1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlanHCFGBuilder.h" 60 #include "VPlanHCFGTransforms.h" 61 #include "VPlanPredicator.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SetVector.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/MemorySSA.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpander.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/MathExtras.h" 133 #include "llvm/Support/raw_ostream.h" 134 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 135 #include "llvm/Transforms/Utils/LoopSimplify.h" 136 #include "llvm/Transforms/Utils/LoopUtils.h" 137 #include "llvm/Transforms/Utils/LoopVersioning.h" 138 #include "llvm/Transforms/Utils/SizeOpts.h" 139 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 140 #include <algorithm> 141 #include <cassert> 142 #include <cstdint> 143 #include <cstdlib> 144 #include <functional> 145 #include <iterator> 146 #include <limits> 147 #include <memory> 148 #include <string> 149 #include <tuple> 150 #include <utility> 151 #include <vector> 152 153 using namespace llvm; 154 155 #define LV_NAME "loop-vectorize" 156 #define DEBUG_TYPE LV_NAME 157 158 /// @{ 159 /// Metadata attribute names 160 static const char *const LLVMLoopVectorizeFollowupAll = 161 "llvm.loop.vectorize.followup_all"; 162 static const char *const LLVMLoopVectorizeFollowupVectorized = 163 "llvm.loop.vectorize.followup_vectorized"; 164 static const char *const LLVMLoopVectorizeFollowupEpilogue = 165 "llvm.loop.vectorize.followup_epilogue"; 166 /// @} 167 168 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 169 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 170 171 /// Loops with a known constant trip count below this number are vectorized only 172 /// if no scalar iteration overheads are incurred. 173 static cl::opt<unsigned> TinyTripCountVectorThreshold( 174 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 175 cl::desc("Loops with a constant trip count that is smaller than this " 176 "value are vectorized only if no scalar iteration overheads " 177 "are incurred.")); 178 179 static cl::opt<bool> MaximizeBandwidth( 180 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 181 cl::desc("Maximize bandwidth when selecting vectorization factor which " 182 "will be determined by the smallest type in loop.")); 183 184 static cl::opt<bool> EnableInterleavedMemAccesses( 185 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 186 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 187 188 /// An interleave-group may need masking if it resides in a block that needs 189 /// predication, or in order to mask away gaps. 190 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 191 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 192 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 193 194 /// We don't interleave loops with a known constant trip count below this 195 /// number. 196 static const unsigned TinyTripCountInterleaveThreshold = 128; 197 198 static cl::opt<unsigned> ForceTargetNumScalarRegs( 199 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 200 cl::desc("A flag that overrides the target's number of scalar registers.")); 201 202 static cl::opt<unsigned> ForceTargetNumVectorRegs( 203 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 204 cl::desc("A flag that overrides the target's number of vector registers.")); 205 206 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 207 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 208 cl::desc("A flag that overrides the target's max interleave factor for " 209 "scalar loops.")); 210 211 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 212 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 213 cl::desc("A flag that overrides the target's max interleave factor for " 214 "vectorized loops.")); 215 216 static cl::opt<unsigned> ForceTargetInstructionCost( 217 "force-target-instruction-cost", cl::init(0), cl::Hidden, 218 cl::desc("A flag that overrides the target's expected cost for " 219 "an instruction to a single constant value. Mostly " 220 "useful for getting consistent testing.")); 221 222 static cl::opt<unsigned> SmallLoopCost( 223 "small-loop-cost", cl::init(20), cl::Hidden, 224 cl::desc( 225 "The cost of a loop that is considered 'small' by the interleaver.")); 226 227 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 228 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 229 cl::desc("Enable the use of the block frequency analysis to access PGO " 230 "heuristics minimizing code growth in cold regions and being more " 231 "aggressive in hot regions.")); 232 233 // Runtime interleave loops for load/store throughput. 234 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 235 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 236 cl::desc( 237 "Enable runtime interleaving until load/store ports are saturated")); 238 239 /// The number of stores in a loop that are allowed to need predication. 240 static cl::opt<unsigned> NumberOfStoresToPredicate( 241 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 242 cl::desc("Max number of stores to be predicated behind an if.")); 243 244 static cl::opt<bool> EnableIndVarRegisterHeur( 245 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 246 cl::desc("Count the induction variable only once when interleaving")); 247 248 static cl::opt<bool> EnableCondStoresVectorization( 249 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 250 cl::desc("Enable if predication of stores during vectorization.")); 251 252 static cl::opt<unsigned> MaxNestedScalarReductionIC( 253 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 254 cl::desc("The maximum interleave count to use when interleaving a scalar " 255 "reduction in a nested loop.")); 256 257 cl::opt<bool> EnableVPlanNativePath( 258 "enable-vplan-native-path", cl::init(false), cl::Hidden, 259 cl::desc("Enable VPlan-native vectorization path with " 260 "support for outer loop vectorization.")); 261 262 // FIXME: Remove this switch once we have divergence analysis. Currently we 263 // assume divergent non-backedge branches when this switch is true. 264 cl::opt<bool> EnableVPlanPredication( 265 "enable-vplan-predication", cl::init(false), cl::Hidden, 266 cl::desc("Enable VPlan-native vectorization path predicator with " 267 "support for outer loop vectorization.")); 268 269 // This flag enables the stress testing of the VPlan H-CFG construction in the 270 // VPlan-native vectorization path. It must be used in conjuction with 271 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 272 // verification of the H-CFGs built. 273 static cl::opt<bool> VPlanBuildStressTest( 274 "vplan-build-stress-test", cl::init(false), cl::Hidden, 275 cl::desc( 276 "Build VPlan for every supported loop nest in the function and bail " 277 "out right after the build (stress test the VPlan H-CFG construction " 278 "in the VPlan-native vectorization path).")); 279 280 cl::opt<bool> llvm::EnableLoopInterleaving( 281 "interleave-loops", cl::init(true), cl::Hidden, 282 cl::desc("Enable loop interleaving in Loop vectorization passes")); 283 cl::opt<bool> llvm::EnableLoopVectorization( 284 "vectorize-loops", cl::init(true), cl::Hidden, 285 cl::desc("Run the Loop vectorization passes")); 286 287 /// A helper function for converting Scalar types to vector types. 288 /// If the incoming type is void, we return void. If the VF is 1, we return 289 /// the scalar type. 290 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 291 if (Scalar->isVoidTy() || VF == 1) 292 return Scalar; 293 return VectorType::get(Scalar, VF); 294 } 295 296 /// A helper function that returns the type of loaded or stored value. 297 static Type *getMemInstValueType(Value *I) { 298 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 299 "Expected Load or Store instruction"); 300 if (auto *LI = dyn_cast<LoadInst>(I)) 301 return LI->getType(); 302 return cast<StoreInst>(I)->getValueOperand()->getType(); 303 } 304 305 /// A helper function that returns true if the given type is irregular. The 306 /// type is irregular if its allocated size doesn't equal the store size of an 307 /// element of the corresponding vector type at the given vectorization factor. 308 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 309 // Determine if an array of VF elements of type Ty is "bitcast compatible" 310 // with a <VF x Ty> vector. 311 if (VF > 1) { 312 auto *VectorTy = VectorType::get(Ty, VF); 313 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 314 } 315 316 // If the vectorization factor is one, we just check if an array of type Ty 317 // requires padding between elements. 318 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 319 } 320 321 /// A helper function that returns the reciprocal of the block probability of 322 /// predicated blocks. If we return X, we are assuming the predicated block 323 /// will execute once for every X iterations of the loop header. 324 /// 325 /// TODO: We should use actual block probability here, if available. Currently, 326 /// we always assume predicated blocks have a 50% chance of executing. 327 static unsigned getReciprocalPredBlockProb() { return 2; } 328 329 /// A helper function that adds a 'fast' flag to floating-point operations. 330 static Value *addFastMathFlag(Value *V) { 331 if (isa<FPMathOperator>(V)) 332 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 333 return V; 334 } 335 336 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 337 if (isa<FPMathOperator>(V)) 338 cast<Instruction>(V)->setFastMathFlags(FMF); 339 return V; 340 } 341 342 /// A helper function that returns an integer or floating-point constant with 343 /// value C. 344 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 345 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 346 : ConstantFP::get(Ty, C); 347 } 348 349 namespace llvm { 350 351 /// InnerLoopVectorizer vectorizes loops which contain only one basic 352 /// block to a specified vectorization factor (VF). 353 /// This class performs the widening of scalars into vectors, or multiple 354 /// scalars. This class also implements the following features: 355 /// * It inserts an epilogue loop for handling loops that don't have iteration 356 /// counts that are known to be a multiple of the vectorization factor. 357 /// * It handles the code generation for reduction variables. 358 /// * Scalarization (implementation using scalars) of un-vectorizable 359 /// instructions. 360 /// InnerLoopVectorizer does not perform any vectorization-legality 361 /// checks, and relies on the caller to check for the different legality 362 /// aspects. The InnerLoopVectorizer relies on the 363 /// LoopVectorizationLegality class to provide information about the induction 364 /// and reduction variables that were found to a given vectorization factor. 365 class InnerLoopVectorizer { 366 public: 367 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 368 LoopInfo *LI, DominatorTree *DT, 369 const TargetLibraryInfo *TLI, 370 const TargetTransformInfo *TTI, AssumptionCache *AC, 371 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 372 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 373 LoopVectorizationCostModel *CM) 374 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 375 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 376 Builder(PSE.getSE()->getContext()), 377 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 378 virtual ~InnerLoopVectorizer() = default; 379 380 /// Create a new empty loop. Unlink the old loop and connect the new one. 381 /// Return the pre-header block of the new loop. 382 BasicBlock *createVectorizedLoopSkeleton(); 383 384 /// Widen a single instruction within the innermost loop. 385 void widenInstruction(Instruction &I); 386 387 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 388 void fixVectorizedLoop(); 389 390 // Return true if any runtime check is added. 391 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 392 393 /// A type for vectorized values in the new loop. Each value from the 394 /// original loop, when vectorized, is represented by UF vector values in the 395 /// new unrolled loop, where UF is the unroll factor. 396 using VectorParts = SmallVector<Value *, 2>; 397 398 /// Vectorize a single PHINode in a block. This method handles the induction 399 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 400 /// arbitrary length vectors. 401 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 402 403 /// A helper function to scalarize a single Instruction in the innermost loop. 404 /// Generates a sequence of scalar instances for each lane between \p MinLane 405 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 406 /// inclusive.. 407 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 408 bool IfPredicateInstr); 409 410 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 411 /// is provided, the integer induction variable will first be truncated to 412 /// the corresponding type. 413 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 414 415 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 416 /// vector or scalar value on-demand if one is not yet available. When 417 /// vectorizing a loop, we visit the definition of an instruction before its 418 /// uses. When visiting the definition, we either vectorize or scalarize the 419 /// instruction, creating an entry for it in the corresponding map. (In some 420 /// cases, such as induction variables, we will create both vector and scalar 421 /// entries.) Then, as we encounter uses of the definition, we derive values 422 /// for each scalar or vector use unless such a value is already available. 423 /// For example, if we scalarize a definition and one of its uses is vector, 424 /// we build the required vector on-demand with an insertelement sequence 425 /// when visiting the use. Otherwise, if the use is scalar, we can use the 426 /// existing scalar definition. 427 /// 428 /// Return a value in the new loop corresponding to \p V from the original 429 /// loop at unroll index \p Part. If the value has already been vectorized, 430 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 431 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 432 /// a new vector value on-demand by inserting the scalar values into a vector 433 /// with an insertelement sequence. If the value has been neither vectorized 434 /// nor scalarized, it must be loop invariant, so we simply broadcast the 435 /// value into a vector. 436 Value *getOrCreateVectorValue(Value *V, unsigned Part); 437 438 /// Return a value in the new loop corresponding to \p V from the original 439 /// loop at unroll and vector indices \p Instance. If the value has been 440 /// vectorized but not scalarized, the necessary extractelement instruction 441 /// will be generated. 442 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 443 444 /// Construct the vector value of a scalarized value \p V one lane at a time. 445 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 446 447 /// Try to vectorize the interleaved access group that \p Instr belongs to, 448 /// optionally masking the vector operations if \p BlockInMask is non-null. 449 void vectorizeInterleaveGroup(Instruction *Instr, 450 VectorParts *BlockInMask = nullptr); 451 452 /// Vectorize Load and Store instructions, optionally masking the vector 453 /// operations if \p BlockInMask is non-null. 454 void vectorizeMemoryInstruction(Instruction *Instr, 455 VectorParts *BlockInMask = nullptr); 456 457 /// Set the debug location in the builder using the debug location in 458 /// the instruction. 459 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 460 461 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 462 void fixNonInductionPHIs(void); 463 464 protected: 465 friend class LoopVectorizationPlanner; 466 467 /// A small list of PHINodes. 468 using PhiVector = SmallVector<PHINode *, 4>; 469 470 /// A type for scalarized values in the new loop. Each value from the 471 /// original loop, when scalarized, is represented by UF x VF scalar values 472 /// in the new unrolled loop, where UF is the unroll factor and VF is the 473 /// vectorization factor. 474 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 475 476 /// Set up the values of the IVs correctly when exiting the vector loop. 477 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 478 Value *CountRoundDown, Value *EndValue, 479 BasicBlock *MiddleBlock); 480 481 /// Create a new induction variable inside L. 482 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 483 Value *Step, Instruction *DL); 484 485 /// Handle all cross-iteration phis in the header. 486 void fixCrossIterationPHIs(); 487 488 /// Fix a first-order recurrence. This is the second phase of vectorizing 489 /// this phi node. 490 void fixFirstOrderRecurrence(PHINode *Phi); 491 492 /// Fix a reduction cross-iteration phi. This is the second phase of 493 /// vectorizing this phi node. 494 void fixReduction(PHINode *Phi); 495 496 /// The Loop exit block may have single value PHI nodes with some 497 /// incoming value. While vectorizing we only handled real values 498 /// that were defined inside the loop and we should have one value for 499 /// each predecessor of its parent basic block. See PR14725. 500 void fixLCSSAPHIs(); 501 502 /// Iteratively sink the scalarized operands of a predicated instruction into 503 /// the block that was created for it. 504 void sinkScalarOperands(Instruction *PredInst); 505 506 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 507 /// represented as. 508 void truncateToMinimalBitwidths(); 509 510 /// Insert the new loop to the loop hierarchy and pass manager 511 /// and update the analysis passes. 512 void updateAnalysis(); 513 514 /// Create a broadcast instruction. This method generates a broadcast 515 /// instruction (shuffle) for loop invariant values and for the induction 516 /// value. If this is the induction variable then we extend it to N, N+1, ... 517 /// this is needed because each iteration in the loop corresponds to a SIMD 518 /// element. 519 virtual Value *getBroadcastInstrs(Value *V); 520 521 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 522 /// to each vector element of Val. The sequence starts at StartIndex. 523 /// \p Opcode is relevant for FP induction variable. 524 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 525 Instruction::BinaryOps Opcode = 526 Instruction::BinaryOpsEnd); 527 528 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 529 /// variable on which to base the steps, \p Step is the size of the step, and 530 /// \p EntryVal is the value from the original loop that maps to the steps. 531 /// Note that \p EntryVal doesn't have to be an induction variable - it 532 /// can also be a truncate instruction. 533 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 534 const InductionDescriptor &ID); 535 536 /// Create a vector induction phi node based on an existing scalar one. \p 537 /// EntryVal is the value from the original loop that maps to the vector phi 538 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 539 /// truncate instruction, instead of widening the original IV, we widen a 540 /// version of the IV truncated to \p EntryVal's type. 541 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 542 Value *Step, Instruction *EntryVal); 543 544 /// Returns true if an instruction \p I should be scalarized instead of 545 /// vectorized for the chosen vectorization factor. 546 bool shouldScalarizeInstruction(Instruction *I) const; 547 548 /// Returns true if we should generate a scalar version of \p IV. 549 bool needsScalarInduction(Instruction *IV) const; 550 551 /// If there is a cast involved in the induction variable \p ID, which should 552 /// be ignored in the vectorized loop body, this function records the 553 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 554 /// cast. We had already proved that the casted Phi is equal to the uncasted 555 /// Phi in the vectorized loop (under a runtime guard), and therefore 556 /// there is no need to vectorize the cast - the same value can be used in the 557 /// vector loop for both the Phi and the cast. 558 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 559 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 560 /// 561 /// \p EntryVal is the value from the original loop that maps to the vector 562 /// phi node and is used to distinguish what is the IV currently being 563 /// processed - original one (if \p EntryVal is a phi corresponding to the 564 /// original IV) or the "newly-created" one based on the proof mentioned above 565 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 566 /// latter case \p EntryVal is a TruncInst and we must not record anything for 567 /// that IV, but it's error-prone to expect callers of this routine to care 568 /// about that, hence this explicit parameter. 569 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 570 const Instruction *EntryVal, 571 Value *VectorLoopValue, 572 unsigned Part, 573 unsigned Lane = UINT_MAX); 574 575 /// Generate a shuffle sequence that will reverse the vector Vec. 576 virtual Value *reverseVector(Value *Vec); 577 578 /// Returns (and creates if needed) the original loop trip count. 579 Value *getOrCreateTripCount(Loop *NewLoop); 580 581 /// Returns (and creates if needed) the trip count of the widened loop. 582 Value *getOrCreateVectorTripCount(Loop *NewLoop); 583 584 /// Returns a bitcasted value to the requested vector type. 585 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 586 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 587 const DataLayout &DL); 588 589 /// Emit a bypass check to see if the vector trip count is zero, including if 590 /// it overflows. 591 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 592 593 /// Emit a bypass check to see if all of the SCEV assumptions we've 594 /// had to make are correct. 595 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 596 597 /// Emit bypass checks to check any memory assumptions we may have made. 598 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 599 600 /// Compute the transformed value of Index at offset StartValue using step 601 /// StepValue. 602 /// For integer induction, returns StartValue + Index * StepValue. 603 /// For pointer induction, returns StartValue[Index * StepValue]. 604 /// FIXME: The newly created binary instructions should contain nsw/nuw 605 /// flags, which can be found from the original scalar operations. 606 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 607 const DataLayout &DL, 608 const InductionDescriptor &ID) const; 609 610 /// Add additional metadata to \p To that was not present on \p Orig. 611 /// 612 /// Currently this is used to add the noalias annotations based on the 613 /// inserted memchecks. Use this for instructions that are *cloned* into the 614 /// vector loop. 615 void addNewMetadata(Instruction *To, const Instruction *Orig); 616 617 /// Add metadata from one instruction to another. 618 /// 619 /// This includes both the original MDs from \p From and additional ones (\see 620 /// addNewMetadata). Use this for *newly created* instructions in the vector 621 /// loop. 622 void addMetadata(Instruction *To, Instruction *From); 623 624 /// Similar to the previous function but it adds the metadata to a 625 /// vector of instructions. 626 void addMetadata(ArrayRef<Value *> To, Instruction *From); 627 628 /// The original loop. 629 Loop *OrigLoop; 630 631 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 632 /// dynamic knowledge to simplify SCEV expressions and converts them to a 633 /// more usable form. 634 PredicatedScalarEvolution &PSE; 635 636 /// Loop Info. 637 LoopInfo *LI; 638 639 /// Dominator Tree. 640 DominatorTree *DT; 641 642 /// Alias Analysis. 643 AliasAnalysis *AA; 644 645 /// Target Library Info. 646 const TargetLibraryInfo *TLI; 647 648 /// Target Transform Info. 649 const TargetTransformInfo *TTI; 650 651 /// Assumption Cache. 652 AssumptionCache *AC; 653 654 /// Interface to emit optimization remarks. 655 OptimizationRemarkEmitter *ORE; 656 657 /// LoopVersioning. It's only set up (non-null) if memchecks were 658 /// used. 659 /// 660 /// This is currently only used to add no-alias metadata based on the 661 /// memchecks. The actually versioning is performed manually. 662 std::unique_ptr<LoopVersioning> LVer; 663 664 /// The vectorization SIMD factor to use. Each vector will have this many 665 /// vector elements. 666 unsigned VF; 667 668 /// The vectorization unroll factor to use. Each scalar is vectorized to this 669 /// many different vector instructions. 670 unsigned UF; 671 672 /// The builder that we use 673 IRBuilder<> Builder; 674 675 // --- Vectorization state --- 676 677 /// The vector-loop preheader. 678 BasicBlock *LoopVectorPreHeader; 679 680 /// The scalar-loop preheader. 681 BasicBlock *LoopScalarPreHeader; 682 683 /// Middle Block between the vector and the scalar. 684 BasicBlock *LoopMiddleBlock; 685 686 /// The ExitBlock of the scalar loop. 687 BasicBlock *LoopExitBlock; 688 689 /// The vector loop body. 690 BasicBlock *LoopVectorBody; 691 692 /// The scalar loop body. 693 BasicBlock *LoopScalarBody; 694 695 /// A list of all bypass blocks. The first block is the entry of the loop. 696 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 697 698 /// The new Induction variable which was added to the new block. 699 PHINode *Induction = nullptr; 700 701 /// The induction variable of the old basic block. 702 PHINode *OldInduction = nullptr; 703 704 /// Maps values from the original loop to their corresponding values in the 705 /// vectorized loop. A key value can map to either vector values, scalar 706 /// values or both kinds of values, depending on whether the key was 707 /// vectorized and scalarized. 708 VectorizerValueMap VectorLoopValueMap; 709 710 /// Store instructions that were predicated. 711 SmallVector<Instruction *, 4> PredicatedInstructions; 712 713 /// Trip count of the original loop. 714 Value *TripCount = nullptr; 715 716 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 717 Value *VectorTripCount = nullptr; 718 719 /// The legality analysis. 720 LoopVectorizationLegality *Legal; 721 722 /// The profitablity analysis. 723 LoopVectorizationCostModel *Cost; 724 725 // Record whether runtime checks are added. 726 bool AddedSafetyChecks = false; 727 728 // Holds the end values for each induction variable. We save the end values 729 // so we can later fix-up the external users of the induction variables. 730 DenseMap<PHINode *, Value *> IVEndValues; 731 732 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 733 // fixed up at the end of vector code generation. 734 SmallVector<PHINode *, 8> OrigPHIsToFix; 735 }; 736 737 class InnerLoopUnroller : public InnerLoopVectorizer { 738 public: 739 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 740 LoopInfo *LI, DominatorTree *DT, 741 const TargetLibraryInfo *TLI, 742 const TargetTransformInfo *TTI, AssumptionCache *AC, 743 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 744 LoopVectorizationLegality *LVL, 745 LoopVectorizationCostModel *CM) 746 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 747 UnrollFactor, LVL, CM) {} 748 749 private: 750 Value *getBroadcastInstrs(Value *V) override; 751 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 752 Instruction::BinaryOps Opcode = 753 Instruction::BinaryOpsEnd) override; 754 Value *reverseVector(Value *Vec) override; 755 }; 756 757 } // end namespace llvm 758 759 /// Look for a meaningful debug location on the instruction or it's 760 /// operands. 761 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 762 if (!I) 763 return I; 764 765 DebugLoc Empty; 766 if (I->getDebugLoc() != Empty) 767 return I; 768 769 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 770 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 771 if (OpInst->getDebugLoc() != Empty) 772 return OpInst; 773 } 774 775 return I; 776 } 777 778 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 779 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 780 const DILocation *DIL = Inst->getDebugLoc(); 781 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 782 !isa<DbgInfoIntrinsic>(Inst)) { 783 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 784 if (NewDIL) 785 B.SetCurrentDebugLocation(NewDIL.getValue()); 786 else 787 LLVM_DEBUG(dbgs() 788 << "Failed to create new discriminator: " 789 << DIL->getFilename() << " Line: " << DIL->getLine()); 790 } 791 else 792 B.SetCurrentDebugLocation(DIL); 793 } else 794 B.SetCurrentDebugLocation(DebugLoc()); 795 } 796 797 #ifndef NDEBUG 798 /// \return string containing a file name and a line # for the given loop. 799 static std::string getDebugLocString(const Loop *L) { 800 std::string Result; 801 if (L) { 802 raw_string_ostream OS(Result); 803 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 804 LoopDbgLoc.print(OS); 805 else 806 // Just print the module name. 807 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 808 OS.flush(); 809 } 810 return Result; 811 } 812 #endif 813 814 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 815 const Instruction *Orig) { 816 // If the loop was versioned with memchecks, add the corresponding no-alias 817 // metadata. 818 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 819 LVer->annotateInstWithNoAlias(To, Orig); 820 } 821 822 void InnerLoopVectorizer::addMetadata(Instruction *To, 823 Instruction *From) { 824 propagateMetadata(To, From); 825 addNewMetadata(To, From); 826 } 827 828 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 829 Instruction *From) { 830 for (Value *V : To) { 831 if (Instruction *I = dyn_cast<Instruction>(V)) 832 addMetadata(I, From); 833 } 834 } 835 836 namespace llvm { 837 838 /// LoopVectorizationCostModel - estimates the expected speedups due to 839 /// vectorization. 840 /// In many cases vectorization is not profitable. This can happen because of 841 /// a number of reasons. In this class we mainly attempt to predict the 842 /// expected speedup/slowdowns due to the supported instruction set. We use the 843 /// TargetTransformInfo to query the different backends for the cost of 844 /// different operations. 845 class LoopVectorizationCostModel { 846 public: 847 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 848 LoopInfo *LI, LoopVectorizationLegality *Legal, 849 const TargetTransformInfo &TTI, 850 const TargetLibraryInfo *TLI, DemandedBits *DB, 851 AssumptionCache *AC, 852 OptimizationRemarkEmitter *ORE, const Function *F, 853 const LoopVectorizeHints *Hints, 854 InterleavedAccessInfo &IAI) 855 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 856 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 857 858 /// \return An upper bound for the vectorization factor, or None if 859 /// vectorization and interleaving should be avoided up front. 860 Optional<unsigned> computeMaxVF(bool OptForSize); 861 862 /// \return The most profitable vectorization factor and the cost of that VF. 863 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 864 /// then this vectorization factor will be selected if vectorization is 865 /// possible. 866 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 867 868 /// Setup cost-based decisions for user vectorization factor. 869 void selectUserVectorizationFactor(unsigned UserVF) { 870 collectUniformsAndScalars(UserVF); 871 collectInstsToScalarize(UserVF); 872 } 873 874 /// \return The size (in bits) of the smallest and widest types in the code 875 /// that needs to be vectorized. We ignore values that remain scalar such as 876 /// 64 bit loop indices. 877 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 878 879 /// \return The desired interleave count. 880 /// If interleave count has been specified by metadata it will be returned. 881 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 882 /// are the selected vectorization factor and the cost of the selected VF. 883 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 884 unsigned LoopCost); 885 886 /// Memory access instruction may be vectorized in more than one way. 887 /// Form of instruction after vectorization depends on cost. 888 /// This function takes cost-based decisions for Load/Store instructions 889 /// and collects them in a map. This decisions map is used for building 890 /// the lists of loop-uniform and loop-scalar instructions. 891 /// The calculated cost is saved with widening decision in order to 892 /// avoid redundant calculations. 893 void setCostBasedWideningDecision(unsigned VF); 894 895 /// A struct that represents some properties of the register usage 896 /// of a loop. 897 struct RegisterUsage { 898 /// Holds the number of loop invariant values that are used in the loop. 899 unsigned LoopInvariantRegs; 900 901 /// Holds the maximum number of concurrent live intervals in the loop. 902 unsigned MaxLocalUsers; 903 }; 904 905 /// \return Returns information about the register usages of the loop for the 906 /// given vectorization factors. 907 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 908 909 /// Collect values we want to ignore in the cost model. 910 void collectValuesToIgnore(); 911 912 /// \returns The smallest bitwidth each instruction can be represented with. 913 /// The vector equivalents of these instructions should be truncated to this 914 /// type. 915 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 916 return MinBWs; 917 } 918 919 /// \returns True if it is more profitable to scalarize instruction \p I for 920 /// vectorization factor \p VF. 921 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 922 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 923 924 // Cost model is not run in the VPlan-native path - return conservative 925 // result until this changes. 926 if (EnableVPlanNativePath) 927 return false; 928 929 auto Scalars = InstsToScalarize.find(VF); 930 assert(Scalars != InstsToScalarize.end() && 931 "VF not yet analyzed for scalarization profitability"); 932 return Scalars->second.find(I) != Scalars->second.end(); 933 } 934 935 /// Returns true if \p I is known to be uniform after vectorization. 936 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 937 if (VF == 1) 938 return true; 939 940 // Cost model is not run in the VPlan-native path - return conservative 941 // result until this changes. 942 if (EnableVPlanNativePath) 943 return false; 944 945 auto UniformsPerVF = Uniforms.find(VF); 946 assert(UniformsPerVF != Uniforms.end() && 947 "VF not yet analyzed for uniformity"); 948 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 949 } 950 951 /// Returns true if \p I is known to be scalar after vectorization. 952 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 953 if (VF == 1) 954 return true; 955 956 // Cost model is not run in the VPlan-native path - return conservative 957 // result until this changes. 958 if (EnableVPlanNativePath) 959 return false; 960 961 auto ScalarsPerVF = Scalars.find(VF); 962 assert(ScalarsPerVF != Scalars.end() && 963 "Scalar values are not calculated for VF"); 964 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 965 } 966 967 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 968 /// for vectorization factor \p VF. 969 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 970 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 971 !isProfitableToScalarize(I, VF) && 972 !isScalarAfterVectorization(I, VF); 973 } 974 975 /// Decision that was taken during cost calculation for memory instruction. 976 enum InstWidening { 977 CM_Unknown, 978 CM_Widen, // For consecutive accesses with stride +1. 979 CM_Widen_Reverse, // For consecutive accesses with stride -1. 980 CM_Interleave, 981 CM_GatherScatter, 982 CM_Scalarize 983 }; 984 985 /// Save vectorization decision \p W and \p Cost taken by the cost model for 986 /// instruction \p I and vector width \p VF. 987 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 988 unsigned Cost) { 989 assert(VF >= 2 && "Expected VF >=2"); 990 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 991 } 992 993 /// Save vectorization decision \p W and \p Cost taken by the cost model for 994 /// interleaving group \p Grp and vector width \p VF. 995 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 996 InstWidening W, unsigned Cost) { 997 assert(VF >= 2 && "Expected VF >=2"); 998 /// Broadcast this decicion to all instructions inside the group. 999 /// But the cost will be assigned to one instruction only. 1000 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1001 if (auto *I = Grp->getMember(i)) { 1002 if (Grp->getInsertPos() == I) 1003 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1004 else 1005 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1006 } 1007 } 1008 } 1009 1010 /// Return the cost model decision for the given instruction \p I and vector 1011 /// width \p VF. Return CM_Unknown if this instruction did not pass 1012 /// through the cost modeling. 1013 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1014 assert(VF >= 2 && "Expected VF >=2"); 1015 1016 // Cost model is not run in the VPlan-native path - return conservative 1017 // result until this changes. 1018 if (EnableVPlanNativePath) 1019 return CM_GatherScatter; 1020 1021 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1022 auto Itr = WideningDecisions.find(InstOnVF); 1023 if (Itr == WideningDecisions.end()) 1024 return CM_Unknown; 1025 return Itr->second.first; 1026 } 1027 1028 /// Return the vectorization cost for the given instruction \p I and vector 1029 /// width \p VF. 1030 unsigned getWideningCost(Instruction *I, unsigned VF) { 1031 assert(VF >= 2 && "Expected VF >=2"); 1032 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1033 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1034 "The cost is not calculated"); 1035 return WideningDecisions[InstOnVF].second; 1036 } 1037 1038 /// Return True if instruction \p I is an optimizable truncate whose operand 1039 /// is an induction variable. Such a truncate will be removed by adding a new 1040 /// induction variable with the destination type. 1041 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1042 // If the instruction is not a truncate, return false. 