1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/Metadata.h"
116 #include "llvm/IR/Module.h"
117 #include "llvm/IR/Operator.h"
118 #include "llvm/IR/PatternMatch.h"
119 #include "llvm/IR/Type.h"
120 #include "llvm/IR/Use.h"
121 #include "llvm/IR/User.h"
122 #include "llvm/IR/Value.h"
123 #include "llvm/IR/ValueHandle.h"
124 #include "llvm/IR/Verifier.h"
125 #include "llvm/InitializePasses.h"
126 #include "llvm/Pass.h"
127 #include "llvm/Support/Casting.h"
128 #include "llvm/Support/CommandLine.h"
129 #include "llvm/Support/Compiler.h"
130 #include "llvm/Support/Debug.h"
131 #include "llvm/Support/ErrorHandling.h"
132 #include "llvm/Support/InstructionCost.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <functional>
147 #include <iterator>
148 #include <limits>
149 #include <memory>
150 #include <string>
151 #include <tuple>
152 #include <utility>
153 
154 using namespace llvm;
155 
156 #define LV_NAME "loop-vectorize"
157 #define DEBUG_TYPE LV_NAME
158 
159 #ifndef NDEBUG
160 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
161 #endif
162 
163 /// @{
164 /// Metadata attribute names
165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
166 const char LLVMLoopVectorizeFollowupVectorized[] =
167     "llvm.loop.vectorize.followup_vectorized";
168 const char LLVMLoopVectorizeFollowupEpilogue[] =
169     "llvm.loop.vectorize.followup_epilogue";
170 /// @}
171 
172 STATISTIC(LoopsVectorized, "Number of loops vectorized");
173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
175 
176 static cl::opt<bool> EnableEpilogueVectorization(
177     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
178     cl::desc("Enable vectorization of epilogue loops."));
179 
180 static cl::opt<unsigned> EpilogueVectorizationForceVF(
181     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
182     cl::desc("When epilogue vectorization is enabled, and a value greater than "
183              "1 is specified, forces the given VF for all applicable epilogue "
184              "loops."));
185 
186 static cl::opt<unsigned> EpilogueVectorizationMinVF(
187     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
188     cl::desc("Only loops with vectorization factor equal to or larger than "
189              "the specified value are considered for epilogue vectorization."));
190 
191 /// Loops with a known constant trip count below this number are vectorized only
192 /// if no scalar iteration overheads are incurred.
193 static cl::opt<unsigned> TinyTripCountVectorThreshold(
194     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
195     cl::desc("Loops with a constant trip count that is smaller than this "
196              "value are vectorized only if no scalar iteration overheads "
197              "are incurred."));
198 
199 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
200     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
201     cl::desc("The maximum allowed number of runtime memory checks with a "
202              "vectorize(enable) pragma."));
203 
204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
205 // that predication is preferred, and this lists all options. I.e., the
206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
207 // and predicate the instructions accordingly. If tail-folding fails, there are
208 // different fallback strategies depending on these values:
209 namespace PreferPredicateTy {
210   enum Option {
211     ScalarEpilogue = 0,
212     PredicateElseScalarEpilogue,
213     PredicateOrDontVectorize
214   };
215 } // namespace PreferPredicateTy
216 
217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
218     "prefer-predicate-over-epilogue",
219     cl::init(PreferPredicateTy::ScalarEpilogue),
220     cl::Hidden,
221     cl::desc("Tail-folding and predication preferences over creating a scalar "
222              "epilogue loop."),
223     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
224                          "scalar-epilogue",
225                          "Don't tail-predicate loops, create scalar epilogue"),
226               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
227                          "predicate-else-scalar-epilogue",
228                          "prefer tail-folding, create scalar epilogue if tail "
229                          "folding fails."),
230               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
231                          "predicate-dont-vectorize",
232                          "prefers tail-folding, don't attempt vectorization if "
233                          "tail-folding fails.")));
234 
235 static cl::opt<bool> MaximizeBandwidth(
236     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
237     cl::desc("Maximize bandwidth when selecting vectorization factor which "
238              "will be determined by the smallest type in loop."));
239 
240 static cl::opt<bool> EnableInterleavedMemAccesses(
241     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
242     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
243 
244 /// An interleave-group may need masking if it resides in a block that needs
245 /// predication, or in order to mask away gaps.
246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
247     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
248     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
249 
250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
251     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
252     cl::desc("We don't interleave loops with a estimated constant trip count "
253              "below this number"));
254 
255 static cl::opt<unsigned> ForceTargetNumScalarRegs(
256     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
257     cl::desc("A flag that overrides the target's number of scalar registers."));
258 
259 static cl::opt<unsigned> ForceTargetNumVectorRegs(
260     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
261     cl::desc("A flag that overrides the target's number of vector registers."));
262 
263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
264     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
265     cl::desc("A flag that overrides the target's max interleave factor for "
266              "scalar loops."));
267 
268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
269     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
270     cl::desc("A flag that overrides the target's max interleave factor for "
271              "vectorized loops."));
272 
273 static cl::opt<unsigned> ForceTargetInstructionCost(
274     "force-target-instruction-cost", cl::init(0), cl::Hidden,
275     cl::desc("A flag that overrides the target's expected cost for "
276              "an instruction to a single constant value. Mostly "
277              "useful for getting consistent testing."));
278 
279 static cl::opt<bool> ForceTargetSupportsScalableVectors(
280     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
281     cl::desc(
282         "Pretend that scalable vectors are supported, even if the target does "
283         "not support them. This flag should only be used for testing."));
284 
285 static cl::opt<unsigned> SmallLoopCost(
286     "small-loop-cost", cl::init(20), cl::Hidden,
287     cl::desc(
288         "The cost of a loop that is considered 'small' by the interleaver."));
289 
290 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
291     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
292     cl::desc("Enable the use of the block frequency analysis to access PGO "
293              "heuristics minimizing code growth in cold regions and being more "
294              "aggressive in hot regions."));
295 
296 // Runtime interleave loops for load/store throughput.
297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
298     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
299     cl::desc(
300         "Enable runtime interleaving until load/store ports are saturated"));
301 
302 /// Interleave small loops with scalar reductions.
303 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
304     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
305     cl::desc("Enable interleaving for loops with small iteration counts that "
306              "contain scalar reductions to expose ILP."));
307 
308 /// The number of stores in a loop that are allowed to need predication.
309 static cl::opt<unsigned> NumberOfStoresToPredicate(
310     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
311     cl::desc("Max number of stores to be predicated behind an if."));
312 
313 static cl::opt<bool> EnableIndVarRegisterHeur(
314     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
315     cl::desc("Count the induction variable only once when interleaving"));
316 
317 static cl::opt<bool> EnableCondStoresVectorization(
318     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
319     cl::desc("Enable if predication of stores during vectorization."));
320 
321 static cl::opt<unsigned> MaxNestedScalarReductionIC(
322     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
323     cl::desc("The maximum interleave count to use when interleaving a scalar "
324              "reduction in a nested loop."));
325 
326 static cl::opt<bool>
327     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
328                            cl::Hidden,
329                            cl::desc("Prefer in-loop vector reductions, "
330                                     "overriding the targets preference."));
331 
332 static cl::opt<bool> ForceOrderedReductions(
333     "force-ordered-reductions", cl::init(false), cl::Hidden,
334     cl::desc("Enable the vectorisation of loops with in-order (strict) "
335              "FP reductions"));
336 
337 static cl::opt<bool> PreferPredicatedReductionSelect(
338     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
339     cl::desc(
340         "Prefer predicating a reduction operation over an after loop select."));
341 
342 cl::opt<bool> EnableVPlanNativePath(
343     "enable-vplan-native-path", cl::init(false), cl::Hidden,
344     cl::desc("Enable VPlan-native vectorization path with "
345              "support for outer loop vectorization."));
346 
347 // FIXME: Remove this switch once we have divergence analysis. Currently we
348 // assume divergent non-backedge branches when this switch is true.
349 cl::opt<bool> EnableVPlanPredication(
350     "enable-vplan-predication", cl::init(false), cl::Hidden,
351     cl::desc("Enable VPlan-native vectorization path predicator with "
352              "support for outer loop vectorization."));
353 
354 // This flag enables the stress testing of the VPlan H-CFG construction in the
355 // VPlan-native vectorization path. It must be used in conjuction with
356 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
357 // verification of the H-CFGs built.
358 static cl::opt<bool> VPlanBuildStressTest(
359     "vplan-build-stress-test", cl::init(false), cl::Hidden,
360     cl::desc(
361         "Build VPlan for every supported loop nest in the function and bail "
362         "out right after the build (stress test the VPlan H-CFG construction "
363         "in the VPlan-native vectorization path)."));
364 
365 cl::opt<bool> llvm::EnableLoopInterleaving(
366     "interleave-loops", cl::init(true), cl::Hidden,
367     cl::desc("Enable loop interleaving in Loop vectorization passes"));
368 cl::opt<bool> llvm::EnableLoopVectorization(
369     "vectorize-loops", cl::init(true), cl::Hidden,
370     cl::desc("Run the Loop vectorization passes"));
371 
372 cl::opt<bool> PrintVPlansInDotFormat(
373     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
374     cl::desc("Use dot format instead of plain text when dumping VPlans"));
375 
376 /// A helper function that returns true if the given type is irregular. The
377 /// type is irregular if its allocated size doesn't equal the store size of an
378 /// element of the corresponding vector type.
379 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
380   // Determine if an array of N elements of type Ty is "bitcast compatible"
381   // with a <N x Ty> vector.
382   // This is only true if there is no padding between the array elements.
383   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
384 }
385 
386 /// A helper function that returns the reciprocal of the block probability of
387 /// predicated blocks. If we return X, we are assuming the predicated block
388 /// will execute once for every X iterations of the loop header.
389 ///
390 /// TODO: We should use actual block probability here, if available. Currently,
391 ///       we always assume predicated blocks have a 50% chance of executing.
392 static unsigned getReciprocalPredBlockProb() { return 2; }
393 
394 /// A helper function that returns an integer or floating-point constant with
395 /// value C.
396 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
397   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
398                            : ConstantFP::get(Ty, C);
399 }
400 
401 /// Returns "best known" trip count for the specified loop \p L as defined by
402 /// the following procedure:
403 ///   1) Returns exact trip count if it is known.
404 ///   2) Returns expected trip count according to profile data if any.
405 ///   3) Returns upper bound estimate if it is known.
406 ///   4) Returns None if all of the above failed.
407 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
408   // Check if exact trip count is known.
409   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
410     return ExpectedTC;
411 
412   // Check if there is an expected trip count available from profile data.
413   if (LoopVectorizeWithBlockFrequency)
414     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
415       return EstimatedTC;
416 
417   // Check if upper bound estimate is known.
418   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
419     return ExpectedTC;
420 
421   return None;
422 }
423 
424 // Forward declare GeneratedRTChecks.
425 class GeneratedRTChecks;
426 
427 namespace llvm {
428 
429 AnalysisKey ShouldRunExtraVectorPasses::Key;
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop and the start value for the canonical induction, if it is != 0. The
472   /// latter is the case when vectorizing the epilogue loop. In the case of
473   /// epilogue vectorization, this function is overriden to handle the more
474   /// complex control flow around the loops.
475   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
476 
477   /// Widen a single call instruction within the innermost loop.
478   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
479                             VPTransformState &State);
480 
481   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
482   void fixVectorizedLoop(VPTransformState &State);
483 
484   // Return true if any runtime check is added.
485   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
486 
487   /// A type for vectorized values in the new loop. Each value from the
488   /// original loop, when vectorized, is represented by UF vector values in the
489   /// new unrolled loop, where UF is the unroll factor.
490   using VectorParts = SmallVector<Value *, 2>;
491 
492   /// Vectorize a single first-order recurrence or pointer induction PHINode in
493   /// a block. This method handles the induction variable canonicalization. It
494   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
495   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
496                            VPTransformState &State);
497 
498   /// A helper function to scalarize a single Instruction in the innermost loop.
499   /// Generates a sequence of scalar instances for each lane between \p MinLane
500   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
501   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
502   /// Instr's operands.
503   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
504                             const VPIteration &Instance, bool IfPredicateInstr,
505                             VPTransformState &State);
506 
507   /// Construct the vector value of a scalarized value \p V one lane at a time.
508   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
509                                  VPTransformState &State);
510 
511   /// Try to vectorize interleaved access group \p Group with the base address
512   /// given in \p Addr, optionally masking the vector operations if \p
513   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
514   /// values in the vectorized loop.
515   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
516                                 ArrayRef<VPValue *> VPDefs,
517                                 VPTransformState &State, VPValue *Addr,
518                                 ArrayRef<VPValue *> StoredValues,
519                                 VPValue *BlockInMask = nullptr);
520 
521   /// Set the debug location in the builder \p Ptr using the debug location in
522   /// \p V. If \p Ptr is None then it uses the class member's Builder.
523   void setDebugLocFromInst(const Value *V,
524                            Optional<IRBuilderBase *> CustomBuilder = None);
525 
526   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
527   void fixNonInductionPHIs(VPTransformState &State);
528 
529   /// Returns true if the reordering of FP operations is not allowed, but we are
530   /// able to vectorize with strict in-order reductions for the given RdxDesc.
531   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
532 
533   /// Create a broadcast instruction. This method generates a broadcast
534   /// instruction (shuffle) for loop invariant values and for the induction
535   /// value. If this is the induction variable then we extend it to N, N+1, ...
536   /// this is needed because each iteration in the loop corresponds to a SIMD
537   /// element.
538   virtual Value *getBroadcastInstrs(Value *V);
539 
540   /// Add metadata from one instruction to another.
541   ///
542   /// This includes both the original MDs from \p From and additional ones (\see
543   /// addNewMetadata).  Use this for *newly created* instructions in the vector
544   /// loop.
545   void addMetadata(Instruction *To, Instruction *From);
546 
547   /// Similar to the previous function but it adds the metadata to a
548   /// vector of instructions.
549   void addMetadata(ArrayRef<Value *> To, Instruction *From);
550 
551   // Returns the resume value (bc.merge.rdx) for a reduction as
552   // generated by fixReduction.
553   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
554 
555 protected:
556   friend class LoopVectorizationPlanner;
557 
558   /// A small list of PHINodes.
559   using PhiVector = SmallVector<PHINode *, 4>;
560 
561   /// A type for scalarized values in the new loop. Each value from the
562   /// original loop, when scalarized, is represented by UF x VF scalar values
563   /// in the new unrolled loop, where UF is the unroll factor and VF is the
564   /// vectorization factor.
565   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
566 
567   /// Set up the values of the IVs correctly when exiting the vector loop.
568   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
569                     Value *CountRoundDown, Value *EndValue,
570                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader);
571 
572   /// Introduce a conditional branch (on true, condition to be set later) at the
573   /// end of the header=latch connecting it to itself (across the backedge) and
574   /// to the exit block of \p L.
575   void createHeaderBranch(Loop *L);
576 
577   /// Handle all cross-iteration phis in the header.
578   void fixCrossIterationPHIs(VPTransformState &State);
579 
580   /// Create the exit value of first order recurrences in the middle block and
581   /// update their users.
582   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
583                                VPTransformState &State);
584 
585   /// Create code for the loop exit value of the reduction.
586   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
587 
588   /// Clear NSW/NUW flags from reduction instructions if necessary.
589   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
590                                VPTransformState &State);
591 
592   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
593   /// means we need to add the appropriate incoming value from the middle
594   /// block as exiting edges from the scalar epilogue loop (if present) are
595   /// already in place, and we exit the vector loop exclusively to the middle
596   /// block.
597   void fixLCSSAPHIs(VPTransformState &State);
598 
599   /// Iteratively sink the scalarized operands of a predicated instruction into
600   /// the block that was created for it.
601   void sinkScalarOperands(Instruction *PredInst);
602 
603   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
604   /// represented as.
605   void truncateToMinimalBitwidths(VPTransformState &State);
606 
607   /// Returns (and creates if needed) the original loop trip count.
608   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
609 
610   /// Returns (and creates if needed) the trip count of the widened loop.
611   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
612 
613   /// Returns a bitcasted value to the requested vector type.
614   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
615   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
616                                 const DataLayout &DL);
617 
618   /// Emit a bypass check to see if the vector trip count is zero, including if
619   /// it overflows.
620   void emitMinimumIterationCountCheck(BasicBlock *Bypass);
621 
622   /// Emit a bypass check to see if all of the SCEV assumptions we've
623   /// had to make are correct. Returns the block containing the checks or
624   /// nullptr if no checks have been added.
625   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
626 
627   /// Emit bypass checks to check any memory assumptions we may have made.
628   /// Returns the block containing the checks or nullptr if no checks have been
629   /// added.
630   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
631 
632   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
633   /// vector loop preheader, middle block and scalar preheader. Also
634   /// allocate a loop object for the new vector loop and return it.
635   Loop *createVectorLoopSkeleton(StringRef Prefix);
636 
637   /// Create new phi nodes for the induction variables to resume iteration count
638   /// in the scalar epilogue, from where the vectorized loop left off.
639   /// In cases where the loop skeleton is more complicated (eg. epilogue
640   /// vectorization) and the resume values can come from an additional bypass
641   /// block, the \p AdditionalBypass pair provides information about the bypass
642   /// block and the end value on the edge from bypass to this loop.
643   void createInductionResumeValues(
644       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
645 
646   /// Complete the loop skeleton by adding debug MDs, creating appropriate
647   /// conditional branches in the middle block, preparing the builder and
648   /// running the verifier. Return the preheader of the completed vector loop.
649   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
650 
651   /// Add additional metadata to \p To that was not present on \p Orig.
652   ///
653   /// Currently this is used to add the noalias annotations based on the
654   /// inserted memchecks.  Use this for instructions that are *cloned* into the
655   /// vector loop.
656   void addNewMetadata(Instruction *To, const Instruction *Orig);
657 
658   /// Collect poison-generating recipes that may generate a poison value that is
659   /// used after vectorization, even when their operands are not poison. Those
660   /// recipes meet the following conditions:
661   ///  * Contribute to the address computation of a recipe generating a widen
662   ///    memory load/store (VPWidenMemoryInstructionRecipe or
663   ///    VPInterleaveRecipe).
664   ///  * Such a widen memory load/store has at least one underlying Instruction
665   ///    that is in a basic block that needs predication and after vectorization
666   ///    the generated instruction won't be predicated.
667   void collectPoisonGeneratingRecipes(VPTransformState &State);
668 
669   /// Allow subclasses to override and print debug traces before/after vplan
670   /// execution, when trace information is requested.
671   virtual void printDebugTracesAtStart(){};
672   virtual void printDebugTracesAtEnd(){};
673 
674   /// The original loop.
675   Loop *OrigLoop;
676 
677   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
678   /// dynamic knowledge to simplify SCEV expressions and converts them to a
679   /// more usable form.
680   PredicatedScalarEvolution &PSE;
681 
682   /// Loop Info.
683   LoopInfo *LI;
684 
685   /// Dominator Tree.
686   DominatorTree *DT;
687 
688   /// Alias Analysis.
689   AAResults *AA;
690 
691   /// Target Library Info.
692   const TargetLibraryInfo *TLI;
693 
694   /// Target Transform Info.
695   const TargetTransformInfo *TTI;
696 
697   /// Assumption Cache.
698   AssumptionCache *AC;
699 
700   /// Interface to emit optimization remarks.
701   OptimizationRemarkEmitter *ORE;
702 
703   /// LoopVersioning.  It's only set up (non-null) if memchecks were
704   /// used.
705   ///
706   /// This is currently only used to add no-alias metadata based on the
707   /// memchecks.  The actually versioning is performed manually.
708   std::unique_ptr<LoopVersioning> LVer;
709 
710   /// The vectorization SIMD factor to use. Each vector will have this many
711   /// vector elements.
712   ElementCount VF;
713 
714   /// The vectorization unroll factor to use. Each scalar is vectorized to this
715   /// many different vector instructions.
716   unsigned UF;
717 
718   /// The builder that we use
719   IRBuilder<> Builder;
720 
721   // --- Vectorization state ---
722 
723   /// The vector-loop preheader.
724   BasicBlock *LoopVectorPreHeader;
725 
726   /// The scalar-loop preheader.
727   BasicBlock *LoopScalarPreHeader;
728 
729   /// Middle Block between the vector and the scalar.
730   BasicBlock *LoopMiddleBlock;
731 
732   /// The unique ExitBlock of the scalar loop if one exists.  Note that
733   /// there can be multiple exiting edges reaching this block.
734   BasicBlock *LoopExitBlock;
735 
736   /// The scalar loop body.
737   BasicBlock *LoopScalarBody;
738 
739   /// A list of all bypass blocks. The first block is the entry of the loop.
740   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
741 
742   /// Store instructions that were predicated.
743   SmallVector<Instruction *, 4> PredicatedInstructions;
744 
745   /// Trip count of the original loop.
746   Value *TripCount = nullptr;
747 
748   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
749   Value *VectorTripCount = nullptr;
750 
751   /// The legality analysis.
752   LoopVectorizationLegality *Legal;
753 
754   /// The profitablity analysis.
755   LoopVectorizationCostModel *Cost;
756 
757   // Record whether runtime checks are added.
758   bool AddedSafetyChecks = false;
759 
760   // Holds the end values for each induction variable. We save the end values
761   // so we can later fix-up the external users of the induction variables.
762   DenseMap<PHINode *, Value *> IVEndValues;
763 
764   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
765   // fixed up at the end of vector code generation.
766   SmallVector<PHINode *, 8> OrigPHIsToFix;
767 
768   /// BFI and PSI are used to check for profile guided size optimizations.
769   BlockFrequencyInfo *BFI;
770   ProfileSummaryInfo *PSI;
771 
772   // Whether this loop should be optimized for size based on profile guided size
773   // optimizatios.
774   bool OptForSizeBasedOnProfile;
775 
776   /// Structure to hold information about generated runtime checks, responsible
777   /// for cleaning the checks, if vectorization turns out unprofitable.
778   GeneratedRTChecks &RTChecks;
779 
780   // Holds the resume values for reductions in the loops, used to set the
781   // correct start value of reduction PHIs when vectorizing the epilogue.
782   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
783       ReductionResumeValues;
784 };
785 
786 class InnerLoopUnroller : public InnerLoopVectorizer {
787 public:
788   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
789                     LoopInfo *LI, DominatorTree *DT,
790                     const TargetLibraryInfo *TLI,
791                     const TargetTransformInfo *TTI, AssumptionCache *AC,
792                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
793                     LoopVectorizationLegality *LVL,
794                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
795                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
796       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
797                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
798                             BFI, PSI, Check) {}
799 
800 private:
801   Value *getBroadcastInstrs(Value *V) override;
802 };
803 
804 /// Encapsulate information regarding vectorization of a loop and its epilogue.
805 /// This information is meant to be updated and used across two stages of
806 /// epilogue vectorization.
807 struct EpilogueLoopVectorizationInfo {
808   ElementCount MainLoopVF = ElementCount::getFixed(0);
809   unsigned MainLoopUF = 0;
810   ElementCount EpilogueVF = ElementCount::getFixed(0);
811   unsigned EpilogueUF = 0;
812   BasicBlock *MainLoopIterationCountCheck = nullptr;
813   BasicBlock *EpilogueIterationCountCheck = nullptr;
814   BasicBlock *SCEVSafetyCheck = nullptr;
815   BasicBlock *MemSafetyCheck = nullptr;
816   Value *TripCount = nullptr;
817   Value *VectorTripCount = nullptr;
818 
819   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
820                                 ElementCount EVF, unsigned EUF)
821       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
822     assert(EUF == 1 &&
823            "A high UF for the epilogue loop is likely not beneficial.");
824   }
825 };
826 
827 /// An extension of the inner loop vectorizer that creates a skeleton for a
828 /// vectorized loop that has its epilogue (residual) also vectorized.
829 /// The idea is to run the vplan on a given loop twice, firstly to setup the
830 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
831 /// from the first step and vectorize the epilogue.  This is achieved by
832 /// deriving two concrete strategy classes from this base class and invoking
833 /// them in succession from the loop vectorizer planner.
834 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
835 public:
836   InnerLoopAndEpilogueVectorizer(
837       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
838       DominatorTree *DT, const TargetLibraryInfo *TLI,
839       const TargetTransformInfo *TTI, AssumptionCache *AC,
840       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
841       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
842       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
843       GeneratedRTChecks &Checks)
844       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
845                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
846                             Checks),
847         EPI(EPI) {}
848 
849   // Override this function to handle the more complex control flow around the
850   // three loops.
851   std::pair<BasicBlock *, Value *>
852   createVectorizedLoopSkeleton() final override {
853     return createEpilogueVectorizedLoopSkeleton();
854   }
855 
856   /// The interface for creating a vectorized skeleton using one of two
857   /// different strategies, each corresponding to one execution of the vplan
858   /// as described above.
859   virtual std::pair<BasicBlock *, Value *>
860   createEpilogueVectorizedLoopSkeleton() = 0;
861 
862   /// Holds and updates state information required to vectorize the main loop
863   /// and its epilogue in two separate passes. This setup helps us avoid
864   /// regenerating and recomputing runtime safety checks. It also helps us to
865   /// shorten the iteration-count-check path length for the cases where the
866   /// iteration count of the loop is so small that the main vector loop is
867   /// completely skipped.
868   EpilogueLoopVectorizationInfo &EPI;
869 };
870 
871 /// A specialized derived class of inner loop vectorizer that performs
872 /// vectorization of *main* loops in the process of vectorizing loops and their
873 /// epilogues.
874 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
875 public:
876   EpilogueVectorizerMainLoop(
877       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
878       DominatorTree *DT, const TargetLibraryInfo *TLI,
879       const TargetTransformInfo *TTI, AssumptionCache *AC,
880       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
881       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
882       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
883       GeneratedRTChecks &Check)
884       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
885                                        EPI, LVL, CM, BFI, PSI, Check) {}
886   /// Implements the interface for creating a vectorized skeleton using the
887   /// *main loop* strategy (ie the first pass of vplan execution).
888   std::pair<BasicBlock *, Value *>
889   createEpilogueVectorizedLoopSkeleton() final override;
890 
891 protected:
892   /// Emits an iteration count bypass check once for the main loop (when \p
893   /// ForEpilogue is false) and once for the epilogue loop (when \p
894   /// ForEpilogue is true).
895   BasicBlock *emitMinimumIterationCountCheck(BasicBlock *Bypass,
896                                              bool ForEpilogue);
897   void printDebugTracesAtStart() override;
898   void printDebugTracesAtEnd() override;
899 };
900 
901 // A specialized derived class of inner loop vectorizer that performs
902 // vectorization of *epilogue* loops in the process of vectorizing loops and
903 // their epilogues.
904 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
905 public:
906   EpilogueVectorizerEpilogueLoop(
907       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
908       DominatorTree *DT, const TargetLibraryInfo *TLI,
909       const TargetTransformInfo *TTI, AssumptionCache *AC,
910       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
911       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
912       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
913       GeneratedRTChecks &Checks)
914       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
915                                        EPI, LVL, CM, BFI, PSI, Checks) {}
916   /// Implements the interface for creating a vectorized skeleton using the
917   /// *epilogue loop* strategy (ie the second pass of vplan execution).
918   std::pair<BasicBlock *, Value *>
919   createEpilogueVectorizedLoopSkeleton() final override;
920 
921 protected:
922   /// Emits an iteration count bypass check after the main vector loop has
923   /// finished to see if there are any iterations left to execute by either
924   /// the vector epilogue or the scalar epilogue.
925   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
926                                                       BasicBlock *Bypass,
927                                                       BasicBlock *Insert);
928   void printDebugTracesAtStart() override;
929   void printDebugTracesAtEnd() override;
930 };
931 } // end namespace llvm
932 
933 /// Look for a meaningful debug location on the instruction or it's
934 /// operands.
935 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
936   if (!I)
937     return I;
938 
939   DebugLoc Empty;
940   if (I->getDebugLoc() != Empty)
941     return I;
942 
943   for (Use &Op : I->operands()) {
944     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
945       if (OpInst->getDebugLoc() != Empty)
946         return OpInst;
947   }
948 
949   return I;
950 }
951 
952 void InnerLoopVectorizer::setDebugLocFromInst(
953     const Value *V, Optional<IRBuilderBase *> CustomBuilder) {
954   IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
955   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
956     const DILocation *DIL = Inst->getDebugLoc();
957 
958     // When a FSDiscriminator is enabled, we don't need to add the multiply
959     // factors to the discriminators.
960     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
961         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
962       // FIXME: For scalable vectors, assume vscale=1.
963       auto NewDIL =
964           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
965       if (NewDIL)
966         B->SetCurrentDebugLocation(NewDIL.getValue());
967       else
968         LLVM_DEBUG(dbgs()
969                    << "Failed to create new discriminator: "
970                    << DIL->getFilename() << " Line: " << DIL->getLine());
971     } else
972       B->SetCurrentDebugLocation(DIL);
973   } else
974     B->SetCurrentDebugLocation(DebugLoc());
975 }
976 
977 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
978 /// is passed, the message relates to that particular instruction.
979 #ifndef NDEBUG
980 static void debugVectorizationMessage(const StringRef Prefix,
981                                       const StringRef DebugMsg,
982                                       Instruction *I) {
983   dbgs() << "LV: " << Prefix << DebugMsg;
984   if (I != nullptr)
985     dbgs() << " " << *I;
986   else
987     dbgs() << '.';
988   dbgs() << '\n';
989 }
990 #endif
991 
992 /// Create an analysis remark that explains why vectorization failed
993 ///
994 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
995 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
996 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
997 /// the location of the remark.  \return the remark object that can be
998 /// streamed to.
999 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1000     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1001   Value *CodeRegion = TheLoop->getHeader();
1002   DebugLoc DL = TheLoop->getStartLoc();
1003 
1004   if (I) {
1005     CodeRegion = I->getParent();
1006     // If there is no debug location attached to the instruction, revert back to
1007     // using the loop's.
1008     if (I->getDebugLoc())
1009       DL = I->getDebugLoc();
1010   }
1011 
1012   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1013 }
1014 
1015 namespace llvm {
1016 
1017 /// Return a value for Step multiplied by VF.
1018 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
1019                        int64_t Step) {
1020   assert(Ty->isIntegerTy() && "Expected an integer step");
1021   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1022   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1023 }
1024 
1025 /// Return the runtime value for VF.
1026 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
1027   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1028   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1029 }
1030 
1031 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1032                                   ElementCount VF) {
1033   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1034   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1035   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1036   return B.CreateUIToFP(RuntimeVF, FTy);
1037 }
1038 
1039 void reportVectorizationFailure(const StringRef DebugMsg,
1040                                 const StringRef OREMsg, const StringRef ORETag,
1041                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1042                                 Instruction *I) {
1043   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1044   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1045   ORE->emit(
1046       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1047       << "loop not vectorized: " << OREMsg);
1048 }
1049 
1050 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1051                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1052                              Instruction *I) {
1053   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1054   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1055   ORE->emit(
1056       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1057       << Msg);
1058 }
1059 
1060 } // end namespace llvm
1061 
1062 #ifndef NDEBUG
1063 /// \return string containing a file name and a line # for the given loop.
1064 static std::string getDebugLocString(const Loop *L) {
1065   std::string Result;
1066   if (L) {
1067     raw_string_ostream OS(Result);
1068     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1069       LoopDbgLoc.print(OS);
1070     else
1071       // Just print the module name.
1072       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1073     OS.flush();
1074   }
1075   return Result;
1076 }
1077 #endif
1078 
1079 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1080                                          const Instruction *Orig) {
1081   // If the loop was versioned with memchecks, add the corresponding no-alias
1082   // metadata.
