1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanHCFGTransforms.h" 62 #include "VPlanPredicator.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/LoopSimplify.h" 137 #include "llvm/Transforms/Utils/LoopUtils.h" 138 #include "llvm/Transforms/Utils/LoopVersioning.h" 139 #include "llvm/Transforms/Utils/SizeOpts.h" 140 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 141 #include <algorithm> 142 #include <cassert> 143 #include <cstdint> 144 #include <cstdlib> 145 #include <functional> 146 #include <iterator> 147 #include <limits> 148 #include <memory> 149 #include <string> 150 #include <tuple> 151 #include <utility> 152 #include <vector> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 /// @{ 160 /// Metadata attribute names 161 static const char *const LLVMLoopVectorizeFollowupAll = 162 "llvm.loop.vectorize.followup_all"; 163 static const char *const LLVMLoopVectorizeFollowupVectorized = 164 "llvm.loop.vectorize.followup_vectorized"; 165 static const char *const LLVMLoopVectorizeFollowupEpilogue = 166 "llvm.loop.vectorize.followup_epilogue"; 167 /// @} 168 169 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 170 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 171 172 /// Loops with a known constant trip count below this number are vectorized only 173 /// if no scalar iteration overheads are incurred. 174 static cl::opt<unsigned> TinyTripCountVectorThreshold( 175 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 176 cl::desc("Loops with a constant trip count that is smaller than this " 177 "value are vectorized only if no scalar iteration overheads " 178 "are incurred.")); 179 180 static cl::opt<bool> MaximizeBandwidth( 181 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 182 cl::desc("Maximize bandwidth when selecting vectorization factor which " 183 "will be determined by the smallest type in loop.")); 184 185 static cl::opt<bool> EnableInterleavedMemAccesses( 186 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 187 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 188 189 /// An interleave-group may need masking if it resides in a block that needs 190 /// predication, or in order to mask away gaps. 191 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 192 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 193 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 194 195 /// We don't interleave loops with a known constant trip count below this 196 /// number. 197 static const unsigned TinyTripCountInterleaveThreshold = 128; 198 199 static cl::opt<unsigned> ForceTargetNumScalarRegs( 200 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's number of scalar registers.")); 202 203 static cl::opt<unsigned> ForceTargetNumVectorRegs( 204 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 205 cl::desc("A flag that overrides the target's number of vector registers.")); 206 207 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 208 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 209 cl::desc("A flag that overrides the target's max interleave factor for " 210 "scalar loops.")); 211 212 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 213 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 214 cl::desc("A flag that overrides the target's max interleave factor for " 215 "vectorized loops.")); 216 217 static cl::opt<unsigned> ForceTargetInstructionCost( 218 "force-target-instruction-cost", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's expected cost for " 220 "an instruction to a single constant value. Mostly " 221 "useful for getting consistent testing.")); 222 223 static cl::opt<unsigned> SmallLoopCost( 224 "small-loop-cost", cl::init(20), cl::Hidden, 225 cl::desc( 226 "The cost of a loop that is considered 'small' by the interleaver.")); 227 228 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 229 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 230 cl::desc("Enable the use of the block frequency analysis to access PGO " 231 "heuristics minimizing code growth in cold regions and being more " 232 "aggressive in hot regions.")); 233 234 // Runtime interleave loops for load/store throughput. 235 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 236 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 237 cl::desc( 238 "Enable runtime interleaving until load/store ports are saturated")); 239 240 /// The number of stores in a loop that are allowed to need predication. 241 static cl::opt<unsigned> NumberOfStoresToPredicate( 242 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 243 cl::desc("Max number of stores to be predicated behind an if.")); 244 245 static cl::opt<bool> EnableIndVarRegisterHeur( 246 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 247 cl::desc("Count the induction variable only once when interleaving")); 248 249 static cl::opt<bool> EnableCondStoresVectorization( 250 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 251 cl::desc("Enable if predication of stores during vectorization.")); 252 253 static cl::opt<unsigned> MaxNestedScalarReductionIC( 254 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 255 cl::desc("The maximum interleave count to use when interleaving a scalar " 256 "reduction in a nested loop.")); 257 258 cl::opt<bool> EnableVPlanNativePath( 259 "enable-vplan-native-path", cl::init(false), cl::Hidden, 260 cl::desc("Enable VPlan-native vectorization path with " 261 "support for outer loop vectorization.")); 262 263 // FIXME: Remove this switch once we have divergence analysis. Currently we 264 // assume divergent non-backedge branches when this switch is true. 265 cl::opt<bool> EnableVPlanPredication( 266 "enable-vplan-predication", cl::init(false), cl::Hidden, 267 cl::desc("Enable VPlan-native vectorization path predicator with " 268 "support for outer loop vectorization.")); 269 270 // This flag enables the stress testing of the VPlan H-CFG construction in the 271 // VPlan-native vectorization path. It must be used in conjuction with 272 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 273 // verification of the H-CFGs built. 274 static cl::opt<bool> VPlanBuildStressTest( 275 "vplan-build-stress-test", cl::init(false), cl::Hidden, 276 cl::desc( 277 "Build VPlan for every supported loop nest in the function and bail " 278 "out right after the build (stress test the VPlan H-CFG construction " 279 "in the VPlan-native vectorization path).")); 280 281 cl::opt<bool> llvm::EnableLoopInterleaving( 282 "interleave-loops", cl::init(true), cl::Hidden, 283 cl::desc("Enable loop interleaving in Loop vectorization passes")); 284 cl::opt<bool> llvm::EnableLoopVectorization( 285 "vectorize-loops", cl::init(true), cl::Hidden, 286 cl::desc("Run the Loop vectorization passes")); 287 288 /// A helper function for converting Scalar types to vector types. 289 /// If the incoming type is void, we return void. If the VF is 1, we return 290 /// the scalar type. 291 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 292 if (Scalar->isVoidTy() || VF == 1) 293 return Scalar; 294 return VectorType::get(Scalar, VF); 295 } 296 297 /// A helper function that returns the type of loaded or stored value. 298 static Type *getMemInstValueType(Value *I) { 299 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 300 "Expected Load or Store instruction"); 301 if (auto *LI = dyn_cast<LoadInst>(I)) 302 return LI->getType(); 303 return cast<StoreInst>(I)->getValueOperand()->getType(); 304 } 305 306 /// A helper function that returns true if the given type is irregular. The 307 /// type is irregular if its allocated size doesn't equal the store size of an 308 /// element of the corresponding vector type at the given vectorization factor. 309 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 310 // Determine if an array of VF elements of type Ty is "bitcast compatible" 311 // with a <VF x Ty> vector. 312 if (VF > 1) { 313 auto *VectorTy = VectorType::get(Ty, VF); 314 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 315 } 316 317 // If the vectorization factor is one, we just check if an array of type Ty 318 // requires padding between elements. 319 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 320 } 321 322 /// A helper function that returns the reciprocal of the block probability of 323 /// predicated blocks. If we return X, we are assuming the predicated block 324 /// will execute once for every X iterations of the loop header. 325 /// 326 /// TODO: We should use actual block probability here, if available. Currently, 327 /// we always assume predicated blocks have a 50% chance of executing. 328 static unsigned getReciprocalPredBlockProb() { return 2; } 329 330 /// A helper function that adds a 'fast' flag to floating-point operations. 331 static Value *addFastMathFlag(Value *V) { 332 if (isa<FPMathOperator>(V)) 333 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 334 return V; 335 } 336 337 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 338 if (isa<FPMathOperator>(V)) 339 cast<Instruction>(V)->setFastMathFlags(FMF); 340 return V; 341 } 342 343 /// A helper function that returns an integer or floating-point constant with 344 /// value C. 345 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 346 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 347 : ConstantFP::get(Ty, C); 348 } 349 350 namespace llvm { 351 352 /// InnerLoopVectorizer vectorizes loops which contain only one basic 353 /// block to a specified vectorization factor (VF). 354 /// This class performs the widening of scalars into vectors, or multiple 355 /// scalars. This class also implements the following features: 356 /// * It inserts an epilogue loop for handling loops that don't have iteration 357 /// counts that are known to be a multiple of the vectorization factor. 358 /// * It handles the code generation for reduction variables. 359 /// * Scalarization (implementation using scalars) of un-vectorizable 360 /// instructions. 361 /// InnerLoopVectorizer does not perform any vectorization-legality 362 /// checks, and relies on the caller to check for the different legality 363 /// aspects. The InnerLoopVectorizer relies on the 364 /// LoopVectorizationLegality class to provide information about the induction 365 /// and reduction variables that were found to a given vectorization factor. 366 class InnerLoopVectorizer { 367 public: 368 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 369 LoopInfo *LI, DominatorTree *DT, 370 const TargetLibraryInfo *TLI, 371 const TargetTransformInfo *TTI, AssumptionCache *AC, 372 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 373 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 374 LoopVectorizationCostModel *CM) 375 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 376 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 377 Builder(PSE.getSE()->getContext()), 378 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 379 virtual ~InnerLoopVectorizer() = default; 380 381 /// Create a new empty loop. Unlink the old loop and connect the new one. 382 /// Return the pre-header block of the new loop. 383 BasicBlock *createVectorizedLoopSkeleton(); 384 385 /// Widen a single instruction within the innermost loop. 386 void widenInstruction(Instruction &I); 387 388 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 389 void fixVectorizedLoop(); 390 391 // Return true if any runtime check is added. 392 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 393 394 /// A type for vectorized values in the new loop. Each value from the 395 /// original loop, when vectorized, is represented by UF vector values in the 396 /// new unrolled loop, where UF is the unroll factor. 397 using VectorParts = SmallVector<Value *, 2>; 398 399 /// Vectorize a single PHINode in a block. This method handles the induction 400 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 401 /// arbitrary length vectors. 402 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 403 404 /// A helper function to scalarize a single Instruction in the innermost loop. 405 /// Generates a sequence of scalar instances for each lane between \p MinLane 406 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 407 /// inclusive.. 408 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 409 bool IfPredicateInstr); 410 411 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 412 /// is provided, the integer induction variable will first be truncated to 413 /// the corresponding type. 414 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 415 416 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 417 /// vector or scalar value on-demand if one is not yet available. When 418 /// vectorizing a loop, we visit the definition of an instruction before its 419 /// uses. When visiting the definition, we either vectorize or scalarize the 420 /// instruction, creating an entry for it in the corresponding map. (In some 421 /// cases, such as induction variables, we will create both vector and scalar 422 /// entries.) Then, as we encounter uses of the definition, we derive values 423 /// for each scalar or vector use unless such a value is already available. 424 /// For example, if we scalarize a definition and one of its uses is vector, 425 /// we build the required vector on-demand with an insertelement sequence 426 /// when visiting the use. Otherwise, if the use is scalar, we can use the 427 /// existing scalar definition. 428 /// 429 /// Return a value in the new loop corresponding to \p V from the original 430 /// loop at unroll index \p Part. If the value has already been vectorized, 431 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 432 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 433 /// a new vector value on-demand by inserting the scalar values into a vector 434 /// with an insertelement sequence. If the value has been neither vectorized 435 /// nor scalarized, it must be loop invariant, so we simply broadcast the 436 /// value into a vector. 437 Value *getOrCreateVectorValue(Value *V, unsigned Part); 438 439 /// Return a value in the new loop corresponding to \p V from the original 440 /// loop at unroll and vector indices \p Instance. If the value has been 441 /// vectorized but not scalarized, the necessary extractelement instruction 442 /// will be generated. 443 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 444 445 /// Construct the vector value of a scalarized value \p V one lane at a time. 446 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 447 448 /// Try to vectorize the interleaved access group that \p Instr belongs to, 449 /// optionally masking the vector operations if \p BlockInMask is non-null. 450 void vectorizeInterleaveGroup(Instruction *Instr, 451 VectorParts *BlockInMask = nullptr); 452 453 /// Vectorize Load and Store instructions, optionally masking the vector 454 /// operations if \p BlockInMask is non-null. 455 void vectorizeMemoryInstruction(Instruction *Instr, 456 VectorParts *BlockInMask = nullptr); 457 458 /// Set the debug location in the builder using the debug location in 459 /// the instruction. 460 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 461 462 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 463 void fixNonInductionPHIs(void); 464 465 protected: 466 friend class LoopVectorizationPlanner; 467 468 /// A small list of PHINodes. 469 using PhiVector = SmallVector<PHINode *, 4>; 470 471 /// A type for scalarized values in the new loop. Each value from the 472 /// original loop, when scalarized, is represented by UF x VF scalar values 473 /// in the new unrolled loop, where UF is the unroll factor and VF is the 474 /// vectorization factor. 475 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 476 477 /// Set up the values of the IVs correctly when exiting the vector loop. 478 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 479 Value *CountRoundDown, Value *EndValue, 480 BasicBlock *MiddleBlock); 481 482 /// Create a new induction variable inside L. 483 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 484 Value *Step, Instruction *DL); 485 486 /// Handle all cross-iteration phis in the header. 487 void fixCrossIterationPHIs(); 488 489 /// Fix a first-order recurrence. This is the second phase of vectorizing 490 /// this phi node. 491 void fixFirstOrderRecurrence(PHINode *Phi); 492 493 /// Fix a reduction cross-iteration phi. This is the second phase of 494 /// vectorizing this phi node. 495 void fixReduction(PHINode *Phi); 496 497 /// The Loop exit block may have single value PHI nodes with some 498 /// incoming value. While vectorizing we only handled real values 499 /// that were defined inside the loop and we should have one value for 500 /// each predecessor of its parent basic block. See PR14725. 501 void fixLCSSAPHIs(); 502 503 /// Iteratively sink the scalarized operands of a predicated instruction into 504 /// the block that was created for it. 505 void sinkScalarOperands(Instruction *PredInst); 506 507 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 508 /// represented as. 509 void truncateToMinimalBitwidths(); 510 511 /// Insert the new loop to the loop hierarchy and pass manager 512 /// and update the analysis passes. 513 void updateAnalysis(); 514 515 /// Create a broadcast instruction. This method generates a broadcast 516 /// instruction (shuffle) for loop invariant values and for the induction 517 /// value. If this is the induction variable then we extend it to N, N+1, ... 518 /// this is needed because each iteration in the loop corresponds to a SIMD 519 /// element. 520 virtual Value *getBroadcastInstrs(Value *V); 521 522 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 523 /// to each vector element of Val. The sequence starts at StartIndex. 524 /// \p Opcode is relevant for FP induction variable. 525 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 526 Instruction::BinaryOps Opcode = 527 Instruction::BinaryOpsEnd); 528 529 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 530 /// variable on which to base the steps, \p Step is the size of the step, and 531 /// \p EntryVal is the value from the original loop that maps to the steps. 532 /// Note that \p EntryVal doesn't have to be an induction variable - it 533 /// can also be a truncate instruction. 534 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 535 const InductionDescriptor &ID); 536 537 /// Create a vector induction phi node based on an existing scalar one. \p 538 /// EntryVal is the value from the original loop that maps to the vector phi 539 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 540 /// truncate instruction, instead of widening the original IV, we widen a 541 /// version of the IV truncated to \p EntryVal's type. 542 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 543 Value *Step, Instruction *EntryVal); 544 545 /// Returns true if an instruction \p I should be scalarized instead of 546 /// vectorized for the chosen vectorization factor. 547 bool shouldScalarizeInstruction(Instruction *I) const; 548 549 /// Returns true if we should generate a scalar version of \p IV. 550 bool needsScalarInduction(Instruction *IV) const; 551 552 /// If there is a cast involved in the induction variable \p ID, which should 553 /// be ignored in the vectorized loop body, this function records the 554 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 555 /// cast. We had already proved that the casted Phi is equal to the uncasted 556 /// Phi in the vectorized loop (under a runtime guard), and therefore 557 /// there is no need to vectorize the cast - the same value can be used in the 558 /// vector loop for both the Phi and the cast. 559 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 560 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 561 /// 562 /// \p EntryVal is the value from the original loop that maps to the vector 563 /// phi node and is used to distinguish what is the IV currently being 564 /// processed - original one (if \p EntryVal is a phi corresponding to the 565 /// original IV) or the "newly-created" one based on the proof mentioned above 566 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 567 /// latter case \p EntryVal is a TruncInst and we must not record anything for 568 /// that IV, but it's error-prone to expect callers of this routine to care 569 /// about that, hence this explicit parameter. 570 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 571 const Instruction *EntryVal, 572 Value *VectorLoopValue, 573 unsigned Part, 574 unsigned Lane = UINT_MAX); 575 576 /// Generate a shuffle sequence that will reverse the vector Vec. 577 virtual Value *reverseVector(Value *Vec); 578 579 /// Returns (and creates if needed) the original loop trip count. 580 Value *getOrCreateTripCount(Loop *NewLoop); 581 582 /// Returns (and creates if needed) the trip count of the widened loop. 583 Value *getOrCreateVectorTripCount(Loop *NewLoop); 584 585 /// Returns a bitcasted value to the requested vector type. 586 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 587 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 588 const DataLayout &DL); 589 590 /// Emit a bypass check to see if the vector trip count is zero, including if 591 /// it overflows. 592 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 593 594 /// Emit a bypass check to see if all of the SCEV assumptions we've 595 /// had to make are correct. 596 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 597 598 /// Emit bypass checks to check any memory assumptions we may have made. 599 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 600 601 /// Compute the transformed value of Index at offset StartValue using step 602 /// StepValue. 603 /// For integer induction, returns StartValue + Index * StepValue. 604 /// For pointer induction, returns StartValue[Index * StepValue]. 605 /// FIXME: The newly created binary instructions should contain nsw/nuw 606 /// flags, which can be found from the original scalar operations. 607 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 608 const DataLayout &DL, 609 const InductionDescriptor &ID) const; 610 611 /// Add additional metadata to \p To that was not present on \p Orig. 612 /// 613 /// Currently this is used to add the noalias annotations based on the 614 /// inserted memchecks. Use this for instructions that are *cloned* into the 615 /// vector loop. 616 void addNewMetadata(Instruction *To, const Instruction *Orig); 617 618 /// Add metadata from one instruction to another. 619 /// 620 /// This includes both the original MDs from \p From and additional ones (\see 621 /// addNewMetadata). Use this for *newly created* instructions in the vector 622 /// loop. 623 void addMetadata(Instruction *To, Instruction *From); 624 625 /// Similar to the previous function but it adds the metadata to a 626 /// vector of instructions. 627 void addMetadata(ArrayRef<Value *> To, Instruction *From); 628 629 /// The original loop. 630 Loop *OrigLoop; 631 632 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 633 /// dynamic knowledge to simplify SCEV expressions and converts them to a 634 /// more usable form. 635 PredicatedScalarEvolution &PSE; 636 637 /// Loop Info. 638 LoopInfo *LI; 639 640 /// Dominator Tree. 641 DominatorTree *DT; 642 643 /// Alias Analysis. 644 AliasAnalysis *AA; 645 646 /// Target Library Info. 647 const TargetLibraryInfo *TLI; 648 649 /// Target Transform Info. 650 const TargetTransformInfo *TTI; 651 652 /// Assumption Cache. 653 AssumptionCache *AC; 654 655 /// Interface to emit optimization remarks. 656 OptimizationRemarkEmitter *ORE; 657 658 /// LoopVersioning. It's only set up (non-null) if memchecks were 659 /// used. 660 /// 661 /// This is currently only used to add no-alias metadata based on the 662 /// memchecks. The actually versioning is performed manually. 663 std::unique_ptr<LoopVersioning> LVer; 664 665 /// The vectorization SIMD factor to use. Each vector will have this many 666 /// vector elements. 667 unsigned VF; 668 669 /// The vectorization unroll factor to use. Each scalar is vectorized to this 670 /// many different vector instructions. 671 unsigned UF; 672 673 /// The builder that we use 674 IRBuilder<> Builder; 675 676 // --- Vectorization state --- 677 678 /// The vector-loop preheader. 679 BasicBlock *LoopVectorPreHeader; 680 681 /// The scalar-loop preheader. 682 BasicBlock *LoopScalarPreHeader; 683 684 /// Middle Block between the vector and the scalar. 685 BasicBlock *LoopMiddleBlock; 686 687 /// The ExitBlock of the scalar loop. 688 BasicBlock *LoopExitBlock; 689 690 /// The vector loop body. 691 BasicBlock *LoopVectorBody; 692 693 /// The scalar loop body. 694 BasicBlock *LoopScalarBody; 695 696 /// A list of all bypass blocks. The first block is the entry of the loop. 697 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 698 699 /// The new Induction variable which was added to the new block. 700 PHINode *Induction = nullptr; 701 702 /// The induction variable of the old basic block. 703 PHINode *OldInduction = nullptr; 704 705 /// Maps values from the original loop to their corresponding values in the 706 /// vectorized loop. A key value can map to either vector values, scalar 707 /// values or both kinds of values, depending on whether the key was 708 /// vectorized and scalarized. 709 VectorizerValueMap VectorLoopValueMap; 710 711 /// Store instructions that were predicated. 712 SmallVector<Instruction *, 4> PredicatedInstructions; 713 714 /// Trip count of the original loop. 715 Value *TripCount = nullptr; 716 717 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 718 Value *VectorTripCount = nullptr; 719 720 /// The legality analysis. 721 LoopVectorizationLegality *Legal; 722 723 /// The profitablity analysis. 724 LoopVectorizationCostModel *Cost; 725 726 // Record whether runtime checks are added. 727 bool AddedSafetyChecks = false; 728 729 // Holds the end values for each induction variable. We save the end values 730 // so we can later fix-up the external users of the induction variables. 731 DenseMap<PHINode *, Value *> IVEndValues; 732 733 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 734 // fixed up at the end of vector code generation. 735 SmallVector<PHINode *, 8> OrigPHIsToFix; 736 }; 737 738 class InnerLoopUnroller : public InnerLoopVectorizer { 739 public: 740 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 741 LoopInfo *LI, DominatorTree *DT, 742 const TargetLibraryInfo *TLI, 743 const TargetTransformInfo *TTI, AssumptionCache *AC, 744 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 745 LoopVectorizationLegality *LVL, 746 LoopVectorizationCostModel *CM) 747 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 748 UnrollFactor, LVL, CM) {} 749 750 private: 751 Value *getBroadcastInstrs(Value *V) override; 752 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 753 Instruction::BinaryOps Opcode = 754 Instruction::BinaryOpsEnd) override; 755 Value *reverseVector(Value *Vec) override; 756 }; 757 758 } // end namespace llvm 759 760 /// Look for a meaningful debug location on the instruction or it's 761 /// operands. 762 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 763 if (!I) 764 return I; 765 766 DebugLoc Empty; 767 if (I->getDebugLoc() != Empty) 768 return I; 769 770 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 771 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 772 if (OpInst->getDebugLoc() != Empty) 773 return OpInst; 774 } 775 776 return I; 777 } 778 779 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 780 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 781 const DILocation *DIL = Inst->getDebugLoc(); 782 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 783 !isa<DbgInfoIntrinsic>(Inst)) { 784 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 785 if (NewDIL) 786 B.SetCurrentDebugLocation(NewDIL.getValue()); 787 else 788 LLVM_DEBUG(dbgs() 789 << "Failed to create new discriminator: " 790 << DIL->getFilename() << " Line: " << DIL->getLine()); 791 } 792 else 793 B.SetCurrentDebugLocation(DIL); 794 } else 795 B.SetCurrentDebugLocation(DebugLoc()); 796 } 797 798 #ifndef NDEBUG 799 /// \return string containing a file name and a line # for the given loop. 800 static std::string getDebugLocString(const Loop *L) { 801 std::string Result; 802 if (L) { 803 raw_string_ostream OS(Result); 804 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 805 LoopDbgLoc.print(OS); 806 else 807 // Just print the module name. 808 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 809 OS.flush(); 810 } 811 return Result; 812 } 813 #endif 814 815 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 816 const Instruction *Orig) { 817 // If the loop was versioned with memchecks, add the corresponding no-alias 818 // metadata. 819 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 820 LVer->annotateInstWithNoAlias(To, Orig); 821 } 822 823 void InnerLoopVectorizer::addMetadata(Instruction *To, 824 Instruction *From) { 825 propagateMetadata(To, From); 826 addNewMetadata(To, From); 827 } 828 829 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 830 Instruction *From) { 831 for (Value *V : To) { 832 if (Instruction *I = dyn_cast<Instruction>(V)) 833 addMetadata(I, From); 834 } 835 } 836 837 namespace llvm { 838 839 // Loop vectorization cost-model hints how the scalar epilogue loop should be 840 // lowered. 841 enum ScalarEpilogueLowering { 842 CM_ScalarEpilogueAllowed, 843 CM_ScalarEpilogueNotAllowedOptSize, 844 CM_ScalarEpilogueNotAllowedLowTripLoop 845 }; 846 847 /// LoopVectorizationCostModel - estimates the expected speedups due to 848 /// vectorization. 849 /// In many cases vectorization is not profitable. This can happen because of 850 /// a number of reasons. In this class we mainly attempt to predict the 851 /// expected speedup/slowdowns due to the supported instruction set. We use the 852 /// TargetTransformInfo to query the different backends for the cost of 853 /// different operations. 854 class LoopVectorizationCostModel { 855 public: 856 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 857 PredicatedScalarEvolution &PSE, 858 LoopInfo *LI, LoopVectorizationLegality *Legal, 859 const TargetTransformInfo &TTI, 860 const TargetLibraryInfo *TLI, DemandedBits *DB, 861 AssumptionCache *AC, 862 OptimizationRemarkEmitter *ORE, const Function *F, 863 const LoopVectorizeHints *Hints, 864 InterleavedAccessInfo &IAI) 865 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), 866 LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), 867 TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 868 869 /// \return An upper bound for the vectorization factor, or None if 870 /// vectorization and interleaving should be avoided up front. 871 Optional<unsigned> computeMaxVF(); 872 873 /// \return The most profitable vectorization factor and the cost of that VF. 874 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 875 /// then this vectorization factor will be selected if vectorization is 876 /// possible. 877 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 878 879 /// Setup cost-based decisions for user vectorization factor. 880 void selectUserVectorizationFactor(unsigned UserVF) { 881 collectUniformsAndScalars(UserVF); 882 collectInstsToScalarize(UserVF); 883 } 884 885 /// \return The size (in bits) of the smallest and widest types in the code 886 /// that needs to be vectorized. We ignore values that remain scalar such as 887 /// 64 bit loop indices. 888 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 889 890 /// \return The desired interleave count. 891 /// If interleave count has been specified by metadata it will be returned. 892 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 893 /// are the selected vectorization factor and the cost of the selected VF. 894 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 895 896 /// Memory access instruction may be vectorized in more than one way. 897 /// Form of instruction after vectorization depends on cost. 898 /// This function takes cost-based decisions for Load/Store instructions 899 /// and collects them in a map. This decisions map is used for building 900 /// the lists of loop-uniform and loop-scalar instructions. 901 /// The calculated cost is saved with widening decision in order to 902 /// avoid redundant calculations. 903 void setCostBasedWideningDecision(unsigned VF); 904 905 /// A struct that represents some properties of the register usage 906 /// of a loop. 907 struct RegisterUsage { 908 /// Holds the number of loop invariant values that are used in the loop. 909 unsigned LoopInvariantRegs; 910 911 /// Holds the maximum number of concurrent live intervals in the loop. 912 unsigned MaxLocalUsers; 913 }; 914 915 /// \return Returns information about the register usages of the loop for the 916 /// given vectorization factors. 917 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 918 919 /// Collect values we want to ignore in the cost model. 920 void collectValuesToIgnore(); 921 922 /// \returns The smallest bitwidth each instruction can be represented with. 923 /// The vector equivalents of these instructions should be truncated to this 924 /// type. 925 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 926 return MinBWs; 927 } 928 929 /// \returns True if it is more profitable to scalarize instruction \p I for 930 /// vectorization factor \p VF. 931 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 932 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 933 934 // Cost model is not run in the VPlan-native path - return conservative 935 // result until this changes. 936 if (EnableVPlanNativePath) 937 return false; 938 939 auto Scalars = InstsToScalarize.find(VF); 940 assert(Scalars != InstsToScalarize.end() && 941 "VF not yet analyzed for scalarization profitability"); 942 return Scalars->second.find(I) != Scalars->second.end(); 943 } 944 945 /// Returns true if \p I is known to be uniform after vectorization. 946 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 947 if (VF == 1) 948 return true; 949 950 // Cost model is not run in the VPlan-native path - return conservative 951 // result until this changes. 952 if (EnableVPlanNativePath) 953 return false; 954 955 auto UniformsPerVF = Uniforms.find(VF); 956 assert(UniformsPerVF != Uniforms.end() && 957 "VF not yet analyzed for uniformity"); 958 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 959 } 960 961 /// Returns true if \p I is known to be scalar after vectorization. 962 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 963 if (VF == 1) 964 return true; 965 966 // Cost model is not run in the VPlan-native path - return conservative 967 // result until this changes. 968 if (EnableVPlanNativePath) 969 return false; 970 971 auto ScalarsPerVF = Scalars.find(VF); 972 assert(ScalarsPerVF != Scalars.end() && 973 "Scalar values are not calculated for VF"); 974 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 975 } 976 977 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 978 /// for vectorization factor \p VF. 979 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 980 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 981 !isProfitableToScalarize(I, VF) && 982 !isScalarAfterVectorization(I, VF); 983 } 984 985 /// Decision that was taken during cost calculation for memory instruction. 986 enum InstWidening { 987 CM_Unknown, 988 CM_Widen, // For consecutive accesses with stride +1. 989 CM_Widen_Reverse, // For consecutive accesses with stride -1. 990 CM_Interleave, 991 CM_GatherScatter, 992 CM_Scalarize 993 }; 994 995 /// Save vectorization decision \p W and \p Cost taken by the cost model for 996 /// instruction \p I and vector width \p VF. 997 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 998 unsigned Cost) { 999 assert(VF >= 2 && "Expected VF >=2"); 1000 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1001 } 1002 1003 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1004 /// interleaving group \p Grp and vector width \p VF. 1005 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1006 InstWidening W, unsigned Cost) { 1007 assert(VF >= 2 && "Expected VF >=2"); 1008 /// Broadcast this decicion to all instructions inside the group. 1009 /// But the cost will be assigned to one instruction only. 1010 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1011 if (auto *I = Grp->getMember(i)) { 1012 if (Grp->getInsertPos() == I) 1013 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1014 else 1015 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1016 } 1017 } 1018 } 1019 1020 /// Return the cost model decision for the given instruction \p I and vector 1021 /// width \p VF. Return CM_Unknown if this instruction did not pass 1022 /// through the cost modeling. 1023 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1024 assert(VF >= 2 && "Expected VF >=2"); 1025 1026 // Cost model is not run in the VPlan-native path - return conservative 1027 // result until this changes. 1028 if (EnableVPlanNativePath) 1029 return CM_GatherScatter; 1030 1031 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1032 auto Itr = WideningDecisions.find(InstOnVF); 1033 if (Itr == WideningDecisions.end()) 1034 return CM_Unknown; 1035 return Itr->second.first; 1036 } 1037 1038 /// Return the vectorization cost for the given instruction \p I and vector 1039 /// width \p VF. 1040 unsigned getWideningCost(Instruction *I, unsigned VF) { 1041 assert(VF >= 2 && "Expected VF >=2"); 1042 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1043 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1044 "The cost is not calculated"); 1045 return WideningDecisions[InstOnVF].second; 1046 } 1047 1048 /// Return True if instruction \p I is an optimizable truncate whose operand 1049 /// is an induction variable. Such a truncate will be removed by adding a new 1050 /// induction variable with the destination type. 1051 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1052 // If the instruction is not a truncate, return false. 1053 auto *Trunc = dyn_cast<TruncInst>(I); 1054 if (!Trunc) 1055 return false; 1056 1057 // Get the source and destination types of the truncate. 