1043 auto *Trunc = dyn_cast<TruncInst>(I); 1044 if (!Trunc) 1045 return false; 1046 1047 // Get the source and destination types of the truncate. 1048 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1049 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1050 1051 // If the truncate is free for the given types, return false. Replacing a 1052 // free truncate with an induction variable would add an induction variable 1053 // update instruction to each iteration of the loop. We exclude from this 1054 // check the primary induction variable since it will need an update 1055 // instruction regardless. 1056 Value *Op = Trunc->getOperand(0); 1057 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1058 return false; 1059 1060 // If the truncated value is not an induction variable, return false. 1061 return Legal->isInductionPhi(Op); 1062 } 1063 1064 /// Collects the instructions to scalarize for each predicated instruction in 1065 /// the loop. 1066 void collectInstsToScalarize(unsigned VF); 1067 1068 /// Collect Uniform and Scalar values for the given \p VF. 1069 /// The sets depend on CM decision for Load/Store instructions 1070 /// that may be vectorized as interleave, gather-scatter or scalarized. 1071 void collectUniformsAndScalars(unsigned VF) { 1072 // Do the analysis once. 1073 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1074 return; 1075 setCostBasedWideningDecision(VF); 1076 collectLoopUniforms(VF); 1077 collectLoopScalars(VF); 1078 } 1079 1080 /// Returns true if the target machine supports masked store operation 1081 /// for the given \p DataType and kind of access to \p Ptr. 1082 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1083 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1084 } 1085 1086 /// Returns true if the target machine supports masked load operation 1087 /// for the given \p DataType and kind of access to \p Ptr. 1088 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1089 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1090 } 1091 1092 /// Returns true if the target machine supports masked scatter operation 1093 /// for the given \p DataType. 1094 bool isLegalMaskedScatter(Type *DataType) { 1095 return TTI.isLegalMaskedScatter(DataType); 1096 } 1097 1098 /// Returns true if the target machine supports masked gather operation 1099 /// for the given \p DataType. 1100 bool isLegalMaskedGather(Type *DataType) { 1101 return TTI.isLegalMaskedGather(DataType); 1102 } 1103 1104 /// Returns true if the target machine can represent \p V as a masked gather 1105 /// or scatter operation. 1106 bool isLegalGatherOrScatter(Value *V) { 1107 bool LI = isa<LoadInst>(V); 1108 bool SI = isa<StoreInst>(V); 1109 if (!LI && !SI) 1110 return false; 1111 auto *Ty = getMemInstValueType(V); 1112 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1113 } 1114 1115 /// Returns true if \p I is an instruction that will be scalarized with 1116 /// predication. Such instructions include conditional stores and 1117 /// instructions that may divide by zero. 1118 /// If a non-zero VF has been calculated, we check if I will be scalarized 1119 /// predication for that VF. 1120 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1121 1122 // Returns true if \p I is an instruction that will be predicated either 1123 // through scalar predication or masked load/store or masked gather/scatter. 1124 // Superset of instructions that return true for isScalarWithPredication. 1125 bool isPredicatedInst(Instruction *I) { 1126 if (!blockNeedsPredication(I->getParent())) 1127 return false; 1128 // Loads and stores that need some form of masked operation are predicated 1129 // instructions. 1130 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1131 return Legal->isMaskRequired(I); 1132 return isScalarWithPredication(I); 1133 } 1134 1135 /// Returns true if \p I is a memory instruction with consecutive memory 1136 /// access that can be widened. 1137 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1138 1139 /// Returns true if \p I is a memory instruction in an interleaved-group 1140 /// of memory accesses that can be vectorized with wide vector loads/stores 1141 /// and shuffles. 1142 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1143 1144 /// Check if \p Instr belongs to any interleaved access group. 1145 bool isAccessInterleaved(Instruction *Instr) { 1146 return InterleaveInfo.isInterleaved(Instr); 1147 } 1148 1149 /// Get the interleaved access group that \p Instr belongs to. 1150 const InterleaveGroup<Instruction> * 1151 getInterleavedAccessGroup(Instruction *Instr) { 1152 return InterleaveInfo.getInterleaveGroup(Instr); 1153 } 1154 1155 /// Returns true if an interleaved group requires a scalar iteration 1156 /// to handle accesses with gaps, and there is nothing preventing us from 1157 /// creating a scalar epilogue. 1158 bool requiresScalarEpilogue() const { 1159 return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue(); 1160 } 1161 1162 /// Returns true if a scalar epilogue is not allowed due to optsize. 1163 bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; } 1164 1165 /// Returns true if all loop blocks should be masked to fold tail loop. 1166 bool foldTailByMasking() const { return FoldTailByMasking; } 1167 1168 bool blockNeedsPredication(BasicBlock *BB) { 1169 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1170 } 1171 1172 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1173 /// with factor VF. Return the cost of the instruction, including 1174 /// scalarization overhead if it's needed. 1175 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1176 1177 /// Estimate cost of a call instruction CI if it were vectorized with factor 1178 /// VF. Return the cost of the instruction, including scalarization overhead 1179 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1180 /// scalarized - 1181 // i.e. either vector version isn't available, or is too expensive. 1182 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1183 1184 private: 1185 unsigned NumPredStores = 0; 1186 1187 /// \return An upper bound for the vectorization factor, larger than zero. 1188 /// One is returned if vectorization should best be avoided due to cost. 1189 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1190 1191 /// The vectorization cost is a combination of the cost itself and a boolean 1192 /// indicating whether any of the contributing operations will actually 1193 /// operate on 1194 /// vector values after type legalization in the backend. If this latter value 1195 /// is 1196 /// false, then all operations will be scalarized (i.e. no vectorization has 1197 /// actually taken place). 1198 using VectorizationCostTy = std::pair<unsigned, bool>; 1199 1200 /// Returns the expected execution cost. The unit of the cost does 1201 /// not matter because we use the 'cost' units to compare different 1202 /// vector widths. The cost that is returned is *not* normalized by 1203 /// the factor width. 1204 VectorizationCostTy expectedCost(unsigned VF); 1205 1206 /// Returns the execution time cost of an instruction for a given vector 1207 /// width. Vector width of one means scalar. 1208 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1209 1210 /// The cost-computation logic from getInstructionCost which provides 1211 /// the vector type as an output parameter. 1212 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1213 1214 /// Calculate vectorization cost of memory instruction \p I. 1215 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1216 1217 /// The cost computation for scalarized memory instruction. 1218 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1219 1220 /// The cost computation for interleaving group of memory instructions. 1221 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1222 1223 /// The cost computation for Gather/Scatter instruction. 1224 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1225 1226 /// The cost computation for widening instruction \p I with consecutive 1227 /// memory access. 1228 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1229 1230 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1231 /// Load: scalar load + broadcast. 1232 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1233 /// element) 1234 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1235 1236 /// Estimate the overhead of scalarizing an instruction. This is a 1237 /// convenience wrapper for the type-based getScalarizationOverhead API. 1238 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1239 1240 /// Returns whether the instruction is a load or store and will be a emitted 1241 /// as a vector operation. 1242 bool isConsecutiveLoadOrStore(Instruction *I); 1243 1244 /// Returns true if an artificially high cost for emulated masked memrefs 1245 /// should be used. 1246 bool useEmulatedMaskMemRefHack(Instruction *I); 1247 1248 /// Create an analysis remark that explains why vectorization failed 1249 /// 1250 /// \p RemarkName is the identifier for the remark. \return the remark object 1251 /// that can be streamed to. 1252 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1253 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1254 RemarkName, TheLoop); 1255 } 1256 1257 /// Map of scalar integer values to the smallest bitwidth they can be legally 1258 /// represented as. The vector equivalents of these values should be truncated 1259 /// to this type. 1260 MapVector<Instruction *, uint64_t> MinBWs; 1261 1262 /// A type representing the costs for instructions if they were to be 1263 /// scalarized rather than vectorized. The entries are Instruction-Cost 1264 /// pairs. 1265 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1266 1267 /// A set containing all BasicBlocks that are known to present after 1268 /// vectorization as a predicated block. 1269 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1270 1271 /// Records whether it is allowed to have the original scalar loop execute at 1272 /// least once. This may be needed as a fallback loop in case runtime 1273 /// aliasing/dependence checks fail, or to handle the tail/remainder 1274 /// iterations when the trip count is unknown or doesn't divide by the VF, 1275 /// or as a peel-loop to handle gaps in interleave-groups. 1276 /// Under optsize and when the trip count is very small we don't allow any 1277 /// iterations to execute in the scalar loop. 1278 bool IsScalarEpilogueAllowed = true; 1279 1280 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1281 bool FoldTailByMasking = false; 1282 1283 /// A map holding scalar costs for different vectorization factors. The 1284 /// presence of a cost for an instruction in the mapping indicates that the 1285 /// instruction will be scalarized when vectorizing with the associated 1286 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1287 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1288 1289 /// Holds the instructions known to be uniform after vectorization. 1290 /// The data is collected per VF. 1291 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1292 1293 /// Holds the instructions known to be scalar after vectorization. 1294 /// The data is collected per VF. 1295 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1296 1297 /// Holds the instructions (address computations) that are forced to be 1298 /// scalarized. 1299 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1300 1301 /// Returns the expected difference in cost from scalarizing the expression 1302 /// feeding a predicated instruction \p PredInst. The instructions to 1303 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1304 /// non-negative return value implies the expression will be scalarized. 1305 /// Currently, only single-use chains are considered for scalarization. 1306 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1307 unsigned VF); 1308 1309 /// Collect the instructions that are uniform after vectorization. An 1310 /// instruction is uniform if we represent it with a single scalar value in 1311 /// the vectorized loop corresponding to each vector iteration. Examples of 1312 /// uniform instructions include pointer operands of consecutive or 1313 /// interleaved memory accesses. Note that although uniformity implies an 1314 /// instruction will be scalar, the reverse is not true. In general, a 1315 /// scalarized instruction will be represented by VF scalar values in the 1316 /// vectorized loop, each corresponding to an iteration of the original 1317 /// scalar loop. 1318 void collectLoopUniforms(unsigned VF); 1319 1320 /// Collect the instructions that are scalar after vectorization. An 1321 /// instruction is scalar if it is known to be uniform or will be scalarized 1322 /// during vectorization. Non-uniform scalarized instructions will be 1323 /// represented by VF values in the vectorized loop, each corresponding to an 1324 /// iteration of the original scalar loop. 1325 void collectLoopScalars(unsigned VF); 1326 1327 /// Keeps cost model vectorization decision and cost for instructions. 1328 /// Right now it is used for memory instructions only. 1329 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1330 std::pair<InstWidening, unsigned>>; 1331 1332 DecisionList WideningDecisions; 1333 1334 public: 1335 /// The loop that we evaluate. 1336 Loop *TheLoop; 1337 1338 /// Predicated scalar evolution analysis. 1339 PredicatedScalarEvolution &PSE; 1340 1341 /// Loop Info analysis. 1342 LoopInfo *LI; 1343 1344 /// Vectorization legality. 1345 LoopVectorizationLegality *Legal; 1346 1347 /// Vector target information. 1348 const TargetTransformInfo &TTI; 1349 1350 /// Target Library Info. 1351 const TargetLibraryInfo *TLI; 1352 1353 /// Demanded bits analysis. 1354 DemandedBits *DB; 1355 1356 /// Assumption cache. 1357 AssumptionCache *AC; 1358 1359 /// Interface to emit optimization remarks. 1360 OptimizationRemarkEmitter *ORE; 1361 1362 const Function *TheFunction; 1363 1364 /// Loop Vectorize Hint. 1365 const LoopVectorizeHints *Hints; 1366 1367 /// The interleave access information contains groups of interleaved accesses 1368 /// with the same stride and close to each other. 1369 InterleavedAccessInfo &InterleaveInfo; 1370 1371 /// Values to ignore in the cost model. 1372 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1373 1374 /// Values to ignore in the cost model when VF > 1. 1375 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1376 }; 1377 1378 } // end namespace llvm 1379 1380 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1381 // vectorization. The loop needs to be annotated with #pragma omp simd 1382 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1383 // vector length information is not provided, vectorization is not considered 1384 // explicit. Interleave hints are not allowed either. These limitations will be 1385 // relaxed in the future. 1386 // Please, note that we are currently forced to abuse the pragma 'clang 1387 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1388 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1389 // provides *explicit vectorization hints* (LV can bypass legal checks and 1390 // assume that vectorization is legal). However, both hints are implemented 1391 // using the same metadata (llvm.loop.vectorize, processed by 1392 // LoopVectorizeHints). This will be fixed in the future when the native IR 1393 // representation for pragma 'omp simd' is introduced. 1394 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1395 OptimizationRemarkEmitter *ORE) { 1396 assert(!OuterLp->empty() && "This is not an outer loop"); 1397 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1398 1399 // Only outer loops with an explicit vectorization hint are supported. 1400 // Unannotated outer loops are ignored. 1401 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1402 return false; 1403 1404 Function *Fn = OuterLp->getHeader()->getParent(); 1405 if (!Hints.allowVectorization(Fn, OuterLp, 1406 true /*VectorizeOnlyWhenForced*/)) { 1407 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1408 return false; 1409 } 1410 1411 if (Hints.getInterleave() > 1) { 1412 // TODO: Interleave support is future work. 1413 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1414 "outer loops.\n"); 1415 Hints.emitRemarkWithHints(); 1416 return false; 1417 } 1418 1419 return true; 1420 } 1421 1422 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1423 OptimizationRemarkEmitter *ORE, 1424 SmallVectorImpl<Loop *> &V) { 1425 // Collect inner loops and outer loops without irreducible control flow. For 1426 // now, only collect outer loops that have explicit vectorization hints. If we 1427 // are stress testing the VPlan H-CFG construction, we collect the outermost 1428 // loop of every loop nest. 1429 if (L.empty() || VPlanBuildStressTest || 1430 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1431 LoopBlocksRPO RPOT(&L); 1432 RPOT.perform(LI); 1433 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1434 V.push_back(&L); 1435 // TODO: Collect inner loops inside marked outer loops in case 1436 // vectorization fails for the outer loop. Do not invoke 1437 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1438 // already known to be reducible. We can use an inherited attribute for 1439 // that. 1440 return; 1441 } 1442 } 1443 for (Loop *InnerL : L) 1444 collectSupportedLoops(*InnerL, LI, ORE, V); 1445 } 1446 1447 namespace { 1448 1449 /// The LoopVectorize Pass. 1450 struct LoopVectorize : public FunctionPass { 1451 /// Pass identification, replacement for typeid 1452 static char ID; 1453 1454 LoopVectorizePass Impl; 1455 1456 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1457 bool VectorizeOnlyWhenForced = false) 1458 : FunctionPass(ID) { 1459 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1460 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1461 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1462 } 1463 1464 bool runOnFunction(Function &F) override { 1465 if (skipFunction(F)) 1466 return false; 1467 1468 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1469 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1470 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1471 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1472 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1473 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1474 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1475 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1476 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1477 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1478 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1479 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1480 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1481 1482 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1483 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1484 1485 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1486 GetLAA, *ORE, PSI); 1487 } 1488 1489 void getAnalysisUsage(AnalysisUsage &AU) const override { 1490 AU.addRequired<AssumptionCacheTracker>(); 1491 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1492 AU.addRequired<DominatorTreeWrapperPass>(); 1493 AU.addRequired<LoopInfoWrapperPass>(); 1494 AU.addRequired<ScalarEvolutionWrapperPass>(); 1495 AU.addRequired<TargetTransformInfoWrapperPass>(); 1496 AU.addRequired<AAResultsWrapperPass>(); 1497 AU.addRequired<LoopAccessLegacyAnalysis>(); 1498 AU.addRequired<DemandedBitsWrapperPass>(); 1499 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1500 1501 // We currently do not preserve loopinfo/dominator analyses with outer loop 1502 // vectorization. Until this is addressed, mark these analyses as preserved 1503 // only for non-VPlan-native path. 1504 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1505 if (!EnableVPlanNativePath) { 1506 AU.addPreserved<LoopInfoWrapperPass>(); 1507 AU.addPreserved<DominatorTreeWrapperPass>(); 1508 } 1509 1510 AU.addPreserved<BasicAAWrapperPass>(); 1511 AU.addPreserved<GlobalsAAWrapperPass>(); 1512 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1513 } 1514 }; 1515 1516 } // end anonymous namespace 1517 1518 //===----------------------------------------------------------------------===// 1519 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1520 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1521 //===----------------------------------------------------------------------===// 1522 1523 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1524 // We need to place the broadcast of invariant variables outside the loop, 1525 // but only if it's proven safe to do so. Else, broadcast will be inside 1526 // vector loop body. 1527 Instruction *Instr = dyn_cast<Instruction>(V); 1528 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1529 (!Instr || 1530 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1531 // Place the code for broadcasting invariant variables in the new preheader. 1532 IRBuilder<>::InsertPointGuard Guard(Builder); 1533 if (SafeToHoist) 1534 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1535 1536 // Broadcast the scalar into all locations in the vector. 1537 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1538 1539 return Shuf; 1540 } 1541 1542 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1543 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1544 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1545 "Expected either an induction phi-node or a truncate of it!"); 1546 Value *Start = II.getStartValue(); 1547 1548 // Construct the initial value of the vector IV in the vector loop preheader 1549 auto CurrIP = Builder.saveIP(); 1550 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1551 if (isa<TruncInst>(EntryVal)) { 1552 assert(Start->getType()->isIntegerTy() && 1553 "Truncation requires an integer type"); 1554 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1555 Step = Builder.CreateTrunc(Step, TruncType); 1556 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1557 } 1558 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1559 Value *SteppedStart = 1560 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1561 1562 // We create vector phi nodes for both integer and floating-point induction 1563 // variables. Here, we determine the kind of arithmetic we will perform. 1564 Instruction::BinaryOps AddOp; 1565 Instruction::BinaryOps MulOp; 1566 if (Step->getType()->isIntegerTy()) { 1567 AddOp = Instruction::Add; 1568 MulOp = Instruction::Mul; 1569 } else { 1570 AddOp = II.getInductionOpcode(); 1571 MulOp = Instruction::FMul; 1572 } 1573 1574 // Multiply the vectorization factor by the step using integer or 1575 // floating-point arithmetic as appropriate. 1576 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1577 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1578 1579 // Create a vector splat to use in the induction update. 1580 // 1581 // FIXME: If the step is non-constant, we create the vector splat with 1582 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1583 // handle a constant vector splat. 1584 Value *SplatVF = isa<Constant>(Mul) 1585 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1586 : Builder.CreateVectorSplat(VF, Mul); 1587 Builder.restoreIP(CurrIP); 1588 1589 // We may need to add the step a number of times, depending on the unroll 1590 // factor. The last of those goes into the PHI. 1591 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1592 &*LoopVectorBody->getFirstInsertionPt()); 1593 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1594 Instruction *LastInduction = VecInd; 1595 for (unsigned Part = 0; Part < UF; ++Part) { 1596 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1597 1598 if (isa<TruncInst>(EntryVal)) 1599 addMetadata(LastInduction, EntryVal); 1600 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1601 1602 LastInduction = cast<Instruction>(addFastMathFlag( 1603 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1604 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1605 } 1606 1607 // Move the last step to the end of the latch block. This ensures consistent 1608 // placement of all induction updates. 1609 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1610 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1611 auto *ICmp = cast<Instruction>(Br->getCondition()); 1612 LastInduction->moveBefore(ICmp); 1613 LastInduction->setName("vec.ind.next"); 1614 1615 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1616 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1617 } 1618 1619 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1620 return Cost->isScalarAfterVectorization(I, VF) || 1621 Cost->isProfitableToScalarize(I, VF); 1622 } 1623 1624 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1625 if (shouldScalarizeInstruction(IV)) 1626 return true; 1627 auto isScalarInst = [&](User *U) -> bool { 1628 auto *I = cast<Instruction>(U); 1629 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1630 }; 1631 return llvm::any_of(IV->users(), isScalarInst); 1632 } 1633 1634 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1635 const InductionDescriptor &ID, const Instruction *EntryVal, 1636 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1637 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1638 "Expected either an induction phi-node or a truncate of it!"); 1639 1640 // This induction variable is not the phi from the original loop but the 1641 // newly-created IV based on the proof that casted Phi is equal to the 1642 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1643 // re-uses the same InductionDescriptor that original IV uses but we don't 1644 // have to do any recording in this case - that is done when original IV is 1645 // processed. 1646 if (isa<TruncInst>(EntryVal)) 1647 return; 1648 1649 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1650 if (Casts.empty()) 1651 return; 1652 // Only the first Cast instruction in the Casts vector is of interest. 1653 // The rest of the Casts (if exist) have no uses outside the 1654 // induction update chain itself. 1655 Instruction *CastInst = *Casts.begin(); 1656 if (Lane < UINT_MAX) 1657 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1658 else 1659 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1660 } 1661 1662 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1663 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1664 "Primary induction variable must have an integer type"); 1665 1666 auto II = Legal->getInductionVars()->find(IV); 1667 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1668 1669 auto ID = II->second; 1670 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1671 1672 // The scalar value to broadcast. This will be derived from the canonical 1673 // induction variable. 1674 Value *ScalarIV = nullptr; 1675 1676 // The value from the original loop to which we are mapping the new induction 1677 // variable. 1678 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1679 1680 // True if we have vectorized the induction variable. 1681 auto VectorizedIV = false; 1682 1683 // Determine if we want a scalar version of the induction variable. This is 1684 // true if the induction variable itself is not widened, or if it has at 1685 // least one user in the loop that is not widened. 1686 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1687 1688 // Generate code for the induction step. Note that induction steps are 1689 // required to be loop-invariant 1690 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1691 "Induction step should be loop invariant"); 1692 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1693 Value *Step = nullptr; 1694 if (PSE.getSE()->isSCEVable(IV->getType())) { 1695 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1696 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1697 LoopVectorPreHeader->getTerminator()); 1698 } else { 1699 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1700 } 1701 1702 // Try to create a new independent vector induction variable. If we can't 1703 // create the phi node, we will splat the scalar induction variable in each 1704 // loop iteration. 1705 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1706 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1707 VectorizedIV = true; 1708 } 1709 1710 // If we haven't yet vectorized the induction variable, or if we will create 1711 // a scalar one, we need to define the scalar induction variable and step 1712 // values. If we were given a truncation type, truncate the canonical 1713 // induction variable and step. Otherwise, derive these values from the 1714 // induction descriptor. 1715 if (!VectorizedIV || NeedsScalarIV) { 1716 ScalarIV = Induction; 1717 if (IV != OldInduction) { 1718 ScalarIV = IV->getType()->isIntegerTy() 1719 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1720 : Builder.CreateCast(Instruction::SIToFP, Induction, 1721 IV->getType()); 1722 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1723 ScalarIV->setName("offset.idx"); 1724 } 1725 if (Trunc) { 1726 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1727 assert(Step->getType()->isIntegerTy() && 1728 "Truncation requires an integer step"); 1729 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1730 Step = Builder.CreateTrunc(Step, TruncType); 1731 } 1732 } 1733 1734 // If we haven't yet vectorized the induction variable, splat the scalar 1735 // induction variable, and build the necessary step vectors. 1736 // TODO: Don't do it unless the vectorized IV is really required. 1737 if (!VectorizedIV) { 1738 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1739 for (unsigned Part = 0; Part < UF; ++Part) { 1740 Value *EntryPart = 1741 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1742 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1743 if (Trunc) 1744 addMetadata(EntryPart, Trunc); 1745 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1746 } 1747 } 1748 1749 // If an induction variable is only used for counting loop iterations or 1750 // calculating addresses, it doesn't need to be widened. Create scalar steps 1751 // that can be used by instructions we will later scalarize. Note that the 1752 // addition of the scalar steps will not increase the number of instructions 1753 // in the loop in the common case prior to InstCombine. We will be trading 1754 // one vector extract for each scalar step. 1755 if (NeedsScalarIV) 1756 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1757 } 1758 1759 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1760 Instruction::BinaryOps BinOp) { 1761 // Create and check the types. 1762 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1763 int VLen = Val->getType()->getVectorNumElements(); 1764 1765 Type *STy = Val->getType()->getScalarType(); 1766 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1767 "Induction Step must be an integer or FP"); 1768 assert(Step->getType() == STy && "Step has wrong type"); 1769 1770 SmallVector<Constant *, 8> Indices; 1771 1772 if (STy->isIntegerTy()) { 1773 // Create a vector of consecutive numbers from zero to VF. 1774 for (int i = 0; i < VLen; ++i) 1775 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1776 1777 // Add the consecutive indices to the vector value. 1778 Constant *Cv = ConstantVector::get(Indices); 1779 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1780 Step = Builder.CreateVectorSplat(VLen, Step); 1781 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1782 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1783 // which can be found from the original scalar operations. 1784 Step = Builder.CreateMul(Cv, Step); 1785 return Builder.CreateAdd(Val, Step, "induction"); 1786 } 1787 1788 // Floating point induction. 1789 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1790 "Binary Opcode should be specified for FP induction"); 1791 // Create a vector of consecutive numbers from zero to VF. 1792 for (int i = 0; i < VLen; ++i) 1793 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1794 1795 // Add the consecutive indices to the vector value. 1796 Constant *Cv = ConstantVector::get(Indices); 1797 1798 Step = Builder.CreateVectorSplat(VLen, Step); 1799 1800 // Floating point operations had to be 'fast' to enable the induction. 1801 FastMathFlags Flags; 1802 Flags.setFast(); 1803 1804 Value *MulOp = Builder.CreateFMul(Cv, Step); 1805 if (isa<Instruction>(MulOp)) 1806 // Have to check, MulOp may be a constant 1807 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1808 1809 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1810 if (isa<Instruction>(BOp)) 1811 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1812 return BOp; 1813 } 1814 1815 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1816 Instruction *EntryVal, 1817 const InductionDescriptor &ID) { 1818 // We shouldn't have to build scalar steps if we aren't vectorizing. 1819 assert(VF > 1 && "VF should be greater than one"); 1820 1821 // Get the value type and ensure it and the step have the same integer type. 1822 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1823 assert(ScalarIVTy == Step->getType() && 1824 "Val and Step should have the same type"); 1825 1826 // We build scalar steps for both integer and floating-point induction 1827 // variables. Here, we determine the kind of arithmetic we will perform. 1828 Instruction::BinaryOps AddOp; 1829 Instruction::BinaryOps MulOp; 1830 if (ScalarIVTy->isIntegerTy()) { 1831 AddOp = Instruction::Add; 1832 MulOp = Instruction::Mul; 1833 } else { 1834 AddOp = ID.getInductionOpcode(); 1835 MulOp = Instruction::FMul; 1836 } 1837 1838 // Determine the number of scalars we need to generate for each unroll 1839 // iteration. If EntryVal is uniform, we only need to generate the first 1840 // lane. Otherwise, we generate all VF values. 1841 unsigned Lanes = 1842 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1843 : VF; 1844 // Compute the scalar steps and save the results in VectorLoopValueMap. 1845 for (unsigned Part = 0; Part < UF; ++Part) { 1846 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1847 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1848 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1849 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1850 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1851 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1852 } 1853 } 1854 } 1855 1856 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1857 assert(V != Induction && "The new induction variable should not be used."); 1858 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1859 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1860 1861 // If we have a stride that is replaced by one, do it here. Defer this for 1862 // the VPlan-native path until we start running Legal checks in that path. 1863 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1864 V = ConstantInt::get(V->getType(), 1); 1865 1866 // If we have a vector mapped to this value, return it. 1867 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1868 return VectorLoopValueMap.getVectorValue(V, Part); 1869 1870 // If the value has not been vectorized, check if it has been scalarized 1871 // instead. If it has been scalarized, and we actually need the value in 1872 // vector form, we will construct the vector values on demand. 1873 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1874 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1875 1876 // If we've scalarized a value, that value should be an instruction. 1877 auto *I = cast<Instruction>(V); 1878 1879 // If we aren't vectorizing, we can just copy the scalar map values over to 1880 // the vector map. 1881 if (VF == 1) { 1882 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1883 return ScalarValue; 1884 } 1885 1886 // Get the last scalar instruction we generated for V and Part. If the value 1887 // is known to be uniform after vectorization, this corresponds to lane zero 1888 // of the Part unroll iteration. Otherwise, the last instruction is the one 1889 // we created for the last vector lane of the Part unroll iteration. 1890 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1891 auto *LastInst = cast<Instruction>( 1892 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1893 1894 // Set the insert point after the last scalarized instruction. This ensures 1895 // the insertelement sequence will directly follow the scalar definitions. 1896 auto OldIP = Builder.saveIP(); 1897 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1898 Builder.SetInsertPoint(&*NewIP); 1899 1900 // However, if we are vectorizing, we need to construct the vector values. 1901 // If the value is known to be uniform after vectorization, we can just 1902 // broadcast the scalar value corresponding to lane zero for each unroll 1903 // iteration. Otherwise, we construct the vector values using insertelement 1904 // instructions. Since the resulting vectors are stored in 1905 // VectorLoopValueMap, we will only generate the insertelements once. 1906 Value *VectorValue = nullptr; 1907 if (Cost->isUniformAfterVectorization(I, VF)) { 1908 VectorValue = getBroadcastInstrs(ScalarValue); 1909 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1910 } else { 1911 // Initialize packing with insertelements to start from undef. 