memory accesses. Note that although uniformity implies an
1801   /// instruction will be scalar, the reverse is not true. In general, a
1802   /// scalarized instruction will be represented by VF scalar values in the
1803   /// vectorized loop, each corresponding to an iteration of the original
1804   /// scalar loop.
1805   void collectLoopUniforms(ElementCount VF);
1806 
1807   /// Collect the instructions that are scalar after vectorization. An
1808   /// instruction is scalar if it is known to be uniform or will be scalarized
1809   /// during vectorization. Non-uniform scalarized instructions will be
1810   /// represented by VF values in the vectorized loop, each corresponding to an
1811   /// iteration of the original scalar loop.
1812   void collectLoopScalars(ElementCount VF);
1813 
1814   /// Keeps cost model vectorization decision and cost for instructions.
1815   /// Right now it is used for memory instructions only.
1816   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1817                                 std::pair<InstWidening, InstructionCost>>;
1818 
1819   DecisionList WideningDecisions;
1820 
1821   /// Returns true if \p V is expected to be vectorized and it needs to be
1822   /// extracted.
1823   bool needsExtract(Value *V, ElementCount VF) const {
1824     Instruction *I = dyn_cast<Instruction>(V);
1825     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1826         TheLoop->isLoopInvariant(I))
1827       return false;
1828 
1829     // Assume we can vectorize V (and hence we need extraction) if the
1830     // scalars are not computed yet. This can happen, because it is called
1831     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1832     // the scalars are collected. That should be a safe assumption in most
1833     // cases, because we check if the operands have vectorizable types
1834     // beforehand in LoopVectorizationLegality.
1835     return Scalars.find(VF) == Scalars.end() ||
1836            !isScalarAfterVectorization(I, VF);
1837   };
1838 
1839   /// Returns a range containing only operands needing to be extracted.
1840   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1841                                                    ElementCount VF) const {
1842     return SmallVector<Value *, 4>(make_filter_range(
1843         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1844   }
1845 
1846   /// Determines if we have the infrastructure to vectorize loop \p L and its
1847   /// epilogue, assuming the main loop is vectorized by \p VF.
1848   bool isCandidateForEpilogueVectorization(const Loop &L,
1849                                            const ElementCount VF) const;
1850 
1851   /// Returns true if epilogue vectorization is considered profitable, and
1852   /// false otherwise.
1853   /// \p VF is the vectorization factor chosen for the original loop.
1854   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1855 
1856 public:
1857   /// The loop that we evaluate.
1858   Loop *TheLoop;
1859 
1860   /// Predicated scalar evolution analysis.
1861   PredicatedScalarEvolution &PSE;
1862 
1863   /// Loop Info analysis.
1864   LoopInfo *LI;
1865 
1866   /// Vectorization legality.
1867   LoopVectorizationLegality *Legal;
1868 
1869   /// Vector target information.
1870   const TargetTransformInfo &TTI;
1871 
1872   /// Target Library Info.
1873   const TargetLibraryInfo *TLI;
1874 
1875   /// Demanded bits analysis.
1876   DemandedBits *DB;
1877 
1878   /// Assumption cache.
1879   AssumptionCache *AC;
1880 
1881   /// Interface to emit optimization remarks.
1882   OptimizationRemarkEmitter *ORE;
1883 
1884   const Function *TheFunction;
1885 
1886   /// Loop Vectorize Hint.
1887   const LoopVectorizeHints *Hints;
1888 
1889   /// The interleave access information contains groups of interleaved accesses
1890   /// with the same stride and close to each other.
1891   InterleavedAccessInfo &InterleaveInfo;
1892 
1893   /// Values to ignore in the cost model.
1894   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1895 
1896   /// Values to ignore in the cost model when VF > 1.
1897   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1898 
1899   /// All element types found in the loop.
1900   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1901 
1902   /// Profitable vector factors.
1903   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1904 };
1905 } // end namespace llvm
1906 
1907 /// Helper struct to manage generating runtime checks for vectorization.
1908 ///
1909 /// The runtime checks are created up-front in temporary blocks to allow better
1910 /// estimating the cost and un-linked from the existing IR. After deciding to
1911 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1912 /// temporary blocks are completely removed.
1913 class GeneratedRTChecks {
1914   /// Basic block which contains the generated SCEV checks, if any.
1915   BasicBlock *SCEVCheckBlock = nullptr;
1916 
1917   /// The value representing the result of the generated SCEV checks. If it is
1918   /// nullptr, either no SCEV checks have been generated or they have been used.
1919   Value *SCEVCheckCond = nullptr;
1920 
1921   /// Basic block which contains the generated memory runtime checks, if any.
1922   BasicBlock *MemCheckBlock = nullptr;
1923 
1924   /// The value representing the result of the generated memory runtime checks.
1925   /// If it is nullptr, either no memory runtime checks have been generated or
1926   /// they have been used.
1927   Instruction *MemRuntimeCheckCond = nullptr;
1928 
1929   DominatorTree *DT;
1930   LoopInfo *LI;
1931 
1932   SCEVExpander SCEVExp;
1933   SCEVExpander MemCheckExp;
1934 
1935 public:
1936   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1937                     const DataLayout &DL)
1938       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1939         MemCheckExp(SE, DL, "scev.check") {}
1940 
1941   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1942   /// accurately estimate the cost of the runtime checks. The blocks are
1943   /// un-linked from the IR and is added back during vector code generation. If
1944   /// there is no vector code generation, the check blocks are removed
1945   /// completely.
1946   void Create(Loop *L, const LoopAccessInfo &LAI,
1947               const SCEVUnionPredicate &UnionPred) {
1948 
1949     BasicBlock *LoopHeader = L->getHeader();
1950     BasicBlock *Preheader = L->getLoopPreheader();
1951 
1952     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1953     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1954     // may be used by SCEVExpander. The blocks will be un-linked from their
1955     // predecessors and removed from LI & DT at the end of the function.
1956     if (!UnionPred.isAlwaysTrue()) {
1957       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1958                                   nullptr, "vector.scevcheck");
1959 
1960       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1961           &UnionPred, SCEVCheckBlock->getTerminator());
1962     }
1963 
1964     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1965     if (RtPtrChecking.Need) {
1966       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1967       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1968                                  "vector.memcheck");
1969 
1970       std::tie(std::ignore, MemRuntimeCheckCond) =
1971           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1972                            RtPtrChecking.getChecks(), MemCheckExp);
1973       assert(MemRuntimeCheckCond &&
1974              "no RT checks generated although RtPtrChecking "
1975              "claimed checks are required");
1976     }
1977 
1978     if (!MemCheckBlock && !SCEVCheckBlock)
1979       return;
1980 
1981     // Unhook the temporary block with the checks, update various places
1982     // accordingly.
1983     if (SCEVCheckBlock)
1984       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1985     if (MemCheckBlock)
1986       MemCheckBlock->replaceAllUsesWith(Preheader);
1987 
1988     if (SCEVCheckBlock) {
1989       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1990       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1991       Preheader->getTerminator()->eraseFromParent();
1992     }
1993     if (MemCheckBlock) {
1994       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1995       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1996       Preheader->getTerminator()->eraseFromParent();
1997     }
1998 
1999     DT->changeImmediateDominator(LoopHeader, Preheader);
2000     if (MemCheckBlock) {
2001       DT->eraseNode(MemCheckBlock);
2002       LI->removeBlock(MemCheckBlock);
2003     }
2004     if (SCEVCheckBlock) {
2005       DT->eraseNode(SCEVCheckBlock);
2006       LI->removeBlock(SCEVCheckBlock);
2007     }
2008   }
2009 
2010   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2011   /// unused.
2012   ~GeneratedRTChecks() {
2013     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2014     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2015     if (!SCEVCheckCond)
2016       SCEVCleaner.markResultUsed();
2017 
2018     if (!MemRuntimeCheckCond)
2019       MemCheckCleaner.markResultUsed();
2020 
2021     if (MemRuntimeCheckCond) {
2022       auto &SE = *MemCheckExp.getSE();
2023       // Memory runtime check generation creates compares that use expanded
2024       // values. Remove them before running the SCEVExpanderCleaners.
2025       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2026         if (MemCheckExp.isInsertedInstruction(&I))
2027           continue;
2028         SE.forgetValue(&I);
2029         SE.eraseValueFromMap(&I);
2030         I.eraseFromParent();
2031       }
2032     }
2033     MemCheckCleaner.cleanup();
2034     SCEVCleaner.cleanup();
2035 
2036     if (SCEVCheckCond)
2037       SCEVCheckBlock->eraseFromParent();
2038     if (MemRuntimeCheckCond)
2039       MemCheckBlock->eraseFromParent();
2040   }
2041 
2042   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2043   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2044   /// depending on the generated condition.
2045   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2046                              BasicBlock *LoopVectorPreHeader,
2047                              BasicBlock *LoopExitBlock) {
2048     if (!SCEVCheckCond)
2049       return nullptr;
2050     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2051       if (C->isZero())
2052         return nullptr;
2053 
2054     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2055 
2056     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2057     // Create new preheader for vector loop.
2058     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2059       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2060 
2061     SCEVCheckBlock->getTerminator()->eraseFromParent();
2062     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2063     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2064                                                 SCEVCheckBlock);
2065 
2066     DT->addNewBlock(SCEVCheckBlock, Pred);
2067     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2068 
2069     ReplaceInstWithInst(
2070         SCEVCheckBlock->getTerminator(),
2071         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2072     // Mark the check as used, to prevent it from being removed during cleanup.
2073     SCEVCheckCond = nullptr;
2074     return SCEVCheckBlock;
2075   }
2076 
2077   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2078   /// the branches to branch to the vector preheader or \p Bypass, depending on
2079   /// the generated condition.
2080   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2081                                    BasicBlock *LoopVectorPreHeader) {
2082     // Check if we generated code that checks in runtime if arrays overlap.
2083     if (!MemRuntimeCheckCond)
2084       return nullptr;
2085 
2086     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2087     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2088                                                 MemCheckBlock);
2089 
2090     DT->addNewBlock(MemCheckBlock, Pred);
2091     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2092     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2093 
2094     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2095       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2096 
2097     ReplaceInstWithInst(
2098         MemCheckBlock->getTerminator(),
2099         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2100     MemCheckBlock->getTerminator()->setDebugLoc(
2101         Pred->getTerminator()->getDebugLoc());
2102 
2103     // Mark the check as used, to prevent it from being removed during cleanup.
2104     MemRuntimeCheckCond = nullptr;
2105     return MemCheckBlock;
2106   }
2107 };
2108 
2109 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2110 // vectorization. The loop needs to be annotated with #pragma omp simd
2111 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2112 // vector length information is not provided, vectorization is not considered
2113 // explicit. Interleave hints are not allowed either. These limitations will be
2114 // relaxed in the future.
2115 // Please, note that we are currently forced to abuse the pragma 'clang
2116 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2117 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2118 // provides *explicit vectorization hints* (LV can bypass legal checks and
2119 // assume that vectorization is legal). However, both hints are implemented
2120 // using the same metadata (llvm.loop.vectorize, processed by
2121 // LoopVectorizeHints). This will be fixed in the future when the native IR
2122 // representation for pragma 'omp simd' is introduced.
2123 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2124                                    OptimizationRemarkEmitter *ORE) {
2125   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2126   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2127 
2128   // Only outer loops with an explicit vectorization hint are supported.
2129   // Unannotated outer loops are ignored.
2130   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2131     return false;
2132 
2133   Function *Fn = OuterLp->getHeader()->getParent();
2134   if (!Hints.allowVectorization(Fn, OuterLp,
2135                                 true /*VectorizeOnlyWhenForced*/)) {
2136     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2137     return false;
2138   }
2139 
2140   if (Hints.getInterleave() > 1) {
2141     // TODO: Interleave support is future work.
2142     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2143                          "outer loops.\n");
2144     Hints.emitRemarkWithHints();
2145     return false;
2146   }
2147 
2148   return true;
2149 }
2150 
2151 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2152                                   OptimizationRemarkEmitter *ORE,
2153                                   SmallVectorImpl<Loop *> &V) {
2154   // Collect inner loops and outer loops without irreducible control flow. For
2155   // now, only collect outer loops that have explicit vectorization hints. If we
2156   // are stress testing the VPlan H-CFG construction, we collect the outermost
2157   // loop of every loop nest.
2158   if (L.isInnermost() || VPlanBuildStressTest ||
2159       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2160     LoopBlocksRPO RPOT(&L);
2161     RPOT.perform(LI);
2162     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2163       V.push_back(&L);
2164       // TODO: Collect inner loops inside marked outer loops in case
2165       // vectorization fails for the outer loop. Do not invoke
2166       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2167       // already known to be reducible. We can use an inherited attribute for
2168       // that.
2169       return;
2170     }
2171   }
2172   for (Loop *InnerL : L)
2173     collectSupportedLoops(*InnerL, LI, ORE, V);
2174 }
2175 
2176 namespace {
2177 
2178 /// The LoopVectorize Pass.
2179 struct LoopVectorize : public FunctionPass {
2180   /// Pass identification, replacement for typeid
2181   static char ID;
2182 
2183   LoopVectorizePass Impl;
2184 
2185   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2186                          bool VectorizeOnlyWhenForced = false)
2187       : FunctionPass(ID),
2188         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2189     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2190   }
2191 
2192   bool runOnFunction(Function &F) override {
2193     if (skipFunction(F))
2194       return false;
2195 
2196     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2197     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2198     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2199     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2200     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2201     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2202     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2203     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2204     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2205     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2206     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2207     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2208     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2209 
2210     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2211         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2212 
2213     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2214                         GetLAA, *ORE, PSI).MadeAnyChange;
2215   }
2216 
2217   void getAnalysisUsage(AnalysisUsage &AU) const override {
2218     AU.addRequired<AssumptionCacheTracker>();
2219     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2220     AU.addRequired<DominatorTreeWrapperPass>();
2221     AU.addRequired<LoopInfoWrapperPass>();
2222     AU.addRequired<ScalarEvolutionWrapperPass>();
2223     AU.addRequired<TargetTransformInfoWrapperPass>();
2224     AU.addRequired<AAResultsWrapperPass>();
2225     AU.addRequired<LoopAccessLegacyAnalysis>();
2226     AU.addRequired<DemandedBitsWrapperPass>();
2227     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2228     AU.addRequired<InjectTLIMappingsLegacy>();
2229 
2230     // We currently do not preserve loopinfo/dominator analyses with outer loop
2231     // vectorization. Until this is addressed, mark these analyses as preserved
2232     // only for non-VPlan-native path.
2233     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2234     if (!EnableVPlanNativePath) {
2235       AU.addPreserved<LoopInfoWrapperPass>();
2236       AU.addPreserved<DominatorTreeWrapperPass>();
2237     }
2238 
2239     AU.addPreserved<BasicAAWrapperPass>();
2240     AU.addPreserved<GlobalsAAWrapperPass>();
2241     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2242   }
2243 };
2244 
2245 } // end anonymous namespace
2246 
2247 //===----------------------------------------------------------------------===//
2248 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2249 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2250 //===----------------------------------------------------------------------===//
2251 
2252 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2253   // We need to place the broadcast of invariant variables outside the loop,
2254   // but only if it's proven safe to do so. Else, broadcast will be inside
2255   // vector loop body.
2256   Instruction *Instr = dyn_cast<Instruction>(V);
2257   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2258                      (!Instr ||
2259                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2260   // Place the code for broadcasting invariant variables in the new preheader.
2261   IRBuilder<>::InsertPointGuard Guard(Builder);
2262   if (SafeToHoist)
2263     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2264 
2265   // Broadcast the scalar into all locations in the vector.
2266   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2267 
2268   return Shuf;
2269 }
2270 
2271 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2272     const InductionDescriptor &II, Value *Step, Value *Start,
2273     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2274     VPTransformState &State) {
2275   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2276          "Expected either an induction phi-node or a truncate of it!");
2277 
2278   // Construct the initial value of the vector IV in the vector loop preheader
2279   auto CurrIP = Builder.saveIP();
2280   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2281   if (isa<TruncInst>(EntryVal)) {
2282     assert(Start->getType()->isIntegerTy() &&
2283            "Truncation requires an integer type");
2284     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2285     Step = Builder.CreateTrunc(Step, TruncType);
2286     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2287   }
2288   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2289   Value *SteppedStart =
2290       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2291 
2292   // We create vector phi nodes for both integer and floating-point induction
2293   // variables. Here, we determine the kind of arithmetic we will perform.
2294   Instruction::BinaryOps AddOp;
2295   Instruction::BinaryOps MulOp;
2296   if (Step->getType()->isIntegerTy()) {
2297     AddOp = Instruction::Add;
2298     MulOp = Instruction::Mul;
2299   } else {
2300     AddOp = II.getInductionOpcode();
2301     MulOp = Instruction::FMul;
2302   }
2303 
2304   // Multiply the vectorization factor by the step using integer or
2305   // floating-point arithmetic as appropriate.
2306   Type *StepType = Step->getType();
2307   if (Step->getType()->isFloatingPointTy())
2308     StepType = IntegerType::get(StepType->getContext(),
2309                                 StepType->getScalarSizeInBits());
2310   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2311   if (Step->getType()->isFloatingPointTy())
2312     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2313   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2314 
2315   // Create a vector splat to use in the induction update.
2316   //
2317   // FIXME: If the step is non-constant, we create the vector splat with
2318   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2319   //        handle a constant vector splat.
2320   Value *SplatVF = isa<Constant>(Mul)
2321                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2322                        : Builder.CreateVectorSplat(VF, Mul);
2323   Builder.restoreIP(CurrIP);
2324 
2325   // We may need to add the step a number of times, depending on the unroll
2326   // factor. The last of those goes into the PHI.
2327   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2328                                     &*LoopVectorBody->getFirstInsertionPt());
2329   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2330   Instruction *LastInduction = VecInd;
2331   for (unsigned Part = 0; Part < UF; ++Part) {
2332     State.set(Def, LastInduction, Part);
2333 
2334     if (isa<TruncInst>(EntryVal))
2335       addMetadata(LastInduction, EntryVal);
2336     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2337                                           State, Part);
2338 
2339     LastInduction = cast<Instruction>(
2340         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2341     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2342   }
2343 
2344   // Move the last step to the end of the latch block. This ensures consistent
2345   // placement of all induction updates.
2346   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2347   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2348   auto *ICmp = cast<Instruction>(Br->getCondition());
2349   LastInduction->moveBefore(ICmp);
2350   LastInduction->setName("vec.ind.next");
2351 
2352   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2353   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2354 }
2355 
2356 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2357   return Cost->isScalarAfterVectorization(I, VF) ||
2358          Cost->isProfitableToScalarize(I, VF);
2359 }
2360 
2361 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2362   if (shouldScalarizeInstruction(IV))
2363     return true;
2364   auto isScalarInst = [&](User *U) -> bool {
2365     auto *I = cast<Instruction>(U);
2366     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2367   };
2368   return llvm::any_of(IV->users(), isScalarInst);
2369 }
2370 
2371 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2372     const InductionDescriptor &ID, const Instruction *EntryVal,
2373     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2374     unsigned Part, unsigned Lane) {
2375   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2376          "Expected either an induction phi-node or a truncate of it!");
2377 
2378   // This induction variable is not the phi from the original loop but the
2379   // newly-created IV based on the proof that casted Phi is equal to the
2380   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2381   // re-uses the same InductionDescriptor that original IV uses but we don't
2382   // have to do any recording in this case - that is done when original IV is
2383   // processed.
2384   if (isa<TruncInst>(EntryVal))
2385     return;
2386 
2387   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2388   if (Casts.empty())
2389     return;
2390   // Only the first Cast instruction in the Casts vector is of interest.
2391   // The rest of the Casts (if exist) have no uses outside the
2392   // induction update chain itself.
2393   if (Lane < UINT_MAX)
2394     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2395   else
2396     State.set(CastDef, VectorLoopVal, Part);
2397 }
2398 
2399 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2400                                                 TruncInst *Trunc, VPValue *Def,
2401                                                 VPValue *CastDef,
2402                                                 VPTransformState &State) {
2403   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2404          "Primary induction variable must have an integer type");
2405 
2406   auto II = Legal->getInductionVars().find(IV);
2407   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2408 
2409   auto ID = II->second;
2410   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2411 
2412   // The value from the original loop to which we are mapping the new induction
2413   // variable.
2414   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2415 
2416   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2417 
2418   // Generate code for the induction step. Note that induction steps are
2419   // required to be loop-invariant
2420   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2421     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2422            "Induction step should be loop invariant");
2423     if (PSE.getSE()->isSCEVable(IV->getType())) {
2424       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2425       return Exp.expandCodeFor(Step, Step->getType(),
2426                                LoopVectorPreHeader->getTerminator());
2427     }
2428     return cast<SCEVUnknown>(Step)->getValue();
2429   };
2430 
2431   // The scalar value to broadcast. This is derived from the canonical
2432   // induction variable. If a truncation type is given, truncate the canonical
2433   // induction variable and step. Otherwise, derive these values from the
2434   // induction descriptor.
2435   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2436     Value *ScalarIV = Induction;
2437     if (IV != OldInduction) {
2438       ScalarIV = IV->getType()->isIntegerTy()
2439                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2440                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2441                                           IV->getType());
2442       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2443       ScalarIV->setName("offset.idx");
2444     }
2445     if (Trunc) {
2446       auto *TruncType = cast<IntegerType>(Trunc->getType());
2447       assert(Step->getType()->isIntegerTy() &&
2448              "Truncation requires an integer step");
2449       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2450       Step = Builder.CreateTrunc(Step, TruncType);
2451     }
2452     return ScalarIV;
2453   };
2454 
2455   // Create the vector values from the scalar IV, in the absence of creating a
2456   // vector IV.
2457   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2458     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2459     for (unsigned Part = 0; Part < UF; ++Part) {
2460       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2461       Value *EntryPart =
2462           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2463                         ID.getInductionOpcode());
2464       State.set(Def, EntryPart, Part);
2465       if (Trunc)
2466         addMetadata(EntryPart, Trunc);
2467       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2468                                             State, Part);
2469     }
2470   };
2471 
2472   // Fast-math-flags propagate from the original induction instruction.
2473   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2474   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2475     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2476 
2477   // Now do the actual transformations, and start with creating the step value.
2478   Value *Step = CreateStepValue(ID.getStep());
2479   if (VF.isZero() || VF.isScalar()) {
2480     Value *ScalarIV = CreateScalarIV(Step);
2481     CreateSplatIV(ScalarIV, Step);
2482     return;
2483   }
2484 
2485   // Determine if we want a scalar version of the induction variable. This is
2486   // true if the induction variable itself is not widened, or if it has at
2487   // least one user in the loop that is not widened.
2488   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2489   if (!NeedsScalarIV) {
2490     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2491                                     State);
2492     return;
2493   }
2494 
2495   // Try to create a new independent vector induction variable. If we can't
2496   // create the phi node, we will splat the scalar induction variable in each
2497   // loop iteration.
2498   if (!shouldScalarizeInstruction(EntryVal)) {
2499     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2500                                     State);
2501     Value *ScalarIV = CreateScalarIV(Step);
2502     // Create scalar steps that can be used by instructions we will later
2503     // scalarize. Note that the addition of the scalar steps will not increase
2504     // the number of instructions in the loop in the common case prior to
2505     // InstCombine. We will be trading one vector extract for each scalar step.
2506     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2507     return;
2508   }
2509 
2510   // All IV users are scalar instructions, so only emit a scalar IV, not a
2511   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2512   // predicate used by the masked loads/stores.
2513   Value *ScalarIV = CreateScalarIV(Step);
2514   if (!Cost->isScalarEpilogueAllowed())
2515     CreateSplatIV(ScalarIV, Step);
2516   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2517 }
2518 
2519 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2520                                           Instruction::BinaryOps BinOp) {
2521   // Create and check the types.
2522   auto *ValVTy = cast<VectorType>(Val->getType());
2523   ElementCount VLen = ValVTy->getElementCount();
2524 
2525   Type *STy = Val->getType()->getScalarType();
2526   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2527          "Induction Step must be an integer or FP");
2528   assert(Step->getType() == STy && "Step has wrong type");
2529 
2530   SmallVector<Constant *, 8> Indices;
2531 
2532   // Create a vector of consecutive numbers from zero to VF.
2533   VectorType *InitVecValVTy = ValVTy;
2534   Type *InitVecValSTy = STy;
2535   if (STy->isFloatingPointTy()) {
2536     InitVecValSTy =
2537         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2538     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2539   }
2540   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2541 
2542   // Add on StartIdx
2543   Value *StartIdxSplat = Builder.CreateVectorSplat(
2544       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2545   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2546 
2547   if (STy->isIntegerTy()) {
2548     Step = Builder.CreateVectorSplat(VLen, Step);
2549     assert(Step->getType() == Val->getType() && "Invalid step vec");
2550     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2551     // which can be found from the original scalar operations.
2552     Step = Builder.CreateMul(InitVec, Step);
2553     return Builder.CreateAdd(Val, Step, "induction");
2554   }
2555 
2556   // Floating point induction.
2557   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2558          "Binary Opcode should be specified for FP induction");
2559   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2560   Step = Builder.CreateVectorSplat(VLen, Step);
2561   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2562   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2563 }
2564 
2565 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2566                                            Instruction *EntryVal,
2567                                            const InductionDescriptor &ID,
2568                                            VPValue *Def, VPValue *CastDef,
2569                                            VPTransformState &State) {
2570   // We shouldn't have to build scalar steps if we aren't vectorizing.
2571   assert(VF.isVector() && "VF should be greater than one");
2572   // Get the value type and ensure it and the step have the same integer type.
2573   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2574   assert(ScalarIVTy == Step->getType() &&
2575          "Val and Step should have the same type");
2576 
2577   // We build scalar steps for both integer and floating-point induction
2578   // variables. Here, we determine the kind of arithmetic we will perform.
2579   Instruction::BinaryOps AddOp;
2580   Instruction::BinaryOps MulOp;
2581   if (ScalarIVTy->isIntegerTy()) {
2582     AddOp = Instruction::Add;
2583     MulOp = Instruction::Mul;
2584   } else {
2585     AddOp = ID.getInductionOpcode();
2586     MulOp = Instruction::FMul;
2587   }
2588 
2589   // Determine the number of scalars we need to generate for each unroll
2590   // iteration. If EntryVal is uniform, we only need to generate the first
2591   // lane. Otherwise, we generate all VF values.
2592   bool IsUniform =
2593       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2594   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2595   // Compute the scalar steps and save the results in State.
2596   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2597                                      ScalarIVTy->getScalarSizeInBits());
2598   Type *VecIVTy = nullptr;
2599   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2600   if (!IsUniform && VF.isScalable()) {
2601     VecIVTy = VectorType::get(ScalarIVTy, VF);
2602     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2603     SplatStep = Builder.CreateVectorSplat(VF, Step);
2604     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2605   }
2606 
2607   for (unsigned Part = 0; Part < UF; ++Part) {
2608     Value *StartIdx0 =
2609         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2610 
2611     if (!IsUniform && VF.isScalable()) {
2612       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2613       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2614       if (ScalarIVTy->isFloatingPointTy())
2615         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2616       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2617       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2618       State.set(Def, Add, Part);
2619       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2620                                             Part);
2621       // It's useful to record the lane values too for the known minimum number
2622       // of elements so we do those below. This improves the code quality when
2623       // trying to extract the first element, for example.
2624     }
2625 
2626     if (ScalarIVTy->isFloatingPointTy())
2627       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2628 
2629     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2630       Value *StartIdx = Builder.CreateBinOp(
2631           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2632       // The step returned by `createStepForVF` is a runtime-evaluated value
2633       // when VF is scalable. Otherwise, it should be folded into a Constant.
2634       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2635              "Expected StartIdx to be folded to a constant when VF is not "
2636              "scalable");
2637       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2638       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2639       State.set(Def, Add, VPIteration(Part, Lane));
2640       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2641                                             Part, Lane);
2642     }
2643   }
2644 }
2645 
2646 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2647                                                     const VPIteration &Instance,
2648                                                     VPTransformState &State) {
2649   Value *ScalarInst = State.get(Def, Instance);
2650   Value *VectorValue = State.get(Def, Instance.Part);
2651   VectorValue = Builder.CreateInsertElement(
2652       VectorValue, ScalarInst,
2653       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2654   State.set(Def, VectorValue, Instance.Part);
2655 }
2656 
2657 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2658   assert(Vec->getType()->isVectorTy() && "Invalid type");
2659   return Builder.CreateVectorReverse(Vec, "reverse");
2660 }
2661 
2662 // Return whether we allow using masked interleave-groups (for dealing with
2663 // strided loads/stores that reside in predicated blocks, or for dealing
2664 // with gaps).
2665 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2666   // If an override option has been passed in for interleaved accesses, use it.
2667   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2668     return EnableMaskedInterleavedMemAccesses;
2669 
2670   return TTI.enableMaskedInterleavedAccessVectorization();
2671 }
2672 
2673 // Try to vectorize the interleave group that \p Instr belongs to.
2674 //
2675 // E.g. Translate following interleaved load group (factor = 3):
2676 //   for (i = 0; i < N; i+=3) {
2677 //     R = Pic[i];             // Member of index 0
2678 //     G = Pic[i+1];           // Member of index 1
2679 //     B = Pic[i+2];           // Member of index 2
2680 //     ... // do something to R, G, B
2681 //   }
2682 // To:
2683 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2684 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2685 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2686 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2687 //
2688 // Or translate following interleaved store group (factor = 3):
2689 //   for (i = 0; i < N; i+=3) {
2690 //     ... do something to R, G, B
2691 //     Pic[i]   = R;           // Member of index 0
2692 //     Pic[i+1] = G;           // Member of index 1
2693 //     Pic[i+2] = B;           // Member of index 2
2694 //   }
2695 // To:
2696 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2697 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2698 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2699 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2700 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2701 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2702     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2703     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2704     VPValue *BlockInMask) {
2705   Instruction *Instr = Group->getInsertPos();
2706   const DataLayout &DL = Instr->getModule()->getDataLayout();
2707 
2708   // Prepare for the vector type of the interleaved load/store.
2709   Type *ScalarTy = getLoadStoreType(Instr);
2710   unsigned InterleaveFactor = Group->getFactor();
2711   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2712   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2713 
2714   // Prepare for the new pointers.
2715   SmallVector<Value *, 2> AddrParts;
2716   unsigned Index = Group->getIndex(Instr);
2717 
2718   // TODO: extend the masked interleaved-group support to reversed access.
2719   assert((!BlockInMask || !Group->isReverse()) &&
2720          "Reversed masked interleave-group not supported.");
2721 
2722   // If the group is reverse, adjust the index to refer to the last vector lane
2723   // instead of the first. We adjust the index from the first vector lane,
2724   // rather than directly getting the pointer for lane VF - 1, because the
2725   // pointer operand of the interleaved access is supposed to be uniform. For
2726   // uniform instructions, we're only required to generate a value for the
2727   // first vector lane in each unroll iteration.
2728   if (Group->isReverse())
2729     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2730 
2731   for (unsigned Part = 0; Part < UF; Part++) {
2732     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2733     setDebugLocFromInst(AddrPart);
2734 
2735     // Notice current instruction could be any index. Need to adjust the address
2736     // to the member of index 0.
2737     //
2738     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2739     //       b = A[i];       // Member of index 0
2740     // Current pointer is pointed to A[i+1], adjust it to A[i].
2741     //
2742     // E.g.  A[i+1] = a;     // Member of index 1
2743     //       A[i]   = b;     // Member of index 0
2744     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2745     // Current pointer is pointed to A[i+2], adjust it to A[i].
2746 
2747     bool InBounds = false;
2748     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2749       InBounds = gep->isInBounds();
2750     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2751     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2752 
2753     // Cast to the vector pointer type.
2754     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2755     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2756     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2757   }
2758 
2759   setDebugLocFromInst(Instr);
2760   Value *PoisonVec = PoisonValue::get(VecTy);
2761 
2762   Value *MaskForGaps = nullptr;
2763   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2764     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2765     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2766   }
2767 
2768   // Vectorize the interleaved load group.
2769   if (isa<LoadInst>(Instr)) {
2770     // For each unroll part, create a wide load for the group.
2771     SmallVector<Value *, 2> NewLoads;
2772     for (unsigned Part = 0; Part < UF; Part++) {
2773       Instruction *NewLoad;
2774       if (BlockInMask || MaskForGaps) {
2775         assert(useMaskedInterleavedAccesses(*TTI) &&
2776                "masked interleaved groups are not allowed.");
2777         Value *GroupMask = MaskForGaps;
2778         if (BlockInMask) {
2779           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2780           Value *ShuffledMask = Builder.CreateShuffleVector(
2781               BlockInMaskPart,
2782               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2783               "interleaved.mask");
2784           GroupMask = MaskForGaps
2785                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2786                                                 MaskForGaps)
2787                           : ShuffledMask;
2788         }
2789         NewLoad =
2790             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2791                                      GroupMask, PoisonVec, "wide.masked.vec");
2792       }
2793       else
2794         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2795                                             Group->getAlign(), "wide.vec");
2796       Group->addMetadata(NewLoad);
2797       NewLoads.push_back(NewLoad);
2798     }
2799 
2800     // For each member in the group, shuffle out the appropriate data from the
2801     // wide loads.
2802     unsigned J = 0;
2803     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2804       Instruction *Member = Group->getMember(I);
2805 
2806       // Skip the gaps in the group.
2807       if (!Member)
2808         continue;
2809 
2810       auto StrideMask =
2811           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2812       for (unsigned Part = 0; Part < UF; Part++) {
2813         Value *StridedVec = Builder.CreateShuffleVector(
2814             NewLoads[Part], StrideMask, "strided.vec");
2815 
2816         // If this member has different type, cast the result type.
2817         if (Member->getType() != ScalarTy) {
2818           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2819           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2820           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2821         }
2822 
2823         if (Group->isReverse())
2824           StridedVec = reverseVector(StridedVec);
2825 
2826         State.set(VPDefs[J], StridedVec, Part);
2827       }
2828       ++J;
2829     }
2830     return;
2831   }
2832 
2833   // The sub vector type for current instruction.
2834   auto *SubVT = VectorType::get(ScalarTy, VF);
2835 
2836   // Vectorize the interleaved store group.
2837   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2838   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2839          "masked interleaved groups are not allowed.");
2840   assert((!MaskForGaps || !VF.isScalable()) &&
2841          "masking gaps for scalable vectors is not yet supported.");
2842   for (unsigned Part = 0; Part < UF; Part++) {
2843     // Collect the stored vector from each member.
2844     SmallVector<Value *, 4> StoredVecs;
2845     for (unsigned i = 0; i < InterleaveFactor; i++) {
2846       assert((Group->getMember(i) || MaskForGaps) &&
2847              "Fail to get a member from an interleaved store group");
2848       Instruction *Member = Group->getMember(i);
2849 
2850       // Skip the gaps in the group.
2851       if (!Member) {
2852         Value *Undef = PoisonValue::get(SubVT);
2853         StoredVecs.push_back(Undef);
2854         continue;
2855       }
2856 
2857       Value *StoredVec = State.get(StoredValues[i], Part);
2858 
2859       if (Group->isReverse())
2860         StoredVec = reverseVector(StoredVec);
2861 
2862       // If this member has different type, cast it to a unified type.
2863 
2864       if (StoredVec->getType() != SubVT)
2865         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2866 
2867       StoredVecs.push_back(StoredVec);
2868     }
2869 
2870     // Concatenate all vectors into a wide vector.
2871     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2872 
2873     // Interleave the elements in the wide vector.
2874     Value *IVec = Builder.CreateShuffleVector(
2875         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2876         "interleaved.vec");
2877 
2878     Instruction *NewStoreInstr;
2879     if (BlockInMask || MaskForGaps) {
2880       Value *GroupMask = MaskForGaps;
2881       if (BlockInMask) {
2882         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2883         Value *ShuffledMask = Builder.CreateShuffleVector(
2884             BlockInMaskPart,
2885             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2886             "interleaved.mask");
2887         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2888                                                       ShuffledMask, MaskForGaps)
2889                                 : ShuffledMask;
2890       }
2891       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2892                                                 Group->getAlign(), GroupMask);
2893     } else
2894       NewStoreInstr =
2895           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2896 
2897     Group->addMetadata(NewStoreInstr);
2898   }
2899 }
2900 
2901 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2902     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2903     VPValue *StoredValue, VPValue *BlockInMask) {
2904   // Attempt to issue a wide load.