1058 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1059 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1060 1061 // If the truncate is free for the given types, return false. Replacing a 1062 // free truncate with an induction variable would add an induction variable 1063 // update instruction to each iteration of the loop. We exclude from this 1064 // check the primary induction variable since it will need an update 1065 // instruction regardless. 1066 Value *Op = Trunc->getOperand(0); 1067 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1068 return false; 1069 1070 // If the truncated value is not an induction variable, return false. 1071 return Legal->isInductionPhi(Op); 1072 } 1073 1074 /// Collects the instructions to scalarize for each predicated instruction in 1075 /// the loop. 1076 void collectInstsToScalarize(unsigned VF); 1077 1078 /// Collect Uniform and Scalar values for the given \p VF. 1079 /// The sets depend on CM decision for Load/Store instructions 1080 /// that may be vectorized as interleave, gather-scatter or scalarized. 1081 void collectUniformsAndScalars(unsigned VF) { 1082 // Do the analysis once. 1083 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1084 return; 1085 setCostBasedWideningDecision(VF); 1086 collectLoopUniforms(VF); 1087 collectLoopScalars(VF); 1088 } 1089 1090 /// Returns true if the target machine supports masked store operation 1091 /// for the given \p DataType and kind of access to \p Ptr. 1092 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1093 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1094 } 1095 1096 /// Returns true if the target machine supports masked load operation 1097 /// for the given \p DataType and kind of access to \p Ptr. 1098 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1099 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1100 } 1101 1102 /// Returns true if the target machine supports masked scatter operation 1103 /// for the given \p DataType. 1104 bool isLegalMaskedScatter(Type *DataType) { 1105 return TTI.isLegalMaskedScatter(DataType); 1106 } 1107 1108 /// Returns true if the target machine supports masked gather operation 1109 /// for the given \p DataType. 1110 bool isLegalMaskedGather(Type *DataType) { 1111 return TTI.isLegalMaskedGather(DataType); 1112 } 1113 1114 /// Returns true if the target machine can represent \p V as a masked gather 1115 /// or scatter operation. 1116 bool isLegalGatherOrScatter(Value *V) { 1117 bool LI = isa<LoadInst>(V); 1118 bool SI = isa<StoreInst>(V); 1119 if (!LI && !SI) 1120 return false; 1121 auto *Ty = getMemInstValueType(V); 1122 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1123 } 1124 1125 /// Returns true if \p I is an instruction that will be scalarized with 1126 /// predication. Such instructions include conditional stores and 1127 /// instructions that may divide by zero. 1128 /// If a non-zero VF has been calculated, we check if I will be scalarized 1129 /// predication for that VF. 1130 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1131 1132 // Returns true if \p I is an instruction that will be predicated either 1133 // through scalar predication or masked load/store or masked gather/scatter. 1134 // Superset of instructions that return true for isScalarWithPredication. 1135 bool isPredicatedInst(Instruction *I) { 1136 if (!blockNeedsPredication(I->getParent())) 1137 return false; 1138 // Loads and stores that need some form of masked operation are predicated 1139 // instructions. 1140 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1141 return Legal->isMaskRequired(I); 1142 return isScalarWithPredication(I); 1143 } 1144 1145 /// Returns true if \p I is a memory instruction with consecutive memory 1146 /// access that can be widened. 1147 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1148 1149 /// Returns true if \p I is a memory instruction in an interleaved-group 1150 /// of memory accesses that can be vectorized with wide vector loads/stores 1151 /// and shuffles. 1152 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1153 1154 /// Check if \p Instr belongs to any interleaved access group. 1155 bool isAccessInterleaved(Instruction *Instr) { 1156 return InterleaveInfo.isInterleaved(Instr); 1157 } 1158 1159 /// Get the interleaved access group that \p Instr belongs to. 1160 const InterleaveGroup<Instruction> * 1161 getInterleavedAccessGroup(Instruction *Instr) { 1162 return InterleaveInfo.getInterleaveGroup(Instr); 1163 } 1164 1165 /// Returns true if an interleaved group requires a scalar iteration 1166 /// to handle accesses with gaps, and there is nothing preventing us from 1167 /// creating a scalar epilogue. 1168 bool requiresScalarEpilogue() const { 1169 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1170 } 1171 1172 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1173 /// loop hint annotation. 1174 bool isScalarEpilogueAllowed() const { 1175 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1176 } 1177 1178 /// Returns true if all loop blocks should be masked to fold tail loop. 1179 bool foldTailByMasking() const { return FoldTailByMasking; } 1180 1181 bool blockNeedsPredication(BasicBlock *BB) { 1182 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1183 } 1184 1185 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1186 /// with factor VF. Return the cost of the instruction, including 1187 /// scalarization overhead if it's needed. 1188 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1189 1190 /// Estimate cost of a call instruction CI if it were vectorized with factor 1191 /// VF. Return the cost of the instruction, including scalarization overhead 1192 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1193 /// scalarized - 1194 /// i.e. either vector version isn't available, or is too expensive. 1195 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1196 1197 private: 1198 unsigned NumPredStores = 0; 1199 1200 /// \return An upper bound for the vectorization factor, larger than zero. 1201 /// One is returned if vectorization should best be avoided due to cost. 1202 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1203 1204 /// The vectorization cost is a combination of the cost itself and a boolean 1205 /// indicating whether any of the contributing operations will actually 1206 /// operate on 1207 /// vector values after type legalization in the backend. If this latter value 1208 /// is 1209 /// false, then all operations will be scalarized (i.e. no vectorization has 1210 /// actually taken place). 1211 using VectorizationCostTy = std::pair<unsigned, bool>; 1212 1213 /// Returns the expected execution cost. The unit of the cost does 1214 /// not matter because we use the 'cost' units to compare different 1215 /// vector widths. The cost that is returned is *not* normalized by 1216 /// the factor width. 1217 VectorizationCostTy expectedCost(unsigned VF); 1218 1219 /// Returns the execution time cost of an instruction for a given vector 1220 /// width. Vector width of one means scalar. 1221 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1222 1223 /// The cost-computation logic from getInstructionCost which provides 1224 /// the vector type as an output parameter. 1225 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1226 1227 /// Calculate vectorization cost of memory instruction \p I. 1228 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1229 1230 /// The cost computation for scalarized memory instruction. 1231 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1232 1233 /// The cost computation for interleaving group of memory instructions. 1234 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1235 1236 /// The cost computation for Gather/Scatter instruction. 1237 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1238 1239 /// The cost computation for widening instruction \p I with consecutive 1240 /// memory access. 1241 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1242 1243 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1244 /// Load: scalar load + broadcast. 1245 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1246 /// element) 1247 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1248 1249 /// Estimate the overhead of scalarizing an instruction. This is a 1250 /// convenience wrapper for the type-based getScalarizationOverhead API. 1251 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1252 1253 /// Returns whether the instruction is a load or store and will be a emitted 1254 /// as a vector operation. 1255 bool isConsecutiveLoadOrStore(Instruction *I); 1256 1257 /// Returns true if an artificially high cost for emulated masked memrefs 1258 /// should be used. 1259 bool useEmulatedMaskMemRefHack(Instruction *I); 1260 1261 /// Create an analysis remark that explains why vectorization failed 1262 /// 1263 /// \p RemarkName is the identifier for the remark. \return the remark object 1264 /// that can be streamed to. 1265 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1266 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1267 RemarkName, TheLoop); 1268 } 1269 1270 /// Map of scalar integer values to the smallest bitwidth they can be legally 1271 /// represented as. The vector equivalents of these values should be truncated 1272 /// to this type. 1273 MapVector<Instruction *, uint64_t> MinBWs; 1274 1275 /// A type representing the costs for instructions if they were to be 1276 /// scalarized rather than vectorized. The entries are Instruction-Cost 1277 /// pairs. 1278 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1279 1280 /// A set containing all BasicBlocks that are known to present after 1281 /// vectorization as a predicated block. 1282 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1283 1284 /// Records whether it is allowed to have the original scalar loop execute at 1285 /// least once. This may be needed as a fallback loop in case runtime 1286 /// aliasing/dependence checks fail, or to handle the tail/remainder 1287 /// iterations when the trip count is unknown or doesn't divide by the VF, 1288 /// or as a peel-loop to handle gaps in interleave-groups. 1289 /// Under optsize and when the trip count is very small we don't allow any 1290 /// iterations to execute in the scalar loop. 1291 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1292 1293 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1294 bool FoldTailByMasking = false; 1295 1296 /// A map holding scalar costs for different vectorization factors. The 1297 /// presence of a cost for an instruction in the mapping indicates that the 1298 /// instruction will be scalarized when vectorizing with the associated 1299 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1300 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1301 1302 /// Holds the instructions known to be uniform after vectorization. 1303 /// The data is collected per VF. 1304 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1305 1306 /// Holds the instructions known to be scalar after vectorization. 1307 /// The data is collected per VF. 1308 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1309 1310 /// Holds the instructions (address computations) that are forced to be 1311 /// scalarized. 1312 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1313 1314 /// Returns the expected difference in cost from scalarizing the expression 1315 /// feeding a predicated instruction \p PredInst. The instructions to 1316 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1317 /// non-negative return value implies the expression will be scalarized. 1318 /// Currently, only single-use chains are considered for scalarization. 1319 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1320 unsigned VF); 1321 1322 /// Collect the instructions that are uniform after vectorization. An 1323 /// instruction is uniform if we represent it with a single scalar value in 1324 /// the vectorized loop corresponding to each vector iteration. Examples of 1325 /// uniform instructions include pointer operands of consecutive or 1326 /// interleaved memory accesses. Note that although uniformity implies an 1327 /// instruction will be scalar, the reverse is not true. In general, a 1328 /// scalarized instruction will be represented by VF scalar values in the 1329 /// vectorized loop, each corresponding to an iteration of the original 1330 /// scalar loop. 1331 void collectLoopUniforms(unsigned VF); 1332 1333 /// Collect the instructions that are scalar after vectorization. An 1334 /// instruction is scalar if it is known to be uniform or will be scalarized 1335 /// during vectorization. Non-uniform scalarized instructions will be 1336 /// represented by VF values in the vectorized loop, each corresponding to an 1337 /// iteration of the original scalar loop. 1338 void collectLoopScalars(unsigned VF); 1339 1340 /// Keeps cost model vectorization decision and cost for instructions. 1341 /// Right now it is used for memory instructions only. 1342 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1343 std::pair<InstWidening, unsigned>>; 1344 1345 DecisionList WideningDecisions; 1346 1347 /// Returns true if \p V is expected to be vectorized and it needs to be 1348 /// extracted. 1349 bool needsExtract(Value *V, unsigned VF) const { 1350 Instruction *I = dyn_cast<Instruction>(V); 1351 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1352 return false; 1353 1354 // Assume we can vectorize V (and hence we need extraction) if the 1355 // scalars are not computed yet. This can happen, because it is called 1356 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1357 // the scalars are collected. That should be a safe assumption in most 1358 // cases, because we check if the operands have vectorizable types 1359 // beforehand in LoopVectorizationLegality. 1360 return Scalars.find(VF) == Scalars.end() || 1361 !isScalarAfterVectorization(I, VF); 1362 }; 1363 1364 /// Returns a range containing only operands needing to be extracted. 1365 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1366 unsigned VF) { 1367 return SmallVector<Value *, 4>(make_filter_range( 1368 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1369 } 1370 1371 public: 1372 /// The loop that we evaluate. 1373 Loop *TheLoop; 1374 1375 /// Predicated scalar evolution analysis. 1376 PredicatedScalarEvolution &PSE; 1377 1378 /// Loop Info analysis. 1379 LoopInfo *LI; 1380 1381 /// Vectorization legality. 1382 LoopVectorizationLegality *Legal; 1383 1384 /// Vector target information. 1385 const TargetTransformInfo &TTI; 1386 1387 /// Target Library Info. 1388 const TargetLibraryInfo *TLI; 1389 1390 /// Demanded bits analysis. 1391 DemandedBits *DB; 1392 1393 /// Assumption cache. 1394 AssumptionCache *AC; 1395 1396 /// Interface to emit optimization remarks. 1397 OptimizationRemarkEmitter *ORE; 1398 1399 const Function *TheFunction; 1400 1401 /// Loop Vectorize Hint. 1402 const LoopVectorizeHints *Hints; 1403 1404 /// The interleave access information contains groups of interleaved accesses 1405 /// with the same stride and close to each other. 1406 InterleavedAccessInfo &InterleaveInfo; 1407 1408 /// Values to ignore in the cost model. 1409 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1410 1411 /// Values to ignore in the cost model when VF > 1. 1412 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1413 }; 1414 1415 } // end namespace llvm 1416 1417 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1418 // vectorization. The loop needs to be annotated with #pragma omp simd 1419 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1420 // vector length information is not provided, vectorization is not considered 1421 // explicit. Interleave hints are not allowed either. These limitations will be 1422 // relaxed in the future. 1423 // Please, note that we are currently forced to abuse the pragma 'clang 1424 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1425 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1426 // provides *explicit vectorization hints* (LV can bypass legal checks and 1427 // assume that vectorization is legal). However, both hints are implemented 1428 // using the same metadata (llvm.loop.vectorize, processed by 1429 // LoopVectorizeHints). This will be fixed in the future when the native IR 1430 // representation for pragma 'omp simd' is introduced. 1431 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1432 OptimizationRemarkEmitter *ORE) { 1433 assert(!OuterLp->empty() && "This is not an outer loop"); 1434 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1435 1436 // Only outer loops with an explicit vectorization hint are supported. 1437 // Unannotated outer loops are ignored. 1438 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1439 return false; 1440 1441 Function *Fn = OuterLp->getHeader()->getParent(); 1442 if (!Hints.allowVectorization(Fn, OuterLp, 1443 true /*VectorizeOnlyWhenForced*/)) { 1444 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1445 return false; 1446 } 1447 1448 if (Hints.getInterleave() > 1) { 1449 // TODO: Interleave support is future work. 1450 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1451 "outer loops.\n"); 1452 Hints.emitRemarkWithHints(); 1453 return false; 1454 } 1455 1456 return true; 1457 } 1458 1459 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1460 OptimizationRemarkEmitter *ORE, 1461 SmallVectorImpl<Loop *> &V) { 1462 // Collect inner loops and outer loops without irreducible control flow. For 1463 // now, only collect outer loops that have explicit vectorization hints. If we 1464 // are stress testing the VPlan H-CFG construction, we collect the outermost 1465 // loop of every loop nest. 1466 if (L.empty() || VPlanBuildStressTest || 1467 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1468 LoopBlocksRPO RPOT(&L); 1469 RPOT.perform(LI); 1470 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1471 V.push_back(&L); 1472 // TODO: Collect inner loops inside marked outer loops in case 1473 // vectorization fails for the outer loop. Do not invoke 1474 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1475 // already known to be reducible. We can use an inherited attribute for 1476 // that. 1477 return; 1478 } 1479 } 1480 for (Loop *InnerL : L) 1481 collectSupportedLoops(*InnerL, LI, ORE, V); 1482 } 1483 1484 namespace { 1485 1486 /// The LoopVectorize Pass. 1487 struct LoopVectorize : public FunctionPass { 1488 /// Pass identification, replacement for typeid 1489 static char ID; 1490 1491 LoopVectorizePass Impl; 1492 1493 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1494 bool VectorizeOnlyWhenForced = false) 1495 : FunctionPass(ID) { 1496 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1497 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1498 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1499 } 1500 1501 bool runOnFunction(Function &F) override { 1502 if (skipFunction(F)) 1503 return false; 1504 1505 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1506 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1507 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1508 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1509 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1510 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1511 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1512 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1513 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1514 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1515 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1516 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1517 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1518 1519 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1520 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1521 1522 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1523 GetLAA, *ORE, PSI); 1524 } 1525 1526 void getAnalysisUsage(AnalysisUsage &AU) const override { 1527 AU.addRequired<AssumptionCacheTracker>(); 1528 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1529 AU.addRequired<DominatorTreeWrapperPass>(); 1530 AU.addRequired<LoopInfoWrapperPass>(); 1531 AU.addRequired<ScalarEvolutionWrapperPass>(); 1532 AU.addRequired<TargetTransformInfoWrapperPass>(); 1533 AU.addRequired<AAResultsWrapperPass>(); 1534 AU.addRequired<LoopAccessLegacyAnalysis>(); 1535 AU.addRequired<DemandedBitsWrapperPass>(); 1536 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1537 1538 // We currently do not preserve loopinfo/dominator analyses with outer loop 1539 // vectorization. Until this is addressed, mark these analyses as preserved 1540 // only for non-VPlan-native path. 1541 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1542 if (!EnableVPlanNativePath) { 1543 AU.addPreserved<LoopInfoWrapperPass>(); 1544 AU.addPreserved<DominatorTreeWrapperPass>(); 1545 } 1546 1547 AU.addPreserved<BasicAAWrapperPass>(); 1548 AU.addPreserved<GlobalsAAWrapperPass>(); 1549 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1550 } 1551 }; 1552 1553 } // end anonymous namespace 1554 1555 //===----------------------------------------------------------------------===// 1556 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1557 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1558 //===----------------------------------------------------------------------===// 1559 1560 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1561 // We need to place the broadcast of invariant variables outside the loop, 1562 // but only if it's proven safe to do so. Else, broadcast will be inside 1563 // vector loop body. 1564 Instruction *Instr = dyn_cast<Instruction>(V); 1565 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1566 (!Instr || 1567 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1568 // Place the code for broadcasting invariant variables in the new preheader. 1569 IRBuilder<>::InsertPointGuard Guard(Builder); 1570 if (SafeToHoist) 1571 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1572 1573 // Broadcast the scalar into all locations in the vector. 1574 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1575 1576 return Shuf; 1577 } 1578 1579 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1580 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1581 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1582 "Expected either an induction phi-node or a truncate of it!"); 1583 Value *Start = II.getStartValue(); 1584 1585 // Construct the initial value of the vector IV in the vector loop preheader 1586 auto CurrIP = Builder.saveIP(); 1587 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1588 if (isa<TruncInst>(EntryVal)) { 1589 assert(Start->getType()->isIntegerTy() && 1590 "Truncation requires an integer type"); 1591 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1592 Step = Builder.CreateTrunc(Step, TruncType); 1593 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1594 } 1595 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1596 Value *SteppedStart = 1597 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1598 1599 // We create vector phi nodes for both integer and floating-point induction 1600 // variables. Here, we determine the kind of arithmetic we will perform. 1601 Instruction::BinaryOps AddOp; 1602 Instruction::BinaryOps MulOp; 1603 if (Step->getType()->isIntegerTy()) { 1604 AddOp = Instruction::Add; 1605 MulOp = Instruction::Mul; 1606 } else { 1607 AddOp = II.getInductionOpcode(); 1608 MulOp = Instruction::FMul; 1609 } 1610 1611 // Multiply the vectorization factor by the step using integer or 1612 // floating-point arithmetic as appropriate. 1613 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1614 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1615 1616 // Create a vector splat to use in the induction update. 1617 // 1618 // FIXME: If the step is non-constant, we create the vector splat with 1619 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1620 // handle a constant vector splat. 1621 Value *SplatVF = isa<Constant>(Mul) 1622 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1623 : Builder.CreateVectorSplat(VF, Mul); 1624 Builder.restoreIP(CurrIP); 1625 1626 // We may need to add the step a number of times, depending on the unroll 1627 // factor. The last of those goes into the PHI. 1628 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1629 &*LoopVectorBody->getFirstInsertionPt()); 1630 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1631 Instruction *LastInduction = VecInd; 1632 for (unsigned Part = 0; Part < UF; ++Part) { 1633 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1634 1635 if (isa<TruncInst>(EntryVal)) 1636 addMetadata(LastInduction, EntryVal); 1637 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1638 1639 LastInduction = cast<Instruction>(addFastMathFlag( 1640 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1641 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1642 } 1643 1644 // Move the last step to the end of the latch block. This ensures consistent 1645 // placement of all induction updates. 1646 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1647 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1648 auto *ICmp = cast<Instruction>(Br->getCondition()); 1649 LastInduction->moveBefore(ICmp); 1650 LastInduction->setName("vec.ind.next"); 1651 1652 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1653 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1654 } 1655 1656 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1657 return Cost->isScalarAfterVectorization(I, VF) || 1658 Cost->isProfitableToScalarize(I, VF); 1659 } 1660 1661 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1662 if (shouldScalarizeInstruction(IV)) 1663 return true; 1664 auto isScalarInst = [&](User *U) -> bool { 1665 auto *I = cast<Instruction>(U); 1666 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1667 }; 1668 return llvm::any_of(IV->users(), isScalarInst); 1669 } 1670 1671 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1672 const InductionDescriptor &ID, const Instruction *EntryVal, 1673 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1674 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1675 "Expected either an induction phi-node or a truncate of it!"); 1676 1677 // This induction variable is not the phi from the original loop but the 1678 // newly-created IV based on the proof that casted Phi is equal to the 1679 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1680 // re-uses the same InductionDescriptor that original IV uses but we don't 1681 // have to do any recording in this case - that is done when original IV is 1682 // processed. 1683 if (isa<TruncInst>(EntryVal)) 1684 return; 1685 1686 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1687 if (Casts.empty()) 1688 return; 1689 // Only the first Cast instruction in the Casts vector is of interest. 1690 // The rest of the Casts (if exist) have no uses outside the 1691 // induction update chain itself. 1692 Instruction *CastInst = *Casts.begin(); 1693 if (Lane < UINT_MAX) 1694 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1695 else 1696 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1697 } 1698 1699 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1700 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1701 "Primary induction variable must have an integer type"); 1702 1703 auto II = Legal->getInductionVars()->find(IV); 1704 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1705 1706 auto ID = II->second; 1707 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1708 1709 // The scalar value to broadcast. This will be derived from the canonical 1710 // induction variable. 1711 Value *ScalarIV = nullptr; 1712 1713 // The value from the original loop to which we are mapping the new induction 1714 // variable. 1715 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1716 1717 // True if we have vectorized the induction variable. 1718 auto VectorizedIV = false; 1719 1720 // Determine if we want a scalar version of the induction variable. This is 1721 // true if the induction variable itself is not widened, or if it has at 1722 // least one user in the loop that is not widened. 1723 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1724 1725 // Generate code for the induction step. Note that induction steps are 1726 // required to be loop-invariant 1727 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1728 "Induction step should be loop invariant"); 1729 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1730 Value *Step = nullptr; 1731 if (PSE.getSE()->isSCEVable(IV->getType())) { 1732 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1733 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1734 LoopVectorPreHeader->getTerminator()); 1735 } else { 1736 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1737 } 1738 1739 // Try to create a new independent vector induction variable. If we can't 1740 // create the phi node, we will splat the scalar induction variable in each 1741 // loop iteration. 1742 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1743 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1744 VectorizedIV = true; 1745 } 1746 1747 // If we haven't yet vectorized the induction variable, or if we will create 1748 // a scalar one, we need to define the scalar induction variable and step 1749 // values. If we were given a truncation type, truncate the canonical 1750 // induction variable and step. Otherwise, derive these values from the 1751 // induction descriptor. 1752 if (!VectorizedIV || NeedsScalarIV) { 1753 ScalarIV = Induction; 1754 if (IV != OldInduction) { 1755 ScalarIV = IV->getType()->isIntegerTy() 1756 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1757 : Builder.CreateCast(Instruction::SIToFP, Induction, 1758 IV->getType()); 1759 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1760 ScalarIV->setName("offset.idx"); 1761 } 1762 if (Trunc) { 1763 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1764 assert(Step->getType()->isIntegerTy() && 1765 "Truncation requires an integer step"); 1766 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1767 Step = Builder.CreateTrunc(Step, TruncType); 1768 } 1769 } 1770 1771 // If we haven't yet vectorized the induction variable, splat the scalar 1772 // induction variable, and build the necessary step vectors. 1773 // TODO: Don't do it unless the vectorized IV is really required. 1774 if (!VectorizedIV) { 1775 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1776 for (unsigned Part = 0; Part < UF; ++Part) { 1777 Value *EntryPart = 1778 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1779 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1780 if (Trunc) 1781 addMetadata(EntryPart, Trunc); 1782 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1783 } 1784 } 1785 1786 // If an induction variable is only used for counting loop iterations or 1787 // calculating addresses, it doesn't need to be widened. Create scalar steps 1788 // that can be used by instructions we will later scalarize. Note that the 1789 // addition of the scalar steps will not increase the number of instructions 1790 // in the loop in the common case prior to InstCombine. We will be trading 1791 // one vector extract for each scalar step. 1792 if (NeedsScalarIV) 1793 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1794 } 1795 1796 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1797 Instruction::BinaryOps BinOp) { 1798 // Create and check the types. 1799 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1800 int VLen = Val->getType()->getVectorNumElements(); 1801 1802 Type *STy = Val->getType()->getScalarType(); 1803 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1804 "Induction Step must be an integer or FP"); 1805 assert(Step->getType() == STy && "Step has wrong type"); 1806 1807 SmallVector<Constant *, 8> Indices; 1808 1809 if (STy->isIntegerTy()) { 1810 // Create a vector of consecutive numbers from zero to VF. 1811 for (int i = 0; i < VLen; ++i) 1812 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1813 1814 // Add the consecutive indices to the vector value. 1815 Constant *Cv = ConstantVector::get(Indices); 1816 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1817 Step = Builder.CreateVectorSplat(VLen, Step); 1818 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1819 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1820 // which can be found from the original scalar operations. 1821 Step = Builder.CreateMul(Cv, Step); 1822 return Builder.CreateAdd(Val, Step, "induction"); 1823 } 1824 1825 // Floating point induction. 1826 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1827 "Binary Opcode should be specified for FP induction"); 1828 // Create a vector of consecutive numbers from zero to VF. 1829 for (int i = 0; i < VLen; ++i) 1830 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1831 1832 // Add the consecutive indices to the vector value. 1833 Constant *Cv = ConstantVector::get(Indices); 1834 1835 Step = Builder.CreateVectorSplat(VLen, Step); 1836 1837 // Floating point operations had to be 'fast' to enable the induction. 1838 FastMathFlags Flags; 1839 Flags.setFast(); 1840 1841 Value *MulOp = Builder.CreateFMul(Cv, Step); 1842 if (isa<Instruction>(MulOp)) 1843 // Have to check, MulOp may be a constant 1844 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1845 1846 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1847 if (isa<Instruction>(BOp)) 1848 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1849 return BOp; 1850 } 1851 1852 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1853 Instruction *EntryVal, 1854 const InductionDescriptor &ID) { 1855 // We shouldn't have to build scalar steps if we aren't vectorizing. 1856 assert(VF > 1 && "VF should be greater than one"); 1857 1858 // Get the value type and ensure it and the step have the same integer type. 1859 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1860 assert(ScalarIVTy == Step->getType() && 1861 "Val and Step should have the same type"); 1862 1863 // We build scalar steps for both integer and floating-point induction 1864 // variables. Here, we determine the kind of arithmetic we will perform. 1865 Instruction::BinaryOps AddOp; 1866 Instruction::BinaryOps MulOp; 1867 if (ScalarIVTy->isIntegerTy()) { 1868 AddOp = Instruction::Add; 1869 MulOp = Instruction::Mul; 1870 } else { 1871 AddOp = ID.getInductionOpcode(); 1872 MulOp = Instruction::FMul; 1873 } 1874 1875 // Determine the number of scalars we need to generate for each unroll 1876 // iteration. If EntryVal is uniform, we only need to generate the first 1877 // lane. Otherwise, we generate all VF values. 1878 unsigned Lanes = 1879 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1880 : VF; 1881 // Compute the scalar steps and save the results in VectorLoopValueMap. 1882 for (unsigned Part = 0; Part < UF; ++Part) { 1883 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1884 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1885 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1886 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1887 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1888 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1889 } 1890 } 1891 } 1892 1893 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1894 assert(V != Induction && "The new induction variable should not be used."); 1895 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1896 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1897 1898 // If we have a stride that is replaced by one, do it here. Defer this for 1899 // the VPlan-native path until we start running Legal checks in that path. 1900 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1901 V = ConstantInt::get(V->getType(), 1); 1902 1903 // If we have a vector mapped to this value, return it. 1904 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1905 return VectorLoopValueMap.getVectorValue(V, Part); 1906 1907 // If the value has not been vectorized, check if it has been scalarized 1908 // instead. If it has been scalarized, and we actually need the value in 1909 // vector form, we will construct the vector values on demand. 1910 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1911 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1912 1913 // If we've scalarized a value, that value should be an instruction. 1914 auto *I = cast<Instruction>(V); 1915 1916 // If we aren't vectorizing, we can just copy the scalar map values over to 1917 // the vector map. 1918 if (VF == 1) { 1919 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1920 return ScalarValue; 1921 } 1922 1923 // Get the last scalar instruction we generated for V and Part. If the value 1924 // is known to be uniform after vectorization, this corresponds to lane zero 1925 // of the Part unroll iteration. Otherwise, the last instruction is the one 1926 // we created for the last vector lane of the Part unroll iteration. 1927 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1928 auto *LastInst = cast<Instruction>( 1929 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1930 1931 // Set the insert point after the last scalarized instruction. This ensures 1932 // the insertelement sequence will directly follow the scalar definitions. 1933 auto OldIP = Builder.saveIP(); 1934 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1935 Builder.SetInsertPoint(&*NewIP); 1936 1937 // However, if we are vectorizing, we need to construct the vector values. 1938 // If the value is known to be uniform after vectorization, we can just 1939 // broadcast the scalar value corresponding to lane zero for each unroll 1940 // iteration. Otherwise, we construct the vector values using insertelement 1941 // instructions. Since the resulting vectors are stored in 1942 // VectorLoopValueMap, we will only generate the insertelements once. 1943 Value *VectorValue = nullptr; 1944 if (Cost->isUniformAfterVectorization(I, VF)) { 1945 VectorValue = getBroadcastInstrs(ScalarValue); 1946 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1947 } else { 1948 // Initialize packing with insertelements to start from undef. 