1083   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1084     LVer->annotateInstWithNoAlias(To, Orig);
1085 }
1086 
1087 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1088     VPTransformState &State) {
1089 
1090   // Collect recipes in the backward slice of `Root` that may generate a poison
1091   // value that is used after vectorization.
1092   SmallPtrSet<VPRecipeBase *, 16> Visited;
1093   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1094     SmallVector<VPRecipeBase *, 16> Worklist;
1095     Worklist.push_back(Root);
1096 
1097     // Traverse the backward slice of Root through its use-def chain.
1098     while (!Worklist.empty()) {
1099       VPRecipeBase *CurRec = Worklist.back();
1100       Worklist.pop_back();
1101 
1102       if (!Visited.insert(CurRec).second)
1103         continue;
1104 
1105       // Prune search if we find another recipe generating a widen memory
1106       // instruction. Widen memory instructions involved in address computation
1107       // will lead to gather/scatter instructions, which don't need to be
1108       // handled.
1109       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1110           isa<VPInterleaveRecipe>(CurRec) ||
1111           isa<VPScalarIVStepsRecipe>(CurRec) ||
1112           isa<VPCanonicalIVPHIRecipe>(CurRec))
1113         continue;
1114 
1115       // This recipe contributes to the address computation of a widen
1116       // load/store. Collect recipe if its underlying instruction has
1117       // poison-generating flags.
1118       Instruction *Instr = CurRec->getUnderlyingInstr();
1119       if (Instr && Instr->hasPoisonGeneratingFlags())
1120         State.MayGeneratePoisonRecipes.insert(CurRec);
1121 
1122       // Add new definitions to the worklist.
1123       for (VPValue *operand : CurRec->operands())
1124         if (VPDef *OpDef = operand->getDef())
1125           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1126     }
1127   });
1128 
1129   // Traverse all the recipes in the VPlan and collect the poison-generating
1130   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1131   // VPInterleaveRecipe.
1132   auto Iter = depth_first(
1133       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1134   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1135     for (VPRecipeBase &Recipe : *VPBB) {
1136       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1137         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1138         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1139         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1140             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1141           collectPoisonGeneratingInstrsInBackwardSlice(
1142               cast<VPRecipeBase>(AddrDef));
1143       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1144         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1145         if (AddrDef) {
1146           // Check if any member of the interleave group needs predication.
1147           const InterleaveGroup<Instruction> *InterGroup =
1148               InterleaveRec->getInterleaveGroup();
1149           bool NeedPredication = false;
1150           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1151                I < NumMembers; ++I) {
1152             Instruction *Member = InterGroup->getMember(I);
1153             if (Member)
1154               NeedPredication |=
1155                   Legal->blockNeedsPredication(Member->getParent());
1156           }
1157 
1158           if (NeedPredication)
1159             collectPoisonGeneratingInstrsInBackwardSlice(
1160                 cast<VPRecipeBase>(AddrDef));
1161         }
1162       }
1163     }
1164   }
1165 }
1166 
1167 void InnerLoopVectorizer::addMetadata(Instruction *To,
1168                                       Instruction *From) {
1169   propagateMetadata(To, From);
1170   addNewMetadata(To, From);
1171 }
1172 
1173 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1174                                       Instruction *From) {
1175   for (Value *V : To) {
1176     if (Instruction *I = dyn_cast<Instruction>(V))
1177       addMetadata(I, From);
1178   }
1179 }
1180 
1181 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1182     const RecurrenceDescriptor &RdxDesc) {
1183   auto It = ReductionResumeValues.find(&RdxDesc);
1184   assert(It != ReductionResumeValues.end() &&
1185          "Expected to find a resume value for the reduction.");
1186   return It->second;
1187 }
1188 
1189 namespace llvm {
1190 
1191 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1192 // lowered.
1193 enum ScalarEpilogueLowering {
1194 
1195   // The default: allowing scalar epilogues.
1196   CM_ScalarEpilogueAllowed,
1197 
1198   // Vectorization with OptForSize: don't allow epilogues.
1199   CM_ScalarEpilogueNotAllowedOptSize,
1200 
1201   // A special case of vectorisation with OptForSize: loops with a very small
1202   // trip count are considered for vectorization under OptForSize, thereby
1203   // making sure the cost of their loop body is dominant, free of runtime
1204   // guards and scalar iteration overheads.
1205   CM_ScalarEpilogueNotAllowedLowTripLoop,
1206 
1207   // Loop hint predicate indicating an epilogue is undesired.
1208   CM_ScalarEpilogueNotNeededUsePredicate,
1209 
1210   // Directive indicating we must either tail fold or not vectorize
1211   CM_ScalarEpilogueNotAllowedUsePredicate
1212 };
1213 
1214 /// ElementCountComparator creates a total ordering for ElementCount
1215 /// for the purposes of using it in a set structure.
1216 struct ElementCountComparator {
1217   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1218     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1219            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1220   }
1221 };
1222 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1223 
1224 /// LoopVectorizationCostModel - estimates the expected speedups due to
1225 /// vectorization.
1226 /// In many cases vectorization is not profitable. This can happen because of
1227 /// a number of reasons. In this class we mainly attempt to predict the
1228 /// expected speedup/slowdowns due to the supported instruction set. We use the
1229 /// TargetTransformInfo to query the different backends for the cost of
1230 /// different operations.
1231 class LoopVectorizationCostModel {
1232 public:
1233   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1234                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1235                              LoopVectorizationLegality *Legal,
1236                              const TargetTransformInfo &TTI,
1237                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1238                              AssumptionCache *AC,
1239                              OptimizationRemarkEmitter *ORE, const Function *F,
1240                              const LoopVectorizeHints *Hints,
1241                              InterleavedAccessInfo &IAI)
1242       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1243         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1244         Hints(Hints), InterleaveInfo(IAI) {}
1245 
1246   /// \return An upper bound for the vectorization factors (both fixed and
1247   /// scalable). If the factors are 0, vectorization and interleaving should be
1248   /// avoided up front.
1249   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1250 
1251   /// \return True if runtime checks are required for vectorization, and false
1252   /// otherwise.
1253   bool runtimeChecksRequired();
1254 
1255   /// \return The most profitable vectorization factor and the cost of that VF.
1256   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1257   /// then this vectorization factor will be selected if vectorization is
1258   /// possible.
1259   VectorizationFactor
1260   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1261 
1262   VectorizationFactor
1263   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1264                                     const LoopVectorizationPlanner &LVP);
1265 
1266   /// Setup cost-based decisions for user vectorization factor.
1267   /// \return true if the UserVF is a feasible VF to be chosen.
1268   bool selectUserVectorizationFactor(ElementCount UserVF) {
1269     collectUniformsAndScalars(UserVF);
1270     collectInstsToScalarize(UserVF);
1271     return expectedCost(UserVF).first.isValid();
1272   }
1273 
1274   /// \return The size (in bits) of the smallest and widest types in the code
1275   /// that needs to be vectorized. We ignore values that remain scalar such as
1276   /// 64 bit loop indices.
1277   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1278 
1279   /// \return The desired interleave count.
1280   /// If interleave count has been specified by metadata it will be returned.
1281   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1282   /// are the selected vectorization factor and the cost of the selected VF.
1283   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1284 
1285   /// Memory access instruction may be vectorized in more than one way.
1286   /// Form of instruction after vectorization depends on cost.
1287   /// This function takes cost-based decisions for Load/Store instructions
1288   /// and collects them in a map. This decisions map is used for building
1289   /// the lists of loop-uniform and loop-scalar instructions.
1290   /// The calculated cost is saved with widening decision in order to
1291   /// avoid redundant calculations.
1292   void setCostBasedWideningDecision(ElementCount VF);
1293 
1294   /// A struct that represents some properties of the register usage
1295   /// of a loop.
1296   struct RegisterUsage {
1297     /// Holds the number of loop invariant values that are used in the loop.
1298     /// The key is ClassID of target-provided register class.
1299     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1300     /// Holds the maximum number of concurrent live intervals in the loop.
1301     /// The key is ClassID of target-provided register class.
1302     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1303   };
1304 
1305   /// \return Returns information about the register usages of the loop for the
1306   /// given vectorization factors.
1307   SmallVector<RegisterUsage, 8>
1308   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1309 
1310   /// Collect values we want to ignore in the cost model.
1311   void collectValuesToIgnore();
1312 
1313   /// Collect all element types in the loop for which widening is needed.
1314   void collectElementTypesForWidening();
1315 
1316   /// Split reductions into those that happen in the loop, and those that happen
1317   /// outside. In loop reductions are collected into InLoopReductionChains.
1318   void collectInLoopReductions();
1319 
1320   /// Returns true if we should use strict in-order reductions for the given
1321   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1322   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1323   /// of FP operations.
1324   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1325     return !Hints->allowReordering() && RdxDesc.isOrdered();
1326   }
1327 
1328   /// \returns The smallest bitwidth each instruction can be represented with.
1329   /// The vector equivalents of these instructions should be truncated to this
1330   /// type.
1331   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1332     return MinBWs;
1333   }
1334 
1335   /// \returns True if it is more profitable to scalarize instruction \p I for
1336   /// vectorization factor \p VF.
1337   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1338     assert(VF.isVector() &&
1339            "Profitable to scalarize relevant only for VF > 1.");
1340 
1341     // Cost model is not run in the VPlan-native path - return conservative
1342     // result until this changes.
1343     if (EnableVPlanNativePath)
1344       return false;
1345 
1346     auto Scalars = InstsToScalarize.find(VF);
1347     assert(Scalars != InstsToScalarize.end() &&
1348            "VF not yet analyzed for scalarization profitability");
1349     return Scalars->second.find(I) != Scalars->second.end();
1350   }
1351 
1352   /// Returns true if \p I is known to be uniform after vectorization.
1353   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1354     if (VF.isScalar())
1355       return true;
1356 
1357     // Cost model is not run in the VPlan-native path - return conservative
1358     // result until this changes.
1359     if (EnableVPlanNativePath)
1360       return false;
1361 
1362     auto UniformsPerVF = Uniforms.find(VF);
1363     assert(UniformsPerVF != Uniforms.end() &&
1364            "VF not yet analyzed for uniformity");
1365     return UniformsPerVF->second.count(I);
1366   }
1367 
1368   /// Returns true if \p I is known to be scalar after vectorization.
1369   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1370     if (VF.isScalar())
1371       return true;
1372 
1373     // Cost model is not run in the VPlan-native path - return conservative
1374     // result until this changes.
1375     if (EnableVPlanNativePath)
1376       return false;
1377 
1378     auto ScalarsPerVF = Scalars.find(VF);
1379     assert(ScalarsPerVF != Scalars.end() &&
1380            "Scalar values are not calculated for VF");
1381     return ScalarsPerVF->second.count(I);
1382   }
1383 
1384   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1385   /// for vectorization factor \p VF.
1386   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1387     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1388            !isProfitableToScalarize(I, VF) &&
1389            !isScalarAfterVectorization(I, VF);
1390   }
1391 
1392   /// Decision that was taken during cost calculation for memory instruction.
1393   enum InstWidening {
1394     CM_Unknown,
1395     CM_Widen,         // For consecutive accesses with stride +1.
1396     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1397     CM_Interleave,
1398     CM_GatherScatter,
1399     CM_Scalarize
1400   };
1401 
1402   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1403   /// instruction \p I and vector width \p VF.
1404   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1405                            InstructionCost Cost) {
1406     assert(VF.isVector() && "Expected VF >=2");
1407     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1408   }
1409 
1410   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1411   /// interleaving group \p Grp and vector width \p VF.
1412   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1413                            ElementCount VF, InstWidening W,
1414                            InstructionCost Cost) {
1415     assert(VF.isVector() && "Expected VF >=2");
1416     /// Broadcast this decicion to all instructions inside the group.
1417     /// But the cost will be assigned to one instruction only.
1418     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1419       if (auto *I = Grp->getMember(i)) {
1420         if (Grp->getInsertPos() == I)
1421           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1422         else
1423           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1424       }
1425     }
1426   }
1427 
1428   /// Return the cost model decision for the given instruction \p I and vector
1429   /// width \p VF. Return CM_Unknown if this instruction did not pass
1430   /// through the cost modeling.
1431   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1432     assert(VF.isVector() && "Expected VF to be a vector VF");
1433     // Cost model is not run in the VPlan-native path - return conservative
1434     // result until this changes.
1435     if (EnableVPlanNativePath)
1436       return CM_GatherScatter;
1437 
1438     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1439     auto Itr = WideningDecisions.find(InstOnVF);
1440     if (Itr == WideningDecisions.end())
1441       return CM_Unknown;
1442     return Itr->second.first;
1443   }
1444 
1445   /// Return the vectorization cost for the given instruction \p I and vector
1446   /// width \p VF.
1447   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1448     assert(VF.isVector() && "Expected VF >=2");
1449     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1450     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1451            "The cost is not calculated");
1452     return WideningDecisions[InstOnVF].second;
1453   }
1454 
1455   /// Return True if instruction \p I is an optimizable truncate whose operand
1456   /// is an induction variable. Such a truncate will be removed by adding a new
1457   /// induction variable with the destination type.
1458   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1459     // If the instruction is not a truncate, return false.
1460     auto *Trunc = dyn_cast<TruncInst>(I);
1461     if (!Trunc)
1462       return false;
1463 
1464     // Get the source and destination types of the truncate.
1465     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1466     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1467 
1468     // If the truncate is free for the given types, return false. Replacing a
1469     // free truncate with an induction variable would add an induction variable
1470     // update instruction to each iteration of the loop. We exclude from this
1471     // check the primary induction variable since it will need an update
1472     // instruction regardless.
1473     Value *Op = Trunc->getOperand(0);
1474     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1475       return false;
1476 
1477     // If the truncated value is not an induction variable, return false.
1478     return Legal->isInductionPhi(Op);
1479   }
1480 
1481   /// Collects the instructions to scalarize for each predicated instruction in
1482   /// the loop.
1483   void collectInstsToScalarize(ElementCount VF);
1484 
1485   /// Collect Uniform and Scalar values for the given \p VF.
1486   /// The sets depend on CM decision for Load/Store instructions
1487   /// that may be vectorized as interleave, gather-scatter or scalarized.
1488   void collectUniformsAndScalars(ElementCount VF) {
1489     // Do the analysis once.
1490     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1491       return;
1492     setCostBasedWideningDecision(VF);
1493     collectLoopUniforms(VF);
1494     collectLoopScalars(VF);
1495   }
1496 
1497   /// Returns true if the target machine supports masked store operation
1498   /// for the given \p DataType and kind of access to \p Ptr.
1499   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1500     return Legal->isConsecutivePtr(DataType, Ptr) &&
1501            TTI.isLegalMaskedStore(DataType, Alignment);
1502   }
1503 
1504   /// Returns true if the target machine supports masked load operation
1505   /// for the given \p DataType and kind of access to \p Ptr.
1506   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1507     return Legal->isConsecutivePtr(DataType, Ptr) &&
1508            TTI.isLegalMaskedLoad(DataType, Alignment);
1509   }
1510 
1511   /// Returns true if the target machine can represent \p V as a masked gather
1512   /// or scatter operation.
1513   bool isLegalGatherOrScatter(Value *V,
1514                               ElementCount VF = ElementCount::getFixed(1)) {
1515     bool LI = isa<LoadInst>(V);
1516     bool SI = isa<StoreInst>(V);
1517     if (!LI && !SI)
1518       return false;
1519     auto *Ty = getLoadStoreType(V);
1520     Align Align = getLoadStoreAlignment(V);
1521     if (VF.isVector())
1522       Ty = VectorType::get(Ty, VF);
1523     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1524            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1525   }
1526 
1527   /// Returns true if the target machine supports all of the reduction
1528   /// variables found for the given VF.
1529   bool canVectorizeReductions(ElementCount VF) const {
1530     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1531       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1532       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1533     }));
1534   }
1535 
1536   /// Returns true if \p I is an instruction that will be scalarized with
1537   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1538   /// instructions include conditional stores and instructions that may divide
1539   /// by zero.
1540   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1541 
1542   // Returns true if \p I is an instruction that will be predicated either
1543   // through scalar predication or masked load/store or masked gather/scatter.
1544   // \p VF is the vectorization factor that will be used to vectorize \p I.
1545   // Superset of instructions that return true for isScalarWithPredication.
1546   bool isPredicatedInst(Instruction *I, ElementCount VF,
1547                         bool IsKnownUniform = false) {
1548     // When we know the load is uniform and the original scalar loop was not
1549     // predicated we don't need to mark it as a predicated instruction. Any
1550     // vectorised blocks created when tail-folding are something artificial we
1551     // have introduced and we know there is always at least one active lane.
1552     // That's why we call Legal->blockNeedsPredication here because it doesn't
1553     // query tail-folding.
1554     if (IsKnownUniform && isa<LoadInst>(I) &&
1555         !Legal->blockNeedsPredication(I->getParent()))
1556       return false;
1557     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1558       return false;
1559     // Loads and stores that need some form of masked operation are predicated
1560     // instructions.
1561     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1562       return Legal->isMaskRequired(I);
1563     return isScalarWithPredication(I, VF);
1564   }
1565 
1566   /// Returns true if \p I is a memory instruction with consecutive memory
1567   /// access that can be widened.
1568   bool
1569   memoryInstructionCanBeWidened(Instruction *I,
1570                                 ElementCount VF = ElementCount::getFixed(1));
1571 
1572   /// Returns true if \p I is a memory instruction in an interleaved-group
1573   /// of memory accesses that can be vectorized with wide vector loads/stores
1574   /// and shuffles.
1575   bool
1576   interleavedAccessCanBeWidened(Instruction *I,
1577                                 ElementCount VF = ElementCount::getFixed(1));
1578 
1579   /// Check if \p Instr belongs to any interleaved access group.
1580   bool isAccessInterleaved(Instruction *Instr) {
1581     return InterleaveInfo.isInterleaved(Instr);
1582   }
1583 
1584   /// Get the interleaved access group that \p Instr belongs to.
1585   const InterleaveGroup<Instruction> *
1586   getInterleavedAccessGroup(Instruction *Instr) {
1587     return InterleaveInfo.getInterleaveGroup(Instr);
1588   }
1589 
1590   /// Returns true if we're required to use a scalar epilogue for at least
1591   /// the final iteration of the original loop.
1592   bool requiresScalarEpilogue(ElementCount VF) const {
1593     if (!isScalarEpilogueAllowed())
1594       return false;
1595     // If we might exit from anywhere but the latch, must run the exiting
1596     // iteration in scalar form.
1597     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1598       return true;
1599     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1600   }
1601 
1602   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1603   /// loop hint annotation.
1604   bool isScalarEpilogueAllowed() const {
1605     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1606   }
1607 
1608   /// Returns true if all loop blocks should be masked to fold tail loop.
1609   bool foldTailByMasking() const { return FoldTailByMasking; }
1610 
1611   /// Returns true if the instructions in this block requires predication
1612   /// for any reason, e.g. because tail folding now requires a predicate
1613   /// or because the block in the original loop was predicated.
1614   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1615     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1616   }
1617 
1618   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1619   /// nodes to the chain of instructions representing the reductions. Uses a
1620   /// MapVector to ensure deterministic iteration order.
1621   using ReductionChainMap =
1622       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1623 
1624   /// Return the chain of instructions representing an inloop reduction.
1625   const ReductionChainMap &getInLoopReductionChains() const {
1626     return InLoopReductionChains;
1627   }
1628 
1629   /// Returns true if the Phi is part of an inloop reduction.
1630   bool isInLoopReduction(PHINode *Phi) const {
1631     return InLoopReductionChains.count(Phi);
1632   }
1633 
1634   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1635   /// with factor VF.  Return the cost of the instruction, including
1636   /// scalarization overhead if it's needed.
1637   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1638 
1639   /// Estimate cost of a call instruction CI if it were vectorized with factor
1640   /// VF. Return the cost of the instruction, including scalarization overhead
1641   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1642   /// scalarized -
1643   /// i.e. either vector version isn't available, or is too expensive.
1644   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1645                                     bool &NeedToScalarize) const;
1646 
1647   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1648   /// that of B.
1649   bool isMoreProfitable(const VectorizationFactor &A,
1650                         const VectorizationFactor &B) const;
1651 
1652   /// Invalidates decisions already taken by the cost model.
1653   void invalidateCostModelingDecisions() {
1654     WideningDecisions.clear();
1655     Uniforms.clear();
1656     Scalars.clear();
1657   }
1658 
1659 private:
1660   unsigned NumPredStores = 0;
1661 
1662   /// Convenience function that returns the value of vscale_range iff
1663   /// vscale_range.min == vscale_range.max or otherwise returns the value
1664   /// returned by the corresponding TLI method.
1665   Optional<unsigned> getVScaleForTuning() const;
1666 
1667   /// \return An upper bound for the vectorization factors for both
1668   /// fixed and scalable vectorization, where the minimum-known number of
1669   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1670   /// disabled or unsupported, then the scalable part will be equal to
1671   /// ElementCount::getScalable(0).
1672   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1673                                            ElementCount UserVF,
1674                                            bool FoldTailByMasking);
1675 
1676   /// \return the maximized element count based on the targets vector
1677   /// registers and the loop trip-count, but limited to a maximum safe VF.
1678   /// This is a helper function of computeFeasibleMaxVF.
1679   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1680   /// issue that occurred on one of the buildbots which cannot be reproduced
1681   /// without having access to the properietary compiler (see comments on
1682   /// D98509). The issue is currently under investigation and this workaround
1683   /// will be removed as soon as possible.
1684   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1685                                        unsigned SmallestType,
1686                                        unsigned WidestType,
1687                                        const ElementCount &MaxSafeVF,
1688                                        bool FoldTailByMasking);
1689 
1690   /// \return the maximum legal scalable VF, based on the safe max number
1691   /// of elements.
1692   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1693 
1694   /// The vectorization cost is a combination of the cost itself and a boolean
1695   /// indicating whether any of the contributing operations will actually
1696   /// operate on vector values after type legalization in the backend. If this
1697   /// latter value is false, then all operations will be scalarized (i.e. no
1698   /// vectorization has actually taken place).
1699   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1700 
1701   /// Returns the expected execution cost. The unit of the cost does
1702   /// not matter because we use the 'cost' units to compare different
1703   /// vector widths. The cost that is returned is *not* normalized by
1704   /// the factor width. If \p Invalid is not nullptr, this function
1705   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1706   /// each instruction that has an Invalid cost for the given VF.
1707   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1708   VectorizationCostTy
1709   expectedCost(ElementCount VF,
1710                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1711 
1712   /// Returns the execution time cost of an instruction for a given vector
1713   /// width. Vector width of one means scalar.
1714   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1715 
1716   /// The cost-computation logic from getInstructionCost which provides
1717   /// the vector type as an output parameter.
1718   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1719                                      Type *&VectorTy);
1720 
1721   /// Return the cost of instructions in an inloop reduction pattern, if I is
1722   /// part of that pattern.
1723   Optional<InstructionCost>
1724   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1725                           TTI::TargetCostKind CostKind);
1726 
1727   /// Calculate vectorization cost of memory instruction \p I.
1728   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1729 
1730   /// The cost computation for scalarized memory instruction.
1731   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1732 
1733   /// The cost computation for interleaving group of memory instructions.
1734   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1735 
1736   /// The cost computation for Gather/Scatter instruction.
1737   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1738 
1739   /// The cost computation for widening instruction \p I with consecutive
1740   /// memory access.
1741   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1742 
1743   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1744   /// Load: scalar load + broadcast.
1745   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1746   /// element)
1747   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1748 
1749   /// Estimate the overhead of scalarizing an instruction. This is a
1750   /// convenience wrapper for the type-based getScalarizationOverhead API.
1751   InstructionCost getScalarizationOverhead(Instruction *I,
1752                                            ElementCount VF) const;
1753 
1754   /// Returns whether the instruction is a load or store and will be a emitted
1755   /// as a vector operation.
1756   bool isConsecutiveLoadOrStore(Instruction *I);
1757 
1758   /// Returns true if an artificially high cost for emulated masked memrefs
1759   /// should be used.
1760   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1761 
1762   /// Map of scalar integer values to the smallest bitwidth they can be legally
1763   /// represented as. The vector equivalents of these values should be truncated
1764   /// to this type.
1765   MapVector<Instruction *, uint64_t> MinBWs;
1766 
1767   /// A type representing the costs for instructions if they were to be
1768   /// scalarized rather than vectorized. The entries are Instruction-Cost
1769   /// pairs.
1770   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1771 
1772   /// A set containing all BasicBlocks that are known to present after
1773   /// vectorization as a predicated block.
1774   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1775 
1776   /// Records whether it is allowed to have the original scalar loop execute at
1777   /// least once. This may be needed as a fallback loop in case runtime
1778   /// aliasing/dependence checks fail, or to handle the tail/remainder
1779   /// iterations when the trip count is unknown or doesn't divide by the VF,
1780   /// or as a peel-loop to handle gaps in interleave-groups.
1781   /// Under optsize and when the trip count is very small we don't allow any
1782   /// iterations to execute in the scalar loop.
1783   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1784 
1785   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1786   bool FoldTailByMasking = false;
1787 
1788   /// A map holding scalar costs for different vectorization factors. The
1789   /// presence of a cost for an instruction in the mapping indicates that the
1790   /// instruction will be scalarized when vectorizing with the associated
1791   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1792   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1793 
1794   /// Holds the instructions known to be uniform after vectorization.
1795   /// The data is collected per VF.
1796   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1797 
1798   /// Holds the instructions known to be scalar after vectorization.
1799   /// The data is collected per VF.
1800   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1801 
1802   /// Holds the instructions (address computations) that are forced to be
1803   /// scalarized.
1804   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1805 
1806   /// PHINodes of the reductions that should be expanded in-loop along with
1807   /// their associated chains of reduction operations, in program order from top
1808   /// (PHI) to bottom
1809   ReductionChainMap InLoopReductionChains;
1810 
1811   /// A Map of inloop reduction operations and their immediate chain operand.
1812   /// FIXME: This can be removed once reductions can be costed correctly in
1813   /// vplan. This was added to allow quick lookup to the inloop operations,
1814   /// without having to loop through InLoopReductionChains.
1815   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1816 
1817   /// Returns the expected difference in cost from scalarizing the expression
1818   /// feeding a predicated instruction \p PredInst. The instructions to
1819   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1820   /// non-negative return value implies the expression will be scalarized.
1821   /// Currently, only single-use chains are considered for scalarization.
1822   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1823                               ElementCount VF);
1824 
1825   /// Collect the instructions that are uniform after vectorization. An
1826   /// instruction is uniform if we represent it with a single scalar value in
1827   /// the vectorized loop corresponding to each vector iteration. Examples of
1828   /// uniform instructions include pointer operands of consecutive or
1829   /// interleaved memory accesses. Note that although uniformity implies an
1830   /// instruction will be scalar, the reverse is not true. In general, a
1831   /// scalarized instruction will be represented by VF scalar values in the
1832   /// vectorized loop, each corresponding to an iteration of the original
1833   /// scalar loop.
1834   void collectLoopUniforms(ElementCount VF);
1835 
1836   /// Collect the instructions that are scalar after vectorization. An
1837   /// instruction is scalar if it is known to be uniform or will be scalarized
1838   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1839   /// to the list if they are used by a load/store instruction that is marked as
1840   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1841   /// VF values in the vectorized loop, each corresponding to an iteration of
1842   /// the original scalar loop.
1843   void collectLoopScalars(ElementCount VF);
1844 
1845   /// Keeps cost model vectorization decision and cost for instructions.
1846   /// Right now it is used for memory instructions only.
1847   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1848                                 std::pair<InstWidening, InstructionCost>>;
1849 
1850   DecisionList WideningDecisions;
1851 
1852   /// Returns true if \p V is expected to be vectorized and it needs to be
1853   /// extracted.
1854   bool needsExtract(Value *V, ElementCount VF) const {
1855     Instruction *I = dyn_cast<Instruction>(V);
1856     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1857         TheLoop->isLoopInvariant(I))
1858       return false;
1859 
1860     // Assume we can vectorize V (and hence we need extraction) if the
1861     // scalars are not computed yet. This can happen, because it is called
1862     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1863     // the scalars are collected. That should be a safe assumption in most
1864     // cases, because we check if the operands have vectorizable types
1865     // beforehand in LoopVectorizationLegality.
1866     return Scalars.find(VF) == Scalars.end() ||
1867            !isScalarAfterVectorization(I, VF);
1868   };
1869 
1870   /// Returns a range containing only operands needing to be extracted.
1871   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1872                                                    ElementCount VF) const {
1873     return SmallVector<Value *, 4>(make_filter_range(
1874         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1875   }
1876 
1877   /// Determines if we have the infrastructure to vectorize loop \p L and its
1878   /// epilogue, assuming the main loop is vectorized by \p VF.
1879   bool isCandidateForEpilogueVectorization(const Loop &L,
1880                                            const ElementCount VF) const;
1881 
1882   /// Returns true if epilogue vectorization is considered profitable, and
1883   /// false otherwise.
1884   /// \p VF is the vectorization factor chosen for the original loop.
1885   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1886 
1887 public:
1888   /// The loop that we evaluate.
1889   Loop *TheLoop;
1890 
1891   /// Predicated scalar evolution analysis.
1892   PredicatedScalarEvolution &PSE;
1893 
1894   /// Loop Info analysis.
1895   LoopInfo *LI;
1896 
1897   /// Vectorization legality.
1898   LoopVectorizationLegality *Legal;
1899 
1900   /// Vector target information.
1901   const TargetTransformInfo &TTI;
1902 
1903   /// Target Library Info.
1904   const TargetLibraryInfo *TLI;
1905 
1906   /// Demanded bits analysis.
1907   DemandedBits *DB;
1908 
1909   /// Assumption cache.
1910   AssumptionCache *AC;
1911 
1912   /// Interface to emit optimization remarks.
1913   OptimizationRemarkEmitter *ORE;
1914 
1915   const Function *TheFunction;
1916 
1917   /// Loop Vectorize Hint.
1918   const LoopVectorizeHints *Hints;
1919 
1920   /// The interleave access information contains groups of interleaved accesses
1921   /// with the same stride and close to each other.
1922   InterleavedAccessInfo &InterleaveInfo;
1923 
1924   /// Values to ignore in the cost model.
1925   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1926 
1927   /// Values to ignore in the cost model when VF > 1.
1928   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1929 
1930   /// All element types found in the loop.
1931   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1932 
1933   /// Profitable vector factors.
1934   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1935 };
1936 } // end namespace llvm
1937 
1938 /// Helper struct to manage generating runtime checks for vectorization.
1939 ///
1940 /// The runtime checks are created up-front in temporary blocks to allow better
1941 /// estimating the cost and un-linked from the existing IR. After deciding to
1942 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1943 /// temporary blocks are completely removed.
1944 class GeneratedRTChecks {
1945   /// Basic block which contains the generated SCEV checks, if any.
1946   BasicBlock *SCEVCheckBlock = nullptr;
1947 
1948   /// The value representing the result of the generated SCEV checks. If it is
1949   /// nullptr, either no SCEV checks have been generated or they have been used.
1950   Value *SCEVCheckCond = nullptr;
1951 
1952   /// Basic block which contains the generated memory runtime checks, if any.
1953   BasicBlock *MemCheckBlock = nullptr;
1954 
1955   /// The value representing the result of the generated memory runtime checks.
1956   /// If it is nullptr, either no memory runtime checks have been generated or
1957   /// they have been used.