1912 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1913 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1914 for (unsigned Lane = 0; Lane < VF; ++Lane) 1915 packScalarIntoVectorValue(V, {Part, Lane}); 1916 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1917 } 1918 Builder.restoreIP(OldIP); 1919 return VectorValue; 1920 } 1921 1922 // If this scalar is unknown, assume that it is a constant or that it is 1923 // loop invariant. Broadcast V and save the value for future uses. 1924 Value *B = getBroadcastInstrs(V); 1925 VectorLoopValueMap.setVectorValue(V, Part, B); 1926 return B; 1927 } 1928 1929 Value * 1930 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1931 const VPIteration &Instance) { 1932 // If the value is not an instruction contained in the loop, it should 1933 // already be scalar. 1934 if (OrigLoop->isLoopInvariant(V)) 1935 return V; 1936 1937 assert(Instance.Lane > 0 1938 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1939 : true && "Uniform values only have lane zero"); 1940 1941 // If the value from the original loop has not been vectorized, it is 1942 // represented by UF x VF scalar values in the new loop. Return the requested 1943 // scalar value. 1944 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1945 return VectorLoopValueMap.getScalarValue(V, Instance); 1946 1947 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1948 // for the given unroll part. If this entry is not a vector type (i.e., the 1949 // vectorization factor is one), there is no need to generate an 1950 // extractelement instruction. 1951 auto *U = getOrCreateVectorValue(V, Instance.Part); 1952 if (!U->getType()->isVectorTy()) { 1953 assert(VF == 1 && "Value not scalarized has non-vector type"); 1954 return U; 1955 } 1956 1957 // Otherwise, the value from the original loop has been vectorized and is 1958 // represented by UF vector values. Extract and return the requested scalar 1959 // value from the appropriate vector lane. 1960 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1961 } 1962 1963 void InnerLoopVectorizer::packScalarIntoVectorValue( 1964 Value *V, const VPIteration &Instance) { 1965 assert(V != Induction && "The new induction variable should not be used."); 1966 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 1967 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1968 1969 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 1970 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 1971 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 1972 Builder.getInt32(Instance.Lane)); 1973 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 1974 } 1975 1976 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1977 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1978 SmallVector<Constant *, 8> ShuffleMask; 1979 for (unsigned i = 0; i < VF; ++i) 1980 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1981 1982 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1983 ConstantVector::get(ShuffleMask), 1984 "reverse"); 1985 } 1986 1987 // Return whether we allow using masked interleave-groups (for dealing with 1988 // strided loads/stores that reside in predicated blocks, or for dealing 1989 // with gaps). 1990 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 1991 // If an override option has been passed in for interleaved accesses, use it. 1992 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 1993 return EnableMaskedInterleavedMemAccesses; 1994 1995 return TTI.enableMaskedInterleavedAccessVectorization(); 1996 } 1997 1998 // Try to vectorize the interleave group that \p Instr belongs to. 1999 // 2000 // E.g. Translate following interleaved load group (factor = 3): 2001 // for (i = 0; i < N; i+=3) { 2002 // R = Pic[i]; // Member of index 0 2003 // G = Pic[i+1]; // Member of index 1 2004 // B = Pic[i+2]; // Member of index 2 2005 // ... // do something to R, G, B 2006 // } 2007 // To: 2008 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2009 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2010 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2011 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2012 // 2013 // Or translate following interleaved store group (factor = 3): 2014 // for (i = 0; i < N; i+=3) { 2015 // ... do something to R, G, B 2016 // Pic[i] = R; // Member of index 0 2017 // Pic[i+1] = G; // Member of index 1 2018 // Pic[i+2] = B; // Member of index 2 2019 // } 2020 // To: 2021 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2022 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2023 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2024 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2025 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2026 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2027 VectorParts *BlockInMask) { 2028 const InterleaveGroup<Instruction> *Group = 2029 Cost->getInterleavedAccessGroup(Instr); 2030 assert(Group && "Fail to get an interleaved access group."); 2031 2032 // Skip if current instruction is not the insert position. 2033 if (Instr != Group->getInsertPos()) 2034 return; 2035 2036 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2037 Value *Ptr = getLoadStorePointerOperand(Instr); 2038 2039 // Prepare for the vector type of the interleaved load/store. 2040 Type *ScalarTy = getMemInstValueType(Instr); 2041 unsigned InterleaveFactor = Group->getFactor(); 2042 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2043 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2044 2045 // Prepare for the new pointers. 2046 setDebugLocFromInst(Builder, Ptr); 2047 SmallVector<Value *, 2> NewPtrs; 2048 unsigned Index = Group->getIndex(Instr); 2049 2050 VectorParts Mask; 2051 bool IsMaskForCondRequired = BlockInMask; 2052 if (IsMaskForCondRequired) { 2053 Mask = *BlockInMask; 2054 // TODO: extend the masked interleaved-group support to reversed access. 2055 assert(!Group->isReverse() && "Reversed masked interleave-group " 2056 "not supported."); 2057 } 2058 2059 // If the group is reverse, adjust the index to refer to the last vector lane 2060 // instead of the first. We adjust the index from the first vector lane, 2061 // rather than directly getting the pointer for lane VF - 1, because the 2062 // pointer operand of the interleaved access is supposed to be uniform. For 2063 // uniform instructions, we're only required to generate a value for the 2064 // first vector lane in each unroll iteration. 2065 if (Group->isReverse()) 2066 Index += (VF - 1) * Group->getFactor(); 2067 2068 bool InBounds = false; 2069 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2070 InBounds = gep->isInBounds(); 2071 2072 for (unsigned Part = 0; Part < UF; Part++) { 2073 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2074 2075 // Notice current instruction could be any index. Need to adjust the address 2076 // to the member of index 0. 2077 // 2078 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2079 // b = A[i]; // Member of index 0 2080 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2081 // 2082 // E.g. A[i+1] = a; // Member of index 1 2083 // A[i] = b; // Member of index 0 2084 // A[i+2] = c; // Member of index 2 (Current instruction) 2085 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2086 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2087 if (InBounds) 2088 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2089 2090 // Cast to the vector pointer type. 2091 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2092 } 2093 2094 setDebugLocFromInst(Builder, Instr); 2095 Value *UndefVec = UndefValue::get(VecTy); 2096 2097 Value *MaskForGaps = nullptr; 2098 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2099 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2100 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2101 } 2102 2103 // Vectorize the interleaved load group. 2104 if (isa<LoadInst>(Instr)) { 2105 // For each unroll part, create a wide load for the group. 2106 SmallVector<Value *, 2> NewLoads; 2107 for (unsigned Part = 0; Part < UF; Part++) { 2108 Instruction *NewLoad; 2109 if (IsMaskForCondRequired || MaskForGaps) { 2110 assert(useMaskedInterleavedAccesses(*TTI) && 2111 "masked interleaved groups are not allowed."); 2112 Value *GroupMask = MaskForGaps; 2113 if (IsMaskForCondRequired) { 2114 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2115 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2116 Value *ShuffledMask = Builder.CreateShuffleVector( 2117 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2118 GroupMask = MaskForGaps 2119 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2120 MaskForGaps) 2121 : ShuffledMask; 2122 } 2123 NewLoad = 2124 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2125 GroupMask, UndefVec, "wide.masked.vec"); 2126 } 2127 else 2128 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2129 Group->getAlignment(), "wide.vec"); 2130 Group->addMetadata(NewLoad); 2131 NewLoads.push_back(NewLoad); 2132 } 2133 2134 // For each member in the group, shuffle out the appropriate data from the 2135 // wide loads. 2136 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2137 Instruction *Member = Group->getMember(I); 2138 2139 // Skip the gaps in the group. 2140 if (!Member) 2141 continue; 2142 2143 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2144 for (unsigned Part = 0; Part < UF; Part++) { 2145 Value *StridedVec = Builder.CreateShuffleVector( 2146 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2147 2148 // If this member has different type, cast the result type. 2149 if (Member->getType() != ScalarTy) { 2150 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2151 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2152 } 2153 2154 if (Group->isReverse()) 2155 StridedVec = reverseVector(StridedVec); 2156 2157 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2158 } 2159 } 2160 return; 2161 } 2162 2163 // The sub vector type for current instruction. 2164 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2165 2166 // Vectorize the interleaved store group. 2167 for (unsigned Part = 0; Part < UF; Part++) { 2168 // Collect the stored vector from each member. 2169 SmallVector<Value *, 4> StoredVecs; 2170 for (unsigned i = 0; i < InterleaveFactor; i++) { 2171 // Interleaved store group doesn't allow a gap, so each index has a member 2172 Instruction *Member = Group->getMember(i); 2173 assert(Member && "Fail to get a member from an interleaved store group"); 2174 2175 Value *StoredVec = getOrCreateVectorValue( 2176 cast<StoreInst>(Member)->getValueOperand(), Part); 2177 if (Group->isReverse()) 2178 StoredVec = reverseVector(StoredVec); 2179 2180 // If this member has different type, cast it to a unified type. 2181 2182 if (StoredVec->getType() != SubVT) 2183 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2184 2185 StoredVecs.push_back(StoredVec); 2186 } 2187 2188 // Concatenate all vectors into a wide vector. 2189 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2190 2191 // Interleave the elements in the wide vector. 2192 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2193 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2194 "interleaved.vec"); 2195 2196 Instruction *NewStoreInstr; 2197 if (IsMaskForCondRequired) { 2198 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2199 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2200 Value *ShuffledMask = Builder.CreateShuffleVector( 2201 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2202 NewStoreInstr = Builder.CreateMaskedStore( 2203 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2204 } 2205 else 2206 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2207 Group->getAlignment()); 2208 2209 Group->addMetadata(NewStoreInstr); 2210 } 2211 } 2212 2213 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2214 VectorParts *BlockInMask) { 2215 // Attempt to issue a wide load. 2216 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2217 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2218 2219 assert((LI || SI) && "Invalid Load/Store instruction"); 2220 2221 LoopVectorizationCostModel::InstWidening Decision = 2222 Cost->getWideningDecision(Instr, VF); 2223 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2224 "CM decision should be taken at this point"); 2225 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2226 return vectorizeInterleaveGroup(Instr); 2227 2228 Type *ScalarDataTy = getMemInstValueType(Instr); 2229 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2230 Value *Ptr = getLoadStorePointerOperand(Instr); 2231 unsigned Alignment = getLoadStoreAlignment(Instr); 2232 // An alignment of 0 means target abi alignment. We need to use the scalar's 2233 // target abi alignment in such a case. 2234 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2235 if (!Alignment) 2236 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2237 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2238 2239 // Determine if the pointer operand of the access is either consecutive or 2240 // reverse consecutive. 2241 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2242 bool ConsecutiveStride = 2243 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2244 bool CreateGatherScatter = 2245 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2246 2247 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2248 // gather/scatter. Otherwise Decision should have been to Scalarize. 2249 assert((ConsecutiveStride || CreateGatherScatter) && 2250 "The instruction should be scalarized"); 2251 2252 // Handle consecutive loads/stores. 2253 if (ConsecutiveStride) 2254 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2255 2256 VectorParts Mask; 2257 bool isMaskRequired = BlockInMask; 2258 if (isMaskRequired) 2259 Mask = *BlockInMask; 2260 2261 bool InBounds = false; 2262 if (auto *gep = dyn_cast<GetElementPtrInst>( 2263 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2264 InBounds = gep->isInBounds(); 2265 2266 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2267 // Calculate the pointer for the specific unroll-part. 2268 GetElementPtrInst *PartPtr = nullptr; 2269 2270 if (Reverse) { 2271 // If the address is consecutive but reversed, then the 2272 // wide store needs to start at the last vector element. 2273 PartPtr = cast<GetElementPtrInst>( 2274 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2275 PartPtr->setIsInBounds(InBounds); 2276 PartPtr = cast<GetElementPtrInst>( 2277 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2278 PartPtr->setIsInBounds(InBounds); 2279 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2280 Mask[Part] = reverseVector(Mask[Part]); 2281 } else { 2282 PartPtr = cast<GetElementPtrInst>( 2283 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2284 PartPtr->setIsInBounds(InBounds); 2285 } 2286 2287 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2288 }; 2289 2290 // Handle Stores: 2291 if (SI) { 2292 setDebugLocFromInst(Builder, SI); 2293 2294 for (unsigned Part = 0; Part < UF; ++Part) { 2295 Instruction *NewSI = nullptr; 2296 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2297 if (CreateGatherScatter) { 2298 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2299 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2300 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2301 MaskPart); 2302 } else { 2303 if (Reverse) { 2304 // If we store to reverse consecutive memory locations, then we need 2305 // to reverse the order of elements in the stored value. 2306 StoredVal = reverseVector(StoredVal); 2307 // We don't want to update the value in the map as it might be used in 2308 // another expression. So don't call resetVectorValue(StoredVal). 2309 } 2310 auto *VecPtr = CreateVecPtr(Part, Ptr); 2311 if (isMaskRequired) 2312 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2313 Mask[Part]); 2314 else 2315 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2316 } 2317 addMetadata(NewSI, SI); 2318 } 2319 return; 2320 } 2321 2322 // Handle loads. 2323 assert(LI && "Must have a load instruction"); 2324 setDebugLocFromInst(Builder, LI); 2325 for (unsigned Part = 0; Part < UF; ++Part) { 2326 Value *NewLI; 2327 if (CreateGatherScatter) { 2328 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2329 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2330 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2331 nullptr, "wide.masked.gather"); 2332 addMetadata(NewLI, LI); 2333 } else { 2334 auto *VecPtr = CreateVecPtr(Part, Ptr); 2335 if (isMaskRequired) 2336 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2337 UndefValue::get(DataTy), 2338 "wide.masked.load"); 2339 else 2340 NewLI = 2341 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2342 2343 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2344 addMetadata(NewLI, LI); 2345 if (Reverse) 2346 NewLI = reverseVector(NewLI); 2347 } 2348 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2349 } 2350 } 2351 2352 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2353 const VPIteration &Instance, 2354 bool IfPredicateInstr) { 2355 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2356 2357 setDebugLocFromInst(Builder, Instr); 2358 2359 // Does this instruction return a value ? 2360 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2361 2362 Instruction *Cloned = Instr->clone(); 2363 if (!IsVoidRetTy) 2364 Cloned->setName(Instr->getName() + ".cloned"); 2365 2366 // Replace the operands of the cloned instructions with their scalar 2367 // equivalents in the new loop. 2368 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2369 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2370 Cloned->setOperand(op, NewOp); 2371 } 2372 addNewMetadata(Cloned, Instr); 2373 2374 // Place the cloned scalar in the new loop. 2375 Builder.Insert(Cloned); 2376 2377 // Add the cloned scalar to the scalar map entry. 2378 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2379 2380 // If we just cloned a new assumption, add it the assumption cache. 2381 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2382 if (II->getIntrinsicID() == Intrinsic::assume) 2383 AC->registerAssumption(II); 2384 2385 // End if-block. 2386 if (IfPredicateInstr) 2387 PredicatedInstructions.push_back(Cloned); 2388 } 2389 2390 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2391 Value *End, Value *Step, 2392 Instruction *DL) { 2393 BasicBlock *Header = L->getHeader(); 2394 BasicBlock *Latch = L->getLoopLatch(); 2395 // As we're just creating this loop, it's possible no latch exists 2396 // yet. If so, use the header as this will be a single block loop. 2397 if (!Latch) 2398 Latch = Header; 2399 2400 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2401 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2402 setDebugLocFromInst(Builder, OldInst); 2403 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2404 2405 Builder.SetInsertPoint(Latch->getTerminator()); 2406 setDebugLocFromInst(Builder, OldInst); 2407 2408 // Create i+1 and fill the PHINode. 2409 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2410 Induction->addIncoming(Start, L->getLoopPreheader()); 2411 Induction->addIncoming(Next, Latch); 2412 // Create the compare. 2413 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2414 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2415 2416 // Now we have two terminators. Remove the old one from the block. 2417 Latch->getTerminator()->eraseFromParent(); 2418 2419 return Induction; 2420 } 2421 2422 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2423 if (TripCount) 2424 return TripCount; 2425 2426 assert(L && "Create Trip Count for null loop."); 2427 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2428 // Find the loop boundaries. 2429 ScalarEvolution *SE = PSE.getSE(); 2430 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2431 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2432 "Invalid loop count"); 2433 2434 Type *IdxTy = Legal->getWidestInductionType(); 2435 assert(IdxTy && "No type for induction"); 2436 2437 // The exit count might have the type of i64 while the phi is i32. This can 2438 // happen if we have an induction variable that is sign extended before the 2439 // compare. The only way that we get a backedge taken count is that the 2440 // induction variable was signed and as such will not overflow. In such a case 2441 // truncation is legal. 2442 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2443 IdxTy->getPrimitiveSizeInBits()) 2444 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2445 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2446 2447 // Get the total trip count from the count by adding 1. 2448 const SCEV *ExitCount = SE->getAddExpr( 2449 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2450 2451 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2452 2453 // Expand the trip count and place the new instructions in the preheader. 2454 // Notice that the pre-header does not change, only the loop body. 2455 SCEVExpander Exp(*SE, DL, "induction"); 2456 2457 // Count holds the overall loop count (N). 2458 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2459 L->getLoopPreheader()->getTerminator()); 2460 2461 if (TripCount->getType()->isPointerTy()) 2462 TripCount = 2463 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2464 L->getLoopPreheader()->getTerminator()); 2465 2466 return TripCount; 2467 } 2468 2469 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2470 if (VectorTripCount) 2471 return VectorTripCount; 2472 2473 Value *TC = getOrCreateTripCount(L); 2474 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2475 2476 Type *Ty = TC->getType(); 2477 Constant *Step = ConstantInt::get(Ty, VF * UF); 2478 2479 // If the tail is to be folded by masking, round the number of iterations N 2480 // up to a multiple of Step instead of rounding down. This is done by first 2481 // adding Step-1 and then rounding down. Note that it's ok if this addition 2482 // overflows: the vector induction variable will eventually wrap to zero given 2483 // that it starts at zero and its Step is a power of two; the loop will then 2484 // exit, with the last early-exit vector comparison also producing all-true. 2485 if (Cost->foldTailByMasking()) { 2486 assert(isPowerOf2_32(VF * UF) && 2487 "VF*UF must be a power of 2 when folding tail by masking"); 2488 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2489 } 2490 2491 // Now we need to generate the expression for the part of the loop that the 2492 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2493 // iterations are not required for correctness, or N - Step, otherwise. Step 2494 // is equal to the vectorization factor (number of SIMD elements) times the 2495 // unroll factor (number of SIMD instructions). 2496 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2497 2498 // If there is a non-reversed interleaved group that may speculatively access 2499 // memory out-of-bounds, we need to ensure that there will be at least one 2500 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2501 // the trip count, we set the remainder to be equal to the step. If the step 2502 // does not evenly divide the trip count, no adjustment is necessary since 2503 // there will already be scalar iterations. Note that the minimum iterations 2504 // check ensures that N >= Step. 2505 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2506 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2507 R = Builder.CreateSelect(IsZero, Step, R); 2508 } 2509 2510 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2511 2512 return VectorTripCount; 2513 } 2514 2515 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2516 const DataLayout &DL) { 2517 // Verify that V is a vector type with same number of elements as DstVTy. 2518 unsigned VF = DstVTy->getNumElements(); 2519 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2520 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2521 Type *SrcElemTy = SrcVecTy->getElementType(); 2522 Type *DstElemTy = DstVTy->getElementType(); 2523 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2524 "Vector elements must have same size"); 2525 2526 // Do a direct cast if element types are castable. 2527 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2528 return Builder.CreateBitOrPointerCast(V, DstVTy); 2529 } 2530 // V cannot be directly casted to desired vector type. 2531 // May happen when V is a floating point vector but DstVTy is a vector of 2532 // pointers or vice-versa. Handle this using a two-step bitcast using an 2533 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2534 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2535 "Only one type should be a pointer type"); 2536 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2537 "Only one type should be a floating point type"); 2538 Type *IntTy = 2539 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2540 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2541 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2542 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2543 } 2544 2545 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2546 BasicBlock *Bypass) { 2547 Value *Count = getOrCreateTripCount(L); 2548 BasicBlock *BB = L->getLoopPreheader(); 2549 IRBuilder<> Builder(BB->getTerminator()); 2550 2551 // Generate code to check if the loop's trip count is less than VF * UF, or 2552 // equal to it in case a scalar epilogue is required; this implies that the 2553 // vector trip count is zero. This check also covers the case where adding one 2554 // to the backedge-taken count overflowed leading to an incorrect trip count 2555 // of zero. In this case we will also jump to the scalar loop. 2556 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2557 : ICmpInst::ICMP_ULT; 2558 2559 // If tail is to be folded, vector loop takes care of all iterations. 2560 Value *CheckMinIters = Builder.getFalse(); 2561 if (!Cost->foldTailByMasking()) 2562 CheckMinIters = Builder.CreateICmp( 2563 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2564 "min.iters.check"); 2565 2566 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2567 // Update dominator tree immediately if the generated block is a 2568 // LoopBypassBlock because SCEV expansions to generate loop bypass 2569 // checks may query it before the current function is finished. 2570 DT->addNewBlock(NewBB, BB); 2571 if (L->getParentLoop()) 2572 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2573 ReplaceInstWithInst(BB->getTerminator(), 2574 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2575 LoopBypassBlocks.push_back(BB); 2576 } 2577 2578 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2579 BasicBlock *BB = L->getLoopPreheader(); 2580 2581 // Generate the code to check that the SCEV assumptions that we made. 2582 // We want the new basic block to start at the first instruction in a 2583 // sequence of instructions that form a check. 2584 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2585 "scev.check"); 2586 Value *SCEVCheck = 2587 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2588 2589 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2590 if (C->isZero()) 2591 return; 2592 2593 assert(!Cost->foldTailByMasking() && 2594 "Cannot SCEV check stride or overflow when folding tail"); 2595 // Create a new block containing the stride check. 2596 BB->setName("vector.scevcheck"); 2597 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2598 // Update dominator tree immediately if the generated block is a 2599 // LoopBypassBlock because SCEV expansions to generate loop bypass 2600 // checks may query it before the current function is finished. 2601 DT->addNewBlock(NewBB, BB); 2602 if (L->getParentLoop()) 2603 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2604 ReplaceInstWithInst(BB->getTerminator(), 2605 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2606 LoopBypassBlocks.push_back(BB); 2607 AddedSafetyChecks = true; 2608 } 2609 2610 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2611 // VPlan-native path does not do any analysis for runtime checks currently. 2612 if (EnableVPlanNativePath) 2613 return; 2614 2615 BasicBlock *BB = L->getLoopPreheader(); 2616 2617 // Generate the code that checks in runtime if arrays overlap. We put the 2618 // checks into a separate block to make the more common case of few elements 2619 // faster. 2620 Instruction *FirstCheckInst; 2621 Instruction *MemRuntimeCheck; 2622 std::tie(FirstCheckInst, MemRuntimeCheck) = 2623 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2624 if (!MemRuntimeCheck) 2625 return; 2626 2627 assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); 2628 // Create a new block containing the memory check. 2629 BB->setName("vector.memcheck"); 2630 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2631 // Update dominator tree immediately if the generated block is a 2632 // LoopBypassBlock because SCEV expansions to generate loop bypass 2633 // checks may query it before the current function is finished. 2634 DT->addNewBlock(NewBB, BB); 2635 if (L->getParentLoop()) 2636 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2637 ReplaceInstWithInst(BB->getTerminator(), 2638 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2639 LoopBypassBlocks.push_back(BB); 2640 AddedSafetyChecks = true; 2641 2642 // We currently don't use LoopVersioning for the actual loop cloning but we 2643 // still use it to add the noalias metadata. 2644 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2645 PSE.getSE()); 2646 LVer->prepareNoAliasMetadata(); 2647 } 2648 2649 Value *InnerLoopVectorizer::emitTransformedIndex( 2650 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2651 const InductionDescriptor &ID) const { 2652 2653 SCEVExpander Exp(*SE, DL, "induction"); 2654 auto Step = ID.getStep(); 2655 auto StartValue = ID.getStartValue(); 2656 assert(Index->getType() == Step->getType() && 2657 "Index type does not match StepValue type"); 2658 2659 // Note: the IR at this point is broken. We cannot use SE to create any new 2660 // SCEV and then expand it, hoping that SCEV's simplification will give us 2661 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2662 // lead to various SCEV crashes. So all we can do is to use builder and rely 2663 // on InstCombine for future simplifications. Here we handle some trivial 2664 // cases only. 2665 auto CreateAdd = [&B](Value *X, Value *Y) { 2666 assert(X->getType() == Y->getType() && "Types don't match!"); 2667 if (auto *CX = dyn_cast<ConstantInt>(X)) 2668 if (CX->isZero()) 2669 return Y; 2670 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2671 if (CY->isZero()) 2672 return X; 2673 return B.CreateAdd(X, Y); 2674 }; 2675 2676 auto CreateMul = [&B](Value *X, Value *Y) { 2677 assert(X->getType() == Y->getType() && "Types don't match!"); 2678 if (auto *CX = dyn_cast<ConstantInt>(X)) 2679 if (CX->isOne()) 2680 return Y; 2681 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2682 if (CY->isOne()) 2683 return X; 2684 return B.CreateMul(X, Y); 2685 }; 2686 2687 switch (ID.getKind()) { 2688 case InductionDescriptor::IK_IntInduction: { 2689 assert(Index->getType() == StartValue->getType() && 2690 "Index type does not match StartValue type"); 2691 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2692 return B.CreateSub(StartValue, Index); 2693 auto *Offset = CreateMul( 2694 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2695 return CreateAdd(StartValue, Offset); 2696 } 2697 case InductionDescriptor::IK_PtrInduction: { 2698 assert(isa<SCEVConstant>(Step) && 2699 "Expected constant step for pointer induction"); 2700 return B.CreateGEP( 2701 StartValue->getType()->getPointerElementType(), StartValue, 2702 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2703 &*B.GetInsertPoint()))); 2704 } 2705 case InductionDescriptor::IK_FpInduction: { 2706 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2707 auto InductionBinOp = ID.getInductionBinOp(); 2708 assert(InductionBinOp && 2709 (InductionBinOp->getOpcode() == Instruction::FAdd || 2710 InductionBinOp->getOpcode() == Instruction::FSub) && 2711 "Original bin op should be defined for FP induction"); 2712 2713 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2714 2715 // Floating point operations had to be 'fast' to enable the induction. 2716 FastMathFlags Flags; 2717 Flags.setFast(); 2718 2719 Value *MulExp = B.CreateFMul(StepValue, Index); 2720 if (isa<Instruction>(MulExp)) 2721 // We have to check, the MulExp may be a constant. 2722 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2723 2724 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2725 "induction"); 2726 if (isa<Instruction>(BOp)) 2727 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2728 2729 return BOp; 2730 } 2731 case InductionDescriptor::IK_NoInduction: 2732 return nullptr; 2733 } 2734 llvm_unreachable("invalid enum"); 2735 } 2736 2737 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2738 /* 2739 In this function we generate a new loop. The new loop will contain 2740 the vectorized instructions while the old loop will continue to run the 2741 scalar remainder. 2742 2743 [ ] <-- loop iteration number check. 2744 / | 2745 / v 2746 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2747 | / | 2748 | / v 2749 || [ ] <-- vector pre header. 2750 |/ | 2751 | v 2752 | [ ] \ 2753 | [ ]_| <-- vector loop. 2754 | | 2755 | v 2756 | -[ ] <--- middle-block. 2757 | / | 2758 | / v 2759 -|- >[ ] <--- new preheader. 2760 | | 2761 | v 2762 | [ ] \ 2763 | [ ]_| <-- old scalar loop to handle remainder. 2764 \ | 2765 \ v 2766 >[ ] <-- exit block. 2767 ... 2768 */ 2769 2770 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2771 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2772 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2773 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2774 assert(VectorPH && "Invalid loop structure"); 2775 assert(ExitBlock && "Must have an exit block"); 2776 2777 // Some loops have a single integer induction variable, while other loops 2778 // don't. One example is c++ iterators that often have multiple pointer 2779 // induction variables. In the code below we also support a case where we 2780 // don't have a single induction variable. 2781 // 2782 // We try to obtain an induction variable from the original loop as hard 2783 // as possible. However if we don't find one that: 2784 // - is an integer 2785 // - counts from zero, stepping by one 2786 // - is the size of the widest induction variable type 2787 // then we create a new one. 2788 OldInduction = Legal->getPrimaryInduction(); 2789 Type *IdxTy = Legal->getWidestInductionType(); 2790 2791 // Split the single block loop into the two loop structure described above. 2792 BasicBlock *VecBody = 2793 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2794 BasicBlock *MiddleBlock = 2795 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2796 BasicBlock *ScalarPH = 2797 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2798 2799 // Create and register the new vector loop. 2800 Loop *Lp = LI->AllocateLoop(); 2801 Loop *ParentLoop = OrigLoop->getParentLoop(); 2802 2803 // Insert the new loop into the loop nest and register the new basic blocks 2804 // before calling any utilities such as SCEV that require valid LoopInfo. 2805 if (ParentLoop) { 2806 ParentLoop->addChildLoop(Lp); 2807 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2808 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2809 } else { 2810 LI->addTopLevelLoop(Lp); 2811 } 2812 Lp->addBasicBlockToLoop(VecBody, *LI); 2813 2814 // Find the loop boundaries. 2815 Value *Count = getOrCreateTripCount(Lp); 2816 2817 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2818 2819 // Now, compare the new count to zero. If it is zero skip the vector loop and 2820 // jump to the scalar loop. This check also covers the case where the 2821 // backedge-taken count is uint##_max: adding one to it will overflow leading 2822 // to an incorrect trip count of zero. In this (rare) case we will also jump 2823 // to the scalar loop. 2824 emitMinimumIterationCountCheck(Lp, ScalarPH); 2825 2826 // Generate the code to check any assumptions that we've made for SCEV 2827 // expressions. 2828 emitSCEVChecks(Lp, ScalarPH); 2829 2830 // Generate the code that checks in runtime if arrays overlap. We put the 2831 // checks into a separate block to make the more common case of few elements 2832 // faster. 2833 emitMemRuntimeChecks(Lp, ScalarPH); 2834 2835 // Generate the induction variable. 2836 // The loop step is equal to the vectorization factor (num of SIMD elements) 2837 // times the unroll factor (num of SIMD instructions). 2838 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2839 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2840 Induction = 2841 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2842 getDebugLocFromInstOrOperands(OldInduction)); 2843 2844 // We are going to resume the execution of the scalar loop. 2845 // Go over all of the induction variables that we found and fix the 2846 // PHIs that are left in the scalar version of the loop. 2847 // The starting values of PHI nodes depend on the counter of the last 2848 // iteration in the vectorized loop. 2849 // If we come from a bypass edge then we need to start from the original 2850 // start value. 2851 2852 // This variable saves the new starting index for the scalar loop. It is used 2853 // to test if there are any tail iterations left once the vector loop has 2854 // completed. 2855 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2856 for (auto &InductionEntry : *List) { 2857 PHINode *OrigPhi = InductionEntry.first; 2858 InductionDescriptor II = InductionEntry.second; 2859 2860 // Create phi nodes to merge from the backedge-taken check block. 