1949 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1950 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1951 for (unsigned Lane = 0; Lane < VF; ++Lane) 1952 packScalarIntoVectorValue(V, {Part, Lane}); 1953 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1954 } 1955 Builder.restoreIP(OldIP); 1956 return VectorValue; 1957 } 1958 1959 // If this scalar is unknown, assume that it is a constant or that it is 1960 // loop invariant. Broadcast V and save the value for future uses. 1961 Value *B = getBroadcastInstrs(V); 1962 VectorLoopValueMap.setVectorValue(V, Part, B); 1963 return B; 1964 } 1965 1966 Value * 1967 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1968 const VPIteration &Instance) { 1969 // If the value is not an instruction contained in the loop, it should 1970 // already be scalar. 1971 if (OrigLoop->isLoopInvariant(V)) 1972 return V; 1973 1974 assert(Instance.Lane > 0 1975 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1976 : true && "Uniform values only have lane zero"); 1977 1978 // If the value from the original loop has not been vectorized, it is 1979 // represented by UF x VF scalar values in the new loop. Return the requested 1980 // scalar value. 1981 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1982 return VectorLoopValueMap.getScalarValue(V, Instance); 1983 1984 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1985 // for the given unroll part. If this entry is not a vector type (i.e., the 1986 // vectorization factor is one), there is no need to generate an 1987 // extractelement instruction. 1988 auto *U = getOrCreateVectorValue(V, Instance.Part); 1989 if (!U->getType()->isVectorTy()) { 1990 assert(VF == 1 && "Value not scalarized has non-vector type"); 1991 return U; 1992 } 1993 1994 // Otherwise, the value from the original loop has been vectorized and is 1995 // represented by UF vector values. Extract and return the requested scalar 1996 // value from the appropriate vector lane. 1997 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1998 } 1999 2000 void InnerLoopVectorizer::packScalarIntoVectorValue( 2001 Value *V, const VPIteration &Instance) { 2002 assert(V != Induction && "The new induction variable should not be used."); 2003 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2004 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2005 2006 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2007 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2008 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2009 Builder.getInt32(Instance.Lane)); 2010 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2011 } 2012 2013 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2014 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2015 SmallVector<Constant *, 8> ShuffleMask; 2016 for (unsigned i = 0; i < VF; ++i) 2017 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2018 2019 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2020 ConstantVector::get(ShuffleMask), 2021 "reverse"); 2022 } 2023 2024 // Return whether we allow using masked interleave-groups (for dealing with 2025 // strided loads/stores that reside in predicated blocks, or for dealing 2026 // with gaps). 2027 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2028 // If an override option has been passed in for interleaved accesses, use it. 2029 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2030 return EnableMaskedInterleavedMemAccesses; 2031 2032 return TTI.enableMaskedInterleavedAccessVectorization(); 2033 } 2034 2035 // Try to vectorize the interleave group that \p Instr belongs to. 2036 // 2037 // E.g. Translate following interleaved load group (factor = 3): 2038 // for (i = 0; i < N; i+=3) { 2039 // R = Pic[i]; // Member of index 0 2040 // G = Pic[i+1]; // Member of index 1 2041 // B = Pic[i+2]; // Member of index 2 2042 // ... // do something to R, G, B 2043 // } 2044 // To: 2045 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2046 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2047 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2048 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2049 // 2050 // Or translate following interleaved store group (factor = 3): 2051 // for (i = 0; i < N; i+=3) { 2052 // ... do something to R, G, B 2053 // Pic[i] = R; // Member of index 0 2054 // Pic[i+1] = G; // Member of index 1 2055 // Pic[i+2] = B; // Member of index 2 2056 // } 2057 // To: 2058 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2059 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2060 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2061 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2062 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2063 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2064 VectorParts *BlockInMask) { 2065 const InterleaveGroup<Instruction> *Group = 2066 Cost->getInterleavedAccessGroup(Instr); 2067 assert(Group && "Fail to get an interleaved access group."); 2068 2069 // Skip if current instruction is not the insert position. 2070 if (Instr != Group->getInsertPos()) 2071 return; 2072 2073 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2074 Value *Ptr = getLoadStorePointerOperand(Instr); 2075 2076 // Prepare for the vector type of the interleaved load/store. 2077 Type *ScalarTy = getMemInstValueType(Instr); 2078 unsigned InterleaveFactor = Group->getFactor(); 2079 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2080 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2081 2082 // Prepare for the new pointers. 2083 setDebugLocFromInst(Builder, Ptr); 2084 SmallVector<Value *, 2> NewPtrs; 2085 unsigned Index = Group->getIndex(Instr); 2086 2087 VectorParts Mask; 2088 bool IsMaskForCondRequired = BlockInMask; 2089 if (IsMaskForCondRequired) { 2090 Mask = *BlockInMask; 2091 // TODO: extend the masked interleaved-group support to reversed access. 2092 assert(!Group->isReverse() && "Reversed masked interleave-group " 2093 "not supported."); 2094 } 2095 2096 // If the group is reverse, adjust the index to refer to the last vector lane 2097 // instead of the first. We adjust the index from the first vector lane, 2098 // rather than directly getting the pointer for lane VF - 1, because the 2099 // pointer operand of the interleaved access is supposed to be uniform. For 2100 // uniform instructions, we're only required to generate a value for the 2101 // first vector lane in each unroll iteration. 2102 if (Group->isReverse()) 2103 Index += (VF - 1) * Group->getFactor(); 2104 2105 bool InBounds = false; 2106 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2107 InBounds = gep->isInBounds(); 2108 2109 for (unsigned Part = 0; Part < UF; Part++) { 2110 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2111 2112 // Notice current instruction could be any index. Need to adjust the address 2113 // to the member of index 0. 2114 // 2115 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2116 // b = A[i]; // Member of index 0 2117 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2118 // 2119 // E.g. A[i+1] = a; // Member of index 1 2120 // A[i] = b; // Member of index 0 2121 // A[i+2] = c; // Member of index 2 (Current instruction) 2122 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2123 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2124 if (InBounds) 2125 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2126 2127 // Cast to the vector pointer type. 2128 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2129 } 2130 2131 setDebugLocFromInst(Builder, Instr); 2132 Value *UndefVec = UndefValue::get(VecTy); 2133 2134 Value *MaskForGaps = nullptr; 2135 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2136 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2137 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2138 } 2139 2140 // Vectorize the interleaved load group. 2141 if (isa<LoadInst>(Instr)) { 2142 // For each unroll part, create a wide load for the group. 2143 SmallVector<Value *, 2> NewLoads; 2144 for (unsigned Part = 0; Part < UF; Part++) { 2145 Instruction *NewLoad; 2146 if (IsMaskForCondRequired || MaskForGaps) { 2147 assert(useMaskedInterleavedAccesses(*TTI) && 2148 "masked interleaved groups are not allowed."); 2149 Value *GroupMask = MaskForGaps; 2150 if (IsMaskForCondRequired) { 2151 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2152 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2153 Value *ShuffledMask = Builder.CreateShuffleVector( 2154 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2155 GroupMask = MaskForGaps 2156 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2157 MaskForGaps) 2158 : ShuffledMask; 2159 } 2160 NewLoad = 2161 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2162 GroupMask, UndefVec, "wide.masked.vec"); 2163 } 2164 else 2165 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2166 Group->getAlignment(), "wide.vec"); 2167 Group->addMetadata(NewLoad); 2168 NewLoads.push_back(NewLoad); 2169 } 2170 2171 // For each member in the group, shuffle out the appropriate data from the 2172 // wide loads. 2173 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2174 Instruction *Member = Group->getMember(I); 2175 2176 // Skip the gaps in the group. 2177 if (!Member) 2178 continue; 2179 2180 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2181 for (unsigned Part = 0; Part < UF; Part++) { 2182 Value *StridedVec = Builder.CreateShuffleVector( 2183 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2184 2185 // If this member has different type, cast the result type. 2186 if (Member->getType() != ScalarTy) { 2187 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2188 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2189 } 2190 2191 if (Group->isReverse()) 2192 StridedVec = reverseVector(StridedVec); 2193 2194 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2195 } 2196 } 2197 return; 2198 } 2199 2200 // The sub vector type for current instruction. 2201 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2202 2203 // Vectorize the interleaved store group. 2204 for (unsigned Part = 0; Part < UF; Part++) { 2205 // Collect the stored vector from each member. 2206 SmallVector<Value *, 4> StoredVecs; 2207 for (unsigned i = 0; i < InterleaveFactor; i++) { 2208 // Interleaved store group doesn't allow a gap, so each index has a member 2209 Instruction *Member = Group->getMember(i); 2210 assert(Member && "Fail to get a member from an interleaved store group"); 2211 2212 Value *StoredVec = getOrCreateVectorValue( 2213 cast<StoreInst>(Member)->getValueOperand(), Part); 2214 if (Group->isReverse()) 2215 StoredVec = reverseVector(StoredVec); 2216 2217 // If this member has different type, cast it to a unified type. 2218 2219 if (StoredVec->getType() != SubVT) 2220 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2221 2222 StoredVecs.push_back(StoredVec); 2223 } 2224 2225 // Concatenate all vectors into a wide vector. 2226 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2227 2228 // Interleave the elements in the wide vector. 2229 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2230 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2231 "interleaved.vec"); 2232 2233 Instruction *NewStoreInstr; 2234 if (IsMaskForCondRequired) { 2235 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2236 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2237 Value *ShuffledMask = Builder.CreateShuffleVector( 2238 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2239 NewStoreInstr = Builder.CreateMaskedStore( 2240 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2241 } 2242 else 2243 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2244 Group->getAlignment()); 2245 2246 Group->addMetadata(NewStoreInstr); 2247 } 2248 } 2249 2250 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2251 VectorParts *BlockInMask) { 2252 // Attempt to issue a wide load. 2253 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2254 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2255 2256 assert((LI || SI) && "Invalid Load/Store instruction"); 2257 2258 LoopVectorizationCostModel::InstWidening Decision = 2259 Cost->getWideningDecision(Instr, VF); 2260 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2261 "CM decision should be taken at this point"); 2262 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2263 return vectorizeInterleaveGroup(Instr); 2264 2265 Type *ScalarDataTy = getMemInstValueType(Instr); 2266 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2267 Value *Ptr = getLoadStorePointerOperand(Instr); 2268 unsigned Alignment = getLoadStoreAlignment(Instr); 2269 // An alignment of 0 means target abi alignment. We need to use the scalar's 2270 // target abi alignment in such a case. 2271 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2272 if (!Alignment) 2273 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2274 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2275 2276 // Determine if the pointer operand of the access is either consecutive or 2277 // reverse consecutive. 2278 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2279 bool ConsecutiveStride = 2280 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2281 bool CreateGatherScatter = 2282 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2283 2284 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2285 // gather/scatter. Otherwise Decision should have been to Scalarize. 2286 assert((ConsecutiveStride || CreateGatherScatter) && 2287 "The instruction should be scalarized"); 2288 2289 // Handle consecutive loads/stores. 2290 if (ConsecutiveStride) 2291 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2292 2293 VectorParts Mask; 2294 bool isMaskRequired = BlockInMask; 2295 if (isMaskRequired) 2296 Mask = *BlockInMask; 2297 2298 bool InBounds = false; 2299 if (auto *gep = dyn_cast<GetElementPtrInst>( 2300 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2301 InBounds = gep->isInBounds(); 2302 2303 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2304 // Calculate the pointer for the specific unroll-part. 2305 GetElementPtrInst *PartPtr = nullptr; 2306 2307 if (Reverse) { 2308 // If the address is consecutive but reversed, then the 2309 // wide store needs to start at the last vector element. 2310 PartPtr = cast<GetElementPtrInst>( 2311 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2312 PartPtr->setIsInBounds(InBounds); 2313 PartPtr = cast<GetElementPtrInst>( 2314 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2315 PartPtr->setIsInBounds(InBounds); 2316 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2317 Mask[Part] = reverseVector(Mask[Part]); 2318 } else { 2319 PartPtr = cast<GetElementPtrInst>( 2320 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2321 PartPtr->setIsInBounds(InBounds); 2322 } 2323 2324 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2325 }; 2326 2327 // Handle Stores: 2328 if (SI) { 2329 setDebugLocFromInst(Builder, SI); 2330 2331 for (unsigned Part = 0; Part < UF; ++Part) { 2332 Instruction *NewSI = nullptr; 2333 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2334 if (CreateGatherScatter) { 2335 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2336 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2337 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2338 MaskPart); 2339 } else { 2340 if (Reverse) { 2341 // If we store to reverse consecutive memory locations, then we need 2342 // to reverse the order of elements in the stored value. 2343 StoredVal = reverseVector(StoredVal); 2344 // We don't want to update the value in the map as it might be used in 2345 // another expression. So don't call resetVectorValue(StoredVal). 2346 } 2347 auto *VecPtr = CreateVecPtr(Part, Ptr); 2348 if (isMaskRequired) 2349 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2350 Mask[Part]); 2351 else 2352 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2353 } 2354 addMetadata(NewSI, SI); 2355 } 2356 return; 2357 } 2358 2359 // Handle loads. 2360 assert(LI && "Must have a load instruction"); 2361 setDebugLocFromInst(Builder, LI); 2362 for (unsigned Part = 0; Part < UF; ++Part) { 2363 Value *NewLI; 2364 if (CreateGatherScatter) { 2365 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2366 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2367 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2368 nullptr, "wide.masked.gather"); 2369 addMetadata(NewLI, LI); 2370 } else { 2371 auto *VecPtr = CreateVecPtr(Part, Ptr); 2372 if (isMaskRequired) 2373 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2374 UndefValue::get(DataTy), 2375 "wide.masked.load"); 2376 else 2377 NewLI = 2378 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2379 2380 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2381 addMetadata(NewLI, LI); 2382 if (Reverse) 2383 NewLI = reverseVector(NewLI); 2384 } 2385 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2386 } 2387 } 2388 2389 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2390 const VPIteration &Instance, 2391 bool IfPredicateInstr) { 2392 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2393 2394 setDebugLocFromInst(Builder, Instr); 2395 2396 // Does this instruction return a value ? 2397 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2398 2399 Instruction *Cloned = Instr->clone(); 2400 if (!IsVoidRetTy) 2401 Cloned->setName(Instr->getName() + ".cloned"); 2402 2403 // Replace the operands of the cloned instructions with their scalar 2404 // equivalents in the new loop. 2405 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2406 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2407 Cloned->setOperand(op, NewOp); 2408 } 2409 addNewMetadata(Cloned, Instr); 2410 2411 // Place the cloned scalar in the new loop. 2412 Builder.Insert(Cloned); 2413 2414 // Add the cloned scalar to the scalar map entry. 2415 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2416 2417 // If we just cloned a new assumption, add it the assumption cache. 2418 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2419 if (II->getIntrinsicID() == Intrinsic::assume) 2420 AC->registerAssumption(II); 2421 2422 // End if-block. 2423 if (IfPredicateInstr) 2424 PredicatedInstructions.push_back(Cloned); 2425 } 2426 2427 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2428 Value *End, Value *Step, 2429 Instruction *DL) { 2430 BasicBlock *Header = L->getHeader(); 2431 BasicBlock *Latch = L->getLoopLatch(); 2432 // As we're just creating this loop, it's possible no latch exists 2433 // yet. If so, use the header as this will be a single block loop. 2434 if (!Latch) 2435 Latch = Header; 2436 2437 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2438 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2439 setDebugLocFromInst(Builder, OldInst); 2440 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2441 2442 Builder.SetInsertPoint(Latch->getTerminator()); 2443 setDebugLocFromInst(Builder, OldInst); 2444 2445 // Create i+1 and fill the PHINode. 2446 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2447 Induction->addIncoming(Start, L->getLoopPreheader()); 2448 Induction->addIncoming(Next, Latch); 2449 // Create the compare. 2450 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2451 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2452 2453 // Now we have two terminators. Remove the old one from the block. 2454 Latch->getTerminator()->eraseFromParent(); 2455 2456 return Induction; 2457 } 2458 2459 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2460 if (TripCount) 2461 return TripCount; 2462 2463 assert(L && "Create Trip Count for null loop."); 2464 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2465 // Find the loop boundaries. 2466 ScalarEvolution *SE = PSE.getSE(); 2467 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2468 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2469 "Invalid loop count"); 2470 2471 Type *IdxTy = Legal->getWidestInductionType(); 2472 assert(IdxTy && "No type for induction"); 2473 2474 // The exit count might have the type of i64 while the phi is i32. This can 2475 // happen if we have an induction variable that is sign extended before the 2476 // compare. The only way that we get a backedge taken count is that the 2477 // induction variable was signed and as such will not overflow. In such a case 2478 // truncation is legal. 2479 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2480 IdxTy->getPrimitiveSizeInBits()) 2481 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2482 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2483 2484 // Get the total trip count from the count by adding 1. 2485 const SCEV *ExitCount = SE->getAddExpr( 2486 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2487 2488 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2489 2490 // Expand the trip count and place the new instructions in the preheader. 2491 // Notice that the pre-header does not change, only the loop body. 2492 SCEVExpander Exp(*SE, DL, "induction"); 2493 2494 // Count holds the overall loop count (N). 2495 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2496 L->getLoopPreheader()->getTerminator()); 2497 2498 if (TripCount->getType()->isPointerTy()) 2499 TripCount = 2500 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2501 L->getLoopPreheader()->getTerminator()); 2502 2503 return TripCount; 2504 } 2505 2506 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2507 if (VectorTripCount) 2508 return VectorTripCount; 2509 2510 Value *TC = getOrCreateTripCount(L); 2511 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2512 2513 Type *Ty = TC->getType(); 2514 Constant *Step = ConstantInt::get(Ty, VF * UF); 2515 2516 // If the tail is to be folded by masking, round the number of iterations N 2517 // up to a multiple of Step instead of rounding down. This is done by first 2518 // adding Step-1 and then rounding down. Note that it's ok if this addition 2519 // overflows: the vector induction variable will eventually wrap to zero given 2520 // that it starts at zero and its Step is a power of two; the loop will then 2521 // exit, with the last early-exit vector comparison also producing all-true. 2522 if (Cost->foldTailByMasking()) { 2523 assert(isPowerOf2_32(VF * UF) && 2524 "VF*UF must be a power of 2 when folding tail by masking"); 2525 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2526 } 2527 2528 // Now we need to generate the expression for the part of the loop that the 2529 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2530 // iterations are not required for correctness, or N - Step, otherwise. Step 2531 // is equal to the vectorization factor (number of SIMD elements) times the 2532 // unroll factor (number of SIMD instructions). 2533 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2534 2535 // If there is a non-reversed interleaved group that may speculatively access 2536 // memory out-of-bounds, we need to ensure that there will be at least one 2537 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2538 // the trip count, we set the remainder to be equal to the step. If the step 2539 // does not evenly divide the trip count, no adjustment is necessary since 2540 // there will already be scalar iterations. Note that the minimum iterations 2541 // check ensures that N >= Step. 2542 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2543 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2544 R = Builder.CreateSelect(IsZero, Step, R); 2545 } 2546 2547 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2548 2549 return VectorTripCount; 2550 } 2551 2552 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2553 const DataLayout &DL) { 2554 // Verify that V is a vector type with same number of elements as DstVTy. 2555 unsigned VF = DstVTy->getNumElements(); 2556 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2557 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2558 Type *SrcElemTy = SrcVecTy->getElementType(); 2559 Type *DstElemTy = DstVTy->getElementType(); 2560 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2561 "Vector elements must have same size"); 2562 2563 // Do a direct cast if element types are castable. 2564 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2565 return Builder.CreateBitOrPointerCast(V, DstVTy); 2566 } 2567 // V cannot be directly casted to desired vector type. 2568 // May happen when V is a floating point vector but DstVTy is a vector of 2569 // pointers or vice-versa. Handle this using a two-step bitcast using an 2570 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2571 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2572 "Only one type should be a pointer type"); 2573 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2574 "Only one type should be a floating point type"); 2575 Type *IntTy = 2576 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2577 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2578 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2579 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2580 } 2581 2582 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2583 BasicBlock *Bypass) { 2584 Value *Count = getOrCreateTripCount(L); 2585 BasicBlock *BB = L->getLoopPreheader(); 2586 IRBuilder<> Builder(BB->getTerminator()); 2587 2588 // Generate code to check if the loop's trip count is less than VF * UF, or 2589 // equal to it in case a scalar epilogue is required; this implies that the 2590 // vector trip count is zero. This check also covers the case where adding one 2591 // to the backedge-taken count overflowed leading to an incorrect trip count 2592 // of zero. In this case we will also jump to the scalar loop. 2593 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2594 : ICmpInst::ICMP_ULT; 2595 2596 // If tail is to be folded, vector loop takes care of all iterations. 2597 Value *CheckMinIters = Builder.getFalse(); 2598 if (!Cost->foldTailByMasking()) 2599 CheckMinIters = Builder.CreateICmp( 2600 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2601 "min.iters.check"); 2602 2603 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2604 // Update dominator tree immediately if the generated block is a 2605 // LoopBypassBlock because SCEV expansions to generate loop bypass 2606 // checks may query it before the current function is finished. 2607 DT->addNewBlock(NewBB, BB); 2608 if (L->getParentLoop()) 2609 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2610 ReplaceInstWithInst(BB->getTerminator(), 2611 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2612 LoopBypassBlocks.push_back(BB); 2613 } 2614 2615 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2616 BasicBlock *BB = L->getLoopPreheader(); 2617 2618 // Generate the code to check that the SCEV assumptions that we made. 2619 // We want the new basic block to start at the first instruction in a 2620 // sequence of instructions that form a check. 2621 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2622 "scev.check"); 2623 Value *SCEVCheck = 2624 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2625 2626 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2627 if (C->isZero()) 2628 return; 2629 2630 assert(!Cost->foldTailByMasking() && 2631 "Cannot SCEV check stride or overflow when folding tail"); 2632 // Create a new block containing the stride check. 2633 BB->setName("vector.scevcheck"); 2634 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2635 // Update dominator tree immediately if the generated block is a 2636 // LoopBypassBlock because SCEV expansions to generate loop bypass 2637 // checks may query it before the current function is finished. 2638 DT->addNewBlock(NewBB, BB); 2639 if (L->getParentLoop()) 2640 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2641 ReplaceInstWithInst(BB->getTerminator(), 2642 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2643 LoopBypassBlocks.push_back(BB); 2644 AddedSafetyChecks = true; 2645 } 2646 2647 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2648 // VPlan-native path does not do any analysis for runtime checks currently. 2649 if (EnableVPlanNativePath) 2650 return; 2651 2652 BasicBlock *BB = L->getLoopPreheader(); 2653 2654 // Generate the code that checks in runtime if arrays overlap. We put the 2655 // checks into a separate block to make the more common case of few elements 2656 // faster. 2657 Instruction *FirstCheckInst; 2658 Instruction *MemRuntimeCheck; 2659 std::tie(FirstCheckInst, MemRuntimeCheck) = 2660 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2661 if (!MemRuntimeCheck) 2662 return; 2663 2664 assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); 2665 // Create a new block containing the memory check. 2666 BB->setName("vector.memcheck"); 2667 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2668 // Update dominator tree immediately if the generated block is a 2669 // LoopBypassBlock because SCEV expansions to generate loop bypass 2670 // checks may query it before the current function is finished. 2671 DT->addNewBlock(NewBB, BB); 2672 if (L->getParentLoop()) 2673 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2674 ReplaceInstWithInst(BB->getTerminator(), 2675 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2676 LoopBypassBlocks.push_back(BB); 2677 AddedSafetyChecks = true; 2678 2679 // We currently don't use LoopVersioning for the actual loop cloning but we 2680 // still use it to add the noalias metadata. 2681 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2682 PSE.getSE()); 2683 LVer->prepareNoAliasMetadata(); 2684 } 2685 2686 Value *InnerLoopVectorizer::emitTransformedIndex( 2687 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2688 const InductionDescriptor &ID) const { 2689 2690 SCEVExpander Exp(*SE, DL, "induction"); 2691 auto Step = ID.getStep(); 2692 auto StartValue = ID.getStartValue(); 2693 assert(Index->getType() == Step->getType() && 2694 "Index type does not match StepValue type"); 2695 2696 // Note: the IR at this point is broken. We cannot use SE to create any new 2697 // SCEV and then expand it, hoping that SCEV's simplification will give us 2698 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2699 // lead to various SCEV crashes. So all we can do is to use builder and rely 2700 // on InstCombine for future simplifications. Here we handle some trivial 2701 // cases only. 2702 auto CreateAdd = [&B](Value *X, Value *Y) { 2703 assert(X->getType() == Y->getType() && "Types don't match!"); 2704 if (auto *CX = dyn_cast<ConstantInt>(X)) 2705 if (CX->isZero()) 2706 return Y; 2707 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2708 if (CY->isZero()) 2709 return X; 2710 return B.CreateAdd(X, Y); 2711 }; 2712 2713 auto CreateMul = [&B](Value *X, Value *Y) { 2714 assert(X->getType() == Y->getType() && "Types don't match!"); 2715 if (auto *CX = dyn_cast<ConstantInt>(X)) 2716 if (CX->isOne()) 2717 return Y; 2718 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2719 if (CY->isOne()) 2720 return X; 2721 return B.CreateMul(X, Y); 2722 }; 2723 2724 switch (ID.getKind()) { 2725 case InductionDescriptor::IK_IntInduction: { 2726 assert(Index->getType() == StartValue->getType() && 2727 "Index type does not match StartValue type"); 2728 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2729 return B.CreateSub(StartValue, Index); 2730 auto *Offset = CreateMul( 2731 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2732 return CreateAdd(StartValue, Offset); 2733 } 2734 case InductionDescriptor::IK_PtrInduction: { 2735 assert(isa<SCEVConstant>(Step) && 2736 "Expected constant step for pointer induction"); 2737 return B.CreateGEP( 2738 StartValue->getType()->getPointerElementType(), StartValue, 2739 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2740 &*B.GetInsertPoint()))); 2741 } 2742 case InductionDescriptor::IK_FpInduction: { 2743 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2744 auto InductionBinOp = ID.getInductionBinOp(); 2745 assert(InductionBinOp && 2746 (InductionBinOp->getOpcode() == Instruction::FAdd || 2747 InductionBinOp->getOpcode() == Instruction::FSub) && 2748 "Original bin op should be defined for FP induction"); 2749 2750 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2751 2752 // Floating point operations had to be 'fast' to enable the induction. 2753 FastMathFlags Flags; 2754 Flags.setFast(); 2755 2756 Value *MulExp = B.CreateFMul(StepValue, Index); 2757 if (isa<Instruction>(MulExp)) 2758 // We have to check, the MulExp may be a constant. 2759 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2760 2761 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2762 "induction"); 2763 if (isa<Instruction>(BOp)) 2764 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2765 2766 return BOp; 2767 } 2768 case InductionDescriptor::IK_NoInduction: 2769 return nullptr; 2770 } 2771 llvm_unreachable("invalid enum"); 2772 } 2773 2774 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2775 /* 2776 In this function we generate a new loop. The new loop will contain 2777 the vectorized instructions while the old loop will continue to run the 2778 scalar remainder. 2779 2780 [ ] <-- loop iteration number check. 2781 / | 2782 / v 2783 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2784 | / | 2785 | / v 2786 || [ ] <-- vector pre header. 2787 |/ | 2788 | v 2789 | [ ] \ 2790 | [ ]_| <-- vector loop. 2791 | | 2792 | v 2793 | -[ ] <--- middle-block. 2794 | / | 2795 | / v 2796 -|- >[ ] <--- new preheader. 2797 | | 2798 | v 2799 | [ ] \ 2800 | [ ]_| <-- old scalar loop to handle remainder. 2801 \ | 2802 \ v 2803 >[ ] <-- exit block. 2804 ... 2805 */ 2806 2807 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2808 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2809 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2810 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2811 assert(VectorPH && "Invalid loop structure"); 2812 assert(ExitBlock && "Must have an exit block"); 2813 2814 // Some loops have a single integer induction variable, while other loops 2815 // don't. One example is c++ iterators that often have multiple pointer 2816 // induction variables. In the code below we also support a case where we 2817 // don't have a single induction variable. 2818 // 2819 // We try to obtain an induction variable from the original loop as hard 2820 // as possible. However if we don't find one that: 2821 // - is an integer 2822 // - counts from zero, stepping by one 2823 // - is the size of the widest induction variable type 2824 // then we create a new one. 2825 OldInduction = Legal->getPrimaryInduction(); 2826 Type *IdxTy = Legal->getWidestInductionType(); 2827 2828 // Split the single block loop into the two loop structure described above. 2829 BasicBlock *VecBody = 2830 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2831 BasicBlock *MiddleBlock = 2832 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2833 BasicBlock *ScalarPH = 2834 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2835 2836 // Create and register the new vector loop. 2837 Loop *Lp = LI->AllocateLoop(); 2838 Loop *ParentLoop = OrigLoop->getParentLoop(); 2839 2840 // Insert the new loop into the loop nest and register the new basic blocks 2841 // before calling any utilities such as SCEV that require valid LoopInfo. 2842 if (ParentLoop) { 2843 ParentLoop->addChildLoop(Lp); 2844 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2845 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2846 } else { 2847 LI->addTopLevelLoop(Lp); 2848 } 2849 Lp->addBasicBlockToLoop(VecBody, *LI); 2850 2851 // Find the loop boundaries. 2852 Value *Count = getOrCreateTripCount(Lp); 2853 2854 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2855 2856 // Now, compare the new count to zero. If it is zero skip the vector loop and 2857 // jump to the scalar loop. This check also covers the case where the 2858 // backedge-taken count is uint##_max: adding one to it will overflow leading 2859 // to an incorrect trip count of zero. In this (rare) case we will also jump 2860 // to the scalar loop. 2861 emitMinimumIterationCountCheck(Lp, ScalarPH); 2862 2863 // Generate the code to check any assumptions that we've made for SCEV 2864 // expressions. 2865 emitSCEVChecks(Lp, ScalarPH); 2866 2867 // Generate the code that checks in runtime if arrays overlap. We put the 2868 // checks into a separate block to make the more common case of few elements 2869 // faster. 2870 emitMemRuntimeChecks(Lp, ScalarPH); 2871 2872 // Generate the induction variable. 2873 // The loop step is equal to the vectorization factor (num of SIMD elements) 2874 // times the unroll factor (num of SIMD instructions). 2875 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2876 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2877 Induction = 2878 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2879 getDebugLocFromInstOrOperands(OldInduction)); 2880 2881 // We are going to resume the execution of the scalar loop. 2882 // Go over all of the induction variables that we found and fix the 2883 // PHIs that are left in the scalar version of the loop. 2884 // The starting values of PHI nodes depend on the counter of the last 2885 // iteration in the vectorized loop. 2886 // If we come from a bypass edge then we need to start from the original 2887 // start value. 2888 2889 // This variable saves the new starting index for the scalar loop. It is used 2890 // to test if there are any tail iterations left once the vector loop has 2891 // completed. 2892 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2893 for (auto &InductionEntry : *List) { 2894 PHINode *OrigPhi = InductionEntry.first; 2895 InductionDescriptor II = InductionEntry.second; 2896 2897 // Create phi nodes to merge from the backedge-taken check block. 