1958   Value *MemRuntimeCheckCond = nullptr;
1959 
1960   DominatorTree *DT;
1961   LoopInfo *LI;
1962 
1963   SCEVExpander SCEVExp;
1964   SCEVExpander MemCheckExp;
1965 
1966 public:
1967   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1968                     const DataLayout &DL)
1969       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1970         MemCheckExp(SE, DL, "scev.check") {}
1971 
1972   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1973   /// accurately estimate the cost of the runtime checks. The blocks are
1974   /// un-linked from the IR and is added back during vector code generation. If
1975   /// there is no vector code generation, the check blocks are removed
1976   /// completely.
1977   void Create(Loop *L, const LoopAccessInfo &LAI,
1978               const SCEVPredicate &Pred) {
1979 
1980     BasicBlock *LoopHeader = L->getHeader();
1981     BasicBlock *Preheader = L->getLoopPreheader();
1982 
1983     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1984     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1985     // may be used by SCEVExpander. The blocks will be un-linked from their
1986     // predecessors and removed from LI & DT at the end of the function.
1987     if (!Pred.isAlwaysTrue()) {
1988       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1989                                   nullptr, "vector.scevcheck");
1990 
1991       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1992           &Pred, SCEVCheckBlock->getTerminator());
1993     }
1994 
1995     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1996     if (RtPtrChecking.Need) {
1997       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1998       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1999                                  "vector.memcheck");
2000 
2001       MemRuntimeCheckCond =
2002           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2003                            RtPtrChecking.getChecks(), MemCheckExp);
2004       assert(MemRuntimeCheckCond &&
2005              "no RT checks generated although RtPtrChecking "
2006              "claimed checks are required");
2007     }
2008 
2009     if (!MemCheckBlock && !SCEVCheckBlock)
2010       return;
2011 
2012     // Unhook the temporary block with the checks, update various places
2013     // accordingly.
2014     if (SCEVCheckBlock)
2015       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2016     if (MemCheckBlock)
2017       MemCheckBlock->replaceAllUsesWith(Preheader);
2018 
2019     if (SCEVCheckBlock) {
2020       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2021       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2022       Preheader->getTerminator()->eraseFromParent();
2023     }
2024     if (MemCheckBlock) {
2025       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2026       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2027       Preheader->getTerminator()->eraseFromParent();
2028     }
2029 
2030     DT->changeImmediateDominator(LoopHeader, Preheader);
2031     if (MemCheckBlock) {
2032       DT->eraseNode(MemCheckBlock);
2033       LI->removeBlock(MemCheckBlock);
2034     }
2035     if (SCEVCheckBlock) {
2036       DT->eraseNode(SCEVCheckBlock);
2037       LI->removeBlock(SCEVCheckBlock);
2038     }
2039   }
2040 
2041   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2042   /// unused.
2043   ~GeneratedRTChecks() {
2044     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2045     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2046     if (!SCEVCheckCond)
2047       SCEVCleaner.markResultUsed();
2048 
2049     if (!MemRuntimeCheckCond)
2050       MemCheckCleaner.markResultUsed();
2051 
2052     if (MemRuntimeCheckCond) {
2053       auto &SE = *MemCheckExp.getSE();
2054       // Memory runtime check generation creates compares that use expanded
2055       // values. Remove them before running the SCEVExpanderCleaners.
2056       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2057         if (MemCheckExp.isInsertedInstruction(&I))
2058           continue;
2059         SE.forgetValue(&I);
2060         I.eraseFromParent();
2061       }
2062     }
2063     MemCheckCleaner.cleanup();
2064     SCEVCleaner.cleanup();
2065 
2066     if (SCEVCheckCond)
2067       SCEVCheckBlock->eraseFromParent();
2068     if (MemRuntimeCheckCond)
2069       MemCheckBlock->eraseFromParent();
2070   }
2071 
2072   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2073   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2074   /// depending on the generated condition.
2075   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2076                              BasicBlock *LoopVectorPreHeader,
2077                              BasicBlock *LoopExitBlock) {
2078     if (!SCEVCheckCond)
2079       return nullptr;
2080     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2081       if (C->isZero())
2082         return nullptr;
2083 
2084     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2085 
2086     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2087     // Create new preheader for vector loop.
2088     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2089       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2090 
2091     SCEVCheckBlock->getTerminator()->eraseFromParent();
2092     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2093     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2094                                                 SCEVCheckBlock);
2095 
2096     DT->addNewBlock(SCEVCheckBlock, Pred);
2097     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2098 
2099     ReplaceInstWithInst(
2100         SCEVCheckBlock->getTerminator(),
2101         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2102     // Mark the check as used, to prevent it from being removed during cleanup.
2103     SCEVCheckCond = nullptr;
2104     return SCEVCheckBlock;
2105   }
2106 
2107   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2108   /// the branches to branch to the vector preheader or \p Bypass, depending on
2109   /// the generated condition.
2110   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2111                                    BasicBlock *LoopVectorPreHeader) {
2112     // Check if we generated code that checks in runtime if arrays overlap.
2113     if (!MemRuntimeCheckCond)
2114       return nullptr;
2115 
2116     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2117     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2118                                                 MemCheckBlock);
2119 
2120     DT->addNewBlock(MemCheckBlock, Pred);
2121     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2122     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2123 
2124     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2125       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2126 
2127     ReplaceInstWithInst(
2128         MemCheckBlock->getTerminator(),
2129         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2130     MemCheckBlock->getTerminator()->setDebugLoc(
2131         Pred->getTerminator()->getDebugLoc());
2132 
2133     // Mark the check as used, to prevent it from being removed during cleanup.
2134     MemRuntimeCheckCond = nullptr;
2135     return MemCheckBlock;
2136   }
2137 };
2138 
2139 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2140 // vectorization. The loop needs to be annotated with #pragma omp simd
2141 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2142 // vector length information is not provided, vectorization is not considered
2143 // explicit. Interleave hints are not allowed either. These limitations will be
2144 // relaxed in the future.
2145 // Please, note that we are currently forced to abuse the pragma 'clang
2146 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2147 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2148 // provides *explicit vectorization hints* (LV can bypass legal checks and
2149 // assume that vectorization is legal). However, both hints are implemented
2150 // using the same metadata (llvm.loop.vectorize, processed by
2151 // LoopVectorizeHints). This will be fixed in the future when the native IR
2152 // representation for pragma 'omp simd' is introduced.
2153 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2154                                    OptimizationRemarkEmitter *ORE) {
2155   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2156   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2157 
2158   // Only outer loops with an explicit vectorization hint are supported.
2159   // Unannotated outer loops are ignored.
2160   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2161     return false;
2162 
2163   Function *Fn = OuterLp->getHeader()->getParent();
2164   if (!Hints.allowVectorization(Fn, OuterLp,
2165                                 true /*VectorizeOnlyWhenForced*/)) {
2166     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2167     return false;
2168   }
2169 
2170   if (Hints.getInterleave() > 1) {
2171     // TODO: Interleave support is future work.
2172     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2173                          "outer loops.\n");
2174     Hints.emitRemarkWithHints();
2175     return false;
2176   }
2177 
2178   return true;
2179 }
2180 
2181 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2182                                   OptimizationRemarkEmitter *ORE,
2183                                   SmallVectorImpl<Loop *> &V) {
2184   // Collect inner loops and outer loops without irreducible control flow. For
2185   // now, only collect outer loops that have explicit vectorization hints. If we
2186   // are stress testing the VPlan H-CFG construction, we collect the outermost
2187   // loop of every loop nest.
2188   if (L.isInnermost() || VPlanBuildStressTest ||
2189       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2190     LoopBlocksRPO RPOT(&L);
2191     RPOT.perform(LI);
2192     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2193       V.push_back(&L);
2194       // TODO: Collect inner loops inside marked outer loops in case
2195       // vectorization fails for the outer loop. Do not invoke
2196       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2197       // already known to be reducible. We can use an inherited attribute for
2198       // that.
2199       return;
2200     }
2201   }
2202   for (Loop *InnerL : L)
2203     collectSupportedLoops(*InnerL, LI, ORE, V);
2204 }
2205 
2206 namespace {
2207 
2208 /// The LoopVectorize Pass.
2209 struct LoopVectorize : public FunctionPass {
2210   /// Pass identification, replacement for typeid
2211   static char ID;
2212 
2213   LoopVectorizePass Impl;
2214 
2215   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2216                          bool VectorizeOnlyWhenForced = false)
2217       : FunctionPass(ID),
2218         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2219     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2220   }
2221 
2222   bool runOnFunction(Function &F) override {
2223     if (skipFunction(F))
2224       return false;
2225 
2226     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2227     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2228     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2229     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2230     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2231     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2232     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2233     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2234     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2235     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2236     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2237     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2238     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2239 
2240     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2241         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2242 
2243     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2244                         GetLAA, *ORE, PSI).MadeAnyChange;
2245   }
2246 
2247   void getAnalysisUsage(AnalysisUsage &AU) const override {
2248     AU.addRequired<AssumptionCacheTracker>();
2249     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2250     AU.addRequired<DominatorTreeWrapperPass>();
2251     AU.addRequired<LoopInfoWrapperPass>();
2252     AU.addRequired<ScalarEvolutionWrapperPass>();
2253     AU.addRequired<TargetTransformInfoWrapperPass>();
2254     AU.addRequired<AAResultsWrapperPass>();
2255     AU.addRequired<LoopAccessLegacyAnalysis>();
2256     AU.addRequired<DemandedBitsWrapperPass>();
2257     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2258     AU.addRequired<InjectTLIMappingsLegacy>();
2259 
2260     // We currently do not preserve loopinfo/dominator analyses with outer loop
2261     // vectorization. Until this is addressed, mark these analyses as preserved
2262     // only for non-VPlan-native path.
2263     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2264     if (!EnableVPlanNativePath) {
2265       AU.addPreserved<LoopInfoWrapperPass>();
2266       AU.addPreserved<DominatorTreeWrapperPass>();
2267     }
2268 
2269     AU.addPreserved<BasicAAWrapperPass>();
2270     AU.addPreserved<GlobalsAAWrapperPass>();
2271     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2272   }
2273 };
2274 
2275 } // end anonymous namespace
2276 
2277 //===----------------------------------------------------------------------===//
2278 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2279 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2280 //===----------------------------------------------------------------------===//
2281 
2282 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2283   // We need to place the broadcast of invariant variables outside the loop,
2284   // but only if it's proven safe to do so. Else, broadcast will be inside
2285   // vector loop body.
2286   Instruction *Instr = dyn_cast<Instruction>(V);
2287   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2288                      (!Instr ||
2289                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2290   // Place the code for broadcasting invariant variables in the new preheader.
2291   IRBuilder<>::InsertPointGuard Guard(Builder);
2292   if (SafeToHoist)
2293     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2294 
2295   // Broadcast the scalar into all locations in the vector.
2296   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2297 
2298   return Shuf;
2299 }
2300 
2301 /// This function adds
2302 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2303 /// to each vector element of Val. The sequence starts at StartIndex.
2304 /// \p Opcode is relevant for FP induction variable.
2305 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2306                             Instruction::BinaryOps BinOp, ElementCount VF,
2307                             IRBuilderBase &Builder) {
2308   assert(VF.isVector() && "only vector VFs are supported");
2309 
2310   // Create and check the types.
2311   auto *ValVTy = cast<VectorType>(Val->getType());
2312   ElementCount VLen = ValVTy->getElementCount();
2313 
2314   Type *STy = Val->getType()->getScalarType();
2315   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2316          "Induction Step must be an integer or FP");
2317   assert(Step->getType() == STy && "Step has wrong type");
2318 
2319   SmallVector<Constant *, 8> Indices;
2320 
2321   // Create a vector of consecutive numbers from zero to VF.
2322   VectorType *InitVecValVTy = ValVTy;
2323   if (STy->isFloatingPointTy()) {
2324     Type *InitVecValSTy =
2325         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2326     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2327   }
2328   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2329 
2330   // Splat the StartIdx
2331   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2332 
2333   if (STy->isIntegerTy()) {
2334     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2335     Step = Builder.CreateVectorSplat(VLen, Step);
2336     assert(Step->getType() == Val->getType() && "Invalid step vec");
2337     // FIXME: The newly created binary instructions should contain nsw/nuw
2338     // flags, which can be found from the original scalar operations.
2339     Step = Builder.CreateMul(InitVec, Step);
2340     return Builder.CreateAdd(Val, Step, "induction");
2341   }
2342 
2343   // Floating point induction.
2344   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2345          "Binary Opcode should be specified for FP induction");
2346   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2347   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2348 
2349   Step = Builder.CreateVectorSplat(VLen, Step);
2350   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2351   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2352 }
2353 
2354 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2355 /// variable on which to base the steps, \p Step is the size of the step.
2356 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2357                              const InductionDescriptor &ID, VPValue *Def,
2358                              VPTransformState &State) {
2359   IRBuilderBase &Builder = State.Builder;
2360   // We shouldn't have to build scalar steps if we aren't vectorizing.
2361   assert(State.VF.isVector() && "VF should be greater than one");
2362   // Get the value type and ensure it and the step have the same integer type.
2363   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2364   assert(ScalarIVTy == Step->getType() &&
2365          "Val and Step should have the same type");
2366 
2367   // We build scalar steps for both integer and floating-point induction
2368   // variables. Here, we determine the kind of arithmetic we will perform.
2369   Instruction::BinaryOps AddOp;
2370   Instruction::BinaryOps MulOp;
2371   if (ScalarIVTy->isIntegerTy()) {
2372     AddOp = Instruction::Add;
2373     MulOp = Instruction::Mul;
2374   } else {
2375     AddOp = ID.getInductionOpcode();
2376     MulOp = Instruction::FMul;
2377   }
2378 
2379   // Determine the number of scalars we need to generate for each unroll
2380   // iteration.
2381   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2382   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2383   // Compute the scalar steps and save the results in State.
2384   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2385                                      ScalarIVTy->getScalarSizeInBits());
2386   Type *VecIVTy = nullptr;
2387   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2388   if (!FirstLaneOnly && State.VF.isScalable()) {
2389     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2390     UnitStepVec =
2391         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2392     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2393     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2394   }
2395 
2396   for (unsigned Part = 0; Part < State.UF; ++Part) {
2397     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2398 
2399     if (!FirstLaneOnly && State.VF.isScalable()) {
2400       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2401       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2402       if (ScalarIVTy->isFloatingPointTy())
2403         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2404       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2405       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2406       State.set(Def, Add, Part);
2407       // It's useful to record the lane values too for the known minimum number
2408       // of elements so we do those below. This improves the code quality when
2409       // trying to extract the first element, for example.
2410     }
2411 
2412     if (ScalarIVTy->isFloatingPointTy())
2413       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2414 
2415     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2416       Value *StartIdx = Builder.CreateBinOp(
2417           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2418       // The step returned by `createStepForVF` is a runtime-evaluated value
2419       // when VF is scalable. Otherwise, it should be folded into a Constant.
2420       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2421              "Expected StartIdx to be folded to a constant when VF is not "
2422              "scalable");
2423       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2424       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2425       State.set(Def, Add, VPIteration(Part, Lane));
2426     }
2427   }
2428 }
2429 
2430 // Generate code for the induction step. Note that induction steps are
2431 // required to be loop-invariant
2432 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2433                               Instruction *InsertBefore,
2434                               Loop *OrigLoop = nullptr) {
2435   const DataLayout &DL = SE.getDataLayout();
2436   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2437          "Induction step should be loop invariant");
2438   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2439     return E->getValue();
2440 
2441   SCEVExpander Exp(SE, DL, "induction");
2442   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2443 }
2444 
2445 /// Compute the transformed value of Index at offset StartValue using step
2446 /// StepValue.
2447 /// For integer induction, returns StartValue + Index * StepValue.
2448 /// For pointer induction, returns StartValue[Index * StepValue].
2449 /// FIXME: The newly created binary instructions should contain nsw/nuw
2450 /// flags, which can be found from the original scalar operations.
2451 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2452                                    Value *StartValue, Value *Step,
2453                                    const InductionDescriptor &ID) {
2454   assert(Index->getType()->getScalarType() == Step->getType() &&
2455          "Index scalar type does not match StepValue type");
2456 
2457   // Note: the IR at this point is broken. We cannot use SE to create any new
2458   // SCEV and then expand it, hoping that SCEV's simplification will give us
2459   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2460   // lead to various SCEV crashes. So all we can do is to use builder and rely
2461   // on InstCombine for future simplifications. Here we handle some trivial
2462   // cases only.
2463   auto CreateAdd = [&B](Value *X, Value *Y) {
2464     assert(X->getType() == Y->getType() && "Types don't match!");
2465     if (auto *CX = dyn_cast<ConstantInt>(X))
2466       if (CX->isZero())
2467         return Y;
2468     if (auto *CY = dyn_cast<ConstantInt>(Y))
2469       if (CY->isZero())
2470         return X;
2471     return B.CreateAdd(X, Y);
2472   };
2473 
2474   // We allow X to be a vector type, in which case Y will potentially be
2475   // splatted into a vector with the same element count.
2476   auto CreateMul = [&B](Value *X, Value *Y) {
2477     assert(X->getType()->getScalarType() == Y->getType() &&
2478            "Types don't match!");
2479     if (auto *CX = dyn_cast<ConstantInt>(X))
2480       if (CX->isOne())
2481         return Y;
2482     if (auto *CY = dyn_cast<ConstantInt>(Y))
2483       if (CY->isOne())
2484         return X;
2485     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2486     if (XVTy && !isa<VectorType>(Y->getType()))
2487       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2488     return B.CreateMul(X, Y);
2489   };
2490 
2491   switch (ID.getKind()) {
2492   case InductionDescriptor::IK_IntInduction: {
2493     assert(!isa<VectorType>(Index->getType()) &&
2494            "Vector indices not supported for integer inductions yet");
2495     assert(Index->getType() == StartValue->getType() &&
2496            "Index type does not match StartValue type");
2497     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2498       return B.CreateSub(StartValue, Index);
2499     auto *Offset = CreateMul(Index, Step);
2500     return CreateAdd(StartValue, Offset);
2501   }
2502   case InductionDescriptor::IK_PtrInduction: {
2503     assert(isa<Constant>(Step) &&
2504            "Expected constant step for pointer induction");
2505     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2506   }
2507   case InductionDescriptor::IK_FpInduction: {
2508     assert(!isa<VectorType>(Index->getType()) &&
2509            "Vector indices not supported for FP inductions yet");
2510     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2511     auto InductionBinOp = ID.getInductionBinOp();
2512     assert(InductionBinOp &&
2513            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2514             InductionBinOp->getOpcode() == Instruction::FSub) &&
2515            "Original bin op should be defined for FP induction");
2516 
2517     Value *MulExp = B.CreateFMul(Step, Index);
2518     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2519                          "induction");
2520   }
2521   case InductionDescriptor::IK_NoInduction:
2522     return nullptr;
2523   }
2524   llvm_unreachable("invalid enum");
2525 }
2526 
2527 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2528                                                     const VPIteration &Instance,
2529                                                     VPTransformState &State) {
2530   Value *ScalarInst = State.get(Def, Instance);
2531   Value *VectorValue = State.get(Def, Instance.Part);
2532   VectorValue = Builder.CreateInsertElement(
2533       VectorValue, ScalarInst,
2534       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2535   State.set(Def, VectorValue, Instance.Part);
2536 }
2537 
2538 // Return whether we allow using masked interleave-groups (for dealing with
2539 // strided loads/stores that reside in predicated blocks, or for dealing
2540 // with gaps).
2541 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2542   // If an override option has been passed in for interleaved accesses, use it.
2543   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2544     return EnableMaskedInterleavedMemAccesses;
2545 
2546   return TTI.enableMaskedInterleavedAccessVectorization();
2547 }
2548 
2549 // Try to vectorize the interleave group that \p Instr belongs to.
2550 //
2551 // E.g. Translate following interleaved load group (factor = 3):
2552 //   for (i = 0; i < N; i+=3) {
2553 //     R = Pic[i];             // Member of index 0
2554 //     G = Pic[i+1];           // Member of index 1
2555 //     B = Pic[i+2];           // Member of index 2
2556 //     ... // do something to R, G, B
2557 //   }
2558 // To:
2559 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2560 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2561 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2562 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2563 //
2564 // Or translate following interleaved store group (factor = 3):
2565 //   for (i = 0; i < N; i+=3) {
2566 //     ... do something to R, G, B
2567 //     Pic[i]   = R;           // Member of index 0
2568 //     Pic[i+1] = G;           // Member of index 1
2569 //     Pic[i+2] = B;           // Member of index 2
2570 //   }
2571 // To:
2572 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2573 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2574 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2575 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2576 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2577 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2578     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2579     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2580     VPValue *BlockInMask) {
2581   Instruction *Instr = Group->getInsertPos();
2582   const DataLayout &DL = Instr->getModule()->getDataLayout();
2583 
2584   // Prepare for the vector type of the interleaved load/store.
2585   Type *ScalarTy = getLoadStoreType(Instr);
2586   unsigned InterleaveFactor = Group->getFactor();
2587   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2588   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2589 
2590   // Prepare for the new pointers.
2591   SmallVector<Value *, 2> AddrParts;
2592   unsigned Index = Group->getIndex(Instr);
2593 
2594   // TODO: extend the masked interleaved-group support to reversed access.
2595   assert((!BlockInMask || !Group->isReverse()) &&
2596          "Reversed masked interleave-group not supported.");
2597 
2598   // If the group is reverse, adjust the index to refer to the last vector lane
2599   // instead of the first. We adjust the index from the first vector lane,
2600   // rather than directly getting the pointer for lane VF - 1, because the
2601   // pointer operand of the interleaved access is supposed to be uniform. For
2602   // uniform instructions, we're only required to generate a value for the
2603   // first vector lane in each unroll iteration.
2604   if (Group->isReverse())
2605     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2606 
2607   for (unsigned Part = 0; Part < UF; Part++) {
2608     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2609     setDebugLocFromInst(AddrPart);
2610 
2611     // Notice current instruction could be any index. Need to adjust the address
2612     // to the member of index 0.
2613     //
2614     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2615     //       b = A[i];       // Member of index 0
2616     // Current pointer is pointed to A[i+1], adjust it to A[i].
2617     //
2618     // E.g.  A[i+1] = a;     // Member of index 1
2619     //       A[i]   = b;     // Member of index 0
2620     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2621     // Current pointer is pointed to A[i+2], adjust it to A[i].
2622 
2623     bool InBounds = false;
2624     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2625       InBounds = gep->isInBounds();
2626     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2627     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2628 
2629     // Cast to the vector pointer type.
2630     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2631     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2632     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2633   }
2634 
2635   setDebugLocFromInst(Instr);
2636   Value *PoisonVec = PoisonValue::get(VecTy);
2637 
2638   Value *MaskForGaps = nullptr;
2639   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2640     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2641     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2642   }
2643 
2644   // Vectorize the interleaved load group.
2645   if (isa<LoadInst>(Instr)) {
2646     // For each unroll part, create a wide load for the group.
2647     SmallVector<Value *, 2> NewLoads;
2648     for (unsigned Part = 0; Part < UF; Part++) {
2649       Instruction *NewLoad;
2650       if (BlockInMask || MaskForGaps) {
2651         assert(useMaskedInterleavedAccesses(*TTI) &&
2652                "masked interleaved groups are not allowed.");
2653         Value *GroupMask = MaskForGaps;
2654         if (BlockInMask) {
2655           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2656           Value *ShuffledMask = Builder.CreateShuffleVector(
2657               BlockInMaskPart,
2658               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2659               "interleaved.mask");
2660           GroupMask = MaskForGaps
2661                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2662                                                 MaskForGaps)
2663                           : ShuffledMask;
2664         }
2665         NewLoad =
2666             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2667                                      GroupMask, PoisonVec, "wide.masked.vec");
2668       }
2669       else
2670         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2671                                             Group->getAlign(), "wide.vec");
2672       Group->addMetadata(NewLoad);
2673       NewLoads.push_back(NewLoad);
2674     }
2675 
2676     // For each member in the group, shuffle out the appropriate data from the
2677     // wide loads.
2678     unsigned J = 0;
2679     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2680       Instruction *Member = Group->getMember(I);
2681 
2682       // Skip the gaps in the group.
2683       if (!Member)
2684         continue;
2685 
2686       auto StrideMask =
2687           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2688       for (unsigned Part = 0; Part < UF; Part++) {
2689         Value *StridedVec = Builder.CreateShuffleVector(
2690             NewLoads[Part], StrideMask, "strided.vec");
2691 
2692         // If this member has different type, cast the result type.
2693         if (Member->getType() != ScalarTy) {
2694           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2695           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2696           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2697         }
2698 
2699         if (Group->isReverse())
2700           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2701 
2702         State.set(VPDefs[J], StridedVec, Part);
2703       }
2704       ++J;
2705     }
2706     return;
2707   }
2708 
2709   // The sub vector type for current instruction.
2710   auto *SubVT = VectorType::get(ScalarTy, VF);
2711 
2712   // Vectorize the interleaved store group.
2713   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2714   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2715          "masked interleaved groups are not allowed.");
2716   assert((!MaskForGaps || !VF.isScalable()) &&
2717          "masking gaps for scalable vectors is not yet supported.");
2718   for (unsigned Part = 0; Part < UF; Part++) {
2719     // Collect the stored vector from each member.
2720     SmallVector<Value *, 4> StoredVecs;
2721     for (unsigned i = 0; i < InterleaveFactor; i++) {
2722       assert((Group->getMember(i) || MaskForGaps) &&
2723              "Fail to get a member from an interleaved store group");
2724       Instruction *Member = Group->getMember(i);
2725 
2726       // Skip the gaps in the group.
2727       if (!Member) {
2728         Value *Undef = PoisonValue::get(SubVT);
2729         StoredVecs.push_back(Undef);
2730         continue;
2731       }
2732 
2733       Value *StoredVec = State.get(StoredValues[i], Part);
2734 
2735       if (Group->isReverse())
2736         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2737 
2738       // If this member has different type, cast it to a unified type.
2739 
2740       if (StoredVec->getType() != SubVT)
2741         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2742 
2743       StoredVecs.push_back(StoredVec);
2744     }
2745 
2746     // Concatenate all vectors into a wide vector.
2747     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2748 
2749     // Interleave the elements in the wide vector.
2750     Value *IVec = Builder.CreateShuffleVector(
2751         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2752         "interleaved.vec");
2753 
2754     Instruction *NewStoreInstr;
2755     if (BlockInMask || MaskForGaps) {
2756       Value *GroupMask = MaskForGaps;
2757       if (BlockInMask) {
2758         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2759         Value *ShuffledMask = Builder.CreateShuffleVector(
2760             BlockInMaskPart,
2761             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2762             "interleaved.mask");
2763         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2764                                                       ShuffledMask, MaskForGaps)
2765                                 : ShuffledMask;
2766       }
2767       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2768                                                 Group->getAlign(), GroupMask);
2769     } else
2770       NewStoreInstr =
2771           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2772 
2773     Group->addMetadata(NewStoreInstr);
2774   }
2775 }
2776 
2777 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2778                                                VPReplicateRecipe *RepRecipe,
2779                                                const VPIteration &Instance,
2780                                                bool IfPredicateInstr,
2781                                                VPTransformState &State) {
2782   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2783 
2784   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2785   // the first lane and part.
2786   if (isa<NoAliasScopeDeclInst>(Instr))
2787     if (!Instance.isFirstIteration())
2788       return;
2789 
2790   setDebugLocFromInst(Instr);
2791 
2792   // Does this instruction return a value ?
2793   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2794 
2795   Instruction *Cloned = Instr->clone();
2796   if (!IsVoidRetTy)
2797     Cloned->setName(Instr->getName() + ".cloned");
2798 
2799   // If the scalarized instruction contributes to the address computation of a
2800   // widen masked load/store which was in a basic block that needed predication
2801   // and is not predicated after vectorization, we can't propagate
2802   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2803   // instruction could feed a poison value to the base address of the widen
2804   // load/store.
2805   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2806     Cloned->dropPoisonGeneratingFlags();
2807 
2808   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
2809                                Builder.GetInsertPoint());
2810   // Replace the operands of the cloned instructions with their scalar
2811   // equivalents in the new loop.
2812   for (auto &I : enumerate(RepRecipe->operands())) {
2813     auto InputInstance = Instance;
2814     VPValue *Operand = I.value();
2815     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2816     if (OperandR && OperandR->isUniform())
2817       InputInstance.Lane = VPLane::getFirstLane();
2818     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2819   }
2820   addNewMetadata(Cloned, Instr);
2821 
2822   // Place the cloned scalar in the new loop.
2823   Builder.Insert(Cloned);
2824 
2825   State.set(RepRecipe, Cloned, Instance);
2826 
2827   // If we just cloned a new assumption, add it the assumption cache.
2828   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2829     AC->registerAssumption(II);
2830 
2831   // End if-block.
2832   if (IfPredicateInstr)
2833     PredicatedInstructions.push_back(Cloned);
2834 }
2835 
2836 void InnerLoopVectorizer::createHeaderBranch(Loop *L) {
2837   BasicBlock *Header = L->getHeader();
2838   assert(!L->getLoopLatch() && "loop should not have a latch at this point");
2839 
2840   IRBuilder<> B(Header->getTerminator());
2841   Instruction *OldInst =
2842       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
2843   setDebugLocFromInst(OldInst, &B);
2844 
2845   // Connect the header to the exit and header blocks and replace the old
2846   // terminator.
2847   B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header);
2848 
2849   // Now we have two terminators. Remove the old one from the block.
2850   Header->getTerminator()->eraseFromParent();
2851 }
2852 
2853 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2854   if (TripCount)
2855     return TripCount;
2856 
2857   assert(InsertBlock);
2858   IRBuilder<> Builder(InsertBlock->getTerminator());
2859   // Find the loop boundaries.
2860   ScalarEvolution *SE = PSE.getSE();
2861   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2862   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2863          "Invalid loop count");
2864 
2865   Type *IdxTy = Legal->getWidestInductionType();
2866   assert(IdxTy && "No type for induction");
2867 
2868   // The exit count might have the type of i64 while the phi is i32. This can
2869   // happen if we have an induction variable that is sign extended before the
2870   // compare. The only way that we get a backedge taken count is that the
2871   // induction variable was signed and as such will not overflow. In such a case
2872   // truncation is legal.
2873   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2874       IdxTy->getPrimitiveSizeInBits())
2875     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2876   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2877 
2878   // Get the total trip count from the count by adding 1.
2879   const SCEV *ExitCount = SE->getAddExpr(
2880       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2881 
2882   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2883 
2884   // Expand the trip count and place the new instructions in the preheader.
2885   // Notice that the pre-header does not change, only the loop body.
2886   SCEVExpander Exp(*SE, DL, "induction");
2887 
2888   // Count holds the overall loop count (N).
2889   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2890                                 InsertBlock->getTerminator());
2891 
2892   if (TripCount->getType()->isPointerTy())
2893     TripCount =
2894         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2895                                     InsertBlock->getTerminator());
2896 
2897   return TripCount;
2898 }
2899 
2900 Value *
2901 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2902   if (VectorTripCount)
2903     return VectorTripCount;
2904 
2905   Value *TC = getOrCreateTripCount(InsertBlock);
2906   IRBuilder<> Builder(InsertBlock->getTerminator());
2907 
2908   Type *Ty = TC->getType();
2909   // This is where we can make the step a runtime constant.
2910   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2911 
2912   // If the tail is to be folded by masking, round the number of iterations N
2913   // up to a multiple of Step instead of rounding down. This is done by first
2914   // adding Step-1 and then rounding down. Note that it's ok if this addition
2915   // overflows: the vector induction variable will eventually wrap to zero given
2916   // that it starts at zero and its Step is a power of two; the loop will then
2917   // exit, with the last early-exit vector comparison also producing all-true.