2861 PHINode *BCResumeVal = PHINode::Create( 2862 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2863 // Copy original phi DL over to the new one. 2864 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2865 Value *&EndValue = IVEndValues[OrigPhi]; 2866 if (OrigPhi == OldInduction) { 2867 // We know what the end value is. 2868 EndValue = CountRoundDown; 2869 } else { 2870 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2871 Type *StepType = II.getStep()->getType(); 2872 Instruction::CastOps CastOp = 2873 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2874 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2875 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2876 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2877 EndValue->setName("ind.end"); 2878 } 2879 2880 // The new PHI merges the original incoming value, in case of a bypass, 2881 // or the value at the end of the vectorized loop. 2882 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2883 2884 // Fix the scalar body counter (PHI node). 2885 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2886 2887 // The old induction's phi node in the scalar body needs the truncated 2888 // value. 2889 for (BasicBlock *BB : LoopBypassBlocks) 2890 BCResumeVal->addIncoming(II.getStartValue(), BB); 2891 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2892 } 2893 2894 // We need the OrigLoop (scalar loop part) latch terminator to help 2895 // produce correct debug info for the middle block BB instructions. 2896 // The legality check stage guarantees that the loop will have a single 2897 // latch. 2898 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 2899 "Scalar loop latch terminator isn't a branch"); 2900 BranchInst *ScalarLatchBr = 2901 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 2902 2903 // Add a check in the middle block to see if we have completed 2904 // all of the iterations in the first vector loop. 2905 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2906 // If tail is to be folded, we know we don't need to run the remainder. 2907 Value *CmpN = Builder.getTrue(); 2908 if (!Cost->foldTailByMasking()) { 2909 CmpN = 2910 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2911 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2912 2913 // Provide correct stepping behaviour by using the same DebugLoc as the 2914 // scalar loop latch branch cmp if it exists. 2915 if (CmpInst *ScalarLatchCmp = 2916 dyn_cast_or_null<CmpInst>(ScalarLatchBr->getCondition())) 2917 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchCmp->getDebugLoc()); 2918 } 2919 2920 BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN); 2921 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 2922 ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst); 2923 2924 // Get ready to start creating new instructions into the vectorized body. 2925 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2926 2927 // Save the state. 2928 LoopVectorPreHeader = Lp->getLoopPreheader(); 2929 LoopScalarPreHeader = ScalarPH; 2930 LoopMiddleBlock = MiddleBlock; 2931 LoopExitBlock = ExitBlock; 2932 LoopVectorBody = VecBody; 2933 LoopScalarBody = OldBasicBlock; 2934 2935 Optional<MDNode *> VectorizedLoopID = 2936 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 2937 LLVMLoopVectorizeFollowupVectorized}); 2938 if (VectorizedLoopID.hasValue()) { 2939 Lp->setLoopID(VectorizedLoopID.getValue()); 2940 2941 // Do not setAlreadyVectorized if loop attributes have been defined 2942 // explicitly. 2943 return LoopVectorPreHeader; 2944 } 2945 2946 // Keep all loop hints from the original loop on the vector loop (we'll 2947 // replace the vectorizer-specific hints below). 2948 if (MDNode *LID = OrigLoop->getLoopID()) 2949 Lp->setLoopID(LID); 2950 2951 LoopVectorizeHints Hints(Lp, true, *ORE); 2952 Hints.setAlreadyVectorized(); 2953 2954 return LoopVectorPreHeader; 2955 } 2956 2957 // Fix up external users of the induction variable. At this point, we are 2958 // in LCSSA form, with all external PHIs that use the IV having one input value, 2959 // coming from the remainder loop. We need those PHIs to also have a correct 2960 // value for the IV when arriving directly from the middle block. 2961 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2962 const InductionDescriptor &II, 2963 Value *CountRoundDown, Value *EndValue, 2964 BasicBlock *MiddleBlock) { 2965 // There are two kinds of external IV usages - those that use the value 2966 // computed in the last iteration (the PHI) and those that use the penultimate 2967 // value (the value that feeds into the phi from the loop latch). 2968 // We allow both, but they, obviously, have different values. 2969 2970 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2971 2972 DenseMap<Value *, Value *> MissingVals; 2973 2974 // An external user of the last iteration's value should see the value that 2975 // the remainder loop uses to initialize its own IV. 2976 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2977 for (User *U : PostInc->users()) { 2978 Instruction *UI = cast<Instruction>(U); 2979 if (!OrigLoop->contains(UI)) { 2980 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2981 MissingVals[UI] = EndValue; 2982 } 2983 } 2984 2985 // An external user of the penultimate value need to see EndValue - Step. 2986 // The simplest way to get this is to recompute it from the constituent SCEVs, 2987 // that is Start + (Step * (CRD - 1)). 2988 for (User *U : OrigPhi->users()) { 2989 auto *UI = cast<Instruction>(U); 2990 if (!OrigLoop->contains(UI)) { 2991 const DataLayout &DL = 2992 OrigLoop->getHeader()->getModule()->getDataLayout(); 2993 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2994 2995 IRBuilder<> B(MiddleBlock->getTerminator()); 2996 Value *CountMinusOne = B.CreateSub( 2997 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 2998 Value *CMO = 2999 !II.getStep()->getType()->isIntegerTy() 3000 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3001 II.getStep()->getType()) 3002 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3003 CMO->setName("cast.cmo"); 3004 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3005 Escape->setName("ind.escape"); 3006 MissingVals[UI] = Escape; 3007 } 3008 } 3009 3010 for (auto &I : MissingVals) { 3011 PHINode *PHI = cast<PHINode>(I.first); 3012 // One corner case we have to handle is two IVs "chasing" each-other, 3013 // that is %IV2 = phi [...], [ %IV1, %latch ] 3014 // In this case, if IV1 has an external use, we need to avoid adding both 3015 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3016 // don't already have an incoming value for the middle block. 3017 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3018 PHI->addIncoming(I.second, MiddleBlock); 3019 } 3020 } 3021 3022 namespace { 3023 3024 struct CSEDenseMapInfo { 3025 static bool canHandle(const Instruction *I) { 3026 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3027 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3028 } 3029 3030 static inline Instruction *getEmptyKey() { 3031 return DenseMapInfo<Instruction *>::getEmptyKey(); 3032 } 3033 3034 static inline Instruction *getTombstoneKey() { 3035 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3036 } 3037 3038 static unsigned getHashValue(const Instruction *I) { 3039 assert(canHandle(I) && "Unknown instruction!"); 3040 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3041 I->value_op_end())); 3042 } 3043 3044 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3045 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3046 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3047 return LHS == RHS; 3048 return LHS->isIdenticalTo(RHS); 3049 } 3050 }; 3051 3052 } // end anonymous namespace 3053 3054 ///Perform cse of induction variable instructions. 3055 static void cse(BasicBlock *BB) { 3056 // Perform simple cse. 3057 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3058 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3059 Instruction *In = &*I++; 3060 3061 if (!CSEDenseMapInfo::canHandle(In)) 3062 continue; 3063 3064 // Check if we can replace this instruction with any of the 3065 // visited instructions. 3066 if (Instruction *V = CSEMap.lookup(In)) { 3067 In->replaceAllUsesWith(V); 3068 In->eraseFromParent(); 3069 continue; 3070 } 3071 3072 CSEMap[In] = In; 3073 } 3074 } 3075 3076 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3077 unsigned VF, 3078 bool &NeedToScalarize) { 3079 Function *F = CI->getCalledFunction(); 3080 StringRef FnName = CI->getCalledFunction()->getName(); 3081 Type *ScalarRetTy = CI->getType(); 3082 SmallVector<Type *, 4> Tys, ScalarTys; 3083 for (auto &ArgOp : CI->arg_operands()) 3084 ScalarTys.push_back(ArgOp->getType()); 3085 3086 // Estimate cost of scalarized vector call. The source operands are assumed 3087 // to be vectors, so we need to extract individual elements from there, 3088 // execute VF scalar calls, and then gather the result into the vector return 3089 // value. 3090 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3091 if (VF == 1) 3092 return ScalarCallCost; 3093 3094 // Compute corresponding vector type for return value and arguments. 3095 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3096 for (Type *ScalarTy : ScalarTys) 3097 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3098 3099 // Compute costs of unpacking argument values for the scalar calls and 3100 // packing the return values to a vector. 3101 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3102 3103 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3104 3105 // If we can't emit a vector call for this function, then the currently found 3106 // cost is the cost we need to return. 3107 NeedToScalarize = true; 3108 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3109 return Cost; 3110 3111 // If the corresponding vector cost is cheaper, return its cost. 3112 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3113 if (VectorCallCost < Cost) { 3114 NeedToScalarize = false; 3115 return VectorCallCost; 3116 } 3117 return Cost; 3118 } 3119 3120 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3121 unsigned VF) { 3122 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3123 assert(ID && "Expected intrinsic call!"); 3124 3125 FastMathFlags FMF; 3126 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3127 FMF = FPMO->getFastMathFlags(); 3128 3129 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3130 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3131 } 3132 3133 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3134 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3135 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3136 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3137 } 3138 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3139 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3140 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3141 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3142 } 3143 3144 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3145 // For every instruction `I` in MinBWs, truncate the operands, create a 3146 // truncated version of `I` and reextend its result. InstCombine runs 3147 // later and will remove any ext/trunc pairs. 3148 SmallPtrSet<Value *, 4> Erased; 3149 for (const auto &KV : Cost->getMinimalBitwidths()) { 3150 // If the value wasn't vectorized, we must maintain the original scalar 3151 // type. The absence of the value from VectorLoopValueMap indicates that it 3152 // wasn't vectorized. 3153 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3154 continue; 3155 for (unsigned Part = 0; Part < UF; ++Part) { 3156 Value *I = getOrCreateVectorValue(KV.first, Part); 3157 if (Erased.find(I) != Erased.end() || I->use_empty() || 3158 !isa<Instruction>(I)) 3159 continue; 3160 Type *OriginalTy = I->getType(); 3161 Type *ScalarTruncatedTy = 3162 IntegerType::get(OriginalTy->getContext(), KV.second); 3163 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3164 OriginalTy->getVectorNumElements()); 3165 if (TruncatedTy == OriginalTy) 3166 continue; 3167 3168 IRBuilder<> B(cast<Instruction>(I)); 3169 auto ShrinkOperand = [&](Value *V) -> Value * { 3170 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3171 if (ZI->getSrcTy() == TruncatedTy) 3172 return ZI->getOperand(0); 3173 return B.CreateZExtOrTrunc(V, TruncatedTy); 3174 }; 3175 3176 // The actual instruction modification depends on the instruction type, 3177 // unfortunately. 3178 Value *NewI = nullptr; 3179 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3180 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3181 ShrinkOperand(BO->getOperand(1))); 3182 3183 // Any wrapping introduced by shrinking this operation shouldn't be 3184 // considered undefined behavior. So, we can't unconditionally copy 3185 // arithmetic wrapping flags to NewI. 3186 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3187 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3188 NewI = 3189 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3190 ShrinkOperand(CI->getOperand(1))); 3191 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3192 NewI = B.CreateSelect(SI->getCondition(), 3193 ShrinkOperand(SI->getTrueValue()), 3194 ShrinkOperand(SI->getFalseValue())); 3195 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3196 switch (CI->getOpcode()) { 3197 default: 3198 llvm_unreachable("Unhandled cast!"); 3199 case Instruction::Trunc: 3200 NewI = ShrinkOperand(CI->getOperand(0)); 3201 break; 3202 case Instruction::SExt: 3203 NewI = B.CreateSExtOrTrunc( 3204 CI->getOperand(0), 3205 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3206 break; 3207 case Instruction::ZExt: 3208 NewI = B.CreateZExtOrTrunc( 3209 CI->getOperand(0), 3210 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3211 break; 3212 } 3213 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3214 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3215 auto *O0 = B.CreateZExtOrTrunc( 3216 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3217 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3218 auto *O1 = B.CreateZExtOrTrunc( 3219 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3220 3221 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3222 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3223 // Don't do anything with the operands, just extend the result. 3224 continue; 3225 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3226 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3227 auto *O0 = B.CreateZExtOrTrunc( 3228 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3229 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3230 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3231 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3232 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3233 auto *O0 = B.CreateZExtOrTrunc( 3234 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3235 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3236 } else { 3237 // If we don't know what to do, be conservative and don't do anything. 3238 continue; 3239 } 3240 3241 // Lastly, extend the result. 3242 NewI->takeName(cast<Instruction>(I)); 3243 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3244 I->replaceAllUsesWith(Res); 3245 cast<Instruction>(I)->eraseFromParent(); 3246 Erased.insert(I); 3247 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3248 } 3249 } 3250 3251 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3252 for (const auto &KV : Cost->getMinimalBitwidths()) { 3253 // If the value wasn't vectorized, we must maintain the original scalar 3254 // type. The absence of the value from VectorLoopValueMap indicates that it 3255 // wasn't vectorized. 3256 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3257 continue; 3258 for (unsigned Part = 0; Part < UF; ++Part) { 3259 Value *I = getOrCreateVectorValue(KV.first, Part); 3260 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3261 if (Inst && Inst->use_empty()) { 3262 Value *NewI = Inst->getOperand(0); 3263 Inst->eraseFromParent(); 3264 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3265 } 3266 } 3267 } 3268 } 3269 3270 void InnerLoopVectorizer::fixVectorizedLoop() { 3271 // Insert truncates and extends for any truncated instructions as hints to 3272 // InstCombine. 3273 if (VF > 1) 3274 truncateToMinimalBitwidths(); 3275 3276 // Fix widened non-induction PHIs by setting up the PHI operands. 3277 if (OrigPHIsToFix.size()) { 3278 assert(EnableVPlanNativePath && 3279 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3280 fixNonInductionPHIs(); 3281 } 3282 3283 // At this point every instruction in the original loop is widened to a 3284 // vector form. Now we need to fix the recurrences in the loop. These PHI 3285 // nodes are currently empty because we did not want to introduce cycles. 3286 // This is the second stage of vectorizing recurrences. 3287 fixCrossIterationPHIs(); 3288 3289 // Update the dominator tree. 3290 // 3291 // FIXME: After creating the structure of the new loop, the dominator tree is 3292 // no longer up-to-date, and it remains that way until we update it 3293 // here. An out-of-date dominator tree is problematic for SCEV, 3294 // because SCEVExpander uses it to guide code generation. The 3295 // vectorizer use SCEVExpanders in several places. Instead, we should 3296 // keep the dominator tree up-to-date as we go. 3297 updateAnalysis(); 3298 3299 // Fix-up external users of the induction variables. 3300 for (auto &Entry : *Legal->getInductionVars()) 3301 fixupIVUsers(Entry.first, Entry.second, 3302 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3303 IVEndValues[Entry.first], LoopMiddleBlock); 3304 3305 fixLCSSAPHIs(); 3306 for (Instruction *PI : PredicatedInstructions) 3307 sinkScalarOperands(&*PI); 3308 3309 // Remove redundant induction instructions. 3310 cse(LoopVectorBody); 3311 } 3312 3313 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3314 // In order to support recurrences we need to be able to vectorize Phi nodes. 3315 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3316 // stage #2: We now need to fix the recurrences by adding incoming edges to 3317 // the currently empty PHI nodes. At this point every instruction in the 3318 // original loop is widened to a vector form so we can use them to construct 3319 // the incoming edges. 3320 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3321 // Handle first-order recurrences and reductions that need to be fixed. 3322 if (Legal->isFirstOrderRecurrence(&Phi)) 3323 fixFirstOrderRecurrence(&Phi); 3324 else if (Legal->isReductionVariable(&Phi)) 3325 fixReduction(&Phi); 3326 } 3327 } 3328 3329 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3330 // This is the second phase of vectorizing first-order recurrences. An 3331 // overview of the transformation is described below. Suppose we have the 3332 // following loop. 3333 // 3334 // for (int i = 0; i < n; ++i) 3335 // b[i] = a[i] - a[i - 1]; 3336 // 3337 // There is a first-order recurrence on "a". For this loop, the shorthand 3338 // scalar IR looks like: 3339 // 3340 // scalar.ph: 3341 // s_init = a[-1] 3342 // br scalar.body 3343 // 3344 // scalar.body: 3345 // i = phi [0, scalar.ph], [i+1, scalar.body] 3346 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3347 // s2 = a[i] 3348 // b[i] = s2 - s1 3349 // br cond, scalar.body, ... 3350 // 3351 // In this example, s1 is a recurrence because it's value depends on the 3352 // previous iteration. In the first phase of vectorization, we created a 3353 // temporary value for s1. We now complete the vectorization and produce the 3354 // shorthand vector IR shown below (for VF = 4, UF = 1). 3355 // 3356 // vector.ph: 3357 // v_init = vector(..., ..., ..., a[-1]) 3358 // br vector.body 3359 // 3360 // vector.body 3361 // i = phi [0, vector.ph], [i+4, vector.body] 3362 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3363 // v2 = a[i, i+1, i+2, i+3]; 3364 // v3 = vector(v1(3), v2(0, 1, 2)) 3365 // b[i, i+1, i+2, i+3] = v2 - v3 3366 // br cond, vector.body, middle.block 3367 // 3368 // middle.block: 3369 // x = v2(3) 3370 // br scalar.ph 3371 // 3372 // scalar.ph: 3373 // s_init = phi [x, middle.block], [a[-1], otherwise] 3374 // br scalar.body 3375 // 3376 // After execution completes the vector loop, we extract the next value of 3377 // the recurrence (x) to use as the initial value in the scalar loop. 3378 3379 // Get the original loop preheader and single loop latch. 3380 auto *Preheader = OrigLoop->getLoopPreheader(); 3381 auto *Latch = OrigLoop->getLoopLatch(); 3382 3383 // Get the initial and previous values of the scalar recurrence. 3384 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3385 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3386 3387 // Create a vector from the initial value. 3388 auto *VectorInit = ScalarInit; 3389 if (VF > 1) { 3390 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3391 VectorInit = Builder.CreateInsertElement( 3392 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3393 Builder.getInt32(VF - 1), "vector.recur.init"); 3394 } 3395 3396 // We constructed a temporary phi node in the first phase of vectorization. 3397 // This phi node will eventually be deleted. 3398 Builder.SetInsertPoint( 3399 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3400 3401 // Create a phi node for the new recurrence. The current value will either be 3402 // the initial value inserted into a vector or loop-varying vector value. 3403 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3404 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3405 3406 // Get the vectorized previous value of the last part UF - 1. It appears last 3407 // among all unrolled iterations, due to the order of their construction. 3408 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3409 3410 // Set the insertion point after the previous value if it is an instruction. 3411 // Note that the previous value may have been constant-folded so it is not 3412 // guaranteed to be an instruction in the vector loop. Also, if the previous 3413 // value is a phi node, we should insert after all the phi nodes to avoid 3414 // breaking basic block verification. 3415 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3416 isa<PHINode>(PreviousLastPart)) 3417 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3418 else 3419 Builder.SetInsertPoint( 3420 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3421 3422 // We will construct a vector for the recurrence by combining the values for 3423 // the current and previous iterations. This is the required shuffle mask. 3424 SmallVector<Constant *, 8> ShuffleMask(VF); 3425 ShuffleMask[0] = Builder.getInt32(VF - 1); 3426 for (unsigned I = 1; I < VF; ++I) 3427 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3428 3429 // The vector from which to take the initial value for the current iteration 3430 // (actual or unrolled). Initially, this is the vector phi node. 3431 Value *Incoming = VecPhi; 3432 3433 // Shuffle the current and previous vector and update the vector parts. 3434 for (unsigned Part = 0; Part < UF; ++Part) { 3435 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3436 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3437 auto *Shuffle = 3438 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3439 ConstantVector::get(ShuffleMask)) 3440 : Incoming; 3441 PhiPart->replaceAllUsesWith(Shuffle); 3442 cast<Instruction>(PhiPart)->eraseFromParent(); 3443 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3444 Incoming = PreviousPart; 3445 } 3446 3447 // Fix the latch value of the new recurrence in the vector loop. 3448 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3449 3450 // Extract the last vector element in the middle block. This will be the 3451 // initial value for the recurrence when jumping to the scalar loop. 3452 auto *ExtractForScalar = Incoming; 3453 if (VF > 1) { 3454 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3455 ExtractForScalar = Builder.CreateExtractElement( 3456 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3457 } 3458 // Extract the second last element in the middle block if the 3459 // Phi is used outside the loop. We need to extract the phi itself 3460 // and not the last element (the phi update in the current iteration). This 3461 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3462 // when the scalar loop is not run at all. 3463 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3464 if (VF > 1) 3465 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3466 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3467 // When loop is unrolled without vectorizing, initialize 3468 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3469 // `Incoming`. This is analogous to the vectorized case above: extracting the 3470 // second last element when VF > 1. 3471 else if (UF > 1) 3472 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3473 3474 // Fix the initial value of the original recurrence in the scalar loop. 3475 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3476 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3477 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3478 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3479 Start->addIncoming(Incoming, BB); 3480 } 3481 3482 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3483 Phi->setName("scalar.recur"); 3484 3485 // Finally, fix users of the recurrence outside the loop. The users will need 3486 // either the last value of the scalar recurrence or the last value of the 3487 // vector recurrence we extracted in the middle block. Since the loop is in 3488 // LCSSA form, we just need to find all the phi nodes for the original scalar 3489 // recurrence in the exit block, and then add an edge for the middle block. 3490 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3491 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3492 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3493 } 3494 } 3495 } 3496 3497 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3498 Constant *Zero = Builder.getInt32(0); 3499 3500 // Get it's reduction variable descriptor. 3501 assert(Legal->isReductionVariable(Phi) && 3502 "Unable to find the reduction variable"); 3503 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3504 3505 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3506 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3507 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3508 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3509 RdxDesc.getMinMaxRecurrenceKind(); 3510 setDebugLocFromInst(Builder, ReductionStartValue); 3511 3512 // We need to generate a reduction vector from the incoming scalar. 3513 // To do so, we need to generate the 'identity' vector and override 3514 // one of the elements with the incoming scalar reduction. We need 3515 // to do it in the vector-loop preheader. 3516 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3517 3518 // This is the vector-clone of the value that leaves the loop. 3519 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3520 3521 // Find the reduction identity variable. Zero for addition, or, xor, 3522 // one for multiplication, -1 for And. 3523 Value *Identity; 3524 Value *VectorStart; 3525 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3526 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3527 // MinMax reduction have the start value as their identify. 3528 if (VF == 1) { 3529 VectorStart = Identity = ReductionStartValue; 3530 } else { 3531 VectorStart = Identity = 3532 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3533 } 3534 } else { 3535 // Handle other reduction kinds: 3536 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3537 RK, VecTy->getScalarType()); 3538 if (VF == 1) { 3539 Identity = Iden; 3540 // This vector is the Identity vector where the first element is the 3541 // incoming scalar reduction. 3542 VectorStart = ReductionStartValue; 3543 } else { 3544 Identity = ConstantVector::getSplat(VF, Iden); 3545 3546 // This vector is the Identity vector where the first element is the 3547 // incoming scalar reduction. 3548 VectorStart = 3549 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3550 } 3551 } 3552 3553 // Fix the vector-loop phi. 3554 3555 // Reductions do not have to start at zero. They can start with 3556 // any loop invariant values. 3557 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3558 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3559 for (unsigned Part = 0; Part < UF; ++Part) { 3560 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3561 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3562 // Make sure to add the reduction stat value only to the 3563 // first unroll part. 3564 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3565 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3566 cast<PHINode>(VecRdxPhi) 3567 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3568 } 3569 3570 // Before each round, move the insertion point right between 3571 // the PHIs and the values we are going to write. 3572 // This allows us to write both PHINodes and the extractelement 3573 // instructions. 3574 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3575 3576 setDebugLocFromInst(Builder, LoopExitInst); 3577 3578 // If the vector reduction can be performed in a smaller type, we truncate 3579 // then extend the loop exit value to enable InstCombine to evaluate the 3580 // entire expression in the smaller type. 3581 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3582 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3583 Builder.SetInsertPoint( 3584 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3585 VectorParts RdxParts(UF); 3586 for (unsigned Part = 0; Part < UF; ++Part) { 3587 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3588 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3589 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3590 : Builder.CreateZExt(Trunc, VecTy); 3591 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3592 UI != RdxParts[Part]->user_end();) 3593 if (*UI != Trunc) { 3594 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3595 RdxParts[Part] = Extnd; 3596 } else { 3597 ++UI; 3598 } 3599 } 3600 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3601 for (unsigned Part = 0; Part < UF; ++Part) { 3602 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3603 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3604 } 3605 } 3606 3607 // Reduce all of the unrolled parts into a single vector. 3608 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3609 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3610 setDebugLocFromInst(Builder, ReducedPartRdx); 3611 for (unsigned Part = 1; Part < UF; ++Part) { 3612 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3613 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3614 // Floating point operations had to be 'fast' to enable the reduction. 3615 ReducedPartRdx = addFastMathFlag( 3616 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3617 ReducedPartRdx, "bin.rdx"), 3618 RdxDesc.getFastMathFlags()); 3619 else 3620 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3621 RdxPart); 3622 } 3623 3624 if (VF > 1) { 3625 bool NoNaN = Legal->hasFunNoNaNAttr(); 3626 ReducedPartRdx = 3627 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3628 // If the reduction can be performed in a smaller type, we need to extend 3629 // the reduction to the wider type before we branch to the original loop. 3630 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3631 ReducedPartRdx = 3632 RdxDesc.isSigned() 3633 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3634 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3635 } 3636 3637 // Create a phi node that merges control-flow from the backedge-taken check 3638 // block and the middle block. 3639 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3640 LoopScalarPreHeader->getTerminator()); 3641 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3642 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3643 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3644 3645 // Now, we need to fix the users of the reduction variable 3646 // inside and outside of the scalar remainder loop. 3647 // We know that the loop is in LCSSA form. We need to update the 3648 // PHI nodes in the exit blocks. 3649 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3650 // All PHINodes need to have a single entry edge, or two if 3651 // we already fixed them. 3652 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3653 3654 // We found a reduction value exit-PHI. Update it with the 3655 // incoming bypass edge. 3656 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3657 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3658 } // end of the LCSSA phi scan. 3659 3660 // Fix the scalar loop reduction variable with the incoming reduction sum 3661 // from the vector body and from the backedge value. 3662 int IncomingEdgeBlockIdx = 3663 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3664 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3665 // Pick the other block. 3666 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3667 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3668 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3669 } 3670 3671 void InnerLoopVectorizer::fixLCSSAPHIs() { 3672 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3673 if (LCSSAPhi.getNumIncomingValues() == 1) { 3674 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3675 // Non-instruction incoming values will have only one value. 3676 unsigned LastLane = 0; 3677 if (isa<Instruction>(IncomingValue)) 3678 LastLane = Cost->isUniformAfterVectorization( 3679 cast<Instruction>(IncomingValue), VF) 3680 ? 0 3681 : VF - 1; 3682 // Can be a loop invariant incoming value or the last scalar value to be 3683 // extracted from the vectorized loop. 3684 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3685 Value *lastIncomingValue = 3686 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3687 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3688 } 3689 } 3690 } 3691 3692 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3693 // The basic block and loop containing the predicated instruction. 3694 auto *PredBB = PredInst->getParent(); 3695 auto *VectorLoop = LI->getLoopFor(PredBB); 3696 3697 // Initialize a worklist with the operands of the predicated instruction. 3698 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3699 3700 // Holds instructions that we need to analyze again. An instruction may be 3701 // reanalyzed if we don't yet know if we can sink it or not. 3702 SmallVector<Instruction *, 8> InstsToReanalyze; 3703 3704 // Returns true if a given use occurs in the predicated block. Phi nodes use 3705 // their operands in their corresponding predecessor blocks. 3706 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3707 auto *I = cast<Instruction>(U.getUser()); 3708 BasicBlock *BB = I->getParent(); 3709 if (auto *Phi = dyn_cast<PHINode>(I)) 3710 BB = Phi->getIncomingBlock( 3711 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3712 return BB == PredBB; 3713 }; 3714 3715 // Iteratively sink the scalarized operands of the predicated instruction 3716 // into the block we created for it. When an instruction is sunk, it's 3717 // operands are then added to the worklist. The algorithm ends after one pass 3718 // through the worklist doesn't sink a single instruction. 3719 bool Changed; 3720 do { 3721 // Add the instructions that need to be reanalyzed to the worklist, and 3722 // reset the changed indicator. 3723 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3724 InstsToReanalyze.clear(); 3725 Changed = false; 3726 3727 while (!Worklist.empty()) { 3728 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3729 3730 // We can't sink an instruction if it is a phi node, is already in the 3731 // predicated block, is not in the loop, or may have side effects. 3732 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3733 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3734 continue; 3735 3736 // It's legal to sink the instruction if all its uses occur in the 3737 // predicated block. Otherwise, there's nothing to do yet, and we may 3738 // need to reanalyze the instruction. 3739 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3740 InstsToReanalyze.push_back(I); 3741 continue; 3742 } 3743 3744 // Move the instruction to the beginning of the predicated block, and add 3745 // it's operands to the worklist. 3746 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3747 Worklist.insert(I->op_begin(), I->op_end()); 3748 3749 // The sinking may have enabled other instructions to be sunk, so we will 3750 // need to iterate. 3751 Changed = true; 3752 } 3753 } while (Changed); 3754 } 3755 3756 void InnerLoopVectorizer::fixNonInductionPHIs() { 3757 for (PHINode *OrigPhi : OrigPHIsToFix) { 3758 PHINode *NewPhi = 3759 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3760 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3761 3762 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3763 predecessors(OrigPhi->getParent())); 3764 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3765 predecessors(NewPhi->getParent())); 3766 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3767 "Scalar and Vector BB should have the same number of predecessors"); 3768 3769 // The insertion point in Builder may be invalidated by the time we get 3770 // here. Force the Builder insertion point to something valid so that we do 3771 // not run into issues during insertion point restore in 3772 // getOrCreateVectorValue calls below. 3773 Builder.SetInsertPoint(NewPhi); 3774 3775 // The predecessor order is preserved and we can rely on mapping between 3776 // scalar and vector block predecessors. 