2905   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2906   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2907 
2908   assert((LI || SI) && "Invalid Load/Store instruction");
2909   assert((!SI || StoredValue) && "No stored value provided for widened store");
2910   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2911 
2912   LoopVectorizationCostModel::InstWidening Decision =
2913       Cost->getWideningDecision(Instr, VF);
2914   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2915           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2916           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2917          "CM decision is not to widen the memory instruction");
2918 
2919   Type *ScalarDataTy = getLoadStoreType(Instr);
2920 
2921   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2922   const Align Alignment = getLoadStoreAlignment(Instr);
2923 
2924   // Determine if the pointer operand of the access is either consecutive or
2925   // reverse consecutive.
2926   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2927   bool ConsecutiveStride =
2928       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2929   bool CreateGatherScatter =
2930       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2931 
2932   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2933   // gather/scatter. Otherwise Decision should have been to Scalarize.
2934   assert((ConsecutiveStride || CreateGatherScatter) &&
2935          "The instruction should be scalarized");
2936   (void)ConsecutiveStride;
2937 
2938   VectorParts BlockInMaskParts(UF);
2939   bool isMaskRequired = BlockInMask;
2940   if (isMaskRequired)
2941     for (unsigned Part = 0; Part < UF; ++Part)
2942       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2943 
2944   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2945     // Calculate the pointer for the specific unroll-part.
2946     GetElementPtrInst *PartPtr = nullptr;
2947 
2948     bool InBounds = false;
2949     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2950       InBounds = gep->isInBounds();
2951     if (Reverse) {
2952       // If the address is consecutive but reversed, then the
2953       // wide store needs to start at the last vector element.
2954       // RunTimeVF =  VScale * VF.getKnownMinValue()
2955       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2956       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2957       // NumElt = -Part * RunTimeVF
2958       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2959       // LastLane = 1 - RunTimeVF
2960       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2961       PartPtr =
2962           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2963       PartPtr->setIsInBounds(InBounds);
2964       PartPtr = cast<GetElementPtrInst>(
2965           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2966       PartPtr->setIsInBounds(InBounds);
2967       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2968         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2969     } else {
2970       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2971       PartPtr = cast<GetElementPtrInst>(
2972           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2973       PartPtr->setIsInBounds(InBounds);
2974     }
2975 
2976     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2977     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2978   };
2979 
2980   // Handle Stores:
2981   if (SI) {
2982     setDebugLocFromInst(SI);
2983 
2984     for (unsigned Part = 0; Part < UF; ++Part) {
2985       Instruction *NewSI = nullptr;
2986       Value *StoredVal = State.get(StoredValue, Part);
2987       if (CreateGatherScatter) {
2988         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2989         Value *VectorGep = State.get(Addr, Part);
2990         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2991                                             MaskPart);
2992       } else {
2993         if (Reverse) {
2994           // If we store to reverse consecutive memory locations, then we need
2995           // to reverse the order of elements in the stored value.
2996           StoredVal = reverseVector(StoredVal);
2997           // We don't want to update the value in the map as it might be used in
2998           // another expression. So don't call resetVectorValue(StoredVal).
2999         }
3000         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3001         if (isMaskRequired)
3002           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3003                                             BlockInMaskParts[Part]);
3004         else
3005           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3006       }
3007       addMetadata(NewSI, SI);
3008     }
3009     return;
3010   }
3011 
3012   // Handle loads.
3013   assert(LI && "Must have a load instruction");
3014   setDebugLocFromInst(LI);
3015   for (unsigned Part = 0; Part < UF; ++Part) {
3016     Value *NewLI;
3017     if (CreateGatherScatter) {
3018       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3019       Value *VectorGep = State.get(Addr, Part);
3020       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3021                                          nullptr, "wide.masked.gather");
3022       addMetadata(NewLI, LI);
3023     } else {
3024       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3025       if (isMaskRequired)
3026         NewLI = Builder.CreateMaskedLoad(
3027             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3028             PoisonValue::get(DataTy), "wide.masked.load");
3029       else
3030         NewLI =
3031             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3032 
3033       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3034       addMetadata(NewLI, LI);
3035       if (Reverse)
3036         NewLI = reverseVector(NewLI);
3037     }
3038 
3039     State.set(Def, NewLI, Part);
3040   }
3041 }
3042 
3043 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3044                                                VPUser &User,
3045                                                const VPIteration &Instance,
3046                                                bool IfPredicateInstr,
3047                                                VPTransformState &State) {
3048   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3049 
3050   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3051   // the first lane and part.
3052   if (isa<NoAliasScopeDeclInst>(Instr))
3053     if (!Instance.isFirstIteration())
3054       return;
3055 
3056   setDebugLocFromInst(Instr);
3057 
3058   // Does this instruction return a value ?
3059   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3060 
3061   Instruction *Cloned = Instr->clone();
3062   if (!IsVoidRetTy)
3063     Cloned->setName(Instr->getName() + ".cloned");
3064 
3065   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3066                                Builder.GetInsertPoint());
3067   // Replace the operands of the cloned instructions with their scalar
3068   // equivalents in the new loop.
3069   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3070     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3071     auto InputInstance = Instance;
3072     if (!Operand || !OrigLoop->contains(Operand) ||
3073         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3074       InputInstance.Lane = VPLane::getFirstLane();
3075     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3076     Cloned->setOperand(op, NewOp);
3077   }
3078   addNewMetadata(Cloned, Instr);
3079 
3080   // Place the cloned scalar in the new loop.
3081   Builder.Insert(Cloned);
3082 
3083   State.set(Def, Cloned, Instance);
3084 
3085   // If we just cloned a new assumption, add it the assumption cache.
3086   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3087     AC->registerAssumption(II);
3088 
3089   // End if-block.
3090   if (IfPredicateInstr)
3091     PredicatedInstructions.push_back(Cloned);
3092 }
3093 
3094 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3095                                                       Value *End, Value *Step,
3096                                                       Instruction *DL) {
3097   BasicBlock *Header = L->getHeader();
3098   BasicBlock *Latch = L->getLoopLatch();
3099   // As we're just creating this loop, it's possible no latch exists
3100   // yet. If so, use the header as this will be a single block loop.
3101   if (!Latch)
3102     Latch = Header;
3103 
3104   IRBuilder<> B(&*Header->getFirstInsertionPt());
3105   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3106   setDebugLocFromInst(OldInst, &B);
3107   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3108 
3109   B.SetInsertPoint(Latch->getTerminator());
3110   setDebugLocFromInst(OldInst, &B);
3111 
3112   // Create i+1 and fill the PHINode.
3113   //
3114   // If the tail is not folded, we know that End - Start >= Step (either
3115   // statically or through the minimum iteration checks). We also know that both
3116   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3117   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3118   // overflows and we can mark the induction increment as NUW.
3119   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3120                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3121   Induction->addIncoming(Start, L->getLoopPreheader());
3122   Induction->addIncoming(Next, Latch);
3123   // Create the compare.
3124   Value *ICmp = B.CreateICmpEQ(Next, End);
3125   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3126 
3127   // Now we have two terminators. Remove the old one from the block.
3128   Latch->getTerminator()->eraseFromParent();
3129 
3130   return Induction;
3131 }
3132 
3133 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3134   if (TripCount)
3135     return TripCount;
3136 
3137   assert(L && "Create Trip Count for null loop.");
3138   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3139   // Find the loop boundaries.
3140   ScalarEvolution *SE = PSE.getSE();
3141   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3142   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3143          "Invalid loop count");
3144 
3145   Type *IdxTy = Legal->getWidestInductionType();
3146   assert(IdxTy && "No type for induction");
3147 
3148   // The exit count might have the type of i64 while the phi is i32. This can
3149   // happen if we have an induction variable that is sign extended before the
3150   // compare. The only way that we get a backedge taken count is that the
3151   // induction variable was signed and as such will not overflow. In such a case
3152   // truncation is legal.
3153   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3154       IdxTy->getPrimitiveSizeInBits())
3155     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3156   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3157 
3158   // Get the total trip count from the count by adding 1.
3159   const SCEV *ExitCount = SE->getAddExpr(
3160       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3161 
3162   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3163 
3164   // Expand the trip count and place the new instructions in the preheader.
3165   // Notice that the pre-header does not change, only the loop body.
3166   SCEVExpander Exp(*SE, DL, "induction");
3167 
3168   // Count holds the overall loop count (N).
3169   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3170                                 L->getLoopPreheader()->getTerminator());
3171 
3172   if (TripCount->getType()->isPointerTy())
3173     TripCount =
3174         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3175                                     L->getLoopPreheader()->getTerminator());
3176 
3177   return TripCount;
3178 }
3179 
3180 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3181   if (VectorTripCount)
3182     return VectorTripCount;
3183 
3184   Value *TC = getOrCreateTripCount(L);
3185   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3186 
3187   Type *Ty = TC->getType();
3188   // This is where we can make the step a runtime constant.
3189   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3190 
3191   // If the tail is to be folded by masking, round the number of iterations N
3192   // up to a multiple of Step instead of rounding down. This is done by first
3193   // adding Step-1 and then rounding down. Note that it's ok if this addition
3194   // overflows: the vector induction variable will eventually wrap to zero given
3195   // that it starts at zero and its Step is a power of two; the loop will then
3196   // exit, with the last early-exit vector comparison also producing all-true.
3197   if (Cost->foldTailByMasking()) {
3198     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3199            "VF*UF must be a power of 2 when folding tail by masking");
3200     assert(!VF.isScalable() &&
3201            "Tail folding not yet supported for scalable vectors");
3202     TC = Builder.CreateAdd(
3203         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3204   }
3205 
3206   // Now we need to generate the expression for the part of the loop that the
3207   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3208   // iterations are not required for correctness, or N - Step, otherwise. Step
3209   // is equal to the vectorization factor (number of SIMD elements) times the
3210   // unroll factor (number of SIMD instructions).
3211   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3212 
3213   // There are cases where we *must* run at least one iteration in the remainder
3214   // loop.  See the cost model for when this can happen.  If the step evenly
3215   // divides the trip count, we set the remainder to be equal to the step. If
3216   // the step does not evenly divide the trip count, no adjustment is necessary
3217   // since there will already be scalar iterations. Note that the minimum
3218   // iterations check ensures that N >= Step.
3219   if (Cost->requiresScalarEpilogue(VF)) {
3220     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3221     R = Builder.CreateSelect(IsZero, Step, R);
3222   }
3223 
3224   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3225 
3226   return VectorTripCount;
3227 }
3228 
3229 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3230                                                    const DataLayout &DL) {
3231   // Verify that V is a vector type with same number of elements as DstVTy.
3232   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3233   unsigned VF = DstFVTy->getNumElements();
3234   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3235   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3236   Type *SrcElemTy = SrcVecTy->getElementType();
3237   Type *DstElemTy = DstFVTy->getElementType();
3238   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3239          "Vector elements must have same size");
3240 
3241   // Do a direct cast if element types are castable.
3242   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3243     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3244   }
3245   // V cannot be directly casted to desired vector type.
3246   // May happen when V is a floating point vector but DstVTy is a vector of
3247   // pointers or vice-versa. Handle this using a two-step bitcast using an
3248   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3249   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3250          "Only one type should be a pointer type");
3251   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3252          "Only one type should be a floating point type");
3253   Type *IntTy =
3254       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3255   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3256   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3257   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3258 }
3259 
3260 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3261                                                          BasicBlock *Bypass) {
3262   Value *Count = getOrCreateTripCount(L);
3263   // Reuse existing vector loop preheader for TC checks.
3264   // Note that new preheader block is generated for vector loop.
3265   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3266   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3267 
3268   // Generate code to check if the loop's trip count is less than VF * UF, or
3269   // equal to it in case a scalar epilogue is required; this implies that the
3270   // vector trip count is zero. This check also covers the case where adding one
3271   // to the backedge-taken count overflowed leading to an incorrect trip count
3272   // of zero. In this case we will also jump to the scalar loop.
3273   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3274                                             : ICmpInst::ICMP_ULT;
3275 
3276   // If tail is to be folded, vector loop takes care of all iterations.
3277   Value *CheckMinIters = Builder.getFalse();
3278   if (!Cost->foldTailByMasking()) {
3279     Value *Step =
3280         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3281     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3282   }
3283   // Create new preheader for vector loop.
3284   LoopVectorPreHeader =
3285       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3286                  "vector.ph");
3287 
3288   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3289                                DT->getNode(Bypass)->getIDom()) &&
3290          "TC check is expected to dominate Bypass");
3291 
3292   // Update dominator for Bypass & LoopExit (if needed).
3293   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3294   if (!Cost->requiresScalarEpilogue(VF))
3295     // If there is an epilogue which must run, there's no edge from the
3296     // middle block to exit blocks  and thus no need to update the immediate
3297     // dominator of the exit blocks.
3298     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3299 
3300   ReplaceInstWithInst(
3301       TCCheckBlock->getTerminator(),
3302       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3303   LoopBypassBlocks.push_back(TCCheckBlock);
3304 }
3305 
3306 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3307 
3308   BasicBlock *const SCEVCheckBlock =
3309       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3310   if (!SCEVCheckBlock)
3311     return nullptr;
3312 
3313   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3314            (OptForSizeBasedOnProfile &&
3315             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3316          "Cannot SCEV check stride or overflow when optimizing for size");
3317 
3318 
3319   // Update dominator only if this is first RT check.
3320   if (LoopBypassBlocks.empty()) {
3321     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3322     if (!Cost->requiresScalarEpilogue(VF))
3323       // If there is an epilogue which must run, there's no edge from the
3324       // middle block to exit blocks  and thus no need to update the immediate
3325       // dominator of the exit blocks.
3326       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3327   }
3328 
3329   LoopBypassBlocks.push_back(SCEVCheckBlock);
3330   AddedSafetyChecks = true;
3331   return SCEVCheckBlock;
3332 }
3333 
3334 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3335                                                       BasicBlock *Bypass) {
3336   // VPlan-native path does not do any analysis for runtime checks currently.
3337   if (EnableVPlanNativePath)
3338     return nullptr;
3339 
3340   BasicBlock *const MemCheckBlock =
3341       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3342 
3343   // Check if we generated code that checks in runtime if arrays overlap. We put
3344   // the checks into a separate block to make the more common case of few
3345   // elements faster.
3346   if (!MemCheckBlock)
3347     return nullptr;
3348 
3349   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3350     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3351            "Cannot emit memory checks when optimizing for size, unless forced "
3352            "to vectorize.");
3353     ORE->emit([&]() {
3354       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3355                                         L->getStartLoc(), L->getHeader())
3356              << "Code-size may be reduced by not forcing "
3357                 "vectorization, or by source-code modifications "
3358                 "eliminating the need for runtime checks "
3359                 "(e.g., adding 'restrict').";
3360     });
3361   }
3362 
3363   LoopBypassBlocks.push_back(MemCheckBlock);
3364 
3365   AddedSafetyChecks = true;
3366 
3367   // We currently don't use LoopVersioning for the actual loop cloning but we
3368   // still use it to add the noalias metadata.
3369   LVer = std::make_unique<LoopVersioning>(
3370       *Legal->getLAI(),
3371       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3372       DT, PSE.getSE());
3373   LVer->prepareNoAliasMetadata();
3374   return MemCheckBlock;
3375 }
3376 
3377 Value *InnerLoopVectorizer::emitTransformedIndex(
3378     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3379     const InductionDescriptor &ID) const {
3380 
3381   SCEVExpander Exp(*SE, DL, "induction");
3382   auto Step = ID.getStep();
3383   auto StartValue = ID.getStartValue();
3384   assert(Index->getType()->getScalarType() == Step->getType() &&
3385          "Index scalar type does not match StepValue type");
3386 
3387   // Note: the IR at this point is broken. We cannot use SE to create any new
3388   // SCEV and then expand it, hoping that SCEV's simplification will give us
3389   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3390   // lead to various SCEV crashes. So all we can do is to use builder and rely
3391   // on InstCombine for future simplifications. Here we handle some trivial
3392   // cases only.
3393   auto CreateAdd = [&B](Value *X, Value *Y) {
3394     assert(X->getType() == Y->getType() && "Types don't match!");
3395     if (auto *CX = dyn_cast<ConstantInt>(X))
3396       if (CX->isZero())
3397         return Y;
3398     if (auto *CY = dyn_cast<ConstantInt>(Y))
3399       if (CY->isZero())
3400         return X;
3401     return B.CreateAdd(X, Y);
3402   };
3403 
3404   // We allow X to be a vector type, in which case Y will potentially be
3405   // splatted into a vector with the same element count.
3406   auto CreateMul = [&B](Value *X, Value *Y) {
3407     assert(X->getType()->getScalarType() == Y->getType() &&
3408            "Types don't match!");
3409     if (auto *CX = dyn_cast<ConstantInt>(X))
3410       if (CX->isOne())
3411         return Y;
3412     if (auto *CY = dyn_cast<ConstantInt>(Y))
3413       if (CY->isOne())
3414         return X;
3415     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3416     if (XVTy && !isa<VectorType>(Y->getType()))
3417       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3418     return B.CreateMul(X, Y);
3419   };
3420 
3421   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3422   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3423   // the DomTree is not kept up-to-date for additional blocks generated in the
3424   // vector loop. By using the header as insertion point, we guarantee that the
3425   // expanded instructions dominate all their uses.
3426   auto GetInsertPoint = [this, &B]() {
3427     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3428     if (InsertBB != LoopVectorBody &&
3429         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3430       return LoopVectorBody->getTerminator();
3431     return &*B.GetInsertPoint();
3432   };
3433 
3434   switch (ID.getKind()) {
3435   case InductionDescriptor::IK_IntInduction: {
3436     assert(!isa<VectorType>(Index->getType()) &&
3437            "Vector indices not supported for integer inductions yet");
3438     assert(Index->getType() == StartValue->getType() &&
3439            "Index type does not match StartValue type");
3440     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3441       return B.CreateSub(StartValue, Index);
3442     auto *Offset = CreateMul(
3443         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3444     return CreateAdd(StartValue, Offset);
3445   }
3446   case InductionDescriptor::IK_PtrInduction: {
3447     assert(isa<SCEVConstant>(Step) &&
3448            "Expected constant step for pointer induction");
3449     return B.CreateGEP(
3450         ID.getElementType(), StartValue,
3451         CreateMul(Index,
3452                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3453                                     GetInsertPoint())));
3454   }
3455   case InductionDescriptor::IK_FpInduction: {
3456     assert(!isa<VectorType>(Index->getType()) &&
3457            "Vector indices not supported for FP inductions yet");
3458     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3459     auto InductionBinOp = ID.getInductionBinOp();
3460     assert(InductionBinOp &&
3461            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3462             InductionBinOp->getOpcode() == Instruction::FSub) &&
3463            "Original bin op should be defined for FP induction");
3464 
3465     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3466     Value *MulExp = B.CreateFMul(StepValue, Index);
3467     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3468                          "induction");
3469   }
3470   case InductionDescriptor::IK_NoInduction:
3471     return nullptr;
3472   }
3473   llvm_unreachable("invalid enum");
3474 }
3475 
3476 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3477   LoopScalarBody = OrigLoop->getHeader();
3478   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3479   assert(LoopVectorPreHeader && "Invalid loop structure");
3480   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3481   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3482          "multiple exit loop without required epilogue?");
3483 
3484   LoopMiddleBlock =
3485       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3486                  LI, nullptr, Twine(Prefix) + "middle.block");
3487   LoopScalarPreHeader =
3488       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3489                  nullptr, Twine(Prefix) + "scalar.ph");
3490 
3491   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3492 
3493   // Set up the middle block terminator.  Two cases:
3494   // 1) If we know that we must execute the scalar epilogue, emit an
3495   //    unconditional branch.
3496   // 2) Otherwise, we must have a single unique exit block (due to how we
3497   //    implement the multiple exit case).  In this case, set up a conditonal
3498   //    branch from the middle block to the loop scalar preheader, and the
3499   //    exit block.  completeLoopSkeleton will update the condition to use an
3500   //    iteration check, if required to decide whether to execute the remainder.
3501   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3502     BranchInst::Create(LoopScalarPreHeader) :
3503     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3504                        Builder.getTrue());
3505   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3506   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3507 
3508   // We intentionally don't let SplitBlock to update LoopInfo since
3509   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3510   // LoopVectorBody is explicitly added to the correct place few lines later.
3511   LoopVectorBody =
3512       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3513                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3514 
3515   // Update dominator for loop exit.
3516   if (!Cost->requiresScalarEpilogue(VF))
3517     // If there is an epilogue which must run, there's no edge from the
3518     // middle block to exit blocks  and thus no need to update the immediate
3519     // dominator of the exit blocks.
3520     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3521 
3522   // Create and register the new vector loop.
3523   Loop *Lp = LI->AllocateLoop();
3524   Loop *ParentLoop = OrigLoop->getParentLoop();
3525 
3526   // Insert the new loop into the loop nest and register the new basic blocks
3527   // before calling any utilities such as SCEV that require valid LoopInfo.
3528   if (ParentLoop) {
3529     ParentLoop->addChildLoop(Lp);
3530   } else {
3531     LI->addTopLevelLoop(Lp);
3532   }
3533   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3534   return Lp;
3535 }
3536 
3537 void InnerLoopVectorizer::createInductionResumeValues(
3538     Loop *L, Value *VectorTripCount,
3539     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3540   assert(VectorTripCount && L && "Expected valid arguments");
3541   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3542           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3543          "Inconsistent information about additional bypass.");
3544   // We are going to resume the execution of the scalar loop.
3545   // Go over all of the induction variables that we found and fix the
3546   // PHIs that are left in the scalar version of the loop.
3547   // The starting values of PHI nodes depend on the counter of the last
3548   // iteration in the vectorized loop.
3549   // If we come from a bypass edge then we need to start from the original
3550   // start value.
3551   for (auto &InductionEntry : Legal->getInductionVars()) {
3552     PHINode *OrigPhi = InductionEntry.first;
3553     InductionDescriptor II = InductionEntry.second;
3554 
3555     // Create phi nodes to merge from the  backedge-taken check block.
3556     PHINode *BCResumeVal =
3557         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3558                         LoopScalarPreHeader->getTerminator());
3559     // Copy original phi DL over to the new one.
3560     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3561     Value *&EndValue = IVEndValues[OrigPhi];
3562     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3563     if (OrigPhi == OldInduction) {
3564       // We know what the end value is.
3565       EndValue = VectorTripCount;
3566     } else {
3567       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3568 
3569       // Fast-math-flags propagate from the original induction instruction.
3570       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3571         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3572 
3573       Type *StepType = II.getStep()->getType();
3574       Instruction::CastOps CastOp =
3575           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3576       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3577       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3578       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3579       EndValue->setName("ind.end");
3580 
3581       // Compute the end value for the additional bypass (if applicable).
3582       if (AdditionalBypass.first) {
3583         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3584         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3585                                          StepType, true);
3586         CRD =
3587             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3588         EndValueFromAdditionalBypass =
3589             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3590         EndValueFromAdditionalBypass->setName("ind.end");
3591       }
3592     }
3593     // The new PHI merges the original incoming value, in case of a bypass,
3594     // or the value at the end of the vectorized loop.
3595     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3596 
3597     // Fix the scalar body counter (PHI node).
3598     // The old induction's phi node in the scalar body needs the truncated
3599     // value.
3600     for (BasicBlock *BB : LoopBypassBlocks)
3601       BCResumeVal->addIncoming(II.getStartValue(), BB);
3602 
3603     if (AdditionalBypass.first)
3604       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3605                                             EndValueFromAdditionalBypass);
3606 
3607     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3608   }
3609 }
3610 
3611 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3612                                                       MDNode *OrigLoopID) {
3613   assert(L && "Expected valid loop.");
3614 
3615   // The trip counts should be cached by now.
3616   Value *Count = getOrCreateTripCount(L);
3617   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3618 
3619   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3620 
3621   // Add a check in the middle block to see if we have completed
3622   // all of the iterations in the first vector loop.  Three cases:
3623   // 1) If we require a scalar epilogue, there is no conditional branch as
3624   //    we unconditionally branch to the scalar preheader.  Do nothing.
3625   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3626   //    Thus if tail is to be folded, we know we don't need to run the
3627   //    remainder and we can use the previous value for the condition (true).
3628   // 3) Otherwise, construct a runtime check.
3629   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3630     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3631                                         Count, VectorTripCount, "cmp.n",
3632                                         LoopMiddleBlock->getTerminator());
3633 
3634     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3635     // of the corresponding compare because they may have ended up with
3636     // different line numbers and we want to avoid awkward line stepping while
3637     // debugging. Eg. if the compare has got a line number inside the loop.
3638     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3639     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3640   }
3641 
3642   // Get ready to start creating new instructions into the vectorized body.
3643   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3644          "Inconsistent vector loop preheader");
3645   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3646 
3647   Optional<MDNode *> VectorizedLoopID =
3648       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3649                                       LLVMLoopVectorizeFollowupVectorized});
3650   if (VectorizedLoopID.hasValue()) {
3651     L->setLoopID(VectorizedLoopID.getValue());
3652 
3653     // Do not setAlreadyVectorized if loop attributes have been defined
3654     // explicitly.
3655     return LoopVectorPreHeader;
3656   }
3657 
3658   // Keep all loop hints from the original loop on the vector loop (we'll
3659   // replace the vectorizer-specific hints below).
3660   if (MDNode *LID = OrigLoop->getLoopID())
3661     L->setLoopID(LID);
3662 
3663   LoopVectorizeHints Hints(L, true, *ORE);
3664   Hints.setAlreadyVectorized();
3665 
3666 #ifdef EXPENSIVE_CHECKS
3667   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3668   LI->verify(*DT);
3669 #endif
3670 
3671   return LoopVectorPreHeader;
3672 }
3673 
3674 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3675   /*
3676    In this function we generate a new loop. The new loop will contain
3677    the vectorized instructions while the old loop will continue to run the
3678    scalar remainder.
3679 
3680        [ ] <-- loop iteration number check.
3681     /   |
3682    /    v
3683   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3684   |  /  |
3685   | /   v
3686   ||   [ ]     <-- vector pre header.
3687   |/    |
3688   |     v
3689   |    [  ] \
3690   |    [  ]_|   <-- vector loop.
3691   |     |
3692   |     v
3693   \   -[ ]   <--- middle-block.
3694    \/   |
3695    /\   v
3696    | ->[ ]     <--- new preheader.
3697    |    |
3698  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3699    |   [ ] \
3700    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3701     \   |
3702      \  v
3703       >[ ]     <-- exit block(s).
3704    ...
3705    */
3706 
3707   // Get the metadata of the original loop before it gets modified.
3708   MDNode *OrigLoopID = OrigLoop->getLoopID();
3709 
3710   // Workaround!  Compute the trip count of the original loop and cache it
3711   // before we start modifying the CFG.  This code has a systemic problem
3712   // wherein it tries to run analysis over partially constructed IR; this is
3713   // wrong, and not simply for SCEV.  The trip count of the original loop
3714   // simply happens to be prone to hitting this in practice.  In theory, we
3715   // can hit the same issue for any SCEV, or ValueTracking query done during
3716   // mutation.  See PR49900.
3717   getOrCreateTripCount(OrigLoop);
3718 
3719   // Create an empty vector loop, and prepare basic blocks for the runtime
3720   // checks.
3721   Loop *Lp = createVectorLoopSkeleton("");
3722 
3723   // Now, compare the new count to zero. If it is zero skip the vector loop and
3724   // jump to the scalar loop. This check also covers the case where the
3725   // backedge-taken count is uint##_max: adding one to it will overflow leading
3726   // to an incorrect trip count of zero. In this (rare) case we will also jump
3727   // to the scalar loop.
3728   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3729 
3730   // Generate the code to check any assumptions that we've made for SCEV
3731   // expressions.
3732   emitSCEVChecks(Lp, LoopScalarPreHeader);
3733 
3734   // Generate the code that checks in runtime if arrays overlap. We put the
3735   // checks into a separate block to make the more common case of few elements
3736   // faster.
3737   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3738 
3739   // Some loops have a single integer induction variable, while other loops
3740   // don't. One example is c++ iterators that often have multiple pointer
3741   // induction variables. In the code below we also support a case where we
3742   // don't have a single induction variable.
3743   //
3744   // We try to obtain an induction variable from the original loop as hard
3745   // as possible. However if we don't find one that:
3746   //   - is an integer
3747   //   - counts from zero, stepping by one
3748   //   - is the size of the widest induction variable type
3749   // then we create a new one.
3750   OldInduction = Legal->getPrimaryInduction();
3751   Type *IdxTy = Legal->getWidestInductionType();
3752   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3753   // The loop step is equal to the vectorization factor (num of SIMD elements)
3754   // times the unroll factor (num of SIMD instructions).
3755   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3756   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3757   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3758   Induction =
3759       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3760                               getDebugLocFromInstOrOperands(OldInduction));
3761 
3762   // Emit phis for the new starting index of the scalar loop.
3763   createInductionResumeValues(Lp, CountRoundDown);
3764 
3765   return completeLoopSkeleton(Lp, OrigLoopID);
3766 }
3767 
3768 // Fix up external users of the induction variable. At this point, we are
3769 // in LCSSA form, with all external PHIs that use the IV having one input value,
3770 // coming from the remainder loop. We need those PHIs to also have a correct
3771 // value for the IV when arriving directly from the middle block.
3772 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3773                                        const InductionDescriptor &II,
3774                                        Value *CountRoundDown, Value *EndValue,
3775                                        BasicBlock *MiddleBlock) {
3776   // There are two kinds of external IV usages - those that use the value
3777   // computed in the last iteration (the PHI) and those that use the penultimate
3778   // value (the value that feeds into the phi from the loop latch).
3779   // We allow both, but they, obviously, have different values.
3780 
3781   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3782 
3783   DenseMap<Value *, Value *> MissingVals;
3784 
3785   // An external user of the last iteration's value should see the value that
3786   // the remainder loop uses to initialize its own IV.
3787   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3788   for (User *U : PostInc->users()) {
3789     Instruction *UI = cast<Instruction>(U);
3790     if (!OrigLoop->contains(UI)) {
3791       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3792       MissingVals[UI] = EndValue;
3793     }
3794   }
3795 
3796   // An external user of the penultimate value need to see EndValue - Step.
3797   // The simplest way to get this is to recompute it from the constituent SCEVs,
3798   // that is Start + (Step * (CRD - 1)).
3799   for (User *U : OrigPhi->users()) {
3800     auto *UI = cast<Instruction>(U);
3801     if (!OrigLoop->contains(UI)) {
3802       const DataLayout &DL =
3803           OrigLoop->getHeader()->getModule()->getDataLayout();
3804       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3805 
3806       IRBuilder<> B(MiddleBlock->getTerminator());
3807 
3808       // Fast-math-flags propagate from the original induction instruction.
3809       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3810         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3811 
3812       Value *CountMinusOne = B.CreateSub(
3813           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3814       Value *CMO =
3815           !II.getStep()->getType()->isIntegerTy()
3816               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3817                              II.getStep()->getType())
3818               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3819       CMO->setName("cast.cmo");
3820       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3821       Escape->setName("ind.escape");
3822       MissingVals[UI] = Escape;
3823     }
3824   }
3825 
3826   for (auto &I : MissingVals) {
3827     PHINode *PHI = cast<PHINode>(I.first);
3828     // One corner case we have to handle is two IVs "chasing" each-other,
3829     // that is %IV2 = phi [...], [ %IV1, %latch ]
3830     // In this case, if IV1 has an external use, we need to avoid adding both
3831     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3832     // don't already have an incoming value for the middle block.
3833     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3834       PHI->addIncoming(I.second, MiddleBlock);
3835   }
3836 }
3837 
3838 namespace {
3839 
3840 struct CSEDenseMapInfo {
3841   static bool canHandle(const Instruction *I) {
3842     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3843            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3844   }
3845 
3846   static inline Instruction *getEmptyKey() {
3847     return DenseMapInfo<Instruction *>::getEmptyKey();
3848   }
3849 
3850   static inline Instruction *getTombstoneKey() {
3851     return DenseMapInfo<Instruction *>::getTombstoneKey();
3852   }
3853 
3854   static unsigned getHashValue(const Instruction *I) {
3855     assert(canHandle(I) && "Unknown instruction!");
3856     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3857                                                            I->value_op_end()));
3858   }
3859 
3860   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3861     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3862         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3863       return LHS == RHS;
3864     return LHS->isIdenticalTo(RHS);
3865   }
3866 };
3867 
3868 } // end anonymous namespace
3869 
3870 ///Perform cse of induction variable instructions.
3871 static void cse(BasicBlock *BB) {
3872   // Perform simple cse.
3873   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3874   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3875     if (!CSEDenseMapInfo::canHandle(&In))
3876       continue;
3877 
3878     // Check if we can replace this instruction with any of the
3879     // visited instructions.
3880     if (Instruction *V = CSEMap.lookup(&In)) {
3881       In.replaceAllUsesWith(V);
3882       In.eraseFromParent();
3883       continue;
3884     }
3885 
3886     CSEMap[&In] = &In;
3887   }
3888 }
3889 
3890 InstructionCost
3891 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3892                                               bool &NeedToScalarize) const {
3893   Function *F = CI->getCalledFunction();
3894   Type *ScalarRetTy = CI->getType();
3895   SmallVector<Type *, 4> Tys, ScalarTys;
3896   for (auto &ArgOp : CI->args())
3897     ScalarTys.push_back(ArgOp->getType());
3898 
3899   // Estimate cost of scalarized vector call. The source operands are assumed
3900   // to be vectors, so we need to extract individual elements from there,
3901   // execute VF scalar calls, and then gather the result into the vector return
3902   // value.
3903   InstructionCost ScalarCallCost =
3904       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3905   if (VF.isScalar())
3906     return ScalarCallCost;
3907 
3908   // Compute corresponding vector type for return value and arguments.
3909   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3910   for (Type *ScalarTy : ScalarTys)
3911     Tys.push_back(ToVectorTy(ScalarTy, VF));
3912 
3913   // Compute costs of unpacking argument values for the scalar calls and
3914   // packing the return values to a vector.
3915   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3916 
3917   InstructionCost Cost =
3918       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3919 
3920   // If we can't emit a vector call for this function, then the currently found
3921   // cost is the cost we need to return.
3922   NeedToScalarize = true;
3923   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3924   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3925 
3926   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3927     return Cost;
3928 
3929   // If the corresponding vector cost is cheaper, return its cost.
3930   InstructionCost VectorCallCost =
3931       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3932   if (VectorCallCost < Cost) {
3933     NeedToScalarize = false;
3934     Cost = VectorCallCost;
3935   }
3936   return Cost;
3937 }
3938 
3939 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3940   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3941     return Elt;
3942   return VectorType::get(Elt, VF);
3943 }
3944 
3945 InstructionCost
3946 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3947                                                    ElementCount VF) const {
3948   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3949   assert(ID && "Expected intrinsic call!");
3950   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3951   FastMathFlags FMF;
3952   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3953     FMF = FPMO->getFastMathFlags();
3954 
3955   SmallVector<const Value *> Arguments(CI->args());
3956   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3957   SmallVector<Type *> ParamTys;
3958   std::transform(FTy->param_begin(), FTy->param_end(),
3959                  std::back_inserter(ParamTys),
3960                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3961 
3962   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3963                                     dyn_cast<IntrinsicInst>(CI));
3964   return TTI.getIntrinsicInstrCost(CostAttrs,
3965                                    TargetTransformInfo::TCK_RecipThroughput);
3966 }
3967 
3968 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3969   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3970   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3971   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3972 }
3973 
3974 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3975   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3976   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3977   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3978 }
3979 
3980 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3981   // For every instruction `I` in MinBWs, truncate the operands, create a
3982   // truncated version of `I` and reextend its result. InstCombine runs
3983   // later and will remove any ext/trunc pairs.
3984   SmallPtrSet<Value *, 4> Erased;
3985   for (const auto &KV : Cost->getMinimalBitwidths()) {
3986     // If the value wasn't vectorized, we must maintain the original scalar
3987     // type. The absence of the value from State indicates that it
3988     // wasn't vectorized.
3989     // FIXME: Should not rely on getVPValue at this point.