2918   if (Cost->foldTailByMasking()) {
2919     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2920            "VF*UF must be a power of 2 when folding tail by masking");
2921     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2922     TC = Builder.CreateAdd(
2923         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2924   }
2925 
2926   // Now we need to generate the expression for the part of the loop that the
2927   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2928   // iterations are not required for correctness, or N - Step, otherwise. Step
2929   // is equal to the vectorization factor (number of SIMD elements) times the
2930   // unroll factor (number of SIMD instructions).
2931   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2932 
2933   // There are cases where we *must* run at least one iteration in the remainder
2934   // loop.  See the cost model for when this can happen.  If the step evenly
2935   // divides the trip count, we set the remainder to be equal to the step. If
2936   // the step does not evenly divide the trip count, no adjustment is necessary
2937   // since there will already be scalar iterations. Note that the minimum
2938   // iterations check ensures that N >= Step.
2939   if (Cost->requiresScalarEpilogue(VF)) {
2940     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2941     R = Builder.CreateSelect(IsZero, Step, R);
2942   }
2943 
2944   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2945 
2946   return VectorTripCount;
2947 }
2948 
2949 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2950                                                    const DataLayout &DL) {
2951   // Verify that V is a vector type with same number of elements as DstVTy.
2952   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2953   unsigned VF = DstFVTy->getNumElements();
2954   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2955   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2956   Type *SrcElemTy = SrcVecTy->getElementType();
2957   Type *DstElemTy = DstFVTy->getElementType();
2958   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2959          "Vector elements must have same size");
2960 
2961   // Do a direct cast if element types are castable.
2962   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2963     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2964   }
2965   // V cannot be directly casted to desired vector type.
2966   // May happen when V is a floating point vector but DstVTy is a vector of
2967   // pointers or vice-versa. Handle this using a two-step bitcast using an
2968   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2969   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2970          "Only one type should be a pointer type");
2971   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2972          "Only one type should be a floating point type");
2973   Type *IntTy =
2974       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2975   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2976   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2977   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2978 }
2979 
2980 void InnerLoopVectorizer::emitMinimumIterationCountCheck(BasicBlock *Bypass) {
2981   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2982   // Reuse existing vector loop preheader for TC checks.
2983   // Note that new preheader block is generated for vector loop.
2984   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2985   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2986 
2987   // Generate code to check if the loop's trip count is less than VF * UF, or
2988   // equal to it in case a scalar epilogue is required; this implies that the
2989   // vector trip count is zero. This check also covers the case where adding one
2990   // to the backedge-taken count overflowed leading to an incorrect trip count
2991   // of zero. In this case we will also jump to the scalar loop.
2992   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2993                                             : ICmpInst::ICMP_ULT;
2994 
2995   // If tail is to be folded, vector loop takes care of all iterations.
2996   Value *CheckMinIters = Builder.getFalse();
2997   if (!Cost->foldTailByMasking()) {
2998     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
2999     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3000   }
3001   // Create new preheader for vector loop.
3002   LoopVectorPreHeader =
3003       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3004                  "vector.ph");
3005 
3006   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3007                                DT->getNode(Bypass)->getIDom()) &&
3008          "TC check is expected to dominate Bypass");
3009 
3010   // Update dominator for Bypass & LoopExit (if needed).
3011   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3012   if (!Cost->requiresScalarEpilogue(VF))
3013     // If there is an epilogue which must run, there's no edge from the
3014     // middle block to exit blocks  and thus no need to update the immediate
3015     // dominator of the exit blocks.
3016     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3017 
3018   ReplaceInstWithInst(
3019       TCCheckBlock->getTerminator(),
3020       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3021   LoopBypassBlocks.push_back(TCCheckBlock);
3022 }
3023 
3024 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
3025 
3026   BasicBlock *const SCEVCheckBlock =
3027       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3028   if (!SCEVCheckBlock)
3029     return nullptr;
3030 
3031   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3032            (OptForSizeBasedOnProfile &&
3033             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3034          "Cannot SCEV check stride or overflow when optimizing for size");
3035 
3036 
3037   // Update dominator only if this is first RT check.
3038   if (LoopBypassBlocks.empty()) {
3039     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3040     if (!Cost->requiresScalarEpilogue(VF))
3041       // If there is an epilogue which must run, there's no edge from the
3042       // middle block to exit blocks  and thus no need to update the immediate
3043       // dominator of the exit blocks.
3044       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3045   }
3046 
3047   LoopBypassBlocks.push_back(SCEVCheckBlock);
3048   AddedSafetyChecks = true;
3049   return SCEVCheckBlock;
3050 }
3051 
3052 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3053   // VPlan-native path does not do any analysis for runtime checks currently.
3054   if (EnableVPlanNativePath)
3055     return nullptr;
3056 
3057   BasicBlock *const MemCheckBlock =
3058       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3059 
3060   // Check if we generated code that checks in runtime if arrays overlap. We put
3061   // the checks into a separate block to make the more common case of few
3062   // elements faster.
3063   if (!MemCheckBlock)
3064     return nullptr;
3065 
3066   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3067     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3068            "Cannot emit memory checks when optimizing for size, unless forced "
3069            "to vectorize.");
3070     ORE->emit([&]() {
3071       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3072                                         OrigLoop->getStartLoc(),
3073                                         OrigLoop->getHeader())
3074              << "Code-size may be reduced by not forcing "
3075                 "vectorization, or by source-code modifications "
3076                 "eliminating the need for runtime checks "
3077                 "(e.g., adding 'restrict').";
3078     });
3079   }
3080 
3081   LoopBypassBlocks.push_back(MemCheckBlock);
3082 
3083   AddedSafetyChecks = true;
3084 
3085   // We currently don't use LoopVersioning for the actual loop cloning but we
3086   // still use it to add the noalias metadata.
3087   LVer = std::make_unique<LoopVersioning>(
3088       *Legal->getLAI(),
3089       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3090       DT, PSE.getSE());
3091   LVer->prepareNoAliasMetadata();
3092   return MemCheckBlock;
3093 }
3094 
3095 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3096   LoopScalarBody = OrigLoop->getHeader();
3097   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3098   assert(LoopVectorPreHeader && "Invalid loop structure");
3099   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3100   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3101          "multiple exit loop without required epilogue?");
3102 
3103   LoopMiddleBlock =
3104       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3105                  LI, nullptr, Twine(Prefix) + "middle.block");
3106   LoopScalarPreHeader =
3107       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3108                  nullptr, Twine(Prefix) + "scalar.ph");
3109 
3110   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3111 
3112   // Set up the middle block terminator.  Two cases:
3113   // 1) If we know that we must execute the scalar epilogue, emit an
3114   //    unconditional branch.
3115   // 2) Otherwise, we must have a single unique exit block (due to how we
3116   //    implement the multiple exit case).  In this case, set up a conditonal
3117   //    branch from the middle block to the loop scalar preheader, and the
3118   //    exit block.  completeLoopSkeleton will update the condition to use an
3119   //    iteration check, if required to decide whether to execute the remainder.
3120   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3121     BranchInst::Create(LoopScalarPreHeader) :
3122     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3123                        Builder.getTrue());
3124   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3125   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3126 
3127   // We intentionally don't let SplitBlock to update LoopInfo since
3128   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3129   // LoopVectorBody is explicitly added to the correct place few lines later.
3130   BasicBlock *LoopVectorBody =
3131       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3132                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3133 
3134   // Update dominator for loop exit.
3135   if (!Cost->requiresScalarEpilogue(VF))
3136     // If there is an epilogue which must run, there's no edge from the
3137     // middle block to exit blocks  and thus no need to update the immediate
3138     // dominator of the exit blocks.
3139     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3140 
3141   // Create and register the new vector loop.
3142   Loop *Lp = LI->AllocateLoop();
3143   Loop *ParentLoop = OrigLoop->getParentLoop();
3144 
3145   // Insert the new loop into the loop nest and register the new basic blocks
3146   // before calling any utilities such as SCEV that require valid LoopInfo.
3147   if (ParentLoop) {
3148     ParentLoop->addChildLoop(Lp);
3149   } else {
3150     LI->addTopLevelLoop(Lp);
3151   }
3152   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3153   return Lp;
3154 }
3155 
3156 void InnerLoopVectorizer::createInductionResumeValues(
3157     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3158   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3159           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3160          "Inconsistent information about additional bypass.");
3161 
3162   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3163   assert(VectorTripCount && "Expected valid arguments");
3164   // We are going to resume the execution of the scalar loop.
3165   // Go over all of the induction variables that we found and fix the
3166   // PHIs that are left in the scalar version of the loop.
3167   // The starting values of PHI nodes depend on the counter of the last
3168   // iteration in the vectorized loop.
3169   // If we come from a bypass edge then we need to start from the original
3170   // start value.
3171   Instruction *OldInduction = Legal->getPrimaryInduction();
3172   for (auto &InductionEntry : Legal->getInductionVars()) {
3173     PHINode *OrigPhi = InductionEntry.first;
3174     InductionDescriptor II = InductionEntry.second;
3175 
3176     // Create phi nodes to merge from the  backedge-taken check block.
3177     PHINode *BCResumeVal =
3178         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3179                         LoopScalarPreHeader->getTerminator());
3180     // Copy original phi DL over to the new one.
3181     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3182     Value *&EndValue = IVEndValues[OrigPhi];
3183     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3184     if (OrigPhi == OldInduction) {
3185       // We know what the end value is.
3186       EndValue = VectorTripCount;
3187     } else {
3188       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3189 
3190       // Fast-math-flags propagate from the original induction instruction.
3191       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3192         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3193 
3194       Type *StepType = II.getStep()->getType();
3195       Instruction::CastOps CastOp =
3196           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3197       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3198       Value *Step =
3199           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3200       EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3201       EndValue->setName("ind.end");
3202 
3203       // Compute the end value for the additional bypass (if applicable).
3204       if (AdditionalBypass.first) {
3205         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3206         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3207                                          StepType, true);
3208         Value *Step =
3209             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3210         CRD =
3211             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3212         EndValueFromAdditionalBypass =
3213             emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3214         EndValueFromAdditionalBypass->setName("ind.end");
3215       }
3216     }
3217     // The new PHI merges the original incoming value, in case of a bypass,
3218     // or the value at the end of the vectorized loop.
3219     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3220 
3221     // Fix the scalar body counter (PHI node).
3222     // The old induction's phi node in the scalar body needs the truncated
3223     // value.
3224     for (BasicBlock *BB : LoopBypassBlocks)
3225       BCResumeVal->addIncoming(II.getStartValue(), BB);
3226 
3227     if (AdditionalBypass.first)
3228       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3229                                             EndValueFromAdditionalBypass);
3230 
3231     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3232   }
3233 }
3234 
3235 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3236   // The trip counts should be cached by now.
3237   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3238   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3239 
3240   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3241 
3242   // Add a check in the middle block to see if we have completed
3243   // all of the iterations in the first vector loop.  Three cases:
3244   // 1) If we require a scalar epilogue, there is no conditional branch as
3245   //    we unconditionally branch to the scalar preheader.  Do nothing.
3246   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3247   //    Thus if tail is to be folded, we know we don't need to run the
3248   //    remainder and we can use the previous value for the condition (true).
3249   // 3) Otherwise, construct a runtime check.
3250   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3251     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3252                                         Count, VectorTripCount, "cmp.n",
3253                                         LoopMiddleBlock->getTerminator());
3254 
3255     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3256     // of the corresponding compare because they may have ended up with
3257     // different line numbers and we want to avoid awkward line stepping while
3258     // debugging. Eg. if the compare has got a line number inside the loop.
3259     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3260     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3261   }
3262 
3263 #ifdef EXPENSIVE_CHECKS
3264   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3265   LI->verify(*DT);
3266 #endif
3267 
3268   return LoopVectorPreHeader;
3269 }
3270 
3271 std::pair<BasicBlock *, Value *>
3272 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3273   /*
3274    In this function we generate a new loop. The new loop will contain
3275    the vectorized instructions while the old loop will continue to run the
3276    scalar remainder.
3277 
3278        [ ] <-- loop iteration number check.
3279     /   |
3280    /    v
3281   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3282   |  /  |
3283   | /   v
3284   ||   [ ]     <-- vector pre header.
3285   |/    |
3286   |     v
3287   |    [  ] \
3288   |    [  ]_|   <-- vector loop.
3289   |     |
3290   |     v
3291   \   -[ ]   <--- middle-block.
3292    \/   |
3293    /\   v
3294    | ->[ ]     <--- new preheader.
3295    |    |
3296  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3297    |   [ ] \
3298    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3299     \   |
3300      \  v
3301       >[ ]     <-- exit block(s).
3302    ...
3303    */
3304 
3305   // Get the metadata of the original loop before it gets modified.
3306   MDNode *OrigLoopID = OrigLoop->getLoopID();
3307 
3308   // Workaround!  Compute the trip count of the original loop and cache it
3309   // before we start modifying the CFG.  This code has a systemic problem
3310   // wherein it tries to run analysis over partially constructed IR; this is
3311   // wrong, and not simply for SCEV.  The trip count of the original loop
3312   // simply happens to be prone to hitting this in practice.  In theory, we
3313   // can hit the same issue for any SCEV, or ValueTracking query done during
3314   // mutation.  See PR49900.
3315   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3316 
3317   // Create an empty vector loop, and prepare basic blocks for the runtime
3318   // checks.
3319   Loop *Lp = createVectorLoopSkeleton("");
3320 
3321   // Now, compare the new count to zero. If it is zero skip the vector loop and
3322   // jump to the scalar loop. This check also covers the case where the
3323   // backedge-taken count is uint##_max: adding one to it will overflow leading
3324   // to an incorrect trip count of zero. In this (rare) case we will also jump
3325   // to the scalar loop.
3326   emitMinimumIterationCountCheck(LoopScalarPreHeader);
3327 
3328   // Generate the code to check any assumptions that we've made for SCEV
3329   // expressions.
3330   emitSCEVChecks(LoopScalarPreHeader);
3331 
3332   // Generate the code that checks in runtime if arrays overlap. We put the
3333   // checks into a separate block to make the more common case of few elements
3334   // faster.
3335   emitMemRuntimeChecks(LoopScalarPreHeader);
3336 
3337   createHeaderBranch(Lp);
3338 
3339   // Emit phis for the new starting index of the scalar loop.
3340   createInductionResumeValues();
3341 
3342   return {completeLoopSkeleton(OrigLoopID), nullptr};
3343 }
3344 
3345 // Fix up external users of the induction variable. At this point, we are
3346 // in LCSSA form, with all external PHIs that use the IV having one input value,
3347 // coming from the remainder loop. We need those PHIs to also have a correct
3348 // value for the IV when arriving directly from the middle block.
3349 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3350                                        const InductionDescriptor &II,
3351                                        Value *CountRoundDown, Value *EndValue,
3352                                        BasicBlock *MiddleBlock,
3353                                        BasicBlock *VectorHeader) {
3354   // There are two kinds of external IV usages - those that use the value
3355   // computed in the last iteration (the PHI) and those that use the penultimate
3356   // value (the value that feeds into the phi from the loop latch).
3357   // We allow both, but they, obviously, have different values.
3358 
3359   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3360 
3361   DenseMap<Value *, Value *> MissingVals;
3362 
3363   // An external user of the last iteration's value should see the value that
3364   // the remainder loop uses to initialize its own IV.
3365   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3366   for (User *U : PostInc->users()) {
3367     Instruction *UI = cast<Instruction>(U);
3368     if (!OrigLoop->contains(UI)) {
3369       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3370       MissingVals[UI] = EndValue;
3371     }
3372   }
3373 
3374   // An external user of the penultimate value need to see EndValue - Step.
3375   // The simplest way to get this is to recompute it from the constituent SCEVs,
3376   // that is Start + (Step * (CRD - 1)).
3377   for (User *U : OrigPhi->users()) {
3378     auto *UI = cast<Instruction>(U);
3379     if (!OrigLoop->contains(UI)) {
3380       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3381 
3382       IRBuilder<> B(MiddleBlock->getTerminator());
3383 
3384       // Fast-math-flags propagate from the original induction instruction.
3385       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3386         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3387 
3388       Value *CountMinusOne = B.CreateSub(
3389           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3390       Value *CMO =
3391           !II.getStep()->getType()->isIntegerTy()
3392               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3393                              II.getStep()->getType())
3394               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3395       CMO->setName("cast.cmo");
3396 
3397       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3398                                     VectorHeader->getTerminator());
3399       Value *Escape =
3400           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3401       Escape->setName("ind.escape");
3402       MissingVals[UI] = Escape;
3403     }
3404   }
3405 
3406   for (auto &I : MissingVals) {
3407     PHINode *PHI = cast<PHINode>(I.first);
3408     // One corner case we have to handle is two IVs "chasing" each-other,
3409     // that is %IV2 = phi [...], [ %IV1, %latch ]
3410     // In this case, if IV1 has an external use, we need to avoid adding both
3411     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3412     // don't already have an incoming value for the middle block.
3413     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3414       PHI->addIncoming(I.second, MiddleBlock);
3415   }
3416 }
3417 
3418 namespace {
3419 
3420 struct CSEDenseMapInfo {
3421   static bool canHandle(const Instruction *I) {
3422     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3423            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3424   }
3425 
3426   static inline Instruction *getEmptyKey() {
3427     return DenseMapInfo<Instruction *>::getEmptyKey();
3428   }
3429 
3430   static inline Instruction *getTombstoneKey() {
3431     return DenseMapInfo<Instruction *>::getTombstoneKey();
3432   }
3433 
3434   static unsigned getHashValue(const Instruction *I) {
3435     assert(canHandle(I) && "Unknown instruction!");
3436     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3437                                                            I->value_op_end()));
3438   }
3439 
3440   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3441     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3442         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3443       return LHS == RHS;
3444     return LHS->isIdenticalTo(RHS);
3445   }
3446 };
3447 
3448 } // end anonymous namespace
3449 
3450 ///Perform cse of induction variable instructions.
3451 static void cse(BasicBlock *BB) {
3452   // Perform simple cse.
3453   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3454   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3455     if (!CSEDenseMapInfo::canHandle(&In))
3456       continue;
3457 
3458     // Check if we can replace this instruction with any of the
3459     // visited instructions.
3460     if (Instruction *V = CSEMap.lookup(&In)) {
3461       In.replaceAllUsesWith(V);
3462       In.eraseFromParent();
3463       continue;
3464     }
3465 
3466     CSEMap[&In] = &In;
3467   }
3468 }
3469 
3470 InstructionCost
3471 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3472                                               bool &NeedToScalarize) const {
3473   Function *F = CI->getCalledFunction();
3474   Type *ScalarRetTy = CI->getType();
3475   SmallVector<Type *, 4> Tys, ScalarTys;
3476   for (auto &ArgOp : CI->args())
3477     ScalarTys.push_back(ArgOp->getType());
3478 
3479   // Estimate cost of scalarized vector call. The source operands are assumed
3480   // to be vectors, so we need to extract individual elements from there,
3481   // execute VF scalar calls, and then gather the result into the vector return
3482   // value.
3483   InstructionCost ScalarCallCost =
3484       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3485   if (VF.isScalar())
3486     return ScalarCallCost;
3487 
3488   // Compute corresponding vector type for return value and arguments.
3489   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3490   for (Type *ScalarTy : ScalarTys)
3491     Tys.push_back(ToVectorTy(ScalarTy, VF));
3492 
3493   // Compute costs of unpacking argument values for the scalar calls and
3494   // packing the return values to a vector.
3495   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3496 
3497   InstructionCost Cost =
3498       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3499 
3500   // If we can't emit a vector call for this function, then the currently found
3501   // cost is the cost we need to return.
3502   NeedToScalarize = true;
3503   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3504   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3505 
3506   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3507     return Cost;
3508 
3509   // If the corresponding vector cost is cheaper, return its cost.
3510   InstructionCost VectorCallCost =
3511       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3512   if (VectorCallCost < Cost) {
3513     NeedToScalarize = false;
3514     Cost = VectorCallCost;
3515   }
3516   return Cost;
3517 }
3518 
3519 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3520   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3521     return Elt;
3522   return VectorType::get(Elt, VF);
3523 }
3524 
3525 InstructionCost
3526 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3527                                                    ElementCount VF) const {
3528   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3529   assert(ID && "Expected intrinsic call!");
3530   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3531   FastMathFlags FMF;
3532   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3533     FMF = FPMO->getFastMathFlags();
3534 
3535   SmallVector<const Value *> Arguments(CI->args());
3536   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3537   SmallVector<Type *> ParamTys;
3538   std::transform(FTy->param_begin(), FTy->param_end(),
3539                  std::back_inserter(ParamTys),
3540                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3541 
3542   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3543                                     dyn_cast<IntrinsicInst>(CI));
3544   return TTI.getIntrinsicInstrCost(CostAttrs,
3545                                    TargetTransformInfo::TCK_RecipThroughput);
3546 }
3547 
3548 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3549   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3550   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3551   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3552 }
3553 
3554 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3555   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3556   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3557   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3558 }
3559 
3560 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3561   // For every instruction `I` in MinBWs, truncate the operands, create a
3562   // truncated version of `I` and reextend its result. InstCombine runs
3563   // later and will remove any ext/trunc pairs.
3564   SmallPtrSet<Value *, 4> Erased;
3565   for (const auto &KV : Cost->getMinimalBitwidths()) {
3566     // If the value wasn't vectorized, we must maintain the original scalar
3567     // type. The absence of the value from State indicates that it
3568     // wasn't vectorized.
3569     // FIXME: Should not rely on getVPValue at this point.
3570     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3571     if (!State.hasAnyVectorValue(Def))
3572       continue;
3573     for (unsigned Part = 0; Part < UF; ++Part) {
3574       Value *I = State.get(Def, Part);
3575       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3576         continue;
3577       Type *OriginalTy = I->getType();
3578       Type *ScalarTruncatedTy =
3579           IntegerType::get(OriginalTy->getContext(), KV.second);
3580       auto *TruncatedTy = VectorType::get(
3581           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3582       if (TruncatedTy == OriginalTy)
3583         continue;
3584 
3585       IRBuilder<> B(cast<Instruction>(I));
3586       auto ShrinkOperand = [&](Value *V) -> Value * {
3587         if (auto *ZI = dyn_cast<ZExtInst>(V))
3588           if (ZI->getSrcTy() == TruncatedTy)
3589             return ZI->getOperand(0);
3590         return B.CreateZExtOrTrunc(V, TruncatedTy);
3591       };
3592 
3593       // The actual instruction modification depends on the instruction type,
3594       // unfortunately.
3595       Value *NewI = nullptr;
3596       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3597         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3598                              ShrinkOperand(BO->getOperand(1)));
3599 
3600         // Any wrapping introduced by shrinking this operation shouldn't be
3601         // considered undefined behavior. So, we can't unconditionally copy
3602         // arithmetic wrapping flags to NewI.
3603         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3604       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3605         NewI =
3606             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3607                          ShrinkOperand(CI->getOperand(1)));
3608       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3609         NewI = B.CreateSelect(SI->getCondition(),
3610                               ShrinkOperand(SI->getTrueValue()),
3611                               ShrinkOperand(SI->getFalseValue()));
3612       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3613         switch (CI->getOpcode()) {
3614         default:
3615           llvm_unreachable("Unhandled cast!");
3616         case Instruction::Trunc:
3617           NewI = ShrinkOperand(CI->getOperand(0));
3618           break;
3619         case Instruction::SExt:
3620           NewI = B.CreateSExtOrTrunc(
3621               CI->getOperand(0),
3622               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3623           break;
3624         case Instruction::ZExt:
3625           NewI = B.CreateZExtOrTrunc(
3626               CI->getOperand(0),
3627               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3628           break;
3629         }
3630       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3631         auto Elements0 =
3632             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3633         auto *O0 = B.CreateZExtOrTrunc(
3634             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3635         auto Elements1 =
3636             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3637         auto *O1 = B.CreateZExtOrTrunc(
3638             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3639 
3640         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3641       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3642         // Don't do anything with the operands, just extend the result.
3643         continue;
3644       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3645         auto Elements =
3646             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3647         auto *O0 = B.CreateZExtOrTrunc(
3648             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3649         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3650         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3651       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3652         auto Elements =
3653             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3654         auto *O0 = B.CreateZExtOrTrunc(
3655             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3656         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3657       } else {
3658         // If we don't know what to do, be conservative and don't do anything.
3659         continue;
3660       }
3661 
3662       // Lastly, extend the result.
3663       NewI->takeName(cast<Instruction>(I));
3664       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3665       I->replaceAllUsesWith(Res);
3666       cast<Instruction>(I)->eraseFromParent();
3667       Erased.insert(I);
3668       State.reset(Def, Res, Part);
3669     }
3670   }
3671 
3672   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3673   for (const auto &KV : Cost->getMinimalBitwidths()) {
3674     // If the value wasn't vectorized, we must maintain the original scalar
3675     // type. The absence of the value from State indicates that it
3676     // wasn't vectorized.
3677     // FIXME: Should not rely on getVPValue at this point.
3678     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3679     if (!State.hasAnyVectorValue(Def))
3680       continue;
3681     for (unsigned Part = 0; Part < UF; ++Part) {
3682       Value *I = State.get(Def, Part);
3683       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3684       if (Inst && Inst->use_empty()) {
3685         Value *NewI = Inst->getOperand(0);
3686         Inst->eraseFromParent();
3687         State.reset(Def, NewI, Part);
3688       }
3689     }
3690   }
3691 }
3692 
3693 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3694   // Insert truncates and extends for any truncated instructions as hints to
3695   // InstCombine.
3696   if (VF.isVector())
3697     truncateToMinimalBitwidths(State);
3698 
3699   // Fix widened non-induction PHIs by setting up the PHI operands.
3700   if (OrigPHIsToFix.size()) {
3701     assert(EnableVPlanNativePath &&
3702            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3703     fixNonInductionPHIs(State);
3704   }
3705 
3706   // At this point every instruction in the original loop is widened to a
3707   // vector form. Now we need to fix the recurrences in the loop. These PHI
3708   // nodes are currently empty because we did not want to introduce cycles.
3709   // This is the second stage of vectorizing recurrences.
3710   fixCrossIterationPHIs(State);
3711 
3712   // Forget the original basic block.
3713   PSE.getSE()->forgetLoop(OrigLoop);
3714 
3715   Loop *VectorLoop = LI->getLoopFor(State.CFG.PrevBB);
3716   // If we inserted an edge from the middle block to the unique exit block,
3717   // update uses outside the loop (phis) to account for the newly inserted
3718   // edge.
3719   if (!Cost->requiresScalarEpilogue(VF)) {
3720     // Fix-up external users of the induction variables.
3721     for (auto &Entry : Legal->getInductionVars())
3722       fixupIVUsers(Entry.first, Entry.second,
3723                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3724                    IVEndValues[Entry.first], LoopMiddleBlock,
3725                    VectorLoop->getHeader());
3726 
3727     fixLCSSAPHIs(State);
3728   }
3729 
3730   for (Instruction *PI : PredicatedInstructions)
3731     sinkScalarOperands(&*PI);
3732 
3733   // Remove redundant induction instructions.
3734   cse(VectorLoop->getHeader());
3735 
3736   // Set/update profile weights for the vector and remainder loops as original
3737   // loop iterations are now distributed among them. Note that original loop
3738   // represented by LoopScalarBody becomes remainder loop after vectorization.
3739   //
3740   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3741   // end up getting slightly roughened result but that should be OK since
3742   // profile is not inherently precise anyway. Note also possible bypass of
3743   // vector code caused by legality checks is ignored, assigning all the weight
3744   // to the vector loop, optimistically.
3745   //
3746   // For scalable vectorization we can't know at compile time how many iterations
3747   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3748   // vscale of '1'.
3749   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3750                                LI->getLoopFor(LoopScalarBody),
3751                                VF.getKnownMinValue() * UF);
3752 }
3753 
3754 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3755   // In order to support recurrences we need to be able to vectorize Phi nodes.
3756   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3757   // stage #2: We now need to fix the recurrences by adding incoming edges to
3758   // the currently empty PHI nodes. At this point every instruction in the
3759   // original loop is widened to a vector form so we can use them to construct
3760   // the incoming edges.
3761   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
3762   for (VPRecipeBase &R : Header->phis()) {
3763     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3764       fixReduction(ReductionPhi, State);
3765     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3766       fixFirstOrderRecurrence(FOR, State);
3767   }
3768 }
3769 
3770 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3771     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3772   // This is the second phase of vectorizing first-order recurrences. An
3773   // overview of the transformation is described below. Suppose we have the
3774   // following loop.
3775   //
3776   //   for (int i = 0; i < n; ++i)
3777   //     b[i] = a[i] - a[i - 1];
3778   //
3779   // There is a first-order recurrence on "a". For this loop, the shorthand
3780   // scalar IR looks like:
3781   //
3782   //   scalar.ph:
3783   //     s_init = a[-1]
3784   //     br scalar.body
3785   //
3786   //   scalar.body:
3787   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3788   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3789   //     s2 = a[i]
3790   //     b[i] = s2 - s1
3791   //     br cond, scalar.body, ...
3792   //
3793   // In this example, s1 is a recurrence because it's value depends on the
3794   // previous iteration. In the first phase of vectorization, we created a
3795   // vector phi v1 for s1. We now complete the vectorization and produce the
3796   // shorthand vector IR shown below (for VF = 4, UF = 1).
3797   //
3798   //   vector.ph:
3799   //     v_init = vector(..., ..., ..., a[-1])
3800   //     br vector.body
3801   //
3802   //   vector.body
3803   //     i = phi [0, vector.ph], [i+4, vector.body]
3804   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3805   //     v2 = a[i, i+1, i+2, i+3];
3806   //     v3 = vector(v1(3), v2(0, 1, 2))
3807   //     b[i, i+1, i+2, i+3] = v2 - v3
3808   //     br cond, vector.body, middle.block
3809   //
3810   //   middle.block:
3811   //     x = v2(3)
3812   //     br scalar.ph
3813   //
3814   //   scalar.ph:
3815   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3816   //     br scalar.body
3817   //
3818   // After execution completes the vector loop, we extract the next value of
3819   // the recurrence (x) to use as the initial value in the scalar loop.
3820 
3821   // Extract the last vector element in the middle block. This will be the
3822   // initial value for the recurrence when jumping to the scalar loop.
3823   VPValue *PreviousDef = PhiR->getBackedgeValue();
3824   Value *Incoming = State.get(PreviousDef, UF - 1);
3825   auto *ExtractForScalar = Incoming;
3826   auto *IdxTy = Builder.getInt32Ty();
3827   if (VF.isVector()) {
3828     auto *One = ConstantInt::get(IdxTy, 1);
3829     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3830     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3831     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3832     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3833                                                     "vector.recur.extract");
3834   }
3835   // Extract the second last element in the middle block if the
3836   // Phi is used outside the loop. We need to extract the phi itself
3837   // and not the last element (the phi update in the current iteration). This
3838   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3839   // when the scalar loop is not run at all.
3840   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3841   if (VF.isVector()) {
3842     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3843     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3844     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3845         Incoming, Idx, "vector.recur.extract.for.phi");
3846   } else if (UF > 1)
3847     // When loop is unrolled without vectorizing, initialize
3848     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3849     // of `Incoming`. This is analogous to the vectorized case above: extracting
3850     // the second last element when VF > 1.
3851     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3852 
3853   // Fix the initial value of the original recurrence in the scalar loop.