2898 PHINode *BCResumeVal = PHINode::Create( 2899 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2900 // Copy original phi DL over to the new one. 2901 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2902 Value *&EndValue = IVEndValues[OrigPhi]; 2903 if (OrigPhi == OldInduction) { 2904 // We know what the end value is. 2905 EndValue = CountRoundDown; 2906 } else { 2907 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2908 Type *StepType = II.getStep()->getType(); 2909 Instruction::CastOps CastOp = 2910 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2911 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2912 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2913 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2914 EndValue->setName("ind.end"); 2915 } 2916 2917 // The new PHI merges the original incoming value, in case of a bypass, 2918 // or the value at the end of the vectorized loop. 2919 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2920 2921 // Fix the scalar body counter (PHI node). 2922 // The old induction's phi node in the scalar body needs the truncated 2923 // value. 2924 for (BasicBlock *BB : LoopBypassBlocks) 2925 BCResumeVal->addIncoming(II.getStartValue(), BB); 2926 OrigPhi->setIncomingValueForBlock(ScalarPH, BCResumeVal); 2927 } 2928 2929 // We need the OrigLoop (scalar loop part) latch terminator to help 2930 // produce correct debug info for the middle block BB instructions. 2931 // The legality check stage guarantees that the loop will have a single 2932 // latch. 2933 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 2934 "Scalar loop latch terminator isn't a branch"); 2935 BranchInst *ScalarLatchBr = 2936 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 2937 2938 // Add a check in the middle block to see if we have completed 2939 // all of the iterations in the first vector loop. 2940 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2941 // If tail is to be folded, we know we don't need to run the remainder. 2942 Value *CmpN = Builder.getTrue(); 2943 if (!Cost->foldTailByMasking()) { 2944 CmpN = 2945 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2946 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2947 2948 // Here we use the same DebugLoc as the scalar loop latch branch instead 2949 // of the corresponding compare because they may have ended up with 2950 // different line numbers and we want to avoid awkward line stepping while 2951 // debugging. Eg. if the compare has got a line number inside the loop. 2952 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 2953 } 2954 2955 BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN); 2956 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 2957 ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst); 2958 2959 // Get ready to start creating new instructions into the vectorized body. 2960 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2961 2962 // Save the state. 2963 LoopVectorPreHeader = Lp->getLoopPreheader(); 2964 LoopScalarPreHeader = ScalarPH; 2965 LoopMiddleBlock = MiddleBlock; 2966 LoopExitBlock = ExitBlock; 2967 LoopVectorBody = VecBody; 2968 LoopScalarBody = OldBasicBlock; 2969 2970 Optional<MDNode *> VectorizedLoopID = 2971 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 2972 LLVMLoopVectorizeFollowupVectorized}); 2973 if (VectorizedLoopID.hasValue()) { 2974 Lp->setLoopID(VectorizedLoopID.getValue()); 2975 2976 // Do not setAlreadyVectorized if loop attributes have been defined 2977 // explicitly. 2978 return LoopVectorPreHeader; 2979 } 2980 2981 // Keep all loop hints from the original loop on the vector loop (we'll 2982 // replace the vectorizer-specific hints below). 2983 if (MDNode *LID = OrigLoop->getLoopID()) 2984 Lp->setLoopID(LID); 2985 2986 LoopVectorizeHints Hints(Lp, true, *ORE); 2987 Hints.setAlreadyVectorized(); 2988 2989 return LoopVectorPreHeader; 2990 } 2991 2992 // Fix up external users of the induction variable. At this point, we are 2993 // in LCSSA form, with all external PHIs that use the IV having one input value, 2994 // coming from the remainder loop. We need those PHIs to also have a correct 2995 // value for the IV when arriving directly from the middle block. 2996 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2997 const InductionDescriptor &II, 2998 Value *CountRoundDown, Value *EndValue, 2999 BasicBlock *MiddleBlock) { 3000 // There are two kinds of external IV usages - those that use the value 3001 // computed in the last iteration (the PHI) and those that use the penultimate 3002 // value (the value that feeds into the phi from the loop latch). 3003 // We allow both, but they, obviously, have different values. 3004 3005 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3006 3007 DenseMap<Value *, Value *> MissingVals; 3008 3009 // An external user of the last iteration's value should see the value that 3010 // the remainder loop uses to initialize its own IV. 3011 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3012 for (User *U : PostInc->users()) { 3013 Instruction *UI = cast<Instruction>(U); 3014 if (!OrigLoop->contains(UI)) { 3015 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3016 MissingVals[UI] = EndValue; 3017 } 3018 } 3019 3020 // An external user of the penultimate value need to see EndValue - Step. 3021 // The simplest way to get this is to recompute it from the constituent SCEVs, 3022 // that is Start + (Step * (CRD - 1)). 3023 for (User *U : OrigPhi->users()) { 3024 auto *UI = cast<Instruction>(U); 3025 if (!OrigLoop->contains(UI)) { 3026 const DataLayout &DL = 3027 OrigLoop->getHeader()->getModule()->getDataLayout(); 3028 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3029 3030 IRBuilder<> B(MiddleBlock->getTerminator()); 3031 Value *CountMinusOne = B.CreateSub( 3032 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3033 Value *CMO = 3034 !II.getStep()->getType()->isIntegerTy() 3035 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3036 II.getStep()->getType()) 3037 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3038 CMO->setName("cast.cmo"); 3039 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3040 Escape->setName("ind.escape"); 3041 MissingVals[UI] = Escape; 3042 } 3043 } 3044 3045 for (auto &I : MissingVals) { 3046 PHINode *PHI = cast<PHINode>(I.first); 3047 // One corner case we have to handle is two IVs "chasing" each-other, 3048 // that is %IV2 = phi [...], [ %IV1, %latch ] 3049 // In this case, if IV1 has an external use, we need to avoid adding both 3050 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3051 // don't already have an incoming value for the middle block. 3052 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3053 PHI->addIncoming(I.second, MiddleBlock); 3054 } 3055 } 3056 3057 namespace { 3058 3059 struct CSEDenseMapInfo { 3060 static bool canHandle(const Instruction *I) { 3061 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3062 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3063 } 3064 3065 static inline Instruction *getEmptyKey() { 3066 return DenseMapInfo<Instruction *>::getEmptyKey(); 3067 } 3068 3069 static inline Instruction *getTombstoneKey() { 3070 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3071 } 3072 3073 static unsigned getHashValue(const Instruction *I) { 3074 assert(canHandle(I) && "Unknown instruction!"); 3075 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3076 I->value_op_end())); 3077 } 3078 3079 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3080 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3081 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3082 return LHS == RHS; 3083 return LHS->isIdenticalTo(RHS); 3084 } 3085 }; 3086 3087 } // end anonymous namespace 3088 3089 ///Perform cse of induction variable instructions. 3090 static void cse(BasicBlock *BB) { 3091 // Perform simple cse. 3092 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3093 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3094 Instruction *In = &*I++; 3095 3096 if (!CSEDenseMapInfo::canHandle(In)) 3097 continue; 3098 3099 // Check if we can replace this instruction with any of the 3100 // visited instructions. 3101 if (Instruction *V = CSEMap.lookup(In)) { 3102 In->replaceAllUsesWith(V); 3103 In->eraseFromParent(); 3104 continue; 3105 } 3106 3107 CSEMap[In] = In; 3108 } 3109 } 3110 3111 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3112 unsigned VF, 3113 bool &NeedToScalarize) { 3114 Function *F = CI->getCalledFunction(); 3115 StringRef FnName = CI->getCalledFunction()->getName(); 3116 Type *ScalarRetTy = CI->getType(); 3117 SmallVector<Type *, 4> Tys, ScalarTys; 3118 for (auto &ArgOp : CI->arg_operands()) 3119 ScalarTys.push_back(ArgOp->getType()); 3120 3121 // Estimate cost of scalarized vector call. The source operands are assumed 3122 // to be vectors, so we need to extract individual elements from there, 3123 // execute VF scalar calls, and then gather the result into the vector return 3124 // value. 3125 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3126 if (VF == 1) 3127 return ScalarCallCost; 3128 3129 // Compute corresponding vector type for return value and arguments. 3130 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3131 for (Type *ScalarTy : ScalarTys) 3132 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3133 3134 // Compute costs of unpacking argument values for the scalar calls and 3135 // packing the return values to a vector. 3136 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3137 3138 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3139 3140 // If we can't emit a vector call for this function, then the currently found 3141 // cost is the cost we need to return. 3142 NeedToScalarize = true; 3143 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3144 return Cost; 3145 3146 // If the corresponding vector cost is cheaper, return its cost. 3147 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3148 if (VectorCallCost < Cost) { 3149 NeedToScalarize = false; 3150 return VectorCallCost; 3151 } 3152 return Cost; 3153 } 3154 3155 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3156 unsigned VF) { 3157 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3158 assert(ID && "Expected intrinsic call!"); 3159 3160 FastMathFlags FMF; 3161 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3162 FMF = FPMO->getFastMathFlags(); 3163 3164 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3165 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3166 } 3167 3168 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3169 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3170 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3171 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3172 } 3173 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3174 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3175 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3176 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3177 } 3178 3179 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3180 // For every instruction `I` in MinBWs, truncate the operands, create a 3181 // truncated version of `I` and reextend its result. InstCombine runs 3182 // later and will remove any ext/trunc pairs. 3183 SmallPtrSet<Value *, 4> Erased; 3184 for (const auto &KV : Cost->getMinimalBitwidths()) { 3185 // If the value wasn't vectorized, we must maintain the original scalar 3186 // type. The absence of the value from VectorLoopValueMap indicates that it 3187 // wasn't vectorized. 3188 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3189 continue; 3190 for (unsigned Part = 0; Part < UF; ++Part) { 3191 Value *I = getOrCreateVectorValue(KV.first, Part); 3192 if (Erased.find(I) != Erased.end() || I->use_empty() || 3193 !isa<Instruction>(I)) 3194 continue; 3195 Type *OriginalTy = I->getType(); 3196 Type *ScalarTruncatedTy = 3197 IntegerType::get(OriginalTy->getContext(), KV.second); 3198 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3199 OriginalTy->getVectorNumElements()); 3200 if (TruncatedTy == OriginalTy) 3201 continue; 3202 3203 IRBuilder<> B(cast<Instruction>(I)); 3204 auto ShrinkOperand = [&](Value *V) -> Value * { 3205 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3206 if (ZI->getSrcTy() == TruncatedTy) 3207 return ZI->getOperand(0); 3208 return B.CreateZExtOrTrunc(V, TruncatedTy); 3209 }; 3210 3211 // The actual instruction modification depends on the instruction type, 3212 // unfortunately. 3213 Value *NewI = nullptr; 3214 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3215 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3216 ShrinkOperand(BO->getOperand(1))); 3217 3218 // Any wrapping introduced by shrinking this operation shouldn't be 3219 // considered undefined behavior. So, we can't unconditionally copy 3220 // arithmetic wrapping flags to NewI. 3221 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3222 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3223 NewI = 3224 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3225 ShrinkOperand(CI->getOperand(1))); 3226 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3227 NewI = B.CreateSelect(SI->getCondition(), 3228 ShrinkOperand(SI->getTrueValue()), 3229 ShrinkOperand(SI->getFalseValue())); 3230 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3231 switch (CI->getOpcode()) { 3232 default: 3233 llvm_unreachable("Unhandled cast!"); 3234 case Instruction::Trunc: 3235 NewI = ShrinkOperand(CI->getOperand(0)); 3236 break; 3237 case Instruction::SExt: 3238 NewI = B.CreateSExtOrTrunc( 3239 CI->getOperand(0), 3240 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3241 break; 3242 case Instruction::ZExt: 3243 NewI = B.CreateZExtOrTrunc( 3244 CI->getOperand(0), 3245 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3246 break; 3247 } 3248 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3249 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3250 auto *O0 = B.CreateZExtOrTrunc( 3251 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3252 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3253 auto *O1 = B.CreateZExtOrTrunc( 3254 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3255 3256 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3257 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3258 // Don't do anything with the operands, just extend the result. 3259 continue; 3260 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3261 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3262 auto *O0 = B.CreateZExtOrTrunc( 3263 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3264 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3265 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3266 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3267 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3268 auto *O0 = B.CreateZExtOrTrunc( 3269 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3270 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3271 } else { 3272 // If we don't know what to do, be conservative and don't do anything. 3273 continue; 3274 } 3275 3276 // Lastly, extend the result. 3277 NewI->takeName(cast<Instruction>(I)); 3278 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3279 I->replaceAllUsesWith(Res); 3280 cast<Instruction>(I)->eraseFromParent(); 3281 Erased.insert(I); 3282 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3283 } 3284 } 3285 3286 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3287 for (const auto &KV : Cost->getMinimalBitwidths()) { 3288 // If the value wasn't vectorized, we must maintain the original scalar 3289 // type. The absence of the value from VectorLoopValueMap indicates that it 3290 // wasn't vectorized. 3291 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3292 continue; 3293 for (unsigned Part = 0; Part < UF; ++Part) { 3294 Value *I = getOrCreateVectorValue(KV.first, Part); 3295 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3296 if (Inst && Inst->use_empty()) { 3297 Value *NewI = Inst->getOperand(0); 3298 Inst->eraseFromParent(); 3299 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3300 } 3301 } 3302 } 3303 } 3304 3305 void InnerLoopVectorizer::fixVectorizedLoop() { 3306 // Insert truncates and extends for any truncated instructions as hints to 3307 // InstCombine. 3308 if (VF > 1) 3309 truncateToMinimalBitwidths(); 3310 3311 // Fix widened non-induction PHIs by setting up the PHI operands. 3312 if (OrigPHIsToFix.size()) { 3313 assert(EnableVPlanNativePath && 3314 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3315 fixNonInductionPHIs(); 3316 } 3317 3318 // At this point every instruction in the original loop is widened to a 3319 // vector form. Now we need to fix the recurrences in the loop. These PHI 3320 // nodes are currently empty because we did not want to introduce cycles. 3321 // This is the second stage of vectorizing recurrences. 3322 fixCrossIterationPHIs(); 3323 3324 // Update the dominator tree. 3325 // 3326 // FIXME: After creating the structure of the new loop, the dominator tree is 3327 // no longer up-to-date, and it remains that way until we update it 3328 // here. An out-of-date dominator tree is problematic for SCEV, 3329 // because SCEVExpander uses it to guide code generation. The 3330 // vectorizer use SCEVExpanders in several places. Instead, we should 3331 // keep the dominator tree up-to-date as we go. 3332 updateAnalysis(); 3333 3334 // Fix-up external users of the induction variables. 3335 for (auto &Entry : *Legal->getInductionVars()) 3336 fixupIVUsers(Entry.first, Entry.second, 3337 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3338 IVEndValues[Entry.first], LoopMiddleBlock); 3339 3340 fixLCSSAPHIs(); 3341 for (Instruction *PI : PredicatedInstructions) 3342 sinkScalarOperands(&*PI); 3343 3344 // Remove redundant induction instructions. 3345 cse(LoopVectorBody); 3346 } 3347 3348 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3349 // In order to support recurrences we need to be able to vectorize Phi nodes. 3350 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3351 // stage #2: We now need to fix the recurrences by adding incoming edges to 3352 // the currently empty PHI nodes. At this point every instruction in the 3353 // original loop is widened to a vector form so we can use them to construct 3354 // the incoming edges. 3355 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3356 // Handle first-order recurrences and reductions that need to be fixed. 3357 if (Legal->isFirstOrderRecurrence(&Phi)) 3358 fixFirstOrderRecurrence(&Phi); 3359 else if (Legal->isReductionVariable(&Phi)) 3360 fixReduction(&Phi); 3361 } 3362 } 3363 3364 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3365 // This is the second phase of vectorizing first-order recurrences. An 3366 // overview of the transformation is described below. Suppose we have the 3367 // following loop. 3368 // 3369 // for (int i = 0; i < n; ++i) 3370 // b[i] = a[i] - a[i - 1]; 3371 // 3372 // There is a first-order recurrence on "a". For this loop, the shorthand 3373 // scalar IR looks like: 3374 // 3375 // scalar.ph: 3376 // s_init = a[-1] 3377 // br scalar.body 3378 // 3379 // scalar.body: 3380 // i = phi [0, scalar.ph], [i+1, scalar.body] 3381 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3382 // s2 = a[i] 3383 // b[i] = s2 - s1 3384 // br cond, scalar.body, ... 3385 // 3386 // In this example, s1 is a recurrence because it's value depends on the 3387 // previous iteration. In the first phase of vectorization, we created a 3388 // temporary value for s1. We now complete the vectorization and produce the 3389 // shorthand vector IR shown below (for VF = 4, UF = 1). 3390 // 3391 // vector.ph: 3392 // v_init = vector(..., ..., ..., a[-1]) 3393 // br vector.body 3394 // 3395 // vector.body 3396 // i = phi [0, vector.ph], [i+4, vector.body] 3397 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3398 // v2 = a[i, i+1, i+2, i+3]; 3399 // v3 = vector(v1(3), v2(0, 1, 2)) 3400 // b[i, i+1, i+2, i+3] = v2 - v3 3401 // br cond, vector.body, middle.block 3402 // 3403 // middle.block: 3404 // x = v2(3) 3405 // br scalar.ph 3406 // 3407 // scalar.ph: 3408 // s_init = phi [x, middle.block], [a[-1], otherwise] 3409 // br scalar.body 3410 // 3411 // After execution completes the vector loop, we extract the next value of 3412 // the recurrence (x) to use as the initial value in the scalar loop. 3413 3414 // Get the original loop preheader and single loop latch. 3415 auto *Preheader = OrigLoop->getLoopPreheader(); 3416 auto *Latch = OrigLoop->getLoopLatch(); 3417 3418 // Get the initial and previous values of the scalar recurrence. 3419 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3420 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3421 3422 // Create a vector from the initial value. 3423 auto *VectorInit = ScalarInit; 3424 if (VF > 1) { 3425 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3426 VectorInit = Builder.CreateInsertElement( 3427 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3428 Builder.getInt32(VF - 1), "vector.recur.init"); 3429 } 3430 3431 // We constructed a temporary phi node in the first phase of vectorization. 3432 // This phi node will eventually be deleted. 3433 Builder.SetInsertPoint( 3434 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3435 3436 // Create a phi node for the new recurrence. The current value will either be 3437 // the initial value inserted into a vector or loop-varying vector value. 3438 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3439 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3440 3441 // Get the vectorized previous value of the last part UF - 1. It appears last 3442 // among all unrolled iterations, due to the order of their construction. 3443 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3444 3445 // Set the insertion point after the previous value if it is an instruction. 3446 // Note that the previous value may have been constant-folded so it is not 3447 // guaranteed to be an instruction in the vector loop. Also, if the previous 3448 // value is a phi node, we should insert after all the phi nodes to avoid 3449 // breaking basic block verification. 3450 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3451 isa<PHINode>(PreviousLastPart)) 3452 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3453 else 3454 Builder.SetInsertPoint( 3455 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3456 3457 // We will construct a vector for the recurrence by combining the values for 3458 // the current and previous iterations. This is the required shuffle mask. 3459 SmallVector<Constant *, 8> ShuffleMask(VF); 3460 ShuffleMask[0] = Builder.getInt32(VF - 1); 3461 for (unsigned I = 1; I < VF; ++I) 3462 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3463 3464 // The vector from which to take the initial value for the current iteration 3465 // (actual or unrolled). Initially, this is the vector phi node. 3466 Value *Incoming = VecPhi; 3467 3468 // Shuffle the current and previous vector and update the vector parts. 3469 for (unsigned Part = 0; Part < UF; ++Part) { 3470 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3471 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3472 auto *Shuffle = 3473 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3474 ConstantVector::get(ShuffleMask)) 3475 : Incoming; 3476 PhiPart->replaceAllUsesWith(Shuffle); 3477 cast<Instruction>(PhiPart)->eraseFromParent(); 3478 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3479 Incoming = PreviousPart; 3480 } 3481 3482 // Fix the latch value of the new recurrence in the vector loop. 3483 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3484 3485 // Extract the last vector element in the middle block. This will be the 3486 // initial value for the recurrence when jumping to the scalar loop. 3487 auto *ExtractForScalar = Incoming; 3488 if (VF > 1) { 3489 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3490 ExtractForScalar = Builder.CreateExtractElement( 3491 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3492 } 3493 // Extract the second last element in the middle block if the 3494 // Phi is used outside the loop. We need to extract the phi itself 3495 // and not the last element (the phi update in the current iteration). This 3496 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3497 // when the scalar loop is not run at all. 3498 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3499 if (VF > 1) 3500 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3501 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3502 // When loop is unrolled without vectorizing, initialize 3503 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3504 // `Incoming`. This is analogous to the vectorized case above: extracting the 3505 // second last element when VF > 1. 3506 else if (UF > 1) 3507 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3508 3509 // Fix the initial value of the original recurrence in the scalar loop. 3510 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3511 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3512 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3513 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3514 Start->addIncoming(Incoming, BB); 3515 } 3516 3517 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3518 Phi->setName("scalar.recur"); 3519 3520 // Finally, fix users of the recurrence outside the loop. The users will need 3521 // either the last value of the scalar recurrence or the last value of the 3522 // vector recurrence we extracted in the middle block. Since the loop is in 3523 // LCSSA form, we just need to find all the phi nodes for the original scalar 3524 // recurrence in the exit block, and then add an edge for the middle block. 3525 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3526 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3527 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3528 } 3529 } 3530 } 3531 3532 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3533 Constant *Zero = Builder.getInt32(0); 3534 3535 // Get it's reduction variable descriptor. 3536 assert(Legal->isReductionVariable(Phi) && 3537 "Unable to find the reduction variable"); 3538 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3539 3540 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3541 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3542 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3543 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3544 RdxDesc.getMinMaxRecurrenceKind(); 3545 setDebugLocFromInst(Builder, ReductionStartValue); 3546 3547 // We need to generate a reduction vector from the incoming scalar. 3548 // To do so, we need to generate the 'identity' vector and override 3549 // one of the elements with the incoming scalar reduction. We need 3550 // to do it in the vector-loop preheader. 3551 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3552 3553 // This is the vector-clone of the value that leaves the loop. 3554 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3555 3556 // Find the reduction identity variable. Zero for addition, or, xor, 3557 // one for multiplication, -1 for And. 3558 Value *Identity; 3559 Value *VectorStart; 3560 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3561 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3562 // MinMax reduction have the start value as their identify. 3563 if (VF == 1) { 3564 VectorStart = Identity = ReductionStartValue; 3565 } else { 3566 VectorStart = Identity = 3567 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3568 } 3569 } else { 3570 // Handle other reduction kinds: 3571 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3572 RK, VecTy->getScalarType()); 3573 if (VF == 1) { 3574 Identity = Iden; 3575 // This vector is the Identity vector where the first element is the 3576 // incoming scalar reduction. 3577 VectorStart = ReductionStartValue; 3578 } else { 3579 Identity = ConstantVector::getSplat(VF, Iden); 3580 3581 // This vector is the Identity vector where the first element is the 3582 // incoming scalar reduction. 3583 VectorStart = 3584 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3585 } 3586 } 3587 3588 // Fix the vector-loop phi. 3589 3590 // Reductions do not have to start at zero. They can start with 3591 // any loop invariant values. 3592 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3593 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3594 for (unsigned Part = 0; Part < UF; ++Part) { 3595 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3596 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3597 // Make sure to add the reduction stat value only to the 3598 // first unroll part. 3599 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3600 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3601 cast<PHINode>(VecRdxPhi) 3602 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3603 } 3604 3605 // Before each round, move the insertion point right between 3606 // the PHIs and the values we are going to write. 3607 // This allows us to write both PHINodes and the extractelement 3608 // instructions. 3609 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3610 3611 setDebugLocFromInst(Builder, LoopExitInst); 3612 3613 // If the vector reduction can be performed in a smaller type, we truncate 3614 // then extend the loop exit value to enable InstCombine to evaluate the 3615 // entire expression in the smaller type. 3616 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3617 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3618 Builder.SetInsertPoint( 3619 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3620 VectorParts RdxParts(UF); 3621 for (unsigned Part = 0; Part < UF; ++Part) { 3622 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3623 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3624 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3625 : Builder.CreateZExt(Trunc, VecTy); 3626 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3627 UI != RdxParts[Part]->user_end();) 3628 if (*UI != Trunc) { 3629 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3630 RdxParts[Part] = Extnd; 3631 } else { 3632 ++UI; 3633 } 3634 } 3635 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3636 for (unsigned Part = 0; Part < UF; ++Part) { 3637 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3638 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3639 } 3640 } 3641 3642 // Reduce all of the unrolled parts into a single vector. 3643 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3644 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3645 3646 // The middle block terminator has already been assigned a DebugLoc here (the 3647 // OrigLoop's single latch terminator). We want the whole middle block to 3648 // appear to execute on this line because: (a) it is all compiler generated, 3649 // (b) these instructions are always executed after evaluating the latch 3650 // conditional branch, and (c) other passes may add new predecessors which 3651 // terminate on this line. This is the easiest way to ensure we don't 3652 // accidentally cause an extra step back into the loop while debugging. 3653 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3654 for (unsigned Part = 1; Part < UF; ++Part) { 3655 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3656 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3657 // Floating point operations had to be 'fast' to enable the reduction. 3658 ReducedPartRdx = addFastMathFlag( 3659 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3660 ReducedPartRdx, "bin.rdx"), 3661 RdxDesc.getFastMathFlags()); 3662 else 3663 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3664 RdxPart); 3665 } 3666 3667 if (VF > 1) { 3668 bool NoNaN = Legal->hasFunNoNaNAttr(); 3669 ReducedPartRdx = 3670 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3671 // If the reduction can be performed in a smaller type, we need to extend 3672 // the reduction to the wider type before we branch to the original loop. 3673 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3674 ReducedPartRdx = 3675 RdxDesc.isSigned() 3676 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3677 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3678 } 3679 3680 // Create a phi node that merges control-flow from the backedge-taken check 3681 // block and the middle block. 3682 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3683 LoopScalarPreHeader->getTerminator()); 3684 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3685 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3686 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3687 3688 // Now, we need to fix the users of the reduction variable 3689 // inside and outside of the scalar remainder loop. 3690 // We know that the loop is in LCSSA form. We need to update the 3691 // PHI nodes in the exit blocks. 3692 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3693 // All PHINodes need to have a single entry edge, or two if 3694 // we already fixed them. 3695 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3696 3697 // We found a reduction value exit-PHI. Update it with the 3698 // incoming bypass edge. 3699 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3700 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3701 } // end of the LCSSA phi scan. 3702 3703 // Fix the scalar loop reduction variable with the incoming reduction sum 3704 // from the vector body and from the backedge value. 3705 int IncomingEdgeBlockIdx = 3706 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3707 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3708 // Pick the other block. 3709 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3710 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3711 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3712 } 3713 3714 void InnerLoopVectorizer::fixLCSSAPHIs() { 3715 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3716 if (LCSSAPhi.getNumIncomingValues() == 1) { 3717 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3718 // Non-instruction incoming values will have only one value. 3719 unsigned LastLane = 0; 3720 if (isa<Instruction>(IncomingValue)) 3721 LastLane = Cost->isUniformAfterVectorization( 3722 cast<Instruction>(IncomingValue), VF) 3723 ? 0 3724 : VF - 1; 3725 // Can be a loop invariant incoming value or the last scalar value to be 3726 // extracted from the vectorized loop. 3727 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3728 Value *lastIncomingValue = 3729 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3730 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3731 } 3732 } 3733 } 3734 3735 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3736 // The basic block and loop containing the predicated instruction. 3737 auto *PredBB = PredInst->getParent(); 3738 auto *VectorLoop = LI->getLoopFor(PredBB); 3739 3740 // Initialize a worklist with the operands of the predicated instruction. 3741 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3742 3743 // Holds instructions that we need to analyze again. An instruction may be 3744 // reanalyzed if we don't yet know if we can sink it or not. 3745 SmallVector<Instruction *, 8> InstsToReanalyze; 3746 3747 // Returns true if a given use occurs in the predicated block. Phi nodes use 3748 // their operands in their corresponding predecessor blocks. 3749 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3750 auto *I = cast<Instruction>(U.getUser()); 3751 BasicBlock *BB = I->getParent(); 3752 if (auto *Phi = dyn_cast<PHINode>(I)) 3753 BB = Phi->getIncomingBlock( 3754 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3755 return BB == PredBB; 3756 }; 3757 3758 // Iteratively sink the scalarized operands of the predicated instruction 3759 // into the block we created for it. When an instruction is sunk, it's 3760 // operands are then added to the worklist. The algorithm ends after one pass 3761 // through the worklist doesn't sink a single instruction. 3762 bool Changed; 3763 do { 3764 // Add the instructions that need to be reanalyzed to the worklist, and 3765 // reset the changed indicator. 3766 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3767 InstsToReanalyze.clear(); 3768 Changed = false; 3769 3770 while (!Worklist.empty()) { 3771 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3772 3773 // We can't sink an instruction if it is a phi node, is already in the 3774 // predicated block, is not in the loop, or may have side effects. 3775 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3776 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3777 continue; 3778 3779 // It's legal to sink the instruction if all its uses occur in the 3780 // predicated block. Otherwise, there's nothing to do yet, and we may 3781 // need to reanalyze the instruction. 3782 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3783 InstsToReanalyze.push_back(I); 3784 continue; 3785 } 3786 3787 // Move the instruction to the beginning of the predicated block, and add 3788 // it's operands to the worklist. 3789 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3790 Worklist.insert(I->op_begin(), I->op_end()); 3791 3792 // The sinking may have enabled other instructions to be sunk, so we will 3793 // need to iterate. 3794 Changed = true; 3795 } 3796 } while (Changed); 3797 } 3798 3799 void InnerLoopVectorizer::fixNonInductionPHIs() { 3800 for (PHINode *OrigPhi : OrigPHIsToFix) { 3801 PHINode *NewPhi = 3802 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3803 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3804 3805 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3806 predecessors(OrigPhi->getParent())); 3807 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3808 predecessors(NewPhi->getParent())); 3809 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3810 "Scalar and Vector BB should have the same number of predecessors"); 3811 3812 // The insertion point in Builder may be invalidated by the time we get 3813 // here. Force the Builder insertion point to something valid so that we do 3814 // not run into issues during insertion point restore in 3815 // getOrCreateVectorValue calls below. 