3990     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3991     if (!State.hasAnyVectorValue(Def))
3992       continue;
3993     for (unsigned Part = 0; Part < UF; ++Part) {
3994       Value *I = State.get(Def, Part);
3995       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3996         continue;
3997       Type *OriginalTy = I->getType();
3998       Type *ScalarTruncatedTy =
3999           IntegerType::get(OriginalTy->getContext(), KV.second);
4000       auto *TruncatedTy = VectorType::get(
4001           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4002       if (TruncatedTy == OriginalTy)
4003         continue;
4004 
4005       IRBuilder<> B(cast<Instruction>(I));
4006       auto ShrinkOperand = [&](Value *V) -> Value * {
4007         if (auto *ZI = dyn_cast<ZExtInst>(V))
4008           if (ZI->getSrcTy() == TruncatedTy)
4009             return ZI->getOperand(0);
4010         return B.CreateZExtOrTrunc(V, TruncatedTy);
4011       };
4012 
4013       // The actual instruction modification depends on the instruction type,
4014       // unfortunately.
4015       Value *NewI = nullptr;
4016       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4017         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4018                              ShrinkOperand(BO->getOperand(1)));
4019 
4020         // Any wrapping introduced by shrinking this operation shouldn't be
4021         // considered undefined behavior. So, we can't unconditionally copy
4022         // arithmetic wrapping flags to NewI.
4023         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4024       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4025         NewI =
4026             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4027                          ShrinkOperand(CI->getOperand(1)));
4028       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4029         NewI = B.CreateSelect(SI->getCondition(),
4030                               ShrinkOperand(SI->getTrueValue()),
4031                               ShrinkOperand(SI->getFalseValue()));
4032       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4033         switch (CI->getOpcode()) {
4034         default:
4035           llvm_unreachable("Unhandled cast!");
4036         case Instruction::Trunc:
4037           NewI = ShrinkOperand(CI->getOperand(0));
4038           break;
4039         case Instruction::SExt:
4040           NewI = B.CreateSExtOrTrunc(
4041               CI->getOperand(0),
4042               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4043           break;
4044         case Instruction::ZExt:
4045           NewI = B.CreateZExtOrTrunc(
4046               CI->getOperand(0),
4047               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4048           break;
4049         }
4050       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4051         auto Elements0 =
4052             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4053         auto *O0 = B.CreateZExtOrTrunc(
4054             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4055         auto Elements1 =
4056             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4057         auto *O1 = B.CreateZExtOrTrunc(
4058             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4059 
4060         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4061       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4062         // Don't do anything with the operands, just extend the result.
4063         continue;
4064       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4065         auto Elements =
4066             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4067         auto *O0 = B.CreateZExtOrTrunc(
4068             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4069         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4070         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4071       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4072         auto Elements =
4073             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4074         auto *O0 = B.CreateZExtOrTrunc(
4075             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4076         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4077       } else {
4078         // If we don't know what to do, be conservative and don't do anything.
4079         continue;
4080       }
4081 
4082       // Lastly, extend the result.
4083       NewI->takeName(cast<Instruction>(I));
4084       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4085       I->replaceAllUsesWith(Res);
4086       cast<Instruction>(I)->eraseFromParent();
4087       Erased.insert(I);
4088       State.reset(Def, Res, Part);
4089     }
4090   }
4091 
4092   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4093   for (const auto &KV : Cost->getMinimalBitwidths()) {
4094     // If the value wasn't vectorized, we must maintain the original scalar
4095     // type. The absence of the value from State indicates that it
4096     // wasn't vectorized.
4097     // FIXME: Should not rely on getVPValue at this point.
4098     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4099     if (!State.hasAnyVectorValue(Def))
4100       continue;
4101     for (unsigned Part = 0; Part < UF; ++Part) {
4102       Value *I = State.get(Def, Part);
4103       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4104       if (Inst && Inst->use_empty()) {
4105         Value *NewI = Inst->getOperand(0);
4106         Inst->eraseFromParent();
4107         State.reset(Def, NewI, Part);
4108       }
4109     }
4110   }
4111 }
4112 
4113 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4114   // Insert truncates and extends for any truncated instructions as hints to
4115   // InstCombine.
4116   if (VF.isVector())
4117     truncateToMinimalBitwidths(State);
4118 
4119   // Fix widened non-induction PHIs by setting up the PHI operands.
4120   if (OrigPHIsToFix.size()) {
4121     assert(EnableVPlanNativePath &&
4122            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4123     fixNonInductionPHIs(State);
4124   }
4125 
4126   // At this point every instruction in the original loop is widened to a
4127   // vector form. Now we need to fix the recurrences in the loop. These PHI
4128   // nodes are currently empty because we did not want to introduce cycles.
4129   // This is the second stage of vectorizing recurrences.
4130   fixCrossIterationPHIs(State);
4131 
4132   // Forget the original basic block.
4133   PSE.getSE()->forgetLoop(OrigLoop);
4134 
4135   // If we inserted an edge from the middle block to the unique exit block,
4136   // update uses outside the loop (phis) to account for the newly inserted
4137   // edge.
4138   if (!Cost->requiresScalarEpilogue(VF)) {
4139     // Fix-up external users of the induction variables.
4140     for (auto &Entry : Legal->getInductionVars())
4141       fixupIVUsers(Entry.first, Entry.second,
4142                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4143                    IVEndValues[Entry.first], LoopMiddleBlock);
4144 
4145     fixLCSSAPHIs(State);
4146   }
4147 
4148   for (Instruction *PI : PredicatedInstructions)
4149     sinkScalarOperands(&*PI);
4150 
4151   // Remove redundant induction instructions.
4152   cse(LoopVectorBody);
4153 
4154   // Set/update profile weights for the vector and remainder loops as original
4155   // loop iterations are now distributed among them. Note that original loop
4156   // represented by LoopScalarBody becomes remainder loop after vectorization.
4157   //
4158   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4159   // end up getting slightly roughened result but that should be OK since
4160   // profile is not inherently precise anyway. Note also possible bypass of
4161   // vector code caused by legality checks is ignored, assigning all the weight
4162   // to the vector loop, optimistically.
4163   //
4164   // For scalable vectorization we can't know at compile time how many iterations
4165   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4166   // vscale of '1'.
4167   setProfileInfoAfterUnrolling(
4168       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4169       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4170 }
4171 
4172 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4173   // In order to support recurrences we need to be able to vectorize Phi nodes.
4174   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4175   // stage #2: We now need to fix the recurrences by adding incoming edges to
4176   // the currently empty PHI nodes. At this point every instruction in the
4177   // original loop is widened to a vector form so we can use them to construct
4178   // the incoming edges.
4179   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4180   for (VPRecipeBase &R : Header->phis()) {
4181     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4182       fixReduction(ReductionPhi, State);
4183     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4184       fixFirstOrderRecurrence(FOR, State);
4185   }
4186 }
4187 
4188 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4189                                                   VPTransformState &State) {
4190   // This is the second phase of vectorizing first-order recurrences. An
4191   // overview of the transformation is described below. Suppose we have the
4192   // following loop.
4193   //
4194   //   for (int i = 0; i < n; ++i)
4195   //     b[i] = a[i] - a[i - 1];
4196   //
4197   // There is a first-order recurrence on "a". For this loop, the shorthand
4198   // scalar IR looks like:
4199   //
4200   //   scalar.ph:
4201   //     s_init = a[-1]
4202   //     br scalar.body
4203   //
4204   //   scalar.body:
4205   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4206   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4207   //     s2 = a[i]
4208   //     b[i] = s2 - s1
4209   //     br cond, scalar.body, ...
4210   //
4211   // In this example, s1 is a recurrence because it's value depends on the
4212   // previous iteration. In the first phase of vectorization, we created a
4213   // vector phi v1 for s1. We now complete the vectorization and produce the
4214   // shorthand vector IR shown below (for VF = 4, UF = 1).
4215   //
4216   //   vector.ph:
4217   //     v_init = vector(..., ..., ..., a[-1])
4218   //     br vector.body
4219   //
4220   //   vector.body
4221   //     i = phi [0, vector.ph], [i+4, vector.body]
4222   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4223   //     v2 = a[i, i+1, i+2, i+3];
4224   //     v3 = vector(v1(3), v2(0, 1, 2))
4225   //     b[i, i+1, i+2, i+3] = v2 - v3
4226   //     br cond, vector.body, middle.block
4227   //
4228   //   middle.block:
4229   //     x = v2(3)
4230   //     br scalar.ph
4231   //
4232   //   scalar.ph:
4233   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4234   //     br scalar.body
4235   //
4236   // After execution completes the vector loop, we extract the next value of
4237   // the recurrence (x) to use as the initial value in the scalar loop.
4238 
4239   // Extract the last vector element in the middle block. This will be the
4240   // initial value for the recurrence when jumping to the scalar loop.
4241   VPValue *PreviousDef = PhiR->getBackedgeValue();
4242   Value *Incoming = State.get(PreviousDef, UF - 1);
4243   auto *ExtractForScalar = Incoming;
4244   auto *IdxTy = Builder.getInt32Ty();
4245   if (VF.isVector()) {
4246     auto *One = ConstantInt::get(IdxTy, 1);
4247     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4248     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4249     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4250     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4251                                                     "vector.recur.extract");
4252   }
4253   // Extract the second last element in the middle block if the
4254   // Phi is used outside the loop. We need to extract the phi itself
4255   // and not the last element (the phi update in the current iteration). This
4256   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4257   // when the scalar loop is not run at all.
4258   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4259   if (VF.isVector()) {
4260     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4261     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4262     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4263         Incoming, Idx, "vector.recur.extract.for.phi");
4264   } else if (UF > 1)
4265     // When loop is unrolled without vectorizing, initialize
4266     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4267     // of `Incoming`. This is analogous to the vectorized case above: extracting
4268     // the second last element when VF > 1.
4269     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4270 
4271   // Fix the initial value of the original recurrence in the scalar loop.
4272   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4273   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4274   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4275   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4276   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4277     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4278     Start->addIncoming(Incoming, BB);
4279   }
4280 
4281   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4282   Phi->setName("scalar.recur");
4283 
4284   // Finally, fix users of the recurrence outside the loop. The users will need
4285   // either the last value of the scalar recurrence or the last value of the
4286   // vector recurrence we extracted in the middle block. Since the loop is in
4287   // LCSSA form, we just need to find all the phi nodes for the original scalar
4288   // recurrence in the exit block, and then add an edge for the middle block.
4289   // Note that LCSSA does not imply single entry when the original scalar loop
4290   // had multiple exiting edges (as we always run the last iteration in the
4291   // scalar epilogue); in that case, there is no edge from middle to exit and
4292   // and thus no phis which needed updated.
4293   if (!Cost->requiresScalarEpilogue(VF))
4294     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4295       if (any_of(LCSSAPhi.incoming_values(),
4296                  [Phi](Value *V) { return V == Phi; }))
4297         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4298 }
4299 
4300 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4301                                        VPTransformState &State) {
4302   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4303   // Get it's reduction variable descriptor.
4304   assert(Legal->isReductionVariable(OrigPhi) &&
4305          "Unable to find the reduction variable");
4306   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4307 
4308   RecurKind RK = RdxDesc.getRecurrenceKind();
4309   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4310   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4311   setDebugLocFromInst(ReductionStartValue);
4312 
4313   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4314   // This is the vector-clone of the value that leaves the loop.
4315   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4316 
4317   // Wrap flags are in general invalid after vectorization, clear them.
4318   clearReductionWrapFlags(RdxDesc, State);
4319 
4320   // Before each round, move the insertion point right between
4321   // the PHIs and the values we are going to write.
4322   // This allows us to write both PHINodes and the extractelement
4323   // instructions.
4324   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4325 
4326   setDebugLocFromInst(LoopExitInst);
4327 
4328   Type *PhiTy = OrigPhi->getType();
4329   // If tail is folded by masking, the vector value to leave the loop should be
4330   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4331   // instead of the former. For an inloop reduction the reduction will already
4332   // be predicated, and does not need to be handled here.
4333   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4334     for (unsigned Part = 0; Part < UF; ++Part) {
4335       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4336       Value *Sel = nullptr;
4337       for (User *U : VecLoopExitInst->users()) {
4338         if (isa<SelectInst>(U)) {
4339           assert(!Sel && "Reduction exit feeding two selects");
4340           Sel = U;
4341         } else
4342           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4343       }
4344       assert(Sel && "Reduction exit feeds no select");
4345       State.reset(LoopExitInstDef, Sel, Part);
4346 
4347       // If the target can create a predicated operator for the reduction at no
4348       // extra cost in the loop (for example a predicated vadd), it can be
4349       // cheaper for the select to remain in the loop than be sunk out of it,
4350       // and so use the select value for the phi instead of the old
4351       // LoopExitValue.
4352       if (PreferPredicatedReductionSelect ||
4353           TTI->preferPredicatedReductionSelect(
4354               RdxDesc.getOpcode(), PhiTy,
4355               TargetTransformInfo::ReductionFlags())) {
4356         auto *VecRdxPhi =
4357             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4358         VecRdxPhi->setIncomingValueForBlock(
4359             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4360       }
4361     }
4362   }
4363 
4364   // If the vector reduction can be performed in a smaller type, we truncate
4365   // then extend the loop exit value to enable InstCombine to evaluate the
4366   // entire expression in the smaller type.
4367   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4368     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4369     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4370     Builder.SetInsertPoint(
4371         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4372     VectorParts RdxParts(UF);
4373     for (unsigned Part = 0; Part < UF; ++Part) {
4374       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4375       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4376       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4377                                         : Builder.CreateZExt(Trunc, VecTy);
4378       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4379            UI != RdxParts[Part]->user_end();)
4380         if (*UI != Trunc) {
4381           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4382           RdxParts[Part] = Extnd;
4383         } else {
4384           ++UI;
4385         }
4386     }
4387     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4388     for (unsigned Part = 0; Part < UF; ++Part) {
4389       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4390       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4391     }
4392   }
4393 
4394   // Reduce all of the unrolled parts into a single vector.
4395   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4396   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4397 
4398   // The middle block terminator has already been assigned a DebugLoc here (the
4399   // OrigLoop's single latch terminator). We want the whole middle block to
4400   // appear to execute on this line because: (a) it is all compiler generated,
4401   // (b) these instructions are always executed after evaluating the latch
4402   // conditional branch, and (c) other passes may add new predecessors which
4403   // terminate on this line. This is the easiest way to ensure we don't
4404   // accidentally cause an extra step back into the loop while debugging.
4405   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4406   if (PhiR->isOrdered())
4407     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4408   else {
4409     // Floating-point operations should have some FMF to enable the reduction.
4410     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4411     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4412     for (unsigned Part = 1; Part < UF; ++Part) {
4413       Value *RdxPart = State.get(LoopExitInstDef, Part);
4414       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4415         ReducedPartRdx = Builder.CreateBinOp(
4416             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4417       } else {
4418         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4419       }
4420     }
4421   }
4422 
4423   // Create the reduction after the loop. Note that inloop reductions create the
4424   // target reduction in the loop using a Reduction recipe.
4425   if (VF.isVector() && !PhiR->isInLoop()) {
4426     ReducedPartRdx =
4427         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4428     // If the reduction can be performed in a smaller type, we need to extend
4429     // the reduction to the wider type before we branch to the original loop.
4430     if (PhiTy != RdxDesc.getRecurrenceType())
4431       ReducedPartRdx = RdxDesc.isSigned()
4432                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4433                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4434   }
4435 
4436   // Create a phi node that merges control-flow from the backedge-taken check
4437   // block and the middle block.
4438   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4439                                         LoopScalarPreHeader->getTerminator());
4440   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4441     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4442   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4443 
4444   // Now, we need to fix the users of the reduction variable
4445   // inside and outside of the scalar remainder loop.
4446 
4447   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4448   // in the exit blocks.  See comment on analogous loop in
4449   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4450   if (!Cost->requiresScalarEpilogue(VF))
4451     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4452       if (any_of(LCSSAPhi.incoming_values(),
4453                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4454         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4455 
4456   // Fix the scalar loop reduction variable with the incoming reduction sum
4457   // from the vector body and from the backedge value.
4458   int IncomingEdgeBlockIdx =
4459       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4460   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4461   // Pick the other block.
4462   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4463   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4464   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4465 }
4466 
4467 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4468                                                   VPTransformState &State) {
4469   RecurKind RK = RdxDesc.getRecurrenceKind();
4470   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4471     return;
4472 
4473   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4474   assert(LoopExitInstr && "null loop exit instruction");
4475   SmallVector<Instruction *, 8> Worklist;
4476   SmallPtrSet<Instruction *, 8> Visited;
4477   Worklist.push_back(LoopExitInstr);
4478   Visited.insert(LoopExitInstr);
4479 
4480   while (!Worklist.empty()) {
4481     Instruction *Cur = Worklist.pop_back_val();
4482     if (isa<OverflowingBinaryOperator>(Cur))
4483       for (unsigned Part = 0; Part < UF; ++Part) {
4484         // FIXME: Should not rely on getVPValue at this point.
4485         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4486         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4487       }
4488 
4489     for (User *U : Cur->users()) {
4490       Instruction *UI = cast<Instruction>(U);
4491       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4492           Visited.insert(UI).second)
4493         Worklist.push_back(UI);
4494     }
4495   }
4496 }
4497 
4498 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4499   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4500     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4501       // Some phis were already hand updated by the reduction and recurrence
4502       // code above, leave them alone.
4503       continue;
4504 
4505     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4506     // Non-instruction incoming values will have only one value.
4507 
4508     VPLane Lane = VPLane::getFirstLane();
4509     if (isa<Instruction>(IncomingValue) &&
4510         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4511                                            VF))
4512       Lane = VPLane::getLastLaneForVF(VF);
4513 
4514     // Can be a loop invariant incoming value or the last scalar value to be
4515     // extracted from the vectorized loop.
4516     // FIXME: Should not rely on getVPValue at this point.
4517     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4518     Value *lastIncomingValue =
4519         OrigLoop->isLoopInvariant(IncomingValue)
4520             ? IncomingValue
4521             : State.get(State.Plan->getVPValue(IncomingValue, true),
4522                         VPIteration(UF - 1, Lane));
4523     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4524   }
4525 }
4526 
4527 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4528   // The basic block and loop containing the predicated instruction.
4529   auto *PredBB = PredInst->getParent();
4530   auto *VectorLoop = LI->getLoopFor(PredBB);
4531 
4532   // Initialize a worklist with the operands of the predicated instruction.
4533   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4534 
4535   // Holds instructions that we need to analyze again. An instruction may be
4536   // reanalyzed if we don't yet know if we can sink it or not.
4537   SmallVector<Instruction *, 8> InstsToReanalyze;
4538 
4539   // Returns true if a given use occurs in the predicated block. Phi nodes use
4540   // their operands in their corresponding predecessor blocks.
4541   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4542     auto *I = cast<Instruction>(U.getUser());
4543     BasicBlock *BB = I->getParent();
4544     if (auto *Phi = dyn_cast<PHINode>(I))
4545       BB = Phi->getIncomingBlock(
4546           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4547     return BB == PredBB;
4548   };
4549 
4550   // Iteratively sink the scalarized operands of the predicated instruction
4551   // into the block we created for it. When an instruction is sunk, it's
4552   // operands are then added to the worklist. The algorithm ends after one pass
4553   // through the worklist doesn't sink a single instruction.
4554   bool Changed;
4555   do {
4556     // Add the instructions that need to be reanalyzed to the worklist, and
4557     // reset the changed indicator.
4558     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4559     InstsToReanalyze.clear();
4560     Changed = false;
4561 
4562     while (!Worklist.empty()) {
4563       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4564 
4565       // We can't sink an instruction if it is a phi node, is not in the loop,
4566       // or may have side effects.
4567       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4568           I->mayHaveSideEffects())
4569         continue;
4570 
4571       // If the instruction is already in PredBB, check if we can sink its
4572       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4573       // sinking the scalar instruction I, hence it appears in PredBB; but it
4574       // may have failed to sink I's operands (recursively), which we try
4575       // (again) here.
4576       if (I->getParent() == PredBB) {
4577         Worklist.insert(I->op_begin(), I->op_end());
4578         continue;
4579       }
4580 
4581       // It's legal to sink the instruction if all its uses occur in the
4582       // predicated block. Otherwise, there's nothing to do yet, and we may
4583       // need to reanalyze the instruction.
4584       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4585         InstsToReanalyze.push_back(I);
4586         continue;
4587       }
4588 
4589       // Move the instruction to the beginning of the predicated block, and add
4590       // it's operands to the worklist.
4591       I->moveBefore(&*PredBB->getFirstInsertionPt());
4592       Worklist.insert(I->op_begin(), I->op_end());
4593 
4594       // The sinking may have enabled other instructions to be sunk, so we will
4595       // need to iterate.
4596       Changed = true;
4597     }
4598   } while (Changed);
4599 }
4600 
4601 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4602   for (PHINode *OrigPhi : OrigPHIsToFix) {
4603     VPWidenPHIRecipe *VPPhi =
4604         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4605     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4606     // Make sure the builder has a valid insert point.
4607     Builder.SetInsertPoint(NewPhi);
4608     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4609       VPValue *Inc = VPPhi->getIncomingValue(i);
4610       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4611       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4612     }
4613   }
4614 }
4615 
4616 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4617   return Cost->useOrderedReductions(RdxDesc);
4618 }
4619 
4620 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4621                                    VPUser &Operands, unsigned UF,
4622                                    ElementCount VF, bool IsPtrLoopInvariant,
4623                                    SmallBitVector &IsIndexLoopInvariant,
4624                                    VPTransformState &State) {
4625   // Construct a vector GEP by widening the operands of the scalar GEP as
4626   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4627   // results in a vector of pointers when at least one operand of the GEP
4628   // is vector-typed. Thus, to keep the representation compact, we only use
4629   // vector-typed operands for loop-varying values.
4630 
4631   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4632     // If we are vectorizing, but the GEP has only loop-invariant operands,
4633     // the GEP we build (by only using vector-typed operands for
4634     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4635     // produce a vector of pointers, we need to either arbitrarily pick an
4636     // operand to broadcast, or broadcast a clone of the original GEP.
4637     // Here, we broadcast a clone of the original.
4638     //
4639     // TODO: If at some point we decide to scalarize instructions having
4640     //       loop-invariant operands, this special case will no longer be
4641     //       required. We would add the scalarization decision to
4642     //       collectLoopScalars() and teach getVectorValue() to broadcast
4643     //       the lane-zero scalar value.
4644     auto *Clone = Builder.Insert(GEP->clone());
4645     for (unsigned Part = 0; Part < UF; ++Part) {
4646       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4647       State.set(VPDef, EntryPart, Part);
4648       addMetadata(EntryPart, GEP);
4649     }
4650   } else {
4651     // If the GEP has at least one loop-varying operand, we are sure to
4652     // produce a vector of pointers. But if we are only unrolling, we want
4653     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4654     // produce with the code below will be scalar (if VF == 1) or vector
4655     // (otherwise). Note that for the unroll-only case, we still maintain
4656     // values in the vector mapping with initVector, as we do for other
4657     // instructions.
4658     for (unsigned Part = 0; Part < UF; ++Part) {
4659       // The pointer operand of the new GEP. If it's loop-invariant, we
4660       // won't broadcast it.
4661       auto *Ptr = IsPtrLoopInvariant
4662                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4663                       : State.get(Operands.getOperand(0), Part);
4664 
4665       // Collect all the indices for the new GEP. If any index is
4666       // loop-invariant, we won't broadcast it.
4667       SmallVector<Value *, 4> Indices;
4668       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4669         VPValue *Operand = Operands.getOperand(I);
4670         if (IsIndexLoopInvariant[I - 1])
4671           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4672         else
4673           Indices.push_back(State.get(Operand, Part));
4674       }
4675 
4676       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4677       // but it should be a vector, otherwise.
4678       auto *NewGEP =
4679           GEP->isInBounds()
4680               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4681                                           Indices)
4682               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4683       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4684              "NewGEP is not a pointer vector");
4685       State.set(VPDef, NewGEP, Part);
4686       addMetadata(NewGEP, GEP);
4687     }
4688   }
4689 }
4690 
4691 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4692                                               VPWidenPHIRecipe *PhiR,
4693                                               VPTransformState &State) {
4694   PHINode *P = cast<PHINode>(PN);
4695   if (EnableVPlanNativePath) {
4696     // Currently we enter here in the VPlan-native path for non-induction
4697     // PHIs where all control flow is uniform. We simply widen these PHIs.
4698     // Create a vector phi with no operands - the vector phi operands will be
4699     // set at the end of vector code generation.
4700     Type *VecTy = (State.VF.isScalar())
4701                       ? PN->getType()
4702                       : VectorType::get(PN->getType(), State.VF);
4703     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4704     State.set(PhiR, VecPhi, 0);
4705     OrigPHIsToFix.push_back(P);
4706 
4707     return;
4708   }
4709 
4710   assert(PN->getParent() == OrigLoop->getHeader() &&
4711          "Non-header phis should have been handled elsewhere");
4712 
4713   // In order to support recurrences we need to be able to vectorize Phi nodes.
4714   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4715   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4716   // this value when we vectorize all of the instructions that use the PHI.
4717 
4718   assert(!Legal->isReductionVariable(P) &&
4719          "reductions should be handled elsewhere");
4720 
4721   setDebugLocFromInst(P);
4722 
4723   // This PHINode must be an induction variable.
4724   // Make sure that we know about it.
4725   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4726 
4727   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4728   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4729 
4730   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4731   // which can be found from the original scalar operations.
4732   switch (II.getKind()) {
4733   case InductionDescriptor::IK_NoInduction:
4734     llvm_unreachable("Unknown induction");
4735   case InductionDescriptor::IK_IntInduction:
4736   case InductionDescriptor::IK_FpInduction:
4737     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4738   case InductionDescriptor::IK_PtrInduction: {
4739     // Handle the pointer induction variable case.
4740     assert(P->getType()->isPointerTy() && "Unexpected type.");
4741 
4742     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4743       // This is the normalized GEP that starts counting at zero.
4744       Value *PtrInd =
4745           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4746       // Determine the number of scalars we need to generate for each unroll
4747       // iteration. If the instruction is uniform, we only need to generate the
4748       // first lane. Otherwise, we generate all VF values.
4749       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4750       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4751 
4752       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4753       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4754       if (NeedsVectorIndex) {
4755         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4756         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4757         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4758       }
4759 
4760       for (unsigned Part = 0; Part < UF; ++Part) {
4761         Value *PartStart = createStepForVF(
4762             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4763 
4764         if (NeedsVectorIndex) {
4765           // Here we cache the whole vector, which means we can support the
4766           // extraction of any lane. However, in some cases the extractelement
4767           // instruction that is generated for scalar uses of this vector (e.g.
4768           // a load instruction) is not folded away. Therefore we still
4769           // calculate values for the first n lanes to avoid redundant moves
4770           // (when extracting the 0th element) and to produce scalar code (i.e.
4771           // additional add/gep instructions instead of expensive extractelement
4772           // instructions) when extracting higher-order elements.
4773           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4774           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4775           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4776           Value *SclrGep =
4777               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4778           SclrGep->setName("next.gep");
4779           State.set(PhiR, SclrGep, Part);
4780         }
4781 
4782         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4783           Value *Idx = Builder.CreateAdd(
4784               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4785           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4786           Value *SclrGep =
4787               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4788           SclrGep->setName("next.gep");
4789           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4790         }
4791       }
4792       return;
4793     }
4794     assert(isa<SCEVConstant>(II.getStep()) &&
4795            "Induction step not a SCEV constant!");
4796     Type *PhiType = II.getStep()->getType();
4797 
4798     // Build a pointer phi
4799     Value *ScalarStartValue = II.getStartValue();
4800     Type *ScStValueType = ScalarStartValue->getType();
4801     PHINode *NewPointerPhi =
4802         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4803     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4804 
4805     // A pointer induction, performed by using a gep
4806     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4807     Instruction *InductionLoc = LoopLatch->getTerminator();
4808     const SCEV *ScalarStep = II.getStep();
4809     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4810     Value *ScalarStepValue =
4811         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4812     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4813     Value *NumUnrolledElems =
4814         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4815     Value *InductionGEP = GetElementPtrInst::Create(
4816         II.getElementType(), NewPointerPhi,
4817         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4818         InductionLoc);
4819     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4820 
4821     // Create UF many actual address geps that use the pointer
4822     // phi as base and a vectorized version of the step value
4823     // (<step*0, ..., step*N>) as offset.
4824     for (unsigned Part = 0; Part < State.UF; ++Part) {
4825       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4826       Value *StartOffsetScalar =
4827           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4828       Value *StartOffset =
4829           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4830       // Create a vector of consecutive numbers from zero to VF.
4831       StartOffset =
4832           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4833 
4834       Value *GEP = Builder.CreateGEP(
4835           II.getElementType(), NewPointerPhi,
4836           Builder.CreateMul(
4837               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4838               "vector.gep"));
4839       State.set(PhiR, GEP, Part);
4840     }
4841   }
4842   }
4843 }
4844 
4845 /// A helper function for checking whether an integer division-related
4846 /// instruction may divide by zero (in which case it must be predicated if
4847 /// executed conditionally in the scalar code).
4848 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4849 /// Non-zero divisors that are non compile-time constants will not be
4850 /// converted into multiplication, so we will still end up scalarizing
4851 /// the division, but can do so w/o predication.
4852 static bool mayDivideByZero(Instruction &I) {
4853   assert((I.getOpcode() == Instruction::UDiv ||
4854           I.getOpcode() == Instruction::SDiv ||
4855           I.getOpcode() == Instruction::URem ||
4856           I.getOpcode() == Instruction::SRem) &&
4857          "Unexpected instruction");
4858   Value *Divisor = I.getOperand(1);
4859   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4860   return !CInt || CInt->isZero();
4861 }
4862 
4863 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4864                                            VPUser &User,
4865                                            VPTransformState &State) {
4866   switch (I.getOpcode()) {
4867   case Instruction::Call:
4868   case Instruction::Br:
4869   case Instruction::PHI:
4870   case Instruction::GetElementPtr:
4871   case Instruction::Select:
4872     llvm_unreachable("This instruction is handled by a different recipe.");
4873   case Instruction::UDiv:
4874   case Instruction::SDiv:
4875   case Instruction::SRem:
4876   case Instruction::URem:
4877   case Instruction::Add:
4878   case Instruction::FAdd:
4879   case Instruction::Sub:
4880   case Instruction::FSub:
4881   case Instruction::FNeg:
4882   case Instruction::Mul:
4883   case Instruction::FMul:
4884   case Instruction::FDiv:
4885   case Instruction::FRem:
4886   case Instruction::Shl:
4887   case Instruction::LShr:
4888   case Instruction::AShr:
4889   case Instruction::And:
4890   case Instruction::Or:
4891   case Instruction::Xor: {
4892     // Just widen unops and binops.
4893     setDebugLocFromInst(&I);
4894 
4895     for (unsigned Part = 0; Part < UF; ++Part) {
4896       SmallVector<Value *, 2> Ops;
4897       for (VPValue *VPOp : User.operands())
4898         Ops.push_back(State.get(VPOp, Part));
4899 
4900       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4901 
4902       if (auto *VecOp = dyn_cast<Instruction>(V))
4903         VecOp->copyIRFlags(&I);
4904 
4905       // Use this vector value for all users of the original instruction.
4906       State.set(Def, V, Part);
4907       addMetadata(V, &I);
4908     }
4909 
4910     break;
4911   }
4912   case Instruction::ICmp:
4913   case Instruction::FCmp: {
4914     // Widen compares. Generate vector compares.
4915     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4916     auto *Cmp = cast<CmpInst>(&I);
4917     setDebugLocFromInst(Cmp);
4918     for (unsigned Part = 0; Part < UF; ++Part) {
4919       Value *A = State.get(User.getOperand(0), Part);
4920       Value *B = State.get(User.getOperand(1), Part);
4921       Value *C = nullptr;
4922       if (FCmp) {
4923         // Propagate fast math flags.
4924         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4925         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4926         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4927       } else {
4928         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4929       }
4930       State.set(Def, C, Part);
4931       addMetadata(C, &I);
4932     }
4933 
4934     break;
4935   }
4936 
4937   case Instruction::ZExt:
4938   case Instruction::SExt:
4939   case Instruction::FPToUI:
4940   case Instruction::FPToSI:
4941   case Instruction::FPExt:
4942   case Instruction::PtrToInt:
4943   case Instruction::IntToPtr:
4944   case Instruction::SIToFP:
4945   case Instruction::UIToFP:
4946   case Instruction::Trunc:
4947   case Instruction::FPTrunc:
4948   case Instruction::BitCast: {
4949     auto *CI = cast<CastInst>(&I);
4950     setDebugLocFromInst(CI);
4951 
4952     /// Vectorize casts.
4953     Type *DestTy =
4954         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4955 
4956     for (unsigned Part = 0; Part < UF; ++Part) {
4957       Value *A = State.get(User.getOperand(0), Part);
4958       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4959       State.set(Def, Cast, Part);
4960       addMetadata(Cast, &I);
4961     }
4962     break;
4963   }
4964   default:
4965     // This instruction is not vectorized by simple widening.
4966     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4967     llvm_unreachable("Unhandled instruction!");
4968   } // end of switch.
4969 }
4970 
4971 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4972                                                VPUser &ArgOperands,
4973                                                VPTransformState &State) {
4974   assert(!isa<DbgInfoIntrinsic>(I) &&
4975          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4976   setDebugLocFromInst(&I);
4977 
4978   Module *M = I.getParent()->getParent()->getParent();
4979   auto *CI = cast<CallInst>(&I);
4980 
4981   SmallVector<Type *, 4> Tys;
4982   for (Value *ArgOperand : CI->args())
4983     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4984 
4985   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4986 
4987   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4988   // version of the instruction.
4989   // Is it beneficial to perform intrinsic call compared to lib call?
4990   bool NeedToScalarize = false;
4991   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4992   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4993   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4994   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4995          "Instruction should be scalarized elsewhere.");
4996   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4997          "Either the intrinsic cost or vector call cost must be valid");
4998 
4999   for (unsigned Part = 0; Part < UF; ++Part) {
5000     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5001     SmallVector<Value *, 4> Args;
5002     for (auto &I : enumerate(ArgOperands.operands())) {
5003       // Some intrinsics have a scalar argument - don't replace it with a
5004       // vector.
5005       Value *Arg;
5006       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5007         Arg = State.get(I.value(), Part);
5008       else {
5009         Arg = State.get(I.value(), VPIteration(0, 0));
5010         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5011           TysForDecl.push_back(Arg->getType());
5012       }
5013       Args.push_back(Arg);
5014     }
5015 
5016     Function *VectorF;
5017     if (UseVectorIntrinsic) {
5018       // Use vector version of the intrinsic.
5019       if (VF.isVector())
5020         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5021       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5022       assert(VectorF && "Can't retrieve vector intrinsic.");
5023     } else {
5024       // Use vector version of the function call.
5025       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5026 #ifndef NDEBUG
5027       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5028              "Can't create vector function.");
5029 #endif
5030         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5031     }
5032       SmallVector<OperandBundleDef, 1> OpBundles;
5033       CI->getOperandBundlesAsDefs(OpBundles);
5034       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5035 
5036       if (isa<FPMathOperator>(V))
5037         V->copyFastMathFlags(CI);
5038 
5039       State.set(Def, V, Part);
5040       addMetadata(V, &I);
5041   }
5042 }
5043 
5044 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5045                                                  VPUser &Operands,
5046                                                  bool InvariantCond,
5047                                                  VPTransformState &State) {
5048   setDebugLocFromInst(&I);
5049 
5050   // The condition can be loop invariant  but still defined inside the
5051   // loop. This means that we can't just use the original 'cond' value.
5052   // We have to take the 'vectorized' value and pick the first lane.
5053   // Instcombine will make this a no-op.
5054   auto *InvarCond = InvariantCond
5055                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5056                         : nullptr;
5057 
5058   for (unsigned Part = 0; Part < UF; ++Part) {
5059     Value *Cond =
5060         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5061     Value *Op0 = State.get(Operands.getOperand(1), Part);
5062     Value *Op1 = State.get(Operands.getOperand(2), Part);
5063     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5064     State.set(VPDef, Sel, Part);
5065     addMetadata(Sel, &I);
5066   }
5067 }
5068 
5069 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5070   // We should not collect Scalars more than once per VF. Right now, this
5071   // function is called from collectUniformsAndScalars(), which already does
5072   // this check. Collecting Scalars for VF=1 does not make any sense.
5073   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5074          "This function should not be visited twice for the same VF");
5075 
5076   SmallSetVector<Instruction *, 8> Worklist;
5077 
5078   // These sets are used to seed the analysis with pointers used by memory
5079   // accesses that will remain scalar.