3854   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3855   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3856   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3857   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3858   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3859     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3860     Start->addIncoming(Incoming, BB);
3861   }
3862 
3863   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3864   Phi->setName("scalar.recur");
3865 
3866   // Finally, fix users of the recurrence outside the loop. The users will need
3867   // either the last value of the scalar recurrence or the last value of the
3868   // vector recurrence we extracted in the middle block. Since the loop is in
3869   // LCSSA form, we just need to find all the phi nodes for the original scalar
3870   // recurrence in the exit block, and then add an edge for the middle block.
3871   // Note that LCSSA does not imply single entry when the original scalar loop
3872   // had multiple exiting edges (as we always run the last iteration in the
3873   // scalar epilogue); in that case, there is no edge from middle to exit and
3874   // and thus no phis which needed updated.
3875   if (!Cost->requiresScalarEpilogue(VF))
3876     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3877       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
3878         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3879 }
3880 
3881 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3882                                        VPTransformState &State) {
3883   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3884   // Get it's reduction variable descriptor.
3885   assert(Legal->isReductionVariable(OrigPhi) &&
3886          "Unable to find the reduction variable");
3887   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3888 
3889   RecurKind RK = RdxDesc.getRecurrenceKind();
3890   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3891   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3892   setDebugLocFromInst(ReductionStartValue);
3893 
3894   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3895   // This is the vector-clone of the value that leaves the loop.
3896   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3897 
3898   // Wrap flags are in general invalid after vectorization, clear them.
3899   clearReductionWrapFlags(RdxDesc, State);
3900 
3901   // Before each round, move the insertion point right between
3902   // the PHIs and the values we are going to write.
3903   // This allows us to write both PHINodes and the extractelement
3904   // instructions.
3905   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3906 
3907   setDebugLocFromInst(LoopExitInst);
3908 
3909   Type *PhiTy = OrigPhi->getType();
3910   BasicBlock *VectorLoopLatch =
3911       LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch();
3912   // If tail is folded by masking, the vector value to leave the loop should be
3913   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3914   // instead of the former. For an inloop reduction the reduction will already
3915   // be predicated, and does not need to be handled here.
3916   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3917     for (unsigned Part = 0; Part < UF; ++Part) {
3918       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3919       Value *Sel = nullptr;
3920       for (User *U : VecLoopExitInst->users()) {
3921         if (isa<SelectInst>(U)) {
3922           assert(!Sel && "Reduction exit feeding two selects");
3923           Sel = U;
3924         } else
3925           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3926       }
3927       assert(Sel && "Reduction exit feeds no select");
3928       State.reset(LoopExitInstDef, Sel, Part);
3929 
3930       // If the target can create a predicated operator for the reduction at no
3931       // extra cost in the loop (for example a predicated vadd), it can be
3932       // cheaper for the select to remain in the loop than be sunk out of it,
3933       // and so use the select value for the phi instead of the old
3934       // LoopExitValue.
3935       if (PreferPredicatedReductionSelect ||
3936           TTI->preferPredicatedReductionSelect(
3937               RdxDesc.getOpcode(), PhiTy,
3938               TargetTransformInfo::ReductionFlags())) {
3939         auto *VecRdxPhi =
3940             cast<PHINode>(State.get(PhiR, Part));
3941         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3942       }
3943     }
3944   }
3945 
3946   // If the vector reduction can be performed in a smaller type, we truncate
3947   // then extend the loop exit value to enable InstCombine to evaluate the
3948   // entire expression in the smaller type.
3949   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3950     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3951     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3952     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3953     VectorParts RdxParts(UF);
3954     for (unsigned Part = 0; Part < UF; ++Part) {
3955       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3956       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3957       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3958                                         : Builder.CreateZExt(Trunc, VecTy);
3959       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3960         if (U != Trunc) {
3961           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3962           RdxParts[Part] = Extnd;
3963         }
3964     }
3965     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3966     for (unsigned Part = 0; Part < UF; ++Part) {
3967       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3968       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3969     }
3970   }
3971 
3972   // Reduce all of the unrolled parts into a single vector.
3973   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3974   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3975 
3976   // The middle block terminator has already been assigned a DebugLoc here (the
3977   // OrigLoop's single latch terminator). We want the whole middle block to
3978   // appear to execute on this line because: (a) it is all compiler generated,
3979   // (b) these instructions are always executed after evaluating the latch
3980   // conditional branch, and (c) other passes may add new predecessors which
3981   // terminate on this line. This is the easiest way to ensure we don't
3982   // accidentally cause an extra step back into the loop while debugging.
3983   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3984   if (PhiR->isOrdered())
3985     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3986   else {
3987     // Floating-point operations should have some FMF to enable the reduction.
3988     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3989     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3990     for (unsigned Part = 1; Part < UF; ++Part) {
3991       Value *RdxPart = State.get(LoopExitInstDef, Part);
3992       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3993         ReducedPartRdx = Builder.CreateBinOp(
3994             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3995       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3996         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3997                                            ReducedPartRdx, RdxPart);
3998       else
3999         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4000     }
4001   }
4002 
4003   // Create the reduction after the loop. Note that inloop reductions create the
4004   // target reduction in the loop using a Reduction recipe.
4005   if (VF.isVector() && !PhiR->isInLoop()) {
4006     ReducedPartRdx =
4007         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4008     // If the reduction can be performed in a smaller type, we need to extend
4009     // the reduction to the wider type before we branch to the original loop.
4010     if (PhiTy != RdxDesc.getRecurrenceType())
4011       ReducedPartRdx = RdxDesc.isSigned()
4012                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4013                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4014   }
4015 
4016   PHINode *ResumePhi =
4017       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
4018 
4019   // Create a phi node that merges control-flow from the backedge-taken check
4020   // block and the middle block.
4021   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4022                                         LoopScalarPreHeader->getTerminator());
4023 
4024   // If we are fixing reductions in the epilogue loop then we should already
4025   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4026   // we carry over the incoming values correctly.
4027   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4028     if (Incoming == LoopMiddleBlock)
4029       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4030     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4031       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4032                               Incoming);
4033     else
4034       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4035   }
4036 
4037   // Set the resume value for this reduction
4038   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4039 
4040   // Now, we need to fix the users of the reduction variable
4041   // inside and outside of the scalar remainder loop.
4042 
4043   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4044   // in the exit blocks.  See comment on analogous loop in
4045   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4046   if (!Cost->requiresScalarEpilogue(VF))
4047     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4048       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4049         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4050 
4051   // Fix the scalar loop reduction variable with the incoming reduction sum
4052   // from the vector body and from the backedge value.
4053   int IncomingEdgeBlockIdx =
4054       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4055   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4056   // Pick the other block.
4057   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4058   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4059   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4060 }
4061 
4062 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4063                                                   VPTransformState &State) {
4064   RecurKind RK = RdxDesc.getRecurrenceKind();
4065   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4066     return;
4067 
4068   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4069   assert(LoopExitInstr && "null loop exit instruction");
4070   SmallVector<Instruction *, 8> Worklist;
4071   SmallPtrSet<Instruction *, 8> Visited;
4072   Worklist.push_back(LoopExitInstr);
4073   Visited.insert(LoopExitInstr);
4074 
4075   while (!Worklist.empty()) {
4076     Instruction *Cur = Worklist.pop_back_val();
4077     if (isa<OverflowingBinaryOperator>(Cur))
4078       for (unsigned Part = 0; Part < UF; ++Part) {
4079         // FIXME: Should not rely on getVPValue at this point.
4080         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4081         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4082       }
4083 
4084     for (User *U : Cur->users()) {
4085       Instruction *UI = cast<Instruction>(U);
4086       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4087           Visited.insert(UI).second)
4088         Worklist.push_back(UI);
4089     }
4090   }
4091 }
4092 
4093 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4094   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4095     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4096       // Some phis were already hand updated by the reduction and recurrence
4097       // code above, leave them alone.
4098       continue;
4099 
4100     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4101     // Non-instruction incoming values will have only one value.
4102 
4103     VPLane Lane = VPLane::getFirstLane();
4104     if (isa<Instruction>(IncomingValue) &&
4105         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4106                                            VF))
4107       Lane = VPLane::getLastLaneForVF(VF);
4108 
4109     // Can be a loop invariant incoming value or the last scalar value to be
4110     // extracted from the vectorized loop.
4111     // FIXME: Should not rely on getVPValue at this point.
4112     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4113     Value *lastIncomingValue =
4114         OrigLoop->isLoopInvariant(IncomingValue)
4115             ? IncomingValue
4116             : State.get(State.Plan->getVPValue(IncomingValue, true),
4117                         VPIteration(UF - 1, Lane));
4118     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4119   }
4120 }
4121 
4122 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4123   // The basic block and loop containing the predicated instruction.
4124   auto *PredBB = PredInst->getParent();
4125   auto *VectorLoop = LI->getLoopFor(PredBB);
4126 
4127   // Initialize a worklist with the operands of the predicated instruction.
4128   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4129 
4130   // Holds instructions that we need to analyze again. An instruction may be
4131   // reanalyzed if we don't yet know if we can sink it or not.
4132   SmallVector<Instruction *, 8> InstsToReanalyze;
4133 
4134   // Returns true if a given use occurs in the predicated block. Phi nodes use
4135   // their operands in their corresponding predecessor blocks.
4136   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4137     auto *I = cast<Instruction>(U.getUser());
4138     BasicBlock *BB = I->getParent();
4139     if (auto *Phi = dyn_cast<PHINode>(I))
4140       BB = Phi->getIncomingBlock(
4141           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4142     return BB == PredBB;
4143   };
4144 
4145   // Iteratively sink the scalarized operands of the predicated instruction
4146   // into the block we created for it. When an instruction is sunk, it's
4147   // operands are then added to the worklist. The algorithm ends after one pass
4148   // through the worklist doesn't sink a single instruction.
4149   bool Changed;
4150   do {
4151     // Add the instructions that need to be reanalyzed to the worklist, and
4152     // reset the changed indicator.
4153     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4154     InstsToReanalyze.clear();
4155     Changed = false;
4156 
4157     while (!Worklist.empty()) {
4158       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4159 
4160       // We can't sink an instruction if it is a phi node, is not in the loop,
4161       // or may have side effects.
4162       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4163           I->mayHaveSideEffects())
4164         continue;
4165 
4166       // If the instruction is already in PredBB, check if we can sink its
4167       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4168       // sinking the scalar instruction I, hence it appears in PredBB; but it
4169       // may have failed to sink I's operands (recursively), which we try
4170       // (again) here.
4171       if (I->getParent() == PredBB) {
4172         Worklist.insert(I->op_begin(), I->op_end());
4173         continue;
4174       }
4175 
4176       // It's legal to sink the instruction if all its uses occur in the
4177       // predicated block. Otherwise, there's nothing to do yet, and we may
4178       // need to reanalyze the instruction.
4179       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4180         InstsToReanalyze.push_back(I);
4181         continue;
4182       }
4183 
4184       // Move the instruction to the beginning of the predicated block, and add
4185       // it's operands to the worklist.
4186       I->moveBefore(&*PredBB->getFirstInsertionPt());
4187       Worklist.insert(I->op_begin(), I->op_end());
4188 
4189       // The sinking may have enabled other instructions to be sunk, so we will
4190       // need to iterate.
4191       Changed = true;
4192     }
4193   } while (Changed);
4194 }
4195 
4196 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4197   for (PHINode *OrigPhi : OrigPHIsToFix) {
4198     VPWidenPHIRecipe *VPPhi =
4199         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4200     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4201     // Make sure the builder has a valid insert point.
4202     Builder.SetInsertPoint(NewPhi);
4203     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4204       VPValue *Inc = VPPhi->getIncomingValue(i);
4205       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4206       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4207     }
4208   }
4209 }
4210 
4211 bool InnerLoopVectorizer::useOrderedReductions(
4212     const RecurrenceDescriptor &RdxDesc) {
4213   return Cost->useOrderedReductions(RdxDesc);
4214 }
4215 
4216 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4217                                               VPWidenPHIRecipe *PhiR,
4218                                               VPTransformState &State) {
4219   PHINode *P = cast<PHINode>(PN);
4220   if (EnableVPlanNativePath) {
4221     // Currently we enter here in the VPlan-native path for non-induction
4222     // PHIs where all control flow is uniform. We simply widen these PHIs.
4223     // Create a vector phi with no operands - the vector phi operands will be
4224     // set at the end of vector code generation.
4225     Type *VecTy = (State.VF.isScalar())
4226                       ? PN->getType()
4227                       : VectorType::get(PN->getType(), State.VF);
4228     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4229     State.set(PhiR, VecPhi, 0);
4230     OrigPHIsToFix.push_back(P);
4231 
4232     return;
4233   }
4234 
4235   assert(PN->getParent() == OrigLoop->getHeader() &&
4236          "Non-header phis should have been handled elsewhere");
4237 
4238   // In order to support recurrences we need to be able to vectorize Phi nodes.
4239   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4240   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4241   // this value when we vectorize all of the instructions that use the PHI.
4242 
4243   assert(!Legal->isReductionVariable(P) &&
4244          "reductions should be handled elsewhere");
4245 
4246   setDebugLocFromInst(P);
4247 
4248   // This PHINode must be an induction variable.
4249   // Make sure that we know about it.
4250   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4251 
4252   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4253   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4254 
4255   auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV();
4256   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
4257 
4258   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4259   // which can be found from the original scalar operations.
4260   switch (II.getKind()) {
4261   case InductionDescriptor::IK_NoInduction:
4262     llvm_unreachable("Unknown induction");
4263   case InductionDescriptor::IK_IntInduction:
4264   case InductionDescriptor::IK_FpInduction:
4265     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4266   case InductionDescriptor::IK_PtrInduction: {
4267     // Handle the pointer induction variable case.
4268     assert(P->getType()->isPointerTy() && "Unexpected type.");
4269 
4270     if (all_of(PhiR->users(), [PhiR](const VPUser *U) {
4271           return cast<VPRecipeBase>(U)->usesScalars(PhiR);
4272         })) {
4273       // This is the normalized GEP that starts counting at zero.
4274       Value *PtrInd =
4275           Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType());
4276       // Determine the number of scalars we need to generate for each unroll
4277       // iteration. If the instruction is uniform, we only need to generate the
4278       // first lane. Otherwise, we generate all VF values.
4279       bool IsUniform = vputils::onlyFirstLaneUsed(PhiR);
4280       assert((IsUniform || !State.VF.isScalable()) &&
4281              "Cannot scalarize a scalable VF");
4282       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4283 
4284       for (unsigned Part = 0; Part < UF; ++Part) {
4285         Value *PartStart =
4286             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4287 
4288         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4289           Value *Idx = Builder.CreateAdd(
4290               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4291           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4292 
4293           Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
4294                                         State.CFG.PrevBB->getTerminator());
4295           Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx,
4296                                                 II.getStartValue(), Step, II);
4297           SclrGep->setName("next.gep");
4298           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4299         }
4300       }
4301       return;
4302     }
4303     assert(isa<SCEVConstant>(II.getStep()) &&
4304            "Induction step not a SCEV constant!");
4305     Type *PhiType = II.getStep()->getType();
4306 
4307     // Build a pointer phi
4308     Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue();
4309     Type *ScStValueType = ScalarStartValue->getType();
4310     PHINode *NewPointerPhi =
4311         PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
4312     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4313 
4314     // A pointer induction, performed by using a gep
4315     BasicBlock *LoopLatch = LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch();
4316     Instruction *InductionLoc = LoopLatch->getTerminator();
4317     const SCEV *ScalarStep = II.getStep();
4318     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4319     Value *ScalarStepValue =
4320         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4321     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4322     Value *NumUnrolledElems =
4323         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4324     Value *InductionGEP = GetElementPtrInst::Create(
4325         II.getElementType(), NewPointerPhi,
4326         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4327         InductionLoc);
4328     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4329 
4330     // Create UF many actual address geps that use the pointer
4331     // phi as base and a vectorized version of the step value
4332     // (<step*0, ..., step*N>) as offset.
4333     for (unsigned Part = 0; Part < State.UF; ++Part) {
4334       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4335       Value *StartOffsetScalar =
4336           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4337       Value *StartOffset =
4338           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4339       // Create a vector of consecutive numbers from zero to VF.
4340       StartOffset =
4341           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4342 
4343       Value *GEP = Builder.CreateGEP(
4344           II.getElementType(), NewPointerPhi,
4345           Builder.CreateMul(
4346               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4347               "vector.gep"));
4348       State.set(PhiR, GEP, Part);
4349     }
4350   }
4351   }
4352 }
4353 
4354 /// A helper function for checking whether an integer division-related
4355 /// instruction may divide by zero (in which case it must be predicated if
4356 /// executed conditionally in the scalar code).
4357 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4358 /// Non-zero divisors that are non compile-time constants will not be
4359 /// converted into multiplication, so we will still end up scalarizing
4360 /// the division, but can do so w/o predication.
4361 static bool mayDivideByZero(Instruction &I) {
4362   assert((I.getOpcode() == Instruction::UDiv ||
4363           I.getOpcode() == Instruction::SDiv ||
4364           I.getOpcode() == Instruction::URem ||
4365           I.getOpcode() == Instruction::SRem) &&
4366          "Unexpected instruction");
4367   Value *Divisor = I.getOperand(1);
4368   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4369   return !CInt || CInt->isZero();
4370 }
4371 
4372 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4373                                                VPUser &ArgOperands,
4374                                                VPTransformState &State) {
4375   assert(!isa<DbgInfoIntrinsic>(I) &&
4376          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4377   setDebugLocFromInst(&I);
4378 
4379   Module *M = I.getParent()->getParent()->getParent();
4380   auto *CI = cast<CallInst>(&I);
4381 
4382   SmallVector<Type *, 4> Tys;
4383   for (Value *ArgOperand : CI->args())
4384     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4385 
4386   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4387 
4388   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4389   // version of the instruction.
4390   // Is it beneficial to perform intrinsic call compared to lib call?
4391   bool NeedToScalarize = false;
4392   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4393   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4394   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4395   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4396          "Instruction should be scalarized elsewhere.");
4397   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4398          "Either the intrinsic cost or vector call cost must be valid");
4399 
4400   for (unsigned Part = 0; Part < UF; ++Part) {
4401     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4402     SmallVector<Value *, 4> Args;
4403     for (auto &I : enumerate(ArgOperands.operands())) {
4404       // Some intrinsics have a scalar argument - don't replace it with a
4405       // vector.
4406       Value *Arg;
4407       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4408         Arg = State.get(I.value(), Part);
4409       else {
4410         Arg = State.get(I.value(), VPIteration(0, 0));
4411         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4412           TysForDecl.push_back(Arg->getType());
4413       }
4414       Args.push_back(Arg);
4415     }
4416 
4417     Function *VectorF;
4418     if (UseVectorIntrinsic) {
4419       // Use vector version of the intrinsic.
4420       if (VF.isVector())
4421         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4422       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4423       assert(VectorF && "Can't retrieve vector intrinsic.");
4424     } else {
4425       // Use vector version of the function call.
4426       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4427 #ifndef NDEBUG
4428       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4429              "Can't create vector function.");
4430 #endif
4431         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4432     }
4433       SmallVector<OperandBundleDef, 1> OpBundles;
4434       CI->getOperandBundlesAsDefs(OpBundles);
4435       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4436 
4437       if (isa<FPMathOperator>(V))
4438         V->copyFastMathFlags(CI);
4439 
4440       State.set(Def, V, Part);
4441       addMetadata(V, &I);
4442   }
4443 }
4444 
4445 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4446   // We should not collect Scalars more than once per VF. Right now, this
4447   // function is called from collectUniformsAndScalars(), which already does
4448   // this check. Collecting Scalars for VF=1 does not make any sense.
4449   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4450          "This function should not be visited twice for the same VF");
4451 
4452   // This avoids any chances of creating a REPLICATE recipe during planning
4453   // since that would result in generation of scalarized code during execution,
4454   // which is not supported for scalable vectors.
4455   if (VF.isScalable()) {
4456     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4457     return;
4458   }
4459 
4460   SmallSetVector<Instruction *, 8> Worklist;
4461 
4462   // These sets are used to seed the analysis with pointers used by memory
4463   // accesses that will remain scalar.
4464   SmallSetVector<Instruction *, 8> ScalarPtrs;
4465   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4466   auto *Latch = TheLoop->getLoopLatch();
4467 
4468   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4469   // The pointer operands of loads and stores will be scalar as long as the
4470   // memory access is not a gather or scatter operation. The value operand of a
4471   // store will remain scalar if the store is scalarized.
4472   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4473     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4474     assert(WideningDecision != CM_Unknown &&
4475            "Widening decision should be ready at this moment");
4476     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4477       if (Ptr == Store->getValueOperand())
4478         return WideningDecision == CM_Scalarize;
4479     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4480            "Ptr is neither a value or pointer operand");
4481     return WideningDecision != CM_GatherScatter;
4482   };
4483 
4484   // A helper that returns true if the given value is a bitcast or
4485   // getelementptr instruction contained in the loop.
4486   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4487     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4488             isa<GetElementPtrInst>(V)) &&
4489            !TheLoop->isLoopInvariant(V);
4490   };
4491 
4492   // A helper that evaluates a memory access's use of a pointer. If the use will
4493   // be a scalar use and the pointer is only used by memory accesses, we place
4494   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4495   // PossibleNonScalarPtrs.
4496   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4497     // We only care about bitcast and getelementptr instructions contained in
4498     // the loop.
4499     if (!isLoopVaryingBitCastOrGEP(Ptr))
4500       return;
4501 
4502     // If the pointer has already been identified as scalar (e.g., if it was
4503     // also identified as uniform), there's nothing to do.
4504     auto *I = cast<Instruction>(Ptr);
4505     if (Worklist.count(I))
4506       return;
4507 
4508     // If the use of the pointer will be a scalar use, and all users of the
4509     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4510     // place the pointer in PossibleNonScalarPtrs.
4511     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4512           return isa<LoadInst>(U) || isa<StoreInst>(U);
4513         }))
4514       ScalarPtrs.insert(I);
4515     else
4516       PossibleNonScalarPtrs.insert(I);
4517   };
4518 
4519   // We seed the scalars analysis with three classes of instructions: (1)
4520   // instructions marked uniform-after-vectorization and (2) bitcast,
4521   // getelementptr and (pointer) phi instructions used by memory accesses
4522   // requiring a scalar use.
4523   //
4524   // (1) Add to the worklist all instructions that have been identified as
4525   // uniform-after-vectorization.
4526   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4527 
4528   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4529   // memory accesses requiring a scalar use. The pointer operands of loads and
4530   // stores will be scalar as long as the memory accesses is not a gather or
4531   // scatter operation. The value operand of a store will remain scalar if the
4532   // store is scalarized.
4533   for (auto *BB : TheLoop->blocks())
4534     for (auto &I : *BB) {
4535       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4536         evaluatePtrUse(Load, Load->getPointerOperand());
4537       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4538         evaluatePtrUse(Store, Store->getPointerOperand());
4539         evaluatePtrUse(Store, Store->getValueOperand());
4540       }
4541     }
4542   for (auto *I : ScalarPtrs)
4543     if (!PossibleNonScalarPtrs.count(I)) {
4544       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4545       Worklist.insert(I);
4546     }
4547 
4548   // Insert the forced scalars.
4549   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4550   // induction variable when the PHI user is scalarized.
4551   auto ForcedScalar = ForcedScalars.find(VF);
4552   if (ForcedScalar != ForcedScalars.end())
4553     for (auto *I : ForcedScalar->second)
4554       Worklist.insert(I);
4555 
4556   // Expand the worklist by looking through any bitcasts and getelementptr
4557   // instructions we've already identified as scalar. This is similar to the
4558   // expansion step in collectLoopUniforms(); however, here we're only
4559   // expanding to include additional bitcasts and getelementptr instructions.
4560   unsigned Idx = 0;
4561   while (Idx != Worklist.size()) {
4562     Instruction *Dst = Worklist[Idx++];
4563     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4564       continue;
4565     auto *Src = cast<Instruction>(Dst->getOperand(0));
4566     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4567           auto *J = cast<Instruction>(U);
4568           return !TheLoop->contains(J) || Worklist.count(J) ||
4569                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4570                   isScalarUse(J, Src));
4571         })) {
4572       Worklist.insert(Src);
4573       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4574     }
4575   }
4576 
4577   // An induction variable will remain scalar if all users of the induction
4578   // variable and induction variable update remain scalar.
4579   for (auto &Induction : Legal->getInductionVars()) {
4580     auto *Ind = Induction.first;
4581     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4582 
4583     // If tail-folding is applied, the primary induction variable will be used
4584     // to feed a vector compare.
4585     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4586       continue;
4587 
4588     // Returns true if \p Indvar is a pointer induction that is used directly by
4589     // load/store instruction \p I.
4590     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4591                                               Instruction *I) {
4592       return Induction.second.getKind() ==
4593                  InductionDescriptor::IK_PtrInduction &&
4594              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4595              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4596     };
4597 
4598     // Determine if all users of the induction variable are scalar after
4599     // vectorization.
4600     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4601       auto *I = cast<Instruction>(U);
4602       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4603              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4604     });
4605     if (!ScalarInd)
4606       continue;
4607 
4608     // Determine if all users of the induction variable update instruction are
4609     // scalar after vectorization.
4610     auto ScalarIndUpdate =
4611         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4612           auto *I = cast<Instruction>(U);
4613           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4614                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4615         });
4616     if (!ScalarIndUpdate)
4617       continue;
4618 
4619     // The induction variable and its update instruction will remain scalar.
4620     Worklist.insert(Ind);
4621     Worklist.insert(IndUpdate);
4622     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4623     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4624                       << "\n");
4625   }
4626 
4627   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4628 }
4629 
4630 bool LoopVectorizationCostModel::isScalarWithPredication(
4631     Instruction *I, ElementCount VF) const {
4632   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4633     return false;
4634   switch(I->getOpcode()) {
4635   default:
4636     break;
4637   case Instruction::Load:
4638   case Instruction::Store: {
4639     if (!Legal->isMaskRequired(I))
4640       return false;
4641     auto *Ptr = getLoadStorePointerOperand(I);
4642     auto *Ty = getLoadStoreType(I);
4643     Type *VTy = Ty;
4644     if (VF.isVector())
4645       VTy = VectorType::get(Ty, VF);
4646     const Align Alignment = getLoadStoreAlignment(I);
4647     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4648                                 TTI.isLegalMaskedGather(VTy, Alignment))
4649                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4650                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4651   }
4652   case Instruction::UDiv:
4653   case Instruction::SDiv:
4654   case Instruction::SRem:
4655   case Instruction::URem:
4656     return mayDivideByZero(*I);
4657   }
4658   return false;
4659 }
4660 
4661 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4662     Instruction *I, ElementCount VF) {
4663   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4664   assert(getWideningDecision(I, VF) == CM_Unknown &&
4665          "Decision should not be set yet.");
4666   auto *Group = getInterleavedAccessGroup(I);
4667   assert(Group && "Must have a group.");
4668 
4669   // If the instruction's allocated size doesn't equal it's type size, it
4670   // requires padding and will be scalarized.
4671   auto &DL = I->getModule()->getDataLayout();
4672   auto *ScalarTy = getLoadStoreType(I);
4673   if (hasIrregularType(ScalarTy, DL))
4674     return false;
4675 
4676   // Check if masking is required.
4677   // A Group may need masking for one of two reasons: it resides in a block that
4678   // needs predication, or it was decided to use masking to deal with gaps
4679   // (either a gap at the end of a load-access that may result in a speculative
4680   // load, or any gaps in a store-access).
4681   bool PredicatedAccessRequiresMasking =
4682       blockNeedsPredicationForAnyReason(I->getParent()) &&
4683       Legal->isMaskRequired(I);
4684   bool LoadAccessWithGapsRequiresEpilogMasking =
4685       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4686       !isScalarEpilogueAllowed();
4687   bool StoreAccessWithGapsRequiresMasking =
4688       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4689   if (!PredicatedAccessRequiresMasking &&
4690       !LoadAccessWithGapsRequiresEpilogMasking &&
4691       !StoreAccessWithGapsRequiresMasking)
4692     return true;
4693 
4694   // If masked interleaving is required, we expect that the user/target had
4695   // enabled it, because otherwise it either wouldn't have been created or
4696   // it should have been invalidated by the CostModel.
4697   assert(useMaskedInterleavedAccesses(TTI) &&
4698          "Masked interleave-groups for predicated accesses are not enabled.");
4699 
4700   if (Group->isReverse())
4701     return false;
4702 
4703   auto *Ty = getLoadStoreType(I);
4704   const Align Alignment = getLoadStoreAlignment(I);
4705   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4706                           : TTI.isLegalMaskedStore(Ty, Alignment);
4707 }
4708 
4709 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4710     Instruction *I, ElementCount VF) {
4711   // Get and ensure we have a valid memory instruction.
4712   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4713 
4714   auto *Ptr = getLoadStorePointerOperand(I);
4715   auto *ScalarTy = getLoadStoreType(I);
4716 
4717   // In order to be widened, the pointer should be consecutive, first of all.
4718   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4719     return false;
4720 
4721   // If the instruction is a store located in a predicated block, it will be
4722   // scalarized.
4723   if (isScalarWithPredication(I, VF))
4724     return false;
4725 
4726   // If the instruction's allocated size doesn't equal it's type size, it
4727   // requires padding and will be scalarized.
4728   auto &DL = I->getModule()->getDataLayout();
4729   if (hasIrregularType(ScalarTy, DL))
4730     return false;
4731 
4732   return true;
4733 }
4734 
4735 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4736   // We should not collect Uniforms more than once per VF. Right now,
4737   // this function is called from collectUniformsAndScalars(), which
4738   // already does this check. Collecting Uniforms for VF=1 does not make any
4739   // sense.
4740 
4741   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4742          "This function should not be visited twice for the same VF");
4743 
4744   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4745   // not analyze again.  Uniforms.count(VF) will return 1.
4746   Uniforms[VF].clear();
4747 
4748   // We now know that the loop is vectorizable!
4749   // Collect instructions inside the loop that will remain uniform after
4750   // vectorization.
4751 
4752   // Global values, params and instructions outside of current loop are out of
4753   // scope.
4754   auto isOutOfScope = [&](Value *V) -> bool {
4755     Instruction *I = dyn_cast<Instruction>(V);
4756     return (!I || !TheLoop->contains(I));
4757   };
4758 
4759   // Worklist containing uniform instructions demanding lane 0.
4760   SetVector<Instruction *> Worklist;
4761   BasicBlock *Latch = TheLoop->getLoopLatch();
4762 
4763   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4764   // that are scalar with predication must not be considered uniform after
4765   // vectorization, because that would create an erroneous replicating region
4766   // where only a single instance out of VF should be formed.
4767   // TODO: optimize such seldom cases if found important, see PR40816.
4768   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4769     if (isOutOfScope(I)) {
4770       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4771                         << *I << "\n");
4772       return;
4773     }
4774     if (isScalarWithPredication(I, VF)) {
4775       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4776                         << *I << "\n");
4777       return;
4778     }
4779     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4780     Worklist.insert(I);
4781   };
4782 
4783   // Start with the conditional branch. If the branch condition is an
4784   // instruction contained in the loop that is only used by the branch, it is
4785   // uniform.
4786   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4787   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4788     addToWorklistIfAllowed(Cmp);
4789 
4790   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4791     InstWidening WideningDecision = getWideningDecision(I, VF);
4792     assert(WideningDecision != CM_Unknown &&
4793            "Widening decision should be ready at this moment");
4794 
4795     // A uniform memory op is itself uniform.  We exclude uniform stores
4796     // here as they demand the last lane, not the first one.