3816 Builder.SetInsertPoint(NewPhi); 3817 3818 // The predecessor order is preserved and we can rely on mapping between 3819 // scalar and vector block predecessors. 3820 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3821 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3822 3823 // When looking up the new scalar/vector values to fix up, use incoming 3824 // values from original phi. 3825 Value *ScIncV = 3826 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3827 3828 // Scalar incoming value may need a broadcast 3829 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3830 NewPhi->addIncoming(NewIncV, NewPredBB); 3831 } 3832 } 3833 } 3834 3835 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3836 unsigned VF) { 3837 PHINode *P = cast<PHINode>(PN); 3838 if (EnableVPlanNativePath) { 3839 // Currently we enter here in the VPlan-native path for non-induction 3840 // PHIs where all control flow is uniform. We simply widen these PHIs. 3841 // Create a vector phi with no operands - the vector phi operands will be 3842 // set at the end of vector code generation. 3843 Type *VecTy = 3844 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3845 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3846 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3847 OrigPHIsToFix.push_back(P); 3848 3849 return; 3850 } 3851 3852 assert(PN->getParent() == OrigLoop->getHeader() && 3853 "Non-header phis should have been handled elsewhere"); 3854 3855 // In order to support recurrences we need to be able to vectorize Phi nodes. 3856 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3857 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3858 // this value when we vectorize all of the instructions that use the PHI. 3859 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3860 for (unsigned Part = 0; Part < UF; ++Part) { 3861 // This is phase one of vectorizing PHIs. 3862 Type *VecTy = 3863 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3864 Value *EntryPart = PHINode::Create( 3865 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3866 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3867 } 3868 return; 3869 } 3870 3871 setDebugLocFromInst(Builder, P); 3872 3873 // This PHINode must be an induction variable. 3874 // Make sure that we know about it. 3875 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3876 3877 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3878 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3879 3880 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3881 // which can be found from the original scalar operations. 3882 switch (II.getKind()) { 3883 case InductionDescriptor::IK_NoInduction: 3884 llvm_unreachable("Unknown induction"); 3885 case InductionDescriptor::IK_IntInduction: 3886 case InductionDescriptor::IK_FpInduction: 3887 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3888 case InductionDescriptor::IK_PtrInduction: { 3889 // Handle the pointer induction variable case. 3890 assert(P->getType()->isPointerTy() && "Unexpected type."); 3891 // This is the normalized GEP that starts counting at zero. 3892 Value *PtrInd = Induction; 3893 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3894 // Determine the number of scalars we need to generate for each unroll 3895 // iteration. If the instruction is uniform, we only need to generate the 3896 // first lane. Otherwise, we generate all VF values. 3897 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3898 // These are the scalar results. Notice that we don't generate vector GEPs 3899 // because scalar GEPs result in better code. 3900 for (unsigned Part = 0; Part < UF; ++Part) { 3901 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3902 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3903 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3904 Value *SclrGep = 3905 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3906 SclrGep->setName("next.gep"); 3907 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3908 } 3909 } 3910 return; 3911 } 3912 } 3913 } 3914 3915 /// A helper function for checking whether an integer division-related 3916 /// instruction may divide by zero (in which case it must be predicated if 3917 /// executed conditionally in the scalar code). 3918 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3919 /// Non-zero divisors that are non compile-time constants will not be 3920 /// converted into multiplication, so we will still end up scalarizing 3921 /// the division, but can do so w/o predication. 3922 static bool mayDivideByZero(Instruction &I) { 3923 assert((I.getOpcode() == Instruction::UDiv || 3924 I.getOpcode() == Instruction::SDiv || 3925 I.getOpcode() == Instruction::URem || 3926 I.getOpcode() == Instruction::SRem) && 3927 "Unexpected instruction"); 3928 Value *Divisor = I.getOperand(1); 3929 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3930 return !CInt || CInt->isZero(); 3931 } 3932 3933 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3934 switch (I.getOpcode()) { 3935 case Instruction::Br: 3936 case Instruction::PHI: 3937 llvm_unreachable("This instruction is handled by a different recipe."); 3938 case Instruction::GetElementPtr: { 3939 // Construct a vector GEP by widening the operands of the scalar GEP as 3940 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3941 // results in a vector of pointers when at least one operand of the GEP 3942 // is vector-typed. Thus, to keep the representation compact, we only use 3943 // vector-typed operands for loop-varying values. 3944 auto *GEP = cast<GetElementPtrInst>(&I); 3945 3946 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3947 // If we are vectorizing, but the GEP has only loop-invariant operands, 3948 // the GEP we build (by only using vector-typed operands for 3949 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3950 // produce a vector of pointers, we need to either arbitrarily pick an 3951 // operand to broadcast, or broadcast a clone of the original GEP. 3952 // Here, we broadcast a clone of the original. 3953 // 3954 // TODO: If at some point we decide to scalarize instructions having 3955 // loop-invariant operands, this special case will no longer be 3956 // required. We would add the scalarization decision to 3957 // collectLoopScalars() and teach getVectorValue() to broadcast 3958 // the lane-zero scalar value. 3959 auto *Clone = Builder.Insert(GEP->clone()); 3960 for (unsigned Part = 0; Part < UF; ++Part) { 3961 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3962 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3963 addMetadata(EntryPart, GEP); 3964 } 3965 } else { 3966 // If the GEP has at least one loop-varying operand, we are sure to 3967 // produce a vector of pointers. But if we are only unrolling, we want 3968 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3969 // produce with the code below will be scalar (if VF == 1) or vector 3970 // (otherwise). Note that for the unroll-only case, we still maintain 3971 // values in the vector mapping with initVector, as we do for other 3972 // instructions. 3973 for (unsigned Part = 0; Part < UF; ++Part) { 3974 // The pointer operand of the new GEP. If it's loop-invariant, we 3975 // won't broadcast it. 3976 auto *Ptr = 3977 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3978 ? GEP->getPointerOperand() 3979 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3980 3981 // Collect all the indices for the new GEP. If any index is 3982 // loop-invariant, we won't broadcast it. 3983 SmallVector<Value *, 4> Indices; 3984 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3985 if (OrigLoop->isLoopInvariant(U.get())) 3986 Indices.push_back(U.get()); 3987 else 3988 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3989 } 3990 3991 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3992 // but it should be a vector, otherwise. 3993 auto *NewGEP = 3994 GEP->isInBounds() 3995 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 3996 Indices) 3997 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 3998 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3999 "NewGEP is not a pointer vector"); 4000 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4001 addMetadata(NewGEP, GEP); 4002 } 4003 } 4004 4005 break; 4006 } 4007 case Instruction::UDiv: 4008 case Instruction::SDiv: 4009 case Instruction::SRem: 4010 case Instruction::URem: 4011 case Instruction::Add: 4012 case Instruction::FAdd: 4013 case Instruction::Sub: 4014 case Instruction::FSub: 4015 case Instruction::FNeg: 4016 case Instruction::Mul: 4017 case Instruction::FMul: 4018 case Instruction::FDiv: 4019 case Instruction::FRem: 4020 case Instruction::Shl: 4021 case Instruction::LShr: 4022 case Instruction::AShr: 4023 case Instruction::And: 4024 case Instruction::Or: 4025 case Instruction::Xor: { 4026 // Just widen unops and binops. 4027 setDebugLocFromInst(Builder, &I); 4028 4029 for (unsigned Part = 0; Part < UF; ++Part) { 4030 SmallVector<Value *, 2> Ops; 4031 for (Value *Op : I.operands()) 4032 Ops.push_back(getOrCreateVectorValue(Op, Part)); 4033 4034 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4035 4036 if (auto *VecOp = dyn_cast<Instruction>(V)) 4037 VecOp->copyIRFlags(&I); 4038 4039 // Use this vector value for all users of the original instruction. 4040 VectorLoopValueMap.setVectorValue(&I, Part, V); 4041 addMetadata(V, &I); 4042 } 4043 4044 break; 4045 } 4046 case Instruction::Select: { 4047 // Widen selects. 4048 // If the selector is loop invariant we can create a select 4049 // instruction with a scalar condition. Otherwise, use vector-select. 4050 auto *SE = PSE.getSE(); 4051 bool InvariantCond = 4052 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4053 setDebugLocFromInst(Builder, &I); 4054 4055 // The condition can be loop invariant but still defined inside the 4056 // loop. This means that we can't just use the original 'cond' value. 4057 // We have to take the 'vectorized' value and pick the first lane. 4058 // Instcombine will make this a no-op. 4059 4060 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4061 4062 for (unsigned Part = 0; Part < UF; ++Part) { 4063 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4064 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4065 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4066 Value *Sel = 4067 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4068 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4069 addMetadata(Sel, &I); 4070 } 4071 4072 break; 4073 } 4074 4075 case Instruction::ICmp: 4076 case Instruction::FCmp: { 4077 // Widen compares. Generate vector compares. 4078 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4079 auto *Cmp = dyn_cast<CmpInst>(&I); 4080 setDebugLocFromInst(Builder, Cmp); 4081 for (unsigned Part = 0; Part < UF; ++Part) { 4082 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4083 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4084 Value *C = nullptr; 4085 if (FCmp) { 4086 // Propagate fast math flags. 4087 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4088 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4089 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4090 } else { 4091 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4092 } 4093 VectorLoopValueMap.setVectorValue(&I, Part, C); 4094 addMetadata(C, &I); 4095 } 4096 4097 break; 4098 } 4099 4100 case Instruction::ZExt: 4101 case Instruction::SExt: 4102 case Instruction::FPToUI: 4103 case Instruction::FPToSI: 4104 case Instruction::FPExt: 4105 case Instruction::PtrToInt: 4106 case Instruction::IntToPtr: 4107 case Instruction::SIToFP: 4108 case Instruction::UIToFP: 4109 case Instruction::Trunc: 4110 case Instruction::FPTrunc: 4111 case Instruction::BitCast: { 4112 auto *CI = dyn_cast<CastInst>(&I); 4113 setDebugLocFromInst(Builder, CI); 4114 4115 /// Vectorize casts. 4116 Type *DestTy = 4117 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4118 4119 for (unsigned Part = 0; Part < UF; ++Part) { 4120 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4121 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4122 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4123 addMetadata(Cast, &I); 4124 } 4125 break; 4126 } 4127 4128 case Instruction::Call: { 4129 // Ignore dbg intrinsics. 4130 if (isa<DbgInfoIntrinsic>(I)) 4131 break; 4132 setDebugLocFromInst(Builder, &I); 4133 4134 Module *M = I.getParent()->getParent()->getParent(); 4135 auto *CI = cast<CallInst>(&I); 4136 4137 StringRef FnName = CI->getCalledFunction()->getName(); 4138 Function *F = CI->getCalledFunction(); 4139 Type *RetTy = ToVectorTy(CI->getType(), VF); 4140 SmallVector<Type *, 4> Tys; 4141 for (Value *ArgOperand : CI->arg_operands()) 4142 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4143 4144 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4145 4146 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4147 // version of the instruction. 4148 // Is it beneficial to perform intrinsic call compared to lib call? 4149 bool NeedToScalarize; 4150 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4151 bool UseVectorIntrinsic = 4152 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4153 assert((UseVectorIntrinsic || !NeedToScalarize) && 4154 "Instruction should be scalarized elsewhere."); 4155 4156 for (unsigned Part = 0; Part < UF; ++Part) { 4157 SmallVector<Value *, 4> Args; 4158 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4159 Value *Arg = CI->getArgOperand(i); 4160 // Some intrinsics have a scalar argument - don't replace it with a 4161 // vector. 4162 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4163 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4164 Args.push_back(Arg); 4165 } 4166 4167 Function *VectorF; 4168 if (UseVectorIntrinsic) { 4169 // Use vector version of the intrinsic. 4170 Type *TysForDecl[] = {CI->getType()}; 4171 if (VF > 1) 4172 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4173 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4174 } else { 4175 // Use vector version of the library call. 4176 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4177 assert(!VFnName.empty() && "Vector function name is empty."); 4178 VectorF = M->getFunction(VFnName); 4179 if (!VectorF) { 4180 // Generate a declaration 4181 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4182 VectorF = 4183 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4184 VectorF->copyAttributesFrom(F); 4185 } 4186 } 4187 assert(VectorF && "Can't create vector function."); 4188 4189 SmallVector<OperandBundleDef, 1> OpBundles; 4190 CI->getOperandBundlesAsDefs(OpBundles); 4191 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4192 4193 if (isa<FPMathOperator>(V)) 4194 V->copyFastMathFlags(CI); 4195 4196 VectorLoopValueMap.setVectorValue(&I, Part, V); 4197 addMetadata(V, &I); 4198 } 4199 4200 break; 4201 } 4202 4203 default: 4204 // This instruction is not vectorized by simple widening. 4205 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4206 llvm_unreachable("Unhandled instruction!"); 4207 } // end of switch. 4208 } 4209 4210 void InnerLoopVectorizer::updateAnalysis() { 4211 // Forget the original basic block. 4212 PSE.getSE()->forgetLoop(OrigLoop); 4213 4214 // DT is not kept up-to-date for outer loop vectorization 4215 if (EnableVPlanNativePath) 4216 return; 4217 4218 // Update the dominator tree information. 4219 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4220 "Entry does not dominate exit."); 4221 4222 DT->addNewBlock(LoopMiddleBlock, 4223 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4224 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4225 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4226 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4227 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4228 } 4229 4230 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4231 // We should not collect Scalars more than once per VF. Right now, this 4232 // function is called from collectUniformsAndScalars(), which already does 4233 // this check. Collecting Scalars for VF=1 does not make any sense. 4234 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4235 "This function should not be visited twice for the same VF"); 4236 4237 SmallSetVector<Instruction *, 8> Worklist; 4238 4239 // These sets are used to seed the analysis with pointers used by memory 4240 // accesses that will remain scalar. 4241 SmallSetVector<Instruction *, 8> ScalarPtrs; 4242 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4243 4244 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4245 // The pointer operands of loads and stores will be scalar as long as the 4246 // memory access is not a gather or scatter operation. The value operand of a 4247 // store will remain scalar if the store is scalarized. 4248 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4249 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4250 assert(WideningDecision != CM_Unknown && 4251 "Widening decision should be ready at this moment"); 4252 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4253 if (Ptr == Store->getValueOperand()) 4254 return WideningDecision == CM_Scalarize; 4255 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4256 "Ptr is neither a value or pointer operand"); 4257 return WideningDecision != CM_GatherScatter; 4258 }; 4259 4260 // A helper that returns true if the given value is a bitcast or 4261 // getelementptr instruction contained in the loop. 4262 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4263 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4264 isa<GetElementPtrInst>(V)) && 4265 !TheLoop->isLoopInvariant(V); 4266 }; 4267 4268 // A helper that evaluates a memory access's use of a pointer. If the use 4269 // will be a scalar use, and the pointer is only used by memory accesses, we 4270 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4271 // PossibleNonScalarPtrs. 4272 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4273 // We only care about bitcast and getelementptr instructions contained in 4274 // the loop. 4275 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4276 return; 4277 4278 // If the pointer has already been identified as scalar (e.g., if it was 4279 // also identified as uniform), there's nothing to do. 4280 auto *I = cast<Instruction>(Ptr); 4281 if (Worklist.count(I)) 4282 return; 4283 4284 // If the use of the pointer will be a scalar use, and all users of the 4285 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4286 // place the pointer in PossibleNonScalarPtrs. 4287 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4288 return isa<LoadInst>(U) || isa<StoreInst>(U); 4289 })) 4290 ScalarPtrs.insert(I); 4291 else 4292 PossibleNonScalarPtrs.insert(I); 4293 }; 4294 4295 // We seed the scalars analysis with three classes of instructions: (1) 4296 // instructions marked uniform-after-vectorization, (2) bitcast and 4297 // getelementptr instructions used by memory accesses requiring a scalar use, 4298 // and (3) pointer induction variables and their update instructions (we 4299 // currently only scalarize these). 4300 // 4301 // (1) Add to the worklist all instructions that have been identified as 4302 // uniform-after-vectorization. 4303 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4304 4305 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4306 // memory accesses requiring a scalar use. The pointer operands of loads and 4307 // stores will be scalar as long as the memory accesses is not a gather or 4308 // scatter operation. The value operand of a store will remain scalar if the 4309 // store is scalarized. 4310 for (auto *BB : TheLoop->blocks()) 4311 for (auto &I : *BB) { 4312 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4313 evaluatePtrUse(Load, Load->getPointerOperand()); 4314 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4315 evaluatePtrUse(Store, Store->getPointerOperand()); 4316 evaluatePtrUse(Store, Store->getValueOperand()); 4317 } 4318 } 4319 for (auto *I : ScalarPtrs) 4320 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4321 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4322 Worklist.insert(I); 4323 } 4324 4325 // (3) Add to the worklist all pointer induction variables and their update 4326 // instructions. 4327 // 4328 // TODO: Once we are able to vectorize pointer induction variables we should 4329 // no longer insert them into the worklist here. 4330 auto *Latch = TheLoop->getLoopLatch(); 4331 for (auto &Induction : *Legal->getInductionVars()) { 4332 auto *Ind = Induction.first; 4333 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4334 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4335 continue; 4336 Worklist.insert(Ind); 4337 Worklist.insert(IndUpdate); 4338 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4339 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4340 << "\n"); 4341 } 4342 4343 // Insert the forced scalars. 4344 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4345 // induction variable when the PHI user is scalarized. 4346 auto ForcedScalar = ForcedScalars.find(VF); 4347 if (ForcedScalar != ForcedScalars.end()) 4348 for (auto *I : ForcedScalar->second) 4349 Worklist.insert(I); 4350 4351 // Expand the worklist by looking through any bitcasts and getelementptr 4352 // instructions we've already identified as scalar. This is similar to the 4353 // expansion step in collectLoopUniforms(); however, here we're only 4354 // expanding to include additional bitcasts and getelementptr instructions. 4355 unsigned Idx = 0; 4356 while (Idx != Worklist.size()) { 4357 Instruction *Dst = Worklist[Idx++]; 4358 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4359 continue; 4360 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4361 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4362 auto *J = cast<Instruction>(U); 4363 return !TheLoop->contains(J) || Worklist.count(J) || 4364 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4365 isScalarUse(J, Src)); 4366 })) { 4367 Worklist.insert(Src); 4368 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4369 } 4370 } 4371 4372 // An induction variable will remain scalar if all users of the induction 4373 // variable and induction variable update remain scalar. 4374 for (auto &Induction : *Legal->getInductionVars()) { 4375 auto *Ind = Induction.first; 4376 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4377 4378 // We already considered pointer induction variables, so there's no reason 4379 // to look at their users again. 4380 // 4381 // TODO: Once we are able to vectorize pointer induction variables we 4382 // should no longer skip over them here. 4383 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4384 continue; 4385 4386 // Determine if all users of the induction variable are scalar after 4387 // vectorization. 4388 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4389 auto *I = cast<Instruction>(U); 4390 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4391 }); 4392 if (!ScalarInd) 4393 continue; 4394 4395 // Determine if all users of the induction variable update instruction are 4396 // scalar after vectorization. 4397 auto ScalarIndUpdate = 4398 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4399 auto *I = cast<Instruction>(U); 4400 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4401 }); 4402 if (!ScalarIndUpdate) 4403 continue; 4404 4405 // The induction variable and its update instruction will remain scalar. 4406 Worklist.insert(Ind); 4407 Worklist.insert(IndUpdate); 4408 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4409 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4410 << "\n"); 4411 } 4412 4413 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4414 } 4415 4416 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4417 if (!blockNeedsPredication(I->getParent())) 4418 return false; 4419 switch(I->getOpcode()) { 4420 default: 4421 break; 4422 case Instruction::Load: 4423 case Instruction::Store: { 4424 if (!Legal->isMaskRequired(I)) 4425 return false; 4426 auto *Ptr = getLoadStorePointerOperand(I); 4427 auto *Ty = getMemInstValueType(I); 4428 // We have already decided how to vectorize this instruction, get that 4429 // result. 4430 if (VF > 1) { 4431 InstWidening WideningDecision = getWideningDecision(I, VF); 4432 assert(WideningDecision != CM_Unknown && 4433 "Widening decision should be ready at this moment"); 4434 return WideningDecision == CM_Scalarize; 4435 } 4436 return isa<LoadInst>(I) ? 4437 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4438 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4439 } 4440 case Instruction::UDiv: 4441 case Instruction::SDiv: 4442 case Instruction::SRem: 4443 case Instruction::URem: 4444 return mayDivideByZero(*I); 4445 } 4446 return false; 4447 } 4448 4449 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4450 unsigned VF) { 4451 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4452 assert(getWideningDecision(I, VF) == CM_Unknown && 4453 "Decision should not be set yet."); 4454 auto *Group = getInterleavedAccessGroup(I); 4455 assert(Group && "Must have a group."); 4456 4457 // If the instruction's allocated size doesn't equal it's type size, it 4458 // requires padding and will be scalarized. 4459 auto &DL = I->getModule()->getDataLayout(); 4460 auto *ScalarTy = getMemInstValueType(I); 4461 if (hasIrregularType(ScalarTy, DL, VF)) 4462 return false; 4463 4464 // Check if masking is required. 4465 // A Group may need masking for one of two reasons: it resides in a block that 4466 // needs predication, or it was decided to use masking to deal with gaps. 4467 bool PredicatedAccessRequiresMasking = 4468 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4469 bool AccessWithGapsRequiresMasking = 4470 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4471 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4472 return true; 4473 4474 // If masked interleaving is required, we expect that the user/target had 4475 // enabled it, because otherwise it either wouldn't have been created or 4476 // it should have been invalidated by the CostModel. 4477 assert(useMaskedInterleavedAccesses(TTI) && 4478 "Masked interleave-groups for predicated accesses are not enabled."); 4479 4480 auto *Ty = getMemInstValueType(I); 4481 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4482 : TTI.isLegalMaskedStore(Ty); 4483 } 4484 4485 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4486 unsigned VF) { 4487 // Get and ensure we have a valid memory instruction. 4488 LoadInst *LI = dyn_cast<LoadInst>(I); 4489 StoreInst *SI = dyn_cast<StoreInst>(I); 4490 assert((LI || SI) && "Invalid memory instruction"); 4491 4492 auto *Ptr = getLoadStorePointerOperand(I); 4493 4494 // In order to be widened, the pointer should be consecutive, first of all. 4495 if (!Legal->isConsecutivePtr(Ptr)) 4496 return false; 4497 4498 // If the instruction is a store located in a predicated block, it will be 4499 // scalarized. 4500 if (isScalarWithPredication(I)) 4501 return false; 4502 4503 // If the instruction's allocated size doesn't equal it's type size, it 4504 // requires padding and will be scalarized. 4505 auto &DL = I->getModule()->getDataLayout(); 4506 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4507 if (hasIrregularType(ScalarTy, DL, VF)) 4508 return false; 4509 4510 return true; 4511 } 4512 4513 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4514 // We should not collect Uniforms more than once per VF. Right now, 4515 // this function is called from collectUniformsAndScalars(), which 4516 // already does this check. Collecting Uniforms for VF=1 does not make any 4517 // sense. 4518 4519 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4520 "This function should not be visited twice for the same VF"); 4521 4522 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4523 // not analyze again. Uniforms.count(VF) will return 1. 4524 Uniforms[VF].clear(); 4525 4526 // We now know that the loop is vectorizable! 4527 // Collect instructions inside the loop that will remain uniform after 4528 // vectorization. 4529 4530 // Global values, params and instructions outside of current loop are out of 4531 // scope. 4532 auto isOutOfScope = [&](Value *V) -> bool { 4533 Instruction *I = dyn_cast<Instruction>(V); 4534 return (!I || !TheLoop->contains(I)); 4535 }; 4536 4537 SetVector<Instruction *> Worklist; 4538 BasicBlock *Latch = TheLoop->getLoopLatch(); 4539 4540 // Start with the conditional branch. If the branch condition is an 4541 // instruction contained in the loop that is only used by the branch, it is 4542 // uniform. 4543 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4544 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4545 Worklist.insert(Cmp); 4546 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4547 } 4548 4549 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4550 // are pointers that are treated like consecutive pointers during 4551 // vectorization. The pointer operands of interleaved accesses are an 4552 // example. 4553 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4554 4555 // Holds pointer operands of instructions that are possibly non-uniform. 4556 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4557 4558 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4559 InstWidening WideningDecision = getWideningDecision(I, VF); 4560 assert(WideningDecision != CM_Unknown && 4561 "Widening decision should be ready at this moment"); 4562 4563 return (WideningDecision == CM_Widen || 4564 WideningDecision == CM_Widen_Reverse || 4565 WideningDecision == CM_Interleave); 4566 }; 4567 // Iterate over the instructions in the loop, and collect all 4568 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4569 // that a consecutive-like pointer operand will be scalarized, we collect it 4570 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4571 // getelementptr instruction can be used by both vectorized and scalarized 4572 // memory instructions. For example, if a loop loads and stores from the same 4573 // location, but the store is conditional, the store will be scalarized, and 4574 // the getelementptr won't remain uniform. 4575 for (auto *BB : TheLoop->blocks()) 4576 for (auto &I : *BB) { 4577 // If there's no pointer operand, there's nothing to do. 4578 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4579 if (!Ptr) 4580 continue; 4581 4582 // True if all users of Ptr are memory accesses that have Ptr as their 4583 // pointer operand. 4584 auto UsersAreMemAccesses = 4585 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4586 return getLoadStorePointerOperand(U) == Ptr; 4587 }); 4588 4589 // Ensure the memory instruction will not be scalarized or used by 4590 // gather/scatter, making its pointer operand non-uniform. If the pointer 4591 // operand is used by any instruction other than a memory access, we 4592 // conservatively assume the pointer operand may be non-uniform. 4593 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4594 PossibleNonUniformPtrs.insert(Ptr); 4595 4596 // If the memory instruction will be vectorized and its pointer operand 4597 // is consecutive-like, or interleaving - the pointer operand should 4598 // remain uniform. 4599 else 4600 ConsecutiveLikePtrs.insert(Ptr); 4601 } 4602 4603 // Add to the Worklist all consecutive and consecutive-like pointers that 4604 // aren't also identified as possibly non-uniform. 4605 for (auto *V : ConsecutiveLikePtrs) 4606 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4607 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4608 Worklist.insert(V); 4609 } 4610 4611 // Expand Worklist in topological order: whenever a new instruction 4612 // is added , its users should be already inside Worklist. It ensures 4613 // a uniform instruction will only be used by uniform instructions. 4614 unsigned idx = 0; 4615 while (idx != Worklist.size()) { 4616 Instruction *I = Worklist[idx++]; 4617 4618 for (auto OV : I->operand_values()) { 4619 // isOutOfScope operands cannot be uniform instructions. 4620 if (isOutOfScope(OV)) 4621 continue; 4622 // First order recurrence Phi's should typically be considered 4623 // non-uniform. 4624 auto *OP = dyn_cast<PHINode>(OV); 4625 if (OP && Legal->isFirstOrderRecurrence(OP)) 4626 continue; 4627 // If all the users of the operand are uniform, then add the 4628 // operand into the uniform worklist. 4629 auto *OI = cast<Instruction>(OV); 4630 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4631 auto *J = cast<Instruction>(U); 4632 return Worklist.count(J) || 4633 (OI == getLoadStorePointerOperand(J) && 4634 isUniformDecision(J, VF)); 4635 })) { 4636 Worklist.insert(OI); 4637 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4638 } 4639 } 4640 } 4641 4642 // Returns true if Ptr is the pointer operand of a memory access instruction 4643 // I, and I is known to not require scalarization. 4644 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4645 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4646 }; 4647 4648 // For an instruction to be added into Worklist above, all its users inside 4649 // the loop should also be in Worklist. However, this condition cannot be 4650 // true for phi nodes that form a cyclic dependence. We must process phi 4651 // nodes separately. An induction variable will remain uniform if all users 4652 // of the induction variable and induction variable update remain uniform. 4653 // The code below handles both pointer and non-pointer induction variables. 4654 for (auto &Induction : *Legal->getInductionVars()) { 4655 auto *Ind = Induction.first; 4656 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4657 4658 // Determine if all users of the induction variable are uniform after 4659 // vectorization. 4660 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4661 auto *I = cast<Instruction>(U); 4662 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4663 isVectorizedMemAccessUse(I, Ind); 4664 }); 4665 if (!UniformInd) 4666 continue; 4667 4668 // Determine if all users of the induction variable update instruction are 4669 // uniform after vectorization. 4670 auto UniformIndUpdate = 4671 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4672 auto *I = cast<Instruction>(U); 4673 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4674 isVectorizedMemAccessUse(I, IndUpdate); 4675 }); 4676 if (!UniformIndUpdate) 4677 continue; 4678 4679 // The induction variable and its update instruction will remain uniform. 4680 Worklist.insert(Ind); 4681 Worklist.insert(IndUpdate); 4682 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4683 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4684 << "\n"); 4685 } 4686 4687 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4688 } 4689 4690 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() { 4691 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4692 // TODO: It may by useful to do since it's still likely to be dynamically 4693 // uniform if the target can skip. 4694 LLVM_DEBUG( 4695 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4696 4697 ORE->emit( 4698 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4699 << "runtime pointer checks needed. Not enabled for divergent target"); 4700 4701 return None; 4702 } 4703 4704 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4705 if (isScalarEpilogueAllowed()) 4706 return computeFeasibleMaxVF(TC); 4707 4708 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue.\n" << 4709 "LV: Performing code size checks.\n"); 4710 4711 if (Legal->getRuntimePointerChecking()->Need) { 4712 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4713 << "runtime pointer checks needed. Enable vectorization of this " 4714 "loop with '#pragma clang loop vectorize(enable)' when " 4715 "compiling with -Os/-Oz"); 4716 LLVM_DEBUG( 4717 dbgs() 4718 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4719 return None; 4720 } 4721 4722 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4723 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4724 << "runtime SCEV checks needed. Enable vectorization of this " 4725 "loop with '#pragma clang loop vectorize(enable)' when " 4726 "compiling with -Os/-Oz"); 4727 LLVM_DEBUG( 4728 dbgs() 4729 << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); 4730 return None; 4731 } 4732 4733 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4734 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4735 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4736 << "runtime stride == 1 checks needed. Enable vectorization of " 4737 "this loop with '#pragma clang loop vectorize(enable)' when " 4738 "compiling with -Os/-Oz"); 4739 LLVM_DEBUG( 4740 dbgs() 4741 << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); 4742 return None; 4743 } 4744 4745 // If we optimize the program for size, avoid creating the tail loop. 4746 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4747 4748 if (TC == 1) { 4749 ORE->emit(createMissedAnalysis("SingleIterationLoop") 4750 << "loop trip count is one, irrelevant for vectorization"); 4751 LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); 4752 return None; 4753 } 4754 4755 // Record that scalar epilogue is not allowed. 4756 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4757 4758 // We don't create an epilogue when optimizing for size. 4759 // Invalidate interleave groups that require an epilogue if we can't mask 4760 // the interleave-group. 4761 if (!useMaskedInterleavedAccesses(TTI)) 4762 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4763 4764 unsigned MaxVF = computeFeasibleMaxVF(TC); 4765 4766 if (TC > 0 && TC % MaxVF == 0) { 4767 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4768 return MaxVF; 4769 } 4770 4771 // If we don't know the precise trip count, or if the trip count that we 4772 // found modulo the vectorization factor is not zero, try to fold the tail 4773 // by masking. 