5080   SmallSetVector<Instruction *, 8> ScalarPtrs;
5081   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5082   auto *Latch = TheLoop->getLoopLatch();
5083 
5084   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5085   // The pointer operands of loads and stores will be scalar as long as the
5086   // memory access is not a gather or scatter operation. The value operand of a
5087   // store will remain scalar if the store is scalarized.
5088   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5089     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5090     assert(WideningDecision != CM_Unknown &&
5091            "Widening decision should be ready at this moment");
5092     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5093       if (Ptr == Store->getValueOperand())
5094         return WideningDecision == CM_Scalarize;
5095     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5096            "Ptr is neither a value or pointer operand");
5097     return WideningDecision != CM_GatherScatter;
5098   };
5099 
5100   // A helper that returns true if the given value is a bitcast or
5101   // getelementptr instruction contained in the loop.
5102   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5103     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5104             isa<GetElementPtrInst>(V)) &&
5105            !TheLoop->isLoopInvariant(V);
5106   };
5107 
5108   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5109     if (!isa<PHINode>(Ptr) ||
5110         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5111       return false;
5112     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5113     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5114       return false;
5115     return isScalarUse(MemAccess, Ptr);
5116   };
5117 
5118   // A helper that evaluates a memory access's use of a pointer. If the
5119   // pointer is actually the pointer induction of a loop, it is being
5120   // inserted into Worklist. If the use will be a scalar use, and the
5121   // pointer is only used by memory accesses, we place the pointer in
5122   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5123   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5124     if (isScalarPtrInduction(MemAccess, Ptr)) {
5125       Worklist.insert(cast<Instruction>(Ptr));
5126       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5127                         << "\n");
5128 
5129       Instruction *Update = cast<Instruction>(
5130           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5131       ScalarPtrs.insert(Update);
5132       return;
5133     }
5134     // We only care about bitcast and getelementptr instructions contained in
5135     // the loop.
5136     if (!isLoopVaryingBitCastOrGEP(Ptr))
5137       return;
5138 
5139     // If the pointer has already been identified as scalar (e.g., if it was
5140     // also identified as uniform), there's nothing to do.
5141     auto *I = cast<Instruction>(Ptr);
5142     if (Worklist.count(I))
5143       return;
5144 
5145     // If the use of the pointer will be a scalar use, and all users of the
5146     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5147     // place the pointer in PossibleNonScalarPtrs.
5148     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5149           return isa<LoadInst>(U) || isa<StoreInst>(U);
5150         }))
5151       ScalarPtrs.insert(I);
5152     else
5153       PossibleNonScalarPtrs.insert(I);
5154   };
5155 
5156   // We seed the scalars analysis with three classes of instructions: (1)
5157   // instructions marked uniform-after-vectorization and (2) bitcast,
5158   // getelementptr and (pointer) phi instructions used by memory accesses
5159   // requiring a scalar use.
5160   //
5161   // (1) Add to the worklist all instructions that have been identified as
5162   // uniform-after-vectorization.
5163   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5164 
5165   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5166   // memory accesses requiring a scalar use. The pointer operands of loads and
5167   // stores will be scalar as long as the memory accesses is not a gather or
5168   // scatter operation. The value operand of a store will remain scalar if the
5169   // store is scalarized.
5170   for (auto *BB : TheLoop->blocks())
5171     for (auto &I : *BB) {
5172       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5173         evaluatePtrUse(Load, Load->getPointerOperand());
5174       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5175         evaluatePtrUse(Store, Store->getPointerOperand());
5176         evaluatePtrUse(Store, Store->getValueOperand());
5177       }
5178     }
5179   for (auto *I : ScalarPtrs)
5180     if (!PossibleNonScalarPtrs.count(I)) {
5181       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5182       Worklist.insert(I);
5183     }
5184 
5185   // Insert the forced scalars.
5186   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5187   // induction variable when the PHI user is scalarized.
5188   auto ForcedScalar = ForcedScalars.find(VF);
5189   if (ForcedScalar != ForcedScalars.end())
5190     for (auto *I : ForcedScalar->second)
5191       Worklist.insert(I);
5192 
5193   // Expand the worklist by looking through any bitcasts and getelementptr
5194   // instructions we've already identified as scalar. This is similar to the
5195   // expansion step in collectLoopUniforms(); however, here we're only
5196   // expanding to include additional bitcasts and getelementptr instructions.
5197   unsigned Idx = 0;
5198   while (Idx != Worklist.size()) {
5199     Instruction *Dst = Worklist[Idx++];
5200     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5201       continue;
5202     auto *Src = cast<Instruction>(Dst->getOperand(0));
5203     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5204           auto *J = cast<Instruction>(U);
5205           return !TheLoop->contains(J) || Worklist.count(J) ||
5206                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5207                   isScalarUse(J, Src));
5208         })) {
5209       Worklist.insert(Src);
5210       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5211     }
5212   }
5213 
5214   // An induction variable will remain scalar if all users of the induction
5215   // variable and induction variable update remain scalar.
5216   for (auto &Induction : Legal->getInductionVars()) {
5217     auto *Ind = Induction.first;
5218     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5219 
5220     // If tail-folding is applied, the primary induction variable will be used
5221     // to feed a vector compare.
5222     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5223       continue;
5224 
5225     // Determine if all users of the induction variable are scalar after
5226     // vectorization.
5227     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5228       auto *I = cast<Instruction>(U);
5229       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5230     });
5231     if (!ScalarInd)
5232       continue;
5233 
5234     // Determine if all users of the induction variable update instruction are
5235     // scalar after vectorization.
5236     auto ScalarIndUpdate =
5237         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5238           auto *I = cast<Instruction>(U);
5239           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5240         });
5241     if (!ScalarIndUpdate)
5242       continue;
5243 
5244     // The induction variable and its update instruction will remain scalar.
5245     Worklist.insert(Ind);
5246     Worklist.insert(IndUpdate);
5247     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5248     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5249                       << "\n");
5250   }
5251 
5252   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5253 }
5254 
5255 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5256   if (!blockNeedsPredication(I->getParent()))
5257     return false;
5258   switch(I->getOpcode()) {
5259   default:
5260     break;
5261   case Instruction::Load:
5262   case Instruction::Store: {
5263     if (!Legal->isMaskRequired(I))
5264       return false;
5265     auto *Ptr = getLoadStorePointerOperand(I);
5266     auto *Ty = getLoadStoreType(I);
5267     const Align Alignment = getLoadStoreAlignment(I);
5268     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5269                                 TTI.isLegalMaskedGather(Ty, Alignment))
5270                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5271                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5272   }
5273   case Instruction::UDiv:
5274   case Instruction::SDiv:
5275   case Instruction::SRem:
5276   case Instruction::URem:
5277     return mayDivideByZero(*I);
5278   }
5279   return false;
5280 }
5281 
5282 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5283     Instruction *I, ElementCount VF) {
5284   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5285   assert(getWideningDecision(I, VF) == CM_Unknown &&
5286          "Decision should not be set yet.");
5287   auto *Group = getInterleavedAccessGroup(I);
5288   assert(Group && "Must have a group.");
5289 
5290   // If the instruction's allocated size doesn't equal it's type size, it
5291   // requires padding and will be scalarized.
5292   auto &DL = I->getModule()->getDataLayout();
5293   auto *ScalarTy = getLoadStoreType(I);
5294   if (hasIrregularType(ScalarTy, DL))
5295     return false;
5296 
5297   // Check if masking is required.
5298   // A Group may need masking for one of two reasons: it resides in a block that
5299   // needs predication, or it was decided to use masking to deal with gaps
5300   // (either a gap at the end of a load-access that may result in a speculative
5301   // load, or any gaps in a store-access).
5302   bool PredicatedAccessRequiresMasking =
5303       blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5304   bool LoadAccessWithGapsRequiresEpilogMasking =
5305       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5306       !isScalarEpilogueAllowed();
5307   bool StoreAccessWithGapsRequiresMasking =
5308       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5309   if (!PredicatedAccessRequiresMasking &&
5310       !LoadAccessWithGapsRequiresEpilogMasking &&
5311       !StoreAccessWithGapsRequiresMasking)
5312     return true;
5313 
5314   // If masked interleaving is required, we expect that the user/target had
5315   // enabled it, because otherwise it either wouldn't have been created or
5316   // it should have been invalidated by the CostModel.
5317   assert(useMaskedInterleavedAccesses(TTI) &&
5318          "Masked interleave-groups for predicated accesses are not enabled.");
5319 
5320   auto *Ty = getLoadStoreType(I);
5321   const Align Alignment = getLoadStoreAlignment(I);
5322   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5323                           : TTI.isLegalMaskedStore(Ty, Alignment);
5324 }
5325 
5326 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5327     Instruction *I, ElementCount VF) {
5328   // Get and ensure we have a valid memory instruction.
5329   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
5330 
5331   auto *Ptr = getLoadStorePointerOperand(I);
5332   auto *ScalarTy = getLoadStoreType(I);
5333 
5334   // In order to be widened, the pointer should be consecutive, first of all.
5335   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
5336     return false;
5337 
5338   // If the instruction is a store located in a predicated block, it will be
5339   // scalarized.
5340   if (isScalarWithPredication(I))
5341     return false;
5342 
5343   // If the instruction's allocated size doesn't equal it's type size, it
5344   // requires padding and will be scalarized.
5345   auto &DL = I->getModule()->getDataLayout();
5346   if (hasIrregularType(ScalarTy, DL))
5347     return false;
5348 
5349   return true;
5350 }
5351 
5352 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5353   // We should not collect Uniforms more than once per VF. Right now,
5354   // this function is called from collectUniformsAndScalars(), which
5355   // already does this check. Collecting Uniforms for VF=1 does not make any
5356   // sense.
5357 
5358   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5359          "This function should not be visited twice for the same VF");
5360 
5361   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5362   // not analyze again.  Uniforms.count(VF) will return 1.
5363   Uniforms[VF].clear();
5364 
5365   // We now know that the loop is vectorizable!
5366   // Collect instructions inside the loop that will remain uniform after
5367   // vectorization.
5368 
5369   // Global values, params and instructions outside of current loop are out of
5370   // scope.
5371   auto isOutOfScope = [&](Value *V) -> bool {
5372     Instruction *I = dyn_cast<Instruction>(V);
5373     return (!I || !TheLoop->contains(I));
5374   };
5375 
5376   SetVector<Instruction *> Worklist;
5377   BasicBlock *Latch = TheLoop->getLoopLatch();
5378 
5379   // Instructions that are scalar with predication must not be considered
5380   // uniform after vectorization, because that would create an erroneous
5381   // replicating region where only a single instance out of VF should be formed.
5382   // TODO: optimize such seldom cases if found important, see PR40816.
5383   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5384     if (isOutOfScope(I)) {
5385       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5386                         << *I << "\n");
5387       return;
5388     }
5389     if (isScalarWithPredication(I)) {
5390       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5391                         << *I << "\n");
5392       return;
5393     }
5394     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5395     Worklist.insert(I);
5396   };
5397 
5398   // Start with the conditional branch. If the branch condition is an
5399   // instruction contained in the loop that is only used by the branch, it is
5400   // uniform.
5401   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5402   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5403     addToWorklistIfAllowed(Cmp);
5404 
5405   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5406     InstWidening WideningDecision = getWideningDecision(I, VF);
5407     assert(WideningDecision != CM_Unknown &&
5408            "Widening decision should be ready at this moment");
5409 
5410     // A uniform memory op is itself uniform.  We exclude uniform stores
5411     // here as they demand the last lane, not the first one.
5412     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5413       assert(WideningDecision == CM_Scalarize);
5414       return true;
5415     }
5416 
5417     return (WideningDecision == CM_Widen ||
5418             WideningDecision == CM_Widen_Reverse ||
5419             WideningDecision == CM_Interleave);
5420   };
5421 
5422 
5423   // Returns true if Ptr is the pointer operand of a memory access instruction
5424   // I, and I is known to not require scalarization.
5425   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5426     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5427   };
5428 
5429   // Holds a list of values which are known to have at least one uniform use.
5430   // Note that there may be other uses which aren't uniform.  A "uniform use"
5431   // here is something which only demands lane 0 of the unrolled iterations;
5432   // it does not imply that all lanes produce the same value (e.g. this is not
5433   // the usual meaning of uniform)
5434   SetVector<Value *> HasUniformUse;
5435 
5436   // Scan the loop for instructions which are either a) known to have only
5437   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5438   for (auto *BB : TheLoop->blocks())
5439     for (auto &I : *BB) {
5440       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5441         switch (II->getIntrinsicID()) {
5442         case Intrinsic::sideeffect:
5443         case Intrinsic::experimental_noalias_scope_decl:
5444         case Intrinsic::assume:
5445         case Intrinsic::lifetime_start:
5446         case Intrinsic::lifetime_end:
5447           if (TheLoop->hasLoopInvariantOperands(&I))
5448             addToWorklistIfAllowed(&I);
5449           break;
5450         default:
5451           break;
5452         }
5453       }
5454 
5455       // ExtractValue instructions must be uniform, because the operands are
5456       // known to be loop-invariant.
5457       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5458         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5459                "Expected aggregate value to be loop invariant");
5460         addToWorklistIfAllowed(EVI);
5461         continue;
5462       }
5463 
5464       // If there's no pointer operand, there's nothing to do.
5465       auto *Ptr = getLoadStorePointerOperand(&I);
5466       if (!Ptr)
5467         continue;
5468 
5469       // A uniform memory op is itself uniform.  We exclude uniform stores
5470       // here as they demand the last lane, not the first one.
5471       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5472         addToWorklistIfAllowed(&I);
5473 
5474       if (isUniformDecision(&I, VF)) {
5475         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5476         HasUniformUse.insert(Ptr);
5477       }
5478     }
5479 
5480   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5481   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5482   // disallows uses outside the loop as well.
5483   for (auto *V : HasUniformUse) {
5484     if (isOutOfScope(V))
5485       continue;
5486     auto *I = cast<Instruction>(V);
5487     auto UsersAreMemAccesses =
5488       llvm::all_of(I->users(), [&](User *U) -> bool {
5489         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5490       });
5491     if (UsersAreMemAccesses)
5492       addToWorklistIfAllowed(I);
5493   }
5494 
5495   // Expand Worklist in topological order: whenever a new instruction
5496   // is added , its users should be already inside Worklist.  It ensures
5497   // a uniform instruction will only be used by uniform instructions.
5498   unsigned idx = 0;
5499   while (idx != Worklist.size()) {
5500     Instruction *I = Worklist[idx++];
5501 
5502     for (auto OV : I->operand_values()) {
5503       // isOutOfScope operands cannot be uniform instructions.
5504       if (isOutOfScope(OV))
5505         continue;
5506       // First order recurrence Phi's should typically be considered
5507       // non-uniform.
5508       auto *OP = dyn_cast<PHINode>(OV);
5509       if (OP && Legal->isFirstOrderRecurrence(OP))
5510         continue;
5511       // If all the users of the operand are uniform, then add the
5512       // operand into the uniform worklist.
5513       auto *OI = cast<Instruction>(OV);
5514       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5515             auto *J = cast<Instruction>(U);
5516             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5517           }))
5518         addToWorklistIfAllowed(OI);
5519     }
5520   }
5521 
5522   // For an instruction to be added into Worklist above, all its users inside
5523   // the loop should also be in Worklist. However, this condition cannot be
5524   // true for phi nodes that form a cyclic dependence. We must process phi
5525   // nodes separately. An induction variable will remain uniform if all users
5526   // of the induction variable and induction variable update remain uniform.
5527   // The code below handles both pointer and non-pointer induction variables.
5528   for (auto &Induction : Legal->getInductionVars()) {
5529     auto *Ind = Induction.first;
5530     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5531 
5532     // Determine if all users of the induction variable are uniform after
5533     // vectorization.
5534     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5535       auto *I = cast<Instruction>(U);
5536       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5537              isVectorizedMemAccessUse(I, Ind);
5538     });
5539     if (!UniformInd)
5540       continue;
5541 
5542     // Determine if all users of the induction variable update instruction are
5543     // uniform after vectorization.
5544     auto UniformIndUpdate =
5545         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5546           auto *I = cast<Instruction>(U);
5547           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5548                  isVectorizedMemAccessUse(I, IndUpdate);
5549         });
5550     if (!UniformIndUpdate)
5551       continue;
5552 
5553     // The induction variable and its update instruction will remain uniform.
5554     addToWorklistIfAllowed(Ind);
5555     addToWorklistIfAllowed(IndUpdate);
5556   }
5557 
5558   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5559 }
5560 
5561 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5562   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5563 
5564   if (Legal->getRuntimePointerChecking()->Need) {
5565     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5566         "runtime pointer checks needed. Enable vectorization of this "
5567         "loop with '#pragma clang loop vectorize(enable)' when "
5568         "compiling with -Os/-Oz",
5569         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5570     return true;
5571   }
5572 
5573   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5574     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5575         "runtime SCEV checks needed. Enable vectorization of this "
5576         "loop with '#pragma clang loop vectorize(enable)' when "
5577         "compiling with -Os/-Oz",
5578         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5579     return true;
5580   }
5581 
5582   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5583   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5584     reportVectorizationFailure("Runtime stride check for small trip count",
5585         "runtime stride == 1 checks needed. Enable vectorization of "
5586         "this loop without such check by compiling with -Os/-Oz",
5587         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5588     return true;
5589   }
5590 
5591   return false;
5592 }
5593 
5594 ElementCount
5595 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5596   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5597     return ElementCount::getScalable(0);
5598 
5599   if (Hints->isScalableVectorizationDisabled()) {
5600     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5601                             "ScalableVectorizationDisabled", ORE, TheLoop);
5602     return ElementCount::getScalable(0);
5603   }
5604 
5605   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5606 
5607   auto MaxScalableVF = ElementCount::getScalable(
5608       std::numeric_limits<ElementCount::ScalarTy>::max());
5609 
5610   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5611   // FIXME: While for scalable vectors this is currently sufficient, this should
5612   // be replaced by a more detailed mechanism that filters out specific VFs,
5613   // instead of invalidating vectorization for a whole set of VFs based on the
5614   // MaxVF.
5615 
5616   // Disable scalable vectorization if the loop contains unsupported reductions.
5617   if (!canVectorizeReductions(MaxScalableVF)) {
5618     reportVectorizationInfo(
5619         "Scalable vectorization not supported for the reduction "
5620         "operations found in this loop.",
5621         "ScalableVFUnfeasible", ORE, TheLoop);
5622     return ElementCount::getScalable(0);
5623   }
5624 
5625   // Disable scalable vectorization if the loop contains any instructions
5626   // with element types not supported for scalable vectors.
5627   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5628         return !Ty->isVoidTy() &&
5629                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5630       })) {
5631     reportVectorizationInfo("Scalable vectorization is not supported "
5632                             "for all element types found in this loop.",
5633                             "ScalableVFUnfeasible", ORE, TheLoop);
5634     return ElementCount::getScalable(0);
5635   }
5636 
5637   if (Legal->isSafeForAnyVectorWidth())
5638     return MaxScalableVF;
5639 
5640   // Limit MaxScalableVF by the maximum safe dependence distance.
5641   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5642   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5643     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5644                              .getVScaleRangeArgs()
5645                              .second;
5646     if (VScaleMax > 0)
5647       MaxVScale = VScaleMax;
5648   }
5649   MaxScalableVF = ElementCount::getScalable(
5650       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5651   if (!MaxScalableVF)
5652     reportVectorizationInfo(
5653         "Max legal vector width too small, scalable vectorization "
5654         "unfeasible.",
5655         "ScalableVFUnfeasible", ORE, TheLoop);
5656 
5657   return MaxScalableVF;
5658 }
5659 
5660 FixedScalableVFPair
5661 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5662                                                  ElementCount UserVF) {
5663   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5664   unsigned SmallestType, WidestType;
5665   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5666 
5667   // Get the maximum safe dependence distance in bits computed by LAA.
5668   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5669   // the memory accesses that is most restrictive (involved in the smallest
5670   // dependence distance).
5671   unsigned MaxSafeElements =
5672       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5673 
5674   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5675   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5676 
5677   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5678                     << ".\n");
5679   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5680                     << ".\n");
5681 
5682   // First analyze the UserVF, fall back if the UserVF should be ignored.
5683   if (UserVF) {
5684     auto MaxSafeUserVF =
5685         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5686 
5687     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5688       // If `VF=vscale x N` is safe, then so is `VF=N`
5689       if (UserVF.isScalable())
5690         return FixedScalableVFPair(
5691             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5692       else
5693         return UserVF;
5694     }
5695 
5696     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5697 
5698     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5699     // is better to ignore the hint and let the compiler choose a suitable VF.
5700     if (!UserVF.isScalable()) {
5701       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5702                         << " is unsafe, clamping to max safe VF="
5703                         << MaxSafeFixedVF << ".\n");
5704       ORE->emit([&]() {
5705         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5706                                           TheLoop->getStartLoc(),
5707                                           TheLoop->getHeader())
5708                << "User-specified vectorization factor "
5709                << ore::NV("UserVectorizationFactor", UserVF)
5710                << " is unsafe, clamping to maximum safe vectorization factor "
5711                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5712       });
5713       return MaxSafeFixedVF;
5714     }
5715 
5716     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5717       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5718                         << " is ignored because scalable vectors are not "
5719                            "available.\n");
5720       ORE->emit([&]() {
5721         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5722                                           TheLoop->getStartLoc(),
5723                                           TheLoop->getHeader())
5724                << "User-specified vectorization factor "
5725                << ore::NV("UserVectorizationFactor", UserVF)
5726                << " is ignored because the target does not support scalable "
5727                   "vectors. The compiler will pick a more suitable value.";
5728       });
5729     } else {
5730       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5731                         << " is unsafe. Ignoring scalable UserVF.\n");
5732       ORE->emit([&]() {
5733         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5734                                           TheLoop->getStartLoc(),
5735                                           TheLoop->getHeader())
5736                << "User-specified vectorization factor "
5737                << ore::NV("UserVectorizationFactor", UserVF)
5738                << " is unsafe. Ignoring the hint to let the compiler pick a "
5739                   "more suitable value.";
5740       });
5741     }
5742   }
5743 
5744   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5745                     << " / " << WidestType << " bits.\n");
5746 
5747   FixedScalableVFPair Result(ElementCount::getFixed(1),
5748                              ElementCount::getScalable(0));
5749   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5750                                            WidestType, MaxSafeFixedVF))
5751     Result.FixedVF = MaxVF;
5752 
5753   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5754                                            WidestType, MaxSafeScalableVF))
5755     if (MaxVF.isScalable()) {
5756       Result.ScalableVF = MaxVF;
5757       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5758                         << "\n");
5759     }
5760 
5761   return Result;
5762 }
5763 
5764 FixedScalableVFPair
5765 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5766   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5767     // TODO: It may by useful to do since it's still likely to be dynamically
5768     // uniform if the target can skip.
5769     reportVectorizationFailure(
5770         "Not inserting runtime ptr check for divergent target",
5771         "runtime pointer checks needed. Not enabled for divergent target",
5772         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5773     return FixedScalableVFPair::getNone();
5774   }
5775 
5776   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5777   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5778   if (TC == 1) {
5779     reportVectorizationFailure("Single iteration (non) loop",
5780         "loop trip count is one, irrelevant for vectorization",
5781         "SingleIterationLoop", ORE, TheLoop);
5782     return FixedScalableVFPair::getNone();
5783   }
5784 
5785   switch (ScalarEpilogueStatus) {
5786   case CM_ScalarEpilogueAllowed:
5787     return computeFeasibleMaxVF(TC, UserVF);
5788   case CM_ScalarEpilogueNotAllowedUsePredicate:
5789     LLVM_FALLTHROUGH;
5790   case CM_ScalarEpilogueNotNeededUsePredicate:
5791     LLVM_DEBUG(
5792         dbgs() << "LV: vector predicate hint/switch found.\n"
5793                << "LV: Not allowing scalar epilogue, creating predicated "
5794                << "vector loop.\n");
5795     break;
5796   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5797     // fallthrough as a special case of OptForSize
5798   case CM_ScalarEpilogueNotAllowedOptSize:
5799     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5800       LLVM_DEBUG(
5801           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5802     else
5803       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5804                         << "count.\n");
5805 
5806     // Bail if runtime checks are required, which are not good when optimising
5807     // for size.
5808     if (runtimeChecksRequired())
5809       return FixedScalableVFPair::getNone();
5810 
5811     break;
5812   }
5813 
5814   // The only loops we can vectorize without a scalar epilogue, are loops with
5815   // a bottom-test and a single exiting block. We'd have to handle the fact
5816   // that not every instruction executes on the last iteration.  This will
5817   // require a lane mask which varies through the vector loop body.  (TODO)
5818   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5819     // If there was a tail-folding hint/switch, but we can't fold the tail by
5820     // masking, fallback to a vectorization with a scalar epilogue.
5821     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5822       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5823                            "scalar epilogue instead.\n");
5824       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5825       return computeFeasibleMaxVF(TC, UserVF);
5826     }
5827     return FixedScalableVFPair::getNone();
5828   }
5829 
5830   // Now try the tail folding
5831 
5832   // Invalidate interleave groups that require an epilogue if we can't mask
5833   // the interleave-group.
5834   if (!useMaskedInterleavedAccesses(TTI)) {
5835     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5836            "No decisions should have been taken at this point");
5837     // Note: There is no need to invalidate any cost modeling decisions here, as
5838     // non where taken so far.
5839     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5840   }
5841 
5842   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5843   // Avoid tail folding if the trip count is known to be a multiple of any VF
5844   // we chose.
5845   // FIXME: The condition below pessimises the case for fixed-width vectors,
5846   // when scalable VFs are also candidates for vectorization.
5847   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5848     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5849     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5850            "MaxFixedVF must be a power of 2");
5851     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5852                                    : MaxFixedVF.getFixedValue();
5853     ScalarEvolution *SE = PSE.getSE();
5854     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5855     const SCEV *ExitCount = SE->getAddExpr(
5856         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5857     const SCEV *Rem = SE->getURemExpr(
5858         SE->applyLoopGuards(ExitCount, TheLoop),
5859         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5860     if (Rem->isZero()) {
5861       // Accept MaxFixedVF if we do not have a tail.
5862       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5863       return MaxFactors;
5864     }
5865   }
5866 
5867   // For scalable vectors, don't use tail folding as this is currently not yet
5868   // supported. The code is likely to have ended up here if the tripcount is
5869   // low, in which case it makes sense not to use scalable vectors.
5870   if (MaxFactors.ScalableVF.isVector())
5871     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5872 
5873   // If we don't know the precise trip count, or if the trip count that we
5874   // found modulo the vectorization factor is not zero, try to fold the tail
5875   // by masking.
5876   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5877   if (Legal->prepareToFoldTailByMasking()) {
5878     FoldTailByMasking = true;
5879     return MaxFactors;
5880   }
5881 
5882   // If there was a tail-folding hint/switch, but we can't fold the tail by
5883   // masking, fallback to a vectorization with a scalar epilogue.
5884   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5885     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5886                          "scalar epilogue instead.\n");
5887     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5888     return MaxFactors;
5889   }
5890 
5891   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5892     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5893     return FixedScalableVFPair::getNone();
5894   }
5895 
5896   if (TC == 0) {
5897     reportVectorizationFailure(
5898         "Unable to calculate the loop count due to complex control flow",
5899         "unable to calculate the loop count due to complex control flow",
5900         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5901     return FixedScalableVFPair::getNone();
5902   }
5903 
5904   reportVectorizationFailure(
5905       "Cannot optimize for size and vectorize at the same time.",
5906       "cannot optimize for size and vectorize at the same time. "
5907       "Enable vectorization of this loop with '#pragma clang loop "
5908       "vectorize(enable)' when compiling with -Os/-Oz",
5909       "NoTailLoopWithOptForSize", ORE, TheLoop);
5910   return FixedScalableVFPair::getNone();
5911 }
5912 
5913 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5914     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5915     const ElementCount &MaxSafeVF) {
5916   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5917   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5918       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5919                            : TargetTransformInfo::RGK_FixedWidthVector);
5920 
5921   // Convenience function to return the minimum of two ElementCounts.
5922   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5923     assert((LHS.isScalable() == RHS.isScalable()) &&
5924            "Scalable flags must match");
5925     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5926   };
5927 
5928   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5929   // Note that both WidestRegister and WidestType may not be a powers of 2.
5930   auto MaxVectorElementCount = ElementCount::get(
5931       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5932       ComputeScalableMaxVF);
5933   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5934   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5935                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5936 
5937   if (!MaxVectorElementCount) {
5938     LLVM_DEBUG(dbgs() << "LV: The target has no "
5939                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5940                       << " vector registers.\n");
5941     return ElementCount::getFixed(1);
5942   }
5943 
5944   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5945   if (ConstTripCount &&
5946       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5947       isPowerOf2_32(ConstTripCount)) {
5948     // We need to clamp the VF to be the ConstTripCount. There is no point in
5949     // choosing a higher viable VF as done in the loop below. If
5950     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5951     // the TC is less than or equal to the known number of lanes.
5952     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5953                       << ConstTripCount << "\n");
5954     return TripCountEC;
5955   }
5956 
5957   ElementCount MaxVF = MaxVectorElementCount;
5958   if (TTI.shouldMaximizeVectorBandwidth() ||
5959       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5960     auto MaxVectorElementCountMaxBW = ElementCount::get(
5961         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5962         ComputeScalableMaxVF);
5963     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5964 
5965     // Collect all viable vectorization factors larger than the default MaxVF
5966     // (i.e. MaxVectorElementCount).
5967     SmallVector<ElementCount, 8> VFs;
5968     for (ElementCount VS = MaxVectorElementCount * 2;
5969          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5970       VFs.push_back(VS);
5971 
5972     // For each VF calculate its register usage.
5973     auto RUs = calculateRegisterUsage(VFs);
5974 
5975     // Select the largest VF which doesn't require more registers than existing
5976     // ones.
5977     for (int i = RUs.size() - 1; i >= 0; --i) {
5978       bool Selected = true;
5979       for (auto &pair : RUs[i].MaxLocalUsers) {
5980         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5981         if (pair.second > TargetNumRegisters)
5982           Selected = false;
5983       }
5984       if (Selected) {
5985         MaxVF = VFs[i];
5986         break;
5987       }
5988     }
5989     if (ElementCount MinVF =
5990             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5991       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5992         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5993                           << ") with target's minimum: " << MinVF << '\n');
5994         MaxVF = MinVF;
5995       }
5996     }
5997   }
5998   return MaxVF;
5999 }
6000 
6001 bool LoopVectorizationCostModel::isMoreProfitable(
6002     const VectorizationFactor &A, const VectorizationFactor &B) const {
6003   InstructionCost CostA = A.Cost;
6004   InstructionCost CostB = B.Cost;
6005 
6006   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6007 
6008   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6009       MaxTripCount) {
6010     // If we are folding the tail and the trip count is a known (possibly small)
6011     // constant, the trip count will be rounded up to an integer number of
6012     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6013     // which we compare directly. When not folding the tail, the total cost will
6014     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6015     // approximated with the per-lane cost below instead of using the tripcount
6016     // as here.
6017     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6018     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6019     return RTCostA < RTCostB;
6020   }
6021 
6022   // When set to preferred, for now assume vscale may be larger than 1, so
6023   // that scalable vectorization is slightly favorable over fixed-width
6024   // vectorization.
6025   if (Hints->isScalableVectorizationPreferred())
6026     if (A.Width.isScalable() && !B.Width.isScalable())
6027       return (CostA * B.Width.getKnownMinValue()) <=
6028              (CostB * A.Width.getKnownMinValue());
6029 
6030   // To avoid the need for FP division:
6031   //      (CostA / A.Width) < (CostB / B.Width)
6032   // <=>  (CostA * B.Width) < (CostB * A.Width)
6033   return (CostA * B.Width.getKnownMinValue()) <
6034          (CostB * A.Width.getKnownMinValue());
6035 }
6036 
6037 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6038     const ElementCountSet &VFCandidates) {
6039   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6040   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6041   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6042   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6043          "Expected Scalar VF to be a candidate");
6044 
6045   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6046   VectorizationFactor ChosenFactor = ScalarCost;
6047 
6048   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6049   if (ForceVectorization && VFCandidates.size() > 1) {
6050     // Ignore scalar width, because the user explicitly wants vectorization.
6051     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6052     // evaluation.
6053     ChosenFactor.Cost = InstructionCost::getMax();
6054   }
6055 
6056   SmallVector<InstructionVFPair> InvalidCosts;
6057   for (const auto &i : VFCandidates) {
6058     // The cost for scalar VF=1 is already calculated, so ignore it.
6059     if (i.isScalar())
6060       continue;
6061 
6062     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6063     VectorizationFactor Candidate(i, C.first);
6064     LLVM_DEBUG(
6065         dbgs() << "LV: Vector loop of width " << i << " costs: "
6066                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6067                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6068                << ".\n");
6069 
6070     if (!C.second && !ForceVectorization) {
6071       LLVM_DEBUG(
6072           dbgs() << "LV: Not considering vector loop of width " << i
6073                  << " because it will not generate any vector instructions.\n");
6074       continue;
6075     }
6076 
6077     // If profitable add it to ProfitableVF list.
6078     if (isMoreProfitable(Candidate, ScalarCost))
6079       ProfitableVFs.push_back(Candidate);
6080 
6081     if (isMoreProfitable(Candidate, ChosenFactor))
6082       ChosenFactor = Candidate;
6083   }
6084 
6085   // Emit a report of VFs with invalid costs in the loop.
6086   if (!InvalidCosts.empty()) {
6087     // Group the remarks per instruction, keeping the instruction order from
6088     // InvalidCosts.
6089     std::map<Instruction *, unsigned> Numbering;
6090     unsigned I = 0;
6091     for (auto &Pair : InvalidCosts)
6092       if (!Numbering.count(Pair.first))
6093         Numbering[Pair.first] = I++;
6094 
6095     // Sort the list, first on instruction(number) then on VF.
6096     llvm::sort(InvalidCosts,
6097                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6098                  if (Numbering[A.first] != Numbering[B.first])
6099                    return Numbering[A.first] < Numbering[B.first];
6100                  ElementCountComparator ECC;
6101                  return ECC(A.second, B.second);
6102                });
6103 
6104     // For a list of ordered instruction-vf pairs:
6105     //   [(load, vf1), (load, vf2), (store, vf1)]
6106     // Group the instructions together to emit separate remarks for:
6107     //   load  (vf1, vf2)
6108     //   store (vf1)
6109     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6110     auto Subset = ArrayRef<InstructionVFPair>();
6111     do {
6112       if (Subset.empty())
6113         Subset = Tail.take_front(1);
6114 
6115       Instruction *I = Subset.front().first;
6116 
6117       // If the next instruction is different, or if there are no other pairs,
6118       // emit a remark for the collated subset. e.g.
6119       //   [(load, vf1), (load, vf2))]
6120       // to emit:
6121       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6122       if (Subset == Tail || Tail[Subset.size()].first != I) {
6123         std::string OutString;
6124         raw_string_ostream OS(OutString);
6125         assert(!Subset.empty() && "Unexpected empty range");
6126         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6127         for (auto &Pair : Subset)
6128           OS << (Pair.second == Subset.front().second ? "" : ", ")
6129              << Pair.second;
6130         OS << "):";
6131         if (auto *CI = dyn_cast<CallInst>(I))
6132           OS << " call to " << CI->getCalledFunction()->getName();
6133         else
6134           OS << " " << I->getOpcodeName();
6135         OS.flush();
6136         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6137         Tail = Tail.drop_front(Subset.size());
6138         Subset = {};
6139       } else
6140         // Grow the subset by one element
6141         Subset = Tail.take_front(Subset.size() + 1);
6142     } while (!Tail.empty());
6143   }
6144 
6145   if (!EnableCondStoresVectorization && NumPredStores) {
6146     reportVectorizationFailure("There are conditional stores.",
6147         "store that is conditionally executed prevents vectorization",
6148         "ConditionalStore", ORE, TheLoop);
6149     ChosenFactor = ScalarCost;
6150   }
6151 
6152   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6153                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6154              << "LV: Vectorization seems to be not beneficial, "
6155              << "but was forced by a user.\n");
6156   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6157   return ChosenFactor;
6158 }
6159 
6160 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6161     const Loop &L, ElementCount VF) const {
6162   // Cross iteration phis such as reductions need special handling and are
6163   // currently unsupported.