4797     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4798       assert(WideningDecision == CM_Scalarize);
4799       return true;
4800     }
4801 
4802     return (WideningDecision == CM_Widen ||
4803             WideningDecision == CM_Widen_Reverse ||
4804             WideningDecision == CM_Interleave);
4805   };
4806 
4807 
4808   // Returns true if Ptr is the pointer operand of a memory access instruction
4809   // I, and I is known to not require scalarization.
4810   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4811     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4812   };
4813 
4814   // Holds a list of values which are known to have at least one uniform use.
4815   // Note that there may be other uses which aren't uniform.  A "uniform use"
4816   // here is something which only demands lane 0 of the unrolled iterations;
4817   // it does not imply that all lanes produce the same value (e.g. this is not
4818   // the usual meaning of uniform)
4819   SetVector<Value *> HasUniformUse;
4820 
4821   // Scan the loop for instructions which are either a) known to have only
4822   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4823   for (auto *BB : TheLoop->blocks())
4824     for (auto &I : *BB) {
4825       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4826         switch (II->getIntrinsicID()) {
4827         case Intrinsic::sideeffect:
4828         case Intrinsic::experimental_noalias_scope_decl:
4829         case Intrinsic::assume:
4830         case Intrinsic::lifetime_start:
4831         case Intrinsic::lifetime_end:
4832           if (TheLoop->hasLoopInvariantOperands(&I))
4833             addToWorklistIfAllowed(&I);
4834           break;
4835         default:
4836           break;
4837         }
4838       }
4839 
4840       // ExtractValue instructions must be uniform, because the operands are
4841       // known to be loop-invariant.
4842       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4843         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4844                "Expected aggregate value to be loop invariant");
4845         addToWorklistIfAllowed(EVI);
4846         continue;
4847       }
4848 
4849       // If there's no pointer operand, there's nothing to do.
4850       auto *Ptr = getLoadStorePointerOperand(&I);
4851       if (!Ptr)
4852         continue;
4853 
4854       // A uniform memory op is itself uniform.  We exclude uniform stores
4855       // here as they demand the last lane, not the first one.
4856       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4857         addToWorklistIfAllowed(&I);
4858 
4859       if (isUniformDecision(&I, VF)) {
4860         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4861         HasUniformUse.insert(Ptr);
4862       }
4863     }
4864 
4865   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4866   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4867   // disallows uses outside the loop as well.
4868   for (auto *V : HasUniformUse) {
4869     if (isOutOfScope(V))
4870       continue;
4871     auto *I = cast<Instruction>(V);
4872     auto UsersAreMemAccesses =
4873       llvm::all_of(I->users(), [&](User *U) -> bool {
4874         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4875       });
4876     if (UsersAreMemAccesses)
4877       addToWorklistIfAllowed(I);
4878   }
4879 
4880   // Expand Worklist in topological order: whenever a new instruction
4881   // is added , its users should be already inside Worklist.  It ensures
4882   // a uniform instruction will only be used by uniform instructions.
4883   unsigned idx = 0;
4884   while (idx != Worklist.size()) {
4885     Instruction *I = Worklist[idx++];
4886 
4887     for (auto OV : I->operand_values()) {
4888       // isOutOfScope operands cannot be uniform instructions.
4889       if (isOutOfScope(OV))
4890         continue;
4891       // First order recurrence Phi's should typically be considered
4892       // non-uniform.
4893       auto *OP = dyn_cast<PHINode>(OV);
4894       if (OP && Legal->isFirstOrderRecurrence(OP))
4895         continue;
4896       // If all the users of the operand are uniform, then add the
4897       // operand into the uniform worklist.
4898       auto *OI = cast<Instruction>(OV);
4899       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4900             auto *J = cast<Instruction>(U);
4901             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4902           }))
4903         addToWorklistIfAllowed(OI);
4904     }
4905   }
4906 
4907   // For an instruction to be added into Worklist above, all its users inside
4908   // the loop should also be in Worklist. However, this condition cannot be
4909   // true for phi nodes that form a cyclic dependence. We must process phi
4910   // nodes separately. An induction variable will remain uniform if all users
4911   // of the induction variable and induction variable update remain uniform.
4912   // The code below handles both pointer and non-pointer induction variables.
4913   for (auto &Induction : Legal->getInductionVars()) {
4914     auto *Ind = Induction.first;
4915     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4916 
4917     // Determine if all users of the induction variable are uniform after
4918     // vectorization.
4919     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4920       auto *I = cast<Instruction>(U);
4921       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4922              isVectorizedMemAccessUse(I, Ind);
4923     });
4924     if (!UniformInd)
4925       continue;
4926 
4927     // Determine if all users of the induction variable update instruction are
4928     // uniform after vectorization.
4929     auto UniformIndUpdate =
4930         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4931           auto *I = cast<Instruction>(U);
4932           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4933                  isVectorizedMemAccessUse(I, IndUpdate);
4934         });
4935     if (!UniformIndUpdate)
4936       continue;
4937 
4938     // The induction variable and its update instruction will remain uniform.
4939     addToWorklistIfAllowed(Ind);
4940     addToWorklistIfAllowed(IndUpdate);
4941   }
4942 
4943   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4944 }
4945 
4946 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4947   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4948 
4949   if (Legal->getRuntimePointerChecking()->Need) {
4950     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4951         "runtime pointer checks needed. Enable vectorization of this "
4952         "loop with '#pragma clang loop vectorize(enable)' when "
4953         "compiling with -Os/-Oz",
4954         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4955     return true;
4956   }
4957 
4958   if (!PSE.getPredicate().isAlwaysTrue()) {
4959     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4960         "runtime SCEV checks needed. Enable vectorization of this "
4961         "loop with '#pragma clang loop vectorize(enable)' when "
4962         "compiling with -Os/-Oz",
4963         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4964     return true;
4965   }
4966 
4967   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4968   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4969     reportVectorizationFailure("Runtime stride check for small trip count",
4970         "runtime stride == 1 checks needed. Enable vectorization of "
4971         "this loop without such check by compiling with -Os/-Oz",
4972         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4973     return true;
4974   }
4975 
4976   return false;
4977 }
4978 
4979 ElementCount
4980 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4981   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4982     return ElementCount::getScalable(0);
4983 
4984   if (Hints->isScalableVectorizationDisabled()) {
4985     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4986                             "ScalableVectorizationDisabled", ORE, TheLoop);
4987     return ElementCount::getScalable(0);
4988   }
4989 
4990   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4991 
4992   auto MaxScalableVF = ElementCount::getScalable(
4993       std::numeric_limits<ElementCount::ScalarTy>::max());
4994 
4995   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4996   // FIXME: While for scalable vectors this is currently sufficient, this should
4997   // be replaced by a more detailed mechanism that filters out specific VFs,
4998   // instead of invalidating vectorization for a whole set of VFs based on the
4999   // MaxVF.
5000 
5001   // Disable scalable vectorization if the loop contains unsupported reductions.
5002   if (!canVectorizeReductions(MaxScalableVF)) {
5003     reportVectorizationInfo(
5004         "Scalable vectorization not supported for the reduction "
5005         "operations found in this loop.",
5006         "ScalableVFUnfeasible", ORE, TheLoop);
5007     return ElementCount::getScalable(0);
5008   }
5009 
5010   // Disable scalable vectorization if the loop contains any instructions
5011   // with element types not supported for scalable vectors.
5012   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5013         return !Ty->isVoidTy() &&
5014                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5015       })) {
5016     reportVectorizationInfo("Scalable vectorization is not supported "
5017                             "for all element types found in this loop.",
5018                             "ScalableVFUnfeasible", ORE, TheLoop);
5019     return ElementCount::getScalable(0);
5020   }
5021 
5022   if (Legal->isSafeForAnyVectorWidth())
5023     return MaxScalableVF;
5024 
5025   // Limit MaxScalableVF by the maximum safe dependence distance.
5026   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5027   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
5028     MaxVScale =
5029         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
5030   MaxScalableVF = ElementCount::getScalable(
5031       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5032   if (!MaxScalableVF)
5033     reportVectorizationInfo(
5034         "Max legal vector width too small, scalable vectorization "
5035         "unfeasible.",
5036         "ScalableVFUnfeasible", ORE, TheLoop);
5037 
5038   return MaxScalableVF;
5039 }
5040 
5041 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
5042     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
5043   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5044   unsigned SmallestType, WidestType;
5045   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5046 
5047   // Get the maximum safe dependence distance in bits computed by LAA.
5048   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5049   // the memory accesses that is most restrictive (involved in the smallest
5050   // dependence distance).
5051   unsigned MaxSafeElements =
5052       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5053 
5054   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5055   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5056 
5057   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5058                     << ".\n");
5059   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5060                     << ".\n");
5061 
5062   // First analyze the UserVF, fall back if the UserVF should be ignored.
5063   if (UserVF) {
5064     auto MaxSafeUserVF =
5065         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5066 
5067     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5068       // If `VF=vscale x N` is safe, then so is `VF=N`
5069       if (UserVF.isScalable())
5070         return FixedScalableVFPair(
5071             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5072       else
5073         return UserVF;
5074     }
5075 
5076     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5077 
5078     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5079     // is better to ignore the hint and let the compiler choose a suitable VF.
5080     if (!UserVF.isScalable()) {
5081       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5082                         << " is unsafe, clamping to max safe VF="
5083                         << MaxSafeFixedVF << ".\n");
5084       ORE->emit([&]() {
5085         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5086                                           TheLoop->getStartLoc(),
5087                                           TheLoop->getHeader())
5088                << "User-specified vectorization factor "
5089                << ore::NV("UserVectorizationFactor", UserVF)
5090                << " is unsafe, clamping to maximum safe vectorization factor "
5091                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5092       });
5093       return MaxSafeFixedVF;
5094     }
5095 
5096     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5097       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5098                         << " is ignored because scalable vectors are not "
5099                            "available.\n");
5100       ORE->emit([&]() {
5101         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5102                                           TheLoop->getStartLoc(),
5103                                           TheLoop->getHeader())
5104                << "User-specified vectorization factor "
5105                << ore::NV("UserVectorizationFactor", UserVF)
5106                << " is ignored because the target does not support scalable "
5107                   "vectors. The compiler will pick a more suitable value.";
5108       });
5109     } else {
5110       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5111                         << " is unsafe. Ignoring scalable UserVF.\n");
5112       ORE->emit([&]() {
5113         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5114                                           TheLoop->getStartLoc(),
5115                                           TheLoop->getHeader())
5116                << "User-specified vectorization factor "
5117                << ore::NV("UserVectorizationFactor", UserVF)
5118                << " is unsafe. Ignoring the hint to let the compiler pick a "
5119                   "more suitable value.";
5120       });
5121     }
5122   }
5123 
5124   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5125                     << " / " << WidestType << " bits.\n");
5126 
5127   FixedScalableVFPair Result(ElementCount::getFixed(1),
5128                              ElementCount::getScalable(0));
5129   if (auto MaxVF =
5130           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5131                                   MaxSafeFixedVF, FoldTailByMasking))
5132     Result.FixedVF = MaxVF;
5133 
5134   if (auto MaxVF =
5135           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5136                                   MaxSafeScalableVF, FoldTailByMasking))
5137     if (MaxVF.isScalable()) {
5138       Result.ScalableVF = MaxVF;
5139       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5140                         << "\n");
5141     }
5142 
5143   return Result;
5144 }
5145 
5146 FixedScalableVFPair
5147 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5148   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5149     // TODO: It may by useful to do since it's still likely to be dynamically
5150     // uniform if the target can skip.
5151     reportVectorizationFailure(
5152         "Not inserting runtime ptr check for divergent target",
5153         "runtime pointer checks needed. Not enabled for divergent target",
5154         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5155     return FixedScalableVFPair::getNone();
5156   }
5157 
5158   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5159   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5160   if (TC == 1) {
5161     reportVectorizationFailure("Single iteration (non) loop",
5162         "loop trip count is one, irrelevant for vectorization",
5163         "SingleIterationLoop", ORE, TheLoop);
5164     return FixedScalableVFPair::getNone();
5165   }
5166 
5167   switch (ScalarEpilogueStatus) {
5168   case CM_ScalarEpilogueAllowed:
5169     return computeFeasibleMaxVF(TC, UserVF, false);
5170   case CM_ScalarEpilogueNotAllowedUsePredicate:
5171     LLVM_FALLTHROUGH;
5172   case CM_ScalarEpilogueNotNeededUsePredicate:
5173     LLVM_DEBUG(
5174         dbgs() << "LV: vector predicate hint/switch found.\n"
5175                << "LV: Not allowing scalar epilogue, creating predicated "
5176                << "vector loop.\n");
5177     break;
5178   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5179     // fallthrough as a special case of OptForSize
5180   case CM_ScalarEpilogueNotAllowedOptSize:
5181     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5182       LLVM_DEBUG(
5183           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5184     else
5185       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5186                         << "count.\n");
5187 
5188     // Bail if runtime checks are required, which are not good when optimising
5189     // for size.
5190     if (runtimeChecksRequired())
5191       return FixedScalableVFPair::getNone();
5192 
5193     break;
5194   }
5195 
5196   // The only loops we can vectorize without a scalar epilogue, are loops with
5197   // a bottom-test and a single exiting block. We'd have to handle the fact
5198   // that not every instruction executes on the last iteration.  This will
5199   // require a lane mask which varies through the vector loop body.  (TODO)
5200   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5201     // If there was a tail-folding hint/switch, but we can't fold the tail by
5202     // masking, fallback to a vectorization with a scalar epilogue.
5203     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5204       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5205                            "scalar epilogue instead.\n");
5206       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5207       return computeFeasibleMaxVF(TC, UserVF, false);
5208     }
5209     return FixedScalableVFPair::getNone();
5210   }
5211 
5212   // Now try the tail folding
5213 
5214   // Invalidate interleave groups that require an epilogue if we can't mask
5215   // the interleave-group.
5216   if (!useMaskedInterleavedAccesses(TTI)) {
5217     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5218            "No decisions should have been taken at this point");
5219     // Note: There is no need to invalidate any cost modeling decisions here, as
5220     // non where taken so far.
5221     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5222   }
5223 
5224   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5225   // Avoid tail folding if the trip count is known to be a multiple of any VF
5226   // we chose.
5227   // FIXME: The condition below pessimises the case for fixed-width vectors,
5228   // when scalable VFs are also candidates for vectorization.
5229   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5230     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5231     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5232            "MaxFixedVF must be a power of 2");
5233     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5234                                    : MaxFixedVF.getFixedValue();
5235     ScalarEvolution *SE = PSE.getSE();
5236     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5237     const SCEV *ExitCount = SE->getAddExpr(
5238         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5239     const SCEV *Rem = SE->getURemExpr(
5240         SE->applyLoopGuards(ExitCount, TheLoop),
5241         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5242     if (Rem->isZero()) {
5243       // Accept MaxFixedVF if we do not have a tail.
5244       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5245       return MaxFactors;
5246     }
5247   }
5248 
5249   // For scalable vectors don't use tail folding for low trip counts or
5250   // optimizing for code size. We only permit this if the user has explicitly
5251   // requested it.
5252   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5253       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5254       MaxFactors.ScalableVF.isVector())
5255     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5256 
5257   // If we don't know the precise trip count, or if the trip count that we
5258   // found modulo the vectorization factor is not zero, try to fold the tail
5259   // by masking.
5260   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5261   if (Legal->prepareToFoldTailByMasking()) {
5262     FoldTailByMasking = true;
5263     return MaxFactors;
5264   }
5265 
5266   // If there was a tail-folding hint/switch, but we can't fold the tail by
5267   // masking, fallback to a vectorization with a scalar epilogue.
5268   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5269     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5270                          "scalar epilogue instead.\n");
5271     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5272     return MaxFactors;
5273   }
5274 
5275   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5276     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5277     return FixedScalableVFPair::getNone();
5278   }
5279 
5280   if (TC == 0) {
5281     reportVectorizationFailure(
5282         "Unable to calculate the loop count due to complex control flow",
5283         "unable to calculate the loop count due to complex control flow",
5284         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5285     return FixedScalableVFPair::getNone();
5286   }
5287 
5288   reportVectorizationFailure(
5289       "Cannot optimize for size and vectorize at the same time.",
5290       "cannot optimize for size and vectorize at the same time. "
5291       "Enable vectorization of this loop with '#pragma clang loop "
5292       "vectorize(enable)' when compiling with -Os/-Oz",
5293       "NoTailLoopWithOptForSize", ORE, TheLoop);
5294   return FixedScalableVFPair::getNone();
5295 }
5296 
5297 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5298     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5299     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5300   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5301   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5302       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5303                            : TargetTransformInfo::RGK_FixedWidthVector);
5304 
5305   // Convenience function to return the minimum of two ElementCounts.
5306   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5307     assert((LHS.isScalable() == RHS.isScalable()) &&
5308            "Scalable flags must match");
5309     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5310   };
5311 
5312   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5313   // Note that both WidestRegister and WidestType may not be a powers of 2.
5314   auto MaxVectorElementCount = ElementCount::get(
5315       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5316       ComputeScalableMaxVF);
5317   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5318   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5319                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5320 
5321   if (!MaxVectorElementCount) {
5322     LLVM_DEBUG(dbgs() << "LV: The target has no "
5323                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5324                       << " vector registers.\n");
5325     return ElementCount::getFixed(1);
5326   }
5327 
5328   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5329   if (ConstTripCount &&
5330       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5331       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5332     // If loop trip count (TC) is known at compile time there is no point in
5333     // choosing VF greater than TC (as done in the loop below). Select maximum
5334     // power of two which doesn't exceed TC.
5335     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5336     // when the TC is less than or equal to the known number of lanes.
5337     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5338     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5339                          "exceeding the constant trip count: "
5340                       << ClampedConstTripCount << "\n");
5341     return ElementCount::getFixed(ClampedConstTripCount);
5342   }
5343 
5344   ElementCount MaxVF = MaxVectorElementCount;
5345   if (TTI.shouldMaximizeVectorBandwidth() ||
5346       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5347     auto MaxVectorElementCountMaxBW = ElementCount::get(
5348         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5349         ComputeScalableMaxVF);
5350     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5351 
5352     // Collect all viable vectorization factors larger than the default MaxVF
5353     // (i.e. MaxVectorElementCount).
5354     SmallVector<ElementCount, 8> VFs;
5355     for (ElementCount VS = MaxVectorElementCount * 2;
5356          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5357       VFs.push_back(VS);
5358 
5359     // For each VF calculate its register usage.
5360     auto RUs = calculateRegisterUsage(VFs);
5361 
5362     // Select the largest VF which doesn't require more registers than existing
5363     // ones.
5364     for (int i = RUs.size() - 1; i >= 0; --i) {
5365       bool Selected = true;
5366       for (auto &pair : RUs[i].MaxLocalUsers) {
5367         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5368         if (pair.second > TargetNumRegisters)
5369           Selected = false;
5370       }
5371       if (Selected) {
5372         MaxVF = VFs[i];
5373         break;
5374       }
5375     }
5376     if (ElementCount MinVF =
5377             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5378       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5379         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5380                           << ") with target's minimum: " << MinVF << '\n');
5381         MaxVF = MinVF;
5382       }
5383     }
5384   }
5385   return MaxVF;
5386 }
5387 
5388 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5389   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5390     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5391     auto Min = Attr.getVScaleRangeMin();
5392     auto Max = Attr.getVScaleRangeMax();
5393     if (Max && Min == Max)
5394       return Max;
5395   }
5396 
5397   return TTI.getVScaleForTuning();
5398 }
5399 
5400 bool LoopVectorizationCostModel::isMoreProfitable(
5401     const VectorizationFactor &A, const VectorizationFactor &B) const {
5402   InstructionCost CostA = A.Cost;
5403   InstructionCost CostB = B.Cost;
5404 
5405   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5406 
5407   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5408       MaxTripCount) {
5409     // If we are folding the tail and the trip count is a known (possibly small)
5410     // constant, the trip count will be rounded up to an integer number of
5411     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5412     // which we compare directly. When not folding the tail, the total cost will
5413     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5414     // approximated with the per-lane cost below instead of using the tripcount
5415     // as here.
5416     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5417     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5418     return RTCostA < RTCostB;
5419   }
5420 
5421   // Improve estimate for the vector width if it is scalable.
5422   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5423   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5424   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5425     if (A.Width.isScalable())
5426       EstimatedWidthA *= VScale.getValue();
5427     if (B.Width.isScalable())
5428       EstimatedWidthB *= VScale.getValue();
5429   }
5430 
5431   // Assume vscale may be larger than 1 (or the value being tuned for),
5432   // so that scalable vectorization is slightly favorable over fixed-width
5433   // vectorization.
5434   if (A.Width.isScalable() && !B.Width.isScalable())
5435     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5436 
5437   // To avoid the need for FP division:
5438   //      (CostA / A.Width) < (CostB / B.Width)
5439   // <=>  (CostA * B.Width) < (CostB * A.Width)
5440   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5441 }
5442 
5443 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5444     const ElementCountSet &VFCandidates) {
5445   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5446   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5447   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5448   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5449          "Expected Scalar VF to be a candidate");
5450 
5451   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5452   VectorizationFactor ChosenFactor = ScalarCost;
5453 
5454   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5455   if (ForceVectorization && VFCandidates.size() > 1) {
5456     // Ignore scalar width, because the user explicitly wants vectorization.
5457     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5458     // evaluation.
5459     ChosenFactor.Cost = InstructionCost::getMax();
5460   }
5461 
5462   SmallVector<InstructionVFPair> InvalidCosts;
5463   for (const auto &i : VFCandidates) {
5464     // The cost for scalar VF=1 is already calculated, so ignore it.
5465     if (i.isScalar())
5466       continue;
5467 
5468     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5469     VectorizationFactor Candidate(i, C.first);
5470 
5471 #ifndef NDEBUG
5472     unsigned AssumedMinimumVscale = 1;
5473     if (Optional<unsigned> VScale = getVScaleForTuning())
5474       AssumedMinimumVscale = VScale.getValue();
5475     unsigned Width =
5476         Candidate.Width.isScalable()
5477             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5478             : Candidate.Width.getFixedValue();
5479     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5480                       << " costs: " << (Candidate.Cost / Width));
5481     if (i.isScalable())
5482       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5483                         << AssumedMinimumVscale << ")");
5484     LLVM_DEBUG(dbgs() << ".\n");
5485 #endif
5486 
5487     if (!C.second && !ForceVectorization) {
5488       LLVM_DEBUG(
5489           dbgs() << "LV: Not considering vector loop of width " << i
5490                  << " because it will not generate any vector instructions.\n");
5491       continue;
5492     }
5493 
5494     // If profitable add it to ProfitableVF list.
5495     if (isMoreProfitable(Candidate, ScalarCost))
5496       ProfitableVFs.push_back(Candidate);
5497 
5498     if (isMoreProfitable(Candidate, ChosenFactor))
5499       ChosenFactor = Candidate;
5500   }
5501 
5502   // Emit a report of VFs with invalid costs in the loop.
5503   if (!InvalidCosts.empty()) {
5504     // Group the remarks per instruction, keeping the instruction order from
5505     // InvalidCosts.
5506     std::map<Instruction *, unsigned> Numbering;
5507     unsigned I = 0;
5508     for (auto &Pair : InvalidCosts)
5509       if (!Numbering.count(Pair.first))
5510         Numbering[Pair.first] = I++;
5511 
5512     // Sort the list, first on instruction(number) then on VF.
5513     llvm::sort(InvalidCosts,
5514                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5515                  if (Numbering[A.first] != Numbering[B.first])
5516                    return Numbering[A.first] < Numbering[B.first];
5517                  ElementCountComparator ECC;
5518                  return ECC(A.second, B.second);
5519                });
5520 
5521     // For a list of ordered instruction-vf pairs:
5522     //   [(load, vf1), (load, vf2), (store, vf1)]
5523     // Group the instructions together to emit separate remarks for:
5524     //   load  (vf1, vf2)
5525     //   store (vf1)
5526     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5527     auto Subset = ArrayRef<InstructionVFPair>();
5528     do {
5529       if (Subset.empty())
5530         Subset = Tail.take_front(1);
5531 
5532       Instruction *I = Subset.front().first;
5533 
5534       // If the next instruction is different, or if there are no other pairs,
5535       // emit a remark for the collated subset. e.g.
5536       //   [(load, vf1), (load, vf2))]
5537       // to emit:
5538       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5539       if (Subset == Tail || Tail[Subset.size()].first != I) {
5540         std::string OutString;
5541         raw_string_ostream OS(OutString);
5542         assert(!Subset.empty() && "Unexpected empty range");
5543         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5544         for (auto &Pair : Subset)
5545           OS << (Pair.second == Subset.front().second ? "" : ", ")
5546              << Pair.second;
5547         OS << "):";
5548         if (auto *CI = dyn_cast<CallInst>(I))
5549           OS << " call to " << CI->getCalledFunction()->getName();
5550         else
5551           OS << " " << I->getOpcodeName();
5552         OS.flush();
5553         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5554         Tail = Tail.drop_front(Subset.size());
5555         Subset = {};
5556       } else
5557         // Grow the subset by one element
5558         Subset = Tail.take_front(Subset.size() + 1);
5559     } while (!Tail.empty());
5560   }
5561 
5562   if (!EnableCondStoresVectorization && NumPredStores) {
5563     reportVectorizationFailure("There are conditional stores.",
5564         "store that is conditionally executed prevents vectorization",
5565         "ConditionalStore", ORE, TheLoop);
5566     ChosenFactor = ScalarCost;
5567   }
5568 
5569   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5570                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5571              << "LV: Vectorization seems to be not beneficial, "
5572              << "but was forced by a user.\n");
5573   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5574   return ChosenFactor;
5575 }
5576 
5577 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5578     const Loop &L, ElementCount VF) const {
5579   // Cross iteration phis such as reductions need special handling and are
5580   // currently unsupported.
5581   if (any_of(L.getHeader()->phis(),
5582              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5583     return false;
5584 
5585   // Phis with uses outside of the loop require special handling and are
5586   // currently unsupported.
5587   for (auto &Entry : Legal->getInductionVars()) {
5588     // Look for uses of the value of the induction at the last iteration.
5589     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5590     for (User *U : PostInc->users())
5591       if (!L.contains(cast<Instruction>(U)))
5592         return false;
5593     // Look for uses of penultimate value of the induction.
5594     for (User *U : Entry.first->users())
5595       if (!L.contains(cast<Instruction>(U)))
5596         return false;
5597   }
5598 
5599   // Induction variables that are widened require special handling that is
5600   // currently not supported.
5601   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5602         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5603                  this->isProfitableToScalarize(Entry.first, VF));
5604       }))
5605     return false;
5606 
5607   // Epilogue vectorization code has not been auditted to ensure it handles
5608   // non-latch exits properly.  It may be fine, but it needs auditted and
5609   // tested.
5610   if (L.getExitingBlock() != L.getLoopLatch())
5611     return false;
5612 
5613   return true;
5614 }
5615 
5616 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5617     const ElementCount VF) const {
5618   // FIXME: We need a much better cost-model to take different parameters such
5619   // as register pressure, code size increase and cost of extra branches into
5620   // account. For now we apply a very crude heuristic and only consider loops
5621   // with vectorization factors larger than a certain value.
5622   // We also consider epilogue vectorization unprofitable for targets that don't
5623   // consider interleaving beneficial (eg. MVE).
5624   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5625     return false;
5626   // FIXME: We should consider changing the threshold for scalable
5627   // vectors to take VScaleForTuning into account.
5628   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5629     return true;
5630   return false;
5631 }
5632 
5633 VectorizationFactor
5634 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5635     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5636   VectorizationFactor Result = VectorizationFactor::Disabled();
5637   if (!EnableEpilogueVectorization) {
5638     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5639     return Result;
5640   }
5641 
5642   if (!isScalarEpilogueAllowed()) {
5643     LLVM_DEBUG(
5644         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5645                   "allowed.\n";);
5646     return Result;
5647   }
5648 
5649   // Not really a cost consideration, but check for unsupported cases here to
5650   // simplify the logic.
5651   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5652     LLVM_DEBUG(
5653         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5654                   "not a supported candidate.\n";);
5655     return Result;
5656   }
5657 
5658   if (EpilogueVectorizationForceVF > 1) {
5659     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5660     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5661     if (LVP.hasPlanWithVF(ForcedEC))
5662       return {ForcedEC, 0};
5663     else {
5664       LLVM_DEBUG(
5665           dbgs()
5666               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5667       return Result;
5668     }
5669   }
5670 
5671   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5672       TheLoop->getHeader()->getParent()->hasMinSize()) {
5673     LLVM_DEBUG(
5674         dbgs()
5675             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5676     return Result;
5677   }
5678 
5679   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5680     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5681                          "this loop\n");
5682     return Result;
5683   }
5684 
5685   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5686   // the main loop handles 8 lanes per iteration. We could still benefit from
5687   // vectorizing the epilogue loop with VF=4.
5688   ElementCount EstimatedRuntimeVF = MainLoopVF;
5689   if (MainLoopVF.isScalable()) {
5690     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5691     if (Optional<unsigned> VScale = getVScaleForTuning())
5692       EstimatedRuntimeVF *= VScale.getValue();
5693   }
5694 
5695   for (auto &NextVF : ProfitableVFs)
5696     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5697           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5698          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5699         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5700         LVP.hasPlanWithVF(NextVF.Width))
5701       Result = NextVF;
5702 
5703   if (Result != VectorizationFactor::Disabled())
5704     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5705                       << Result.Width << "\n";);
5706   return Result;
5707 }
5708 
5709 std::pair<unsigned, unsigned>
5710 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5711   unsigned MinWidth = -1U;
5712   unsigned MaxWidth = 8;
5713   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5714   // For in-loop reductions, no element types are added to ElementTypesInLoop
5715   // if there are no loads/stores in the loop. In this case, check through the
5716   // reduction variables to determine the maximum width.
5717   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5718     // Reset MaxWidth so that we can find the smallest type used by recurrences
5719     // in the loop.
5720     MaxWidth = -1U;
5721     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5722       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5723       // When finding the min width used by the recurrence we need to account
5724       // for casts on the input operands of the recurrence.
5725       MaxWidth = std::min<unsigned>(
5726           MaxWidth, std::min<unsigned>(
5727                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5728                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5729     }
5730   } else {
5731     for (Type *T : ElementTypesInLoop) {
5732       MinWidth = std::min<unsigned>(
5733           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5734       MaxWidth = std::max<unsigned>(
5735           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5736     }
5737   }
5738   return {MinWidth, MaxWidth};
5739 }
5740 
5741 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5742   ElementTypesInLoop.clear();
5743   // For each block.
5744   for (BasicBlock *BB : TheLoop->blocks()) {
5745     // For each instruction in the loop.
5746     for (Instruction &I : BB->instructionsWithoutDebug()) {
5747       Type *T = I.getType();
5748 
5749       // Skip ignored values.
5750       if (ValuesToIgnore.count(&I))
5751         continue;
5752 
5753       // Only examine Loads, Stores and PHINodes.
5754       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5755         continue;
5756 
5757       // Examine PHI nodes that are reduction variables. Update the type to
5758       // account for the recurrence type.
5759       if (auto *PN = dyn_cast<PHINode>(&I)) {
5760         if (!Legal->isReductionVariable(PN))
5761           continue;
5762         const RecurrenceDescriptor &RdxDesc =
5763             Legal->getReductionVars().find(PN)->second;
5764         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5765             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5766                                       RdxDesc.getRecurrenceType(),
5767                                       TargetTransformInfo::ReductionFlags()))
5768           continue;
5769         T = RdxDesc.getRecurrenceType();
5770       }
5771 
5772       // Examine the stored values.