4774 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4775 if (Legal->canFoldTailByMasking()) { 4776 FoldTailByMasking = true; 4777 return MaxVF; 4778 } 4779 4780 if (TC == 0) { 4781 ORE->emit( 4782 createMissedAnalysis("UnknownLoopCountComplexCFG") 4783 << "unable to calculate the loop count due to complex control flow"); 4784 return None; 4785 } 4786 4787 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4788 << "cannot optimize for size and vectorize at the same time. " 4789 "Enable vectorization of this loop with '#pragma clang loop " 4790 "vectorize(enable)' when compiling with -Os/-Oz"); 4791 return None; 4792 } 4793 4794 unsigned 4795 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 4796 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4797 unsigned SmallestType, WidestType; 4798 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4799 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4800 4801 // Get the maximum safe dependence distance in bits computed by LAA. 4802 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4803 // the memory accesses that is most restrictive (involved in the smallest 4804 // dependence distance). 4805 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4806 4807 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4808 4809 unsigned MaxVectorSize = WidestRegister / WidestType; 4810 4811 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4812 << " / " << WidestType << " bits.\n"); 4813 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4814 << WidestRegister << " bits.\n"); 4815 4816 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4817 " into one vector!"); 4818 if (MaxVectorSize == 0) { 4819 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4820 MaxVectorSize = 1; 4821 return MaxVectorSize; 4822 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4823 isPowerOf2_32(ConstTripCount)) { 4824 // We need to clamp the VF to be the ConstTripCount. There is no point in 4825 // choosing a higher viable VF as done in the loop below. 4826 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4827 << ConstTripCount << "\n"); 4828 MaxVectorSize = ConstTripCount; 4829 return MaxVectorSize; 4830 } 4831 4832 unsigned MaxVF = MaxVectorSize; 4833 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 4834 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 4835 // Collect all viable vectorization factors larger than the default MaxVF 4836 // (i.e. MaxVectorSize). 4837 SmallVector<unsigned, 8> VFs; 4838 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4839 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4840 VFs.push_back(VS); 4841 4842 // For each VF calculate its register usage. 4843 auto RUs = calculateRegisterUsage(VFs); 4844 4845 // Select the largest VF which doesn't require more registers than existing 4846 // ones. 4847 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4848 for (int i = RUs.size() - 1; i >= 0; --i) { 4849 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4850 MaxVF = VFs[i]; 4851 break; 4852 } 4853 } 4854 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4855 if (MaxVF < MinVF) { 4856 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4857 << ") with target's minimum: " << MinVF << '\n'); 4858 MaxVF = MinVF; 4859 } 4860 } 4861 } 4862 return MaxVF; 4863 } 4864 4865 VectorizationFactor 4866 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4867 float Cost = expectedCost(1).first; 4868 const float ScalarCost = Cost; 4869 unsigned Width = 1; 4870 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4871 4872 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4873 if (ForceVectorization && MaxVF > 1) { 4874 // Ignore scalar width, because the user explicitly wants vectorization. 4875 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4876 // evaluation. 4877 Cost = std::numeric_limits<float>::max(); 4878 } 4879 4880 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4881 // Notice that the vector loop needs to be executed less times, so 4882 // we need to divide the cost of the vector loops by the width of 4883 // the vector elements. 4884 VectorizationCostTy C = expectedCost(i); 4885 float VectorCost = C.first / (float)i; 4886 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4887 << " costs: " << (int)VectorCost << ".\n"); 4888 if (!C.second && !ForceVectorization) { 4889 LLVM_DEBUG( 4890 dbgs() << "LV: Not considering vector loop of width " << i 4891 << " because it will not generate any vector instructions.\n"); 4892 continue; 4893 } 4894 if (VectorCost < Cost) { 4895 Cost = VectorCost; 4896 Width = i; 4897 } 4898 } 4899 4900 if (!EnableCondStoresVectorization && NumPredStores) { 4901 ORE->emit(createMissedAnalysis("ConditionalStore") 4902 << "store that is conditionally executed prevents vectorization"); 4903 LLVM_DEBUG( 4904 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4905 Width = 1; 4906 Cost = ScalarCost; 4907 } 4908 4909 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4910 << "LV: Vectorization seems to be not beneficial, " 4911 << "but was forced by a user.\n"); 4912 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4913 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4914 return Factor; 4915 } 4916 4917 std::pair<unsigned, unsigned> 4918 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4919 unsigned MinWidth = -1U; 4920 unsigned MaxWidth = 8; 4921 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4922 4923 // For each block. 4924 for (BasicBlock *BB : TheLoop->blocks()) { 4925 // For each instruction in the loop. 4926 for (Instruction &I : BB->instructionsWithoutDebug()) { 4927 Type *T = I.getType(); 4928 4929 // Skip ignored values. 4930 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4931 continue; 4932 4933 // Only examine Loads, Stores and PHINodes. 4934 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4935 continue; 4936 4937 // Examine PHI nodes that are reduction variables. Update the type to 4938 // account for the recurrence type. 4939 if (auto *PN = dyn_cast<PHINode>(&I)) { 4940 if (!Legal->isReductionVariable(PN)) 4941 continue; 4942 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4943 T = RdxDesc.getRecurrenceType(); 4944 } 4945 4946 // Examine the stored values. 4947 if (auto *ST = dyn_cast<StoreInst>(&I)) 4948 T = ST->getValueOperand()->getType(); 4949 4950 // Ignore loaded pointer types and stored pointer types that are not 4951 // vectorizable. 4952 // 4953 // FIXME: The check here attempts to predict whether a load or store will 4954 // be vectorized. We only know this for certain after a VF has 4955 // been selected. Here, we assume that if an access can be 4956 // vectorized, it will be. We should also look at extending this 4957 // optimization to non-pointer types. 4958 // 4959 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4960 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4961 continue; 4962 4963 MinWidth = std::min(MinWidth, 4964 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4965 MaxWidth = std::max(MaxWidth, 4966 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4967 } 4968 } 4969 4970 return {MinWidth, MaxWidth}; 4971 } 4972 4973 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 4974 unsigned LoopCost) { 4975 // -- The interleave heuristics -- 4976 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4977 // There are many micro-architectural considerations that we can't predict 4978 // at this level. For example, frontend pressure (on decode or fetch) due to 4979 // code size, or the number and capabilities of the execution ports. 4980 // 4981 // We use the following heuristics to select the interleave count: 4982 // 1. If the code has reductions, then we interleave to break the cross 4983 // iteration dependency. 4984 // 2. If the loop is really small, then we interleave to reduce the loop 4985 // overhead. 4986 // 3. We don't interleave if we think that we will spill registers to memory 4987 // due to the increased register pressure. 4988 4989 if (!isScalarEpilogueAllowed()) 4990 return 1; 4991 4992 // We used the distance for the interleave count. 4993 if (Legal->getMaxSafeDepDistBytes() != -1U) 4994 return 1; 4995 4996 // Do not interleave loops with a relatively small trip count. 4997 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4998 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4999 return 1; 5000 5001 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5002 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5003 << " registers\n"); 5004 5005 if (VF == 1) { 5006 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5007 TargetNumRegisters = ForceTargetNumScalarRegs; 5008 } else { 5009 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5010 TargetNumRegisters = ForceTargetNumVectorRegs; 5011 } 5012 5013 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5014 // We divide by these constants so assume that we have at least one 5015 // instruction that uses at least one register. 5016 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5017 5018 // We calculate the interleave count using the following formula. 5019 // Subtract the number of loop invariants from the number of available 5020 // registers. These registers are used by all of the interleaved instances. 5021 // Next, divide the remaining registers by the number of registers that is 5022 // required by the loop, in order to estimate how many parallel instances 5023 // fit without causing spills. All of this is rounded down if necessary to be 5024 // a power of two. We want power of two interleave count to simplify any 5025 // addressing operations or alignment considerations. 5026 // We also want power of two interleave counts to ensure that the induction 5027 // variable of the vector loop wraps to zero, when tail is folded by masking; 5028 // this currently happens when OptForSize, in which case IC is set to 1 above. 5029 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5030 R.MaxLocalUsers); 5031 5032 // Don't count the induction variable as interleaved. 5033 if (EnableIndVarRegisterHeur) 5034 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5035 std::max(1U, (R.MaxLocalUsers - 1))); 5036 5037 // Clamp the interleave ranges to reasonable counts. 5038 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5039 5040 // Check if the user has overridden the max. 5041 if (VF == 1) { 5042 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5043 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5044 } else { 5045 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5046 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5047 } 5048 5049 // If we did not calculate the cost for VF (because the user selected the VF) 5050 // then we calculate the cost of VF here. 5051 if (LoopCost == 0) 5052 LoopCost = expectedCost(VF).first; 5053 5054 assert(LoopCost && "Non-zero loop cost expected"); 5055 5056 // Clamp the calculated IC to be between the 1 and the max interleave count 5057 // that the target allows. 5058 if (IC > MaxInterleaveCount) 5059 IC = MaxInterleaveCount; 5060 else if (IC < 1) 5061 IC = 1; 5062 5063 // Interleave if we vectorized this loop and there is a reduction that could 5064 // benefit from interleaving. 5065 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5066 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5067 return IC; 5068 } 5069 5070 // Note that if we've already vectorized the loop we will have done the 5071 // runtime check and so interleaving won't require further checks. 5072 bool InterleavingRequiresRuntimePointerCheck = 5073 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5074 5075 // We want to interleave small loops in order to reduce the loop overhead and 5076 // potentially expose ILP opportunities. 5077 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5078 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5079 // We assume that the cost overhead is 1 and we use the cost model 5080 // to estimate the cost of the loop and interleave until the cost of the 5081 // loop overhead is about 5% of the cost of the loop. 5082 unsigned SmallIC = 5083 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5084 5085 // Interleave until store/load ports (estimated by max interleave count) are 5086 // saturated. 5087 unsigned NumStores = Legal->getNumStores(); 5088 unsigned NumLoads = Legal->getNumLoads(); 5089 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5090 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5091 5092 // If we have a scalar reduction (vector reductions are already dealt with 5093 // by this point), we can increase the critical path length if the loop 5094 // we're interleaving is inside another loop. Limit, by default to 2, so the 5095 // critical path only gets increased by one reduction operation. 5096 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5097 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5098 SmallIC = std::min(SmallIC, F); 5099 StoresIC = std::min(StoresIC, F); 5100 LoadsIC = std::min(LoadsIC, F); 5101 } 5102 5103 if (EnableLoadStoreRuntimeInterleave && 5104 std::max(StoresIC, LoadsIC) > SmallIC) { 5105 LLVM_DEBUG( 5106 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5107 return std::max(StoresIC, LoadsIC); 5108 } 5109 5110 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5111 return SmallIC; 5112 } 5113 5114 // Interleave if this is a large loop (small loops are already dealt with by 5115 // this point) that could benefit from interleaving. 5116 bool HasReductions = !Legal->getReductionVars()->empty(); 5117 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5118 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5119 return IC; 5120 } 5121 5122 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5123 return 1; 5124 } 5125 5126 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5127 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5128 // This function calculates the register usage by measuring the highest number 5129 // of values that are alive at a single location. Obviously, this is a very 5130 // rough estimation. We scan the loop in a topological order in order and 5131 // assign a number to each instruction. We use RPO to ensure that defs are 5132 // met before their users. We assume that each instruction that has in-loop 5133 // users starts an interval. We record every time that an in-loop value is 5134 // used, so we have a list of the first and last occurrences of each 5135 // instruction. Next, we transpose this data structure into a multi map that 5136 // holds the list of intervals that *end* at a specific location. This multi 5137 // map allows us to perform a linear search. We scan the instructions linearly 5138 // and record each time that a new interval starts, by placing it in a set. 5139 // If we find this value in the multi-map then we remove it from the set. 5140 // The max register usage is the maximum size of the set. 5141 // We also search for instructions that are defined outside the loop, but are 5142 // used inside the loop. We need this number separately from the max-interval 5143 // usage number because when we unroll, loop-invariant values do not take 5144 // more register. 5145 LoopBlocksDFS DFS(TheLoop); 5146 DFS.perform(LI); 5147 5148 RegisterUsage RU; 5149 5150 // Each 'key' in the map opens a new interval. The values 5151 // of the map are the index of the 'last seen' usage of the 5152 // instruction that is the key. 5153 using IntervalMap = DenseMap<Instruction *, unsigned>; 5154 5155 // Maps instruction to its index. 5156 SmallVector<Instruction *, 64> IdxToInstr; 5157 // Marks the end of each interval. 5158 IntervalMap EndPoint; 5159 // Saves the list of instruction indices that are used in the loop. 5160 SmallPtrSet<Instruction *, 8> Ends; 5161 // Saves the list of values that are used in the loop but are 5162 // defined outside the loop, such as arguments and constants. 5163 SmallPtrSet<Value *, 8> LoopInvariants; 5164 5165 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5166 for (Instruction &I : BB->instructionsWithoutDebug()) { 5167 IdxToInstr.push_back(&I); 5168 5169 // Save the end location of each USE. 5170 for (Value *U : I.operands()) { 5171 auto *Instr = dyn_cast<Instruction>(U); 5172 5173 // Ignore non-instruction values such as arguments, constants, etc. 5174 if (!Instr) 5175 continue; 5176 5177 // If this instruction is outside the loop then record it and continue. 5178 if (!TheLoop->contains(Instr)) { 5179 LoopInvariants.insert(Instr); 5180 continue; 5181 } 5182 5183 // Overwrite previous end points. 5184 EndPoint[Instr] = IdxToInstr.size(); 5185 Ends.insert(Instr); 5186 } 5187 } 5188 } 5189 5190 // Saves the list of intervals that end with the index in 'key'. 5191 using InstrList = SmallVector<Instruction *, 2>; 5192 DenseMap<unsigned, InstrList> TransposeEnds; 5193 5194 // Transpose the EndPoints to a list of values that end at each index. 5195 for (auto &Interval : EndPoint) 5196 TransposeEnds[Interval.second].push_back(Interval.first); 5197 5198 SmallPtrSet<Instruction *, 8> OpenIntervals; 5199 5200 // Get the size of the widest register. 5201 unsigned MaxSafeDepDist = -1U; 5202 if (Legal->getMaxSafeDepDistBytes() != -1U) 5203 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5204 unsigned WidestRegister = 5205 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5206 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5207 5208 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5209 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5210 5211 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5212 5213 // A lambda that gets the register usage for the given type and VF. 5214 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5215 if (Ty->isTokenTy()) 5216 return 0U; 5217 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5218 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5219 }; 5220 5221 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5222 Instruction *I = IdxToInstr[i]; 5223 5224 // Remove all of the instructions that end at this location. 5225 InstrList &List = TransposeEnds[i]; 5226 for (Instruction *ToRemove : List) 5227 OpenIntervals.erase(ToRemove); 5228 5229 // Ignore instructions that are never used within the loop. 5230 if (Ends.find(I) == Ends.end()) 5231 continue; 5232 5233 // Skip ignored values. 5234 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5235 continue; 5236 5237 // For each VF find the maximum usage of registers. 5238 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5239 if (VFs[j] == 1) { 5240 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5241 continue; 5242 } 5243 collectUniformsAndScalars(VFs[j]); 5244 // Count the number of live intervals. 5245 unsigned RegUsage = 0; 5246 for (auto Inst : OpenIntervals) { 5247 // Skip ignored values for VF > 1. 5248 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5249 isScalarAfterVectorization(Inst, VFs[j])) 5250 continue; 5251 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5252 } 5253 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5254 } 5255 5256 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5257 << OpenIntervals.size() << '\n'); 5258 5259 // Add the current instruction to the list of open intervals. 5260 OpenIntervals.insert(I); 5261 } 5262 5263 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5264 unsigned Invariant = 0; 5265 if (VFs[i] == 1) 5266 Invariant = LoopInvariants.size(); 5267 else { 5268 for (auto Inst : LoopInvariants) 5269 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5270 } 5271 5272 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5273 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5274 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5275 << '\n'); 5276 5277 RU.LoopInvariantRegs = Invariant; 5278 RU.MaxLocalUsers = MaxUsages[i]; 5279 RUs[i] = RU; 5280 } 5281 5282 return RUs; 5283 } 5284 5285 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5286 // TODO: Cost model for emulated masked load/store is completely 5287 // broken. This hack guides the cost model to use an artificially 5288 // high enough value to practically disable vectorization with such 5289 // operations, except where previously deployed legality hack allowed 5290 // using very low cost values. This is to avoid regressions coming simply 5291 // from moving "masked load/store" check from legality to cost model. 5292 // Masked Load/Gather emulation was previously never allowed. 5293 // Limited number of Masked Store/Scatter emulation was allowed. 5294 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5295 return isa<LoadInst>(I) || 5296 (isa<StoreInst>(I) && 5297 NumPredStores > NumberOfStoresToPredicate); 5298 } 5299 5300 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5301 // If we aren't vectorizing the loop, or if we've already collected the 5302 // instructions to scalarize, there's nothing to do. Collection may already 5303 // have occurred if we have a user-selected VF and are now computing the 5304 // expected cost for interleaving. 5305 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5306 return; 5307 5308 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5309 // not profitable to scalarize any instructions, the presence of VF in the 5310 // map will indicate that we've analyzed it already. 5311 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5312 5313 // Find all the instructions that are scalar with predication in the loop and 5314 // determine if it would be better to not if-convert the blocks they are in. 5315 // If so, we also record the instructions to scalarize. 5316 for (BasicBlock *BB : TheLoop->blocks()) { 5317 if (!blockNeedsPredication(BB)) 5318 continue; 5319 for (Instruction &I : *BB) 5320 if (isScalarWithPredication(&I)) { 5321 ScalarCostsTy ScalarCosts; 5322 // Do not apply discount logic if hacked cost is needed 5323 // for emulated masked memrefs. 5324 if (!useEmulatedMaskMemRefHack(&I) && 5325 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5326 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5327 // Remember that BB will remain after vectorization. 5328 PredicatedBBsAfterVectorization.insert(BB); 5329 } 5330 } 5331 } 5332 5333 int LoopVectorizationCostModel::computePredInstDiscount( 5334 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5335 unsigned VF) { 5336 assert(!isUniformAfterVectorization(PredInst, VF) && 5337 "Instruction marked uniform-after-vectorization will be predicated"); 5338 5339 // Initialize the discount to zero, meaning that the scalar version and the 5340 // vector version cost the same. 5341 int Discount = 0; 5342 5343 // Holds instructions to analyze. The instructions we visit are mapped in 5344 // ScalarCosts. Those instructions are the ones that would be scalarized if 5345 // we find that the scalar version costs less. 5346 SmallVector<Instruction *, 8> Worklist; 5347 5348 // Returns true if the given instruction can be scalarized. 5349 auto canBeScalarized = [&](Instruction *I) -> bool { 5350 // We only attempt to scalarize instructions forming a single-use chain 5351 // from the original predicated block that would otherwise be vectorized. 5352 // Although not strictly necessary, we give up on instructions we know will 5353 // already be scalar to avoid traversing chains that are unlikely to be 5354 // beneficial. 5355 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5356 isScalarAfterVectorization(I, VF)) 5357 return false; 5358 5359 // If the instruction is scalar with predication, it will be analyzed 5360 // separately. We ignore it within the context of PredInst. 5361 if (isScalarWithPredication(I)) 5362 return false; 5363 5364 // If any of the instruction's operands are uniform after vectorization, 5365 // the instruction cannot be scalarized. This prevents, for example, a 5366 // masked load from being scalarized. 5367 // 5368 // We assume we will only emit a value for lane zero of an instruction 5369 // marked uniform after vectorization, rather than VF identical values. 5370 // Thus, if we scalarize an instruction that uses a uniform, we would 5371 // create uses of values corresponding to the lanes we aren't emitting code 5372 // for. This behavior can be changed by allowing getScalarValue to clone 5373 // the lane zero values for uniforms rather than asserting. 5374 for (Use &U : I->operands()) 5375 if (auto *J = dyn_cast<Instruction>(U.get())) 5376 if (isUniformAfterVectorization(J, VF)) 5377 return false; 5378 5379 // Otherwise, we can scalarize the instruction. 5380 return true; 5381 }; 5382 5383 // Compute the expected cost discount from scalarizing the entire expression 5384 // feeding the predicated instruction. We currently only consider expressions 5385 // that are single-use instruction chains. 5386 Worklist.push_back(PredInst); 5387 while (!Worklist.empty()) { 5388 Instruction *I = Worklist.pop_back_val(); 5389 5390 // If we've already analyzed the instruction, there's nothing to do. 5391 if (ScalarCosts.find(I) != ScalarCosts.end()) 5392 continue; 5393 5394 // Compute the cost of the vector instruction. Note that this cost already 5395 // includes the scalarization overhead of the predicated instruction. 5396 unsigned VectorCost = getInstructionCost(I, VF).first; 5397 5398 // Compute the cost of the scalarized instruction. This cost is the cost of 5399 // the instruction as if it wasn't if-converted and instead remained in the 5400 // predicated block. We will scale this cost by block probability after 5401 // computing the scalarization overhead. 5402 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5403 5404 // Compute the scalarization overhead of needed insertelement instructions 5405 // and phi nodes. 5406 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5407 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5408 true, false); 5409 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5410 } 5411 5412 // Compute the scalarization overhead of needed extractelement 5413 // instructions. For each of the instruction's operands, if the operand can 5414 // be scalarized, add it to the worklist; otherwise, account for the 5415 // overhead. 5416 for (Use &U : I->operands()) 5417 if (auto *J = dyn_cast<Instruction>(U.get())) { 5418 assert(VectorType::isValidElementType(J->getType()) && 5419 "Instruction has non-scalar type"); 5420 if (canBeScalarized(J)) 5421 Worklist.push_back(J); 5422 else if (needsExtract(J, VF)) 5423 ScalarCost += TTI.getScalarizationOverhead( 5424 ToVectorTy(J->getType(),VF), false, true); 5425 } 5426 5427 // Scale the total scalar cost by block probability. 5428 ScalarCost /= getReciprocalPredBlockProb(); 5429 5430 // Compute the discount. A non-negative discount means the vector version 5431 // of the instruction costs more, and scalarizing would be beneficial. 5432 Discount += VectorCost - ScalarCost; 5433 ScalarCosts[I] = ScalarCost; 5434 } 5435 5436 return Discount; 5437 } 5438 5439 LoopVectorizationCostModel::VectorizationCostTy 5440 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5441 VectorizationCostTy Cost; 5442 5443 // For each block. 5444 for (BasicBlock *BB : TheLoop->blocks()) { 5445 VectorizationCostTy BlockCost; 5446 5447 // For each instruction in the old loop. 5448 for (Instruction &I : BB->instructionsWithoutDebug()) { 5449 // Skip ignored values. 5450 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5451 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5452 continue; 5453 5454 VectorizationCostTy C = getInstructionCost(&I, VF); 5455 5456 // Check if we should override the cost. 5457 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5458 C.first = ForceTargetInstructionCost; 5459 5460 BlockCost.first += C.first; 5461 BlockCost.second |= C.second; 5462 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5463 << " for VF " << VF << " For instruction: " << I 5464 << '\n'); 5465 } 5466 5467 // If we are vectorizing a predicated block, it will have been 5468 // if-converted. This means that the block's instructions (aside from 5469 // stores and instructions that may divide by zero) will now be 5470 // unconditionally executed. For the scalar case, we may not always execute 5471 // the predicated block. Thus, scale the block's cost by the probability of 5472 // executing it. 5473 if (VF == 1 && blockNeedsPredication(BB)) 5474 BlockCost.first /= getReciprocalPredBlockProb(); 5475 5476 Cost.first += BlockCost.first; 5477 Cost.second |= BlockCost.second; 5478 } 5479 5480 return Cost; 5481 } 5482 5483 /// Gets Address Access SCEV after verifying that the access pattern 5484 /// is loop invariant except the induction variable dependence. 5485 /// 5486 /// This SCEV can be sent to the Target in order to estimate the address 5487 /// calculation cost. 5488 static const SCEV *getAddressAccessSCEV( 5489 Value *Ptr, 5490 LoopVectorizationLegality *Legal, 5491 PredicatedScalarEvolution &PSE, 5492 const Loop *TheLoop) { 5493 5494 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5495 if (!Gep) 5496 return nullptr; 5497 5498 // We are looking for a gep with all loop invariant indices except for one 5499 // which should be an induction variable. 5500 auto SE = PSE.getSE(); 5501 unsigned NumOperands = Gep->getNumOperands(); 5502 for (unsigned i = 1; i < NumOperands; ++i) { 5503 Value *Opd = Gep->getOperand(i); 5504 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5505 !Legal->isInductionVariable(Opd)) 5506 return nullptr; 5507 } 5508 5509 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5510 return PSE.getSCEV(Ptr); 5511 } 5512 5513 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5514 return Legal->hasStride(I->getOperand(0)) || 5515 Legal->hasStride(I->getOperand(1)); 5516 } 5517 5518 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5519 unsigned VF) { 5520 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5521 Type *ValTy = getMemInstValueType(I); 5522 auto SE = PSE.getSE(); 5523 5524 unsigned Alignment = getLoadStoreAlignment(I); 5525 unsigned AS = getLoadStoreAddressSpace(I); 5526 Value *Ptr = getLoadStorePointerOperand(I); 5527 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5528 5529 // Figure out whether the access is strided and get the stride value 5530 // if it's known in compile time 5531 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5532 5533 // Get the cost of the scalar memory instruction and address computation. 5534 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5535 5536 // Don't pass *I here, since it is scalar but will actually be part of a 5537 // vectorized loop where the user of it is a vectorized instruction. 5538 Cost += VF * 5539 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5540 AS); 5541 5542 // Get the overhead of the extractelement and insertelement instructions 5543 // we might create due to scalarization. 5544 Cost += getScalarizationOverhead(I, VF); 5545 5546 // If we have a predicated store, it may not be executed for each vector 5547 // lane. Scale the cost by the probability of executing the predicated 5548 // block. 5549 if (isPredicatedInst(I)) { 5550 Cost /= getReciprocalPredBlockProb(); 5551 5552 if (useEmulatedMaskMemRefHack(I)) 5553 // Artificially setting to a high enough value to practically disable 5554 // vectorization with such operations. 5555 Cost = 3000000; 5556 } 5557 5558 return Cost; 5559 } 5560 5561 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5562 unsigned VF) { 5563 Type *ValTy = getMemInstValueType(I); 5564 Type *VectorTy = ToVectorTy(ValTy, VF); 5565 unsigned Alignment = getLoadStoreAlignment(I); 5566 Value *Ptr = getLoadStorePointerOperand(I); 5567 unsigned AS = getLoadStoreAddressSpace(I); 5568 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5569 5570 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5571 "Stride should be 1 or -1 for consecutive memory access"); 5572 unsigned Cost = 0; 5573 if (Legal->isMaskRequired(I)) 5574 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5575 else 5576 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5577 5578 bool Reverse = ConsecutiveStride < 0; 5579 if (Reverse) 5580 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5581 return Cost; 5582 } 5583 5584 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5585 unsigned VF) { 5586 Type *ValTy = getMemInstValueType(I); 5587 Type *VectorTy = ToVectorTy(ValTy, VF); 5588 unsigned Alignment = getLoadStoreAlignment(I); 5589 unsigned AS = getLoadStoreAddressSpace(I); 5590 if (isa<LoadInst>(I)) { 5591 return TTI.getAddressComputationCost(ValTy) + 5592 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5593 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5594 } 5595 StoreInst *SI = cast<StoreInst>(I); 5596 5597 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5598 return TTI.getAddressComputationCost(ValTy) + 5599 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5600 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5601 Instruction::ExtractElement, 5602 VectorTy, VF - 1)); 5603 } 5604 5605 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5606 unsigned VF) { 5607 Type *ValTy = getMemInstValueType(I); 5608 Type *VectorTy = ToVectorTy(ValTy, VF); 5609 unsigned Alignment = getLoadStoreAlignment(I); 5610 Value *Ptr = getLoadStorePointerOperand(I); 5611 5612 return TTI.getAddressComputationCost(VectorTy) + 5613 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5614 Legal->isMaskRequired(I), Alignment); 5615 } 5616 5617 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5618 unsigned VF) { 5619 Type *ValTy = getMemInstValueType(I); 5620 Type *VectorTy = ToVectorTy(ValTy, VF); 5621 unsigned AS = getLoadStoreAddressSpace(I); 5622 5623 auto Group = getInterleavedAccessGroup(I); 5624 assert(Group && "Fail to get an interleaved access group."); 5625 5626 unsigned InterleaveFactor = Group->getFactor(); 5627 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5628 5629 // Holds the indices of existing members in an interleaved load group. 5630 // An interleaved store group doesn't need this as it doesn't allow gaps. 5631 SmallVector<unsigned, 4> Indices; 5632 if (isa<LoadInst>(I)) { 5633 for (unsigned i = 0; i < InterleaveFactor; i++) 5634 if (Group->getMember(i)) 5635 Indices.push_back(i); 5636 } 5637 5638 // Calculate the cost of the whole interleaved group. 5639 bool UseMaskForGaps = 5640 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5641 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5642 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5643 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5644 5645 if (Group->isReverse()) { 5646 // TODO: Add support for reversed masked interleaved access. 5647 assert(!Legal->isMaskRequired(I) && 5648 "Reverse masked interleaved access not supported."); 5649 Cost += Group->getNumMembers() * 5650 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5651 } 5652 return Cost; 5653 } 5654 5655 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5656 unsigned VF) { 5657 // Calculate scalar cost only. Vectorization cost should be ready at this 5658 // moment. 5659 if (VF == 1) { 5660 Type *ValTy = getMemInstValueType(I); 5661 unsigned Alignment = getLoadStoreAlignment(I); 5662 unsigned AS = getLoadStoreAddressSpace(I); 5663 5664 return TTI.getAddressComputationCost(ValTy) + 5665 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5666 } 5667 return getWideningCost(I, VF); 5668 } 5669 5670 LoopVectorizationCostModel::VectorizationCostTy 5671 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5672 // If we know that this instruction will remain uniform, check the cost of 5673 // the scalar version. 5674 if (isUniformAfterVectorization(I, VF)) 5675 VF = 1; 5676 5677 if (VF > 1 && isProfitableToScalarize(I, VF)) 5678 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5679 5680 // Forced scalars do not have any scalarization overhead. 5681 auto ForcedScalar = ForcedScalars.find(VF); 5682 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5683 auto InstSet = ForcedScalar->second; 5684 if (InstSet.find(I) != InstSet.end()) 5685 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5686 } 5687 5688 Type *VectorTy; 5689 unsigned C = getInstructionCost(I, VF, VectorTy); 5690 5691 bool TypeNotScalarized = 5692 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5693 return VectorizationCostTy(C, TypeNotScalarized); 5694 } 5695 5696 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5697 unsigned VF) { 5698 5699 if (VF == 1) 5700 return 0; 5701 5702 unsigned Cost = 0; 5703 Type *RetTy = ToVectorTy(I->getType(), VF); 5704 if (!RetTy->isVoidTy() && 5705 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5706 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 5707 5708 // Some targets keep addresses scalar. 5709 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 5710 return Cost; 5711 5712 // Some targets support efficient element stores. 5713 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 5714 return Cost; 5715 5716 // Collect operands to consider. 5717 CallInst *CI = dyn_cast<CallInst>(I); 5718 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 5719 5720 // Skip operands that do not require extraction/scalarization and do not incur 5721 // any overhead. 5722 return Cost + TTI.getOperandsScalarizationOverhead( 5723 filterExtractingOperands(Ops, VF), VF); 5724 } 5725 5726 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5727 if (VF == 1) 5728 return; 5729 NumPredStores = 0; 5730 for (BasicBlock *BB : TheLoop->blocks()) { 5731 // For each instruction in the old loop. 5732 for (Instruction &I : *BB) { 5733 Value *Ptr = getLoadStorePointerOperand(&I); 5734 if (!Ptr) 5735 continue; 5736 5737 // TODO: We should generate better code and update the cost model for 5738 // predicated uniform stores. Today they are treated as any other 5739 // predicated store (see added test cases in 5740 // invariant-store-vectorization.ll). 