3777 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3778 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3779 3780 // When looking up the new scalar/vector values to fix up, use incoming 3781 // values from original phi. 3782 Value *ScIncV = 3783 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3784 3785 // Scalar incoming value may need a broadcast 3786 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3787 NewPhi->addIncoming(NewIncV, NewPredBB); 3788 } 3789 } 3790 } 3791 3792 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3793 unsigned VF) { 3794 PHINode *P = cast<PHINode>(PN); 3795 if (EnableVPlanNativePath) { 3796 // Currently we enter here in the VPlan-native path for non-induction 3797 // PHIs where all control flow is uniform. We simply widen these PHIs. 3798 // Create a vector phi with no operands - the vector phi operands will be 3799 // set at the end of vector code generation. 3800 Type *VecTy = 3801 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3802 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3803 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3804 OrigPHIsToFix.push_back(P); 3805 3806 return; 3807 } 3808 3809 assert(PN->getParent() == OrigLoop->getHeader() && 3810 "Non-header phis should have been handled elsewhere"); 3811 3812 // In order to support recurrences we need to be able to vectorize Phi nodes. 3813 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3814 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3815 // this value when we vectorize all of the instructions that use the PHI. 3816 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3817 for (unsigned Part = 0; Part < UF; ++Part) { 3818 // This is phase one of vectorizing PHIs. 3819 Type *VecTy = 3820 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3821 Value *EntryPart = PHINode::Create( 3822 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3823 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3824 } 3825 return; 3826 } 3827 3828 setDebugLocFromInst(Builder, P); 3829 3830 // This PHINode must be an induction variable. 3831 // Make sure that we know about it. 3832 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3833 3834 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3835 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3836 3837 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3838 // which can be found from the original scalar operations. 3839 switch (II.getKind()) { 3840 case InductionDescriptor::IK_NoInduction: 3841 llvm_unreachable("Unknown induction"); 3842 case InductionDescriptor::IK_IntInduction: 3843 case InductionDescriptor::IK_FpInduction: 3844 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3845 case InductionDescriptor::IK_PtrInduction: { 3846 // Handle the pointer induction variable case. 3847 assert(P->getType()->isPointerTy() && "Unexpected type."); 3848 // This is the normalized GEP that starts counting at zero. 3849 Value *PtrInd = Induction; 3850 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3851 // Determine the number of scalars we need to generate for each unroll 3852 // iteration. If the instruction is uniform, we only need to generate the 3853 // first lane. Otherwise, we generate all VF values. 3854 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3855 // These are the scalar results. Notice that we don't generate vector GEPs 3856 // because scalar GEPs result in better code. 3857 for (unsigned Part = 0; Part < UF; ++Part) { 3858 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3859 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3860 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3861 Value *SclrGep = 3862 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3863 SclrGep->setName("next.gep"); 3864 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3865 } 3866 } 3867 return; 3868 } 3869 } 3870 } 3871 3872 /// A helper function for checking whether an integer division-related 3873 /// instruction may divide by zero (in which case it must be predicated if 3874 /// executed conditionally in the scalar code). 3875 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3876 /// Non-zero divisors that are non compile-time constants will not be 3877 /// converted into multiplication, so we will still end up scalarizing 3878 /// the division, but can do so w/o predication. 3879 static bool mayDivideByZero(Instruction &I) { 3880 assert((I.getOpcode() == Instruction::UDiv || 3881 I.getOpcode() == Instruction::SDiv || 3882 I.getOpcode() == Instruction::URem || 3883 I.getOpcode() == Instruction::SRem) && 3884 "Unexpected instruction"); 3885 Value *Divisor = I.getOperand(1); 3886 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3887 return !CInt || CInt->isZero(); 3888 } 3889 3890 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3891 switch (I.getOpcode()) { 3892 case Instruction::Br: 3893 case Instruction::PHI: 3894 llvm_unreachable("This instruction is handled by a different recipe."); 3895 case Instruction::GetElementPtr: { 3896 // Construct a vector GEP by widening the operands of the scalar GEP as 3897 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3898 // results in a vector of pointers when at least one operand of the GEP 3899 // is vector-typed. Thus, to keep the representation compact, we only use 3900 // vector-typed operands for loop-varying values. 3901 auto *GEP = cast<GetElementPtrInst>(&I); 3902 3903 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3904 // If we are vectorizing, but the GEP has only loop-invariant operands, 3905 // the GEP we build (by only using vector-typed operands for 3906 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3907 // produce a vector of pointers, we need to either arbitrarily pick an 3908 // operand to broadcast, or broadcast a clone of the original GEP. 3909 // Here, we broadcast a clone of the original. 3910 // 3911 // TODO: If at some point we decide to scalarize instructions having 3912 // loop-invariant operands, this special case will no longer be 3913 // required. We would add the scalarization decision to 3914 // collectLoopScalars() and teach getVectorValue() to broadcast 3915 // the lane-zero scalar value. 3916 auto *Clone = Builder.Insert(GEP->clone()); 3917 for (unsigned Part = 0; Part < UF; ++Part) { 3918 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3919 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3920 addMetadata(EntryPart, GEP); 3921 } 3922 } else { 3923 // If the GEP has at least one loop-varying operand, we are sure to 3924 // produce a vector of pointers. But if we are only unrolling, we want 3925 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3926 // produce with the code below will be scalar (if VF == 1) or vector 3927 // (otherwise). Note that for the unroll-only case, we still maintain 3928 // values in the vector mapping with initVector, as we do for other 3929 // instructions. 3930 for (unsigned Part = 0; Part < UF; ++Part) { 3931 // The pointer operand of the new GEP. If it's loop-invariant, we 3932 // won't broadcast it. 3933 auto *Ptr = 3934 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3935 ? GEP->getPointerOperand() 3936 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3937 3938 // Collect all the indices for the new GEP. If any index is 3939 // loop-invariant, we won't broadcast it. 3940 SmallVector<Value *, 4> Indices; 3941 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3942 if (OrigLoop->isLoopInvariant(U.get())) 3943 Indices.push_back(U.get()); 3944 else 3945 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3946 } 3947 3948 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3949 // but it should be a vector, otherwise. 3950 auto *NewGEP = 3951 GEP->isInBounds() 3952 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 3953 Indices) 3954 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 3955 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3956 "NewGEP is not a pointer vector"); 3957 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3958 addMetadata(NewGEP, GEP); 3959 } 3960 } 3961 3962 break; 3963 } 3964 case Instruction::UDiv: 3965 case Instruction::SDiv: 3966 case Instruction::SRem: 3967 case Instruction::URem: 3968 case Instruction::Add: 3969 case Instruction::FAdd: 3970 case Instruction::Sub: 3971 case Instruction::FSub: 3972 case Instruction::Mul: 3973 case Instruction::FMul: 3974 case Instruction::FDiv: 3975 case Instruction::FRem: 3976 case Instruction::Shl: 3977 case Instruction::LShr: 3978 case Instruction::AShr: 3979 case Instruction::And: 3980 case Instruction::Or: 3981 case Instruction::Xor: { 3982 // Just widen binops. 3983 auto *BinOp = cast<BinaryOperator>(&I); 3984 setDebugLocFromInst(Builder, BinOp); 3985 3986 for (unsigned Part = 0; Part < UF; ++Part) { 3987 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3988 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3989 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3990 3991 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3992 VecOp->copyIRFlags(BinOp); 3993 3994 // Use this vector value for all users of the original instruction. 3995 VectorLoopValueMap.setVectorValue(&I, Part, V); 3996 addMetadata(V, BinOp); 3997 } 3998 3999 break; 4000 } 4001 case Instruction::Select: { 4002 // Widen selects. 4003 // If the selector is loop invariant we can create a select 4004 // instruction with a scalar condition. Otherwise, use vector-select. 4005 auto *SE = PSE.getSE(); 4006 bool InvariantCond = 4007 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4008 setDebugLocFromInst(Builder, &I); 4009 4010 // The condition can be loop invariant but still defined inside the 4011 // loop. This means that we can't just use the original 'cond' value. 4012 // We have to take the 'vectorized' value and pick the first lane. 4013 // Instcombine will make this a no-op. 4014 4015 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4016 4017 for (unsigned Part = 0; Part < UF; ++Part) { 4018 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4019 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4020 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4021 Value *Sel = 4022 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4023 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4024 addMetadata(Sel, &I); 4025 } 4026 4027 break; 4028 } 4029 4030 case Instruction::ICmp: 4031 case Instruction::FCmp: { 4032 // Widen compares. Generate vector compares. 4033 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4034 auto *Cmp = dyn_cast<CmpInst>(&I); 4035 setDebugLocFromInst(Builder, Cmp); 4036 for (unsigned Part = 0; Part < UF; ++Part) { 4037 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4038 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4039 Value *C = nullptr; 4040 if (FCmp) { 4041 // Propagate fast math flags. 4042 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4043 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4044 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4045 } else { 4046 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4047 } 4048 VectorLoopValueMap.setVectorValue(&I, Part, C); 4049 addMetadata(C, &I); 4050 } 4051 4052 break; 4053 } 4054 4055 case Instruction::ZExt: 4056 case Instruction::SExt: 4057 case Instruction::FPToUI: 4058 case Instruction::FPToSI: 4059 case Instruction::FPExt: 4060 case Instruction::PtrToInt: 4061 case Instruction::IntToPtr: 4062 case Instruction::SIToFP: 4063 case Instruction::UIToFP: 4064 case Instruction::Trunc: 4065 case Instruction::FPTrunc: 4066 case Instruction::BitCast: { 4067 auto *CI = dyn_cast<CastInst>(&I); 4068 setDebugLocFromInst(Builder, CI); 4069 4070 /// Vectorize casts. 4071 Type *DestTy = 4072 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4073 4074 for (unsigned Part = 0; Part < UF; ++Part) { 4075 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4076 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4077 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4078 addMetadata(Cast, &I); 4079 } 4080 break; 4081 } 4082 4083 case Instruction::Call: { 4084 // Ignore dbg intrinsics. 4085 if (isa<DbgInfoIntrinsic>(I)) 4086 break; 4087 setDebugLocFromInst(Builder, &I); 4088 4089 Module *M = I.getParent()->getParent()->getParent(); 4090 auto *CI = cast<CallInst>(&I); 4091 4092 StringRef FnName = CI->getCalledFunction()->getName(); 4093 Function *F = CI->getCalledFunction(); 4094 Type *RetTy = ToVectorTy(CI->getType(), VF); 4095 SmallVector<Type *, 4> Tys; 4096 for (Value *ArgOperand : CI->arg_operands()) 4097 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4098 4099 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4100 4101 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4102 // version of the instruction. 4103 // Is it beneficial to perform intrinsic call compared to lib call? 4104 bool NeedToScalarize; 4105 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4106 bool UseVectorIntrinsic = 4107 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4108 assert((UseVectorIntrinsic || !NeedToScalarize) && 4109 "Instruction should be scalarized elsewhere."); 4110 4111 for (unsigned Part = 0; Part < UF; ++Part) { 4112 SmallVector<Value *, 4> Args; 4113 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4114 Value *Arg = CI->getArgOperand(i); 4115 // Some intrinsics have a scalar argument - don't replace it with a 4116 // vector. 4117 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4118 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4119 Args.push_back(Arg); 4120 } 4121 4122 Function *VectorF; 4123 if (UseVectorIntrinsic) { 4124 // Use vector version of the intrinsic. 4125 Type *TysForDecl[] = {CI->getType()}; 4126 if (VF > 1) 4127 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4128 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4129 } else { 4130 // Use vector version of the library call. 4131 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4132 assert(!VFnName.empty() && "Vector function name is empty."); 4133 VectorF = M->getFunction(VFnName); 4134 if (!VectorF) { 4135 // Generate a declaration 4136 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4137 VectorF = 4138 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4139 VectorF->copyAttributesFrom(F); 4140 } 4141 } 4142 assert(VectorF && "Can't create vector function."); 4143 4144 SmallVector<OperandBundleDef, 1> OpBundles; 4145 CI->getOperandBundlesAsDefs(OpBundles); 4146 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4147 4148 if (isa<FPMathOperator>(V)) 4149 V->copyFastMathFlags(CI); 4150 4151 VectorLoopValueMap.setVectorValue(&I, Part, V); 4152 addMetadata(V, &I); 4153 } 4154 4155 break; 4156 } 4157 4158 default: 4159 // This instruction is not vectorized by simple widening. 4160 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4161 llvm_unreachable("Unhandled instruction!"); 4162 } // end of switch. 4163 } 4164 4165 void InnerLoopVectorizer::updateAnalysis() { 4166 // Forget the original basic block. 4167 PSE.getSE()->forgetLoop(OrigLoop); 4168 4169 // DT is not kept up-to-date for outer loop vectorization 4170 if (EnableVPlanNativePath) 4171 return; 4172 4173 // Update the dominator tree information. 4174 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4175 "Entry does not dominate exit."); 4176 4177 DT->addNewBlock(LoopMiddleBlock, 4178 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4179 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4180 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4181 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4182 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4183 } 4184 4185 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4186 // We should not collect Scalars more than once per VF. Right now, this 4187 // function is called from collectUniformsAndScalars(), which already does 4188 // this check. Collecting Scalars for VF=1 does not make any sense. 4189 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4190 "This function should not be visited twice for the same VF"); 4191 4192 SmallSetVector<Instruction *, 8> Worklist; 4193 4194 // These sets are used to seed the analysis with pointers used by memory 4195 // accesses that will remain scalar. 4196 SmallSetVector<Instruction *, 8> ScalarPtrs; 4197 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4198 4199 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4200 // The pointer operands of loads and stores will be scalar as long as the 4201 // memory access is not a gather or scatter operation. The value operand of a 4202 // store will remain scalar if the store is scalarized. 4203 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4204 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4205 assert(WideningDecision != CM_Unknown && 4206 "Widening decision should be ready at this moment"); 4207 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4208 if (Ptr == Store->getValueOperand()) 4209 return WideningDecision == CM_Scalarize; 4210 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4211 "Ptr is neither a value or pointer operand"); 4212 return WideningDecision != CM_GatherScatter; 4213 }; 4214 4215 // A helper that returns true if the given value is a bitcast or 4216 // getelementptr instruction contained in the loop. 4217 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4218 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4219 isa<GetElementPtrInst>(V)) && 4220 !TheLoop->isLoopInvariant(V); 4221 }; 4222 4223 // A helper that evaluates a memory access's use of a pointer. If the use 4224 // will be a scalar use, and the pointer is only used by memory accesses, we 4225 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4226 // PossibleNonScalarPtrs. 4227 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4228 // We only care about bitcast and getelementptr instructions contained in 4229 // the loop. 4230 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4231 return; 4232 4233 // If the pointer has already been identified as scalar (e.g., if it was 4234 // also identified as uniform), there's nothing to do. 4235 auto *I = cast<Instruction>(Ptr); 4236 if (Worklist.count(I)) 4237 return; 4238 4239 // If the use of the pointer will be a scalar use, and all users of the 4240 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4241 // place the pointer in PossibleNonScalarPtrs. 4242 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4243 return isa<LoadInst>(U) || isa<StoreInst>(U); 4244 })) 4245 ScalarPtrs.insert(I); 4246 else 4247 PossibleNonScalarPtrs.insert(I); 4248 }; 4249 4250 // We seed the scalars analysis with three classes of instructions: (1) 4251 // instructions marked uniform-after-vectorization, (2) bitcast and 4252 // getelementptr instructions used by memory accesses requiring a scalar use, 4253 // and (3) pointer induction variables and their update instructions (we 4254 // currently only scalarize these). 4255 // 4256 // (1) Add to the worklist all instructions that have been identified as 4257 // uniform-after-vectorization. 4258 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4259 4260 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4261 // memory accesses requiring a scalar use. The pointer operands of loads and 4262 // stores will be scalar as long as the memory accesses is not a gather or 4263 // scatter operation. The value operand of a store will remain scalar if the 4264 // store is scalarized. 4265 for (auto *BB : TheLoop->blocks()) 4266 for (auto &I : *BB) { 4267 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4268 evaluatePtrUse(Load, Load->getPointerOperand()); 4269 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4270 evaluatePtrUse(Store, Store->getPointerOperand()); 4271 evaluatePtrUse(Store, Store->getValueOperand()); 4272 } 4273 } 4274 for (auto *I : ScalarPtrs) 4275 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4276 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4277 Worklist.insert(I); 4278 } 4279 4280 // (3) Add to the worklist all pointer induction variables and their update 4281 // instructions. 4282 // 4283 // TODO: Once we are able to vectorize pointer induction variables we should 4284 // no longer insert them into the worklist here. 4285 auto *Latch = TheLoop->getLoopLatch(); 4286 for (auto &Induction : *Legal->getInductionVars()) { 4287 auto *Ind = Induction.first; 4288 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4289 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4290 continue; 4291 Worklist.insert(Ind); 4292 Worklist.insert(IndUpdate); 4293 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4294 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4295 << "\n"); 4296 } 4297 4298 // Insert the forced scalars. 4299 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4300 // induction variable when the PHI user is scalarized. 4301 auto ForcedScalar = ForcedScalars.find(VF); 4302 if (ForcedScalar != ForcedScalars.end()) 4303 for (auto *I : ForcedScalar->second) 4304 Worklist.insert(I); 4305 4306 // Expand the worklist by looking through any bitcasts and getelementptr 4307 // instructions we've already identified as scalar. This is similar to the 4308 // expansion step in collectLoopUniforms(); however, here we're only 4309 // expanding to include additional bitcasts and getelementptr instructions. 4310 unsigned Idx = 0; 4311 while (Idx != Worklist.size()) { 4312 Instruction *Dst = Worklist[Idx++]; 4313 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4314 continue; 4315 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4316 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4317 auto *J = cast<Instruction>(U); 4318 return !TheLoop->contains(J) || Worklist.count(J) || 4319 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4320 isScalarUse(J, Src)); 4321 })) { 4322 Worklist.insert(Src); 4323 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4324 } 4325 } 4326 4327 // An induction variable will remain scalar if all users of the induction 4328 // variable and induction variable update remain scalar. 4329 for (auto &Induction : *Legal->getInductionVars()) { 4330 auto *Ind = Induction.first; 4331 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4332 4333 // We already considered pointer induction variables, so there's no reason 4334 // to look at their users again. 4335 // 4336 // TODO: Once we are able to vectorize pointer induction variables we 4337 // should no longer skip over them here. 4338 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4339 continue; 4340 4341 // Determine if all users of the induction variable are scalar after 4342 // vectorization. 4343 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4344 auto *I = cast<Instruction>(U); 4345 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4346 }); 4347 if (!ScalarInd) 4348 continue; 4349 4350 // Determine if all users of the induction variable update instruction are 4351 // scalar after vectorization. 4352 auto ScalarIndUpdate = 4353 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4354 auto *I = cast<Instruction>(U); 4355 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4356 }); 4357 if (!ScalarIndUpdate) 4358 continue; 4359 4360 // The induction variable and its update instruction will remain scalar. 4361 Worklist.insert(Ind); 4362 Worklist.insert(IndUpdate); 4363 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4364 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4365 << "\n"); 4366 } 4367 4368 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4369 } 4370 4371 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4372 if (!blockNeedsPredication(I->getParent())) 4373 return false; 4374 switch(I->getOpcode()) { 4375 default: 4376 break; 4377 case Instruction::Load: 4378 case Instruction::Store: { 4379 if (!Legal->isMaskRequired(I)) 4380 return false; 4381 auto *Ptr = getLoadStorePointerOperand(I); 4382 auto *Ty = getMemInstValueType(I); 4383 // We have already decided how to vectorize this instruction, get that 4384 // result. 4385 if (VF > 1) { 4386 InstWidening WideningDecision = getWideningDecision(I, VF); 4387 assert(WideningDecision != CM_Unknown && 4388 "Widening decision should be ready at this moment"); 4389 return WideningDecision == CM_Scalarize; 4390 } 4391 return isa<LoadInst>(I) ? 4392 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4393 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4394 } 4395 case Instruction::UDiv: 4396 case Instruction::SDiv: 4397 case Instruction::SRem: 4398 case Instruction::URem: 4399 return mayDivideByZero(*I); 4400 } 4401 return false; 4402 } 4403 4404 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4405 unsigned VF) { 4406 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4407 assert(getWideningDecision(I, VF) == CM_Unknown && 4408 "Decision should not be set yet."); 4409 auto *Group = getInterleavedAccessGroup(I); 4410 assert(Group && "Must have a group."); 4411 4412 // Check if masking is required. 4413 // A Group may need masking for one of two reasons: it resides in a block that 4414 // needs predication, or it was decided to use masking to deal with gaps. 4415 bool PredicatedAccessRequiresMasking = 4416 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4417 bool AccessWithGapsRequiresMasking = 4418 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 4419 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4420 return true; 4421 4422 // If masked interleaving is required, we expect that the user/target had 4423 // enabled it, because otherwise it either wouldn't have been created or 4424 // it should have been invalidated by the CostModel. 4425 assert(useMaskedInterleavedAccesses(TTI) && 4426 "Masked interleave-groups for predicated accesses are not enabled."); 4427 4428 auto *Ty = getMemInstValueType(I); 4429 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4430 : TTI.isLegalMaskedStore(Ty); 4431 } 4432 4433 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4434 unsigned VF) { 4435 // Get and ensure we have a valid memory instruction. 4436 LoadInst *LI = dyn_cast<LoadInst>(I); 4437 StoreInst *SI = dyn_cast<StoreInst>(I); 4438 assert((LI || SI) && "Invalid memory instruction"); 4439 4440 auto *Ptr = getLoadStorePointerOperand(I); 4441 4442 // In order to be widened, the pointer should be consecutive, first of all. 4443 if (!Legal->isConsecutivePtr(Ptr)) 4444 return false; 4445 4446 // If the instruction is a store located in a predicated block, it will be 4447 // scalarized. 4448 if (isScalarWithPredication(I)) 4449 return false; 4450 4451 // If the instruction's allocated size doesn't equal it's type size, it 4452 // requires padding and will be scalarized. 4453 auto &DL = I->getModule()->getDataLayout(); 4454 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4455 if (hasIrregularType(ScalarTy, DL, VF)) 4456 return false; 4457 4458 return true; 4459 } 4460 4461 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4462 // We should not collect Uniforms more than once per VF. Right now, 4463 // this function is called from collectUniformsAndScalars(), which 4464 // already does this check. Collecting Uniforms for VF=1 does not make any 4465 // sense. 4466 4467 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4468 "This function should not be visited twice for the same VF"); 4469 4470 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4471 // not analyze again. Uniforms.count(VF) will return 1. 4472 Uniforms[VF].clear(); 4473 4474 // We now know that the loop is vectorizable! 4475 // Collect instructions inside the loop that will remain uniform after 4476 // vectorization. 4477 4478 // Global values, params and instructions outside of current loop are out of 4479 // scope. 4480 auto isOutOfScope = [&](Value *V) -> bool { 4481 Instruction *I = dyn_cast<Instruction>(V); 4482 return (!I || !TheLoop->contains(I)); 4483 }; 4484 4485 SetVector<Instruction *> Worklist; 4486 BasicBlock *Latch = TheLoop->getLoopLatch(); 4487 4488 // Start with the conditional branch. If the branch condition is an 4489 // instruction contained in the loop that is only used by the branch, it is 4490 // uniform. 4491 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4492 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4493 Worklist.insert(Cmp); 4494 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4495 } 4496 4497 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4498 // are pointers that are treated like consecutive pointers during 4499 // vectorization. The pointer operands of interleaved accesses are an 4500 // example. 4501 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4502 4503 // Holds pointer operands of instructions that are possibly non-uniform. 4504 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4505 4506 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4507 InstWidening WideningDecision = getWideningDecision(I, VF); 4508 assert(WideningDecision != CM_Unknown && 4509 "Widening decision should be ready at this moment"); 4510 4511 return (WideningDecision == CM_Widen || 4512 WideningDecision == CM_Widen_Reverse || 4513 WideningDecision == CM_Interleave); 4514 }; 4515 // Iterate over the instructions in the loop, and collect all 4516 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4517 // that a consecutive-like pointer operand will be scalarized, we collect it 4518 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4519 // getelementptr instruction can be used by both vectorized and scalarized 4520 // memory instructions. For example, if a loop loads and stores from the same 4521 // location, but the store is conditional, the store will be scalarized, and 4522 // the getelementptr won't remain uniform. 4523 for (auto *BB : TheLoop->blocks()) 4524 for (auto &I : *BB) { 4525 // If there's no pointer operand, there's nothing to do. 4526 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4527 if (!Ptr) 4528 continue; 4529 4530 // True if all users of Ptr are memory accesses that have Ptr as their 4531 // pointer operand. 4532 auto UsersAreMemAccesses = 4533 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4534 return getLoadStorePointerOperand(U) == Ptr; 4535 }); 4536 4537 // Ensure the memory instruction will not be scalarized or used by 4538 // gather/scatter, making its pointer operand non-uniform. If the pointer 4539 // operand is used by any instruction other than a memory access, we 4540 // conservatively assume the pointer operand may be non-uniform. 4541 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4542 PossibleNonUniformPtrs.insert(Ptr); 4543 4544 // If the memory instruction will be vectorized and its pointer operand 4545 // is consecutive-like, or interleaving - the pointer operand should 4546 // remain uniform. 4547 else 4548 ConsecutiveLikePtrs.insert(Ptr); 4549 } 4550 4551 // Add to the Worklist all consecutive and consecutive-like pointers that 4552 // aren't also identified as possibly non-uniform. 4553 for (auto *V : ConsecutiveLikePtrs) 4554 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4555 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4556 Worklist.insert(V); 4557 } 4558 4559 // Expand Worklist in topological order: whenever a new instruction 4560 // is added , its users should be already inside Worklist. It ensures 4561 // a uniform instruction will only be used by uniform instructions. 4562 unsigned idx = 0; 4563 while (idx != Worklist.size()) { 4564 Instruction *I = Worklist[idx++]; 4565 4566 for (auto OV : I->operand_values()) { 4567 // isOutOfScope operands cannot be uniform instructions. 4568 if (isOutOfScope(OV)) 4569 continue; 4570 // First order recurrence Phi's should typically be considered 4571 // non-uniform. 4572 auto *OP = dyn_cast<PHINode>(OV); 4573 if (OP && Legal->isFirstOrderRecurrence(OP)) 4574 continue; 4575 // If all the users of the operand are uniform, then add the 4576 // operand into the uniform worklist. 4577 auto *OI = cast<Instruction>(OV); 4578 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4579 auto *J = cast<Instruction>(U); 4580 return Worklist.count(J) || 4581 (OI == getLoadStorePointerOperand(J) && 4582 isUniformDecision(J, VF)); 4583 })) { 4584 Worklist.insert(OI); 4585 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4586 } 4587 } 4588 } 4589 4590 // Returns true if Ptr is the pointer operand of a memory access instruction 4591 // I, and I is known to not require scalarization. 4592 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4593 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4594 }; 4595 4596 // For an instruction to be added into Worklist above, all its users inside 4597 // the loop should also be in Worklist. However, this condition cannot be 4598 // true for phi nodes that form a cyclic dependence. We must process phi 4599 // nodes separately. An induction variable will remain uniform if all users 4600 // of the induction variable and induction variable update remain uniform. 4601 // The code below handles both pointer and non-pointer induction variables. 4602 for (auto &Induction : *Legal->getInductionVars()) { 4603 auto *Ind = Induction.first; 4604 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4605 4606 // Determine if all users of the induction variable are uniform after 4607 // vectorization. 4608 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4609 auto *I = cast<Instruction>(U); 4610 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4611 isVectorizedMemAccessUse(I, Ind); 4612 }); 4613 if (!UniformInd) 4614 continue; 4615 4616 // Determine if all users of the induction variable update instruction are 4617 // uniform after vectorization. 4618 auto UniformIndUpdate = 4619 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4620 auto *I = cast<Instruction>(U); 4621 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4622 isVectorizedMemAccessUse(I, IndUpdate); 4623 }); 4624 if (!UniformIndUpdate) 4625 continue; 4626 4627 // The induction variable and its update instruction will remain uniform. 4628 Worklist.insert(Ind); 4629 Worklist.insert(IndUpdate); 4630 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4631 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4632 << "\n"); 4633 } 4634 4635 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4636 } 4637 4638 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4639 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4640 // TODO: It may by useful to do since it's still likely to be dynamically 4641 // uniform if the target can skip. 4642 LLVM_DEBUG( 4643 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4644 4645 ORE->emit( 4646 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4647 << "runtime pointer checks needed. Not enabled for divergent target"); 4648 4649 return None; 4650 } 4651 4652 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4653 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4654 return computeFeasibleMaxVF(OptForSize, TC); 4655 4656 if (Legal->getRuntimePointerChecking()->Need) { 4657 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4658 << "runtime pointer checks needed. Enable vectorization of this " 4659 "loop with '#pragma clang loop vectorize(enable)' when " 4660 "compiling with -Os/-Oz"); 4661 LLVM_DEBUG( 4662 dbgs() 4663 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4664 return None; 4665 } 4666 4667 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4668 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4669 << "runtime SCEV checks needed. Enable vectorization of this " 4670 "loop with '#pragma clang loop vectorize(enable)' when " 4671 "compiling with -Os/-Oz"); 4672 LLVM_DEBUG( 4673 dbgs() 4674 << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); 4675 return None; 4676 } 4677 4678 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4679 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4680 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4681 << "runtime stride == 1 checks needed. Enable vectorization of " 4682 "this loop with '#pragma clang loop vectorize(enable)' when " 4683 "compiling with -Os/-Oz"); 4684 LLVM_DEBUG( 4685 dbgs() 4686 << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); 4687 return None; 4688 } 4689 4690 // If we optimize the program for size, avoid creating the tail loop. 4691 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4692 4693 if (TC == 1) { 4694 ORE->emit(createMissedAnalysis("SingleIterationLoop") 4695 << "loop trip count is one, irrelevant for vectorization"); 4696 LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); 4697 return None; 4698 } 4699 4700 // Record that scalar epilogue is not allowed. 4701 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4702 4703 IsScalarEpilogueAllowed = !OptForSize; 4704 4705 // We don't create an epilogue when optimizing for size. 4706 // Invalidate interleave groups that require an epilogue if we can't mask 4707 // the interleave-group. 4708 if (!useMaskedInterleavedAccesses(TTI)) 4709 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4710 4711 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4712 4713 if (TC > 0 && TC % MaxVF == 0) { 4714 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4715 return MaxVF; 4716 } 4717 4718 // If we don't know the precise trip count, or if the trip count that we 4719 // found modulo the vectorization factor is not zero, try to fold the tail 4720 // by masking. 4721 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4722 if (Legal->canFoldTailByMasking()) { 4723 FoldTailByMasking = true; 4724 return MaxVF; 4725 } 4726 4727 if (TC == 0) { 4728 ORE->emit( 4729 createMissedAnalysis("UnknownLoopCountComplexCFG") 4730 << "unable to calculate the loop count due to complex control flow"); 4731 return None; 4732 } 4733 4734 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4735 << "cannot optimize for size and vectorize at the same time. " 4736 "Enable vectorization of this loop with '#pragma clang loop " 4737 "vectorize(enable)' when compiling with -Os/-Oz"); 4738 return None; 4739 } 4740 4741 unsigned 4742 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4743 unsigned ConstTripCount) { 4744 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4745 unsigned SmallestType, WidestType; 4746 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4747 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4748 4749 // Get the maximum safe dependence distance in bits computed by LAA. 4750 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4751 // the memory accesses that is most restrictive (involved in the smallest 4752 // dependence distance). 