6164   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6165         return Legal->isFirstOrderRecurrence(&Phi) ||
6166                Legal->isReductionVariable(&Phi);
6167       }))
6168     return false;
6169 
6170   // Phis with uses outside of the loop require special handling and are
6171   // currently unsupported.
6172   for (auto &Entry : Legal->getInductionVars()) {
6173     // Look for uses of the value of the induction at the last iteration.
6174     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6175     for (User *U : PostInc->users())
6176       if (!L.contains(cast<Instruction>(U)))
6177         return false;
6178     // Look for uses of penultimate value of the induction.
6179     for (User *U : Entry.first->users())
6180       if (!L.contains(cast<Instruction>(U)))
6181         return false;
6182   }
6183 
6184   // Induction variables that are widened require special handling that is
6185   // currently not supported.
6186   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6187         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6188                  this->isProfitableToScalarize(Entry.first, VF));
6189       }))
6190     return false;
6191 
6192   // Epilogue vectorization code has not been auditted to ensure it handles
6193   // non-latch exits properly.  It may be fine, but it needs auditted and
6194   // tested.
6195   if (L.getExitingBlock() != L.getLoopLatch())
6196     return false;
6197 
6198   return true;
6199 }
6200 
6201 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6202     const ElementCount VF) const {
6203   // FIXME: We need a much better cost-model to take different parameters such
6204   // as register pressure, code size increase and cost of extra branches into
6205   // account. For now we apply a very crude heuristic and only consider loops
6206   // with vectorization factors larger than a certain value.
6207   // We also consider epilogue vectorization unprofitable for targets that don't
6208   // consider interleaving beneficial (eg. MVE).
6209   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6210     return false;
6211   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6212     return true;
6213   return false;
6214 }
6215 
6216 VectorizationFactor
6217 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6218     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6219   VectorizationFactor Result = VectorizationFactor::Disabled();
6220   if (!EnableEpilogueVectorization) {
6221     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6222     return Result;
6223   }
6224 
6225   if (!isScalarEpilogueAllowed()) {
6226     LLVM_DEBUG(
6227         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6228                   "allowed.\n";);
6229     return Result;
6230   }
6231 
6232   // FIXME: This can be fixed for scalable vectors later, because at this stage
6233   // the LoopVectorizer will only consider vectorizing a loop with scalable
6234   // vectors when the loop has a hint to enable vectorization for a given VF.
6235   if (MainLoopVF.isScalable()) {
6236     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6237                          "yet supported.\n");
6238     return Result;
6239   }
6240 
6241   // Not really a cost consideration, but check for unsupported cases here to
6242   // simplify the logic.
6243   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6244     LLVM_DEBUG(
6245         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6246                   "not a supported candidate.\n";);
6247     return Result;
6248   }
6249 
6250   if (EpilogueVectorizationForceVF > 1) {
6251     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6252     if (LVP.hasPlanWithVFs(
6253             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6254       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6255     else {
6256       LLVM_DEBUG(
6257           dbgs()
6258               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6259       return Result;
6260     }
6261   }
6262 
6263   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6264       TheLoop->getHeader()->getParent()->hasMinSize()) {
6265     LLVM_DEBUG(
6266         dbgs()
6267             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6268     return Result;
6269   }
6270 
6271   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6272     return Result;
6273 
6274   for (auto &NextVF : ProfitableVFs)
6275     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6276         (Result.Width.getFixedValue() == 1 ||
6277          isMoreProfitable(NextVF, Result)) &&
6278         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6279       Result = NextVF;
6280 
6281   if (Result != VectorizationFactor::Disabled())
6282     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6283                       << Result.Width.getFixedValue() << "\n";);
6284   return Result;
6285 }
6286 
6287 std::pair<unsigned, unsigned>
6288 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6289   unsigned MinWidth = -1U;
6290   unsigned MaxWidth = 8;
6291   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6292   for (Type *T : ElementTypesInLoop) {
6293     MinWidth = std::min<unsigned>(
6294         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6295     MaxWidth = std::max<unsigned>(
6296         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6297   }
6298   return {MinWidth, MaxWidth};
6299 }
6300 
6301 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6302   ElementTypesInLoop.clear();
6303   // For each block.
6304   for (BasicBlock *BB : TheLoop->blocks()) {
6305     // For each instruction in the loop.
6306     for (Instruction &I : BB->instructionsWithoutDebug()) {
6307       Type *T = I.getType();
6308 
6309       // Skip ignored values.
6310       if (ValuesToIgnore.count(&I))
6311         continue;
6312 
6313       // Only examine Loads, Stores and PHINodes.
6314       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6315         continue;
6316 
6317       // Examine PHI nodes that are reduction variables. Update the type to
6318       // account for the recurrence type.
6319       if (auto *PN = dyn_cast<PHINode>(&I)) {
6320         if (!Legal->isReductionVariable(PN))
6321           continue;
6322         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6323         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6324             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6325                                       RdxDesc.getRecurrenceType(),
6326                                       TargetTransformInfo::ReductionFlags()))
6327           continue;
6328         T = RdxDesc.getRecurrenceType();
6329       }
6330 
6331       // Examine the stored values.
6332       if (auto *ST = dyn_cast<StoreInst>(&I))
6333         T = ST->getValueOperand()->getType();
6334 
6335       // Ignore loaded pointer types and stored pointer types that are not
6336       // vectorizable.
6337       //
6338       // FIXME: The check here attempts to predict whether a load or store will
6339       //        be vectorized. We only know this for certain after a VF has
6340       //        been selected. Here, we assume that if an access can be
6341       //        vectorized, it will be. We should also look at extending this
6342       //        optimization to non-pointer types.
6343       //
6344       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6345           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6346         continue;
6347 
6348       ElementTypesInLoop.insert(T);
6349     }
6350   }
6351 }
6352 
6353 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6354                                                            unsigned LoopCost) {
6355   // -- The interleave heuristics --
6356   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6357   // There are many micro-architectural considerations that we can't predict
6358   // at this level. For example, frontend pressure (on decode or fetch) due to
6359   // code size, or the number and capabilities of the execution ports.
6360   //
6361   // We use the following heuristics to select the interleave count:
6362   // 1. If the code has reductions, then we interleave to break the cross
6363   // iteration dependency.
6364   // 2. If the loop is really small, then we interleave to reduce the loop
6365   // overhead.
6366   // 3. We don't interleave if we think that we will spill registers to memory
6367   // due to the increased register pressure.
6368 
6369   if (!isScalarEpilogueAllowed())
6370     return 1;
6371 
6372   // We used the distance for the interleave count.
6373   if (Legal->getMaxSafeDepDistBytes() != -1U)
6374     return 1;
6375 
6376   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6377   const bool HasReductions = !Legal->getReductionVars().empty();
6378   // Do not interleave loops with a relatively small known or estimated trip
6379   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6380   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6381   // because with the above conditions interleaving can expose ILP and break
6382   // cross iteration dependences for reductions.
6383   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6384       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6385     return 1;
6386 
6387   RegisterUsage R = calculateRegisterUsage({VF})[0];
6388   // We divide by these constants so assume that we have at least one
6389   // instruction that uses at least one register.
6390   for (auto& pair : R.MaxLocalUsers) {
6391     pair.second = std::max(pair.second, 1U);
6392   }
6393 
6394   // We calculate the interleave count using the following formula.
6395   // Subtract the number of loop invariants from the number of available
6396   // registers. These registers are used by all of the interleaved instances.
6397   // Next, divide the remaining registers by the number of registers that is
6398   // required by the loop, in order to estimate how many parallel instances
6399   // fit without causing spills. All of this is rounded down if necessary to be
6400   // a power of two. We want power of two interleave count to simplify any
6401   // addressing operations or alignment considerations.
6402   // We also want power of two interleave counts to ensure that the induction
6403   // variable of the vector loop wraps to zero, when tail is folded by masking;
6404   // this currently happens when OptForSize, in which case IC is set to 1 above.
6405   unsigned IC = UINT_MAX;
6406 
6407   for (auto& pair : R.MaxLocalUsers) {
6408     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6409     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6410                       << " registers of "
6411                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6412     if (VF.isScalar()) {
6413       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6414         TargetNumRegisters = ForceTargetNumScalarRegs;
6415     } else {
6416       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6417         TargetNumRegisters = ForceTargetNumVectorRegs;
6418     }
6419     unsigned MaxLocalUsers = pair.second;
6420     unsigned LoopInvariantRegs = 0;
6421     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6422       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6423 
6424     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6425     // Don't count the induction variable as interleaved.
6426     if (EnableIndVarRegisterHeur) {
6427       TmpIC =
6428           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6429                         std::max(1U, (MaxLocalUsers - 1)));
6430     }
6431 
6432     IC = std::min(IC, TmpIC);
6433   }
6434 
6435   // Clamp the interleave ranges to reasonable counts.
6436   unsigned MaxInterleaveCount =
6437       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6438 
6439   // Check if the user has overridden the max.
6440   if (VF.isScalar()) {
6441     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6442       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6443   } else {
6444     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6445       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6446   }
6447 
6448   // If trip count is known or estimated compile time constant, limit the
6449   // interleave count to be less than the trip count divided by VF, provided it
6450   // is at least 1.
6451   //
6452   // For scalable vectors we can't know if interleaving is beneficial. It may
6453   // not be beneficial for small loops if none of the lanes in the second vector
6454   // iterations is enabled. However, for larger loops, there is likely to be a
6455   // similar benefit as for fixed-width vectors. For now, we choose to leave
6456   // the InterleaveCount as if vscale is '1', although if some information about
6457   // the vector is known (e.g. min vector size), we can make a better decision.
6458   if (BestKnownTC) {
6459     MaxInterleaveCount =
6460         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6461     // Make sure MaxInterleaveCount is greater than 0.
6462     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6463   }
6464 
6465   assert(MaxInterleaveCount > 0 &&
6466          "Maximum interleave count must be greater than 0");
6467 
6468   // Clamp the calculated IC to be between the 1 and the max interleave count
6469   // that the target and trip count allows.
6470   if (IC > MaxInterleaveCount)
6471     IC = MaxInterleaveCount;
6472   else
6473     // Make sure IC is greater than 0.
6474     IC = std::max(1u, IC);
6475 
6476   assert(IC > 0 && "Interleave count must be greater than 0.");
6477 
6478   // If we did not calculate the cost for VF (because the user selected the VF)
6479   // then we calculate the cost of VF here.
6480   if (LoopCost == 0) {
6481     InstructionCost C = expectedCost(VF).first;
6482     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6483     LoopCost = *C.getValue();
6484   }
6485 
6486   assert(LoopCost && "Non-zero loop cost expected");
6487 
6488   // Interleave if we vectorized this loop and there is a reduction that could
6489   // benefit from interleaving.
6490   if (VF.isVector() && HasReductions) {
6491     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6492     return IC;
6493   }
6494 
6495   // Note that if we've already vectorized the loop we will have done the
6496   // runtime check and so interleaving won't require further checks.
6497   bool InterleavingRequiresRuntimePointerCheck =
6498       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6499 
6500   // We want to interleave small loops in order to reduce the loop overhead and
6501   // potentially expose ILP opportunities.
6502   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6503                     << "LV: IC is " << IC << '\n'
6504                     << "LV: VF is " << VF << '\n');
6505   const bool AggressivelyInterleaveReductions =
6506       TTI.enableAggressiveInterleaving(HasReductions);
6507   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6508     // We assume that the cost overhead is 1 and we use the cost model
6509     // to estimate the cost of the loop and interleave until the cost of the
6510     // loop overhead is about 5% of the cost of the loop.
6511     unsigned SmallIC =
6512         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6513 
6514     // Interleave until store/load ports (estimated by max interleave count) are
6515     // saturated.
6516     unsigned NumStores = Legal->getNumStores();
6517     unsigned NumLoads = Legal->getNumLoads();
6518     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6519     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6520 
6521     // If we have a scalar reduction (vector reductions are already dealt with
6522     // by this point), we can increase the critical path length if the loop
6523     // we're interleaving is inside another loop. For tree-wise reductions
6524     // set the limit to 2, and for ordered reductions it's best to disable
6525     // interleaving entirely.
6526     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6527       bool HasOrderedReductions =
6528           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6529             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6530             return RdxDesc.isOrdered();
6531           });
6532       if (HasOrderedReductions) {
6533         LLVM_DEBUG(
6534             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6535         return 1;
6536       }
6537 
6538       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6539       SmallIC = std::min(SmallIC, F);
6540       StoresIC = std::min(StoresIC, F);
6541       LoadsIC = std::min(LoadsIC, F);
6542     }
6543 
6544     if (EnableLoadStoreRuntimeInterleave &&
6545         std::max(StoresIC, LoadsIC) > SmallIC) {
6546       LLVM_DEBUG(
6547           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6548       return std::max(StoresIC, LoadsIC);
6549     }
6550 
6551     // If there are scalar reductions and TTI has enabled aggressive
6552     // interleaving for reductions, we will interleave to expose ILP.
6553     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6554         AggressivelyInterleaveReductions) {
6555       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6556       // Interleave no less than SmallIC but not as aggressive as the normal IC
6557       // to satisfy the rare situation when resources are too limited.
6558       return std::max(IC / 2, SmallIC);
6559     } else {
6560       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6561       return SmallIC;
6562     }
6563   }
6564 
6565   // Interleave if this is a large loop (small loops are already dealt with by
6566   // this point) that could benefit from interleaving.
6567   if (AggressivelyInterleaveReductions) {
6568     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6569     return IC;
6570   }
6571 
6572   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6573   return 1;
6574 }
6575 
6576 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6577 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6578   // This function calculates the register usage by measuring the highest number
6579   // of values that are alive at a single location. Obviously, this is a very
6580   // rough estimation. We scan the loop in a topological order in order and
6581   // assign a number to each instruction. We use RPO to ensure that defs are
6582   // met before their users. We assume that each instruction that has in-loop
6583   // users starts an interval. We record every time that an in-loop value is
6584   // used, so we have a list of the first and last occurrences of each
6585   // instruction. Next, we transpose this data structure into a multi map that
6586   // holds the list of intervals that *end* at a specific location. This multi
6587   // map allows us to perform a linear search. We scan the instructions linearly
6588   // and record each time that a new interval starts, by placing it in a set.
6589   // If we find this value in the multi-map then we remove it from the set.
6590   // The max register usage is the maximum size of the set.
6591   // We also search for instructions that are defined outside the loop, but are
6592   // used inside the loop. We need this number separately from the max-interval
6593   // usage number because when we unroll, loop-invariant values do not take
6594   // more register.
6595   LoopBlocksDFS DFS(TheLoop);
6596   DFS.perform(LI);
6597 
6598   RegisterUsage RU;
6599 
6600   // Each 'key' in the map opens a new interval. The values
6601   // of the map are the index of the 'last seen' usage of the
6602   // instruction that is the key.
6603   using IntervalMap = DenseMap<Instruction *, unsigned>;
6604 
6605   // Maps instruction to its index.
6606   SmallVector<Instruction *, 64> IdxToInstr;
6607   // Marks the end of each interval.
6608   IntervalMap EndPoint;
6609   // Saves the list of instruction indices that are used in the loop.
6610   SmallPtrSet<Instruction *, 8> Ends;
6611   // Saves the list of values that are used in the loop but are
6612   // defined outside the loop, such as arguments and constants.
6613   SmallPtrSet<Value *, 8> LoopInvariants;
6614 
6615   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6616     for (Instruction &I : BB->instructionsWithoutDebug()) {
6617       IdxToInstr.push_back(&I);
6618 
6619       // Save the end location of each USE.
6620       for (Value *U : I.operands()) {
6621         auto *Instr = dyn_cast<Instruction>(U);
6622 
6623         // Ignore non-instruction values such as arguments, constants, etc.
6624         if (!Instr)
6625           continue;
6626 
6627         // If this instruction is outside the loop then record it and continue.
6628         if (!TheLoop->contains(Instr)) {
6629           LoopInvariants.insert(Instr);
6630           continue;
6631         }
6632 
6633         // Overwrite previous end points.
6634         EndPoint[Instr] = IdxToInstr.size();
6635         Ends.insert(Instr);
6636       }
6637     }
6638   }
6639 
6640   // Saves the list of intervals that end with the index in 'key'.
6641   using InstrList = SmallVector<Instruction *, 2>;
6642   DenseMap<unsigned, InstrList> TransposeEnds;
6643 
6644   // Transpose the EndPoints to a list of values that end at each index.
6645   for (auto &Interval : EndPoint)
6646     TransposeEnds[Interval.second].push_back(Interval.first);
6647 
6648   SmallPtrSet<Instruction *, 8> OpenIntervals;
6649   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6650   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6651 
6652   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6653 
6654   // A lambda that gets the register usage for the given type and VF.
6655   const auto &TTICapture = TTI;
6656   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6657     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6658       return 0;
6659     InstructionCost::CostType RegUsage =
6660         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6661     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6662            "Nonsensical values for register usage.");
6663     return RegUsage;
6664   };
6665 
6666   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6667     Instruction *I = IdxToInstr[i];
6668 
6669     // Remove all of the instructions that end at this location.
6670     InstrList &List = TransposeEnds[i];
6671     for (Instruction *ToRemove : List)
6672       OpenIntervals.erase(ToRemove);
6673 
6674     // Ignore instructions that are never used within the loop.
6675     if (!Ends.count(I))
6676       continue;
6677 
6678     // Skip ignored values.
6679     if (ValuesToIgnore.count(I))
6680       continue;
6681 
6682     // For each VF find the maximum usage of registers.
6683     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6684       // Count the number of live intervals.
6685       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6686 
6687       if (VFs[j].isScalar()) {
6688         for (auto Inst : OpenIntervals) {
6689           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6690           if (RegUsage.find(ClassID) == RegUsage.end())
6691             RegUsage[ClassID] = 1;
6692           else
6693             RegUsage[ClassID] += 1;
6694         }
6695       } else {
6696         collectUniformsAndScalars(VFs[j]);
6697         for (auto Inst : OpenIntervals) {
6698           // Skip ignored values for VF > 1.
6699           if (VecValuesToIgnore.count(Inst))
6700             continue;
6701           if (isScalarAfterVectorization(Inst, VFs[j])) {
6702             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6703             if (RegUsage.find(ClassID) == RegUsage.end())
6704               RegUsage[ClassID] = 1;
6705             else
6706               RegUsage[ClassID] += 1;
6707           } else {
6708             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6709             if (RegUsage.find(ClassID) == RegUsage.end())
6710               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6711             else
6712               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6713           }
6714         }
6715       }
6716 
6717       for (auto& pair : RegUsage) {
6718         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6719           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6720         else
6721           MaxUsages[j][pair.first] = pair.second;
6722       }
6723     }
6724 
6725     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6726                       << OpenIntervals.size() << '\n');
6727 
6728     // Add the current instruction to the list of open intervals.
6729     OpenIntervals.insert(I);
6730   }
6731 
6732   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6733     SmallMapVector<unsigned, unsigned, 4> Invariant;
6734 
6735     for (auto Inst : LoopInvariants) {
6736       unsigned Usage =
6737           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6738       unsigned ClassID =
6739           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6740       if (Invariant.find(ClassID) == Invariant.end())
6741         Invariant[ClassID] = Usage;
6742       else
6743         Invariant[ClassID] += Usage;
6744     }
6745 
6746     LLVM_DEBUG({
6747       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6748       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6749              << " item\n";
6750       for (const auto &pair : MaxUsages[i]) {
6751         dbgs() << "LV(REG): RegisterClass: "
6752                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6753                << " registers\n";
6754       }
6755       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6756              << " item\n";
6757       for (const auto &pair : Invariant) {
6758         dbgs() << "LV(REG): RegisterClass: "
6759                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6760                << " registers\n";
6761       }
6762     });
6763 
6764     RU.LoopInvariantRegs = Invariant;
6765     RU.MaxLocalUsers = MaxUsages[i];
6766     RUs[i] = RU;
6767   }
6768 
6769   return RUs;
6770 }
6771 
6772 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6773   // TODO: Cost model for emulated masked load/store is completely
6774   // broken. This hack guides the cost model to use an artificially
6775   // high enough value to practically disable vectorization with such
6776   // operations, except where previously deployed legality hack allowed
6777   // using very low cost values. This is to avoid regressions coming simply
6778   // from moving "masked load/store" check from legality to cost model.
6779   // Masked Load/Gather emulation was previously never allowed.
6780   // Limited number of Masked Store/Scatter emulation was allowed.
6781   assert(isPredicatedInst(I) &&
6782          "Expecting a scalar emulated instruction");
6783   return isa<LoadInst>(I) ||
6784          (isa<StoreInst>(I) &&
6785           NumPredStores > NumberOfStoresToPredicate);
6786 }
6787 
6788 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6789   // If we aren't vectorizing the loop, or if we've already collected the
6790   // instructions to scalarize, there's nothing to do. Collection may already
6791   // have occurred if we have a user-selected VF and are now computing the
6792   // expected cost for interleaving.
6793   if (VF.isScalar() || VF.isZero() ||
6794       InstsToScalarize.find(VF) != InstsToScalarize.end())
6795     return;
6796 
6797   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6798   // not profitable to scalarize any instructions, the presence of VF in the
6799   // map will indicate that we've analyzed it already.
6800   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6801 
6802   // Find all the instructions that are scalar with predication in the loop and
6803   // determine if it would be better to not if-convert the blocks they are in.
6804   // If so, we also record the instructions to scalarize.
6805   for (BasicBlock *BB : TheLoop->blocks()) {
6806     if (!blockNeedsPredication(BB))
6807       continue;
6808     for (Instruction &I : *BB)
6809       if (isScalarWithPredication(&I)) {
6810         ScalarCostsTy ScalarCosts;
6811         // Do not apply discount if scalable, because that would lead to
6812         // invalid scalarization costs.
6813         // Do not apply discount logic if hacked cost is needed
6814         // for emulated masked memrefs.
6815         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6816             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6817           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6818         // Remember that BB will remain after vectorization.
6819         PredicatedBBsAfterVectorization.insert(BB);
6820       }
6821   }
6822 }
6823 
6824 int LoopVectorizationCostModel::computePredInstDiscount(
6825     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6826   assert(!isUniformAfterVectorization(PredInst, VF) &&
6827          "Instruction marked uniform-after-vectorization will be predicated");
6828 
6829   // Initialize the discount to zero, meaning that the scalar version and the
6830   // vector version cost the same.
6831   InstructionCost Discount = 0;
6832 
6833   // Holds instructions to analyze. The instructions we visit are mapped in
6834   // ScalarCosts. Those instructions are the ones that would be scalarized if
6835   // we find that the scalar version costs less.
6836   SmallVector<Instruction *, 8> Worklist;
6837 
6838   // Returns true if the given instruction can be scalarized.
6839   auto canBeScalarized = [&](Instruction *I) -> bool {
6840     // We only attempt to scalarize instructions forming a single-use chain
6841     // from the original predicated block that would otherwise be vectorized.
6842     // Although not strictly necessary, we give up on instructions we know will
6843     // already be scalar to avoid traversing chains that are unlikely to be
6844     // beneficial.
6845     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6846         isScalarAfterVectorization(I, VF))
6847       return false;
6848 
6849     // If the instruction is scalar with predication, it will be analyzed
6850     // separately. We ignore it within the context of PredInst.
6851     if (isScalarWithPredication(I))
6852       return false;
6853 
6854     // If any of the instruction's operands are uniform after vectorization,
6855     // the instruction cannot be scalarized. This prevents, for example, a
6856     // masked load from being scalarized.
6857     //
6858     // We assume we will only emit a value for lane zero of an instruction
6859     // marked uniform after vectorization, rather than VF identical values.
6860     // Thus, if we scalarize an instruction that uses a uniform, we would
6861     // create uses of values corresponding to the lanes we aren't emitting code
6862     // for. This behavior can be changed by allowing getScalarValue to clone
6863     // the lane zero values for uniforms rather than asserting.
6864     for (Use &U : I->operands())
6865       if (auto *J = dyn_cast<Instruction>(U.get()))
6866         if (isUniformAfterVectorization(J, VF))
6867           return false;
6868 
6869     // Otherwise, we can scalarize the instruction.
6870     return true;
6871   };
6872 
6873   // Compute the expected cost discount from scalarizing the entire expression
6874   // feeding the predicated instruction. We currently only consider expressions
6875   // that are single-use instruction chains.
6876   Worklist.push_back(PredInst);
6877   while (!Worklist.empty()) {
6878     Instruction *I = Worklist.pop_back_val();
6879 
6880     // If we've already analyzed the instruction, there's nothing to do.
6881     if (ScalarCosts.find(I) != ScalarCosts.end())
6882       continue;
6883 
6884     // Compute the cost of the vector instruction. Note that this cost already
6885     // includes the scalarization overhead of the predicated instruction.
6886     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6887 
6888     // Compute the cost of the scalarized instruction. This cost is the cost of
6889     // the instruction as if it wasn't if-converted and instead remained in the
6890     // predicated block. We will scale this cost by block probability after
6891     // computing the scalarization overhead.
6892     InstructionCost ScalarCost =
6893         VF.getFixedValue() *
6894         getInstructionCost(I, ElementCount::getFixed(1)).first;
6895 
6896     // Compute the scalarization overhead of needed insertelement instructions
6897     // and phi nodes.
6898     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6899       ScalarCost += TTI.getScalarizationOverhead(
6900           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6901           APInt::getAllOnes(VF.getFixedValue()), true, false);
6902       ScalarCost +=
6903           VF.getFixedValue() *
6904           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6905     }
6906 
6907     // Compute the scalarization overhead of needed extractelement
6908     // instructions. For each of the instruction's operands, if the operand can
6909     // be scalarized, add it to the worklist; otherwise, account for the
6910     // overhead.
6911     for (Use &U : I->operands())
6912       if (auto *J = dyn_cast<Instruction>(U.get())) {
6913         assert(VectorType::isValidElementType(J->getType()) &&
6914                "Instruction has non-scalar type");
6915         if (canBeScalarized(J))
6916           Worklist.push_back(J);
6917         else if (needsExtract(J, VF)) {
6918           ScalarCost += TTI.getScalarizationOverhead(
6919               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6920               APInt::getAllOnes(VF.getFixedValue()), false, true);
6921         }
6922       }
6923 
6924     // Scale the total scalar cost by block probability.
6925     ScalarCost /= getReciprocalPredBlockProb();
6926 
6927     // Compute the discount. A non-negative discount means the vector version
6928     // of the instruction costs more, and scalarizing would be beneficial.
6929     Discount += VectorCost - ScalarCost;
6930     ScalarCosts[I] = ScalarCost;
6931   }
6932 
6933   return *Discount.getValue();
6934 }
6935 
6936 LoopVectorizationCostModel::VectorizationCostTy
6937 LoopVectorizationCostModel::expectedCost(
6938     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6939   VectorizationCostTy Cost;
6940 
6941   // For each block.
6942   for (BasicBlock *BB : TheLoop->blocks()) {
6943     VectorizationCostTy BlockCost;
6944 
6945     // For each instruction in the old loop.
6946     for (Instruction &I : BB->instructionsWithoutDebug()) {
6947       // Skip ignored values.
6948       if (ValuesToIgnore.count(&I) ||
6949           (VF.isVector() && VecValuesToIgnore.count(&I)))
6950         continue;
6951 
6952       VectorizationCostTy C = getInstructionCost(&I, VF);
6953 
6954       // Check if we should override the cost.
6955       if (C.first.isValid() &&
6956           ForceTargetInstructionCost.getNumOccurrences() > 0)
6957         C.first = InstructionCost(ForceTargetInstructionCost);
6958 
6959       // Keep a list of instructions with invalid costs.
6960       if (Invalid && !C.first.isValid())
6961         Invalid->emplace_back(&I, VF);
6962 
6963       BlockCost.first += C.first;
6964       BlockCost.second |= C.second;
6965       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6966                         << " for VF " << VF << " For instruction: " << I
6967                         << '\n');
6968     }
6969 
6970     // If we are vectorizing a predicated block, it will have been
6971     // if-converted. This means that the block's instructions (aside from
6972     // stores and instructions that may divide by zero) will now be
6973     // unconditionally executed. For the scalar case, we may not always execute
6974     // the predicated block, if it is an if-else block. Thus, scale the block's
6975     // cost by the probability of executing it. blockNeedsPredication from
6976     // Legal is used so as to not include all blocks in tail folded loops.
6977     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6978       BlockCost.first /= getReciprocalPredBlockProb();
6979 
6980     Cost.first += BlockCost.first;
6981     Cost.second |= BlockCost.second;
6982   }
6983 
6984   return Cost;
6985 }
6986 
6987 /// Gets Address Access SCEV after verifying that the access pattern
6988 /// is loop invariant except the induction variable dependence.
6989 ///
6990 /// This SCEV can be sent to the Target in order to estimate the address
6991 /// calculation cost.
6992 static const SCEV *getAddressAccessSCEV(
6993               Value *Ptr,
6994               LoopVectorizationLegality *Legal,
6995               PredicatedScalarEvolution &PSE,
6996               const Loop *TheLoop) {
6997 
6998   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6999   if (!Gep)
7000     return nullptr;
7001 
7002   // We are looking for a gep with all loop invariant indices except for one
7003   // which should be an induction variable.
7004   auto SE = PSE.getSE();
7005   unsigned NumOperands = Gep->getNumOperands();
7006   for (unsigned i = 1; i < NumOperands; ++i) {
7007     Value *Opd = Gep->getOperand(i);
7008     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7009         !Legal->isInductionVariable(Opd))
7010       return nullptr;
7011   }
7012 
7013   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7014   return PSE.getSCEV(Ptr);
7015 }
7016 
7017 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7018   return Legal->hasStride(I->getOperand(0)) ||
7019          Legal->hasStride(I->getOperand(1));
7020 }
7021 
7022 InstructionCost
7023 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7024                                                         ElementCount VF) {
7025   assert(VF.isVector() &&
7026          "Scalarization cost of instruction implies vectorization.");
7027   if (VF.isScalable())
7028     return InstructionCost::getInvalid();
7029 
7030   Type *ValTy = getLoadStoreType(I);
7031   auto SE = PSE.getSE();
7032 
7033   unsigned AS = getLoadStoreAddressSpace(I);
7034   Value *Ptr = getLoadStorePointerOperand(I);
7035   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7036 
7037   // Figure out whether the access is strided and get the stride value
7038   // if it's known in compile time
7039   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7040 
7041   // Get the cost of the scalar memory instruction and address computation.
7042   InstructionCost Cost =
7043       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7044 
7045   // Don't pass *I here, since it is scalar but will actually be part of a
7046   // vectorized loop where the user of it is a vectorized instruction.
7047   const Align Alignment = getLoadStoreAlignment(I);
7048   Cost += VF.getKnownMinValue() *
7049           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7050                               AS, TTI::TCK_RecipThroughput);
7051 
7052   // Get the overhead of the extractelement and insertelement instructions
7053   // we might create due to scalarization.
7054   Cost += getScalarizationOverhead(I, VF);
7055 
7056   // If we have a predicated load/store, it will need extra i1 extracts and
7057   // conditional branches, but may not be executed for each vector lane. Scale
7058   // the cost by the probability of executing the predicated block.
7059   if (isPredicatedInst(I)) {
7060     Cost /= getReciprocalPredBlockProb();
7061 
7062     // Add the cost of an i1 extract and a branch
7063     auto *Vec_i1Ty =
7064         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7065     Cost += TTI.getScalarizationOverhead(
7066         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7067         /*Insert=*/false, /*Extract=*/true);
7068     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7069 
7070     if (useEmulatedMaskMemRefHack(I))
7071       // Artificially setting to a high enough value to practically disable
7072       // vectorization with such operations.
7073       Cost = 3000000;
7074   }
7075 
7076   return Cost;
7077 }
7078 
7079 InstructionCost
7080 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7081                                                     ElementCount VF) {
7082   Type *ValTy = getLoadStoreType(I);
7083   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7084   Value *Ptr = getLoadStorePointerOperand(I);
7085   unsigned AS = getLoadStoreAddressSpace(I);
7086   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
7087   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7088 
7089   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7090          "Stride should be 1 or -1 for consecutive memory access");
7091   const Align Alignment = getLoadStoreAlignment(I);
7092   InstructionCost Cost = 0;
7093   if (Legal->isMaskRequired(I))
7094     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7095                                       CostKind);
7096   else
7097     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7098                                 CostKind, I);
7099 
7100   bool Reverse = ConsecutiveStride < 0;
7101   if (Reverse)
7102     Cost +=
7103         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7104   return Cost;
7105 }
7106 
7107 InstructionCost
7108 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7109                                                 ElementCount VF) {
7110   assert(Legal->isUniformMemOp(*I));
7111 
7112   Type *ValTy = getLoadStoreType(I);
7113   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7114   const Align Alignment = getLoadStoreAlignment(I);
7115   unsigned AS = getLoadStoreAddressSpace(I);
7116   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7117   if (isa<LoadInst>(I)) {
7118     return TTI.getAddressComputationCost(ValTy) +
7119            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7120                                CostKind) +
7121            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7122   }
7123   StoreInst *SI = cast<StoreInst>(I);
7124 
7125   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7126   return TTI.getAddressComputationCost(ValTy) +
7127          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7128                              CostKind) +
7129          (isLoopInvariantStoreValue
7130               ? 0
7131               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7132                                        VF.getKnownMinValue() - 1));
7133 }
7134 
7135 InstructionCost
7136 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7137                                                  ElementCount VF) {
7138   Type *ValTy = getLoadStoreType(I);
7139   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7140   const Align Alignment = getLoadStoreAlignment(I);
7141   const Value *Ptr = getLoadStorePointerOperand(I);
7142 
7143   return TTI.getAddressComputationCost(VectorTy) +
7144          TTI.getGatherScatterOpCost(
7145              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7146              TargetTransformInfo::TCK_RecipThroughput, I);
7147 }
7148 
7149 InstructionCost
7150 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7151                                                    ElementCount VF) {
7152   // TODO: Once we have support for interleaving with scalable vectors
7153   // we can calculate the cost properly here.
7154   if (VF.isScalable())
7155     return InstructionCost::getInvalid();
7156 
7157   Type *ValTy = getLoadStoreType(I);
7158   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7159   unsigned AS = getLoadStoreAddressSpace(I);
7160 
7161   auto Group = getInterleavedAccessGroup(I);
7162   assert(Group && "Fail to get an interleaved access group.");
7163 
7164   unsigned InterleaveFactor = Group->getFactor();
7165   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7166 
7167   // Holds the indices of existing members in the interleaved group.
7168   SmallVector<unsigned, 4> Indices;
7169   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7170     if (Group->getMember(IF))
7171       Indices.push_back(IF);
7172 
7173   // Calculate the cost of the whole interleaved group.
7174   bool UseMaskForGaps =
7175       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7176       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7177   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7178       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7179       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7180 
7181   if (Group->isReverse()) {
7182     // TODO: Add support for reversed masked interleaved access.
7183     assert(!Legal->isMaskRequired(I) &&
7184            "Reverse masked interleaved access not supported.");
7185     Cost +=
7186         Group->getNumMembers() *
7187         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7188   }
7189   return Cost;
7190 }
7191 
7192 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7193     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7194   using namespace llvm::PatternMatch;
7195   // Early exit for no inloop reductions
7196   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7197     return None;
7198   auto *VectorTy = cast<VectorType>(Ty);
7199 
7200   // We are looking for a pattern of, and finding the minimal acceptable cost:
7201   //  reduce(mul(ext(A), ext(B))) or
7202   //  reduce(mul(A, B)) or
7203   //  reduce(ext(A)) or
7204   //  reduce(A).
7205   // The basic idea is that we walk down the tree to do that, finding the root
7206   // reduction instruction in InLoopReductionImmediateChains. From there we find
7207   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7208   // of the components. If the reduction cost is lower then we return it for the
7209   // reduction instruction and 0 for the other instructions in the pattern. If
7210   // it is not we return an invalid cost specifying the orignal cost method
7211   // should be used.
7212   Instruction *RetI = I;
7213   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7214     if (!RetI->hasOneUser())
7215       return None;
7216     RetI = RetI->user_back();
7217   }
7218   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7219       RetI->user_back()->getOpcode() == Instruction::Add) {
7220     if (!RetI->hasOneUser())
7221       return None;
7222     RetI = RetI->user_back();
7223   }
7224 
7225   // Test if the found instruction is a reduction, and if not return an invalid
7226   // cost specifying the parent to use the original cost modelling.