5741 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5742 NumPredStores++; 5743 5744 if (Legal->isUniform(Ptr) && 5745 // Conditional loads and stores should be scalarized and predicated. 5746 // isScalarWithPredication cannot be used here since masked 5747 // gather/scatters are not considered scalar with predication. 5748 !Legal->blockNeedsPredication(I.getParent())) { 5749 // TODO: Avoid replicating loads and stores instead of 5750 // relying on instcombine to remove them. 5751 // Load: Scalar load + broadcast 5752 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5753 unsigned Cost = getUniformMemOpCost(&I, VF); 5754 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5755 continue; 5756 } 5757 5758 // We assume that widening is the best solution when possible. 5759 if (memoryInstructionCanBeWidened(&I, VF)) { 5760 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5761 int ConsecutiveStride = 5762 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5763 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5764 "Expected consecutive stride."); 5765 InstWidening Decision = 5766 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5767 setWideningDecision(&I, VF, Decision, Cost); 5768 continue; 5769 } 5770 5771 // Choose between Interleaving, Gather/Scatter or Scalarization. 5772 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5773 unsigned NumAccesses = 1; 5774 if (isAccessInterleaved(&I)) { 5775 auto Group = getInterleavedAccessGroup(&I); 5776 assert(Group && "Fail to get an interleaved access group."); 5777 5778 // Make one decision for the whole group. 5779 if (getWideningDecision(&I, VF) != CM_Unknown) 5780 continue; 5781 5782 NumAccesses = Group->getNumMembers(); 5783 if (interleavedAccessCanBeWidened(&I, VF)) 5784 InterleaveCost = getInterleaveGroupCost(&I, VF); 5785 } 5786 5787 unsigned GatherScatterCost = 5788 isLegalGatherOrScatter(&I) 5789 ? getGatherScatterCost(&I, VF) * NumAccesses 5790 : std::numeric_limits<unsigned>::max(); 5791 5792 unsigned ScalarizationCost = 5793 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5794 5795 // Choose better solution for the current VF, 5796 // write down this decision and use it during vectorization. 5797 unsigned Cost; 5798 InstWidening Decision; 5799 if (InterleaveCost <= GatherScatterCost && 5800 InterleaveCost < ScalarizationCost) { 5801 Decision = CM_Interleave; 5802 Cost = InterleaveCost; 5803 } else if (GatherScatterCost < ScalarizationCost) { 5804 Decision = CM_GatherScatter; 5805 Cost = GatherScatterCost; 5806 } else { 5807 Decision = CM_Scalarize; 5808 Cost = ScalarizationCost; 5809 } 5810 // If the instructions belongs to an interleave group, the whole group 5811 // receives the same decision. The whole group receives the cost, but 5812 // the cost will actually be assigned to one instruction. 5813 if (auto Group = getInterleavedAccessGroup(&I)) 5814 setWideningDecision(Group, VF, Decision, Cost); 5815 else 5816 setWideningDecision(&I, VF, Decision, Cost); 5817 } 5818 } 5819 5820 // Make sure that any load of address and any other address computation 5821 // remains scalar unless there is gather/scatter support. This avoids 5822 // inevitable extracts into address registers, and also has the benefit of 5823 // activating LSR more, since that pass can't optimize vectorized 5824 // addresses. 5825 if (TTI.prefersVectorizedAddressing()) 5826 return; 5827 5828 // Start with all scalar pointer uses. 5829 SmallPtrSet<Instruction *, 8> AddrDefs; 5830 for (BasicBlock *BB : TheLoop->blocks()) 5831 for (Instruction &I : *BB) { 5832 Instruction *PtrDef = 5833 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5834 if (PtrDef && TheLoop->contains(PtrDef) && 5835 getWideningDecision(&I, VF) != CM_GatherScatter) 5836 AddrDefs.insert(PtrDef); 5837 } 5838 5839 // Add all instructions used to generate the addresses. 5840 SmallVector<Instruction *, 4> Worklist; 5841 for (auto *I : AddrDefs) 5842 Worklist.push_back(I); 5843 while (!Worklist.empty()) { 5844 Instruction *I = Worklist.pop_back_val(); 5845 for (auto &Op : I->operands()) 5846 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5847 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5848 AddrDefs.insert(InstOp).second) 5849 Worklist.push_back(InstOp); 5850 } 5851 5852 for (auto *I : AddrDefs) { 5853 if (isa<LoadInst>(I)) { 5854 // Setting the desired widening decision should ideally be handled in 5855 // by cost functions, but since this involves the task of finding out 5856 // if the loaded register is involved in an address computation, it is 5857 // instead changed here when we know this is the case. 5858 InstWidening Decision = getWideningDecision(I, VF); 5859 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5860 // Scalarize a widened load of address. 5861 setWideningDecision(I, VF, CM_Scalarize, 5862 (VF * getMemoryInstructionCost(I, 1))); 5863 else if (auto Group = getInterleavedAccessGroup(I)) { 5864 // Scalarize an interleave group of address loads. 5865 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5866 if (Instruction *Member = Group->getMember(I)) 5867 setWideningDecision(Member, VF, CM_Scalarize, 5868 (VF * getMemoryInstructionCost(Member, 1))); 5869 } 5870 } 5871 } else 5872 // Make sure I gets scalarized and a cost estimate without 5873 // scalarization overhead. 5874 ForcedScalars[VF].insert(I); 5875 } 5876 } 5877 5878 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5879 unsigned VF, 5880 Type *&VectorTy) { 5881 Type *RetTy = I->getType(); 5882 if (canTruncateToMinimalBitwidth(I, VF)) 5883 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5884 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5885 auto SE = PSE.getSE(); 5886 5887 // TODO: We need to estimate the cost of intrinsic calls. 5888 switch (I->getOpcode()) { 5889 case Instruction::GetElementPtr: 5890 // We mark this instruction as zero-cost because the cost of GEPs in 5891 // vectorized code depends on whether the corresponding memory instruction 5892 // is scalarized or not. Therefore, we handle GEPs with the memory 5893 // instruction cost. 5894 return 0; 5895 case Instruction::Br: { 5896 // In cases of scalarized and predicated instructions, there will be VF 5897 // predicated blocks in the vectorized loop. Each branch around these 5898 // blocks requires also an extract of its vector compare i1 element. 5899 bool ScalarPredicatedBB = false; 5900 BranchInst *BI = cast<BranchInst>(I); 5901 if (VF > 1 && BI->isConditional() && 5902 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5903 PredicatedBBsAfterVectorization.end() || 5904 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5905 PredicatedBBsAfterVectorization.end())) 5906 ScalarPredicatedBB = true; 5907 5908 if (ScalarPredicatedBB) { 5909 // Return cost for branches around scalarized and predicated blocks. 5910 Type *Vec_i1Ty = 5911 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5912 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5913 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5914 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5915 // The back-edge branch will remain, as will all scalar branches. 5916 return TTI.getCFInstrCost(Instruction::Br); 5917 else 5918 // This branch will be eliminated by if-conversion. 5919 return 0; 5920 // Note: We currently assume zero cost for an unconditional branch inside 5921 // a predicated block since it will become a fall-through, although we 5922 // may decide in the future to call TTI for all branches. 5923 } 5924 case Instruction::PHI: { 5925 auto *Phi = cast<PHINode>(I); 5926 5927 // First-order recurrences are replaced by vector shuffles inside the loop. 5928 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 5929 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5930 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5931 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 5932 5933 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5934 // converted into select instructions. We require N - 1 selects per phi 5935 // node, where N is the number of incoming values. 5936 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5937 return (Phi->getNumIncomingValues() - 1) * 5938 TTI.getCmpSelInstrCost( 5939 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5940 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5941 5942 return TTI.getCFInstrCost(Instruction::PHI); 5943 } 5944 case Instruction::UDiv: 5945 case Instruction::SDiv: 5946 case Instruction::URem: 5947 case Instruction::SRem: 5948 // If we have a predicated instruction, it may not be executed for each 5949 // vector lane. Get the scalarization cost and scale this amount by the 5950 // probability of executing the predicated block. If the instruction is not 5951 // predicated, we fall through to the next case. 5952 if (VF > 1 && isScalarWithPredication(I)) { 5953 unsigned Cost = 0; 5954 5955 // These instructions have a non-void type, so account for the phi nodes 5956 // that we will create. This cost is likely to be zero. The phi node 5957 // cost, if any, should be scaled by the block probability because it 5958 // models a copy at the end of each predicated block. 5959 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5960 5961 // The cost of the non-predicated instruction. 5962 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5963 5964 // The cost of insertelement and extractelement instructions needed for 5965 // scalarization. 5966 Cost += getScalarizationOverhead(I, VF); 5967 5968 // Scale the cost by the probability of executing the predicated blocks. 5969 // This assumes the predicated block for each vector lane is equally 5970 // likely. 5971 return Cost / getReciprocalPredBlockProb(); 5972 } 5973 LLVM_FALLTHROUGH; 5974 case Instruction::Add: 5975 case Instruction::FAdd: 5976 case Instruction::Sub: 5977 case Instruction::FSub: 5978 case Instruction::Mul: 5979 case Instruction::FMul: 5980 case Instruction::FDiv: 5981 case Instruction::FRem: 5982 case Instruction::Shl: 5983 case Instruction::LShr: 5984 case Instruction::AShr: 5985 case Instruction::And: 5986 case Instruction::Or: 5987 case Instruction::Xor: { 5988 // Since we will replace the stride by 1 the multiplication should go away. 5989 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5990 return 0; 5991 // Certain instructions can be cheaper to vectorize if they have a constant 5992 // second vector operand. One example of this are shifts on x86. 5993 Value *Op2 = I->getOperand(1); 5994 TargetTransformInfo::OperandValueProperties Op2VP; 5995 TargetTransformInfo::OperandValueKind Op2VK = 5996 TTI.getOperandInfo(Op2, Op2VP); 5997 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 5998 Op2VK = TargetTransformInfo::OK_UniformValue; 5999 6000 SmallVector<const Value *, 4> Operands(I->operand_values()); 6001 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6002 return N * TTI.getArithmeticInstrCost( 6003 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6004 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 6005 } 6006 case Instruction::FNeg: { 6007 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6008 return N * TTI.getArithmeticInstrCost( 6009 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6010 TargetTransformInfo::OK_AnyValue, 6011 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6012 I->getOperand(0)); 6013 } 6014 case Instruction::Select: { 6015 SelectInst *SI = cast<SelectInst>(I); 6016 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6017 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6018 Type *CondTy = SI->getCondition()->getType(); 6019 if (!ScalarCond) 6020 CondTy = VectorType::get(CondTy, VF); 6021 6022 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6023 } 6024 case Instruction::ICmp: 6025 case Instruction::FCmp: { 6026 Type *ValTy = I->getOperand(0)->getType(); 6027 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6028 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6029 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6030 VectorTy = ToVectorTy(ValTy, VF); 6031 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6032 } 6033 case Instruction::Store: 6034 case Instruction::Load: { 6035 unsigned Width = VF; 6036 if (Width > 1) { 6037 InstWidening Decision = getWideningDecision(I, Width); 6038 assert(Decision != CM_Unknown && 6039 "CM decision should be taken at this point"); 6040 if (Decision == CM_Scalarize) 6041 Width = 1; 6042 } 6043 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6044 return getMemoryInstructionCost(I, VF); 6045 } 6046 case Instruction::ZExt: 6047 case Instruction::SExt: 6048 case Instruction::FPToUI: 6049 case Instruction::FPToSI: 6050 case Instruction::FPExt: 6051 case Instruction::PtrToInt: 6052 case Instruction::IntToPtr: 6053 case Instruction::SIToFP: 6054 case Instruction::UIToFP: 6055 case Instruction::Trunc: 6056 case Instruction::FPTrunc: 6057 case Instruction::BitCast: { 6058 // We optimize the truncation of induction variables having constant 6059 // integer steps. The cost of these truncations is the same as the scalar 6060 // operation. 6061 if (isOptimizableIVTruncate(I, VF)) { 6062 auto *Trunc = cast<TruncInst>(I); 6063 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6064 Trunc->getSrcTy(), Trunc); 6065 } 6066 6067 Type *SrcScalarTy = I->getOperand(0)->getType(); 6068 Type *SrcVecTy = 6069 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6070 if (canTruncateToMinimalBitwidth(I, VF)) { 6071 // This cast is going to be shrunk. This may remove the cast or it might 6072 // turn it into slightly different cast. For example, if MinBW == 16, 6073 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6074 // 6075 // Calculate the modified src and dest types. 6076 Type *MinVecTy = VectorTy; 6077 if (I->getOpcode() == Instruction::Trunc) { 6078 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6079 VectorTy = 6080 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6081 } else if (I->getOpcode() == Instruction::ZExt || 6082 I->getOpcode() == Instruction::SExt) { 6083 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6084 VectorTy = 6085 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6086 } 6087 } 6088 6089 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6090 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6091 } 6092 case Instruction::Call: { 6093 bool NeedToScalarize; 6094 CallInst *CI = cast<CallInst>(I); 6095 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6096 if (getVectorIntrinsicIDForCall(CI, TLI)) 6097 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6098 return CallCost; 6099 } 6100 default: 6101 // The cost of executing VF copies of the scalar instruction. This opcode 6102 // is unknown. Assume that it is the same as 'mul'. 6103 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6104 getScalarizationOverhead(I, VF); 6105 } // end of switch. 6106 } 6107 6108 char LoopVectorize::ID = 0; 6109 6110 static const char lv_name[] = "Loop Vectorization"; 6111 6112 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6113 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6114 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6115 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6116 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6117 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6118 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6119 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6120 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6121 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6122 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6123 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6124 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6125 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6126 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6127 6128 namespace llvm { 6129 6130 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6131 6132 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6133 bool VectorizeOnlyWhenForced) { 6134 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6135 } 6136 6137 } // end namespace llvm 6138 6139 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6140 // Check if the pointer operand of a load or store instruction is 6141 // consecutive. 6142 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6143 return Legal->isConsecutivePtr(Ptr); 6144 return false; 6145 } 6146 6147 void LoopVectorizationCostModel::collectValuesToIgnore() { 6148 // Ignore ephemeral values. 6149 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6150 6151 // Ignore type-promoting instructions we identified during reduction 6152 // detection. 6153 for (auto &Reduction : *Legal->getReductionVars()) { 6154 RecurrenceDescriptor &RedDes = Reduction.second; 6155 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6156 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6157 } 6158 // Ignore type-casting instructions we identified during induction 6159 // detection. 6160 for (auto &Induction : *Legal->getInductionVars()) { 6161 InductionDescriptor &IndDes = Induction.second; 6162 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6163 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6164 } 6165 } 6166 6167 // TODO: we could return a pair of values that specify the max VF and 6168 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6169 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6170 // doesn't have a cost model that can choose which plan to execute if 6171 // more than one is generated. 6172 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6173 LoopVectorizationCostModel &CM) { 6174 unsigned WidestType; 6175 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6176 return WidestVectorRegBits / WidestType; 6177 } 6178 6179 VectorizationFactor 6180 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6181 unsigned VF = UserVF; 6182 // Outer loop handling: They may require CFG and instruction level 6183 // transformations before even evaluating whether vectorization is profitable. 6184 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6185 // the vectorization pipeline. 6186 if (!OrigLoop->empty()) { 6187 // If the user doesn't provide a vectorization factor, determine a 6188 // reasonable one. 6189 if (!UserVF) { 6190 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6191 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6192 6193 // Make sure we have a VF > 1 for stress testing. 6194 if (VPlanBuildStressTest && VF < 2) { 6195 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6196 << "overriding computed VF.\n"); 6197 VF = 4; 6198 } 6199 } 6200 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6201 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6202 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6203 << " to build VPlans.\n"); 6204 buildVPlans(VF, VF); 6205 6206 // For VPlan build stress testing, we bail out after VPlan construction. 6207 if (VPlanBuildStressTest) 6208 return VectorizationFactor::Disabled(); 6209 6210 return {VF, 0}; 6211 } 6212 6213 LLVM_DEBUG( 6214 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6215 "VPlan-native path.\n"); 6216 return VectorizationFactor::Disabled(); 6217 } 6218 6219 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) { 6220 assert(OrigLoop->empty() && "Inner loop expected."); 6221 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(); 6222 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6223 return None; 6224 6225 // Invalidate interleave groups if all blocks of loop will be predicated. 6226 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6227 !useMaskedInterleavedAccesses(*TTI)) { 6228 LLVM_DEBUG( 6229 dbgs() 6230 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6231 "which requires masked-interleaved support.\n"); 6232 CM.InterleaveInfo.reset(); 6233 } 6234 6235 if (UserVF) { 6236 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6237 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6238 // Collect the instructions (and their associated costs) that will be more 6239 // profitable to scalarize. 6240 CM.selectUserVectorizationFactor(UserVF); 6241 buildVPlansWithVPRecipes(UserVF, UserVF); 6242 LLVM_DEBUG(printPlans(dbgs())); 6243 return {{UserVF, 0}}; 6244 } 6245 6246 unsigned MaxVF = MaybeMaxVF.getValue(); 6247 assert(MaxVF != 0 && "MaxVF is zero."); 6248 6249 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6250 // Collect Uniform and Scalar instructions after vectorization with VF. 6251 CM.collectUniformsAndScalars(VF); 6252 6253 // Collect the instructions (and their associated costs) that will be more 6254 // profitable to scalarize. 6255 if (VF > 1) 6256 CM.collectInstsToScalarize(VF); 6257 } 6258 6259 buildVPlansWithVPRecipes(1, MaxVF); 6260 LLVM_DEBUG(printPlans(dbgs())); 6261 if (MaxVF == 1) 6262 return VectorizationFactor::Disabled(); 6263 6264 // Select the optimal vectorization factor. 6265 return CM.selectVectorizationFactor(MaxVF); 6266 } 6267 6268 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6269 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6270 << '\n'); 6271 BestVF = VF; 6272 BestUF = UF; 6273 6274 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6275 return !Plan->hasVF(VF); 6276 }); 6277 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6278 } 6279 6280 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6281 DominatorTree *DT) { 6282 // Perform the actual loop transformation. 6283 6284 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6285 VPCallbackILV CallbackILV(ILV); 6286 6287 VPTransformState State{BestVF, BestUF, LI, 6288 DT, ILV.Builder, ILV.VectorLoopValueMap, 6289 &ILV, CallbackILV}; 6290 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6291 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6292 6293 //===------------------------------------------------===// 6294 // 6295 // Notice: any optimization or new instruction that go 6296 // into the code below should also be implemented in 6297 // the cost-model. 6298 // 6299 //===------------------------------------------------===// 6300 6301 // 2. Copy and widen instructions from the old loop into the new loop. 6302 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6303 VPlans.front()->execute(&State); 6304 6305 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6306 // predication, updating analyses. 6307 ILV.fixVectorizedLoop(); 6308 } 6309 6310 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6311 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6312 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6313 6314 // We create new control-flow for the vectorized loop, so the original 6315 // condition will be dead after vectorization if it's only used by the 6316 // branch. 6317 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6318 if (Cmp && Cmp->hasOneUse()) 6319 DeadInstructions.insert(Cmp); 6320 6321 // We create new "steps" for induction variable updates to which the original 6322 // induction variables map. An original update instruction will be dead if 6323 // all its users except the induction variable are dead. 6324 for (auto &Induction : *Legal->getInductionVars()) { 6325 PHINode *Ind = Induction.first; 6326 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6327 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6328 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6329 DeadInstructions.end(); 6330 })) 6331 DeadInstructions.insert(IndUpdate); 6332 6333 // We record as "Dead" also the type-casting instructions we had identified 6334 // during induction analysis. We don't need any handling for them in the 6335 // vectorized loop because we have proven that, under a proper runtime 6336 // test guarding the vectorized loop, the value of the phi, and the casted 6337 // value of the phi, are the same. The last instruction in this casting chain 6338 // will get its scalar/vector/widened def from the scalar/vector/widened def 6339 // of the respective phi node. Any other casts in the induction def-use chain 6340 // have no other uses outside the phi update chain, and will be ignored. 6341 InductionDescriptor &IndDes = Induction.second; 6342 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6343 DeadInstructions.insert(Casts.begin(), Casts.end()); 6344 } 6345 } 6346 6347 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6348 6349 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6350 6351 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6352 Instruction::BinaryOps BinOp) { 6353 // When unrolling and the VF is 1, we only need to add a simple scalar. 6354 Type *Ty = Val->getType(); 6355 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6356 6357 if (Ty->isFloatingPointTy()) { 6358 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6359 6360 // Floating point operations had to be 'fast' to enable the unrolling. 6361 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6362 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6363 } 6364 Constant *C = ConstantInt::get(Ty, StartIdx); 6365 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6366 } 6367 6368 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6369 SmallVector<Metadata *, 4> MDs; 6370 // Reserve first location for self reference to the LoopID metadata node. 6371 MDs.push_back(nullptr); 6372 bool IsUnrollMetadata = false; 6373 MDNode *LoopID = L->getLoopID(); 6374 if (LoopID) { 6375 // First find existing loop unrolling disable metadata. 6376 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6377 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6378 if (MD) { 6379 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6380 IsUnrollMetadata = 6381 S && S->getString().startswith("llvm.loop.unroll.disable"); 6382 } 6383 MDs.push_back(LoopID->getOperand(i)); 6384 } 6385 } 6386 6387 if (!IsUnrollMetadata) { 6388 // Add runtime unroll disable metadata. 6389 LLVMContext &Context = L->getHeader()->getContext(); 6390 SmallVector<Metadata *, 1> DisableOperands; 6391 DisableOperands.push_back( 6392 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6393 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6394 MDs.push_back(DisableNode); 6395 MDNode *NewLoopID = MDNode::get(Context, MDs); 6396 // Set operand 0 to refer to the loop id itself. 6397 NewLoopID->replaceOperandWith(0, NewLoopID); 6398 L->setLoopID(NewLoopID); 6399 } 6400 } 6401 6402 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6403 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6404 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6405 bool PredicateAtRangeStart = Predicate(Range.Start); 6406 6407 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6408 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6409 Range.End = TmpVF; 6410 break; 6411 } 6412 6413 return PredicateAtRangeStart; 6414 } 6415 6416 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6417 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6418 /// of VF's starting at a given VF and extending it as much as possible. Each 6419 /// vectorization decision can potentially shorten this sub-range during 6420 /// buildVPlan(). 6421 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6422 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6423 VFRange SubRange = {VF, MaxVF + 1}; 6424 VPlans.push_back(buildVPlan(SubRange)); 6425 VF = SubRange.End; 6426 } 6427 } 6428 6429 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6430 VPlanPtr &Plan) { 6431 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6432 6433 // Look for cached value. 6434 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6435 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6436 if (ECEntryIt != EdgeMaskCache.end()) 6437 return ECEntryIt->second; 6438 6439 VPValue *SrcMask = createBlockInMask(Src, Plan); 6440 6441 // The terminator has to be a branch inst! 6442 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6443 assert(BI && "Unexpected terminator found"); 6444 6445 if (!BI->isConditional()) 6446 return EdgeMaskCache[Edge] = SrcMask; 6447 6448 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6449 assert(EdgeMask && "No Edge Mask found for condition"); 6450 6451 if (BI->getSuccessor(0) != Dst) 6452 EdgeMask = Builder.createNot(EdgeMask); 6453 6454 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6455 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6456 6457 return EdgeMaskCache[Edge] = EdgeMask; 6458 } 6459 6460 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6461 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6462 6463 // Look for cached value. 6464 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6465 if (BCEntryIt != BlockMaskCache.end()) 6466 return BCEntryIt->second; 6467 6468 // All-one mask is modelled as no-mask following the convention for masked 6469 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6470 VPValue *BlockMask = nullptr; 6471 6472 if (OrigLoop->getHeader() == BB) { 6473 if (!CM.blockNeedsPredication(BB)) 6474 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6475 6476 // Introduce the early-exit compare IV <= BTC to form header block mask. 6477 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6478 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6479 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6480 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6481 return BlockMaskCache[BB] = BlockMask; 6482 } 6483 6484 // This is the block mask. We OR all incoming edges. 6485 for (auto *Predecessor : predecessors(BB)) { 6486 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6487 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6488 return BlockMaskCache[BB] = EdgeMask; 6489 6490 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6491 BlockMask = EdgeMask; 6492 continue; 6493 } 6494 6495 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6496 } 6497 6498 return BlockMaskCache[BB] = BlockMask; 6499 } 6500 6501 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6502 VFRange &Range, 6503 VPlanPtr &Plan) { 6504 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6505 if (!IG) 6506 return nullptr; 6507 6508 // Now check if IG is relevant for VF's in the given range. 6509 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6510 return [=](unsigned VF) -> bool { 6511 return (VF >= 2 && // Query is illegal for VF == 1 6512 CM.getWideningDecision(I, VF) == 6513 LoopVectorizationCostModel::CM_Interleave); 6514 }; 6515 }; 6516 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6517 return nullptr; 6518 6519 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6520 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6521 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6522 assert(I == IG->getInsertPos() && 6523 "Generating a recipe for an adjunct member of an interleave group"); 6524 6525 VPValue *Mask = nullptr; 6526 if (Legal->isMaskRequired(I)) 6527 Mask = createBlockInMask(I->getParent(), Plan); 6528 6529 return new VPInterleaveRecipe(IG, Mask); 6530 } 6531 6532 VPWidenMemoryInstructionRecipe * 6533 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6534 VPlanPtr &Plan) { 6535 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6536 return nullptr; 6537 6538 auto willWiden = [&](unsigned VF) -> bool { 6539 if (VF == 1) 6540 return false; 6541 if (CM.isScalarAfterVectorization(I, VF) || 6542 CM.isProfitableToScalarize(I, VF)) 6543 return false; 6544 LoopVectorizationCostModel::InstWidening Decision = 6545 CM.getWideningDecision(I, VF); 6546 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6547 "CM decision should be taken at this point."); 6548 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6549 "Interleave memory opportunity should be caught earlier."); 6550 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6551 }; 6552 6553 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6554 return nullptr; 6555 6556 VPValue *Mask = nullptr; 6557 if (Legal->isMaskRequired(I)) 6558 Mask = createBlockInMask(I->getParent(), Plan); 6559 6560 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6561 } 6562 6563 VPWidenIntOrFpInductionRecipe * 6564 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6565 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6566 // Check if this is an integer or fp induction. If so, build the recipe that 6567 // produces its scalar and vector values. 6568 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6569 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6570 II.getKind() == InductionDescriptor::IK_FpInduction) 6571 return new VPWidenIntOrFpInductionRecipe(Phi); 6572 6573 return nullptr; 6574 } 6575 6576 // Optimize the special case where the source is a constant integer 6577 // induction variable. Notice that we can only optimize the 'trunc' case 6578 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6579 // (c) other casts depend on pointer size. 6580 6581 // Determine whether \p K is a truncation based on an induction variable that 6582 // can be optimized. 6583 auto isOptimizableIVTruncate = 6584 [&](Instruction *K) -> std::function<bool(unsigned)> { 6585 return 6586 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6587 }; 6588 6589 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6590 isOptimizableIVTruncate(I), Range)) 6591 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6592 cast<TruncInst>(I)); 6593 return nullptr; 6594 } 6595 6596 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6597 PHINode *Phi = dyn_cast<PHINode>(I); 6598 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6599 return nullptr; 6600 6601 // We know that all PHIs in non-header blocks are converted into selects, so 6602 // we don't have to worry about the insertion order and we can just use the 6603 // builder. At this point we generate the predication tree. There may be 6604 // duplications since this is a simple recursive scan, but future 6605 // optimizations will clean it up. 6606 6607 SmallVector<VPValue *, 2> Masks; 6608 unsigned NumIncoming = Phi->getNumIncomingValues(); 6609 for (unsigned In = 0; In < NumIncoming; In++) { 6610 VPValue *EdgeMask = 6611 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6612 assert((EdgeMask || NumIncoming == 1) && 6613 "Multiple predecessors with one having a full mask"); 6614 if (EdgeMask) 6615 Masks.push_back(EdgeMask); 6616 } 6617 return new VPBlendRecipe(Phi, Masks); 6618 } 6619 6620 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6621 VFRange &Range) { 6622 6623 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6624 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6625 6626 if (IsPredicated) 6627 return false; 6628 6629 auto IsVectorizableOpcode = [](unsigned Opcode) { 6630 switch (Opcode) { 6631 case Instruction::Add: 6632 case Instruction::And: 6633 case Instruction::AShr: 6634 case Instruction::BitCast: 6635 case Instruction::Br: 6636 case Instruction::Call: 6637 case Instruction::FAdd: 6638 case Instruction::FCmp: 6639 case Instruction::FDiv: 6640 case Instruction::FMul: 6641 case Instruction::FNeg: 6642 case Instruction::FPExt: 6643 case Instruction::FPToSI: 6644 case Instruction::FPToUI: 6645 case Instruction::FPTrunc: 6646 case Instruction::FRem: 6647 case Instruction::FSub: 6648 case Instruction::GetElementPtr: 6649 case Instruction::ICmp: 6650 case Instruction::IntToPtr: 6651 case Instruction::Load: 6652 case Instruction::LShr: 6653 case Instruction::Mul: 6654 case Instruction::Or: 6655 case Instruction::PHI: 6656 case Instruction::PtrToInt: 6657 case Instruction::SDiv: 6658 case Instruction::Select: 6659 case Instruction::SExt: 6660 case Instruction::Shl: 6661 case Instruction::SIToFP: 6662 case Instruction::SRem: 6663 case Instruction::Store: 6664 case Instruction::Sub: 6665 case Instruction::Trunc: 6666 case Instruction::UDiv: 6667 case Instruction::UIToFP: 6668 case Instruction::URem: 6669 case Instruction::Xor: 6670 case Instruction::ZExt: 6671 return true; 6672 } 6673 return false; 6674 }; 6675 6676 if (!IsVectorizableOpcode(I->getOpcode())) 6677 return false; 6678 6679 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6680 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6681 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6682 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6683 return false; 6684 } 6685 6686 auto willWiden = [&](unsigned VF) -> bool { 6687 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6688 CM.isProfitableToScalarize(I, VF))) 6689 return false; 6690 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6691 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6692 // The following case may be scalarized depending on the VF. 6693 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6694 // version of the instruction. 6695 // Is it beneficial to perform intrinsic call compared to lib call? 6696 bool NeedToScalarize; 6697 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6698 bool UseVectorIntrinsic = 6699 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6700 return UseVectorIntrinsic || !NeedToScalarize; 6701 } 6702 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6703 assert(CM.getWideningDecision(I, VF) == 6704 LoopVectorizationCostModel::CM_Scalarize && 6705 "Memory widening decisions should have been taken care by now"); 6706 return false; 6707 } 6708 return true; 6709 }; 6710 6711 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6712 return false; 6713 6714 // Success: widen this instruction. We optimize the common case where 6715 // consecutive instructions can be represented by a single recipe. 6716 if (!VPBB->empty()) { 6717 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6718 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6719 return true; 6720 } 6721 6722 VPBB->appendRecipe(new VPWidenRecipe(I)); 6723 return true; 6724 } 6725 6726 VPBasicBlock *VPRecipeBuilder::handleReplication( 6727 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6728 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6729 VPlanPtr &Plan) { 6730 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6731 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6732 Range); 6733 6734 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6735 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6736 6737 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6738 6739 // Find if I uses a predicated instruction. If so, it will use its scalar 6740 // value. Avoid hoisting the insert-element which packs the scalar value into 6741 // a vector value, as that happens iff all users use the vector value. 