4753 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4754 4755 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4756 4757 unsigned MaxVectorSize = WidestRegister / WidestType; 4758 4759 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4760 << " / " << WidestType << " bits.\n"); 4761 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4762 << WidestRegister << " bits.\n"); 4763 4764 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4765 " into one vector!"); 4766 if (MaxVectorSize == 0) { 4767 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4768 MaxVectorSize = 1; 4769 return MaxVectorSize; 4770 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4771 isPowerOf2_32(ConstTripCount)) { 4772 // We need to clamp the VF to be the ConstTripCount. There is no point in 4773 // choosing a higher viable VF as done in the loop below. 4774 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4775 << ConstTripCount << "\n"); 4776 MaxVectorSize = ConstTripCount; 4777 return MaxVectorSize; 4778 } 4779 4780 unsigned MaxVF = MaxVectorSize; 4781 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4782 (MaximizeBandwidth && !OptForSize)) { 4783 // Collect all viable vectorization factors larger than the default MaxVF 4784 // (i.e. MaxVectorSize). 4785 SmallVector<unsigned, 8> VFs; 4786 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4787 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4788 VFs.push_back(VS); 4789 4790 // For each VF calculate its register usage. 4791 auto RUs = calculateRegisterUsage(VFs); 4792 4793 // Select the largest VF which doesn't require more registers than existing 4794 // ones. 4795 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4796 for (int i = RUs.size() - 1; i >= 0; --i) { 4797 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4798 MaxVF = VFs[i]; 4799 break; 4800 } 4801 } 4802 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4803 if (MaxVF < MinVF) { 4804 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4805 << ") with target's minimum: " << MinVF << '\n'); 4806 MaxVF = MinVF; 4807 } 4808 } 4809 } 4810 return MaxVF; 4811 } 4812 4813 VectorizationFactor 4814 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4815 float Cost = expectedCost(1).first; 4816 const float ScalarCost = Cost; 4817 unsigned Width = 1; 4818 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4819 4820 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4821 if (ForceVectorization && MaxVF > 1) { 4822 // Ignore scalar width, because the user explicitly wants vectorization. 4823 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4824 // evaluation. 4825 Cost = std::numeric_limits<float>::max(); 4826 } 4827 4828 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4829 // Notice that the vector loop needs to be executed less times, so 4830 // we need to divide the cost of the vector loops by the width of 4831 // the vector elements. 4832 VectorizationCostTy C = expectedCost(i); 4833 float VectorCost = C.first / (float)i; 4834 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4835 << " costs: " << (int)VectorCost << ".\n"); 4836 if (!C.second && !ForceVectorization) { 4837 LLVM_DEBUG( 4838 dbgs() << "LV: Not considering vector loop of width " << i 4839 << " because it will not generate any vector instructions.\n"); 4840 continue; 4841 } 4842 if (VectorCost < Cost) { 4843 Cost = VectorCost; 4844 Width = i; 4845 } 4846 } 4847 4848 if (!EnableCondStoresVectorization && NumPredStores) { 4849 ORE->emit(createMissedAnalysis("ConditionalStore") 4850 << "store that is conditionally executed prevents vectorization"); 4851 LLVM_DEBUG( 4852 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4853 Width = 1; 4854 Cost = ScalarCost; 4855 } 4856 4857 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4858 << "LV: Vectorization seems to be not beneficial, " 4859 << "but was forced by a user.\n"); 4860 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4861 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4862 return Factor; 4863 } 4864 4865 std::pair<unsigned, unsigned> 4866 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4867 unsigned MinWidth = -1U; 4868 unsigned MaxWidth = 8; 4869 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4870 4871 // For each block. 4872 for (BasicBlock *BB : TheLoop->blocks()) { 4873 // For each instruction in the loop. 4874 for (Instruction &I : BB->instructionsWithoutDebug()) { 4875 Type *T = I.getType(); 4876 4877 // Skip ignored values. 4878 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4879 continue; 4880 4881 // Only examine Loads, Stores and PHINodes. 4882 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4883 continue; 4884 4885 // Examine PHI nodes that are reduction variables. Update the type to 4886 // account for the recurrence type. 4887 if (auto *PN = dyn_cast<PHINode>(&I)) { 4888 if (!Legal->isReductionVariable(PN)) 4889 continue; 4890 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4891 T = RdxDesc.getRecurrenceType(); 4892 } 4893 4894 // Examine the stored values. 4895 if (auto *ST = dyn_cast<StoreInst>(&I)) 4896 T = ST->getValueOperand()->getType(); 4897 4898 // Ignore loaded pointer types and stored pointer types that are not 4899 // vectorizable. 4900 // 4901 // FIXME: The check here attempts to predict whether a load or store will 4902 // be vectorized. We only know this for certain after a VF has 4903 // been selected. Here, we assume that if an access can be 4904 // vectorized, it will be. We should also look at extending this 4905 // optimization to non-pointer types. 4906 // 4907 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4908 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4909 continue; 4910 4911 MinWidth = std::min(MinWidth, 4912 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4913 MaxWidth = std::max(MaxWidth, 4914 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4915 } 4916 } 4917 4918 return {MinWidth, MaxWidth}; 4919 } 4920 4921 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4922 unsigned VF, 4923 unsigned LoopCost) { 4924 // -- The interleave heuristics -- 4925 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4926 // There are many micro-architectural considerations that we can't predict 4927 // at this level. For example, frontend pressure (on decode or fetch) due to 4928 // code size, or the number and capabilities of the execution ports. 4929 // 4930 // We use the following heuristics to select the interleave count: 4931 // 1. If the code has reductions, then we interleave to break the cross 4932 // iteration dependency. 4933 // 2. If the loop is really small, then we interleave to reduce the loop 4934 // overhead. 4935 // 3. We don't interleave if we think that we will spill registers to memory 4936 // due to the increased register pressure. 4937 4938 // When we optimize for size, we don't interleave. 4939 if (OptForSize) 4940 return 1; 4941 4942 // We used the distance for the interleave count. 4943 if (Legal->getMaxSafeDepDistBytes() != -1U) 4944 return 1; 4945 4946 // Do not interleave loops with a relatively small trip count. 4947 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4948 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4949 return 1; 4950 4951 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4952 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4953 << " registers\n"); 4954 4955 if (VF == 1) { 4956 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4957 TargetNumRegisters = ForceTargetNumScalarRegs; 4958 } else { 4959 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4960 TargetNumRegisters = ForceTargetNumVectorRegs; 4961 } 4962 4963 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4964 // We divide by these constants so assume that we have at least one 4965 // instruction that uses at least one register. 4966 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4967 4968 // We calculate the interleave count using the following formula. 4969 // Subtract the number of loop invariants from the number of available 4970 // registers. These registers are used by all of the interleaved instances. 4971 // Next, divide the remaining registers by the number of registers that is 4972 // required by the loop, in order to estimate how many parallel instances 4973 // fit without causing spills. All of this is rounded down if necessary to be 4974 // a power of two. We want power of two interleave count to simplify any 4975 // addressing operations or alignment considerations. 4976 // We also want power of two interleave counts to ensure that the induction 4977 // variable of the vector loop wraps to zero, when tail is folded by masking; 4978 // this currently happens when OptForSize, in which case IC is set to 1 above. 4979 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4980 R.MaxLocalUsers); 4981 4982 // Don't count the induction variable as interleaved. 4983 if (EnableIndVarRegisterHeur) 4984 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4985 std::max(1U, (R.MaxLocalUsers - 1))); 4986 4987 // Clamp the interleave ranges to reasonable counts. 4988 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4989 4990 // Check if the user has overridden the max. 4991 if (VF == 1) { 4992 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4993 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4994 } else { 4995 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4996 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4997 } 4998 4999 // If we did not calculate the cost for VF (because the user selected the VF) 5000 // then we calculate the cost of VF here. 5001 if (LoopCost == 0) 5002 LoopCost = expectedCost(VF).first; 5003 5004 // Clamp the calculated IC to be between the 1 and the max interleave count 5005 // that the target allows. 5006 if (IC > MaxInterleaveCount) 5007 IC = MaxInterleaveCount; 5008 else if (IC < 1) 5009 IC = 1; 5010 5011 // Interleave if we vectorized this loop and there is a reduction that could 5012 // benefit from interleaving. 5013 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5014 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5015 return IC; 5016 } 5017 5018 // Note that if we've already vectorized the loop we will have done the 5019 // runtime check and so interleaving won't require further checks. 5020 bool InterleavingRequiresRuntimePointerCheck = 5021 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5022 5023 // We want to interleave small loops in order to reduce the loop overhead and 5024 // potentially expose ILP opportunities. 5025 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5026 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5027 // We assume that the cost overhead is 1 and we use the cost model 5028 // to estimate the cost of the loop and interleave until the cost of the 5029 // loop overhead is about 5% of the cost of the loop. 5030 unsigned SmallIC = 5031 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5032 5033 // Interleave until store/load ports (estimated by max interleave count) are 5034 // saturated. 5035 unsigned NumStores = Legal->getNumStores(); 5036 unsigned NumLoads = Legal->getNumLoads(); 5037 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5038 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5039 5040 // If we have a scalar reduction (vector reductions are already dealt with 5041 // by this point), we can increase the critical path length if the loop 5042 // we're interleaving is inside another loop. Limit, by default to 2, so the 5043 // critical path only gets increased by one reduction operation. 5044 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5045 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5046 SmallIC = std::min(SmallIC, F); 5047 StoresIC = std::min(StoresIC, F); 5048 LoadsIC = std::min(LoadsIC, F); 5049 } 5050 5051 if (EnableLoadStoreRuntimeInterleave && 5052 std::max(StoresIC, LoadsIC) > SmallIC) { 5053 LLVM_DEBUG( 5054 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5055 return std::max(StoresIC, LoadsIC); 5056 } 5057 5058 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5059 return SmallIC; 5060 } 5061 5062 // Interleave if this is a large loop (small loops are already dealt with by 5063 // this point) that could benefit from interleaving. 5064 bool HasReductions = !Legal->getReductionVars()->empty(); 5065 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5066 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5067 return IC; 5068 } 5069 5070 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5071 return 1; 5072 } 5073 5074 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5075 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5076 // This function calculates the register usage by measuring the highest number 5077 // of values that are alive at a single location. Obviously, this is a very 5078 // rough estimation. We scan the loop in a topological order in order and 5079 // assign a number to each instruction. We use RPO to ensure that defs are 5080 // met before their users. We assume that each instruction that has in-loop 5081 // users starts an interval. We record every time that an in-loop value is 5082 // used, so we have a list of the first and last occurrences of each 5083 // instruction. Next, we transpose this data structure into a multi map that 5084 // holds the list of intervals that *end* at a specific location. This multi 5085 // map allows us to perform a linear search. We scan the instructions linearly 5086 // and record each time that a new interval starts, by placing it in a set. 5087 // If we find this value in the multi-map then we remove it from the set. 5088 // The max register usage is the maximum size of the set. 5089 // We also search for instructions that are defined outside the loop, but are 5090 // used inside the loop. We need this number separately from the max-interval 5091 // usage number because when we unroll, loop-invariant values do not take 5092 // more register. 5093 LoopBlocksDFS DFS(TheLoop); 5094 DFS.perform(LI); 5095 5096 RegisterUsage RU; 5097 5098 // Each 'key' in the map opens a new interval. The values 5099 // of the map are the index of the 'last seen' usage of the 5100 // instruction that is the key. 5101 using IntervalMap = DenseMap<Instruction *, unsigned>; 5102 5103 // Maps instruction to its index. 5104 SmallVector<Instruction *, 64> IdxToInstr; 5105 // Marks the end of each interval. 5106 IntervalMap EndPoint; 5107 // Saves the list of instruction indices that are used in the loop. 5108 SmallPtrSet<Instruction *, 8> Ends; 5109 // Saves the list of values that are used in the loop but are 5110 // defined outside the loop, such as arguments and constants. 5111 SmallPtrSet<Value *, 8> LoopInvariants; 5112 5113 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5114 for (Instruction &I : BB->instructionsWithoutDebug()) { 5115 IdxToInstr.push_back(&I); 5116 5117 // Save the end location of each USE. 5118 for (Value *U : I.operands()) { 5119 auto *Instr = dyn_cast<Instruction>(U); 5120 5121 // Ignore non-instruction values such as arguments, constants, etc. 5122 if (!Instr) 5123 continue; 5124 5125 // If this instruction is outside the loop then record it and continue. 5126 if (!TheLoop->contains(Instr)) { 5127 LoopInvariants.insert(Instr); 5128 continue; 5129 } 5130 5131 // Overwrite previous end points. 5132 EndPoint[Instr] = IdxToInstr.size(); 5133 Ends.insert(Instr); 5134 } 5135 } 5136 } 5137 5138 // Saves the list of intervals that end with the index in 'key'. 5139 using InstrList = SmallVector<Instruction *, 2>; 5140 DenseMap<unsigned, InstrList> TransposeEnds; 5141 5142 // Transpose the EndPoints to a list of values that end at each index. 5143 for (auto &Interval : EndPoint) 5144 TransposeEnds[Interval.second].push_back(Interval.first); 5145 5146 SmallPtrSet<Instruction *, 8> OpenIntervals; 5147 5148 // Get the size of the widest register. 5149 unsigned MaxSafeDepDist = -1U; 5150 if (Legal->getMaxSafeDepDistBytes() != -1U) 5151 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5152 unsigned WidestRegister = 5153 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5154 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5155 5156 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5157 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5158 5159 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5160 5161 // A lambda that gets the register usage for the given type and VF. 5162 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5163 if (Ty->isTokenTy()) 5164 return 0U; 5165 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5166 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5167 }; 5168 5169 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5170 Instruction *I = IdxToInstr[i]; 5171 5172 // Remove all of the instructions that end at this location. 5173 InstrList &List = TransposeEnds[i]; 5174 for (Instruction *ToRemove : List) 5175 OpenIntervals.erase(ToRemove); 5176 5177 // Ignore instructions that are never used within the loop. 5178 if (Ends.find(I) == Ends.end()) 5179 continue; 5180 5181 // Skip ignored values. 5182 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5183 continue; 5184 5185 // For each VF find the maximum usage of registers. 5186 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5187 if (VFs[j] == 1) { 5188 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5189 continue; 5190 } 5191 collectUniformsAndScalars(VFs[j]); 5192 // Count the number of live intervals. 5193 unsigned RegUsage = 0; 5194 for (auto Inst : OpenIntervals) { 5195 // Skip ignored values for VF > 1. 5196 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5197 isScalarAfterVectorization(Inst, VFs[j])) 5198 continue; 5199 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5200 } 5201 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5202 } 5203 5204 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5205 << OpenIntervals.size() << '\n'); 5206 5207 // Add the current instruction to the list of open intervals. 5208 OpenIntervals.insert(I); 5209 } 5210 5211 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5212 unsigned Invariant = 0; 5213 if (VFs[i] == 1) 5214 Invariant = LoopInvariants.size(); 5215 else { 5216 for (auto Inst : LoopInvariants) 5217 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5218 } 5219 5220 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5221 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5222 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5223 << '\n'); 5224 5225 RU.LoopInvariantRegs = Invariant; 5226 RU.MaxLocalUsers = MaxUsages[i]; 5227 RUs[i] = RU; 5228 } 5229 5230 return RUs; 5231 } 5232 5233 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5234 // TODO: Cost model for emulated masked load/store is completely 5235 // broken. This hack guides the cost model to use an artificially 5236 // high enough value to practically disable vectorization with such 5237 // operations, except where previously deployed legality hack allowed 5238 // using very low cost values. This is to avoid regressions coming simply 5239 // from moving "masked load/store" check from legality to cost model. 5240 // Masked Load/Gather emulation was previously never allowed. 5241 // Limited number of Masked Store/Scatter emulation was allowed. 5242 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5243 return isa<LoadInst>(I) || 5244 (isa<StoreInst>(I) && 5245 NumPredStores > NumberOfStoresToPredicate); 5246 } 5247 5248 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5249 // If we aren't vectorizing the loop, or if we've already collected the 5250 // instructions to scalarize, there's nothing to do. Collection may already 5251 // have occurred if we have a user-selected VF and are now computing the 5252 // expected cost for interleaving. 5253 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5254 return; 5255 5256 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5257 // not profitable to scalarize any instructions, the presence of VF in the 5258 // map will indicate that we've analyzed it already. 5259 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5260 5261 // Find all the instructions that are scalar with predication in the loop and 5262 // determine if it would be better to not if-convert the blocks they are in. 5263 // If so, we also record the instructions to scalarize. 5264 for (BasicBlock *BB : TheLoop->blocks()) { 5265 if (!blockNeedsPredication(BB)) 5266 continue; 5267 for (Instruction &I : *BB) 5268 if (isScalarWithPredication(&I)) { 5269 ScalarCostsTy ScalarCosts; 5270 // Do not apply discount logic if hacked cost is needed 5271 // for emulated masked memrefs. 5272 if (!useEmulatedMaskMemRefHack(&I) && 5273 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5274 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5275 // Remember that BB will remain after vectorization. 5276 PredicatedBBsAfterVectorization.insert(BB); 5277 } 5278 } 5279 } 5280 5281 int LoopVectorizationCostModel::computePredInstDiscount( 5282 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5283 unsigned VF) { 5284 assert(!isUniformAfterVectorization(PredInst, VF) && 5285 "Instruction marked uniform-after-vectorization will be predicated"); 5286 5287 // Initialize the discount to zero, meaning that the scalar version and the 5288 // vector version cost the same. 5289 int Discount = 0; 5290 5291 // Holds instructions to analyze. The instructions we visit are mapped in 5292 // ScalarCosts. Those instructions are the ones that would be scalarized if 5293 // we find that the scalar version costs less. 5294 SmallVector<Instruction *, 8> Worklist; 5295 5296 // Returns true if the given instruction can be scalarized. 5297 auto canBeScalarized = [&](Instruction *I) -> bool { 5298 // We only attempt to scalarize instructions forming a single-use chain 5299 // from the original predicated block that would otherwise be vectorized. 5300 // Although not strictly necessary, we give up on instructions we know will 5301 // already be scalar to avoid traversing chains that are unlikely to be 5302 // beneficial. 5303 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5304 isScalarAfterVectorization(I, VF)) 5305 return false; 5306 5307 // If the instruction is scalar with predication, it will be analyzed 5308 // separately. We ignore it within the context of PredInst. 5309 if (isScalarWithPredication(I)) 5310 return false; 5311 5312 // If any of the instruction's operands are uniform after vectorization, 5313 // the instruction cannot be scalarized. This prevents, for example, a 5314 // masked load from being scalarized. 5315 // 5316 // We assume we will only emit a value for lane zero of an instruction 5317 // marked uniform after vectorization, rather than VF identical values. 5318 // Thus, if we scalarize an instruction that uses a uniform, we would 5319 // create uses of values corresponding to the lanes we aren't emitting code 5320 // for. This behavior can be changed by allowing getScalarValue to clone 5321 // the lane zero values for uniforms rather than asserting. 5322 for (Use &U : I->operands()) 5323 if (auto *J = dyn_cast<Instruction>(U.get())) 5324 if (isUniformAfterVectorization(J, VF)) 5325 return false; 5326 5327 // Otherwise, we can scalarize the instruction. 5328 return true; 5329 }; 5330 5331 // Returns true if an operand that cannot be scalarized must be extracted 5332 // from a vector. We will account for this scalarization overhead below. Note 5333 // that the non-void predicated instructions are placed in their own blocks, 5334 // and their return values are inserted into vectors. Thus, an extract would 5335 // still be required. 5336 auto needsExtract = [&](Instruction *I) -> bool { 5337 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5338 }; 5339 5340 // Compute the expected cost discount from scalarizing the entire expression 5341 // feeding the predicated instruction. We currently only consider expressions 5342 // that are single-use instruction chains. 5343 Worklist.push_back(PredInst); 5344 while (!Worklist.empty()) { 5345 Instruction *I = Worklist.pop_back_val(); 5346 5347 // If we've already analyzed the instruction, there's nothing to do. 5348 if (ScalarCosts.find(I) != ScalarCosts.end()) 5349 continue; 5350 5351 // Compute the cost of the vector instruction. Note that this cost already 5352 // includes the scalarization overhead of the predicated instruction. 5353 unsigned VectorCost = getInstructionCost(I, VF).first; 5354 5355 // Compute the cost of the scalarized instruction. This cost is the cost of 5356 // the instruction as if it wasn't if-converted and instead remained in the 5357 // predicated block. We will scale this cost by block probability after 5358 // computing the scalarization overhead. 5359 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5360 5361 // Compute the scalarization overhead of needed insertelement instructions 5362 // and phi nodes. 5363 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5364 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5365 true, false); 5366 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5367 } 5368 5369 // Compute the scalarization overhead of needed extractelement 5370 // instructions. For each of the instruction's operands, if the operand can 5371 // be scalarized, add it to the worklist; otherwise, account for the 5372 // overhead. 5373 for (Use &U : I->operands()) 5374 if (auto *J = dyn_cast<Instruction>(U.get())) { 5375 assert(VectorType::isValidElementType(J->getType()) && 5376 "Instruction has non-scalar type"); 5377 if (canBeScalarized(J)) 5378 Worklist.push_back(J); 5379 else if (needsExtract(J)) 5380 ScalarCost += TTI.getScalarizationOverhead( 5381 ToVectorTy(J->getType(),VF), false, true); 5382 } 5383 5384 // Scale the total scalar cost by block probability. 5385 ScalarCost /= getReciprocalPredBlockProb(); 5386 5387 // Compute the discount. A non-negative discount means the vector version 5388 // of the instruction costs more, and scalarizing would be beneficial. 5389 Discount += VectorCost - ScalarCost; 5390 ScalarCosts[I] = ScalarCost; 5391 } 5392 5393 return Discount; 5394 } 5395 5396 LoopVectorizationCostModel::VectorizationCostTy 5397 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5398 VectorizationCostTy Cost; 5399 5400 // For each block. 5401 for (BasicBlock *BB : TheLoop->blocks()) { 5402 VectorizationCostTy BlockCost; 5403 5404 // For each instruction in the old loop. 5405 for (Instruction &I : BB->instructionsWithoutDebug()) { 5406 // Skip ignored values. 5407 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5408 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5409 continue; 5410 5411 VectorizationCostTy C = getInstructionCost(&I, VF); 5412 5413 // Check if we should override the cost. 5414 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5415 C.first = ForceTargetInstructionCost; 5416 5417 BlockCost.first += C.first; 5418 BlockCost.second |= C.second; 5419 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5420 << " for VF " << VF << " For instruction: " << I 5421 << '\n'); 5422 } 5423 5424 // If we are vectorizing a predicated block, it will have been 5425 // if-converted. This means that the block's instructions (aside from 5426 // stores and instructions that may divide by zero) will now be 5427 // unconditionally executed. For the scalar case, we may not always execute 5428 // the predicated block. Thus, scale the block's cost by the probability of 5429 // executing it. 5430 if (VF == 1 && blockNeedsPredication(BB)) 5431 BlockCost.first /= getReciprocalPredBlockProb(); 5432 5433 Cost.first += BlockCost.first; 5434 Cost.second |= BlockCost.second; 5435 } 5436 5437 return Cost; 5438 } 5439 5440 /// Gets Address Access SCEV after verifying that the access pattern 5441 /// is loop invariant except the induction variable dependence. 5442 /// 5443 /// This SCEV can be sent to the Target in order to estimate the address 5444 /// calculation cost. 5445 static const SCEV *getAddressAccessSCEV( 5446 Value *Ptr, 5447 LoopVectorizationLegality *Legal, 5448 PredicatedScalarEvolution &PSE, 5449 const Loop *TheLoop) { 5450 5451 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5452 if (!Gep) 5453 return nullptr; 5454 5455 // We are looking for a gep with all loop invariant indices except for one 5456 // which should be an induction variable. 5457 auto SE = PSE.getSE(); 5458 unsigned NumOperands = Gep->getNumOperands(); 5459 for (unsigned i = 1; i < NumOperands; ++i) { 5460 Value *Opd = Gep->getOperand(i); 5461 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5462 !Legal->isInductionVariable(Opd)) 5463 return nullptr; 5464 } 5465 5466 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5467 return PSE.getSCEV(Ptr); 5468 } 5469 5470 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5471 return Legal->hasStride(I->getOperand(0)) || 5472 Legal->hasStride(I->getOperand(1)); 5473 } 5474 5475 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5476 unsigned VF) { 5477 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5478 Type *ValTy = getMemInstValueType(I); 5479 auto SE = PSE.getSE(); 5480 5481 unsigned Alignment = getLoadStoreAlignment(I); 5482 unsigned AS = getLoadStoreAddressSpace(I); 5483 Value *Ptr = getLoadStorePointerOperand(I); 5484 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5485 5486 // Figure out whether the access is strided and get the stride value 5487 // if it's known in compile time 5488 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5489 5490 // Get the cost of the scalar memory instruction and address computation. 5491 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5492 5493 // Don't pass *I here, since it is scalar but will actually be part of a 5494 // vectorized loop where the user of it is a vectorized instruction. 5495 Cost += VF * 5496 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5497 AS); 5498 5499 // Get the overhead of the extractelement and insertelement instructions 5500 // we might create due to scalarization. 5501 Cost += getScalarizationOverhead(I, VF); 5502 5503 // If we have a predicated store, it may not be executed for each vector 5504 // lane. Scale the cost by the probability of executing the predicated 5505 // block. 5506 if (isPredicatedInst(I)) { 5507 Cost /= getReciprocalPredBlockProb(); 5508 5509 if (useEmulatedMaskMemRefHack(I)) 5510 // Artificially setting to a high enough value to practically disable 5511 // vectorization with such operations. 5512 Cost = 3000000; 5513 } 5514 5515 return Cost; 5516 } 5517 5518 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5519 unsigned VF) { 5520 Type *ValTy = getMemInstValueType(I); 5521 Type *VectorTy = ToVectorTy(ValTy, VF); 5522 unsigned Alignment = getLoadStoreAlignment(I); 5523 Value *Ptr = getLoadStorePointerOperand(I); 5524 unsigned AS = getLoadStoreAddressSpace(I); 5525 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5526 5527 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5528 "Stride should be 1 or -1 for consecutive memory access"); 5529 unsigned Cost = 0; 5530 if (Legal->isMaskRequired(I)) 5531 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5532 else 5533 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5534 5535 bool Reverse = ConsecutiveStride < 0; 5536 if (Reverse) 5537 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5538 return Cost; 5539 } 5540 5541 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5542 unsigned VF) { 5543 Type *ValTy = getMemInstValueType(I); 5544 Type *VectorTy = ToVectorTy(ValTy, VF); 5545 unsigned Alignment = getLoadStoreAlignment(I); 5546 unsigned AS = getLoadStoreAddressSpace(I); 5547 if (isa<LoadInst>(I)) { 5548 return TTI.getAddressComputationCost(ValTy) + 5549 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5550 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5551 } 5552 StoreInst *SI = cast<StoreInst>(I); 5553 5554 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5555 return TTI.getAddressComputationCost(ValTy) + 5556 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5557 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5558 Instruction::ExtractElement, 5559 VectorTy, VF - 1)); 5560 } 5561 5562 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5563 unsigned VF) { 5564 Type *ValTy = getMemInstValueType(I); 5565 Type *VectorTy = ToVectorTy(ValTy, VF); 5566 unsigned Alignment = getLoadStoreAlignment(I); 5567 Value *Ptr = getLoadStorePointerOperand(I); 5568 5569 return TTI.getAddressComputationCost(VectorTy) + 5570 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5571 Legal->isMaskRequired(I), Alignment); 5572 } 5573 5574 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5575 unsigned VF) { 5576 Type *ValTy = getMemInstValueType(I); 5577 Type *VectorTy = ToVectorTy(ValTy, VF); 5578 unsigned AS = getLoadStoreAddressSpace(I); 5579 5580 auto Group = getInterleavedAccessGroup(I); 5581 assert(Group && "Fail to get an interleaved access group."); 5582 5583 unsigned InterleaveFactor = Group->getFactor(); 5584 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5585 5586 // Holds the indices of existing members in an interleaved load group. 5587 // An interleaved store group doesn't need this as it doesn't allow gaps. 5588 SmallVector<unsigned, 4> Indices; 5589 if (isa<LoadInst>(I)) { 5590 for (unsigned i = 0; i < InterleaveFactor; i++) 5591 if (Group->getMember(i)) 5592 Indices.push_back(i); 5593 } 5594 5595 // Calculate the cost of the whole interleaved group. 5596 bool UseMaskForGaps = 5597 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 5598 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5599 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5600 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5601 5602 if (Group->isReverse()) { 5603 // TODO: Add support for reversed masked interleaved access. 5604 assert(!Legal->isMaskRequired(I) && 5605 "Reverse masked interleaved access not supported."); 5606 Cost += Group->getNumMembers() * 5607 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5608 } 5609 return Cost; 5610 } 5611 5612 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5613 unsigned VF) { 5614 // Calculate scalar cost only. Vectorization cost should be ready at this 5615 // moment. 5616 if (VF == 1) { 5617 Type *ValTy = getMemInstValueType(I); 5618 unsigned Alignment = getLoadStoreAlignment(I); 5619 unsigned AS = getLoadStoreAddressSpace(I); 5620 5621 return TTI.getAddressComputationCost(ValTy) + 5622 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5623 } 5624 return getWideningCost(I, VF); 5625 } 5626 5627 LoopVectorizationCostModel::VectorizationCostTy 5628 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5629 // If we know that this instruction will remain uniform, check the cost of 5630 // the scalar version. 5631 if (isUniformAfterVectorization(I, VF)) 5632 VF = 1; 5633 5634 if (VF > 1 && isProfitableToScalarize(I, VF)) 5635 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5636 5637 // Forced scalars do not have any scalarization overhead. 5638 auto ForcedScalar = ForcedScalars.find(VF); 5639 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5640 auto InstSet = ForcedScalar->second; 5641 if (InstSet.find(I) != InstSet.end()) 5642 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5643 } 5644 5645 Type *VectorTy; 5646 unsigned C = getInstructionCost(I, VF, VectorTy); 5647 5648 bool TypeNotScalarized = 5649 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5650 return VectorizationCostTy(C, TypeNotScalarized); 5651 } 5652 5653 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5654 unsigned VF) { 5655 5656 if (VF == 1) 5657 return 0; 5658 5659 unsigned Cost = 0; 5660 Type *RetTy = ToVectorTy(I->getType(), VF); 5661 if (!RetTy->isVoidTy() && 5662 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5663 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 5664 5665 // Some targets keep addresses scalar. 5666 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 5667 return Cost; 5668 5669 if (CallInst *CI = dyn_cast<CallInst>(I)) { 5670 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 5671 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 5672 } else if (!isa<StoreInst>(I) || 5673 !TTI.supportsEfficientVectorElementLoadStore()) { 5674 SmallVector<const Value *, 4> Operands(I->operand_values()); 5675 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 5676 } 5677 5678 return Cost; 5679 } 5680 5681 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5682 if (VF == 1) 5683 return; 5684 NumPredStores = 0; 5685 for (BasicBlock *BB : TheLoop->blocks()) { 5686 // For each instruction in the old loop. 5687 for (Instruction &I : *BB) { 5688 Value *Ptr = getLoadStorePointerOperand(&I); 5689 if (!Ptr) 5690 continue; 5691 5692 // TODO: We should generate better code and update the cost model for 5693 // predicated uniform stores. Today they are treated as any other 5694 // predicated store (see added test cases in 5695 // invariant-store-vectorization.ll). 5696 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5697 NumPredStores++; 5698 5699 if (Legal->isUniform(Ptr) && 5700 // Conditional loads and stores should be scalarized and predicated. 