5773       if (auto *ST = dyn_cast<StoreInst>(&I))
5774         T = ST->getValueOperand()->getType();
5775 
5776       assert(T->isSized() &&
5777              "Expected the load/store/recurrence type to be sized");
5778 
5779       ElementTypesInLoop.insert(T);
5780     }
5781   }
5782 }
5783 
5784 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5785                                                            unsigned LoopCost) {
5786   // -- The interleave heuristics --
5787   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5788   // There are many micro-architectural considerations that we can't predict
5789   // at this level. For example, frontend pressure (on decode or fetch) due to
5790   // code size, or the number and capabilities of the execution ports.
5791   //
5792   // We use the following heuristics to select the interleave count:
5793   // 1. If the code has reductions, then we interleave to break the cross
5794   // iteration dependency.
5795   // 2. If the loop is really small, then we interleave to reduce the loop
5796   // overhead.
5797   // 3. We don't interleave if we think that we will spill registers to memory
5798   // due to the increased register pressure.
5799 
5800   if (!isScalarEpilogueAllowed())
5801     return 1;
5802 
5803   // We used the distance for the interleave count.
5804   if (Legal->getMaxSafeDepDistBytes() != -1U)
5805     return 1;
5806 
5807   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5808   const bool HasReductions = !Legal->getReductionVars().empty();
5809   // Do not interleave loops with a relatively small known or estimated trip
5810   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5811   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5812   // because with the above conditions interleaving can expose ILP and break
5813   // cross iteration dependences for reductions.
5814   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5815       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5816     return 1;
5817 
5818   RegisterUsage R = calculateRegisterUsage({VF})[0];
5819   // We divide by these constants so assume that we have at least one
5820   // instruction that uses at least one register.
5821   for (auto& pair : R.MaxLocalUsers) {
5822     pair.second = std::max(pair.second, 1U);
5823   }
5824 
5825   // We calculate the interleave count using the following formula.
5826   // Subtract the number of loop invariants from the number of available
5827   // registers. These registers are used by all of the interleaved instances.
5828   // Next, divide the remaining registers by the number of registers that is
5829   // required by the loop, in order to estimate how many parallel instances
5830   // fit without causing spills. All of this is rounded down if necessary to be
5831   // a power of two. We want power of two interleave count to simplify any
5832   // addressing operations or alignment considerations.
5833   // We also want power of two interleave counts to ensure that the induction
5834   // variable of the vector loop wraps to zero, when tail is folded by masking;
5835   // this currently happens when OptForSize, in which case IC is set to 1 above.
5836   unsigned IC = UINT_MAX;
5837 
5838   for (auto& pair : R.MaxLocalUsers) {
5839     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5840     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5841                       << " registers of "
5842                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5843     if (VF.isScalar()) {
5844       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5845         TargetNumRegisters = ForceTargetNumScalarRegs;
5846     } else {
5847       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5848         TargetNumRegisters = ForceTargetNumVectorRegs;
5849     }
5850     unsigned MaxLocalUsers = pair.second;
5851     unsigned LoopInvariantRegs = 0;
5852     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5853       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5854 
5855     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5856     // Don't count the induction variable as interleaved.
5857     if (EnableIndVarRegisterHeur) {
5858       TmpIC =
5859           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5860                         std::max(1U, (MaxLocalUsers - 1)));
5861     }
5862 
5863     IC = std::min(IC, TmpIC);
5864   }
5865 
5866   // Clamp the interleave ranges to reasonable counts.
5867   unsigned MaxInterleaveCount =
5868       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5869 
5870   // Check if the user has overridden the max.
5871   if (VF.isScalar()) {
5872     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5873       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5874   } else {
5875     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5876       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5877   }
5878 
5879   // If trip count is known or estimated compile time constant, limit the
5880   // interleave count to be less than the trip count divided by VF, provided it
5881   // is at least 1.
5882   //
5883   // For scalable vectors we can't know if interleaving is beneficial. It may
5884   // not be beneficial for small loops if none of the lanes in the second vector
5885   // iterations is enabled. However, for larger loops, there is likely to be a
5886   // similar benefit as for fixed-width vectors. For now, we choose to leave
5887   // the InterleaveCount as if vscale is '1', although if some information about
5888   // the vector is known (e.g. min vector size), we can make a better decision.
5889   if (BestKnownTC) {
5890     MaxInterleaveCount =
5891         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5892     // Make sure MaxInterleaveCount is greater than 0.
5893     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5894   }
5895 
5896   assert(MaxInterleaveCount > 0 &&
5897          "Maximum interleave count must be greater than 0");
5898 
5899   // Clamp the calculated IC to be between the 1 and the max interleave count
5900   // that the target and trip count allows.
5901   if (IC > MaxInterleaveCount)
5902     IC = MaxInterleaveCount;
5903   else
5904     // Make sure IC is greater than 0.
5905     IC = std::max(1u, IC);
5906 
5907   assert(IC > 0 && "Interleave count must be greater than 0.");
5908 
5909   // If we did not calculate the cost for VF (because the user selected the VF)
5910   // then we calculate the cost of VF here.
5911   if (LoopCost == 0) {
5912     InstructionCost C = expectedCost(VF).first;
5913     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5914     LoopCost = *C.getValue();
5915   }
5916 
5917   assert(LoopCost && "Non-zero loop cost expected");
5918 
5919   // Interleave if we vectorized this loop and there is a reduction that could
5920   // benefit from interleaving.
5921   if (VF.isVector() && HasReductions) {
5922     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5923     return IC;
5924   }
5925 
5926   // For any scalar loop that either requires runtime checks or predication we
5927   // are better off leaving this to the unroller. Note that if we've already
5928   // vectorized the loop we will have done the runtime check and so interleaving
5929   // won't require further checks.
5930   bool ScalarInterleavingRequiresPredication =
5931       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5932          return Legal->blockNeedsPredication(BB);
5933        }));
5934   bool ScalarInterleavingRequiresRuntimePointerCheck =
5935       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5936 
5937   // We want to interleave small loops in order to reduce the loop overhead and
5938   // potentially expose ILP opportunities.
5939   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5940                     << "LV: IC is " << IC << '\n'
5941                     << "LV: VF is " << VF << '\n');
5942   const bool AggressivelyInterleaveReductions =
5943       TTI.enableAggressiveInterleaving(HasReductions);
5944   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5945       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5946     // We assume that the cost overhead is 1 and we use the cost model
5947     // to estimate the cost of the loop and interleave until the cost of the
5948     // loop overhead is about 5% of the cost of the loop.
5949     unsigned SmallIC =
5950         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5951 
5952     // Interleave until store/load ports (estimated by max interleave count) are
5953     // saturated.
5954     unsigned NumStores = Legal->getNumStores();
5955     unsigned NumLoads = Legal->getNumLoads();
5956     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5957     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5958 
5959     // There is little point in interleaving for reductions containing selects
5960     // and compares when VF=1 since it may just create more overhead than it's
5961     // worth for loops with small trip counts. This is because we still have to
5962     // do the final reduction after the loop.
5963     bool HasSelectCmpReductions =
5964         HasReductions &&
5965         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5966           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5967           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5968               RdxDesc.getRecurrenceKind());
5969         });
5970     if (HasSelectCmpReductions) {
5971       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5972       return 1;
5973     }
5974 
5975     // If we have a scalar reduction (vector reductions are already dealt with
5976     // by this point), we can increase the critical path length if the loop
5977     // we're interleaving is inside another loop. For tree-wise reductions
5978     // set the limit to 2, and for ordered reductions it's best to disable
5979     // interleaving entirely.
5980     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5981       bool HasOrderedReductions =
5982           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5983             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5984             return RdxDesc.isOrdered();
5985           });
5986       if (HasOrderedReductions) {
5987         LLVM_DEBUG(
5988             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5989         return 1;
5990       }
5991 
5992       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5993       SmallIC = std::min(SmallIC, F);
5994       StoresIC = std::min(StoresIC, F);
5995       LoadsIC = std::min(LoadsIC, F);
5996     }
5997 
5998     if (EnableLoadStoreRuntimeInterleave &&
5999         std::max(StoresIC, LoadsIC) > SmallIC) {
6000       LLVM_DEBUG(
6001           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6002       return std::max(StoresIC, LoadsIC);
6003     }
6004 
6005     // If there are scalar reductions and TTI has enabled aggressive
6006     // interleaving for reductions, we will interleave to expose ILP.
6007     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6008         AggressivelyInterleaveReductions) {
6009       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6010       // Interleave no less than SmallIC but not as aggressive as the normal IC
6011       // to satisfy the rare situation when resources are too limited.
6012       return std::max(IC / 2, SmallIC);
6013     } else {
6014       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6015       return SmallIC;
6016     }
6017   }
6018 
6019   // Interleave if this is a large loop (small loops are already dealt with by
6020   // this point) that could benefit from interleaving.
6021   if (AggressivelyInterleaveReductions) {
6022     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6023     return IC;
6024   }
6025 
6026   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6027   return 1;
6028 }
6029 
6030 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6031 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6032   // This function calculates the register usage by measuring the highest number
6033   // of values that are alive at a single location. Obviously, this is a very
6034   // rough estimation. We scan the loop in a topological order in order and
6035   // assign a number to each instruction. We use RPO to ensure that defs are
6036   // met before their users. We assume that each instruction that has in-loop
6037   // users starts an interval. We record every time that an in-loop value is
6038   // used, so we have a list of the first and last occurrences of each
6039   // instruction. Next, we transpose this data structure into a multi map that
6040   // holds the list of intervals that *end* at a specific location. This multi
6041   // map allows us to perform a linear search. We scan the instructions linearly
6042   // and record each time that a new interval starts, by placing it in a set.
6043   // If we find this value in the multi-map then we remove it from the set.
6044   // The max register usage is the maximum size of the set.
6045   // We also search for instructions that are defined outside the loop, but are
6046   // used inside the loop. We need this number separately from the max-interval
6047   // usage number because when we unroll, loop-invariant values do not take
6048   // more register.
6049   LoopBlocksDFS DFS(TheLoop);
6050   DFS.perform(LI);
6051 
6052   RegisterUsage RU;
6053 
6054   // Each 'key' in the map opens a new interval. The values
6055   // of the map are the index of the 'last seen' usage of the
6056   // instruction that is the key.
6057   using IntervalMap = DenseMap<Instruction *, unsigned>;
6058 
6059   // Maps instruction to its index.
6060   SmallVector<Instruction *, 64> IdxToInstr;
6061   // Marks the end of each interval.
6062   IntervalMap EndPoint;
6063   // Saves the list of instruction indices that are used in the loop.
6064   SmallPtrSet<Instruction *, 8> Ends;
6065   // Saves the list of values that are used in the loop but are
6066   // defined outside the loop, such as arguments and constants.
6067   SmallPtrSet<Value *, 8> LoopInvariants;
6068 
6069   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6070     for (Instruction &I : BB->instructionsWithoutDebug()) {
6071       IdxToInstr.push_back(&I);
6072 
6073       // Save the end location of each USE.
6074       for (Value *U : I.operands()) {
6075         auto *Instr = dyn_cast<Instruction>(U);
6076 
6077         // Ignore non-instruction values such as arguments, constants, etc.
6078         if (!Instr)
6079           continue;
6080 
6081         // If this instruction is outside the loop then record it and continue.
6082         if (!TheLoop->contains(Instr)) {
6083           LoopInvariants.insert(Instr);
6084           continue;
6085         }
6086 
6087         // Overwrite previous end points.
6088         EndPoint[Instr] = IdxToInstr.size();
6089         Ends.insert(Instr);
6090       }
6091     }
6092   }
6093 
6094   // Saves the list of intervals that end with the index in 'key'.
6095   using InstrList = SmallVector<Instruction *, 2>;
6096   DenseMap<unsigned, InstrList> TransposeEnds;
6097 
6098   // Transpose the EndPoints to a list of values that end at each index.
6099   for (auto &Interval : EndPoint)
6100     TransposeEnds[Interval.second].push_back(Interval.first);
6101 
6102   SmallPtrSet<Instruction *, 8> OpenIntervals;
6103   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6104   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6105 
6106   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6107 
6108   // A lambda that gets the register usage for the given type and VF.
6109   const auto &TTICapture = TTI;
6110   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6111     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6112       return 0;
6113     InstructionCost::CostType RegUsage =
6114         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6115     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6116            "Nonsensical values for register usage.");
6117     return RegUsage;
6118   };
6119 
6120   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6121     Instruction *I = IdxToInstr[i];
6122 
6123     // Remove all of the instructions that end at this location.
6124     InstrList &List = TransposeEnds[i];
6125     for (Instruction *ToRemove : List)
6126       OpenIntervals.erase(ToRemove);
6127 
6128     // Ignore instructions that are never used within the loop.
6129     if (!Ends.count(I))
6130       continue;
6131 
6132     // Skip ignored values.
6133     if (ValuesToIgnore.count(I))
6134       continue;
6135 
6136     // For each VF find the maximum usage of registers.
6137     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6138       // Count the number of live intervals.
6139       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6140 
6141       if (VFs[j].isScalar()) {
6142         for (auto Inst : OpenIntervals) {
6143           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6144           if (RegUsage.find(ClassID) == RegUsage.end())
6145             RegUsage[ClassID] = 1;
6146           else
6147             RegUsage[ClassID] += 1;
6148         }
6149       } else {
6150         collectUniformsAndScalars(VFs[j]);
6151         for (auto Inst : OpenIntervals) {
6152           // Skip ignored values for VF > 1.
6153           if (VecValuesToIgnore.count(Inst))
6154             continue;
6155           if (isScalarAfterVectorization(Inst, VFs[j])) {
6156             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6157             if (RegUsage.find(ClassID) == RegUsage.end())
6158               RegUsage[ClassID] = 1;
6159             else
6160               RegUsage[ClassID] += 1;
6161           } else {
6162             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6163             if (RegUsage.find(ClassID) == RegUsage.end())
6164               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6165             else
6166               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6167           }
6168         }
6169       }
6170 
6171       for (auto& pair : RegUsage) {
6172         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6173           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6174         else
6175           MaxUsages[j][pair.first] = pair.second;
6176       }
6177     }
6178 
6179     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6180                       << OpenIntervals.size() << '\n');
6181 
6182     // Add the current instruction to the list of open intervals.
6183     OpenIntervals.insert(I);
6184   }
6185 
6186   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6187     SmallMapVector<unsigned, unsigned, 4> Invariant;
6188 
6189     for (auto Inst : LoopInvariants) {
6190       unsigned Usage =
6191           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6192       unsigned ClassID =
6193           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6194       if (Invariant.find(ClassID) == Invariant.end())
6195         Invariant[ClassID] = Usage;
6196       else
6197         Invariant[ClassID] += Usage;
6198     }
6199 
6200     LLVM_DEBUG({
6201       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6202       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6203              << " item\n";
6204       for (const auto &pair : MaxUsages[i]) {
6205         dbgs() << "LV(REG): RegisterClass: "
6206                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6207                << " registers\n";
6208       }
6209       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6210              << " item\n";
6211       for (const auto &pair : Invariant) {
6212         dbgs() << "LV(REG): RegisterClass: "
6213                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6214                << " registers\n";
6215       }
6216     });
6217 
6218     RU.LoopInvariantRegs = Invariant;
6219     RU.MaxLocalUsers = MaxUsages[i];
6220     RUs[i] = RU;
6221   }
6222 
6223   return RUs;
6224 }
6225 
6226 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6227                                                            ElementCount VF) {
6228   // TODO: Cost model for emulated masked load/store is completely
6229   // broken. This hack guides the cost model to use an artificially
6230   // high enough value to practically disable vectorization with such
6231   // operations, except where previously deployed legality hack allowed
6232   // using very low cost values. This is to avoid regressions coming simply
6233   // from moving "masked load/store" check from legality to cost model.
6234   // Masked Load/Gather emulation was previously never allowed.
6235   // Limited number of Masked Store/Scatter emulation was allowed.
6236   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6237   return isa<LoadInst>(I) ||
6238          (isa<StoreInst>(I) &&
6239           NumPredStores > NumberOfStoresToPredicate);
6240 }
6241 
6242 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6243   // If we aren't vectorizing the loop, or if we've already collected the
6244   // instructions to scalarize, there's nothing to do. Collection may already
6245   // have occurred if we have a user-selected VF and are now computing the
6246   // expected cost for interleaving.
6247   if (VF.isScalar() || VF.isZero() ||
6248       InstsToScalarize.find(VF) != InstsToScalarize.end())
6249     return;
6250 
6251   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6252   // not profitable to scalarize any instructions, the presence of VF in the
6253   // map will indicate that we've analyzed it already.
6254   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6255 
6256   // Find all the instructions that are scalar with predication in the loop and
6257   // determine if it would be better to not if-convert the blocks they are in.
6258   // If so, we also record the instructions to scalarize.
6259   for (BasicBlock *BB : TheLoop->blocks()) {
6260     if (!blockNeedsPredicationForAnyReason(BB))
6261       continue;
6262     for (Instruction &I : *BB)
6263       if (isScalarWithPredication(&I, VF)) {
6264         ScalarCostsTy ScalarCosts;
6265         // Do not apply discount if scalable, because that would lead to
6266         // invalid scalarization costs.
6267         // Do not apply discount logic if hacked cost is needed
6268         // for emulated masked memrefs.
6269         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6270             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6271           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6272         // Remember that BB will remain after vectorization.
6273         PredicatedBBsAfterVectorization.insert(BB);
6274       }
6275   }
6276 }
6277 
6278 int LoopVectorizationCostModel::computePredInstDiscount(
6279     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6280   assert(!isUniformAfterVectorization(PredInst, VF) &&
6281          "Instruction marked uniform-after-vectorization will be predicated");
6282 
6283   // Initialize the discount to zero, meaning that the scalar version and the
6284   // vector version cost the same.
6285   InstructionCost Discount = 0;
6286 
6287   // Holds instructions to analyze. The instructions we visit are mapped in
6288   // ScalarCosts. Those instructions are the ones that would be scalarized if
6289   // we find that the scalar version costs less.
6290   SmallVector<Instruction *, 8> Worklist;
6291 
6292   // Returns true if the given instruction can be scalarized.
6293   auto canBeScalarized = [&](Instruction *I) -> bool {
6294     // We only attempt to scalarize instructions forming a single-use chain
6295     // from the original predicated block that would otherwise be vectorized.
6296     // Although not strictly necessary, we give up on instructions we know will
6297     // already be scalar to avoid traversing chains that are unlikely to be
6298     // beneficial.
6299     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6300         isScalarAfterVectorization(I, VF))
6301       return false;
6302 
6303     // If the instruction is scalar with predication, it will be analyzed
6304     // separately. We ignore it within the context of PredInst.
6305     if (isScalarWithPredication(I, VF))
6306       return false;
6307 
6308     // If any of the instruction's operands are uniform after vectorization,
6309     // the instruction cannot be scalarized. This prevents, for example, a
6310     // masked load from being scalarized.
6311     //
6312     // We assume we will only emit a value for lane zero of an instruction
6313     // marked uniform after vectorization, rather than VF identical values.
6314     // Thus, if we scalarize an instruction that uses a uniform, we would
6315     // create uses of values corresponding to the lanes we aren't emitting code
6316     // for. This behavior can be changed by allowing getScalarValue to clone
6317     // the lane zero values for uniforms rather than asserting.
6318     for (Use &U : I->operands())
6319       if (auto *J = dyn_cast<Instruction>(U.get()))
6320         if (isUniformAfterVectorization(J, VF))
6321           return false;
6322 
6323     // Otherwise, we can scalarize the instruction.
6324     return true;
6325   };
6326 
6327   // Compute the expected cost discount from scalarizing the entire expression
6328   // feeding the predicated instruction. We currently only consider expressions
6329   // that are single-use instruction chains.
6330   Worklist.push_back(PredInst);
6331   while (!Worklist.empty()) {
6332     Instruction *I = Worklist.pop_back_val();
6333 
6334     // If we've already analyzed the instruction, there's nothing to do.
6335     if (ScalarCosts.find(I) != ScalarCosts.end())
6336       continue;
6337 
6338     // Compute the cost of the vector instruction. Note that this cost already
6339     // includes the scalarization overhead of the predicated instruction.
6340     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6341 
6342     // Compute the cost of the scalarized instruction. This cost is the cost of
6343     // the instruction as if it wasn't if-converted and instead remained in the
6344     // predicated block. We will scale this cost by block probability after
6345     // computing the scalarization overhead.
6346     InstructionCost ScalarCost =
6347         VF.getFixedValue() *
6348         getInstructionCost(I, ElementCount::getFixed(1)).first;
6349 
6350     // Compute the scalarization overhead of needed insertelement instructions
6351     // and phi nodes.
6352     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6353       ScalarCost += TTI.getScalarizationOverhead(
6354           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6355           APInt::getAllOnes(VF.getFixedValue()), true, false);
6356       ScalarCost +=
6357           VF.getFixedValue() *
6358           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6359     }
6360 
6361     // Compute the scalarization overhead of needed extractelement
6362     // instructions. For each of the instruction's operands, if the operand can
6363     // be scalarized, add it to the worklist; otherwise, account for the
6364     // overhead.
6365     for (Use &U : I->operands())
6366       if (auto *J = dyn_cast<Instruction>(U.get())) {
6367         assert(VectorType::isValidElementType(J->getType()) &&
6368                "Instruction has non-scalar type");
6369         if (canBeScalarized(J))
6370           Worklist.push_back(J);
6371         else if (needsExtract(J, VF)) {
6372           ScalarCost += TTI.getScalarizationOverhead(
6373               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6374               APInt::getAllOnes(VF.getFixedValue()), false, true);
6375         }
6376       }
6377 
6378     // Scale the total scalar cost by block probability.
6379     ScalarCost /= getReciprocalPredBlockProb();
6380 
6381     // Compute the discount. A non-negative discount means the vector version
6382     // of the instruction costs more, and scalarizing would be beneficial.
6383     Discount += VectorCost - ScalarCost;
6384     ScalarCosts[I] = ScalarCost;
6385   }
6386 
6387   return *Discount.getValue();
6388 }
6389 
6390 LoopVectorizationCostModel::VectorizationCostTy
6391 LoopVectorizationCostModel::expectedCost(
6392     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6393   VectorizationCostTy Cost;
6394 
6395   // For each block.
6396   for (BasicBlock *BB : TheLoop->blocks()) {
6397     VectorizationCostTy BlockCost;
6398 
6399     // For each instruction in the old loop.
6400     for (Instruction &I : BB->instructionsWithoutDebug()) {
6401       // Skip ignored values.
6402       if (ValuesToIgnore.count(&I) ||
6403           (VF.isVector() && VecValuesToIgnore.count(&I)))
6404         continue;
6405 
6406       VectorizationCostTy C = getInstructionCost(&I, VF);
6407 
6408       // Check if we should override the cost.
6409       if (C.first.isValid() &&
6410           ForceTargetInstructionCost.getNumOccurrences() > 0)
6411         C.first = InstructionCost(ForceTargetInstructionCost);
6412 
6413       // Keep a list of instructions with invalid costs.
6414       if (Invalid && !C.first.isValid())
6415         Invalid->emplace_back(&I, VF);
6416 
6417       BlockCost.first += C.first;
6418       BlockCost.second |= C.second;
6419       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6420                         << " for VF " << VF << " For instruction: " << I
6421                         << '\n');
6422     }
6423 
6424     // If we are vectorizing a predicated block, it will have been
6425     // if-converted. This means that the block's instructions (aside from
6426     // stores and instructions that may divide by zero) will now be
6427     // unconditionally executed. For the scalar case, we may not always execute
6428     // the predicated block, if it is an if-else block. Thus, scale the block's
6429     // cost by the probability of executing it. blockNeedsPredication from
6430     // Legal is used so as to not include all blocks in tail folded loops.
6431     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6432       BlockCost.first /= getReciprocalPredBlockProb();
6433 
6434     Cost.first += BlockCost.first;
6435     Cost.second |= BlockCost.second;
6436   }
6437 
6438   return Cost;
6439 }
6440 
6441 /// Gets Address Access SCEV after verifying that the access pattern
6442 /// is loop invariant except the induction variable dependence.
6443 ///
6444 /// This SCEV can be sent to the Target in order to estimate the address
6445 /// calculation cost.
6446 static const SCEV *getAddressAccessSCEV(
6447               Value *Ptr,
6448               LoopVectorizationLegality *Legal,
6449               PredicatedScalarEvolution &PSE,
6450               const Loop *TheLoop) {
6451 
6452   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6453   if (!Gep)
6454     return nullptr;
6455 
6456   // We are looking for a gep with all loop invariant indices except for one
6457   // which should be an induction variable.
6458   auto SE = PSE.getSE();
6459   unsigned NumOperands = Gep->getNumOperands();
6460   for (unsigned i = 1; i < NumOperands; ++i) {
6461     Value *Opd = Gep->getOperand(i);
6462     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6463         !Legal->isInductionVariable(Opd))
6464       return nullptr;
6465   }
6466 
6467   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6468   return PSE.getSCEV(Ptr);
6469 }
6470 
6471 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6472   return Legal->hasStride(I->getOperand(0)) ||
6473          Legal->hasStride(I->getOperand(1));
6474 }
6475 
6476 InstructionCost
6477 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6478                                                         ElementCount VF) {
6479   assert(VF.isVector() &&
6480          "Scalarization cost of instruction implies vectorization.");
6481   if (VF.isScalable())
6482     return InstructionCost::getInvalid();
6483 
6484   Type *ValTy = getLoadStoreType(I);
6485   auto SE = PSE.getSE();
6486 
6487   unsigned AS = getLoadStoreAddressSpace(I);
6488   Value *Ptr = getLoadStorePointerOperand(I);
6489   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6490   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6491   //       that it is being called from this specific place.
6492 
6493   // Figure out whether the access is strided and get the stride value
6494   // if it's known in compile time
6495   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6496 
6497   // Get the cost of the scalar memory instruction and address computation.
6498   InstructionCost Cost =
6499       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6500 
6501   // Don't pass *I here, since it is scalar but will actually be part of a
6502   // vectorized loop where the user of it is a vectorized instruction.
6503   const Align Alignment = getLoadStoreAlignment(I);
6504   Cost += VF.getKnownMinValue() *
6505           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6506                               AS, TTI::TCK_RecipThroughput);
6507 
6508   // Get the overhead of the extractelement and insertelement instructions
6509   // we might create due to scalarization.
6510   Cost += getScalarizationOverhead(I, VF);
6511 
6512   // If we have a predicated load/store, it will need extra i1 extracts and
6513   // conditional branches, but may not be executed for each vector lane. Scale
6514   // the cost by the probability of executing the predicated block.
6515   if (isPredicatedInst(I, VF)) {
6516     Cost /= getReciprocalPredBlockProb();
6517 
6518     // Add the cost of an i1 extract and a branch
6519     auto *Vec_i1Ty =
6520         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6521     Cost += TTI.getScalarizationOverhead(
6522         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6523         /*Insert=*/false, /*Extract=*/true);
6524     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6525 
6526     if (useEmulatedMaskMemRefHack(I, VF))
6527       // Artificially setting to a high enough value to practically disable
6528       // vectorization with such operations.
6529       Cost = 3000000;
6530   }
6531 
6532   return Cost;
6533 }
6534 
6535 InstructionCost
6536 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6537                                                     ElementCount VF) {
6538   Type *ValTy = getLoadStoreType(I);
6539   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6540   Value *Ptr = getLoadStorePointerOperand(I);
6541   unsigned AS = getLoadStoreAddressSpace(I);
6542   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6543   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6544 
6545   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6546          "Stride should be 1 or -1 for consecutive memory access");
6547   const Align Alignment = getLoadStoreAlignment(I);
6548   InstructionCost Cost = 0;
6549   if (Legal->isMaskRequired(I))
6550     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6551                                       CostKind);
6552   else
6553     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6554                                 CostKind, I);
6555 
6556   bool Reverse = ConsecutiveStride < 0;
6557   if (Reverse)
6558     Cost +=
6559         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6560   return Cost;
6561 }
6562 
6563 InstructionCost
6564 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6565                                                 ElementCount VF) {
6566   assert(Legal->isUniformMemOp(*I));
6567 
6568   Type *ValTy = getLoadStoreType(I);
6569   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6570   const Align Alignment = getLoadStoreAlignment(I);
6571   unsigned AS = getLoadStoreAddressSpace(I);
6572   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6573   if (isa<LoadInst>(I)) {
6574     return TTI.getAddressComputationCost(ValTy) +
6575            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6576                                CostKind) +
6577            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6578   }
6579   StoreInst *SI = cast<StoreInst>(I);
6580 
6581   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6582   return TTI.getAddressComputationCost(ValTy) +
6583          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6584                              CostKind) +
6585          (isLoopInvariantStoreValue
6586               ? 0
6587               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6588                                        VF.getKnownMinValue() - 1));
6589 }
6590 
6591 InstructionCost
6592 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6593                                                  ElementCount VF) {
6594   Type *ValTy = getLoadStoreType(I);
6595   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6596   const Align Alignment = getLoadStoreAlignment(I);
6597   const Value *Ptr = getLoadStorePointerOperand(I);
6598 
6599   return TTI.getAddressComputationCost(VectorTy) +
6600          TTI.getGatherScatterOpCost(
6601              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6602              TargetTransformInfo::TCK_RecipThroughput, I);
6603 }
6604 
6605 InstructionCost
6606 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6607                                                    ElementCount VF) {
6608   // TODO: Once we have support for interleaving with scalable vectors
6609   // we can calculate the cost properly here.
6610   if (VF.isScalable())
6611     return InstructionCost::getInvalid();
6612 
6613   Type *ValTy = getLoadStoreType(I);
6614   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6615   unsigned AS = getLoadStoreAddressSpace(I);
6616 
6617   auto Group = getInterleavedAccessGroup(I);
6618   assert(Group && "Fail to get an interleaved access group.");
6619 
6620   unsigned InterleaveFactor = Group->getFactor();
6621   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6622 
6623   // Holds the indices of existing members in the interleaved group.
6624   SmallVector<unsigned, 4> Indices;
6625   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6626     if (Group->getMember(IF))
6627       Indices.push_back(IF);
6628 
6629   // Calculate the cost of the whole interleaved group.
6630   bool UseMaskForGaps =
6631       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6632       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6633   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6634       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6635       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6636 
6637   if (Group->isReverse()) {
6638     // TODO: Add support for reversed masked interleaved access.
6639     assert(!Legal->isMaskRequired(I) &&
6640            "Reverse masked interleaved access not supported.");
6641     Cost +=
6642         Group->getNumMembers() *
6643         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6644   }
6645   return Cost;
6646 }
6647 
6648 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6649     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6650   using namespace llvm::PatternMatch;
6651   // Early exit for no inloop reductions
6652   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6653     return None;
6654   auto *VectorTy = cast<VectorType>(Ty);
6655 
6656   // We are looking for a pattern of, and finding the minimal acceptable cost:
6657   //  reduce(mul(ext(A), ext(B))) or
6658   //  reduce(mul(A, B)) or
6659   //  reduce(ext(A)) or
6660   //  reduce(A).
6661   // The basic idea is that we walk down the tree to do that, finding the root
6662   // reduction instruction in InLoopReductionImmediateChains. From there we find
6663   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6664   // of the components. If the reduction cost is lower then we return it for the
6665   // reduction instruction and 0 for the other instructions in the pattern. If
6666   // it is not we return an invalid cost specifying the orignal cost method
6667   // should be used.
6668   Instruction *RetI = I;
6669   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6670     if (!RetI->hasOneUser())
6671       return None;
6672     RetI = RetI->user_back();
6673   }
6674   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6675       RetI->user_back()->getOpcode() == Instruction::Add) {
6676     if (!RetI->hasOneUser())
6677       return None;
6678     RetI = RetI->user_back();
6679   }
6680 
6681   // Test if the found instruction is a reduction, and if not return an invalid
6682   // cost specifying the parent to use the original cost modelling.