6742 for (auto &Op : I->operands()) 6743 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6744 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6745 PredInst2Recipe[PredInst]->setAlsoPack(false); 6746 6747 // Finalize the recipe for Instr, first if it is not predicated. 6748 if (!IsPredicated) { 6749 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6750 VPBB->appendRecipe(Recipe); 6751 return VPBB; 6752 } 6753 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6754 assert(VPBB->getSuccessors().empty() && 6755 "VPBB has successors when handling predicated replication."); 6756 // Record predicated instructions for above packing optimizations. 6757 PredInst2Recipe[I] = Recipe; 6758 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6759 VPBlockUtils::insertBlockAfter(Region, VPBB); 6760 auto *RegSucc = new VPBasicBlock(); 6761 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6762 return RegSucc; 6763 } 6764 6765 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6766 VPRecipeBase *PredRecipe, 6767 VPlanPtr &Plan) { 6768 // Instructions marked for predication are replicated and placed under an 6769 // if-then construct to prevent side-effects. 6770 6771 // Generate recipes to compute the block mask for this region. 6772 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6773 6774 // Build the triangular if-then region. 6775 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6776 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6777 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6778 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6779 auto *PHIRecipe = 6780 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6781 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6782 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6783 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6784 6785 // Note: first set Entry as region entry and then connect successors starting 6786 // from it in order, to propagate the "parent" of each VPBasicBlock. 6787 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6788 VPBlockUtils::connectBlocks(Pred, Exit); 6789 6790 return Region; 6791 } 6792 6793 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6794 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6795 VPRecipeBase *Recipe = nullptr; 6796 // Check if Instr should belong to an interleave memory recipe, or already 6797 // does. In the latter case Instr is irrelevant. 6798 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6799 VPBB->appendRecipe(Recipe); 6800 return true; 6801 } 6802 6803 // Check if Instr is a memory operation that should be widened. 6804 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6805 VPBB->appendRecipe(Recipe); 6806 return true; 6807 } 6808 6809 // Check if Instr should form some PHI recipe. 6810 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6811 VPBB->appendRecipe(Recipe); 6812 return true; 6813 } 6814 if ((Recipe = tryToBlend(Instr, Plan))) { 6815 VPBB->appendRecipe(Recipe); 6816 return true; 6817 } 6818 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6819 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6820 return true; 6821 } 6822 6823 // Check if Instr is to be widened by a general VPWidenRecipe, after 6824 // having first checked for specific widening recipes that deal with 6825 // Interleave Groups, Inductions and Phi nodes. 6826 if (tryToWiden(Instr, VPBB, Range)) 6827 return true; 6828 6829 return false; 6830 } 6831 6832 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6833 unsigned MaxVF) { 6834 assert(OrigLoop->empty() && "Inner loop expected."); 6835 6836 // Collect conditions feeding internal conditional branches; they need to be 6837 // represented in VPlan for it to model masking. 6838 SmallPtrSet<Value *, 1> NeedDef; 6839 6840 auto *Latch = OrigLoop->getLoopLatch(); 6841 for (BasicBlock *BB : OrigLoop->blocks()) { 6842 if (BB == Latch) 6843 continue; 6844 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6845 if (Branch && Branch->isConditional()) 6846 NeedDef.insert(Branch->getCondition()); 6847 } 6848 6849 // If the tail is to be folded by masking, the primary induction variable 6850 // needs to be represented in VPlan for it to model early-exit masking. 6851 if (CM.foldTailByMasking()) 6852 NeedDef.insert(Legal->getPrimaryInduction()); 6853 6854 // Collect instructions from the original loop that will become trivially dead 6855 // in the vectorized loop. We don't need to vectorize these instructions. For 6856 // example, original induction update instructions can become dead because we 6857 // separately emit induction "steps" when generating code for the new loop. 6858 // Similarly, we create a new latch condition when setting up the structure 6859 // of the new loop, so the old one can become dead. 6860 SmallPtrSet<Instruction *, 4> DeadInstructions; 6861 collectTriviallyDeadInstructions(DeadInstructions); 6862 6863 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6864 VFRange SubRange = {VF, MaxVF + 1}; 6865 VPlans.push_back( 6866 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6867 VF = SubRange.End; 6868 } 6869 } 6870 6871 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6872 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6873 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6874 // Hold a mapping from predicated instructions to their recipes, in order to 6875 // fix their AlsoPack behavior if a user is determined to replicate and use a 6876 // scalar instead of vector value. 6877 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6878 6879 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6880 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6881 6882 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6883 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6884 auto Plan = llvm::make_unique<VPlan>(VPBB); 6885 6886 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder); 6887 // Represent values that will have defs inside VPlan. 6888 for (Value *V : NeedDef) 6889 Plan->addVPValue(V); 6890 6891 // Scan the body of the loop in a topological order to visit each basic block 6892 // after having visited its predecessor basic blocks. 6893 LoopBlocksDFS DFS(OrigLoop); 6894 DFS.perform(LI); 6895 6896 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6897 // Relevant instructions from basic block BB will be grouped into VPRecipe 6898 // ingredients and fill a new VPBasicBlock. 6899 unsigned VPBBsForBB = 0; 6900 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6901 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6902 VPBB = FirstVPBBForBB; 6903 Builder.setInsertPoint(VPBB); 6904 6905 std::vector<Instruction *> Ingredients; 6906 6907 // Organize the ingredients to vectorize from current basic block in the 6908 // right order. 6909 for (Instruction &I : BB->instructionsWithoutDebug()) { 6910 Instruction *Instr = &I; 6911 6912 // First filter out irrelevant instructions, to ensure no recipes are 6913 // built for them. 6914 if (isa<BranchInst>(Instr) || 6915 DeadInstructions.find(Instr) != DeadInstructions.end()) 6916 continue; 6917 6918 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6919 // member of the IG, do not construct any Recipe for it. 6920 const InterleaveGroup<Instruction> *IG = 6921 CM.getInterleavedAccessGroup(Instr); 6922 if (IG && Instr != IG->getInsertPos() && 6923 Range.Start >= 2 && // Query is illegal for VF == 1 6924 CM.getWideningDecision(Instr, Range.Start) == 6925 LoopVectorizationCostModel::CM_Interleave) { 6926 auto SinkCandidate = SinkAfterInverse.find(Instr); 6927 if (SinkCandidate != SinkAfterInverse.end()) 6928 Ingredients.push_back(SinkCandidate->second); 6929 continue; 6930 } 6931 6932 // Move instructions to handle first-order recurrences, step 1: avoid 6933 // handling this instruction until after we've handled the instruction it 6934 // should follow. 6935 auto SAIt = SinkAfter.find(Instr); 6936 if (SAIt != SinkAfter.end()) { 6937 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6938 << *SAIt->second 6939 << " to vectorize a 1st order recurrence.\n"); 6940 SinkAfterInverse[SAIt->second] = Instr; 6941 continue; 6942 } 6943 6944 Ingredients.push_back(Instr); 6945 6946 // Move instructions to handle first-order recurrences, step 2: push the 6947 // instruction to be sunk at its insertion point. 6948 auto SAInvIt = SinkAfterInverse.find(Instr); 6949 if (SAInvIt != SinkAfterInverse.end()) 6950 Ingredients.push_back(SAInvIt->second); 6951 } 6952 6953 // Introduce each ingredient into VPlan. 6954 for (Instruction *Instr : Ingredients) { 6955 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6956 continue; 6957 6958 // Otherwise, if all widening options failed, Instruction is to be 6959 // replicated. This may create a successor for VPBB. 6960 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6961 Instr, Range, VPBB, PredInst2Recipe, Plan); 6962 if (NextVPBB != VPBB) { 6963 VPBB = NextVPBB; 6964 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6965 : ""); 6966 } 6967 } 6968 } 6969 6970 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6971 // may also be empty, such as the last one VPBB, reflecting original 6972 // basic-blocks with no recipes. 6973 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6974 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6975 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6976 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6977 delete PreEntry; 6978 6979 std::string PlanName; 6980 raw_string_ostream RSO(PlanName); 6981 unsigned VF = Range.Start; 6982 Plan->addVF(VF); 6983 RSO << "Initial VPlan for VF={" << VF; 6984 for (VF *= 2; VF < Range.End; VF *= 2) { 6985 Plan->addVF(VF); 6986 RSO << "," << VF; 6987 } 6988 RSO << "},UF>=1"; 6989 RSO.flush(); 6990 Plan->setName(PlanName); 6991 6992 return Plan; 6993 } 6994 6995 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6996 // Outer loop handling: They may require CFG and instruction level 6997 // transformations before even evaluating whether vectorization is profitable. 6998 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6999 // the vectorization pipeline. 7000 assert(!OrigLoop->empty()); 7001 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7002 7003 // Create new empty VPlan 7004 auto Plan = llvm::make_unique<VPlan>(); 7005 7006 // Build hierarchical CFG 7007 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7008 HCFGBuilder.buildHierarchicalCFG(); 7009 7010 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7011 Plan->addVF(VF); 7012 7013 if (EnableVPlanPredication) { 7014 VPlanPredicator VPP(*Plan); 7015 VPP.predicate(); 7016 7017 // Avoid running transformation to recipes until masked code generation in 7018 // VPlan-native path is in place. 7019 return Plan; 7020 } 7021 7022 SmallPtrSet<Instruction *, 1> DeadInstructions; 7023 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 7024 Plan, Legal->getInductionVars(), DeadInstructions); 7025 7026 return Plan; 7027 } 7028 7029 Value* LoopVectorizationPlanner::VPCallbackILV:: 7030 getOrCreateVectorValues(Value *V, unsigned Part) { 7031 return ILV.getOrCreateVectorValue(V, Part); 7032 } 7033 7034 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7035 O << " +\n" 7036 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7037 IG->getInsertPos()->printAsOperand(O, false); 7038 if (User) { 7039 O << ", "; 7040 User->getOperand(0)->printAsOperand(O); 7041 } 7042 O << "\\l\""; 7043 for (unsigned i = 0; i < IG->getFactor(); ++i) 7044 if (Instruction *I = IG->getMember(i)) 7045 O << " +\n" 7046 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7047 } 7048 7049 void VPWidenRecipe::execute(VPTransformState &State) { 7050 for (auto &Instr : make_range(Begin, End)) 7051 State.ILV->widenInstruction(Instr); 7052 } 7053 7054 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7055 assert(!State.Instance && "Int or FP induction being replicated."); 7056 State.ILV->widenIntOrFpInduction(IV, Trunc); 7057 } 7058 7059 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7060 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7061 } 7062 7063 void VPBlendRecipe::execute(VPTransformState &State) { 7064 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7065 // We know that all PHIs in non-header blocks are converted into 7066 // selects, so we don't have to worry about the insertion order and we 7067 // can just use the builder. 7068 // At this point we generate the predication tree. There may be 7069 // duplications since this is a simple recursive scan, but future 7070 // optimizations will clean it up. 7071 7072 unsigned NumIncoming = Phi->getNumIncomingValues(); 7073 7074 assert((User || NumIncoming == 1) && 7075 "Multiple predecessors with predecessors having a full mask"); 7076 // Generate a sequence of selects of the form: 7077 // SELECT(Mask3, In3, 7078 // SELECT(Mask2, In2, 7079 // ( ...))) 7080 InnerLoopVectorizer::VectorParts Entry(State.UF); 7081 for (unsigned In = 0; In < NumIncoming; ++In) { 7082 for (unsigned Part = 0; Part < State.UF; ++Part) { 7083 // We might have single edge PHIs (blocks) - use an identity 7084 // 'select' for the first PHI operand. 7085 Value *In0 = 7086 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7087 if (In == 0) 7088 Entry[Part] = In0; // Initialize with the first incoming value. 7089 else { 7090 // Select between the current value and the previous incoming edge 7091 // based on the incoming mask. 7092 Value *Cond = State.get(User->getOperand(In), Part); 7093 Entry[Part] = 7094 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7095 } 7096 } 7097 } 7098 for (unsigned Part = 0; Part < State.UF; ++Part) 7099 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7100 } 7101 7102 void VPInterleaveRecipe::execute(VPTransformState &State) { 7103 assert(!State.Instance && "Interleave group being replicated."); 7104 if (!User) 7105 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7106 7107 // Last (and currently only) operand is a mask. 7108 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7109 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7110 for (unsigned Part = 0; Part < State.UF; ++Part) 7111 MaskValues[Part] = State.get(Mask, Part); 7112 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7113 } 7114 7115 void VPReplicateRecipe::execute(VPTransformState &State) { 7116 if (State.Instance) { // Generate a single instance. 7117 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7118 // Insert scalar instance packing it into a vector. 7119 if (AlsoPack && State.VF > 1) { 7120 // If we're constructing lane 0, initialize to start from undef. 7121 if (State.Instance->Lane == 0) { 7122 Value *Undef = 7123 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7124 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7125 } 7126 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7127 } 7128 return; 7129 } 7130 7131 // Generate scalar instances for all VF lanes of all UF parts, unless the 7132 // instruction is uniform inwhich case generate only the first lane for each 7133 // of the UF parts. 7134 unsigned EndLane = IsUniform ? 1 : State.VF; 7135 for (unsigned Part = 0; Part < State.UF; ++Part) 7136 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7137 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7138 } 7139 7140 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7141 assert(State.Instance && "Branch on Mask works only on single instance."); 7142 7143 unsigned Part = State.Instance->Part; 7144 unsigned Lane = State.Instance->Lane; 7145 7146 Value *ConditionBit = nullptr; 7147 if (!User) // Block in mask is all-one. 7148 ConditionBit = State.Builder.getTrue(); 7149 else { 7150 VPValue *BlockInMask = User->getOperand(0); 7151 ConditionBit = State.get(BlockInMask, Part); 7152 if (ConditionBit->getType()->isVectorTy()) 7153 ConditionBit = State.Builder.CreateExtractElement( 7154 ConditionBit, State.Builder.getInt32(Lane)); 7155 } 7156 7157 // Replace the temporary unreachable terminator with a new conditional branch, 7158 // whose two destinations will be set later when they are created. 7159 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7160 assert(isa<UnreachableInst>(CurrentTerminator) && 7161 "Expected to replace unreachable terminator with conditional branch."); 7162 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7163 CondBr->setSuccessor(0, nullptr); 7164 ReplaceInstWithInst(CurrentTerminator, CondBr); 7165 } 7166 7167 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7168 assert(State.Instance && "Predicated instruction PHI works per instance."); 7169 Instruction *ScalarPredInst = cast<Instruction>( 7170 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7171 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7172 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7173 assert(PredicatingBB && "Predicated block has no single predecessor."); 7174 7175 // By current pack/unpack logic we need to generate only a single phi node: if 7176 // a vector value for the predicated instruction exists at this point it means 7177 // the instruction has vector users only, and a phi for the vector value is 7178 // needed. In this case the recipe of the predicated instruction is marked to 7179 // also do that packing, thereby "hoisting" the insert-element sequence. 7180 // Otherwise, a phi node for the scalar value is needed. 7181 unsigned Part = State.Instance->Part; 7182 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7183 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7184 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7185 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7186 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7187 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7188 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7189 } else { 7190 Type *PredInstType = PredInst->getType(); 7191 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7192 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7193 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7194 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7195 } 7196 } 7197 7198 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7199 if (!User) 7200 return State.ILV->vectorizeMemoryInstruction(&Instr); 7201 7202 // Last (and currently only) operand is a mask. 7203 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7204 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7205 for (unsigned Part = 0; Part < State.UF; ++Part) 7206 MaskValues[Part] = State.get(Mask, Part); 7207 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7208 } 7209 7210 // Process the loop in the VPlan-native vectorization path. This path builds 7211 // VPlan upfront in the vectorization pipeline, which allows to apply 7212 // VPlan-to-VPlan transformations from the very beginning without modifying the 7213 // input LLVM IR. 7214 static bool processLoopInVPlanNativePath( 7215 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7216 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7217 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7218 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7219 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7220 7221 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7222 Function *F = L->getHeader()->getParent(); 7223 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7224 7225 ScalarEpilogueLowering SEL = CM_ScalarEpilogueAllowed; 7226 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7227 (F->hasOptSize() || 7228 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI))) 7229 SEL = CM_ScalarEpilogueNotAllowedOptSize; 7230 7231 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, 7232 DB, AC, ORE, F, &Hints, IAI); 7233 // Use the planner for outer loop vectorization. 7234 // TODO: CM is not used at this point inside the planner. Turn CM into an 7235 // optional argument if we don't need it in the future. 7236 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7237 7238 // Get user vectorization factor. 7239 const unsigned UserVF = Hints.getWidth(); 7240 7241 // Plan how to best vectorize, return the best VF and its cost. 7242 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7243 7244 // If we are stress testing VPlan builds, do not attempt to generate vector 7245 // code. Masked vector code generation support will follow soon. 7246 // Also, do not attempt to vectorize if no vector code will be produced. 7247 if (VPlanBuildStressTest || EnableVPlanPredication || 7248 VectorizationFactor::Disabled() == VF) 7249 return false; 7250 7251 LVP.setBestPlan(VF.Width, 1); 7252 7253 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7254 &CM); 7255 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7256 << L->getHeader()->getParent()->getName() << "\"\n"); 7257 LVP.executePlan(LB, DT); 7258 7259 // Mark the loop as already vectorized to avoid vectorizing again. 7260 Hints.setAlreadyVectorized(); 7261 7262 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7263 return true; 7264 } 7265 7266 bool LoopVectorizePass::processLoop(Loop *L) { 7267 assert((EnableVPlanNativePath || L->empty()) && 7268 "VPlan-native path is not enabled. Only process inner loops."); 7269 7270 #ifndef NDEBUG 7271 const std::string DebugLocStr = getDebugLocString(L); 7272 #endif /* NDEBUG */ 7273 7274 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7275 << L->getHeader()->getParent()->getName() << "\" from " 7276 << DebugLocStr << "\n"); 7277 7278 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7279 7280 LLVM_DEBUG( 7281 dbgs() << "LV: Loop hints:" 7282 << " force=" 7283 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7284 ? "disabled" 7285 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7286 ? "enabled" 7287 : "?")) 7288 << " width=" << Hints.getWidth() 7289 << " unroll=" << Hints.getInterleave() << "\n"); 7290 7291 // Function containing loop 7292 Function *F = L->getHeader()->getParent(); 7293 7294 // Looking at the diagnostic output is the only way to determine if a loop 7295 // was vectorized (other than looking at the IR or machine code), so it 7296 // is important to generate an optimization remark for each loop. Most of 7297 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7298 // generated as OptimizationRemark and OptimizationRemarkMissed are 7299 // less verbose reporting vectorized loops and unvectorized loops that may 7300 // benefit from vectorization, respectively. 7301 7302 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7303 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7304 return false; 7305 } 7306 7307 PredicatedScalarEvolution PSE(*SE, *L); 7308 7309 // Check if it is legal to vectorize the loop. 7310 LoopVectorizationRequirements Requirements(*ORE); 7311 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7312 &Requirements, &Hints, DB, AC); 7313 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7314 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7315 Hints.emitRemarkWithHints(); 7316 return false; 7317 } 7318 7319 // Check the function attributes and profiles to find out if this function 7320 // should be optimized for size. 7321 ScalarEpilogueLowering SEL = CM_ScalarEpilogueAllowed; 7322 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7323 (F->hasOptSize() || 7324 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI))) 7325 SEL = CM_ScalarEpilogueNotAllowedOptSize; 7326 7327 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7328 // here. They may require CFG and instruction level transformations before 7329 // even evaluating whether vectorization is profitable. Since we cannot modify 7330 // the incoming IR, we need to build VPlan upfront in the vectorization 7331 // pipeline. 7332 if (!L->empty()) 7333 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7334 ORE, BFI, PSI, Hints); 7335 7336 assert(L->empty() && "Inner loop expected."); 7337 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7338 // count by optimizing for size, to minimize overheads. 7339 // Prefer constant trip counts over profile data, over upper bound estimate. 7340 unsigned ExpectedTC = 0; 7341 bool HasExpectedTC = false; 7342 if (const SCEVConstant *ConstExits = 7343 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7344 const APInt &ExitsCount = ConstExits->getAPInt(); 7345 // We are interested in small values for ExpectedTC. Skip over those that 7346 // can't fit an unsigned. 7347 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7348 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7349 HasExpectedTC = true; 7350 } 7351 } 7352 // ExpectedTC may be large because it's bound by a variable. Check 7353 // profiling information to validate we should vectorize. 7354 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7355 auto EstimatedTC = getLoopEstimatedTripCount(L); 7356 if (EstimatedTC) { 7357 ExpectedTC = *EstimatedTC; 7358 HasExpectedTC = true; 7359 } 7360 } 7361 if (!HasExpectedTC) { 7362 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7363 HasExpectedTC = (ExpectedTC > 0); 7364 } 7365 7366 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7367 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7368 << "This loop is worth vectorizing only if no scalar " 7369 << "iteration overheads are incurred."); 7370 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7371 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7372 else { 7373 LLVM_DEBUG(dbgs() << "\n"); 7374 // Loops with a very small trip count are considered for vectorization 7375 // under OptForSize, thereby making sure the cost of their loop body is 7376 // dominant, free of runtime guards and scalar iteration overheads. 7377 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7378 } 7379 } 7380 7381 // Check the function attributes to see if implicit floats are allowed. 7382 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7383 // an integer loop and the vector instructions selected are purely integer 7384 // vector instructions? 7385 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7386 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7387 "attribute is used.\n"); 7388 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7389 "NoImplicitFloat", L) 7390 << "loop not vectorized due to NoImplicitFloat attribute"); 7391 Hints.emitRemarkWithHints(); 7392 return false; 7393 } 7394 7395 // Check if the target supports potentially unsafe FP vectorization. 7396 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7397 // for the target we're vectorizing for, to make sure none of the 7398 // additional fp-math flags can help. 7399 if (Hints.isPotentiallyUnsafe() && 7400 TTI->isFPVectorizationPotentiallyUnsafe()) { 7401 LLVM_DEBUG( 7402 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7403 ORE->emit( 7404 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7405 << "loop not vectorized due to unsafe FP support."); 7406 Hints.emitRemarkWithHints(); 7407 return false; 7408 } 7409 7410 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7411 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7412 7413 // If an override option has been passed in for interleaved accesses, use it. 7414 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7415 UseInterleaved = EnableInterleavedMemAccesses; 7416 7417 // Analyze interleaved memory accesses. 7418 if (UseInterleaved) { 7419 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7420 } 7421 7422 // Use the cost model. 7423 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, 7424 DB, AC, ORE, F, &Hints, IAI); 7425 CM.collectValuesToIgnore(); 7426 7427 // Use the planner for vectorization. 7428 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7429 7430 // Get user vectorization factor. 7431 unsigned UserVF = Hints.getWidth(); 7432 7433 // Plan how to best vectorize, return the best VF and its cost. 7434 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF); 7435 7436 VectorizationFactor VF = VectorizationFactor::Disabled(); 7437 unsigned IC = 1; 7438 unsigned UserIC = Hints.getInterleave(); 7439 7440 if (MaybeVF) { 7441 VF = *MaybeVF; 7442 // Select the interleave count. 7443 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7444 } 7445 7446 // Identify the diagnostic messages that should be produced. 7447 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7448 bool VectorizeLoop = true, InterleaveLoop = true; 7449 if (Requirements.doesNotMeet(F, L, Hints)) { 7450 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7451 "requirements.\n"); 7452 Hints.emitRemarkWithHints(); 7453 return false; 7454 } 7455 7456 if (VF.Width == 1) { 7457 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7458 VecDiagMsg = std::make_pair( 7459 "VectorizationNotBeneficial", 7460 "the cost-model indicates that vectorization is not beneficial"); 7461 VectorizeLoop = false; 7462 } 7463 7464 if (!MaybeVF && UserIC > 1) { 7465 // Tell the user interleaving was avoided up-front, despite being explicitly 7466 // requested. 7467 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7468 "interleaving should be avoided up front\n"); 7469 IntDiagMsg = std::make_pair( 7470 "InterleavingAvoided", 7471 "Ignoring UserIC, because interleaving was avoided up front"); 7472 InterleaveLoop = false; 7473 } else if (IC == 1 && UserIC <= 1) { 7474 // Tell the user interleaving is not beneficial. 7475 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7476 IntDiagMsg = std::make_pair( 7477 "InterleavingNotBeneficial", 7478 "the cost-model indicates that interleaving is not beneficial"); 7479 InterleaveLoop = false; 7480 if (UserIC == 1) { 7481 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7482 IntDiagMsg.second += 7483 " and is explicitly disabled or interleave count is set to 1"; 7484 } 7485 } else if (IC > 1 && UserIC == 1) { 7486 // Tell the user interleaving is beneficial, but it explicitly disabled. 7487 LLVM_DEBUG( 7488 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7489 IntDiagMsg = std::make_pair( 7490 "InterleavingBeneficialButDisabled", 7491 "the cost-model indicates that interleaving is beneficial " 7492 "but is explicitly disabled or interleave count is set to 1"); 7493 InterleaveLoop = false; 7494 } 7495 7496 // Override IC if user provided an interleave count. 7497 IC = UserIC > 0 ? UserIC : IC; 7498 7499 // Emit diagnostic messages, if any. 7500 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7501 if (!VectorizeLoop && !InterleaveLoop) { 7502 // Do not vectorize or interleaving the loop. 7503 ORE->emit([&]() { 7504 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7505 L->getStartLoc(), L->getHeader()) 7506 << VecDiagMsg.second; 7507 }); 7508 ORE->emit([&]() { 7509 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7510 L->getStartLoc(), L->getHeader()) 7511 << IntDiagMsg.second; 7512 }); 7513 return false; 7514 } else if (!VectorizeLoop && InterleaveLoop) { 7515 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7516 ORE->emit([&]() { 7517 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7518 L->getStartLoc(), L->getHeader()) 7519 << VecDiagMsg.second; 7520 }); 7521 } else if (VectorizeLoop && !InterleaveLoop) { 7522 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7523 << ") in " << DebugLocStr << '\n'); 7524 ORE->emit([&]() { 7525 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7526 L->getStartLoc(), L->getHeader()) 7527 << IntDiagMsg.second; 7528 }); 7529 } else if (VectorizeLoop && InterleaveLoop) { 7530 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7531 << ") in " << DebugLocStr << '\n'); 7532 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7533 } 7534 7535 LVP.setBestPlan(VF.Width, IC); 7536 7537 using namespace ore; 7538 bool DisableRuntimeUnroll = false; 7539 MDNode *OrigLoopID = L->getLoopID(); 7540 7541 if (!VectorizeLoop) { 7542 assert(IC > 1 && "interleave count should not be 1 or 0"); 7543 // If we decided that it is not legal to vectorize the loop, then 7544 // interleave it. 7545 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7546 &CM); 7547 LVP.executePlan(Unroller, DT); 7548 7549 ORE->emit([&]() { 7550 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7551 L->getHeader()) 7552 << "interleaved loop (interleaved count: " 7553 << NV("InterleaveCount", IC) << ")"; 7554 }); 7555 } else { 7556 // If we decided that it is *legal* to vectorize the loop, then do it. 7557 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7558 &LVL, &CM); 7559 LVP.executePlan(LB, DT); 7560 ++LoopsVectorized; 7561 7562 // Add metadata to disable runtime unrolling a scalar loop when there are 7563 // no runtime checks about strides and memory. A scalar loop that is 7564 // rarely used is not worth unrolling. 7565 if (!LB.areSafetyChecksAdded()) 7566 DisableRuntimeUnroll = true; 7567 7568 // Report the vectorization decision. 7569 ORE->emit([&]() { 7570 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7571 L->getHeader()) 7572 << "vectorized loop (vectorization width: " 7573 << NV("VectorizationFactor", VF.Width) 7574 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7575 }); 7576 } 7577 7578 Optional<MDNode *> RemainderLoopID = 7579 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7580 LLVMLoopVectorizeFollowupEpilogue}); 7581 if (RemainderLoopID.hasValue()) { 7582 L->setLoopID(RemainderLoopID.getValue()); 7583 } else { 7584 if (DisableRuntimeUnroll) 7585 AddRuntimeUnrollDisableMetaData(L); 7586 7587 // Mark the loop as already vectorized to avoid vectorizing again. 7588 Hints.setAlreadyVectorized(); 7589 } 7590 7591 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7592 return true; 7593 } 7594 7595 bool LoopVectorizePass::runImpl( 7596 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7597 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7598 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7599 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7600 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7601 SE = &SE_; 7602 LI = &LI_; 7603 TTI = &TTI_; 7604 DT = &DT_; 7605 BFI = &BFI_; 7606 TLI = TLI_; 7607 AA = &AA_; 7608 AC = &AC_; 7609 GetLAA = &GetLAA_; 7610 DB = &DB_; 7611 ORE = &ORE_; 7612 PSI = PSI_; 7613 7614 // Don't attempt if 7615 // 1. the target claims to have no vector registers, and 7616 // 2. interleaving won't help ILP. 7617 // 7618 // The second condition is necessary because, even if the target has no 7619 // vector registers, loop vectorization may still enable scalar 7620 // interleaving. 7621 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7622 return false; 7623 7624 bool Changed = false; 7625 7626 // The vectorizer requires loops to be in simplified form. 7627 // Since simplification may add new inner loops, it has to run before the 7628 // legality and profitability checks. This means running the loop vectorizer 7629 // will simplify all loops, regardless of whether anything end up being 7630 // vectorized. 7631 for (auto &L : *LI) 7632 Changed |= 7633 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 7634 7635 // Build up a worklist of inner-loops to vectorize. This is necessary as 7636 // the act of vectorizing or partially unrolling a loop creates new loops 7637 // and can invalidate iterators across the loops. 7638 SmallVector<Loop *, 8> Worklist; 7639 7640 for (Loop *L : *LI) 7641 collectSupportedLoops(*L, LI, ORE, Worklist); 7642 7643 LoopsAnalyzed += Worklist.size(); 7644 7645 // Now walk the identified inner loops. 7646 while (!Worklist.empty()) { 7647 Loop *L = Worklist.pop_back_val(); 7648 7649 // For the inner loops we actually process, form LCSSA to simplify the 7650 // transform. 7651 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7652 7653 Changed |= processLoop(L); 7654 } 7655 7656 // Process each loop nest in the function. 7657 return Changed; 7658 } 7659 7660 PreservedAnalyses LoopVectorizePass::run(Function &F, 7661 FunctionAnalysisManager &AM) { 7662 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7663 auto &LI = AM.getResult<LoopAnalysis>(F); 7664 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7665 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7666 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7667 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7668 auto &AA = AM.getResult<AAManager>(F); 7669 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7670 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7671 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7672 MemorySSA *MSSA = EnableMSSALoopDependency 7673 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7674 : nullptr; 7675 7676 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7677 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7678 [&](Loop &L) -> const LoopAccessInfo & { 7679 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7680 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7681 }; 7682 const ModuleAnalysisManager &MAM = 7683 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 7684 ProfileSummaryInfo *PSI = 7685 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 7686 bool Changed = 7687 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 7688 if (!Changed) 7689 return PreservedAnalyses::all(); 7690 PreservedAnalyses PA; 7691 7692 // We currently do not preserve loopinfo/dominator analyses with outer loop 7693 // vectorization. Until this is addressed, mark these analyses as preserved 7694 // only for non-VPlan-native path. 7695 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7696 if (!EnableVPlanNativePath) { 7697 PA.preserve<LoopAnalysis>(); 7698 PA.preserve<DominatorTreeAnalysis>(); 7699 } 7700 PA.preserve<BasicAA>(); 7701 PA.preserve<GlobalsAA>(); 7702 return PA; 7703 } 7704