5701 // isScalarWithPredication cannot be used here since masked 5702 // gather/scatters are not considered scalar with predication. 5703 !Legal->blockNeedsPredication(I.getParent())) { 5704 // TODO: Avoid replicating loads and stores instead of 5705 // relying on instcombine to remove them. 5706 // Load: Scalar load + broadcast 5707 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5708 unsigned Cost = getUniformMemOpCost(&I, VF); 5709 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5710 continue; 5711 } 5712 5713 // We assume that widening is the best solution when possible. 5714 if (memoryInstructionCanBeWidened(&I, VF)) { 5715 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5716 int ConsecutiveStride = 5717 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5718 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5719 "Expected consecutive stride."); 5720 InstWidening Decision = 5721 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5722 setWideningDecision(&I, VF, Decision, Cost); 5723 continue; 5724 } 5725 5726 // Choose between Interleaving, Gather/Scatter or Scalarization. 5727 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5728 unsigned NumAccesses = 1; 5729 if (isAccessInterleaved(&I)) { 5730 auto Group = getInterleavedAccessGroup(&I); 5731 assert(Group && "Fail to get an interleaved access group."); 5732 5733 // Make one decision for the whole group. 5734 if (getWideningDecision(&I, VF) != CM_Unknown) 5735 continue; 5736 5737 NumAccesses = Group->getNumMembers(); 5738 if (interleavedAccessCanBeWidened(&I, VF)) 5739 InterleaveCost = getInterleaveGroupCost(&I, VF); 5740 } 5741 5742 unsigned GatherScatterCost = 5743 isLegalGatherOrScatter(&I) 5744 ? getGatherScatterCost(&I, VF) * NumAccesses 5745 : std::numeric_limits<unsigned>::max(); 5746 5747 unsigned ScalarizationCost = 5748 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5749 5750 // Choose better solution for the current VF, 5751 // write down this decision and use it during vectorization. 5752 unsigned Cost; 5753 InstWidening Decision; 5754 if (InterleaveCost <= GatherScatterCost && 5755 InterleaveCost < ScalarizationCost) { 5756 Decision = CM_Interleave; 5757 Cost = InterleaveCost; 5758 } else if (GatherScatterCost < ScalarizationCost) { 5759 Decision = CM_GatherScatter; 5760 Cost = GatherScatterCost; 5761 } else { 5762 Decision = CM_Scalarize; 5763 Cost = ScalarizationCost; 5764 } 5765 // If the instructions belongs to an interleave group, the whole group 5766 // receives the same decision. The whole group receives the cost, but 5767 // the cost will actually be assigned to one instruction. 5768 if (auto Group = getInterleavedAccessGroup(&I)) 5769 setWideningDecision(Group, VF, Decision, Cost); 5770 else 5771 setWideningDecision(&I, VF, Decision, Cost); 5772 } 5773 } 5774 5775 // Make sure that any load of address and any other address computation 5776 // remains scalar unless there is gather/scatter support. This avoids 5777 // inevitable extracts into address registers, and also has the benefit of 5778 // activating LSR more, since that pass can't optimize vectorized 5779 // addresses. 5780 if (TTI.prefersVectorizedAddressing()) 5781 return; 5782 5783 // Start with all scalar pointer uses. 5784 SmallPtrSet<Instruction *, 8> AddrDefs; 5785 for (BasicBlock *BB : TheLoop->blocks()) 5786 for (Instruction &I : *BB) { 5787 Instruction *PtrDef = 5788 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5789 if (PtrDef && TheLoop->contains(PtrDef) && 5790 getWideningDecision(&I, VF) != CM_GatherScatter) 5791 AddrDefs.insert(PtrDef); 5792 } 5793 5794 // Add all instructions used to generate the addresses. 5795 SmallVector<Instruction *, 4> Worklist; 5796 for (auto *I : AddrDefs) 5797 Worklist.push_back(I); 5798 while (!Worklist.empty()) { 5799 Instruction *I = Worklist.pop_back_val(); 5800 for (auto &Op : I->operands()) 5801 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5802 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5803 AddrDefs.insert(InstOp).second) 5804 Worklist.push_back(InstOp); 5805 } 5806 5807 for (auto *I : AddrDefs) { 5808 if (isa<LoadInst>(I)) { 5809 // Setting the desired widening decision should ideally be handled in 5810 // by cost functions, but since this involves the task of finding out 5811 // if the loaded register is involved in an address computation, it is 5812 // instead changed here when we know this is the case. 5813 InstWidening Decision = getWideningDecision(I, VF); 5814 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5815 // Scalarize a widened load of address. 5816 setWideningDecision(I, VF, CM_Scalarize, 5817 (VF * getMemoryInstructionCost(I, 1))); 5818 else if (auto Group = getInterleavedAccessGroup(I)) { 5819 // Scalarize an interleave group of address loads. 5820 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5821 if (Instruction *Member = Group->getMember(I)) 5822 setWideningDecision(Member, VF, CM_Scalarize, 5823 (VF * getMemoryInstructionCost(Member, 1))); 5824 } 5825 } 5826 } else 5827 // Make sure I gets scalarized and a cost estimate without 5828 // scalarization overhead. 5829 ForcedScalars[VF].insert(I); 5830 } 5831 } 5832 5833 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5834 unsigned VF, 5835 Type *&VectorTy) { 5836 Type *RetTy = I->getType(); 5837 if (canTruncateToMinimalBitwidth(I, VF)) 5838 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5839 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5840 auto SE = PSE.getSE(); 5841 5842 // TODO: We need to estimate the cost of intrinsic calls. 5843 switch (I->getOpcode()) { 5844 case Instruction::GetElementPtr: 5845 // We mark this instruction as zero-cost because the cost of GEPs in 5846 // vectorized code depends on whether the corresponding memory instruction 5847 // is scalarized or not. Therefore, we handle GEPs with the memory 5848 // instruction cost. 5849 return 0; 5850 case Instruction::Br: { 5851 // In cases of scalarized and predicated instructions, there will be VF 5852 // predicated blocks in the vectorized loop. Each branch around these 5853 // blocks requires also an extract of its vector compare i1 element. 5854 bool ScalarPredicatedBB = false; 5855 BranchInst *BI = cast<BranchInst>(I); 5856 if (VF > 1 && BI->isConditional() && 5857 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5858 PredicatedBBsAfterVectorization.end() || 5859 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5860 PredicatedBBsAfterVectorization.end())) 5861 ScalarPredicatedBB = true; 5862 5863 if (ScalarPredicatedBB) { 5864 // Return cost for branches around scalarized and predicated blocks. 5865 Type *Vec_i1Ty = 5866 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5867 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5868 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5869 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5870 // The back-edge branch will remain, as will all scalar branches. 5871 return TTI.getCFInstrCost(Instruction::Br); 5872 else 5873 // This branch will be eliminated by if-conversion. 5874 return 0; 5875 // Note: We currently assume zero cost for an unconditional branch inside 5876 // a predicated block since it will become a fall-through, although we 5877 // may decide in the future to call TTI for all branches. 5878 } 5879 case Instruction::PHI: { 5880 auto *Phi = cast<PHINode>(I); 5881 5882 // First-order recurrences are replaced by vector shuffles inside the loop. 5883 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 5884 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5885 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5886 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 5887 5888 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5889 // converted into select instructions. We require N - 1 selects per phi 5890 // node, where N is the number of incoming values. 5891 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5892 return (Phi->getNumIncomingValues() - 1) * 5893 TTI.getCmpSelInstrCost( 5894 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5895 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5896 5897 return TTI.getCFInstrCost(Instruction::PHI); 5898 } 5899 case Instruction::UDiv: 5900 case Instruction::SDiv: 5901 case Instruction::URem: 5902 case Instruction::SRem: 5903 // If we have a predicated instruction, it may not be executed for each 5904 // vector lane. Get the scalarization cost and scale this amount by the 5905 // probability of executing the predicated block. If the instruction is not 5906 // predicated, we fall through to the next case. 5907 if (VF > 1 && isScalarWithPredication(I)) { 5908 unsigned Cost = 0; 5909 5910 // These instructions have a non-void type, so account for the phi nodes 5911 // that we will create. This cost is likely to be zero. The phi node 5912 // cost, if any, should be scaled by the block probability because it 5913 // models a copy at the end of each predicated block. 5914 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5915 5916 // The cost of the non-predicated instruction. 5917 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5918 5919 // The cost of insertelement and extractelement instructions needed for 5920 // scalarization. 5921 Cost += getScalarizationOverhead(I, VF); 5922 5923 // Scale the cost by the probability of executing the predicated blocks. 5924 // This assumes the predicated block for each vector lane is equally 5925 // likely. 5926 return Cost / getReciprocalPredBlockProb(); 5927 } 5928 LLVM_FALLTHROUGH; 5929 case Instruction::Add: 5930 case Instruction::FAdd: 5931 case Instruction::Sub: 5932 case Instruction::FSub: 5933 case Instruction::Mul: 5934 case Instruction::FMul: 5935 case Instruction::FDiv: 5936 case Instruction::FRem: 5937 case Instruction::Shl: 5938 case Instruction::LShr: 5939 case Instruction::AShr: 5940 case Instruction::And: 5941 case Instruction::Or: 5942 case Instruction::Xor: { 5943 // Since we will replace the stride by 1 the multiplication should go away. 5944 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5945 return 0; 5946 // Certain instructions can be cheaper to vectorize if they have a constant 5947 // second vector operand. One example of this are shifts on x86. 5948 Value *Op2 = I->getOperand(1); 5949 TargetTransformInfo::OperandValueProperties Op2VP; 5950 TargetTransformInfo::OperandValueKind Op2VK = 5951 TTI.getOperandInfo(Op2, Op2VP); 5952 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 5953 Op2VK = TargetTransformInfo::OK_UniformValue; 5954 5955 SmallVector<const Value *, 4> Operands(I->operand_values()); 5956 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5957 return N * TTI.getArithmeticInstrCost( 5958 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5959 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 5960 } 5961 case Instruction::Select: { 5962 SelectInst *SI = cast<SelectInst>(I); 5963 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5964 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5965 Type *CondTy = SI->getCondition()->getType(); 5966 if (!ScalarCond) 5967 CondTy = VectorType::get(CondTy, VF); 5968 5969 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 5970 } 5971 case Instruction::ICmp: 5972 case Instruction::FCmp: { 5973 Type *ValTy = I->getOperand(0)->getType(); 5974 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5975 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 5976 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 5977 VectorTy = ToVectorTy(ValTy, VF); 5978 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 5979 } 5980 case Instruction::Store: 5981 case Instruction::Load: { 5982 unsigned Width = VF; 5983 if (Width > 1) { 5984 InstWidening Decision = getWideningDecision(I, Width); 5985 assert(Decision != CM_Unknown && 5986 "CM decision should be taken at this point"); 5987 if (Decision == CM_Scalarize) 5988 Width = 1; 5989 } 5990 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 5991 return getMemoryInstructionCost(I, VF); 5992 } 5993 case Instruction::ZExt: 5994 case Instruction::SExt: 5995 case Instruction::FPToUI: 5996 case Instruction::FPToSI: 5997 case Instruction::FPExt: 5998 case Instruction::PtrToInt: 5999 case Instruction::IntToPtr: 6000 case Instruction::SIToFP: 6001 case Instruction::UIToFP: 6002 case Instruction::Trunc: 6003 case Instruction::FPTrunc: 6004 case Instruction::BitCast: { 6005 // We optimize the truncation of induction variables having constant 6006 // integer steps. The cost of these truncations is the same as the scalar 6007 // operation. 6008 if (isOptimizableIVTruncate(I, VF)) { 6009 auto *Trunc = cast<TruncInst>(I); 6010 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6011 Trunc->getSrcTy(), Trunc); 6012 } 6013 6014 Type *SrcScalarTy = I->getOperand(0)->getType(); 6015 Type *SrcVecTy = 6016 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6017 if (canTruncateToMinimalBitwidth(I, VF)) { 6018 // This cast is going to be shrunk. This may remove the cast or it might 6019 // turn it into slightly different cast. For example, if MinBW == 16, 6020 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6021 // 6022 // Calculate the modified src and dest types. 6023 Type *MinVecTy = VectorTy; 6024 if (I->getOpcode() == Instruction::Trunc) { 6025 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6026 VectorTy = 6027 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6028 } else if (I->getOpcode() == Instruction::ZExt || 6029 I->getOpcode() == Instruction::SExt) { 6030 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6031 VectorTy = 6032 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6033 } 6034 } 6035 6036 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6037 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6038 } 6039 case Instruction::Call: { 6040 bool NeedToScalarize; 6041 CallInst *CI = cast<CallInst>(I); 6042 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6043 if (getVectorIntrinsicIDForCall(CI, TLI)) 6044 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6045 return CallCost; 6046 } 6047 default: 6048 // The cost of executing VF copies of the scalar instruction. This opcode 6049 // is unknown. Assume that it is the same as 'mul'. 6050 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6051 getScalarizationOverhead(I, VF); 6052 } // end of switch. 6053 } 6054 6055 char LoopVectorize::ID = 0; 6056 6057 static const char lv_name[] = "Loop Vectorization"; 6058 6059 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6060 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6061 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6062 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6063 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6064 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6065 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6066 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6067 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6068 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6069 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6070 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6071 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6072 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6073 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6074 6075 namespace llvm { 6076 6077 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6078 6079 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6080 bool VectorizeOnlyWhenForced) { 6081 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6082 } 6083 6084 } // end namespace llvm 6085 6086 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6087 // Check if the pointer operand of a load or store instruction is 6088 // consecutive. 6089 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6090 return Legal->isConsecutivePtr(Ptr); 6091 return false; 6092 } 6093 6094 void LoopVectorizationCostModel::collectValuesToIgnore() { 6095 // Ignore ephemeral values. 6096 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6097 6098 // Ignore type-promoting instructions we identified during reduction 6099 // detection. 6100 for (auto &Reduction : *Legal->getReductionVars()) { 6101 RecurrenceDescriptor &RedDes = Reduction.second; 6102 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6103 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6104 } 6105 // Ignore type-casting instructions we identified during induction 6106 // detection. 6107 for (auto &Induction : *Legal->getInductionVars()) { 6108 InductionDescriptor &IndDes = Induction.second; 6109 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6110 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6111 } 6112 } 6113 6114 // TODO: we could return a pair of values that specify the max VF and 6115 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6116 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6117 // doesn't have a cost model that can choose which plan to execute if 6118 // more than one is generated. 6119 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6120 LoopVectorizationCostModel &CM) { 6121 unsigned WidestType; 6122 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6123 return WidestVectorRegBits / WidestType; 6124 } 6125 6126 VectorizationFactor 6127 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6128 unsigned UserVF) { 6129 unsigned VF = UserVF; 6130 // Outer loop handling: They may require CFG and instruction level 6131 // transformations before even evaluating whether vectorization is profitable. 6132 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6133 // the vectorization pipeline. 6134 if (!OrigLoop->empty()) { 6135 // If the user doesn't provide a vectorization factor, determine a 6136 // reasonable one. 6137 if (!UserVF) { 6138 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6139 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6140 6141 // Make sure we have a VF > 1 for stress testing. 6142 if (VPlanBuildStressTest && VF < 2) { 6143 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6144 << "overriding computed VF.\n"); 6145 VF = 4; 6146 } 6147 } 6148 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6149 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6150 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6151 << " to build VPlans.\n"); 6152 buildVPlans(VF, VF); 6153 6154 // For VPlan build stress testing, we bail out after VPlan construction. 6155 if (VPlanBuildStressTest) 6156 return VectorizationFactor::Disabled(); 6157 6158 return {VF, 0}; 6159 } 6160 6161 LLVM_DEBUG( 6162 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6163 "VPlan-native path.\n"); 6164 return VectorizationFactor::Disabled(); 6165 } 6166 6167 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(bool OptForSize, 6168 unsigned UserVF) { 6169 assert(OrigLoop->empty() && "Inner loop expected."); 6170 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6171 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6172 return None; 6173 6174 // Invalidate interleave groups if all blocks of loop will be predicated. 6175 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6176 !useMaskedInterleavedAccesses(*TTI)) { 6177 LLVM_DEBUG( 6178 dbgs() 6179 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6180 "which requires masked-interleaved support.\n"); 6181 CM.InterleaveInfo.reset(); 6182 } 6183 6184 if (UserVF) { 6185 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6186 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6187 // Collect the instructions (and their associated costs) that will be more 6188 // profitable to scalarize. 6189 CM.selectUserVectorizationFactor(UserVF); 6190 buildVPlansWithVPRecipes(UserVF, UserVF); 6191 LLVM_DEBUG(printPlans(dbgs())); 6192 return {{UserVF, 0}}; 6193 } 6194 6195 unsigned MaxVF = MaybeMaxVF.getValue(); 6196 assert(MaxVF != 0 && "MaxVF is zero."); 6197 6198 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6199 // Collect Uniform and Scalar instructions after vectorization with VF. 6200 CM.collectUniformsAndScalars(VF); 6201 6202 // Collect the instructions (and their associated costs) that will be more 6203 // profitable to scalarize. 6204 if (VF > 1) 6205 CM.collectInstsToScalarize(VF); 6206 } 6207 6208 buildVPlansWithVPRecipes(1, MaxVF); 6209 LLVM_DEBUG(printPlans(dbgs())); 6210 if (MaxVF == 1) 6211 return VectorizationFactor::Disabled(); 6212 6213 // Select the optimal vectorization factor. 6214 return CM.selectVectorizationFactor(MaxVF); 6215 } 6216 6217 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6218 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6219 << '\n'); 6220 BestVF = VF; 6221 BestUF = UF; 6222 6223 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6224 return !Plan->hasVF(VF); 6225 }); 6226 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6227 } 6228 6229 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6230 DominatorTree *DT) { 6231 // Perform the actual loop transformation. 6232 6233 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6234 VPCallbackILV CallbackILV(ILV); 6235 6236 VPTransformState State{BestVF, BestUF, LI, 6237 DT, ILV.Builder, ILV.VectorLoopValueMap, 6238 &ILV, CallbackILV}; 6239 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6240 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6241 6242 //===------------------------------------------------===// 6243 // 6244 // Notice: any optimization or new instruction that go 6245 // into the code below should also be implemented in 6246 // the cost-model. 6247 // 6248 //===------------------------------------------------===// 6249 6250 // 2. Copy and widen instructions from the old loop into the new loop. 6251 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6252 VPlans.front()->execute(&State); 6253 6254 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6255 // predication, updating analyses. 6256 ILV.fixVectorizedLoop(); 6257 } 6258 6259 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6260 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6261 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6262 6263 // We create new control-flow for the vectorized loop, so the original 6264 // condition will be dead after vectorization if it's only used by the 6265 // branch. 6266 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6267 if (Cmp && Cmp->hasOneUse()) 6268 DeadInstructions.insert(Cmp); 6269 6270 // We create new "steps" for induction variable updates to which the original 6271 // induction variables map. An original update instruction will be dead if 6272 // all its users except the induction variable are dead. 6273 for (auto &Induction : *Legal->getInductionVars()) { 6274 PHINode *Ind = Induction.first; 6275 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6276 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6277 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6278 DeadInstructions.end(); 6279 })) 6280 DeadInstructions.insert(IndUpdate); 6281 6282 // We record as "Dead" also the type-casting instructions we had identified 6283 // during induction analysis. We don't need any handling for them in the 6284 // vectorized loop because we have proven that, under a proper runtime 6285 // test guarding the vectorized loop, the value of the phi, and the casted 6286 // value of the phi, are the same. The last instruction in this casting chain 6287 // will get its scalar/vector/widened def from the scalar/vector/widened def 6288 // of the respective phi node. Any other casts in the induction def-use chain 6289 // have no other uses outside the phi update chain, and will be ignored. 6290 InductionDescriptor &IndDes = Induction.second; 6291 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6292 DeadInstructions.insert(Casts.begin(), Casts.end()); 6293 } 6294 } 6295 6296 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6297 6298 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6299 6300 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6301 Instruction::BinaryOps BinOp) { 6302 // When unrolling and the VF is 1, we only need to add a simple scalar. 6303 Type *Ty = Val->getType(); 6304 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6305 6306 if (Ty->isFloatingPointTy()) { 6307 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6308 6309 // Floating point operations had to be 'fast' to enable the unrolling. 6310 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6311 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6312 } 6313 Constant *C = ConstantInt::get(Ty, StartIdx); 6314 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6315 } 6316 6317 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6318 SmallVector<Metadata *, 4> MDs; 6319 // Reserve first location for self reference to the LoopID metadata node. 6320 MDs.push_back(nullptr); 6321 bool IsUnrollMetadata = false; 6322 MDNode *LoopID = L->getLoopID(); 6323 if (LoopID) { 6324 // First find existing loop unrolling disable metadata. 6325 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6326 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6327 if (MD) { 6328 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6329 IsUnrollMetadata = 6330 S && S->getString().startswith("llvm.loop.unroll.disable"); 6331 } 6332 MDs.push_back(LoopID->getOperand(i)); 6333 } 6334 } 6335 6336 if (!IsUnrollMetadata) { 6337 // Add runtime unroll disable metadata. 6338 LLVMContext &Context = L->getHeader()->getContext(); 6339 SmallVector<Metadata *, 1> DisableOperands; 6340 DisableOperands.push_back( 6341 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6342 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6343 MDs.push_back(DisableNode); 6344 MDNode *NewLoopID = MDNode::get(Context, MDs); 6345 // Set operand 0 to refer to the loop id itself. 6346 NewLoopID->replaceOperandWith(0, NewLoopID); 6347 L->setLoopID(NewLoopID); 6348 } 6349 } 6350 6351 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6352 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6353 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6354 bool PredicateAtRangeStart = Predicate(Range.Start); 6355 6356 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6357 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6358 Range.End = TmpVF; 6359 break; 6360 } 6361 6362 return PredicateAtRangeStart; 6363 } 6364 6365 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6366 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6367 /// of VF's starting at a given VF and extending it as much as possible. Each 6368 /// vectorization decision can potentially shorten this sub-range during 6369 /// buildVPlan(). 6370 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6371 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6372 VFRange SubRange = {VF, MaxVF + 1}; 6373 VPlans.push_back(buildVPlan(SubRange)); 6374 VF = SubRange.End; 6375 } 6376 } 6377 6378 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6379 VPlanPtr &Plan) { 6380 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6381 6382 // Look for cached value. 6383 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6384 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6385 if (ECEntryIt != EdgeMaskCache.end()) 6386 return ECEntryIt->second; 6387 6388 VPValue *SrcMask = createBlockInMask(Src, Plan); 6389 6390 // The terminator has to be a branch inst! 6391 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6392 assert(BI && "Unexpected terminator found"); 6393 6394 if (!BI->isConditional()) 6395 return EdgeMaskCache[Edge] = SrcMask; 6396 6397 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6398 assert(EdgeMask && "No Edge Mask found for condition"); 6399 6400 if (BI->getSuccessor(0) != Dst) 6401 EdgeMask = Builder.createNot(EdgeMask); 6402 6403 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6404 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6405 6406 return EdgeMaskCache[Edge] = EdgeMask; 6407 } 6408 6409 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6410 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6411 6412 // Look for cached value. 6413 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6414 if (BCEntryIt != BlockMaskCache.end()) 6415 return BCEntryIt->second; 6416 6417 // All-one mask is modelled as no-mask following the convention for masked 6418 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6419 VPValue *BlockMask = nullptr; 6420 6421 if (OrigLoop->getHeader() == BB) { 6422 if (!CM.blockNeedsPredication(BB)) 6423 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6424 6425 // Introduce the early-exit compare IV <= BTC to form header block mask. 6426 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6427 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6428 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6429 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6430 return BlockMaskCache[BB] = BlockMask; 6431 } 6432 6433 // This is the block mask. We OR all incoming edges. 6434 for (auto *Predecessor : predecessors(BB)) { 6435 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6436 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6437 return BlockMaskCache[BB] = EdgeMask; 6438 6439 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6440 BlockMask = EdgeMask; 6441 continue; 6442 } 6443 6444 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6445 } 6446 6447 return BlockMaskCache[BB] = BlockMask; 6448 } 6449 6450 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6451 VFRange &Range, 6452 VPlanPtr &Plan) { 6453 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6454 if (!IG) 6455 return nullptr; 6456 6457 // Now check if IG is relevant for VF's in the given range. 6458 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6459 return [=](unsigned VF) -> bool { 6460 return (VF >= 2 && // Query is illegal for VF == 1 6461 CM.getWideningDecision(I, VF) == 6462 LoopVectorizationCostModel::CM_Interleave); 6463 }; 6464 }; 6465 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6466 return nullptr; 6467 6468 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6469 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6470 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6471 assert(I == IG->getInsertPos() && 6472 "Generating a recipe for an adjunct member of an interleave group"); 6473 6474 VPValue *Mask = nullptr; 6475 if (Legal->isMaskRequired(I)) 6476 Mask = createBlockInMask(I->getParent(), Plan); 6477 6478 return new VPInterleaveRecipe(IG, Mask); 6479 } 6480 6481 VPWidenMemoryInstructionRecipe * 6482 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6483 VPlanPtr &Plan) { 6484 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6485 return nullptr; 6486 6487 auto willWiden = [&](unsigned VF) -> bool { 6488 if (VF == 1) 6489 return false; 6490 if (CM.isScalarAfterVectorization(I, VF) || 6491 CM.isProfitableToScalarize(I, VF)) 6492 return false; 6493 LoopVectorizationCostModel::InstWidening Decision = 6494 CM.getWideningDecision(I, VF); 6495 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6496 "CM decision should be taken at this point."); 6497 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6498 "Interleave memory opportunity should be caught earlier."); 6499 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6500 }; 6501 6502 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6503 return nullptr; 6504 6505 VPValue *Mask = nullptr; 6506 if (Legal->isMaskRequired(I)) 6507 Mask = createBlockInMask(I->getParent(), Plan); 6508 6509 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6510 } 6511 6512 VPWidenIntOrFpInductionRecipe * 6513 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6514 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6515 // Check if this is an integer or fp induction. If so, build the recipe that 6516 // produces its scalar and vector values. 6517 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6518 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6519 II.getKind() == InductionDescriptor::IK_FpInduction) 6520 return new VPWidenIntOrFpInductionRecipe(Phi); 6521 6522 return nullptr; 6523 } 6524 6525 // Optimize the special case where the source is a constant integer 6526 // induction variable. Notice that we can only optimize the 'trunc' case 6527 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6528 // (c) other casts depend on pointer size. 6529 6530 // Determine whether \p K is a truncation based on an induction variable that 6531 // can be optimized. 6532 auto isOptimizableIVTruncate = 6533 [&](Instruction *K) -> std::function<bool(unsigned)> { 6534 return 6535 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6536 }; 6537 6538 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6539 isOptimizableIVTruncate(I), Range)) 6540 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6541 cast<TruncInst>(I)); 6542 return nullptr; 6543 } 6544 6545 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6546 PHINode *Phi = dyn_cast<PHINode>(I); 6547 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6548 return nullptr; 6549 6550 // We know that all PHIs in non-header blocks are converted into selects, so 6551 // we don't have to worry about the insertion order and we can just use the 6552 // builder. At this point we generate the predication tree. There may be 6553 // duplications since this is a simple recursive scan, but future 6554 // optimizations will clean it up. 6555 6556 SmallVector<VPValue *, 2> Masks; 6557 unsigned NumIncoming = Phi->getNumIncomingValues(); 6558 for (unsigned In = 0; In < NumIncoming; In++) { 6559 VPValue *EdgeMask = 6560 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6561 assert((EdgeMask || NumIncoming == 1) && 6562 "Multiple predecessors with one having a full mask"); 6563 if (EdgeMask) 6564 Masks.push_back(EdgeMask); 6565 } 6566 return new VPBlendRecipe(Phi, Masks); 6567 } 6568 6569 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6570 VFRange &Range) { 6571 6572 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6573 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6574 6575 if (IsPredicated) 6576 return false; 6577 6578 auto IsVectorizableOpcode = [](unsigned Opcode) { 6579 switch (Opcode) { 6580 case Instruction::Add: 6581 case Instruction::And: 6582 case Instruction::AShr: 6583 case Instruction::BitCast: 6584 case Instruction::Br: 6585 case Instruction::Call: 6586 case Instruction::FAdd: 6587 case Instruction::FCmp: 6588 case Instruction::FDiv: 6589 case Instruction::FMul: 6590 case Instruction::FPExt: 6591 case Instruction::FPToSI: 6592 case Instruction::FPToUI: 6593 case Instruction::FPTrunc: 6594 case Instruction::FRem: 6595 case Instruction::FSub: 6596 case Instruction::GetElementPtr: 6597 case Instruction::ICmp: 6598 case Instruction::IntToPtr: 6599 case Instruction::Load: 6600 case Instruction::LShr: 6601 case Instruction::Mul: 6602 case Instruction::Or: 6603 case Instruction::PHI: 6604 case Instruction::PtrToInt: 6605 case Instruction::SDiv: 6606 case Instruction::Select: 6607 case Instruction::SExt: 6608 case Instruction::Shl: 6609 case Instruction::SIToFP: 6610 case Instruction::SRem: 6611 case Instruction::Store: 6612 case Instruction::Sub: 6613 case Instruction::Trunc: 6614 case Instruction::UDiv: 6615 case Instruction::UIToFP: 6616 case Instruction::URem: 6617 case Instruction::Xor: 6618 case Instruction::ZExt: 6619 return true; 6620 } 6621 return false; 6622 }; 6623 6624 if (!IsVectorizableOpcode(I->getOpcode())) 6625 return false; 6626 6627 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6628 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6629 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6630 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6631 return false; 6632 } 6633 6634 auto willWiden = [&](unsigned VF) -> bool { 6635 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6636 CM.isProfitableToScalarize(I, VF))) 6637 return false; 6638 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6639 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6640 // The following case may be scalarized depending on the VF. 6641 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6642 // version of the instruction. 6643 // Is it beneficial to perform intrinsic call compared to lib call? 6644 bool NeedToScalarize; 6645 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6646 bool UseVectorIntrinsic = 6647 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6648 return UseVectorIntrinsic || !NeedToScalarize; 6649 } 6650 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6651 assert(CM.getWideningDecision(I, VF) == 6652 LoopVectorizationCostModel::CM_Scalarize && 6653 "Memory widening decisions should have been taken care by now"); 6654 return false; 6655 } 6656 return true; 6657 }; 6658 6659 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6660 return false; 6661 6662 // Success: widen this instruction. We optimize the common case where 6663 // consecutive instructions can be represented by a single recipe. 6664 if (!VPBB->empty()) { 6665 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6666 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6667 return true; 6668 } 6669 6670 VPBB->appendRecipe(new VPWidenRecipe(I)); 6671 return true; 6672 } 6673 6674 VPBasicBlock *VPRecipeBuilder::handleReplication( 6675 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6676 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6677 VPlanPtr &Plan) { 6678 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6679 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6680 Range); 6681 6682 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6683 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6684 6685 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6686 6687 // Find if I uses a predicated instruction. If so, it will use its scalar 6688 // value. Avoid hoisting the insert-element which packs the scalar value into 6689 // a vector value, as that happens iff all users use the vector value. 