7227   if (!InLoopReductionImmediateChains.count(RetI))
7228     return None;
7229 
7230   // Find the reduction this chain is a part of and calculate the basic cost of
7231   // the reduction on its own.
7232   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7233   Instruction *ReductionPhi = LastChain;
7234   while (!isa<PHINode>(ReductionPhi))
7235     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7236 
7237   const RecurrenceDescriptor &RdxDesc =
7238       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7239 
7240   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7241       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7242 
7243   // If we're using ordered reductions then we can just return the base cost
7244   // here, since getArithmeticReductionCost calculates the full ordered
7245   // reduction cost when FP reassociation is not allowed.
7246   if (useOrderedReductions(RdxDesc))
7247     return BaseCost;
7248 
7249   // Get the operand that was not the reduction chain and match it to one of the
7250   // patterns, returning the better cost if it is found.
7251   Instruction *RedOp = RetI->getOperand(1) == LastChain
7252                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7253                            : dyn_cast<Instruction>(RetI->getOperand(1));
7254 
7255   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7256 
7257   Instruction *Op0, *Op1;
7258   if (RedOp &&
7259       match(RedOp,
7260             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7261       match(Op0, m_ZExtOrSExt(m_Value())) &&
7262       Op0->getOpcode() == Op1->getOpcode() &&
7263       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7264       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7265       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7266 
7267     // Matched reduce(ext(mul(ext(A), ext(B)))
7268     // Note that the extend opcodes need to all match, or if A==B they will have
7269     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7270     // which is equally fine.
7271     bool IsUnsigned = isa<ZExtInst>(Op0);
7272     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7273     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7274 
7275     InstructionCost ExtCost =
7276         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7277                              TTI::CastContextHint::None, CostKind, Op0);
7278     InstructionCost MulCost =
7279         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7280     InstructionCost Ext2Cost =
7281         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7282                              TTI::CastContextHint::None, CostKind, RedOp);
7283 
7284     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7285         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7286         CostKind);
7287 
7288     if (RedCost.isValid() &&
7289         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7290       return I == RetI ? RedCost : 0;
7291   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7292              !TheLoop->isLoopInvariant(RedOp)) {
7293     // Matched reduce(ext(A))
7294     bool IsUnsigned = isa<ZExtInst>(RedOp);
7295     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7296     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7297         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7298         CostKind);
7299 
7300     InstructionCost ExtCost =
7301         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7302                              TTI::CastContextHint::None, CostKind, RedOp);
7303     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7304       return I == RetI ? RedCost : 0;
7305   } else if (RedOp &&
7306              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7307     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7308         Op0->getOpcode() == Op1->getOpcode() &&
7309         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7310         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7311       bool IsUnsigned = isa<ZExtInst>(Op0);
7312       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7313       // Matched reduce(mul(ext, ext))
7314       InstructionCost ExtCost =
7315           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7316                                TTI::CastContextHint::None, CostKind, Op0);
7317       InstructionCost MulCost =
7318           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7319 
7320       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7321           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7322           CostKind);
7323 
7324       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7325         return I == RetI ? RedCost : 0;
7326     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7327       // Matched reduce(mul())
7328       InstructionCost MulCost =
7329           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7330 
7331       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7332           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7333           CostKind);
7334 
7335       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7336         return I == RetI ? RedCost : 0;
7337     }
7338   }
7339 
7340   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7341 }
7342 
7343 InstructionCost
7344 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7345                                                      ElementCount VF) {
7346   // Calculate scalar cost only. Vectorization cost should be ready at this
7347   // moment.
7348   if (VF.isScalar()) {
7349     Type *ValTy = getLoadStoreType(I);
7350     const Align Alignment = getLoadStoreAlignment(I);
7351     unsigned AS = getLoadStoreAddressSpace(I);
7352 
7353     return TTI.getAddressComputationCost(ValTy) +
7354            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7355                                TTI::TCK_RecipThroughput, I);
7356   }
7357   return getWideningCost(I, VF);
7358 }
7359 
7360 LoopVectorizationCostModel::VectorizationCostTy
7361 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7362                                                ElementCount VF) {
7363   // If we know that this instruction will remain uniform, check the cost of
7364   // the scalar version.
7365   if (isUniformAfterVectorization(I, VF))
7366     VF = ElementCount::getFixed(1);
7367 
7368   if (VF.isVector() && isProfitableToScalarize(I, VF))
7369     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7370 
7371   // Forced scalars do not have any scalarization overhead.
7372   auto ForcedScalar = ForcedScalars.find(VF);
7373   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7374     auto InstSet = ForcedScalar->second;
7375     if (InstSet.count(I))
7376       return VectorizationCostTy(
7377           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7378            VF.getKnownMinValue()),
7379           false);
7380   }
7381 
7382   Type *VectorTy;
7383   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7384 
7385   bool TypeNotScalarized =
7386       VF.isVector() && VectorTy->isVectorTy() &&
7387       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7388   return VectorizationCostTy(C, TypeNotScalarized);
7389 }
7390 
7391 InstructionCost
7392 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7393                                                      ElementCount VF) const {
7394 
7395   // There is no mechanism yet to create a scalable scalarization loop,
7396   // so this is currently Invalid.
7397   if (VF.isScalable())
7398     return InstructionCost::getInvalid();
7399 
7400   if (VF.isScalar())
7401     return 0;
7402 
7403   InstructionCost Cost = 0;
7404   Type *RetTy = ToVectorTy(I->getType(), VF);
7405   if (!RetTy->isVoidTy() &&
7406       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7407     Cost += TTI.getScalarizationOverhead(
7408         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7409         false);
7410 
7411   // Some targets keep addresses scalar.
7412   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7413     return Cost;
7414 
7415   // Some targets support efficient element stores.
7416   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7417     return Cost;
7418 
7419   // Collect operands to consider.
7420   CallInst *CI = dyn_cast<CallInst>(I);
7421   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7422 
7423   // Skip operands that do not require extraction/scalarization and do not incur
7424   // any overhead.
7425   SmallVector<Type *> Tys;
7426   for (auto *V : filterExtractingOperands(Ops, VF))
7427     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7428   return Cost + TTI.getOperandsScalarizationOverhead(
7429                     filterExtractingOperands(Ops, VF), Tys);
7430 }
7431 
7432 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7433   if (VF.isScalar())
7434     return;
7435   NumPredStores = 0;
7436   for (BasicBlock *BB : TheLoop->blocks()) {
7437     // For each instruction in the old loop.
7438     for (Instruction &I : *BB) {
7439       Value *Ptr =  getLoadStorePointerOperand(&I);
7440       if (!Ptr)
7441         continue;
7442 
7443       // TODO: We should generate better code and update the cost model for
7444       // predicated uniform stores. Today they are treated as any other
7445       // predicated store (see added test cases in
7446       // invariant-store-vectorization.ll).
7447       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7448         NumPredStores++;
7449 
7450       if (Legal->isUniformMemOp(I)) {
7451         // TODO: Avoid replicating loads and stores instead of
7452         // relying on instcombine to remove them.
7453         // Load: Scalar load + broadcast
7454         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7455         InstructionCost Cost;
7456         if (isa<StoreInst>(&I) && VF.isScalable() &&
7457             isLegalGatherOrScatter(&I)) {
7458           Cost = getGatherScatterCost(&I, VF);
7459           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7460         } else {
7461           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7462                  "Cannot yet scalarize uniform stores");
7463           Cost = getUniformMemOpCost(&I, VF);
7464           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7465         }
7466         continue;
7467       }
7468 
7469       // We assume that widening is the best solution when possible.
7470       if (memoryInstructionCanBeWidened(&I, VF)) {
7471         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7472         int ConsecutiveStride = Legal->isConsecutivePtr(
7473             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7474         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7475                "Expected consecutive stride.");
7476         InstWidening Decision =
7477             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7478         setWideningDecision(&I, VF, Decision, Cost);
7479         continue;
7480       }
7481 
7482       // Choose between Interleaving, Gather/Scatter or Scalarization.
7483       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7484       unsigned NumAccesses = 1;
7485       if (isAccessInterleaved(&I)) {
7486         auto Group = getInterleavedAccessGroup(&I);
7487         assert(Group && "Fail to get an interleaved access group.");
7488 
7489         // Make one decision for the whole group.
7490         if (getWideningDecision(&I, VF) != CM_Unknown)
7491           continue;
7492 
7493         NumAccesses = Group->getNumMembers();
7494         if (interleavedAccessCanBeWidened(&I, VF))
7495           InterleaveCost = getInterleaveGroupCost(&I, VF);
7496       }
7497 
7498       InstructionCost GatherScatterCost =
7499           isLegalGatherOrScatter(&I)
7500               ? getGatherScatterCost(&I, VF) * NumAccesses
7501               : InstructionCost::getInvalid();
7502 
7503       InstructionCost ScalarizationCost =
7504           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7505 
7506       // Choose better solution for the current VF,
7507       // write down this decision and use it during vectorization.
7508       InstructionCost Cost;
7509       InstWidening Decision;
7510       if (InterleaveCost <= GatherScatterCost &&
7511           InterleaveCost < ScalarizationCost) {
7512         Decision = CM_Interleave;
7513         Cost = InterleaveCost;
7514       } else if (GatherScatterCost < ScalarizationCost) {
7515         Decision = CM_GatherScatter;
7516         Cost = GatherScatterCost;
7517       } else {
7518         Decision = CM_Scalarize;
7519         Cost = ScalarizationCost;
7520       }
7521       // If the instructions belongs to an interleave group, the whole group
7522       // receives the same decision. The whole group receives the cost, but
7523       // the cost will actually be assigned to one instruction.
7524       if (auto Group = getInterleavedAccessGroup(&I))
7525         setWideningDecision(Group, VF, Decision, Cost);
7526       else
7527         setWideningDecision(&I, VF, Decision, Cost);
7528     }
7529   }
7530 
7531   // Make sure that any load of address and any other address computation
7532   // remains scalar unless there is gather/scatter support. This avoids
7533   // inevitable extracts into address registers, and also has the benefit of
7534   // activating LSR more, since that pass can't optimize vectorized
7535   // addresses.
7536   if (TTI.prefersVectorizedAddressing())
7537     return;
7538 
7539   // Start with all scalar pointer uses.
7540   SmallPtrSet<Instruction *, 8> AddrDefs;
7541   for (BasicBlock *BB : TheLoop->blocks())
7542     for (Instruction &I : *BB) {
7543       Instruction *PtrDef =
7544         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7545       if (PtrDef && TheLoop->contains(PtrDef) &&
7546           getWideningDecision(&I, VF) != CM_GatherScatter)
7547         AddrDefs.insert(PtrDef);
7548     }
7549 
7550   // Add all instructions used to generate the addresses.
7551   SmallVector<Instruction *, 4> Worklist;
7552   append_range(Worklist, AddrDefs);
7553   while (!Worklist.empty()) {
7554     Instruction *I = Worklist.pop_back_val();
7555     for (auto &Op : I->operands())
7556       if (auto *InstOp = dyn_cast<Instruction>(Op))
7557         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7558             AddrDefs.insert(InstOp).second)
7559           Worklist.push_back(InstOp);
7560   }
7561 
7562   for (auto *I : AddrDefs) {
7563     if (isa<LoadInst>(I)) {
7564       // Setting the desired widening decision should ideally be handled in
7565       // by cost functions, but since this involves the task of finding out
7566       // if the loaded register is involved in an address computation, it is
7567       // instead changed here when we know this is the case.
7568       InstWidening Decision = getWideningDecision(I, VF);
7569       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7570         // Scalarize a widened load of address.
7571         setWideningDecision(
7572             I, VF, CM_Scalarize,
7573             (VF.getKnownMinValue() *
7574              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7575       else if (auto Group = getInterleavedAccessGroup(I)) {
7576         // Scalarize an interleave group of address loads.
7577         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7578           if (Instruction *Member = Group->getMember(I))
7579             setWideningDecision(
7580                 Member, VF, CM_Scalarize,
7581                 (VF.getKnownMinValue() *
7582                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7583         }
7584       }
7585     } else
7586       // Make sure I gets scalarized and a cost estimate without
7587       // scalarization overhead.
7588       ForcedScalars[VF].insert(I);
7589   }
7590 }
7591 
7592 InstructionCost
7593 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7594                                                Type *&VectorTy) {
7595   Type *RetTy = I->getType();
7596   if (canTruncateToMinimalBitwidth(I, VF))
7597     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7598   auto SE = PSE.getSE();
7599   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7600 
7601   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7602                                                 ElementCount VF) -> bool {
7603     if (VF.isScalar())
7604       return true;
7605 
7606     auto Scalarized = InstsToScalarize.find(VF);
7607     assert(Scalarized != InstsToScalarize.end() &&
7608            "VF not yet analyzed for scalarization profitability");
7609     return !Scalarized->second.count(I) &&
7610            llvm::all_of(I->users(), [&](User *U) {
7611              auto *UI = cast<Instruction>(U);
7612              return !Scalarized->second.count(UI);
7613            });
7614   };
7615   (void) hasSingleCopyAfterVectorization;
7616 
7617   if (isScalarAfterVectorization(I, VF)) {
7618     // With the exception of GEPs and PHIs, after scalarization there should
7619     // only be one copy of the instruction generated in the loop. This is
7620     // because the VF is either 1, or any instructions that need scalarizing
7621     // have already been dealt with by the the time we get here. As a result,
7622     // it means we don't have to multiply the instruction cost by VF.
7623     assert(I->getOpcode() == Instruction::GetElementPtr ||
7624            I->getOpcode() == Instruction::PHI ||
7625            (I->getOpcode() == Instruction::BitCast &&
7626             I->getType()->isPointerTy()) ||
7627            hasSingleCopyAfterVectorization(I, VF));
7628     VectorTy = RetTy;
7629   } else
7630     VectorTy = ToVectorTy(RetTy, VF);
7631 
7632   // TODO: We need to estimate the cost of intrinsic calls.
7633   switch (I->getOpcode()) {
7634   case Instruction::GetElementPtr:
7635     // We mark this instruction as zero-cost because the cost of GEPs in
7636     // vectorized code depends on whether the corresponding memory instruction
7637     // is scalarized or not. Therefore, we handle GEPs with the memory
7638     // instruction cost.
7639     return 0;
7640   case Instruction::Br: {
7641     // In cases of scalarized and predicated instructions, there will be VF
7642     // predicated blocks in the vectorized loop. Each branch around these
7643     // blocks requires also an extract of its vector compare i1 element.
7644     bool ScalarPredicatedBB = false;
7645     BranchInst *BI = cast<BranchInst>(I);
7646     if (VF.isVector() && BI->isConditional() &&
7647         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7648          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7649       ScalarPredicatedBB = true;
7650 
7651     if (ScalarPredicatedBB) {
7652       // Not possible to scalarize scalable vector with predicated instructions.
7653       if (VF.isScalable())
7654         return InstructionCost::getInvalid();
7655       // Return cost for branches around scalarized and predicated blocks.
7656       auto *Vec_i1Ty =
7657           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7658       return (
7659           TTI.getScalarizationOverhead(
7660               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7661           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7662     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7663       // The back-edge branch will remain, as will all scalar branches.
7664       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7665     else
7666       // This branch will be eliminated by if-conversion.
7667       return 0;
7668     // Note: We currently assume zero cost for an unconditional branch inside
7669     // a predicated block since it will become a fall-through, although we
7670     // may decide in the future to call TTI for all branches.
7671   }
7672   case Instruction::PHI: {
7673     auto *Phi = cast<PHINode>(I);
7674 
7675     // First-order recurrences are replaced by vector shuffles inside the loop.
7676     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7677     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7678       return TTI.getShuffleCost(
7679           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7680           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7681 
7682     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7683     // converted into select instructions. We require N - 1 selects per phi
7684     // node, where N is the number of incoming values.
7685     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7686       return (Phi->getNumIncomingValues() - 1) *
7687              TTI.getCmpSelInstrCost(
7688                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7689                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7690                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7691 
7692     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7693   }
7694   case Instruction::UDiv:
7695   case Instruction::SDiv:
7696   case Instruction::URem:
7697   case Instruction::SRem:
7698     // If we have a predicated instruction, it may not be executed for each
7699     // vector lane. Get the scalarization cost and scale this amount by the
7700     // probability of executing the predicated block. If the instruction is not
7701     // predicated, we fall through to the next case.
7702     if (VF.isVector() && isScalarWithPredication(I)) {
7703       InstructionCost Cost = 0;
7704 
7705       // These instructions have a non-void type, so account for the phi nodes
7706       // that we will create. This cost is likely to be zero. The phi node
7707       // cost, if any, should be scaled by the block probability because it
7708       // models a copy at the end of each predicated block.
7709       Cost += VF.getKnownMinValue() *
7710               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7711 
7712       // The cost of the non-predicated instruction.
7713       Cost += VF.getKnownMinValue() *
7714               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7715 
7716       // The cost of insertelement and extractelement instructions needed for
7717       // scalarization.
7718       Cost += getScalarizationOverhead(I, VF);
7719 
7720       // Scale the cost by the probability of executing the predicated blocks.
7721       // This assumes the predicated block for each vector lane is equally
7722       // likely.
7723       return Cost / getReciprocalPredBlockProb();
7724     }
7725     LLVM_FALLTHROUGH;
7726   case Instruction::Add:
7727   case Instruction::FAdd:
7728   case Instruction::Sub:
7729   case Instruction::FSub:
7730   case Instruction::Mul:
7731   case Instruction::FMul:
7732   case Instruction::FDiv:
7733   case Instruction::FRem:
7734   case Instruction::Shl:
7735   case Instruction::LShr:
7736   case Instruction::AShr:
7737   case Instruction::And:
7738   case Instruction::Or:
7739   case Instruction::Xor: {
7740     // Since we will replace the stride by 1 the multiplication should go away.
7741     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7742       return 0;
7743 
7744     // Detect reduction patterns
7745     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7746       return *RedCost;
7747 
7748     // Certain instructions can be cheaper to vectorize if they have a constant
7749     // second vector operand. One example of this are shifts on x86.
7750     Value *Op2 = I->getOperand(1);
7751     TargetTransformInfo::OperandValueProperties Op2VP;
7752     TargetTransformInfo::OperandValueKind Op2VK =
7753         TTI.getOperandInfo(Op2, Op2VP);
7754     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7755       Op2VK = TargetTransformInfo::OK_UniformValue;
7756 
7757     SmallVector<const Value *, 4> Operands(I->operand_values());
7758     return TTI.getArithmeticInstrCost(
7759         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7760         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7761   }
7762   case Instruction::FNeg: {
7763     return TTI.getArithmeticInstrCost(
7764         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7765         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7766         TargetTransformInfo::OP_None, I->getOperand(0), I);
7767   }
7768   case Instruction::Select: {
7769     SelectInst *SI = cast<SelectInst>(I);
7770     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7771     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7772 
7773     const Value *Op0, *Op1;
7774     using namespace llvm::PatternMatch;
7775     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7776                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7777       // select x, y, false --> x & y
7778       // select x, true, y --> x | y
7779       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7780       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7781       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7782       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7783       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7784               Op1->getType()->getScalarSizeInBits() == 1);
7785 
7786       SmallVector<const Value *, 2> Operands{Op0, Op1};
7787       return TTI.getArithmeticInstrCost(
7788           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7789           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7790     }
7791 
7792     Type *CondTy = SI->getCondition()->getType();
7793     if (!ScalarCond)
7794       CondTy = VectorType::get(CondTy, VF);
7795     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7796                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7797   }
7798   case Instruction::ICmp:
7799   case Instruction::FCmp: {
7800     Type *ValTy = I->getOperand(0)->getType();
7801     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7802     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7803       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7804     VectorTy = ToVectorTy(ValTy, VF);
7805     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7806                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7807   }
7808   case Instruction::Store:
7809   case Instruction::Load: {
7810     ElementCount Width = VF;
7811     if (Width.isVector()) {
7812       InstWidening Decision = getWideningDecision(I, Width);
7813       assert(Decision != CM_Unknown &&
7814              "CM decision should be taken at this point");
7815       if (Decision == CM_Scalarize)
7816         Width = ElementCount::getFixed(1);
7817     }
7818     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7819     return getMemoryInstructionCost(I, VF);
7820   }
7821   case Instruction::BitCast:
7822     if (I->getType()->isPointerTy())
7823       return 0;
7824     LLVM_FALLTHROUGH;
7825   case Instruction::ZExt:
7826   case Instruction::SExt:
7827   case Instruction::FPToUI:
7828   case Instruction::FPToSI:
7829   case Instruction::FPExt:
7830   case Instruction::PtrToInt:
7831   case Instruction::IntToPtr:
7832   case Instruction::SIToFP:
7833   case Instruction::UIToFP:
7834   case Instruction::Trunc:
7835   case Instruction::FPTrunc: {
7836     // Computes the CastContextHint from a Load/Store instruction.
7837     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7838       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7839              "Expected a load or a store!");
7840 
7841       if (VF.isScalar() || !TheLoop->contains(I))
7842         return TTI::CastContextHint::Normal;
7843 
7844       switch (getWideningDecision(I, VF)) {
7845       case LoopVectorizationCostModel::CM_GatherScatter:
7846         return TTI::CastContextHint::GatherScatter;
7847       case LoopVectorizationCostModel::CM_Interleave:
7848         return TTI::CastContextHint::Interleave;
7849       case LoopVectorizationCostModel::CM_Scalarize:
7850       case LoopVectorizationCostModel::CM_Widen:
7851         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7852                                         : TTI::CastContextHint::Normal;
7853       case LoopVectorizationCostModel::CM_Widen_Reverse:
7854         return TTI::CastContextHint::Reversed;
7855       case LoopVectorizationCostModel::CM_Unknown:
7856         llvm_unreachable("Instr did not go through cost modelling?");
7857       }
7858 
7859       llvm_unreachable("Unhandled case!");
7860     };
7861 
7862     unsigned Opcode = I->getOpcode();
7863     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7864     // For Trunc, the context is the only user, which must be a StoreInst.
7865     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7866       if (I->hasOneUse())
7867         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7868           CCH = ComputeCCH(Store);
7869     }
7870     // For Z/Sext, the context is the operand, which must be a LoadInst.
7871     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7872              Opcode == Instruction::FPExt) {
7873       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7874         CCH = ComputeCCH(Load);
7875     }
7876 
7877     // We optimize the truncation of induction variables having constant
7878     // integer steps. The cost of these truncations is the same as the scalar
7879     // operation.
7880     if (isOptimizableIVTruncate(I, VF)) {
7881       auto *Trunc = cast<TruncInst>(I);
7882       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7883                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7884     }
7885 
7886     // Detect reduction patterns
7887     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7888       return *RedCost;
7889 
7890     Type *SrcScalarTy = I->getOperand(0)->getType();
7891     Type *SrcVecTy =
7892         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7893     if (canTruncateToMinimalBitwidth(I, VF)) {
7894       // This cast is going to be shrunk. This may remove the cast or it might
7895       // turn it into slightly different cast. For example, if MinBW == 16,
7896       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7897       //
7898       // Calculate the modified src and dest types.
7899       Type *MinVecTy = VectorTy;
7900       if (Opcode == Instruction::Trunc) {
7901         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7902         VectorTy =
7903             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7904       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7905         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7906         VectorTy =
7907             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7908       }
7909     }
7910 
7911     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7912   }
7913   case Instruction::Call: {
7914     bool NeedToScalarize;
7915     CallInst *CI = cast<CallInst>(I);
7916     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7917     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7918       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7919       return std::min(CallCost, IntrinsicCost);
7920     }
7921     return CallCost;
7922   }
7923   case Instruction::ExtractValue:
7924     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7925   case Instruction::Alloca:
7926     // We cannot easily widen alloca to a scalable alloca, as
7927     // the result would need to be a vector of pointers.
7928     if (VF.isScalable())
7929       return InstructionCost::getInvalid();
7930     LLVM_FALLTHROUGH;
7931   default:
7932     // This opcode is unknown. Assume that it is the same as 'mul'.
7933     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7934   } // end of switch.
7935 }
7936 
7937 char LoopVectorize::ID = 0;
7938 
7939 static const char lv_name[] = "Loop Vectorization";
7940 
7941 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7942 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7943 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7944 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7945 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7946 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7947 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7948 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7949 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7950 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7951 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7952 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7953 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7954 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7955 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7956 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7957 
7958 namespace llvm {
7959 
7960 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7961 
7962 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7963                               bool VectorizeOnlyWhenForced) {
7964   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7965 }
7966 
7967 } // end namespace llvm
7968 
7969 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7970   // Check if the pointer operand of a load or store instruction is
7971   // consecutive.
7972   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7973     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7974   return false;
7975 }
7976 
7977 void LoopVectorizationCostModel::collectValuesToIgnore() {
7978   // Ignore ephemeral values.
7979   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7980 
7981   // Ignore type-promoting instructions we identified during reduction
7982   // detection.
7983   for (auto &Reduction : Legal->getReductionVars()) {
7984     RecurrenceDescriptor &RedDes = Reduction.second;
7985     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7986     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7987   }
7988   // Ignore type-casting instructions we identified during induction
7989   // detection.
7990   for (auto &Induction : Legal->getInductionVars()) {
7991     InductionDescriptor &IndDes = Induction.second;
7992     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7993     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7994   }
7995 }
7996 
7997 void LoopVectorizationCostModel::collectInLoopReductions() {
7998   for (auto &Reduction : Legal->getReductionVars()) {
7999     PHINode *Phi = Reduction.first;
8000     RecurrenceDescriptor &RdxDesc = Reduction.second;
8001 
8002     // We don't collect reductions that are type promoted (yet).
8003     if (RdxDesc.getRecurrenceType() != Phi->getType())
8004       continue;
8005 
8006     // If the target would prefer this reduction to happen "in-loop", then we
8007     // want to record it as such.
8008     unsigned Opcode = RdxDesc.getOpcode();
8009     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8010         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8011                                    TargetTransformInfo::ReductionFlags()))
8012       continue;
8013 
8014     // Check that we can correctly put the reductions into the loop, by
8015     // finding the chain of operations that leads from the phi to the loop
8016     // exit value.
8017     SmallVector<Instruction *, 4> ReductionOperations =
8018         RdxDesc.getReductionOpChain(Phi, TheLoop);
8019     bool InLoop = !ReductionOperations.empty();
8020     if (InLoop) {
8021       InLoopReductionChains[Phi] = ReductionOperations;
8022       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8023       Instruction *LastChain = Phi;
8024       for (auto *I : ReductionOperations) {
8025         InLoopReductionImmediateChains[I] = LastChain;
8026         LastChain = I;
8027       }
8028     }
8029     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8030                       << " reduction for phi: " << *Phi << "\n");
8031   }
8032 }
8033 
8034 // TODO: we could return a pair of values that specify the max VF and
8035 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8036 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8037 // doesn't have a cost model that can choose which plan to execute if
8038 // more than one is generated.
8039 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8040                                  LoopVectorizationCostModel &CM) {
8041   unsigned WidestType;
8042   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8043   return WidestVectorRegBits / WidestType;
8044 }
8045 
8046 VectorizationFactor
8047 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8048   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8049   ElementCount VF = UserVF;
8050   // Outer loop handling: They may require CFG and instruction level
8051   // transformations before even evaluating whether vectorization is profitable.
8052   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8053   // the vectorization pipeline.
8054   if (!OrigLoop->isInnermost()) {
8055     // If the user doesn't provide a vectorization factor, determine a
8056     // reasonable one.
8057     if (UserVF.isZero()) {
8058       VF = ElementCount::getFixed(determineVPlanVF(
8059           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8060               .getFixedSize(),
8061           CM));
8062       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8063 
8064       // Make sure we have a VF > 1 for stress testing.
8065       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8066         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8067                           << "overriding computed VF.\n");
8068         VF = ElementCount::getFixed(4);
8069       }
8070     }
8071     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8072     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8073            "VF needs to be a power of two");
8074     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8075                       << "VF " << VF << " to build VPlans.\n");
8076     buildVPlans(VF, VF);
8077 
8078     // For VPlan build stress testing, we bail out after VPlan construction.
8079     if (VPlanBuildStressTest)
8080       return VectorizationFactor::Disabled();
8081 
8082     return {VF, 0 /*Cost*/};
8083   }
8084 
8085   LLVM_DEBUG(
8086       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8087                 "VPlan-native path.\n");
8088   return VectorizationFactor::Disabled();
8089 }
8090 
8091 Optional<VectorizationFactor>
8092 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8093   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8094   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8095   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8096     return None;
8097 
8098   // Invalidate interleave groups if all blocks of loop will be predicated.
8099   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8100       !useMaskedInterleavedAccesses(*TTI)) {
8101     LLVM_DEBUG(
8102         dbgs()
8103         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8104            "which requires masked-interleaved support.\n");
8105     if (CM.InterleaveInfo.invalidateGroups())
8106       // Invalidating interleave groups also requires invalidating all decisions
8107       // based on them, which includes widening decisions and uniform and scalar
8108       // values.
8109       CM.invalidateCostModelingDecisions();
8110   }
8111 
8112   ElementCount MaxUserVF =
8113       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8114   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8115   if (!UserVF.isZero() && UserVFIsLegal) {
8116     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8117            "VF needs to be a power of two");
8118     // Collect the instructions (and their associated costs) that will be more
8119     // profitable to scalarize.
8120     if (CM.selectUserVectorizationFactor(UserVF)) {
8121       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8122       CM.collectInLoopReductions();
8123       buildVPlansWithVPRecipes(UserVF, UserVF);
8124       LLVM_DEBUG(printPlans(dbgs()));
8125       return {{UserVF, 0}};
8126     } else
8127       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8128                               "InvalidCost", ORE, OrigLoop);
8129   }
8130 
8131   // Populate the set of Vectorization Factor Candidates.
8132   ElementCountSet VFCandidates;
8133   for (auto VF = ElementCount::getFixed(1);
8134        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8135     VFCandidates.insert(VF);
8136   for (auto VF = ElementCount::getScalable(1);
8137        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8138     VFCandidates.insert(VF);
8139 
8140   for (const auto &VF : VFCandidates) {
8141     // Collect Uniform and Scalar instructions after vectorization with VF.
8142     CM.collectUniformsAndScalars(VF);
8143 
8144     // Collect the instructions (and their associated costs) that will be more
8145     // profitable to scalarize.
8146     if (VF.isVector())
8147       CM.collectInstsToScalarize(VF);
8148   }
8149 
8150   CM.collectInLoopReductions();
8151   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8152   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8153 
8154   LLVM_DEBUG(printPlans(dbgs()));
8155   if (!MaxFactors.hasVector())
8156     return VectorizationFactor::Disabled();
8157 
8158   // Select the optimal vectorization factor.
8159   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8160 
8161   // Check if it is profitable to vectorize with runtime checks.
8162   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8163   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8164     bool PragmaThresholdReached =
8165         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8166     bool ThresholdReached =
8167         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8168     if ((ThresholdReached && !Hints.allowReordering()) ||
8169         PragmaThresholdReached) {
8170       ORE->emit([&]() {
8171         return OptimizationRemarkAnalysisAliasing(
8172                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8173                    OrigLoop->getHeader())
8174                << "loop not vectorized: cannot prove it is safe to reorder "
8175                   "memory operations";
8176       });
8177       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8178       Hints.emitRemarkWithHints();
8179       return VectorizationFactor::Disabled();
8180     }
8181   }
8182   return SelectedVF;
8183 }
8184 
8185 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8186   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8187                     << '\n');
8188   BestVF = VF;
8189   BestUF = UF;
8190 
8191   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8192     return !Plan->hasVF(VF);
8193   });
8194   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8195 }
8196 
8197 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8198                                            DominatorTree *DT) {
8199   // Perform the actual loop transformation.
8200 
8201   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8202   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8203   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8204 
8205   VPTransformState State{
8206       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8207   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8208   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8209   State.CanonicalIV = ILV.Induction;
8210 
8211   ILV.printDebugTracesAtStart();
8212 
8213   //===------------------------------------------------===//
8214   //
8215   // Notice: any optimization or new instruction that go
8216   // into the code below should also be implemented in
8217   // the cost-model.
8218   //
8219   //===------------------------------------------------===//
8220 
8221   // 2. Copy and widen instructions from the old loop into the new loop.
8222   VPlans.front()->execute(&State);
8223 
8224   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8225   //    predication, updating analyses.
8226   ILV.fixVectorizedLoop(State);
8227 
8228   ILV.printDebugTracesAtEnd();
8229 }
8230 
8231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8232 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8233   for (const auto &Plan : VPlans)
8234     if (PrintVPlansInDotFormat)
8235       Plan->printDOT(O);
8236     else
8237       Plan->print(O);
8238 }
8239 #endif
8240 
8241 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8242     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8243 
8244   // We create new control-flow for the vectorized loop, so the original exit
8245   // conditions will be dead after vectorization if it's only used by the
8246   // terminator
8247   SmallVector<BasicBlock*> ExitingBlocks;
8248   OrigLoop->getExitingBlocks(ExitingBlocks);
8249   for (auto *BB : ExitingBlocks) {
8250     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8251     if (!Cmp || !Cmp->hasOneUse())
8252       continue;
8253 
8254     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8255     if (!DeadInstructions.insert(Cmp).second)
8256       continue;
8257 
8258     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8259     // TODO: can recurse through operands in general
8260     for (Value *Op : Cmp->operands()) {
8261       if (isa<TruncInst>(Op) && Op->hasOneUse())
8262           DeadInstructions.insert(cast<Instruction>(Op));
8263     }
8264   }
8265 
8266   // We create new "steps" for induction variable updates to which the original
8267   // induction variables map. An original update instruction will be dead if
8268   // all its users except the induction variable are dead.
8269   auto *Latch = OrigLoop->getLoopLatch();
8270   for (auto &Induction : Legal->getInductionVars()) {
8271     PHINode *Ind = Induction.first;
8272     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8273 
8274     // If the tail is to be folded by masking, the primary induction variable,
8275     // if exists, isn't dead: it will be used for masking. Don't kill it.
8276     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8277       continue;
8278 
8279     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8280           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8281         }))
8282       DeadInstructions.insert(IndUpdate);
8283 
8284     // We record as "Dead" also the type-casting instructions we had identified
8285     // during induction analysis. We don't need any handling for them in the
8286     // vectorized loop because we have proven that, under a proper runtime
8287     // test guarding the vectorized loop, the value of the phi, and the casted
8288     // value of the phi, are the same. The last instruction in this casting chain
8289     // will get its scalar/vector/widened def from the scalar/vector/widened def
8290     // of the respective phi node. Any other casts in the induction def-use chain
8291     // have no other uses outside the phi update chain, and will be ignored.
8292     InductionDescriptor &IndDes = Induction.second;
8293     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8294     DeadInstructions.insert(Casts.begin(), Casts.end());
8295   }
8296 }
8297 
8298 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8299 
8300 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8301 
8302 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8303                                         Instruction::BinaryOps BinOp) {
8304   // When unrolling and the VF is 1, we only need to add a simple scalar.
8305   Type *Ty = Val->getType();
8306   assert(!Ty->isVectorTy() && "Val must be a scalar");
8307 
8308   if (Ty->isFloatingPointTy()) {
8309     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8310 
8311     // Floating-point operations inherit FMF via the builder's flags.
8312     Value *MulOp = Builder.CreateFMul(C, Step);
8313     return Builder.CreateBinOp(BinOp, Val, MulOp);
8314   }
8315   Constant *C = ConstantInt::get(Ty, StartIdx);
8316   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8317 }
8318 
8319 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8320   SmallVector<Metadata *, 4> MDs;
8321   // Reserve first location for self reference to the LoopID metadata node.
8322   MDs.push_back(nullptr);
8323   bool IsUnrollMetadata = false;
8324   MDNode *LoopID = L->getLoopID();
8325   if (LoopID) {
8326     // First find existing loop unrolling disable metadata.
8327     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8328       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8329       if (MD) {
8330         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8331         IsUnrollMetadata =
8332             S && S->getString().startswith("llvm.loop.unroll.disable");
8333       }
8334       MDs.push_back(LoopID->getOperand(i));
8335     }
8336   }
8337 
8338   if (!IsUnrollMetadata) {
8339     // Add runtime unroll disable metadata.
8340     LLVMContext &Context = L->getHeader()->getContext();
8341     SmallVector<Metadata *, 1> DisableOperands;
8342     DisableOperands.push_back(
8343         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8344     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8345     MDs.push_back(DisableNode);
8346     MDNode *NewLoopID = MDNode::get(Context, MDs);
8347     // Set operand 0 to refer to the loop id itself.
8348     NewLoopID->replaceOperandWith(0, NewLoopID);
8349     L->setLoopID(NewLoopID);
8350   }
8351 }
8352 
8353 //===--------------------------------------------------------------------===//
8354 // EpilogueVectorizerMainLoop
8355 //===--------------------------------------------------------------------===//
8356 
8357 /// This function is partially responsible for generating the control flow
8358 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8359 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8360   MDNode *OrigLoopID = OrigLoop->getLoopID();
8361   Loop *Lp = createVectorLoopSkeleton("");
8362 
8363   // Generate the code to check the minimum iteration count of the vector
8364   // epilogue (see below).
8365   EPI.EpilogueIterationCountCheck =
8366       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8367   EPI.EpilogueIterationCountCheck->setName("iter.check");
8368 
8369   // Generate the code to check any assumptions that we've made for SCEV
8370   // expressions.
8371   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8372 
8373   // Generate the code that checks at runtime if arrays overlap. We put the
8374   // checks into a separate block to make the more common case of few elements
8375   // faster.
8376   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8377 
8378   // Generate the iteration count check for the main loop, *after* the check
8379   // for the epilogue loop, so that the path-length is shorter for the case
8380   // that goes directly through the vector epilogue. The longer-path length for
8381   // the main loop is compensated for, by the gain from vectorizing the larger
8382   // trip count. Note: the branch will get updated later on when we vectorize
8383   // the epilogue.
8384   EPI.MainLoopIterationCountCheck =
8385       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8386 
8387   // Generate the induction variable.
8388   OldInduction = Legal->getPrimaryInduction();
8389   Type *IdxTy = Legal->getWidestInductionType();
8390   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8391   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8392   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8393   EPI.VectorTripCount = CountRoundDown;
8394   Induction =
8395       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8396                               getDebugLocFromInstOrOperands(OldInduction));
8397 
8398   // Skip induction resume value creation here because they will be created in
8399   // the second pass. If we created them here, they wouldn't be used anyway,
8400   // because the vplan in the second pass still contains the inductions from the
8401   // original loop.
8402 
8403   return completeLoopSkeleton(Lp, OrigLoopID);
8404 }
8405 
8406 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8407   LLVM_DEBUG({
8408     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8409            << "Main Loop VF:" << EPI.MainLoopVF
8410            << ", Main Loop UF:" << EPI.MainLoopUF
8411            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8412            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8413   });
8414 }
8415 
8416 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8417   DEBUG_WITH_TYPE(VerboseDebug, {
8418     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8419   });
8420 }
8421 
8422 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8423     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8424   assert(L && "Expected valid Loop.");
8425   assert(Bypass && "Expected valid bypass basic block.");
8426   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8427   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8428   Value *Count = getOrCreateTripCount(L);
8429   // Reuse existing vector loop preheader for TC checks.
8430   // Note that new preheader block is generated for vector loop.
8431   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8432   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8433 
8434   // Generate code to check if the loop's trip count is less than VF * UF of the
8435   // main vector loop.
8436   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8437       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8438 
8439   Value *CheckMinIters = Builder.CreateICmp(
8440       P, Count, getRuntimeVF(Builder, Count->getType(), VFactor * UFactor),
8441       "min.iters.check");
8442 
8443   if (!ForEpilogue)
8444     TCCheckBlock->setName("vector.main.loop.iter.check");
8445 
8446   // Create new preheader for vector loop.
8447   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8448                                    DT, LI, nullptr, "vector.ph");
8449 
8450   if (ForEpilogue) {
8451     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8452                                  DT->getNode(Bypass)->getIDom()) &&
8453            "TC check is expected to dominate Bypass");
8454 
8455     // Update dominator for Bypass & LoopExit.
8456     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8457     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8458       // For loops with multiple exits, there's no edge from the middle block
8459       // to exit blocks (as the epilogue must run) and thus no need to update
8460       // the immediate dominator of the exit blocks.
8461       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8462 
8463     LoopBypassBlocks.push_back(TCCheckBlock);
8464 
8465     // Save the trip count so we don't have to regenerate it in the
8466     // vec.epilog.iter.check. This is safe to do because the trip count
8467     // generated here dominates the vector epilog iter check.
8468     EPI.TripCount = Count;
8469   }
8470 
8471   ReplaceInstWithInst(
8472       TCCheckBlock->getTerminator(),
8473       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8474 
8475   return TCCheckBlock;
8476 }
8477 
8478 //===--------------------------------------------------------------------===//
8479 // EpilogueVectorizerEpilogueLoop
8480 //===--------------------------------------------------------------------===//
8481 
8482 /// This function is partially responsible for generating the control flow
8483 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8484 BasicBlock *
8485 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8486   MDNode *OrigLoopID = OrigLoop->getLoopID();
8487   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8488 
8489   // Now, compare the remaining count and if there aren't enough iterations to
8490   // execute the vectorized epilogue skip to the scalar part.
8491   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8492   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8493   LoopVectorPreHeader =
8494       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8495                  LI, nullptr, "vec.epilog.ph");
8496   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8497                                           VecEpilogueIterationCountCheck);
8498 
8499   // Adjust the control flow taking the state info from the main loop
8500   // vectorization into account.
8501   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8502          "expected this to be saved from the previous pass.");
8503   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8504       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8505 
8506   DT->changeImmediateDominator(LoopVectorPreHeader,
8507                                EPI.MainLoopIterationCountCheck);
8508 
8509   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8510       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8511 
8512   if (EPI.SCEVSafetyCheck)
8513     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8514         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8515   if (EPI.MemSafetyCheck)
8516     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8517         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8518 
8519   DT->changeImmediateDominator(
8520       VecEpilogueIterationCountCheck,
8521       VecEpilogueIterationCountCheck->getSinglePredecessor());
8522 
8523   DT->changeImmediateDominator(LoopScalarPreHeader,
8524                                EPI.EpilogueIterationCountCheck);
8525   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8526     // If there is an epilogue which must run, there's no edge from the
8527     // middle block to exit blocks  and thus no need to update the immediate
8528     // dominator of the exit blocks.
8529     DT->changeImmediateDominator(LoopExitBlock,
8530                                  EPI.EpilogueIterationCountCheck);
8531 
8532   // Keep track of bypass blocks, as they feed start values to the induction
8533   // phis in the scalar loop preheader.
8534   if (EPI.SCEVSafetyCheck)
8535     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8536   if (EPI.MemSafetyCheck)
8537     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8538   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8539 
8540   // Generate a resume induction for the vector epilogue and put it in the
8541   // vector epilogue preheader
8542   Type *IdxTy = Legal->getWidestInductionType();
8543   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8544                                          LoopVectorPreHeader->getFirstNonPHI());
8545   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8546   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8547                            EPI.MainLoopIterationCountCheck);
8548 
8549   // Generate the induction variable.
8550   OldInduction = Legal->getPrimaryInduction();
8551   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8552   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8553   Value *StartIdx = EPResumeVal;
8554   Induction =
8555       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8556                               getDebugLocFromInstOrOperands(OldInduction));
8557 
8558   // Generate induction resume values. These variables save the new starting
8559   // indexes for the scalar loop. They are used to test if there are any tail
8560   // iterations left once the vector loop has completed.
8561   // Note that when the vectorized epilogue is skipped due to iteration count
8562   // check, then the resume value for the induction variable comes from
8563   // the trip count of the main vector loop, hence passing the AdditionalBypass
8564   // argument.
8565   createInductionResumeValues(Lp, CountRoundDown,
8566                               {VecEpilogueIterationCountCheck,
8567                                EPI.VectorTripCount} /* AdditionalBypass */);
8568 
8569   AddRuntimeUnrollDisableMetaData(Lp);
8570   return completeLoopSkeleton(Lp, OrigLoopID);
8571 }
8572 
8573 BasicBlock *
8574 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8575     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8576 
8577   assert(EPI.TripCount &&
8578          "Expected trip count to have been safed in the first pass.");
8579   assert(
8580       (!isa<Instruction>(EPI.TripCount) ||
8581        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8582       "saved trip count does not dominate insertion point.");
8583   Value *TC = EPI.TripCount;
8584   IRBuilder<> Builder(Insert->getTerminator());
8585   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8586 
8587   // Generate code to check if the loop's trip count is less than VF * UF of the
8588   // vector epilogue loop.
8589   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8590       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8591 
8592   Value *CheckMinIters = Builder.CreateICmp(
8593       P, Count,
8594       getRuntimeVF(Builder, Count->getType(), EPI.EpilogueVF * EPI.EpilogueUF),
8595       "min.epilog.iters.check");
8596 
8597   ReplaceInstWithInst(
8598       Insert->getTerminator(),
8599       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8600 
8601   LoopBypassBlocks.push_back(Insert);
8602   return Insert;
8603 }
8604 
8605 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8606   LLVM_DEBUG({
8607     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8608            << "Epilogue Loop VF:" << EPI.EpilogueVF
8609            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8610   });
8611 }
8612 
8613 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8614   DEBUG_WITH_TYPE(VerboseDebug, {
8615     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8616   });
8617 }
8618 
8619 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8620     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8621   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8622   bool PredicateAtRangeStart = Predicate(Range.Start);
8623 
8624   for (ElementCount TmpVF = Range.Start * 2;
8625        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8626     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8627       Range.End = TmpVF;
8628       break;
8629     }
8630 
8631   return PredicateAtRangeStart;
8632 }
8633 
8634 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8635 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8636 /// of VF's starting at a given VF and extending it as much as possible. Each
8637 /// vectorization decision can potentially shorten this sub-range during
8638 /// buildVPlan().
8639 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8640                                            ElementCount MaxVF) {
8641   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8642   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8643     VFRange SubRange = {VF, MaxVFPlusOne};
8644     VPlans.push_back(buildVPlan(SubRange));
8645     VF = SubRange.End;
8646   }
8647 }
8648 
8649 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8650                                          VPlanPtr &Plan) {
8651   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8652 
8653   // Look for cached value.
8654   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8655   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8656   if (ECEntryIt != EdgeMaskCache.end())
8657     return ECEntryIt->second;
8658 
8659   VPValue *SrcMask = createBlockInMask(Src, Plan);
8660 
8661   // The terminator has to be a branch inst!
8662   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8663   assert(BI && "Unexpected terminator found");
8664 
8665   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8666     return EdgeMaskCache[Edge] = SrcMask;
8667 
8668   // If source is an exiting block, we know the exit edge is dynamically dead
8669   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8670   // adding uses of an otherwise potentially dead instruction.
8671   if (OrigLoop->isLoopExiting(Src))
8672     return EdgeMaskCache[Edge] = SrcMask;
8673 
8674   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8675   assert(EdgeMask && "No Edge Mask found for condition");
8676 
8677   if (BI->getSuccessor(0) != Dst)
8678     EdgeMask = Builder.createNot(EdgeMask);
8679 
8680   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8681     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8682     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8683     // The select version does not introduce new UB if SrcMask is false and
8684     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8685     VPValue *False = Plan->getOrAddVPValue(
8686         ConstantInt::getFalse(BI->getCondition()->getType()));
8687     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8688   }
8689 
8690   return EdgeMaskCache[Edge] = EdgeMask;
8691 }
8692 
8693 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8694   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8695 
8696   // Look for cached value.
8697   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8698   if (BCEntryIt != BlockMaskCache.end())
8699     return BCEntryIt->second;
8700 
8701   // All-one mask is modelled as no-mask following the convention for masked
8702   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8703   VPValue *BlockMask = nullptr;
8704 
8705   if (OrigLoop->getHeader() == BB) {
8706     if (!CM.blockNeedsPredication(BB))
8707       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8708 
8709     // Create the block in mask as the first non-phi instruction in the block.
8710     VPBuilder::InsertPointGuard Guard(Builder);
8711     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8712     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8713 
8714     // Introduce the early-exit compare IV <= BTC to form header block mask.
8715     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8716     // Start by constructing the desired canonical IV.
8717     VPValue *IV = nullptr;
8718     if (Legal->getPrimaryInduction())
8719       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8720     else {
8721       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8722       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8723       IV = IVRecipe->getVPSingleValue();
8724     }
8725     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8726     bool TailFolded = !CM.isScalarEpilogueAllowed();
8727 
8728     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8729       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8730       // as a second argument, we only pass the IV here and extract the
8731       // tripcount from the transform state where codegen of the VP instructions
8732       // happen.
8733       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8734     } else {
8735       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8736     }
8737     return BlockMaskCache[BB] = BlockMask;
8738   }
8739 
8740   // This is the block mask. We OR all incoming edges.
8741   for (auto *Predecessor : predecessors(BB)) {
8742     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8743     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8744       return BlockMaskCache[BB] = EdgeMask;
8745 
8746     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8747       BlockMask = EdgeMask;
8748       continue;
8749     }
8750 
8751     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8752   }
8753 
8754   return BlockMaskCache[BB] = BlockMask;
8755 }
8756 
8757 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8758                                                 ArrayRef<VPValue *> Operands,
8759                                                 VFRange &Range,
8760                                                 VPlanPtr &Plan) {
8761   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8762          "Must be called with either a load or store");
8763 
8764   auto willWiden = [&](ElementCount VF) -> bool {
8765     if (VF.isScalar())
8766       return false;
8767     LoopVectorizationCostModel::InstWidening Decision =
8768         CM.getWideningDecision(I, VF);
8769     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8770            "CM decision should be taken at this point.");
8771     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8772       return true;
8773     if (CM.isScalarAfterVectorization(I, VF) ||
8774         CM.isProfitableToScalarize(I, VF))
8775       return false;
8776     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8777   };
8778 
8779   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8780     return nullptr;
8781 
8782   VPValue *Mask = nullptr;
8783   if (Legal->isMaskRequired(I))
8784     Mask = createBlockInMask(I->getParent(), Plan);
8785 
8786   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8787     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8788 
8789   StoreInst *Store = cast<StoreInst>(I);
8790   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8791                                             Mask);
8792 }
8793 
8794 VPWidenIntOrFpInductionRecipe *
8795 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8796                                            ArrayRef<VPValue *> Operands) const {
8797   // Check if this is an integer or fp induction. If so, build the recipe that
8798   // produces its scalar and vector values.
8799   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8800   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8801       II.getKind() == InductionDescriptor::IK_FpInduction) {
8802     assert(II.getStartValue() ==
8803            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8804     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8805     return new VPWidenIntOrFpInductionRecipe(
8806         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8807   }
8808 
8809   return nullptr;
8810 }
8811 
8812 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8813     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8814     VPlan &Plan) const {
8815   // Optimize the special case where the source is a constant integer
8816   // induction variable. Notice that we can only optimize the 'trunc' case
8817   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8818   // (c) other casts depend on pointer size.
8819 
8820   // Determine whether \p K is a truncation based on an induction variable that
8821   // can be optimized.
8822   auto isOptimizableIVTruncate =
8823       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8824     return [=](ElementCount VF) -> bool {
8825       return CM.isOptimizableIVTruncate(K, VF);
8826     };
8827   };
8828 
8829   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8830           isOptimizableIVTruncate(I), Range)) {
8831 
8832     InductionDescriptor II =
8833         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8834     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8835     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8836                                              Start, nullptr, I);
8837   }
8838   return nullptr;
8839 }
8840 
8841 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8842                                                 ArrayRef<VPValue *> Operands,
8843                                                 VPlanPtr &Plan) {
8844   // If all incoming values are equal, the incoming VPValue can be used directly
8845   // instead of creating a new VPBlendRecipe.
8846   VPValue *FirstIncoming = Operands[0];
8847   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8848         return FirstIncoming == Inc;
8849       })) {
8850     return Operands[0];
8851   }
8852 
8853   // We know that all PHIs in non-header blocks are converted into selects, so
8854   // we don't have to worry about the insertion order and we can just use the
8855   // builder. At this point we generate the predication tree. There may be
8856   // duplications since this is a simple recursive scan, but future
8857   // optimizations will clean it up.
8858   SmallVector<VPValue *, 2> OperandsWithMask;
8859   unsigned NumIncoming = Phi->getNumIncomingValues();
8860 
8861   for (unsigned In = 0; In < NumIncoming; In++) {
8862     VPValue *EdgeMask =
8863       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8864     assert((EdgeMask || NumIncoming == 1) &&
8865            "Multiple predecessors with one having a full mask");
8866     OperandsWithMask.push_back(Operands[In]);
8867     if (EdgeMask)
8868       OperandsWithMask.push_back(EdgeMask);
8869   }
8870   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8871 }
8872 
8873 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8874                                                    ArrayRef<VPValue *> Operands,
8875                                                    VFRange &Range) const {
8876 
8877   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8878       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8879       Range);
8880 
8881   if (IsPredicated)
8882     return nullptr;
8883 
8884   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8885   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8886              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8887              ID == Intrinsic::pseudoprobe ||
8888              ID == Intrinsic::experimental_noalias_scope_decl))
8889     return nullptr;
8890 
8891   auto willWiden = [&](ElementCount VF) -> bool {
8892     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8893     // The following case may be scalarized depending on the VF.
8894     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8895     // version of the instruction.
8896     // Is it beneficial to perform intrinsic call compared to lib call?
8897     bool NeedToScalarize = false;
8898     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8899     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8900     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8901     return UseVectorIntrinsic || !NeedToScalarize;
8902   };
8903 
8904   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8905     return nullptr;
8906 
8907   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8908   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8909 }
8910 
8911 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8912   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8913          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8914   // Instruction should be widened, unless it is scalar after vectorization,
8915   // scalarization is profitable or it is predicated.
8916   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8917     return CM.isScalarAfterVectorization(I, VF) ||
8918            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8919   };
8920   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8921                                                              Range);
8922 }
8923 
8924 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8925                                            ArrayRef<VPValue *> Operands) const {
8926   auto IsVectorizableOpcode = [](unsigned Opcode) {
8927     switch (Opcode) {
8928     case Instruction::Add:
8929     case Instruction::And:
8930     case Instruction::AShr:
8931     case Instruction::BitCast:
8932     case Instruction::FAdd:
8933     case Instruction::FCmp:
8934     case Instruction::FDiv:
8935     case Instruction::FMul:
8936     case Instruction::FNeg:
8937     case Instruction::FPExt:
8938     case Instruction::FPToSI:
8939     case Instruction::FPToUI:
8940     case Instruction::FPTrunc:
8941     case Instruction::FRem:
8942     case Instruction::FSub:
8943     case Instruction::ICmp:
8944     case Instruction::IntToPtr:
8945     case Instruction::LShr:
8946     case Instruction::Mul:
8947     case Instruction::Or:
8948     case Instruction::PtrToInt:
8949     case Instruction::SDiv:
8950     case Instruction::Select:
8951     case Instruction::SExt:
8952     case Instruction::Shl:
8953     case Instruction::SIToFP:
8954     case Instruction::SRem:
8955     case Instruction::Sub:
8956     case Instruction::Trunc:
8957     case Instruction::UDiv:
8958     case Instruction::UIToFP:
8959     case Instruction::URem:
8960     case Instruction::Xor:
8961     case Instruction::ZExt:
8962       return true;
8963     }
8964     return false;
8965   };
8966 
8967   if (!IsVectorizableOpcode(I->getOpcode()))
8968     return nullptr;
8969 
8970   // Success: widen this instruction.
8971   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8972 }
8973 
8974 void VPRecipeBuilder::fixHeaderPhis() {
8975   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8976   for (VPWidenPHIRecipe *R : PhisToFix) {
8977     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8978     VPRecipeBase *IncR =
8979         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8980     R->addOperand(IncR->getVPSingleValue());
8981   }
8982 }
8983 
8984 VPBasicBlock *VPRecipeBuilder::handleReplication(
8985     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8986     VPlanPtr &Plan) {
8987   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8988       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8989       Range);
8990 
8991   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8992       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8993 
8994   // Even if the instruction is not marked as uniform, there are certain
8995   // intrinsic calls that can be effectively treated as such, so we check for
8996   // them here. Conservatively, we only do this for scalable vectors, since
8997   // for fixed-width VFs we can always fall back on full scalarization.
8998   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8999     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9000     case Intrinsic::assume:
9001     case Intrinsic::lifetime_start:
9002     case Intrinsic::lifetime_end:
9003       // For scalable vectors if one of the operands is variant then we still
9004       // want to mark as uniform, which will generate one instruction for just
9005       // the first lane of the vector. We can't scalarize the call in the same
9006       // way as for fixed-width vectors because we don't know how many lanes
9007       // there are.
9008       //
9009       // The reasons for doing it this way for scalable vectors are:
9010       //   1. For the assume intrinsic generating the instruction for the first
9011       //      lane is still be better than not generating any at all. For
9012       //      example, the input may be a splat across all lanes.
9013       //   2. For the lifetime start/end intrinsics the pointer operand only
9014       //      does anything useful when the input comes from a stack object,
9015       //      which suggests it should always be uniform. For non-stack objects
9016       //      the effect is to poison the object, which still allows us to
9017       //      remove the call.
9018       IsUniform = true;
9019       break;
9020     default:
9021       break;
9022     }
9023   }
9024 
9025   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9026                                        IsUniform, IsPredicated);
9027   setRecipe(I, Recipe);
9028   Plan->addVPValue(I, Recipe);
9029 
9030   // Find if I uses a predicated instruction. If so, it will use its scalar
9031   // value. Avoid hoisting the insert-element which packs the scalar value into
9032   // a vector value, as that happens iff all users use the vector value.
9033   for (VPValue *Op : Recipe->operands()) {
9034     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9035     if (!PredR)
9036       continue;
9037     auto *RepR =
9038         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9039     assert(RepR->isPredicated() &&
9040            "expected Replicate recipe to be predicated");
9041     RepR->setAlsoPack(false);
9042   }
9043 
9044   // Finalize the recipe for Instr, first if it is not predicated.
9045   if (!IsPredicated) {
9046     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9047     VPBB->appendRecipe(Recipe);
9048     return VPBB;
9049   }
9050   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9051   assert(VPBB->getSuccessors().empty() &&
9052          "VPBB has successors when handling predicated replication.");
9053   // Record predicated instructions for above packing optimizations.
9054   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9055   VPBlockUtils::insertBlockAfter(Region, VPBB);
9056   auto *RegSucc = new VPBasicBlock();
9057   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9058   return RegSucc;
9059 }
9060 
9061 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9062                                                       VPRecipeBase *PredRecipe,
9063                                                       VPlanPtr &Plan) {
9064   // Instructions marked for predication are replicated and placed under an
9065   // if-then construct to prevent side-effects.
9066 
9067   // Generate recipes to compute the block mask for this region.
9068   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9069 
9070   // Build the triangular if-then region.
9071   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9072   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9073   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9074   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9075   auto *PHIRecipe = Instr->getType()->isVoidTy()
9076                         ? nullptr
9077                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9078   if (PHIRecipe) {
9079     Plan->removeVPValueFor(Instr);
9080     Plan->addVPValue(Instr, PHIRecipe);
9081   }
9082   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9083   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9084   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9085 
9086   // Note: first set Entry as region entry and then connect successors starting
9087   // from it in order, to propagate the "parent" of each VPBasicBlock.
9088   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9089   VPBlockUtils::connectBlocks(Pred, Exit);
9090 
9091   return Region;
9092 }
9093 
9094 VPRecipeOrVPValueTy
9095 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9096                                         ArrayRef<VPValue *> Operands,
9097                                         VFRange &Range, VPlanPtr &Plan) {
9098   // First, check for specific widening recipes that deal with calls, memory
9099   // operations, inductions and Phi nodes.
9100   if (auto *CI = dyn_cast<CallInst>(Instr))
9101     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9102 
9103   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9104     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9105 
9106   VPRecipeBase *Recipe;
9107   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9108     if (Phi->getParent() != OrigLoop->getHeader())
9109       return tryToBlend(Phi, Operands, Plan);
9110     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9111       return toVPRecipeResult(Recipe);
9112 
9113     VPWidenPHIRecipe *PhiRecipe = nullptr;
9114     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9115       VPValue *StartV = Operands[0];
9116       if (Legal->isReductionVariable(Phi)) {
9117         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9118         assert(RdxDesc.getRecurrenceStartValue() ==
9119                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9120         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9121                                              CM.isInLoopReduction(Phi),
9122                                              CM.useOrderedReductions(RdxDesc));
9123       } else {
9124         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9125       }
9126 
9127       // Record the incoming value from the backedge, so we can add the incoming
9128       // value from the backedge after all recipes have been created.
9129       recordRecipeOf(cast<Instruction>(
9130           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9131       PhisToFix.push_back(PhiRecipe);
9132     } else {
9133       // TODO: record start and backedge value for remaining pointer induction
9134       // phis.
9135       assert(Phi->getType()->isPointerTy() &&
9136              "only pointer phis should be handled here");
9137       PhiRecipe = new VPWidenPHIRecipe(Phi);
9138     }
9139 
9140     return toVPRecipeResult(PhiRecipe);
9141   }
9142 
9143   if (isa<TruncInst>(Instr) &&
9144       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9145                                                Range, *Plan)))
9146     return toVPRecipeResult(Recipe);
9147 
9148   if (!shouldWiden(Instr, Range))
9149     return nullptr;
9150 
9151   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9152     return toVPRecipeResult(new VPWidenGEPRecipe(
9153         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9154 
9155   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9156     bool InvariantCond =
9157         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9158     return toVPRecipeResult(new VPWidenSelectRecipe(
9159         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9160   }
9161 
9162   return toVPRecipeResult(tryToWiden(Instr, Operands));
9163 }
9164 
9165 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9166                                                         ElementCount MaxVF) {
9167   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9168 
9169   // Collect instructions from the original loop that will become trivially dead
9170   // in the vectorized loop. We don't need to vectorize these instructions. For
9171   // example, original induction update instructions can become dead because we
9172   // separately emit induction "steps" when generating code for the new loop.
9173   // Similarly, we create a new latch condition when setting up the structure
9174   // of the new loop, so the old one can become dead.
9175   SmallPtrSet<Instruction *, 4> DeadInstructions;
9176   collectTriviallyDeadInstructions(DeadInstructions);
9177 
9178   // Add assume instructions we need to drop to DeadInstructions, to prevent
9179   // them from being added to the VPlan.
9180   // TODO: We only need to drop assumes in blocks that get flattend. If the
9181   // control flow is preserved, we should keep them.
9182   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9183   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9184 
9185   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9186   // Dead instructions do not need sinking. Remove them from SinkAfter.
9187   for (Instruction *I : DeadInstructions)
9188     SinkAfter.erase(I);
9189 
9190   // Cannot sink instructions after dead instructions (there won't be any
9191   // recipes for them). Instead, find the first non-dead previous instruction.
9192   for (auto &P : Legal->getSinkAfter()) {
9193     Instruction *SinkTarget = P.second;
9194     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9195     (void)FirstInst;
9196     while (DeadInstructions.contains(SinkTarget)) {
9197       assert(
9198           SinkTarget != FirstInst &&
9199           "Must find a live instruction (at least the one feeding the "
9200           "first-order recurrence PHI) before reaching beginning of the block");
9201       SinkTarget = SinkTarget->getPrevNode();
9202       assert(SinkTarget != P.first &&
9203              "sink source equals target, no sinking required");
9204     }
9205     P.second = SinkTarget;
9206   }
9207 
9208   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9209   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9210     VFRange SubRange = {VF, MaxVFPlusOne};
9211     VPlans.push_back(
9212         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9213     VF = SubRange.End;
9214   }
9215 }
9216 
9217 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9218     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9219     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9220 
9221   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9222 
9223   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9224 
9225   // ---------------------------------------------------------------------------
9226   // Pre-construction: record ingredients whose recipes we'll need to further
9227   // process after constructing the initial VPlan.
9228   // ---------------------------------------------------------------------------
9229 
9230   // Mark instructions we'll need to sink later and their targets as
9231   // ingredients whose recipe we'll need to record.
9232   for (auto &Entry : SinkAfter) {
9233     RecipeBuilder.recordRecipeOf(Entry.first);
9234     RecipeBuilder.recordRecipeOf(Entry.second);
9235   }
9236   for (auto &Reduction : CM.getInLoopReductionChains()) {
9237     PHINode *Phi = Reduction.first;
9238     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9239     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9240 
9241     RecipeBuilder.recordRecipeOf(Phi);
9242     for (auto &R : ReductionOperations) {
9243       RecipeBuilder.recordRecipeOf(R);
9244       // For min/max reducitons, where we have a pair of icmp/select, we also
9245       // need to record the ICmp recipe, so it can be removed later.
9246       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9247         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9248     }
9249   }
9250 
9251   // For each interleave group which is relevant for this (possibly trimmed)
9252   // Range, add it to the set of groups to be later applied to the VPlan and add
9253   // placeholders for its members' Recipes which we'll be replacing with a
9254   // single VPInterleaveRecipe.
9255   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9256     auto applyIG = [IG, this](ElementCount VF) -> bool {
9257       return (VF.isVector() && // Query is illegal for VF == 1
9258               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9259                   LoopVectorizationCostModel::CM_Interleave);
9260     };
9261     if (!getDecisionAndClampRange(applyIG, Range))
9262       continue;
9263     InterleaveGroups.insert(IG);
9264     for (unsigned i = 0; i < IG->getFactor(); i++)
9265       if (Instruction *Member = IG->getMember(i))
9266         RecipeBuilder.recordRecipeOf(Member);
9267   };
9268 
9269   // ---------------------------------------------------------------------------
9270   // Build initial VPlan: Scan the body of the loop in a topological order to
9271   // visit each basic block after having visited its predecessor basic blocks.
9272   // ---------------------------------------------------------------------------
9273 
9274   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9275   auto Plan = std::make_unique<VPlan>();
9276   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9277   Plan->setEntry(VPBB);
9278 
9279   // Scan the body of the loop in a topological order to visit each basic block
9280   // after having visited its predecessor basic blocks.
9281   LoopBlocksDFS DFS(OrigLoop);
9282   DFS.perform(LI);
9283 
9284   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9285     // Relevant instructions from basic block BB will be grouped into VPRecipe
9286     // ingredients and fill a new VPBasicBlock.
9287     unsigned VPBBsForBB = 0;
9288     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9289     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9290     VPBB = FirstVPBBForBB;
9291     Builder.setInsertPoint(VPBB);
9292 
9293     // Introduce each ingredient into VPlan.
9294     // TODO: Model and preserve debug instrinsics in VPlan.
9295     for (Instruction &I : BB->instructionsWithoutDebug()) {
9296       Instruction *Instr = &I;
9297 
9298       // First filter out irrelevant instructions, to ensure no recipes are
9299       // built for them.
9300       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9301         continue;
9302 
9303       SmallVector<VPValue *, 4> Operands;
9304       auto *Phi = dyn_cast<PHINode>(Instr);
9305       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9306         Operands.push_back(Plan->getOrAddVPValue(
9307             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9308       } else {
9309         auto OpRange = Plan->mapToVPValues(Instr->operands());
9310         Operands = {OpRange.begin(), OpRange.end()};
9311       }
9312       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9313               Instr, Operands, Range, Plan)) {
9314         // If Instr can be simplified to an existing VPValue, use it.
9315         if (RecipeOrValue.is<VPValue *>()) {
9316           auto *VPV = RecipeOrValue.get<VPValue *>();
9317           Plan->addVPValue(Instr, VPV);
9318           // If the re-used value is a recipe, register the recipe for the
9319           // instruction, in case the recipe for Instr needs to be recorded.
9320           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9321             RecipeBuilder.setRecipe(Instr, R);
9322           continue;
9323         }
9324         // Otherwise, add the new recipe.
9325         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9326         for (auto *Def : Recipe->definedValues()) {
9327           auto *UV = Def->getUnderlyingValue();
9328           Plan->addVPValue(UV, Def);
9329         }
9330 
9331         RecipeBuilder.setRecipe(Instr, Recipe);
9332         VPBB->appendRecipe(Recipe);
9333         continue;
9334       }
9335 
9336       // Otherwise, if all widening options failed, Instruction is to be
9337       // replicated. This may create a successor for VPBB.
9338       VPBasicBlock *NextVPBB =
9339           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9340       if (NextVPBB != VPBB) {
9341         VPBB = NextVPBB;
9342         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9343                                     : "");
9344       }
9345     }
9346   }
9347 
9348   RecipeBuilder.fixHeaderPhis();
9349 
9350   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9351   // may also be empty, such as the last one VPBB, reflecting original
9352   // basic-blocks with no recipes.
9353   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9354   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9355   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9356   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9357   delete PreEntry;
9358 
9359   // ---------------------------------------------------------------------------
9360   // Transform initial VPlan: Apply previously taken decisions, in order, to
9361   // bring the VPlan to its final state.
9362   // ---------------------------------------------------------------------------
9363 
9364   // Apply Sink-After legal constraints.
9365   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9366     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9367     if (Region && Region->isReplicator()) {
9368       assert(Region->getNumSuccessors() == 1 &&
9369              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9370       assert(R->getParent()->size() == 1 &&
9371              "A recipe in an original replicator region must be the only "
9372              "recipe in its block");
9373       return Region;
9374     }
9375     return nullptr;
9376   };
9377   for (auto &Entry : SinkAfter) {
9378     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9379     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9380 
9381     auto *TargetRegion = GetReplicateRegion(Target);
9382     auto *SinkRegion = GetReplicateRegion(Sink);
9383     if (!SinkRegion) {
9384       // If the sink source is not a replicate region, sink the recipe directly.
9385       if (TargetRegion) {
9386         // The target is in a replication region, make sure to move Sink to
9387         // the block after it, not into the replication region itself.
9388         VPBasicBlock *NextBlock =
9389             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9390         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9391       } else
9392         Sink->moveAfter(Target);
9393       continue;
9394     }
9395 
9396     // The sink source is in a replicate region. Unhook the region from the CFG.
9397     auto *SinkPred = SinkRegion->getSinglePredecessor();
9398     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9399     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9400     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9401     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9402 
9403     if (TargetRegion) {
9404       // The target recipe is also in a replicate region, move the sink region
9405       // after the target region.
9406       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9407       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9408       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9409       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9410     } else {
9411       // The sink source is in a replicate region, we need to move the whole
9412       // replicate region, which should only contain a single recipe in the
9413       // main block.
9414       auto *SplitBlock =
9415           Target->getParent()->splitAt(std::next(Target->getIterator()));
9416 
9417       auto *SplitPred = SplitBlock->getSinglePredecessor();
9418 
9419       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9420       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9421       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9422       if (VPBB == SplitPred)
9423         VPBB = SplitBlock;
9424     }
9425   }
9426 
9427   // Adjust the recipes for any inloop reductions.
9428   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9429 
9430   // Introduce a recipe to combine the incoming and previous values of a
9431   // first-order recurrence.
9432   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9433     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9434     if (!RecurPhi)
9435       continue;
9436 
9437     auto *RecurSplice = cast<VPInstruction>(
9438         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9439                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9440 
9441     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9442     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9443       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9444       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9445     } else
9446       RecurSplice->moveAfter(PrevRecipe);
9447     RecurPhi->replaceAllUsesWith(RecurSplice);
9448     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9449     // all users.
9450     RecurSplice->setOperand(0, RecurPhi);
9451   }
9452 
9453   // Interleave memory: for each Interleave Group we marked earlier as relevant
9454   // for this VPlan, replace the Recipes widening its memory instructions with a
9455   // single VPInterleaveRecipe at its insertion point.
9456   for (auto IG : InterleaveGroups) {
9457     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9458         RecipeBuilder.getRecipe(IG->getInsertPos()));
9459     SmallVector<VPValue *, 4> StoredValues;
9460     for (unsigned i = 0; i < IG->getFactor(); ++i)
9461       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9462         auto *StoreR =
9463             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9464         StoredValues.push_back(StoreR->getStoredValue());
9465       }
9466 
9467     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9468                                         Recipe->getMask());
9469     VPIG->insertBefore(Recipe);
9470     unsigned J = 0;
9471     for (unsigned i = 0; i < IG->getFactor(); ++i)
9472       if (Instruction *Member = IG->getMember(i)) {
9473         if (!Member->getType()->isVoidTy()) {
9474           VPValue *OriginalV = Plan->getVPValue(Member);
9475           Plan->removeVPValueFor(Member);
9476           Plan->addVPValue(Member, VPIG->getVPValue(J));
9477           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9478           J++;
9479         }
9480         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9481       }
9482   }
9483 
9484   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9485   // in ways that accessing values using original IR values is incorrect.