6690 for (auto &Op : I->operands()) 6691 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6692 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6693 PredInst2Recipe[PredInst]->setAlsoPack(false); 6694 6695 // Finalize the recipe for Instr, first if it is not predicated. 6696 if (!IsPredicated) { 6697 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6698 VPBB->appendRecipe(Recipe); 6699 return VPBB; 6700 } 6701 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6702 assert(VPBB->getSuccessors().empty() && 6703 "VPBB has successors when handling predicated replication."); 6704 // Record predicated instructions for above packing optimizations. 6705 PredInst2Recipe[I] = Recipe; 6706 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6707 VPBlockUtils::insertBlockAfter(Region, VPBB); 6708 auto *RegSucc = new VPBasicBlock(); 6709 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6710 return RegSucc; 6711 } 6712 6713 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6714 VPRecipeBase *PredRecipe, 6715 VPlanPtr &Plan) { 6716 // Instructions marked for predication are replicated and placed under an 6717 // if-then construct to prevent side-effects. 6718 6719 // Generate recipes to compute the block mask for this region. 6720 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6721 6722 // Build the triangular if-then region. 6723 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6724 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6725 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6726 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6727 auto *PHIRecipe = 6728 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6729 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6730 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6731 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6732 6733 // Note: first set Entry as region entry and then connect successors starting 6734 // from it in order, to propagate the "parent" of each VPBasicBlock. 6735 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6736 VPBlockUtils::connectBlocks(Pred, Exit); 6737 6738 return Region; 6739 } 6740 6741 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6742 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6743 VPRecipeBase *Recipe = nullptr; 6744 // Check if Instr should belong to an interleave memory recipe, or already 6745 // does. In the latter case Instr is irrelevant. 6746 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6747 VPBB->appendRecipe(Recipe); 6748 return true; 6749 } 6750 6751 // Check if Instr is a memory operation that should be widened. 6752 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6753 VPBB->appendRecipe(Recipe); 6754 return true; 6755 } 6756 6757 // Check if Instr should form some PHI recipe. 6758 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6759 VPBB->appendRecipe(Recipe); 6760 return true; 6761 } 6762 if ((Recipe = tryToBlend(Instr, Plan))) { 6763 VPBB->appendRecipe(Recipe); 6764 return true; 6765 } 6766 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6767 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6768 return true; 6769 } 6770 6771 // Check if Instr is to be widened by a general VPWidenRecipe, after 6772 // having first checked for specific widening recipes that deal with 6773 // Interleave Groups, Inductions and Phi nodes. 6774 if (tryToWiden(Instr, VPBB, Range)) 6775 return true; 6776 6777 return false; 6778 } 6779 6780 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6781 unsigned MaxVF) { 6782 assert(OrigLoop->empty() && "Inner loop expected."); 6783 6784 // Collect conditions feeding internal conditional branches; they need to be 6785 // represented in VPlan for it to model masking. 6786 SmallPtrSet<Value *, 1> NeedDef; 6787 6788 auto *Latch = OrigLoop->getLoopLatch(); 6789 for (BasicBlock *BB : OrigLoop->blocks()) { 6790 if (BB == Latch) 6791 continue; 6792 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6793 if (Branch && Branch->isConditional()) 6794 NeedDef.insert(Branch->getCondition()); 6795 } 6796 6797 // If the tail is to be folded by masking, the primary induction variable 6798 // needs to be represented in VPlan for it to model early-exit masking. 6799 if (CM.foldTailByMasking()) 6800 NeedDef.insert(Legal->getPrimaryInduction()); 6801 6802 // Collect instructions from the original loop that will become trivially dead 6803 // in the vectorized loop. We don't need to vectorize these instructions. For 6804 // example, original induction update instructions can become dead because we 6805 // separately emit induction "steps" when generating code for the new loop. 6806 // Similarly, we create a new latch condition when setting up the structure 6807 // of the new loop, so the old one can become dead. 6808 SmallPtrSet<Instruction *, 4> DeadInstructions; 6809 collectTriviallyDeadInstructions(DeadInstructions); 6810 6811 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6812 VFRange SubRange = {VF, MaxVF + 1}; 6813 VPlans.push_back( 6814 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6815 VF = SubRange.End; 6816 } 6817 } 6818 6819 LoopVectorizationPlanner::VPlanPtr 6820 LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6821 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6822 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6823 // Hold a mapping from predicated instructions to their recipes, in order to 6824 // fix their AlsoPack behavior if a user is determined to replicate and use a 6825 // scalar instead of vector value. 6826 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6827 6828 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6829 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6830 6831 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6832 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6833 auto Plan = llvm::make_unique<VPlan>(VPBB); 6834 6835 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder); 6836 // Represent values that will have defs inside VPlan. 6837 for (Value *V : NeedDef) 6838 Plan->addVPValue(V); 6839 6840 // Scan the body of the loop in a topological order to visit each basic block 6841 // after having visited its predecessor basic blocks. 6842 LoopBlocksDFS DFS(OrigLoop); 6843 DFS.perform(LI); 6844 6845 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6846 // Relevant instructions from basic block BB will be grouped into VPRecipe 6847 // ingredients and fill a new VPBasicBlock. 6848 unsigned VPBBsForBB = 0; 6849 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6850 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6851 VPBB = FirstVPBBForBB; 6852 Builder.setInsertPoint(VPBB); 6853 6854 std::vector<Instruction *> Ingredients; 6855 6856 // Organize the ingredients to vectorize from current basic block in the 6857 // right order. 6858 for (Instruction &I : BB->instructionsWithoutDebug()) { 6859 Instruction *Instr = &I; 6860 6861 // First filter out irrelevant instructions, to ensure no recipes are 6862 // built for them. 6863 if (isa<BranchInst>(Instr) || 6864 DeadInstructions.find(Instr) != DeadInstructions.end()) 6865 continue; 6866 6867 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6868 // member of the IG, do not construct any Recipe for it. 6869 const InterleaveGroup<Instruction> *IG = 6870 CM.getInterleavedAccessGroup(Instr); 6871 if (IG && Instr != IG->getInsertPos() && 6872 Range.Start >= 2 && // Query is illegal for VF == 1 6873 CM.getWideningDecision(Instr, Range.Start) == 6874 LoopVectorizationCostModel::CM_Interleave) { 6875 auto SinkCandidate = SinkAfterInverse.find(Instr); 6876 if (SinkCandidate != SinkAfterInverse.end()) 6877 Ingredients.push_back(SinkCandidate->second); 6878 continue; 6879 } 6880 6881 // Move instructions to handle first-order recurrences, step 1: avoid 6882 // handling this instruction until after we've handled the instruction it 6883 // should follow. 6884 auto SAIt = SinkAfter.find(Instr); 6885 if (SAIt != SinkAfter.end()) { 6886 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6887 << *SAIt->second 6888 << " to vectorize a 1st order recurrence.\n"); 6889 SinkAfterInverse[SAIt->second] = Instr; 6890 continue; 6891 } 6892 6893 Ingredients.push_back(Instr); 6894 6895 // Move instructions to handle first-order recurrences, step 2: push the 6896 // instruction to be sunk at its insertion point. 6897 auto SAInvIt = SinkAfterInverse.find(Instr); 6898 if (SAInvIt != SinkAfterInverse.end()) 6899 Ingredients.push_back(SAInvIt->second); 6900 } 6901 6902 // Introduce each ingredient into VPlan. 6903 for (Instruction *Instr : Ingredients) { 6904 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6905 continue; 6906 6907 // Otherwise, if all widening options failed, Instruction is to be 6908 // replicated. This may create a successor for VPBB. 6909 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6910 Instr, Range, VPBB, PredInst2Recipe, Plan); 6911 if (NextVPBB != VPBB) { 6912 VPBB = NextVPBB; 6913 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6914 : ""); 6915 } 6916 } 6917 } 6918 6919 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6920 // may also be empty, such as the last one VPBB, reflecting original 6921 // basic-blocks with no recipes. 6922 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6923 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6924 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6925 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6926 delete PreEntry; 6927 6928 std::string PlanName; 6929 raw_string_ostream RSO(PlanName); 6930 unsigned VF = Range.Start; 6931 Plan->addVF(VF); 6932 RSO << "Initial VPlan for VF={" << VF; 6933 for (VF *= 2; VF < Range.End; VF *= 2) { 6934 Plan->addVF(VF); 6935 RSO << "," << VF; 6936 } 6937 RSO << "},UF>=1"; 6938 RSO.flush(); 6939 Plan->setName(PlanName); 6940 6941 return Plan; 6942 } 6943 6944 LoopVectorizationPlanner::VPlanPtr 6945 LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6946 // Outer loop handling: They may require CFG and instruction level 6947 // transformations before even evaluating whether vectorization is profitable. 6948 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6949 // the vectorization pipeline. 6950 assert(!OrigLoop->empty()); 6951 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6952 6953 // Create new empty VPlan 6954 auto Plan = llvm::make_unique<VPlan>(); 6955 6956 // Build hierarchical CFG 6957 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 6958 HCFGBuilder.buildHierarchicalCFG(); 6959 6960 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 6961 Plan->addVF(VF); 6962 6963 if (EnableVPlanPredication) { 6964 VPlanPredicator VPP(*Plan); 6965 VPP.predicate(); 6966 6967 // Avoid running transformation to recipes until masked code generation in 6968 // VPlan-native path is in place. 6969 return Plan; 6970 } 6971 6972 SmallPtrSet<Instruction *, 1> DeadInstructions; 6973 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 6974 Plan, Legal->getInductionVars(), DeadInstructions); 6975 6976 return Plan; 6977 } 6978 6979 Value* LoopVectorizationPlanner::VPCallbackILV:: 6980 getOrCreateVectorValues(Value *V, unsigned Part) { 6981 return ILV.getOrCreateVectorValue(V, Part); 6982 } 6983 6984 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 6985 O << " +\n" 6986 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 6987 IG->getInsertPos()->printAsOperand(O, false); 6988 if (User) { 6989 O << ", "; 6990 User->getOperand(0)->printAsOperand(O); 6991 } 6992 O << "\\l\""; 6993 for (unsigned i = 0; i < IG->getFactor(); ++i) 6994 if (Instruction *I = IG->getMember(i)) 6995 O << " +\n" 6996 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 6997 } 6998 6999 void VPWidenRecipe::execute(VPTransformState &State) { 7000 for (auto &Instr : make_range(Begin, End)) 7001 State.ILV->widenInstruction(Instr); 7002 } 7003 7004 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7005 assert(!State.Instance && "Int or FP induction being replicated."); 7006 State.ILV->widenIntOrFpInduction(IV, Trunc); 7007 } 7008 7009 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7010 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7011 } 7012 7013 void VPBlendRecipe::execute(VPTransformState &State) { 7014 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7015 // We know that all PHIs in non-header blocks are converted into 7016 // selects, so we don't have to worry about the insertion order and we 7017 // can just use the builder. 7018 // At this point we generate the predication tree. There may be 7019 // duplications since this is a simple recursive scan, but future 7020 // optimizations will clean it up. 7021 7022 unsigned NumIncoming = Phi->getNumIncomingValues(); 7023 7024 assert((User || NumIncoming == 1) && 7025 "Multiple predecessors with predecessors having a full mask"); 7026 // Generate a sequence of selects of the form: 7027 // SELECT(Mask3, In3, 7028 // SELECT(Mask2, In2, 7029 // ( ...))) 7030 InnerLoopVectorizer::VectorParts Entry(State.UF); 7031 for (unsigned In = 0; In < NumIncoming; ++In) { 7032 for (unsigned Part = 0; Part < State.UF; ++Part) { 7033 // We might have single edge PHIs (blocks) - use an identity 7034 // 'select' for the first PHI operand. 7035 Value *In0 = 7036 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7037 if (In == 0) 7038 Entry[Part] = In0; // Initialize with the first incoming value. 7039 else { 7040 // Select between the current value and the previous incoming edge 7041 // based on the incoming mask. 7042 Value *Cond = State.get(User->getOperand(In), Part); 7043 Entry[Part] = 7044 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7045 } 7046 } 7047 } 7048 for (unsigned Part = 0; Part < State.UF; ++Part) 7049 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7050 } 7051 7052 void VPInterleaveRecipe::execute(VPTransformState &State) { 7053 assert(!State.Instance && "Interleave group being replicated."); 7054 if (!User) 7055 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7056 7057 // Last (and currently only) operand is a mask. 7058 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7059 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7060 for (unsigned Part = 0; Part < State.UF; ++Part) 7061 MaskValues[Part] = State.get(Mask, Part); 7062 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7063 } 7064 7065 void VPReplicateRecipe::execute(VPTransformState &State) { 7066 if (State.Instance) { // Generate a single instance. 7067 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7068 // Insert scalar instance packing it into a vector. 7069 if (AlsoPack && State.VF > 1) { 7070 // If we're constructing lane 0, initialize to start from undef. 7071 if (State.Instance->Lane == 0) { 7072 Value *Undef = 7073 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7074 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7075 } 7076 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7077 } 7078 return; 7079 } 7080 7081 // Generate scalar instances for all VF lanes of all UF parts, unless the 7082 // instruction is uniform inwhich case generate only the first lane for each 7083 // of the UF parts. 7084 unsigned EndLane = IsUniform ? 1 : State.VF; 7085 for (unsigned Part = 0; Part < State.UF; ++Part) 7086 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7087 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7088 } 7089 7090 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7091 assert(State.Instance && "Branch on Mask works only on single instance."); 7092 7093 unsigned Part = State.Instance->Part; 7094 unsigned Lane = State.Instance->Lane; 7095 7096 Value *ConditionBit = nullptr; 7097 if (!User) // Block in mask is all-one. 7098 ConditionBit = State.Builder.getTrue(); 7099 else { 7100 VPValue *BlockInMask = User->getOperand(0); 7101 ConditionBit = State.get(BlockInMask, Part); 7102 if (ConditionBit->getType()->isVectorTy()) 7103 ConditionBit = State.Builder.CreateExtractElement( 7104 ConditionBit, State.Builder.getInt32(Lane)); 7105 } 7106 7107 // Replace the temporary unreachable terminator with a new conditional branch, 7108 // whose two destinations will be set later when they are created. 7109 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7110 assert(isa<UnreachableInst>(CurrentTerminator) && 7111 "Expected to replace unreachable terminator with conditional branch."); 7112 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7113 CondBr->setSuccessor(0, nullptr); 7114 ReplaceInstWithInst(CurrentTerminator, CondBr); 7115 } 7116 7117 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7118 assert(State.Instance && "Predicated instruction PHI works per instance."); 7119 Instruction *ScalarPredInst = cast<Instruction>( 7120 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7121 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7122 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7123 assert(PredicatingBB && "Predicated block has no single predecessor."); 7124 7125 // By current pack/unpack logic we need to generate only a single phi node: if 7126 // a vector value for the predicated instruction exists at this point it means 7127 // the instruction has vector users only, and a phi for the vector value is 7128 // needed. In this case the recipe of the predicated instruction is marked to 7129 // also do that packing, thereby "hoisting" the insert-element sequence. 7130 // Otherwise, a phi node for the scalar value is needed. 7131 unsigned Part = State.Instance->Part; 7132 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7133 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7134 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7135 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7136 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7137 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7138 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7139 } else { 7140 Type *PredInstType = PredInst->getType(); 7141 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7142 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7143 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7144 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7145 } 7146 } 7147 7148 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7149 if (!User) 7150 return State.ILV->vectorizeMemoryInstruction(&Instr); 7151 7152 // Last (and currently only) operand is a mask. 7153 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7154 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7155 for (unsigned Part = 0; Part < State.UF; ++Part) 7156 MaskValues[Part] = State.get(Mask, Part); 7157 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7158 } 7159 7160 // Process the loop in the VPlan-native vectorization path. This path builds 7161 // VPlan upfront in the vectorization pipeline, which allows to apply 7162 // VPlan-to-VPlan transformations from the very beginning without modifying the 7163 // input LLVM IR. 7164 static bool processLoopInVPlanNativePath( 7165 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7166 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7167 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7168 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7169 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7170 7171 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7172 Function *F = L->getHeader()->getParent(); 7173 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7174 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7175 &Hints, IAI); 7176 // Use the planner for outer loop vectorization. 7177 // TODO: CM is not used at this point inside the planner. Turn CM into an 7178 // optional argument if we don't need it in the future. 7179 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7180 7181 // Get user vectorization factor. 7182 const unsigned UserVF = Hints.getWidth(); 7183 7184 // Check the function attributes and profiles to find out if this function 7185 // should be optimized for size. 7186 bool OptForSize = 7187 Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7188 (F->hasOptSize() || 7189 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI)); 7190 7191 // Plan how to best vectorize, return the best VF and its cost. 7192 const VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); 7193 7194 // If we are stress testing VPlan builds, do not attempt to generate vector 7195 // code. Masked vector code generation support will follow soon. 7196 // Also, do not attempt to vectorize if no vector code will be produced. 7197 if (VPlanBuildStressTest || EnableVPlanPredication || 7198 VectorizationFactor::Disabled() == VF) 7199 return false; 7200 7201 LVP.setBestPlan(VF.Width, 1); 7202 7203 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7204 &CM); 7205 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7206 << L->getHeader()->getParent()->getName() << "\"\n"); 7207 LVP.executePlan(LB, DT); 7208 7209 // Mark the loop as already vectorized to avoid vectorizing again. 7210 Hints.setAlreadyVectorized(); 7211 7212 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7213 return true; 7214 } 7215 7216 bool LoopVectorizePass::processLoop(Loop *L) { 7217 assert((EnableVPlanNativePath || L->empty()) && 7218 "VPlan-native path is not enabled. Only process inner loops."); 7219 7220 #ifndef NDEBUG 7221 const std::string DebugLocStr = getDebugLocString(L); 7222 #endif /* NDEBUG */ 7223 7224 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7225 << L->getHeader()->getParent()->getName() << "\" from " 7226 << DebugLocStr << "\n"); 7227 7228 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7229 7230 LLVM_DEBUG( 7231 dbgs() << "LV: Loop hints:" 7232 << " force=" 7233 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7234 ? "disabled" 7235 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7236 ? "enabled" 7237 : "?")) 7238 << " width=" << Hints.getWidth() 7239 << " unroll=" << Hints.getInterleave() << "\n"); 7240 7241 // Function containing loop 7242 Function *F = L->getHeader()->getParent(); 7243 7244 // Looking at the diagnostic output is the only way to determine if a loop 7245 // was vectorized (other than looking at the IR or machine code), so it 7246 // is important to generate an optimization remark for each loop. Most of 7247 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7248 // generated as OptimizationRemark and OptimizationRemarkMissed are 7249 // less verbose reporting vectorized loops and unvectorized loops that may 7250 // benefit from vectorization, respectively. 7251 7252 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7253 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7254 return false; 7255 } 7256 7257 PredicatedScalarEvolution PSE(*SE, *L); 7258 7259 // Check if it is legal to vectorize the loop. 7260 LoopVectorizationRequirements Requirements(*ORE); 7261 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7262 &Requirements, &Hints, DB, AC); 7263 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7264 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7265 Hints.emitRemarkWithHints(); 7266 return false; 7267 } 7268 7269 // Check the function attributes and profiles to find out if this function 7270 // should be optimized for size. 7271 bool OptForSize = 7272 Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7273 (F->hasOptSize() || 7274 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI)); 7275 7276 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7277 // here. They may require CFG and instruction level transformations before 7278 // even evaluating whether vectorization is profitable. Since we cannot modify 7279 // the incoming IR, we need to build VPlan upfront in the vectorization 7280 // pipeline. 7281 if (!L->empty()) 7282 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7283 ORE, BFI, PSI, Hints); 7284 7285 assert(L->empty() && "Inner loop expected."); 7286 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7287 // count by optimizing for size, to minimize overheads. 7288 // Prefer constant trip counts over profile data, over upper bound estimate. 7289 unsigned ExpectedTC = 0; 7290 bool HasExpectedTC = false; 7291 if (const SCEVConstant *ConstExits = 7292 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7293 const APInt &ExitsCount = ConstExits->getAPInt(); 7294 // We are interested in small values for ExpectedTC. Skip over those that 7295 // can't fit an unsigned. 7296 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7297 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7298 HasExpectedTC = true; 7299 } 7300 } 7301 // ExpectedTC may be large because it's bound by a variable. Check 7302 // profiling information to validate we should vectorize. 7303 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7304 auto EstimatedTC = getLoopEstimatedTripCount(L); 7305 if (EstimatedTC) { 7306 ExpectedTC = *EstimatedTC; 7307 HasExpectedTC = true; 7308 } 7309 } 7310 if (!HasExpectedTC) { 7311 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7312 HasExpectedTC = (ExpectedTC > 0); 7313 } 7314 7315 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7316 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7317 << "This loop is worth vectorizing only if no scalar " 7318 << "iteration overheads are incurred."); 7319 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7320 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7321 else { 7322 LLVM_DEBUG(dbgs() << "\n"); 7323 // Loops with a very small trip count are considered for vectorization 7324 // under OptForSize, thereby making sure the cost of their loop body is 7325 // dominant, free of runtime guards and scalar iteration overheads. 7326 OptForSize = true; 7327 } 7328 } 7329 7330 // Check the function attributes to see if implicit floats are allowed. 7331 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7332 // an integer loop and the vector instructions selected are purely integer 7333 // vector instructions? 7334 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7335 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7336 "attribute is used.\n"); 7337 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7338 "NoImplicitFloat", L) 7339 << "loop not vectorized due to NoImplicitFloat attribute"); 7340 Hints.emitRemarkWithHints(); 7341 return false; 7342 } 7343 7344 // Check if the target supports potentially unsafe FP vectorization. 7345 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7346 // for the target we're vectorizing for, to make sure none of the 7347 // additional fp-math flags can help. 7348 if (Hints.isPotentiallyUnsafe() && 7349 TTI->isFPVectorizationPotentiallyUnsafe()) { 7350 LLVM_DEBUG( 7351 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7352 ORE->emit( 7353 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7354 << "loop not vectorized due to unsafe FP support."); 7355 Hints.emitRemarkWithHints(); 7356 return false; 7357 } 7358 7359 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7360 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7361 7362 // If an override option has been passed in for interleaved accesses, use it. 7363 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7364 UseInterleaved = EnableInterleavedMemAccesses; 7365 7366 // Analyze interleaved memory accesses. 7367 if (UseInterleaved) { 7368 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7369 } 7370 7371 // Use the cost model. 7372 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7373 &Hints, IAI); 7374 CM.collectValuesToIgnore(); 7375 7376 // Use the planner for vectorization. 7377 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7378 7379 // Get user vectorization factor. 7380 unsigned UserVF = Hints.getWidth(); 7381 7382 // Plan how to best vectorize, return the best VF and its cost. 7383 Optional<VectorizationFactor> MaybeVF = LVP.plan(OptForSize, UserVF); 7384 7385 VectorizationFactor VF = VectorizationFactor::Disabled(); 7386 unsigned IC = 1; 7387 unsigned UserIC = Hints.getInterleave(); 7388 7389 if (MaybeVF) { 7390 VF = *MaybeVF; 7391 // Select the interleave count. 7392 IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7393 } 7394 7395 // Identify the diagnostic messages that should be produced. 7396 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7397 bool VectorizeLoop = true, InterleaveLoop = true; 7398 if (Requirements.doesNotMeet(F, L, Hints)) { 7399 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7400 "requirements.\n"); 7401 Hints.emitRemarkWithHints(); 7402 return false; 7403 } 7404 7405 if (VF.Width == 1) { 7406 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7407 VecDiagMsg = std::make_pair( 7408 "VectorizationNotBeneficial", 7409 "the cost-model indicates that vectorization is not beneficial"); 7410 VectorizeLoop = false; 7411 } 7412 7413 if (!MaybeVF && UserIC > 1) { 7414 // Tell the user interleaving was avoided up-front, despite being explicitly 7415 // requested. 7416 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7417 "interleaving should be avoided up front\n"); 7418 IntDiagMsg = std::make_pair( 7419 "InterleavingAvoided", 7420 "Ignoring UserIC, because interleaving was avoided up front"); 7421 InterleaveLoop = false; 7422 } else if (IC == 1 && UserIC <= 1) { 7423 // Tell the user interleaving is not beneficial. 7424 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7425 IntDiagMsg = std::make_pair( 7426 "InterleavingNotBeneficial", 7427 "the cost-model indicates that interleaving is not beneficial"); 7428 InterleaveLoop = false; 7429 if (UserIC == 1) { 7430 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7431 IntDiagMsg.second += 7432 " and is explicitly disabled or interleave count is set to 1"; 7433 } 7434 } else if (IC > 1 && UserIC == 1) { 7435 // Tell the user interleaving is beneficial, but it explicitly disabled. 7436 LLVM_DEBUG( 7437 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7438 IntDiagMsg = std::make_pair( 7439 "InterleavingBeneficialButDisabled", 7440 "the cost-model indicates that interleaving is beneficial " 7441 "but is explicitly disabled or interleave count is set to 1"); 7442 InterleaveLoop = false; 7443 } 7444 7445 // Override IC if user provided an interleave count. 7446 IC = UserIC > 0 ? UserIC : IC; 7447 7448 // Emit diagnostic messages, if any. 7449 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7450 if (!VectorizeLoop && !InterleaveLoop) { 7451 // Do not vectorize or interleaving the loop. 7452 ORE->emit([&]() { 7453 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7454 L->getStartLoc(), L->getHeader()) 7455 << VecDiagMsg.second; 7456 }); 7457 ORE->emit([&]() { 7458 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7459 L->getStartLoc(), L->getHeader()) 7460 << IntDiagMsg.second; 7461 }); 7462 return false; 7463 } else if (!VectorizeLoop && InterleaveLoop) { 7464 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7465 ORE->emit([&]() { 7466 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7467 L->getStartLoc(), L->getHeader()) 7468 << VecDiagMsg.second; 7469 }); 7470 } else if (VectorizeLoop && !InterleaveLoop) { 7471 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7472 << ") in " << DebugLocStr << '\n'); 7473 ORE->emit([&]() { 7474 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7475 L->getStartLoc(), L->getHeader()) 7476 << IntDiagMsg.second; 7477 }); 7478 } else if (VectorizeLoop && InterleaveLoop) { 7479 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7480 << ") in " << DebugLocStr << '\n'); 7481 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7482 } 7483 7484 LVP.setBestPlan(VF.Width, IC); 7485 7486 using namespace ore; 7487 bool DisableRuntimeUnroll = false; 7488 MDNode *OrigLoopID = L->getLoopID(); 7489 7490 if (!VectorizeLoop) { 7491 assert(IC > 1 && "interleave count should not be 1 or 0"); 7492 // If we decided that it is not legal to vectorize the loop, then 7493 // interleave it. 7494 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7495 &CM); 7496 LVP.executePlan(Unroller, DT); 7497 7498 ORE->emit([&]() { 7499 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7500 L->getHeader()) 7501 << "interleaved loop (interleaved count: " 7502 << NV("InterleaveCount", IC) << ")"; 7503 }); 7504 } else { 7505 // If we decided that it is *legal* to vectorize the loop, then do it. 7506 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7507 &LVL, &CM); 7508 LVP.executePlan(LB, DT); 7509 ++LoopsVectorized; 7510 7511 // Add metadata to disable runtime unrolling a scalar loop when there are 7512 // no runtime checks about strides and memory. A scalar loop that is 7513 // rarely used is not worth unrolling. 7514 if (!LB.areSafetyChecksAdded()) 7515 DisableRuntimeUnroll = true; 7516 7517 // Report the vectorization decision. 7518 ORE->emit([&]() { 7519 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7520 L->getHeader()) 7521 << "vectorized loop (vectorization width: " 7522 << NV("VectorizationFactor", VF.Width) 7523 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7524 }); 7525 } 7526 7527 Optional<MDNode *> RemainderLoopID = 7528 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7529 LLVMLoopVectorizeFollowupEpilogue}); 7530 if (RemainderLoopID.hasValue()) { 7531 L->setLoopID(RemainderLoopID.getValue()); 7532 } else { 7533 if (DisableRuntimeUnroll) 7534 AddRuntimeUnrollDisableMetaData(L); 7535 7536 // Mark the loop as already vectorized to avoid vectorizing again. 7537 Hints.setAlreadyVectorized(); 7538 } 7539 7540 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7541 return true; 7542 } 7543 7544 bool LoopVectorizePass::runImpl( 7545 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7546 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7547 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7548 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7549 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7550 SE = &SE_; 7551 LI = &LI_; 7552 TTI = &TTI_; 7553 DT = &DT_; 7554 BFI = &BFI_; 7555 TLI = TLI_; 7556 AA = &AA_; 7557 AC = &AC_; 7558 GetLAA = &GetLAA_; 7559 DB = &DB_; 7560 ORE = &ORE_; 7561 PSI = PSI_; 7562 7563 // Don't attempt if 7564 // 1. the target claims to have no vector registers, and 7565 // 2. interleaving won't help ILP. 7566 // 7567 // The second condition is necessary because, even if the target has no 7568 // vector registers, loop vectorization may still enable scalar 7569 // interleaving. 7570 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7571 return false; 7572 7573 bool Changed = false; 7574 7575 // The vectorizer requires loops to be in simplified form. 7576 // Since simplification may add new inner loops, it has to run before the 7577 // legality and profitability checks. This means running the loop vectorizer 7578 // will simplify all loops, regardless of whether anything end up being 7579 // vectorized. 7580 for (auto &L : *LI) 7581 Changed |= 7582 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 7583 7584 // Build up a worklist of inner-loops to vectorize. This is necessary as 7585 // the act of vectorizing or partially unrolling a loop creates new loops 7586 // and can invalidate iterators across the loops. 7587 SmallVector<Loop *, 8> Worklist; 7588 7589 for (Loop *L : *LI) 7590 collectSupportedLoops(*L, LI, ORE, Worklist); 7591 7592 LoopsAnalyzed += Worklist.size(); 7593 7594 // Now walk the identified inner loops. 7595 while (!Worklist.empty()) { 7596 Loop *L = Worklist.pop_back_val(); 7597 7598 // For the inner loops we actually process, form LCSSA to simplify the 7599 // transform. 7600 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7601 7602 Changed |= processLoop(L); 7603 } 7604 7605 // Process each loop nest in the function. 7606 return Changed; 7607 } 7608 7609 PreservedAnalyses LoopVectorizePass::run(Function &F, 7610 FunctionAnalysisManager &AM) { 7611 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7612 auto &LI = AM.getResult<LoopAnalysis>(F); 7613 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7614 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7615 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7616 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7617 auto &AA = AM.getResult<AAManager>(F); 7618 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7619 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7620 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7621 MemorySSA *MSSA = EnableMSSALoopDependency 7622 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7623 : nullptr; 7624 7625 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7626 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7627 [&](Loop &L) -> const LoopAccessInfo & { 7628 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7629 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7630 }; 7631 const ModuleAnalysisManager &MAM = 7632 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 7633 ProfileSummaryInfo *PSI = 7634 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 7635 bool Changed = 7636 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 7637 if (!Changed) 7638 return PreservedAnalyses::all(); 7639 PreservedAnalyses PA; 7640 7641 // We currently do not preserve loopinfo/dominator analyses with outer loop 7642 // vectorization. Until this is addressed, mark these analyses as preserved 7643 // only for non-VPlan-native path. 7644 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7645 if (!EnableVPlanNativePath) { 7646 PA.preserve<LoopAnalysis>(); 7647 PA.preserve<DominatorTreeAnalysis>(); 7648 } 7649 PA.preserve<BasicAA>(); 7650 PA.preserve<GlobalsAA>(); 7651 return PA; 7652 } 7653