9486   Plan->disableValue2VPValue();
9487 
9488   VPlanTransforms::sinkScalarOperands(*Plan);
9489   VPlanTransforms::mergeReplicateRegions(*Plan);
9490 
9491   std::string PlanName;
9492   raw_string_ostream RSO(PlanName);
9493   ElementCount VF = Range.Start;
9494   Plan->addVF(VF);
9495   RSO << "Initial VPlan for VF={" << VF;
9496   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9497     Plan->addVF(VF);
9498     RSO << "," << VF;
9499   }
9500   RSO << "},UF>=1";
9501   RSO.flush();
9502   Plan->setName(PlanName);
9503 
9504   return Plan;
9505 }
9506 
9507 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9508   // Outer loop handling: They may require CFG and instruction level
9509   // transformations before even evaluating whether vectorization is profitable.
9510   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9511   // the vectorization pipeline.
9512   assert(!OrigLoop->isInnermost());
9513   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9514 
9515   // Create new empty VPlan
9516   auto Plan = std::make_unique<VPlan>();
9517 
9518   // Build hierarchical CFG
9519   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9520   HCFGBuilder.buildHierarchicalCFG();
9521 
9522   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9523        VF *= 2)
9524     Plan->addVF(VF);
9525 
9526   if (EnableVPlanPredication) {
9527     VPlanPredicator VPP(*Plan);
9528     VPP.predicate();
9529 
9530     // Avoid running transformation to recipes until masked code generation in
9531     // VPlan-native path is in place.
9532     return Plan;
9533   }
9534 
9535   SmallPtrSet<Instruction *, 1> DeadInstructions;
9536   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9537                                              Legal->getInductionVars(),
9538                                              DeadInstructions, *PSE.getSE());
9539   return Plan;
9540 }
9541 
9542 // Adjust the recipes for reductions. For in-loop reductions the chain of
9543 // instructions leading from the loop exit instr to the phi need to be converted
9544 // to reductions, with one operand being vector and the other being the scalar
9545 // reduction chain. For other reductions, a select is introduced between the phi
9546 // and live-out recipes when folding the tail.
9547 void LoopVectorizationPlanner::adjustRecipesForReductions(
9548     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9549     ElementCount MinVF) {
9550   for (auto &Reduction : CM.getInLoopReductionChains()) {
9551     PHINode *Phi = Reduction.first;
9552     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9553     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9554 
9555     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9556       continue;
9557 
9558     // ReductionOperations are orders top-down from the phi's use to the
9559     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9560     // which of the two operands will remain scalar and which will be reduced.
9561     // For minmax the chain will be the select instructions.
9562     Instruction *Chain = Phi;
9563     for (Instruction *R : ReductionOperations) {
9564       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9565       RecurKind Kind = RdxDesc.getRecurrenceKind();
9566 
9567       VPValue *ChainOp = Plan->getVPValue(Chain);
9568       unsigned FirstOpId;
9569       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9570         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9571                "Expected to replace a VPWidenSelectSC");
9572         FirstOpId = 1;
9573       } else {
9574         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9575                "Expected to replace a VPWidenSC");
9576         FirstOpId = 0;
9577       }
9578       unsigned VecOpId =
9579           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9580       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9581 
9582       auto *CondOp = CM.foldTailByMasking()
9583                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9584                          : nullptr;
9585       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9586           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9587       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9588       Plan->removeVPValueFor(R);
9589       Plan->addVPValue(R, RedRecipe);
9590       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9591       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9592       WidenRecipe->eraseFromParent();
9593 
9594       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9595         VPRecipeBase *CompareRecipe =
9596             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9597         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9598                "Expected to replace a VPWidenSC");
9599         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9600                "Expected no remaining users");
9601         CompareRecipe->eraseFromParent();
9602       }
9603       Chain = R;
9604     }
9605   }
9606 
9607   // If tail is folded by masking, introduce selects between the phi
9608   // and the live-out instruction of each reduction, at the end of the latch.
9609   if (CM.foldTailByMasking()) {
9610     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9611       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9612       if (!PhiR || PhiR->isInLoop())
9613         continue;
9614       Builder.setInsertPoint(LatchVPBB);
9615       VPValue *Cond =
9616           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9617       VPValue *Red = PhiR->getBackedgeValue();
9618       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9619     }
9620   }
9621 }
9622 
9623 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9624 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9625                                VPSlotTracker &SlotTracker) const {
9626   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9627   IG->getInsertPos()->printAsOperand(O, false);
9628   O << ", ";
9629   getAddr()->printAsOperand(O, SlotTracker);
9630   VPValue *Mask = getMask();
9631   if (Mask) {
9632     O << ", ";
9633     Mask->printAsOperand(O, SlotTracker);
9634   }
9635 
9636   unsigned OpIdx = 0;
9637   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9638     if (!IG->getMember(i))
9639       continue;
9640     if (getNumStoreOperands() > 0) {
9641       O << "\n" << Indent << "  store ";
9642       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9643       O << " to index " << i;
9644     } else {
9645       O << "\n" << Indent << "  ";
9646       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9647       O << " = load from index " << i;
9648     }
9649     ++OpIdx;
9650   }
9651 }
9652 #endif
9653 
9654 void VPWidenCallRecipe::execute(VPTransformState &State) {
9655   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9656                                   *this, State);
9657 }
9658 
9659 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9660   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9661                                     this, *this, InvariantCond, State);
9662 }
9663 
9664 void VPWidenRecipe::execute(VPTransformState &State) {
9665   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9666 }
9667 
9668 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9669   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9670                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9671                       IsIndexLoopInvariant, State);
9672 }
9673 
9674 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9675   assert(!State.Instance && "Int or FP induction being replicated.");
9676   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9677                                    getTruncInst(), getVPValue(0),
9678                                    getCastValue(), State);
9679 }
9680 
9681 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9682   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9683                                  State);
9684 }
9685 
9686 void VPBlendRecipe::execute(VPTransformState &State) {
9687   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9688   // We know that all PHIs in non-header blocks are converted into
9689   // selects, so we don't have to worry about the insertion order and we
9690   // can just use the builder.
9691   // At this point we generate the predication tree. There may be
9692   // duplications since this is a simple recursive scan, but future
9693   // optimizations will clean it up.
9694 
9695   unsigned NumIncoming = getNumIncomingValues();
9696 
9697   // Generate a sequence of selects of the form:
9698   // SELECT(Mask3, In3,
9699   //        SELECT(Mask2, In2,
9700   //               SELECT(Mask1, In1,
9701   //                      In0)))
9702   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9703   // are essentially undef are taken from In0.
9704   InnerLoopVectorizer::VectorParts Entry(State.UF);
9705   for (unsigned In = 0; In < NumIncoming; ++In) {
9706     for (unsigned Part = 0; Part < State.UF; ++Part) {
9707       // We might have single edge PHIs (blocks) - use an identity
9708       // 'select' for the first PHI operand.
9709       Value *In0 = State.get(getIncomingValue(In), Part);
9710       if (In == 0)
9711         Entry[Part] = In0; // Initialize with the first incoming value.
9712       else {
9713         // Select between the current value and the previous incoming edge
9714         // based on the incoming mask.
9715         Value *Cond = State.get(getMask(In), Part);
9716         Entry[Part] =
9717             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9718       }
9719     }
9720   }
9721   for (unsigned Part = 0; Part < State.UF; ++Part)
9722     State.set(this, Entry[Part], Part);
9723 }
9724 
9725 void VPInterleaveRecipe::execute(VPTransformState &State) {
9726   assert(!State.Instance && "Interleave group being replicated.");
9727   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9728                                       getStoredValues(), getMask());
9729 }
9730 
9731 void VPReductionRecipe::execute(VPTransformState &State) {
9732   assert(!State.Instance && "Reduction being replicated.");
9733   Value *PrevInChain = State.get(getChainOp(), 0);
9734   for (unsigned Part = 0; Part < State.UF; ++Part) {
9735     RecurKind Kind = RdxDesc->getRecurrenceKind();
9736     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9737     Value *NewVecOp = State.get(getVecOp(), Part);
9738     if (VPValue *Cond = getCondOp()) {
9739       Value *NewCond = State.get(Cond, Part);
9740       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9741       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9742           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9743       Constant *IdenVec =
9744           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9745       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9746       NewVecOp = Select;
9747     }
9748     Value *NewRed;
9749     Value *NextInChain;
9750     if (IsOrdered) {
9751       if (State.VF.isVector())
9752         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9753                                         PrevInChain);
9754       else
9755         NewRed = State.Builder.CreateBinOp(
9756             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9757             PrevInChain, NewVecOp);
9758       PrevInChain = NewRed;
9759     } else {
9760       PrevInChain = State.get(getChainOp(), Part);
9761       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9762     }
9763     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9764       NextInChain =
9765           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9766                          NewRed, PrevInChain);
9767     } else if (IsOrdered)
9768       NextInChain = NewRed;
9769     else {
9770       NextInChain = State.Builder.CreateBinOp(
9771           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9772           PrevInChain);
9773     }
9774     State.set(this, NextInChain, Part);
9775   }
9776 }
9777 
9778 void VPReplicateRecipe::execute(VPTransformState &State) {
9779   if (State.Instance) { // Generate a single instance.
9780     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9781     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9782                                     *State.Instance, IsPredicated, State);
9783     // Insert scalar instance packing it into a vector.
9784     if (AlsoPack && State.VF.isVector()) {
9785       // If we're constructing lane 0, initialize to start from poison.
9786       if (State.Instance->Lane.isFirstLane()) {
9787         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9788         Value *Poison = PoisonValue::get(
9789             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9790         State.set(this, Poison, State.Instance->Part);
9791       }
9792       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9793     }
9794     return;
9795   }
9796 
9797   // Generate scalar instances for all VF lanes of all UF parts, unless the
9798   // instruction is uniform inwhich case generate only the first lane for each
9799   // of the UF parts.
9800   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9801   assert((!State.VF.isScalable() || IsUniform) &&
9802          "Can't scalarize a scalable vector");
9803   for (unsigned Part = 0; Part < State.UF; ++Part)
9804     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9805       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9806                                       VPIteration(Part, Lane), IsPredicated,
9807                                       State);
9808 }
9809 
9810 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9811   assert(State.Instance && "Branch on Mask works only on single instance.");
9812 
9813   unsigned Part = State.Instance->Part;
9814   unsigned Lane = State.Instance->Lane.getKnownLane();
9815 
9816   Value *ConditionBit = nullptr;
9817   VPValue *BlockInMask = getMask();
9818   if (BlockInMask) {
9819     ConditionBit = State.get(BlockInMask, Part);
9820     if (ConditionBit->getType()->isVectorTy())
9821       ConditionBit = State.Builder.CreateExtractElement(
9822           ConditionBit, State.Builder.getInt32(Lane));
9823   } else // Block in mask is all-one.
9824     ConditionBit = State.Builder.getTrue();
9825 
9826   // Replace the temporary unreachable terminator with a new conditional branch,
9827   // whose two destinations will be set later when they are created.
9828   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9829   assert(isa<UnreachableInst>(CurrentTerminator) &&
9830          "Expected to replace unreachable terminator with conditional branch.");
9831   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9832   CondBr->setSuccessor(0, nullptr);
9833   ReplaceInstWithInst(CurrentTerminator, CondBr);
9834 }
9835 
9836 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9837   assert(State.Instance && "Predicated instruction PHI works per instance.");
9838   Instruction *ScalarPredInst =
9839       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9840   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9841   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9842   assert(PredicatingBB && "Predicated block has no single predecessor.");
9843   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9844          "operand must be VPReplicateRecipe");
9845 
9846   // By current pack/unpack logic we need to generate only a single phi node: if
9847   // a vector value for the predicated instruction exists at this point it means
9848   // the instruction has vector users only, and a phi for the vector value is
9849   // needed. In this case the recipe of the predicated instruction is marked to
9850   // also do that packing, thereby "hoisting" the insert-element sequence.
9851   // Otherwise, a phi node for the scalar value is needed.
9852   unsigned Part = State.Instance->Part;
9853   if (State.hasVectorValue(getOperand(0), Part)) {
9854     Value *VectorValue = State.get(getOperand(0), Part);
9855     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9856     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9857     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9858     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9859     if (State.hasVectorValue(this, Part))
9860       State.reset(this, VPhi, Part);
9861     else
9862       State.set(this, VPhi, Part);
9863     // NOTE: Currently we need to update the value of the operand, so the next
9864     // predicated iteration inserts its generated value in the correct vector.
9865     State.reset(getOperand(0), VPhi, Part);
9866   } else {
9867     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9868     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9869     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9870                      PredicatingBB);
9871     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9872     if (State.hasScalarValue(this, *State.Instance))
9873       State.reset(this, Phi, *State.Instance);
9874     else
9875       State.set(this, Phi, *State.Instance);
9876     // NOTE: Currently we need to update the value of the operand, so the next
9877     // predicated iteration inserts its generated value in the correct vector.
9878     State.reset(getOperand(0), Phi, *State.Instance);
9879   }
9880 }
9881 
9882 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9883   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9884   State.ILV->vectorizeMemoryInstruction(
9885       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9886       StoredValue, getMask());
9887 }
9888 
9889 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9890 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9891 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9892 // for predication.
9893 static ScalarEpilogueLowering getScalarEpilogueLowering(
9894     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9895     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9896     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9897     LoopVectorizationLegality &LVL) {
9898   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9899   // don't look at hints or options, and don't request a scalar epilogue.
9900   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9901   // LoopAccessInfo (due to code dependency and not being able to reliably get
9902   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9903   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9904   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9905   // back to the old way and vectorize with versioning when forced. See D81345.)
9906   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9907                                                       PGSOQueryType::IRPass) &&
9908                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9909     return CM_ScalarEpilogueNotAllowedOptSize;
9910 
9911   // 2) If set, obey the directives
9912   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9913     switch (PreferPredicateOverEpilogue) {
9914     case PreferPredicateTy::ScalarEpilogue:
9915       return CM_ScalarEpilogueAllowed;
9916     case PreferPredicateTy::PredicateElseScalarEpilogue:
9917       return CM_ScalarEpilogueNotNeededUsePredicate;
9918     case PreferPredicateTy::PredicateOrDontVectorize:
9919       return CM_ScalarEpilogueNotAllowedUsePredicate;
9920     };
9921   }
9922 
9923   // 3) If set, obey the hints
9924   switch (Hints.getPredicate()) {
9925   case LoopVectorizeHints::FK_Enabled:
9926     return CM_ScalarEpilogueNotNeededUsePredicate;
9927   case LoopVectorizeHints::FK_Disabled:
9928     return CM_ScalarEpilogueAllowed;
9929   };
9930 
9931   // 4) if the TTI hook indicates this is profitable, request predication.
9932   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9933                                        LVL.getLAI()))
9934     return CM_ScalarEpilogueNotNeededUsePredicate;
9935 
9936   return CM_ScalarEpilogueAllowed;
9937 }
9938 
9939 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9940   // If Values have been set for this Def return the one relevant for \p Part.
9941   if (hasVectorValue(Def, Part))
9942     return Data.PerPartOutput[Def][Part];
9943 
9944   if (!hasScalarValue(Def, {Part, 0})) {
9945     Value *IRV = Def->getLiveInIRValue();
9946     Value *B = ILV->getBroadcastInstrs(IRV);
9947     set(Def, B, Part);
9948     return B;
9949   }
9950 
9951   Value *ScalarValue = get(Def, {Part, 0});
9952   // If we aren't vectorizing, we can just copy the scalar map values over
9953   // to the vector map.
9954   if (VF.isScalar()) {
9955     set(Def, ScalarValue, Part);
9956     return ScalarValue;
9957   }
9958 
9959   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9960   bool IsUniform = RepR && RepR->isUniform();
9961 
9962   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9963   // Check if there is a scalar value for the selected lane.
9964   if (!hasScalarValue(Def, {Part, LastLane})) {
9965     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9966     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9967            "unexpected recipe found to be invariant");
9968     IsUniform = true;
9969     LastLane = 0;
9970   }
9971 
9972   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9973   // Set the insert point after the last scalarized instruction or after the
9974   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9975   // will directly follow the scalar definitions.
9976   auto OldIP = Builder.saveIP();
9977   auto NewIP =
9978       isa<PHINode>(LastInst)
9979           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9980           : std::next(BasicBlock::iterator(LastInst));
9981   Builder.SetInsertPoint(&*NewIP);
9982 
9983   // However, if we are vectorizing, we need to construct the vector values.
9984   // If the value is known to be uniform after vectorization, we can just
9985   // broadcast the scalar value corresponding to lane zero for each unroll
9986   // iteration. Otherwise, we construct the vector values using
9987   // insertelement instructions. Since the resulting vectors are stored in
9988   // State, we will only generate the insertelements once.
9989   Value *VectorValue = nullptr;
9990   if (IsUniform) {
9991     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9992     set(Def, VectorValue, Part);
9993   } else {
9994     // Initialize packing with insertelements to start from undef.
9995     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9996     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9997     set(Def, Undef, Part);
9998     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9999       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10000     VectorValue = get(Def, Part);
10001   }
10002   Builder.restoreIP(OldIP);
10003   return VectorValue;
10004 }
10005 
10006 // Process the loop in the VPlan-native vectorization path. This path builds
10007 // VPlan upfront in the vectorization pipeline, which allows to apply
10008 // VPlan-to-VPlan transformations from the very beginning without modifying the
10009 // input LLVM IR.
10010 static bool processLoopInVPlanNativePath(
10011     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10012     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10013     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10014     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10015     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10016     LoopVectorizationRequirements &Requirements) {
10017 
10018   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10019     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10020     return false;
10021   }
10022   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10023   Function *F = L->getHeader()->getParent();
10024   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10025 
10026   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10027       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10028 
10029   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10030                                 &Hints, IAI);
10031   // Use the planner for outer loop vectorization.
10032   // TODO: CM is not used at this point inside the planner. Turn CM into an
10033   // optional argument if we don't need it in the future.
10034   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10035                                Requirements, ORE);
10036 
10037   // Get user vectorization factor.
10038   ElementCount UserVF = Hints.getWidth();
10039 
10040   CM.collectElementTypesForWidening();
10041 
10042   // Plan how to best vectorize, return the best VF and its cost.
10043   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10044 
10045   // If we are stress testing VPlan builds, do not attempt to generate vector
10046   // code. Masked vector code generation support will follow soon.
10047   // Also, do not attempt to vectorize if no vector code will be produced.
10048   if (VPlanBuildStressTest || EnableVPlanPredication ||
10049       VectorizationFactor::Disabled() == VF)
10050     return false;
10051 
10052   LVP.setBestPlan(VF.Width, 1);
10053 
10054   {
10055     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10056                              F->getParent()->getDataLayout());
10057     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10058                            &CM, BFI, PSI, Checks);
10059     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10060                       << L->getHeader()->getParent()->getName() << "\"\n");
10061     LVP.executePlan(LB, DT);
10062   }
10063 
10064   // Mark the loop as already vectorized to avoid vectorizing again.
10065   Hints.setAlreadyVectorized();
10066   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10067   return true;
10068 }
10069 
10070 // Emit a remark if there are stores to floats that required a floating point
10071 // extension. If the vectorized loop was generated with floating point there
10072 // will be a performance penalty from the conversion overhead and the change in
10073 // the vector width.
10074 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10075   SmallVector<Instruction *, 4> Worklist;
10076   for (BasicBlock *BB : L->getBlocks()) {
10077     for (Instruction &Inst : *BB) {
10078       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10079         if (S->getValueOperand()->getType()->isFloatTy())
10080           Worklist.push_back(S);
10081       }
10082     }
10083   }
10084 
10085   // Traverse the floating point stores upwards searching, for floating point
10086   // conversions.
10087   SmallPtrSet<const Instruction *, 4> Visited;
10088   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10089   while (!Worklist.empty()) {
10090     auto *I = Worklist.pop_back_val();
10091     if (!L->contains(I))
10092       continue;
10093     if (!Visited.insert(I).second)
10094       continue;
10095 
10096     // Emit a remark if the floating point store required a floating
10097     // point conversion.
10098     // TODO: More work could be done to identify the root cause such as a
10099     // constant or a function return type and point the user to it.
10100     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10101       ORE->emit([&]() {
10102         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10103                                           I->getDebugLoc(), L->getHeader())
10104                << "floating point conversion changes vector width. "
10105                << "Mixed floating point precision requires an up/down "
10106                << "cast that will negatively impact performance.";
10107       });
10108 
10109     for (Use &Op : I->operands())
10110       if (auto *OpI = dyn_cast<Instruction>(Op))
10111         Worklist.push_back(OpI);
10112   }
10113 }
10114 
10115 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10116     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10117                                !EnableLoopInterleaving),
10118       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10119                               !EnableLoopVectorization) {}
10120 
10121 bool LoopVectorizePass::processLoop(Loop *L) {
10122   assert((EnableVPlanNativePath || L->isInnermost()) &&
10123          "VPlan-native path is not enabled. Only process inner loops.");
10124 
10125 #ifndef NDEBUG
10126   const std::string DebugLocStr = getDebugLocString(L);
10127 #endif /* NDEBUG */
10128 
10129   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10130                     << L->getHeader()->getParent()->getName() << "\" from "
10131                     << DebugLocStr << "\n");
10132 
10133   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10134 
10135   LLVM_DEBUG(
10136       dbgs() << "LV: Loop hints:"
10137              << " force="
10138              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10139                      ? "disabled"
10140                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10141                             ? "enabled"
10142                             : "?"))
10143              << " width=" << Hints.getWidth()
10144              << " interleave=" << Hints.getInterleave() << "\n");
10145 
10146   // Function containing loop
10147   Function *F = L->getHeader()->getParent();
10148 
10149   // Looking at the diagnostic output is the only way to determine if a loop
10150   // was vectorized (other than looking at the IR or machine code), so it
10151   // is important to generate an optimization remark for each loop. Most of
10152   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10153   // generated as OptimizationRemark and OptimizationRemarkMissed are
10154   // less verbose reporting vectorized loops and unvectorized loops that may
10155   // benefit from vectorization, respectively.
10156 
10157   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10158     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10159     return false;
10160   }
10161 
10162   PredicatedScalarEvolution PSE(*SE, *L);
10163 
10164   // Check if it is legal to vectorize the loop.
10165   LoopVectorizationRequirements Requirements;
10166   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10167                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10168   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10169     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10170     Hints.emitRemarkWithHints();
10171     return false;
10172   }
10173 
10174   // Check the function attributes and profiles to find out if this function
10175   // should be optimized for size.
10176   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10177       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10178 
10179   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10180   // here. They may require CFG and instruction level transformations before
10181   // even evaluating whether vectorization is profitable. Since we cannot modify
10182   // the incoming IR, we need to build VPlan upfront in the vectorization
10183   // pipeline.
10184   if (!L->isInnermost())
10185     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10186                                         ORE, BFI, PSI, Hints, Requirements);
10187 
10188   assert(L->isInnermost() && "Inner loop expected.");
10189 
10190   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10191   // count by optimizing for size, to minimize overheads.
10192   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10193   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10194     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10195                       << "This loop is worth vectorizing only if no scalar "
10196                       << "iteration overheads are incurred.");
10197     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10198       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10199     else {
10200       LLVM_DEBUG(dbgs() << "\n");
10201       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10202     }
10203   }
10204 
10205   // Check the function attributes to see if implicit floats are allowed.
10206   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10207   // an integer loop and the vector instructions selected are purely integer
10208   // vector instructions?
10209   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10210     reportVectorizationFailure(
10211         "Can't vectorize when the NoImplicitFloat attribute is used",
10212         "loop not vectorized due to NoImplicitFloat attribute",
10213         "NoImplicitFloat", ORE, L);
10214     Hints.emitRemarkWithHints();
10215     return false;
10216   }
10217 
10218   // Check if the target supports potentially unsafe FP vectorization.
10219   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10220   // for the target we're vectorizing for, to make sure none of the
10221   // additional fp-math flags can help.
10222   if (Hints.isPotentiallyUnsafe() &&
10223       TTI->isFPVectorizationPotentiallyUnsafe()) {
10224     reportVectorizationFailure(
10225         "Potentially unsafe FP op prevents vectorization",
10226         "loop not vectorized due to unsafe FP support.",
10227         "UnsafeFP", ORE, L);
10228     Hints.emitRemarkWithHints();
10229     return false;
10230   }
10231 
10232   bool AllowOrderedReductions;
10233   // If the flag is set, use that instead and override the TTI behaviour.
10234   if (ForceOrderedReductions.getNumOccurrences() > 0)
10235     AllowOrderedReductions = ForceOrderedReductions;
10236   else
10237     AllowOrderedReductions = TTI->enableOrderedReductions();
10238   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10239     ORE->emit([&]() {
10240       auto *ExactFPMathInst = Requirements.getExactFPInst();
10241       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10242                                                  ExactFPMathInst->getDebugLoc(),
10243                                                  ExactFPMathInst->getParent())
10244              << "loop not vectorized: cannot prove it is safe to reorder "
10245                 "floating-point operations";
10246     });
10247     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10248                          "reorder floating-point operations\n");
10249     Hints.emitRemarkWithHints();
10250     return false;
10251   }
10252 
10253   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10254   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10255 
10256   // If an override option has been passed in for interleaved accesses, use it.
10257   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10258     UseInterleaved = EnableInterleavedMemAccesses;
10259 
10260   // Analyze interleaved memory accesses.
10261   if (UseInterleaved) {
10262     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10263   }
10264 
10265   // Use the cost model.
10266   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10267                                 F, &Hints, IAI);
10268   CM.collectValuesToIgnore();
10269   CM.collectElementTypesForWidening();
10270 
10271   // Use the planner for vectorization.
10272   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10273                                Requirements, ORE);
10274 
10275   // Get user vectorization factor and interleave count.
10276   ElementCount UserVF = Hints.getWidth();
10277   unsigned UserIC = Hints.getInterleave();
10278 
10279   // Plan how to best vectorize, return the best VF and its cost.
10280   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10281 
10282   VectorizationFactor VF = VectorizationFactor::Disabled();
10283   unsigned IC = 1;
10284 
10285   if (MaybeVF) {
10286     VF = *MaybeVF;
10287     // Select the interleave count.
10288     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10289   }
10290 
10291   // Identify the diagnostic messages that should be produced.
10292   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10293   bool VectorizeLoop = true, InterleaveLoop = true;
10294   if (VF.Width.isScalar()) {
10295     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10296     VecDiagMsg = std::make_pair(
10297         "VectorizationNotBeneficial",
10298         "the cost-model indicates that vectorization is not beneficial");
10299     VectorizeLoop = false;
10300   }
10301 
10302   if (!MaybeVF && UserIC > 1) {
10303     // Tell the user interleaving was avoided up-front, despite being explicitly
10304     // requested.
10305     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10306                          "interleaving should be avoided up front\n");
10307     IntDiagMsg = std::make_pair(
10308         "InterleavingAvoided",
10309         "Ignoring UserIC, because interleaving was avoided up front");
10310     InterleaveLoop = false;
10311   } else if (IC == 1 && UserIC <= 1) {
10312     // Tell the user interleaving is not beneficial.
10313     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10314     IntDiagMsg = std::make_pair(
10315         "InterleavingNotBeneficial",
10316         "the cost-model indicates that interleaving is not beneficial");
10317     InterleaveLoop = false;
10318     if (UserIC == 1) {
10319       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10320       IntDiagMsg.second +=
10321           " and is explicitly disabled or interleave count is set to 1";
10322     }
10323   } else if (IC > 1 && UserIC == 1) {
10324     // Tell the user interleaving is beneficial, but it explicitly disabled.
10325     LLVM_DEBUG(
10326         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10327     IntDiagMsg = std::make_pair(
10328         "InterleavingBeneficialButDisabled",
10329         "the cost-model indicates that interleaving is beneficial "
10330         "but is explicitly disabled or interleave count is set to 1");
10331     InterleaveLoop = false;
10332   }
10333 
10334   // Override IC if user provided an interleave count.
10335   IC = UserIC > 0 ? UserIC : IC;
10336 
10337   // Emit diagnostic messages, if any.
10338   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10339   if (!VectorizeLoop && !InterleaveLoop) {
10340     // Do not vectorize or interleaving the loop.
10341     ORE->emit([&]() {
10342       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10343                                       L->getStartLoc(), L->getHeader())
10344              << VecDiagMsg.second;
10345     });
10346     ORE->emit([&]() {
10347       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10348                                       L->getStartLoc(), L->getHeader())
10349              << IntDiagMsg.second;
10350     });
10351     return false;
10352   } else if (!VectorizeLoop && InterleaveLoop) {
10353     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10354     ORE->emit([&]() {
10355       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10356                                         L->getStartLoc(), L->getHeader())
10357              << VecDiagMsg.second;
10358     });
10359   } else if (VectorizeLoop && !InterleaveLoop) {
10360     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10361                       << ") in " << DebugLocStr << '\n');
10362     ORE->emit([&]() {
10363       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10364                                         L->getStartLoc(), L->getHeader())
10365              << IntDiagMsg.second;
10366     });
10367   } else if (VectorizeLoop && InterleaveLoop) {
10368     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10369                       << ") in " << DebugLocStr << '\n');
10370     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10371   }
10372 
10373   bool DisableRuntimeUnroll = false;
10374   MDNode *OrigLoopID = L->getLoopID();
10375   {
10376     // Optimistically generate runtime checks. Drop them if they turn out to not
10377     // be profitable. Limit the scope of Checks, so the cleanup happens
10378     // immediately after vector codegeneration is done.
10379     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10380                              F->getParent()->getDataLayout());
10381     if (!VF.Width.isScalar() || IC > 1)
10382       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10383     LVP.setBestPlan(VF.Width, IC);
10384 
10385     using namespace ore;
10386     if (!VectorizeLoop) {
10387       assert(IC > 1 && "interleave count should not be 1 or 0");
10388       // If we decided that it is not legal to vectorize the loop, then
10389       // interleave it.
10390       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10391                                  &CM, BFI, PSI, Checks);
10392       LVP.executePlan(Unroller, DT);
10393 
10394       ORE->emit([&]() {
10395         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10396                                   L->getHeader())
10397                << "interleaved loop (interleaved count: "
10398                << NV("InterleaveCount", IC) << ")";
10399       });
10400     } else {
10401       // If we decided that it is *legal* to vectorize the loop, then do it.
10402 
10403       // Consider vectorizing the epilogue too if it's profitable.
10404       VectorizationFactor EpilogueVF =
10405           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10406       if (EpilogueVF.Width.isVector()) {
10407 
10408         // The first pass vectorizes the main loop and creates a scalar epilogue
10409         // to be vectorized by executing the plan (potentially with a different
10410         // factor) again shortly afterwards.
10411         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10412         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10413                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10414 
10415         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10416         LVP.executePlan(MainILV, DT);
10417         ++LoopsVectorized;
10418 
10419         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10420         formLCSSARecursively(*L, *DT, LI, SE);
10421 
10422         // Second pass vectorizes the epilogue and adjusts the control flow
10423         // edges from the first pass.
10424         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10425         EPI.MainLoopVF = EPI.EpilogueVF;
10426         EPI.MainLoopUF = EPI.EpilogueUF;
10427         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10428                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10429                                                  Checks);
10430         LVP.executePlan(EpilogILV, DT);
10431         ++LoopsEpilogueVectorized;
10432 
10433         if (!MainILV.areSafetyChecksAdded())
10434           DisableRuntimeUnroll = true;
10435       } else {
10436         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10437                                &LVL, &CM, BFI, PSI, Checks);
10438         LVP.executePlan(LB, DT);
10439         ++LoopsVectorized;
10440 
10441         // Add metadata to disable runtime unrolling a scalar loop when there
10442         // are no runtime checks about strides and memory. A scalar loop that is
10443         // rarely used is not worth unrolling.
10444         if (!LB.areSafetyChecksAdded())
10445           DisableRuntimeUnroll = true;
10446       }
10447       // Report the vectorization decision.
10448       ORE->emit([&]() {
10449         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10450                                   L->getHeader())
10451                << "vectorized loop (vectorization width: "
10452                << NV("VectorizationFactor", VF.Width)
10453                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10454       });
10455     }
10456 
10457     if (ORE->allowExtraAnalysis(LV_NAME))
10458       checkMixedPrecision(L, ORE);
10459   }
10460 
10461   Optional<MDNode *> RemainderLoopID =
10462       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10463                                       LLVMLoopVectorizeFollowupEpilogue});
10464   if (RemainderLoopID.hasValue()) {
10465     L->setLoopID(RemainderLoopID.getValue());
10466   } else {
10467     if (DisableRuntimeUnroll)
10468       AddRuntimeUnrollDisableMetaData(L);
10469 
10470     // Mark the loop as already vectorized to avoid vectorizing again.
10471     Hints.setAlreadyVectorized();
10472   }
10473 
10474   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10475   return true;
10476 }
10477 
10478 LoopVectorizeResult LoopVectorizePass::runImpl(
10479     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10480     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10481     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10482     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10483     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10484   SE = &SE_;
10485   LI = &LI_;
10486   TTI = &TTI_;
10487   DT = &DT_;
10488   BFI = &BFI_;
10489   TLI = TLI_;
10490   AA = &AA_;
10491   AC = &AC_;
10492   GetLAA = &GetLAA_;
10493   DB = &DB_;
10494   ORE = &ORE_;
10495   PSI = PSI_;
10496 
10497   // Don't attempt if
10498   // 1. the target claims to have no vector registers, and
10499   // 2. interleaving won't help ILP.
10500   //
10501   // The second condition is necessary because, even if the target has no
10502   // vector registers, loop vectorization may still enable scalar
10503   // interleaving.
10504   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10505       TTI->getMaxInterleaveFactor(1) < 2)
10506     return LoopVectorizeResult(false, false);
10507 
10508   bool Changed = false, CFGChanged = false;
10509 
10510   // The vectorizer requires loops to be in simplified form.
10511   // Since simplification may add new inner loops, it has to run before the
10512   // legality and profitability checks. This means running the loop vectorizer
10513   // will simplify all loops, regardless of whether anything end up being
10514   // vectorized.
10515   for (auto &L : *LI)
10516     Changed |= CFGChanged |=
10517         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10518 
10519   // Build up a worklist of inner-loops to vectorize. This is necessary as
10520   // the act of vectorizing or partially unrolling a loop creates new loops
10521   // and can invalidate iterators across the loops.
10522   SmallVector<Loop *, 8> Worklist;
10523 
10524   for (Loop *L : *LI)
10525     collectSupportedLoops(*L, LI, ORE, Worklist);
10526 
10527   LoopsAnalyzed += Worklist.size();
10528 
10529   // Now walk the identified inner loops.
10530   while (!Worklist.empty()) {
10531     Loop *L = Worklist.pop_back_val();
10532 
10533     // For the inner loops we actually process, form LCSSA to simplify the
10534     // transform.
10535     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10536 
10537     Changed |= CFGChanged |= processLoop(L);
10538   }
10539 
10540   // Process each loop nest in the function.
10541   return LoopVectorizeResult(Changed, CFGChanged);
10542 }
10543 
10544 PreservedAnalyses LoopVectorizePass::run(Function &F,
10545                                          FunctionAnalysisManager &AM) {
10546     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10547     auto &LI = AM.getResult<LoopAnalysis>(F);
10548     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10549     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10550     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10551     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10552     auto &AA = AM.getResult<AAManager>(F);
10553     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10554     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10555     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10556 
10557     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10558     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10559         [&](Loop &L) -> const LoopAccessInfo & {
10560       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10561                                         TLI, TTI, nullptr, nullptr, nullptr};
10562       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10563     };
10564     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10565     ProfileSummaryInfo *PSI =
10566         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10567     LoopVectorizeResult Result =
10568         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10569     if (!Result.MadeAnyChange)
10570       return PreservedAnalyses::all();
10571     PreservedAnalyses PA;
10572 
10573     // We currently do not preserve loopinfo/dominator analyses with outer loop
10574     // vectorization. Until this is addressed, mark these analyses as preserved
10575     // only for non-VPlan-native path.
10576     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10577     if (!EnableVPlanNativePath) {
10578       PA.preserve<LoopAnalysis>();
10579       PA.preserve<DominatorTreeAnalysis>();
10580     }
10581     if (!Result.MadeCFGChange)
10582       PA.preserveSet<CFGAnalyses>();
10583     return PA;
10584 }
10585 
10586 void LoopVectorizePass::printPipeline(
10587     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10588   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10589       OS, MapClassName2PassName);
10590 
10591   OS << "<";
10592   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10593   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10594   OS << ">";
10595 }
10596