6683   if (!InLoopReductionImmediateChains.count(RetI))
6684     return None;
6685 
6686   // Find the reduction this chain is a part of and calculate the basic cost of
6687   // the reduction on its own.
6688   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6689   Instruction *ReductionPhi = LastChain;
6690   while (!isa<PHINode>(ReductionPhi))
6691     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6692 
6693   const RecurrenceDescriptor &RdxDesc =
6694       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6695 
6696   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6697       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6698 
6699   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6700   // normal fmul instruction to the cost of the fadd reduction.
6701   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6702     BaseCost +=
6703         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6704 
6705   // If we're using ordered reductions then we can just return the base cost
6706   // here, since getArithmeticReductionCost calculates the full ordered
6707   // reduction cost when FP reassociation is not allowed.
6708   if (useOrderedReductions(RdxDesc))
6709     return BaseCost;
6710 
6711   // Get the operand that was not the reduction chain and match it to one of the
6712   // patterns, returning the better cost if it is found.
6713   Instruction *RedOp = RetI->getOperand(1) == LastChain
6714                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6715                            : dyn_cast<Instruction>(RetI->getOperand(1));
6716 
6717   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6718 
6719   Instruction *Op0, *Op1;
6720   if (RedOp &&
6721       match(RedOp,
6722             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6723       match(Op0, m_ZExtOrSExt(m_Value())) &&
6724       Op0->getOpcode() == Op1->getOpcode() &&
6725       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6726       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6727       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6728 
6729     // Matched reduce(ext(mul(ext(A), ext(B)))
6730     // Note that the extend opcodes need to all match, or if A==B they will have
6731     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6732     // which is equally fine.
6733     bool IsUnsigned = isa<ZExtInst>(Op0);
6734     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6735     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6736 
6737     InstructionCost ExtCost =
6738         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6739                              TTI::CastContextHint::None, CostKind, Op0);
6740     InstructionCost MulCost =
6741         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6742     InstructionCost Ext2Cost =
6743         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6744                              TTI::CastContextHint::None, CostKind, RedOp);
6745 
6746     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6747         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6748         CostKind);
6749 
6750     if (RedCost.isValid() &&
6751         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6752       return I == RetI ? RedCost : 0;
6753   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6754              !TheLoop->isLoopInvariant(RedOp)) {
6755     // Matched reduce(ext(A))
6756     bool IsUnsigned = isa<ZExtInst>(RedOp);
6757     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6758     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6759         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6760         CostKind);
6761 
6762     InstructionCost ExtCost =
6763         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6764                              TTI::CastContextHint::None, CostKind, RedOp);
6765     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6766       return I == RetI ? RedCost : 0;
6767   } else if (RedOp &&
6768              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6769     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6770         Op0->getOpcode() == Op1->getOpcode() &&
6771         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6772       bool IsUnsigned = isa<ZExtInst>(Op0);
6773       Type *Op0Ty = Op0->getOperand(0)->getType();
6774       Type *Op1Ty = Op1->getOperand(0)->getType();
6775       Type *LargestOpTy =
6776           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6777                                                                     : Op0Ty;
6778       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6779 
6780       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6781       // different sizes. We take the largest type as the ext to reduce, and add
6782       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6783       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6784           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6785           TTI::CastContextHint::None, CostKind, Op0);
6786       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6787           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6788           TTI::CastContextHint::None, CostKind, Op1);
6789       InstructionCost MulCost =
6790           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6791 
6792       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6793           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6794           CostKind);
6795       InstructionCost ExtraExtCost = 0;
6796       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6797         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6798         ExtraExtCost = TTI.getCastInstrCost(
6799             ExtraExtOp->getOpcode(), ExtType,
6800             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6801             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6802       }
6803 
6804       if (RedCost.isValid() &&
6805           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6806         return I == RetI ? RedCost : 0;
6807     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6808       // Matched reduce(mul())
6809       InstructionCost MulCost =
6810           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6811 
6812       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6813           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6814           CostKind);
6815 
6816       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6817         return I == RetI ? RedCost : 0;
6818     }
6819   }
6820 
6821   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6822 }
6823 
6824 InstructionCost
6825 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6826                                                      ElementCount VF) {
6827   // Calculate scalar cost only. Vectorization cost should be ready at this
6828   // moment.
6829   if (VF.isScalar()) {
6830     Type *ValTy = getLoadStoreType(I);
6831     const Align Alignment = getLoadStoreAlignment(I);
6832     unsigned AS = getLoadStoreAddressSpace(I);
6833 
6834     return TTI.getAddressComputationCost(ValTy) +
6835            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6836                                TTI::TCK_RecipThroughput, I);
6837   }
6838   return getWideningCost(I, VF);
6839 }
6840 
6841 LoopVectorizationCostModel::VectorizationCostTy
6842 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6843                                                ElementCount VF) {
6844   // If we know that this instruction will remain uniform, check the cost of
6845   // the scalar version.
6846   if (isUniformAfterVectorization(I, VF))
6847     VF = ElementCount::getFixed(1);
6848 
6849   if (VF.isVector() && isProfitableToScalarize(I, VF))
6850     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6851 
6852   // Forced scalars do not have any scalarization overhead.
6853   auto ForcedScalar = ForcedScalars.find(VF);
6854   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6855     auto InstSet = ForcedScalar->second;
6856     if (InstSet.count(I))
6857       return VectorizationCostTy(
6858           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6859            VF.getKnownMinValue()),
6860           false);
6861   }
6862 
6863   Type *VectorTy;
6864   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6865 
6866   bool TypeNotScalarized = false;
6867   if (VF.isVector() && VectorTy->isVectorTy()) {
6868     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
6869     if (NumParts)
6870       TypeNotScalarized = NumParts < VF.getKnownMinValue();
6871     else
6872       C = InstructionCost::getInvalid();
6873   }
6874   return VectorizationCostTy(C, TypeNotScalarized);
6875 }
6876 
6877 InstructionCost
6878 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6879                                                      ElementCount VF) const {
6880 
6881   // There is no mechanism yet to create a scalable scalarization loop,
6882   // so this is currently Invalid.
6883   if (VF.isScalable())
6884     return InstructionCost::getInvalid();
6885 
6886   if (VF.isScalar())
6887     return 0;
6888 
6889   InstructionCost Cost = 0;
6890   Type *RetTy = ToVectorTy(I->getType(), VF);
6891   if (!RetTy->isVoidTy() &&
6892       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6893     Cost += TTI.getScalarizationOverhead(
6894         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6895         false);
6896 
6897   // Some targets keep addresses scalar.
6898   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6899     return Cost;
6900 
6901   // Some targets support efficient element stores.
6902   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6903     return Cost;
6904 
6905   // Collect operands to consider.
6906   CallInst *CI = dyn_cast<CallInst>(I);
6907   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6908 
6909   // Skip operands that do not require extraction/scalarization and do not incur
6910   // any overhead.
6911   SmallVector<Type *> Tys;
6912   for (auto *V : filterExtractingOperands(Ops, VF))
6913     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6914   return Cost + TTI.getOperandsScalarizationOverhead(
6915                     filterExtractingOperands(Ops, VF), Tys);
6916 }
6917 
6918 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6919   if (VF.isScalar())
6920     return;
6921   NumPredStores = 0;
6922   for (BasicBlock *BB : TheLoop->blocks()) {
6923     // For each instruction in the old loop.
6924     for (Instruction &I : *BB) {
6925       Value *Ptr =  getLoadStorePointerOperand(&I);
6926       if (!Ptr)
6927         continue;
6928 
6929       // TODO: We should generate better code and update the cost model for
6930       // predicated uniform stores. Today they are treated as any other
6931       // predicated store (see added test cases in
6932       // invariant-store-vectorization.ll).
6933       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6934         NumPredStores++;
6935 
6936       if (Legal->isUniformMemOp(I)) {
6937         // TODO: Avoid replicating loads and stores instead of
6938         // relying on instcombine to remove them.
6939         // Load: Scalar load + broadcast
6940         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6941         InstructionCost Cost;
6942         if (isa<StoreInst>(&I) && VF.isScalable() &&
6943             isLegalGatherOrScatter(&I, VF)) {
6944           Cost = getGatherScatterCost(&I, VF);
6945           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6946         } else {
6947           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
6948                  "Cannot yet scalarize uniform stores");
6949           Cost = getUniformMemOpCost(&I, VF);
6950           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6951         }
6952         continue;
6953       }
6954 
6955       // We assume that widening is the best solution when possible.
6956       if (memoryInstructionCanBeWidened(&I, VF)) {
6957         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6958         int ConsecutiveStride = Legal->isConsecutivePtr(
6959             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6960         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6961                "Expected consecutive stride.");
6962         InstWidening Decision =
6963             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6964         setWideningDecision(&I, VF, Decision, Cost);
6965         continue;
6966       }
6967 
6968       // Choose between Interleaving, Gather/Scatter or Scalarization.
6969       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6970       unsigned NumAccesses = 1;
6971       if (isAccessInterleaved(&I)) {
6972         auto Group = getInterleavedAccessGroup(&I);
6973         assert(Group && "Fail to get an interleaved access group.");
6974 
6975         // Make one decision for the whole group.
6976         if (getWideningDecision(&I, VF) != CM_Unknown)
6977           continue;
6978 
6979         NumAccesses = Group->getNumMembers();
6980         if (interleavedAccessCanBeWidened(&I, VF))
6981           InterleaveCost = getInterleaveGroupCost(&I, VF);
6982       }
6983 
6984       InstructionCost GatherScatterCost =
6985           isLegalGatherOrScatter(&I, VF)
6986               ? getGatherScatterCost(&I, VF) * NumAccesses
6987               : InstructionCost::getInvalid();
6988 
6989       InstructionCost ScalarizationCost =
6990           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6991 
6992       // Choose better solution for the current VF,
6993       // write down this decision and use it during vectorization.
6994       InstructionCost Cost;
6995       InstWidening Decision;
6996       if (InterleaveCost <= GatherScatterCost &&
6997           InterleaveCost < ScalarizationCost) {
6998         Decision = CM_Interleave;
6999         Cost = InterleaveCost;
7000       } else if (GatherScatterCost < ScalarizationCost) {
7001         Decision = CM_GatherScatter;
7002         Cost = GatherScatterCost;
7003       } else {
7004         Decision = CM_Scalarize;
7005         Cost = ScalarizationCost;
7006       }
7007       // If the instructions belongs to an interleave group, the whole group
7008       // receives the same decision. The whole group receives the cost, but
7009       // the cost will actually be assigned to one instruction.
7010       if (auto Group = getInterleavedAccessGroup(&I))
7011         setWideningDecision(Group, VF, Decision, Cost);
7012       else
7013         setWideningDecision(&I, VF, Decision, Cost);
7014     }
7015   }
7016 
7017   // Make sure that any load of address and any other address computation
7018   // remains scalar unless there is gather/scatter support. This avoids
7019   // inevitable extracts into address registers, and also has the benefit of
7020   // activating LSR more, since that pass can't optimize vectorized
7021   // addresses.
7022   if (TTI.prefersVectorizedAddressing())
7023     return;
7024 
7025   // Start with all scalar pointer uses.
7026   SmallPtrSet<Instruction *, 8> AddrDefs;
7027   for (BasicBlock *BB : TheLoop->blocks())
7028     for (Instruction &I : *BB) {
7029       Instruction *PtrDef =
7030         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7031       if (PtrDef && TheLoop->contains(PtrDef) &&
7032           getWideningDecision(&I, VF) != CM_GatherScatter)
7033         AddrDefs.insert(PtrDef);
7034     }
7035 
7036   // Add all instructions used to generate the addresses.
7037   SmallVector<Instruction *, 4> Worklist;
7038   append_range(Worklist, AddrDefs);
7039   while (!Worklist.empty()) {
7040     Instruction *I = Worklist.pop_back_val();
7041     for (auto &Op : I->operands())
7042       if (auto *InstOp = dyn_cast<Instruction>(Op))
7043         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7044             AddrDefs.insert(InstOp).second)
7045           Worklist.push_back(InstOp);
7046   }
7047 
7048   for (auto *I : AddrDefs) {
7049     if (isa<LoadInst>(I)) {
7050       // Setting the desired widening decision should ideally be handled in
7051       // by cost functions, but since this involves the task of finding out
7052       // if the loaded register is involved in an address computation, it is
7053       // instead changed here when we know this is the case.
7054       InstWidening Decision = getWideningDecision(I, VF);
7055       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7056         // Scalarize a widened load of address.
7057         setWideningDecision(
7058             I, VF, CM_Scalarize,
7059             (VF.getKnownMinValue() *
7060              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7061       else if (auto Group = getInterleavedAccessGroup(I)) {
7062         // Scalarize an interleave group of address loads.
7063         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7064           if (Instruction *Member = Group->getMember(I))
7065             setWideningDecision(
7066                 Member, VF, CM_Scalarize,
7067                 (VF.getKnownMinValue() *
7068                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7069         }
7070       }
7071     } else
7072       // Make sure I gets scalarized and a cost estimate without
7073       // scalarization overhead.
7074       ForcedScalars[VF].insert(I);
7075   }
7076 }
7077 
7078 InstructionCost
7079 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7080                                                Type *&VectorTy) {
7081   Type *RetTy = I->getType();
7082   if (canTruncateToMinimalBitwidth(I, VF))
7083     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7084   auto SE = PSE.getSE();
7085   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7086 
7087   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7088                                                 ElementCount VF) -> bool {
7089     if (VF.isScalar())
7090       return true;
7091 
7092     auto Scalarized = InstsToScalarize.find(VF);
7093     assert(Scalarized != InstsToScalarize.end() &&
7094            "VF not yet analyzed for scalarization profitability");
7095     return !Scalarized->second.count(I) &&
7096            llvm::all_of(I->users(), [&](User *U) {
7097              auto *UI = cast<Instruction>(U);
7098              return !Scalarized->second.count(UI);
7099            });
7100   };
7101   (void) hasSingleCopyAfterVectorization;
7102 
7103   if (isScalarAfterVectorization(I, VF)) {
7104     // With the exception of GEPs and PHIs, after scalarization there should
7105     // only be one copy of the instruction generated in the loop. This is
7106     // because the VF is either 1, or any instructions that need scalarizing
7107     // have already been dealt with by the the time we get here. As a result,
7108     // it means we don't have to multiply the instruction cost by VF.
7109     assert(I->getOpcode() == Instruction::GetElementPtr ||
7110            I->getOpcode() == Instruction::PHI ||
7111            (I->getOpcode() == Instruction::BitCast &&
7112             I->getType()->isPointerTy()) ||
7113            hasSingleCopyAfterVectorization(I, VF));
7114     VectorTy = RetTy;
7115   } else
7116     VectorTy = ToVectorTy(RetTy, VF);
7117 
7118   // TODO: We need to estimate the cost of intrinsic calls.
7119   switch (I->getOpcode()) {
7120   case Instruction::GetElementPtr:
7121     // We mark this instruction as zero-cost because the cost of GEPs in
7122     // vectorized code depends on whether the corresponding memory instruction
7123     // is scalarized or not. Therefore, we handle GEPs with the memory
7124     // instruction cost.
7125     return 0;
7126   case Instruction::Br: {
7127     // In cases of scalarized and predicated instructions, there will be VF
7128     // predicated blocks in the vectorized loop. Each branch around these
7129     // blocks requires also an extract of its vector compare i1 element.
7130     bool ScalarPredicatedBB = false;
7131     BranchInst *BI = cast<BranchInst>(I);
7132     if (VF.isVector() && BI->isConditional() &&
7133         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7134          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7135       ScalarPredicatedBB = true;
7136 
7137     if (ScalarPredicatedBB) {
7138       // Not possible to scalarize scalable vector with predicated instructions.
7139       if (VF.isScalable())
7140         return InstructionCost::getInvalid();
7141       // Return cost for branches around scalarized and predicated blocks.
7142       auto *Vec_i1Ty =
7143           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7144       return (
7145           TTI.getScalarizationOverhead(
7146               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7147           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7148     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7149       // The back-edge branch will remain, as will all scalar branches.
7150       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7151     else
7152       // This branch will be eliminated by if-conversion.
7153       return 0;
7154     // Note: We currently assume zero cost for an unconditional branch inside
7155     // a predicated block since it will become a fall-through, although we
7156     // may decide in the future to call TTI for all branches.
7157   }
7158   case Instruction::PHI: {
7159     auto *Phi = cast<PHINode>(I);
7160 
7161     // First-order recurrences are replaced by vector shuffles inside the loop.
7162     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7163     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7164       return TTI.getShuffleCost(
7165           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7166           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7167 
7168     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7169     // converted into select instructions. We require N - 1 selects per phi
7170     // node, where N is the number of incoming values.
7171     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7172       return (Phi->getNumIncomingValues() - 1) *
7173              TTI.getCmpSelInstrCost(
7174                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7175                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7176                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7177 
7178     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7179   }
7180   case Instruction::UDiv:
7181   case Instruction::SDiv:
7182   case Instruction::URem:
7183   case Instruction::SRem:
7184     // If we have a predicated instruction, it may not be executed for each
7185     // vector lane. Get the scalarization cost and scale this amount by the
7186     // probability of executing the predicated block. If the instruction is not
7187     // predicated, we fall through to the next case.
7188     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7189       InstructionCost Cost = 0;
7190 
7191       // These instructions have a non-void type, so account for the phi nodes
7192       // that we will create. This cost is likely to be zero. The phi node
7193       // cost, if any, should be scaled by the block probability because it
7194       // models a copy at the end of each predicated block.
7195       Cost += VF.getKnownMinValue() *
7196               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7197 
7198       // The cost of the non-predicated instruction.
7199       Cost += VF.getKnownMinValue() *
7200               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7201 
7202       // The cost of insertelement and extractelement instructions needed for
7203       // scalarization.
7204       Cost += getScalarizationOverhead(I, VF);
7205 
7206       // Scale the cost by the probability of executing the predicated blocks.
7207       // This assumes the predicated block for each vector lane is equally
7208       // likely.
7209       return Cost / getReciprocalPredBlockProb();
7210     }
7211     LLVM_FALLTHROUGH;
7212   case Instruction::Add:
7213   case Instruction::FAdd:
7214   case Instruction::Sub:
7215   case Instruction::FSub:
7216   case Instruction::Mul:
7217   case Instruction::FMul:
7218   case Instruction::FDiv:
7219   case Instruction::FRem:
7220   case Instruction::Shl:
7221   case Instruction::LShr:
7222   case Instruction::AShr:
7223   case Instruction::And:
7224   case Instruction::Or:
7225   case Instruction::Xor: {
7226     // Since we will replace the stride by 1 the multiplication should go away.
7227     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7228       return 0;
7229 
7230     // Detect reduction patterns
7231     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7232       return *RedCost;
7233 
7234     // Certain instructions can be cheaper to vectorize if they have a constant
7235     // second vector operand. One example of this are shifts on x86.
7236     Value *Op2 = I->getOperand(1);
7237     TargetTransformInfo::OperandValueProperties Op2VP;
7238     TargetTransformInfo::OperandValueKind Op2VK =
7239         TTI.getOperandInfo(Op2, Op2VP);
7240     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7241       Op2VK = TargetTransformInfo::OK_UniformValue;
7242 
7243     SmallVector<const Value *, 4> Operands(I->operand_values());
7244     return TTI.getArithmeticInstrCost(
7245         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7246         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7247   }
7248   case Instruction::FNeg: {
7249     return TTI.getArithmeticInstrCost(
7250         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7251         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7252         TargetTransformInfo::OP_None, I->getOperand(0), I);
7253   }
7254   case Instruction::Select: {
7255     SelectInst *SI = cast<SelectInst>(I);
7256     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7257     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7258 
7259     const Value *Op0, *Op1;
7260     using namespace llvm::PatternMatch;
7261     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7262                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7263       // select x, y, false --> x & y
7264       // select x, true, y --> x | y
7265       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7266       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7267       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7268       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7269       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7270               Op1->getType()->getScalarSizeInBits() == 1);
7271 
7272       SmallVector<const Value *, 2> Operands{Op0, Op1};
7273       return TTI.getArithmeticInstrCost(
7274           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7275           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7276     }
7277 
7278     Type *CondTy = SI->getCondition()->getType();
7279     if (!ScalarCond)
7280       CondTy = VectorType::get(CondTy, VF);
7281 
7282     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7283     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7284       Pred = Cmp->getPredicate();
7285     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7286                                   CostKind, I);
7287   }
7288   case Instruction::ICmp:
7289   case Instruction::FCmp: {
7290     Type *ValTy = I->getOperand(0)->getType();
7291     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7292     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7293       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7294     VectorTy = ToVectorTy(ValTy, VF);
7295     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7296                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7297                                   I);
7298   }
7299   case Instruction::Store:
7300   case Instruction::Load: {
7301     ElementCount Width = VF;
7302     if (Width.isVector()) {
7303       InstWidening Decision = getWideningDecision(I, Width);
7304       assert(Decision != CM_Unknown &&
7305              "CM decision should be taken at this point");
7306       if (Decision == CM_Scalarize)
7307         Width = ElementCount::getFixed(1);
7308     }
7309     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7310     return getMemoryInstructionCost(I, VF);
7311   }
7312   case Instruction::BitCast:
7313     if (I->getType()->isPointerTy())
7314       return 0;
7315     LLVM_FALLTHROUGH;
7316   case Instruction::ZExt:
7317   case Instruction::SExt:
7318   case Instruction::FPToUI:
7319   case Instruction::FPToSI:
7320   case Instruction::FPExt:
7321   case Instruction::PtrToInt:
7322   case Instruction::IntToPtr:
7323   case Instruction::SIToFP:
7324   case Instruction::UIToFP:
7325   case Instruction::Trunc:
7326   case Instruction::FPTrunc: {
7327     // Computes the CastContextHint from a Load/Store instruction.
7328     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7329       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7330              "Expected a load or a store!");
7331 
7332       if (VF.isScalar() || !TheLoop->contains(I))
7333         return TTI::CastContextHint::Normal;
7334 
7335       switch (getWideningDecision(I, VF)) {
7336       case LoopVectorizationCostModel::CM_GatherScatter:
7337         return TTI::CastContextHint::GatherScatter;
7338       case LoopVectorizationCostModel::CM_Interleave:
7339         return TTI::CastContextHint::Interleave;
7340       case LoopVectorizationCostModel::CM_Scalarize:
7341       case LoopVectorizationCostModel::CM_Widen:
7342         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7343                                         : TTI::CastContextHint::Normal;
7344       case LoopVectorizationCostModel::CM_Widen_Reverse:
7345         return TTI::CastContextHint::Reversed;
7346       case LoopVectorizationCostModel::CM_Unknown:
7347         llvm_unreachable("Instr did not go through cost modelling?");
7348       }
7349 
7350       llvm_unreachable("Unhandled case!");
7351     };
7352 
7353     unsigned Opcode = I->getOpcode();
7354     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7355     // For Trunc, the context is the only user, which must be a StoreInst.
7356     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7357       if (I->hasOneUse())
7358         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7359           CCH = ComputeCCH(Store);
7360     }
7361     // For Z/Sext, the context is the operand, which must be a LoadInst.
7362     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7363              Opcode == Instruction::FPExt) {
7364       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7365         CCH = ComputeCCH(Load);
7366     }
7367 
7368     // We optimize the truncation of induction variables having constant
7369     // integer steps. The cost of these truncations is the same as the scalar
7370     // operation.
7371     if (isOptimizableIVTruncate(I, VF)) {
7372       auto *Trunc = cast<TruncInst>(I);
7373       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7374                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7375     }
7376 
7377     // Detect reduction patterns
7378     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7379       return *RedCost;
7380 
7381     Type *SrcScalarTy = I->getOperand(0)->getType();
7382     Type *SrcVecTy =
7383         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7384     if (canTruncateToMinimalBitwidth(I, VF)) {
7385       // This cast is going to be shrunk. This may remove the cast or it might
7386       // turn it into slightly different cast. For example, if MinBW == 16,
7387       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7388       //
7389       // Calculate the modified src and dest types.
7390       Type *MinVecTy = VectorTy;
7391       if (Opcode == Instruction::Trunc) {
7392         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7393         VectorTy =
7394             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7395       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7396         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7397         VectorTy =
7398             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7399       }
7400     }
7401 
7402     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7403   }
7404   case Instruction::Call: {
7405     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7406       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7407         return *RedCost;
7408     bool NeedToScalarize;
7409     CallInst *CI = cast<CallInst>(I);
7410     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7411     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7412       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7413       return std::min(CallCost, IntrinsicCost);
7414     }
7415     return CallCost;
7416   }
7417   case Instruction::ExtractValue:
7418     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7419   case Instruction::Alloca:
7420     // We cannot easily widen alloca to a scalable alloca, as
7421     // the result would need to be a vector of pointers.
7422     if (VF.isScalable())
7423       return InstructionCost::getInvalid();
7424     LLVM_FALLTHROUGH;
7425   default:
7426     // This opcode is unknown. Assume that it is the same as 'mul'.
7427     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7428   } // end of switch.
7429 }
7430 
7431 char LoopVectorize::ID = 0;
7432 
7433 static const char lv_name[] = "Loop Vectorization";
7434 
7435 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7436 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7437 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7438 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7439 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7440 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7441 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7442 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7443 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7444 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7445 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7446 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7447 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7448 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7449 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7450 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7451 
7452 namespace llvm {
7453 
7454 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7455 
7456 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7457                               bool VectorizeOnlyWhenForced) {
7458   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7459 }
7460 
7461 } // end namespace llvm
7462 
7463 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7464   // Check if the pointer operand of a load or store instruction is
7465   // consecutive.
7466   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7467     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7468   return false;
7469 }
7470 
7471 void LoopVectorizationCostModel::collectValuesToIgnore() {
7472   // Ignore ephemeral values.
7473   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7474 
7475   // Ignore type-promoting instructions we identified during reduction
7476   // detection.
7477   for (auto &Reduction : Legal->getReductionVars()) {
7478     const RecurrenceDescriptor &RedDes = Reduction.second;
7479     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7480     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7481   }
7482   // Ignore type-casting instructions we identified during induction
7483   // detection.
7484   for (auto &Induction : Legal->getInductionVars()) {
7485     const InductionDescriptor &IndDes = Induction.second;
7486     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7487     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7488   }
7489 }
7490 
7491 void LoopVectorizationCostModel::collectInLoopReductions() {
7492   for (auto &Reduction : Legal->getReductionVars()) {
7493     PHINode *Phi = Reduction.first;
7494     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7495 
7496     // We don't collect reductions that are type promoted (yet).
7497     if (RdxDesc.getRecurrenceType() != Phi->getType())
7498       continue;
7499 
7500     // If the target would prefer this reduction to happen "in-loop", then we
7501     // want to record it as such.
7502     unsigned Opcode = RdxDesc.getOpcode();
7503     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7504         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7505                                    TargetTransformInfo::ReductionFlags()))
7506       continue;
7507 
7508     // Check that we can correctly put the reductions into the loop, by
7509     // finding the chain of operations that leads from the phi to the loop
7510     // exit value.
7511     SmallVector<Instruction *, 4> ReductionOperations =
7512         RdxDesc.getReductionOpChain(Phi, TheLoop);
7513     bool InLoop = !ReductionOperations.empty();
7514     if (InLoop) {
7515       InLoopReductionChains[Phi] = ReductionOperations;
7516       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7517       Instruction *LastChain = Phi;
7518       for (auto *I : ReductionOperations) {
7519         InLoopReductionImmediateChains[I] = LastChain;
7520         LastChain = I;
7521       }
7522     }
7523     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7524                       << " reduction for phi: " << *Phi << "\n");
7525   }
7526 }
7527 
7528 // TODO: we could return a pair of values that specify the max VF and
7529 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7530 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7531 // doesn't have a cost model that can choose which plan to execute if
7532 // more than one is generated.
7533 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7534                                  LoopVectorizationCostModel &CM) {
7535   unsigned WidestType;
7536   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7537   return WidestVectorRegBits / WidestType;
7538 }
7539 
7540 VectorizationFactor
7541 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7542   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7543   ElementCount VF = UserVF;
7544   // Outer loop handling: They may require CFG and instruction level
7545   // transformations before even evaluating whether vectorization is profitable.
7546   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7547   // the vectorization pipeline.
7548   if (!OrigLoop->isInnermost()) {
7549     // If the user doesn't provide a vectorization factor, determine a
7550     // reasonable one.
7551     if (UserVF.isZero()) {
7552       VF = ElementCount::getFixed(determineVPlanVF(
7553           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7554               .getFixedSize(),
7555           CM));
7556       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7557 
7558       // Make sure we have a VF > 1 for stress testing.
7559       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7560         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7561                           << "overriding computed VF.\n");
7562         VF = ElementCount::getFixed(4);
7563       }
7564     }
7565     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7566     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7567            "VF needs to be a power of two");
7568     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7569                       << "VF " << VF << " to build VPlans.\n");
7570     buildVPlans(VF, VF);
7571 
7572     // For VPlan build stress testing, we bail out after VPlan construction.
7573     if (VPlanBuildStressTest)
7574       return VectorizationFactor::Disabled();
7575 
7576     return {VF, 0 /*Cost*/};
7577   }
7578 
7579   LLVM_DEBUG(
7580       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7581                 "VPlan-native path.\n");
7582   return VectorizationFactor::Disabled();
7583 }
7584 
7585 Optional<VectorizationFactor>
7586 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7587   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7588   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7589   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7590     return None;
7591 
7592   // Invalidate interleave groups if all blocks of loop will be predicated.
7593   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7594       !useMaskedInterleavedAccesses(*TTI)) {
7595     LLVM_DEBUG(
7596         dbgs()
7597         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7598            "which requires masked-interleaved support.\n");
7599     if (CM.InterleaveInfo.invalidateGroups())
7600       // Invalidating interleave groups also requires invalidating all decisions
7601       // based on them, which includes widening decisions and uniform and scalar
7602       // values.
7603       CM.invalidateCostModelingDecisions();
7604   }
7605 
7606   ElementCount MaxUserVF =
7607       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7608   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7609   if (!UserVF.isZero() && UserVFIsLegal) {
7610     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7611            "VF needs to be a power of two");
7612     // Collect the instructions (and their associated costs) that will be more
7613     // profitable to scalarize.
7614     if (CM.selectUserVectorizationFactor(UserVF)) {
7615       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7616       CM.collectInLoopReductions();
7617       buildVPlansWithVPRecipes(UserVF, UserVF);
7618       LLVM_DEBUG(printPlans(dbgs()));
7619       return {{UserVF, 0}};
7620     } else
7621       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7622                               "InvalidCost", ORE, OrigLoop);
7623   }
7624 
7625   // Populate the set of Vectorization Factor Candidates.
7626   ElementCountSet VFCandidates;
7627   for (auto VF = ElementCount::getFixed(1);
7628        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7629     VFCandidates.insert(VF);
7630   for (auto VF = ElementCount::getScalable(1);
7631        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7632     VFCandidates.insert(VF);
7633 
7634   for (const auto &VF : VFCandidates) {
7635     // Collect Uniform and Scalar instructions after vectorization with VF.
7636     CM.collectUniformsAndScalars(VF);
7637 
7638     // Collect the instructions (and their associated costs) that will be more
7639     // profitable to scalarize.
7640     if (VF.isVector())
7641       CM.collectInstsToScalarize(VF);
7642   }
7643 
7644   CM.collectInLoopReductions();
7645   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7646   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7647 
7648   LLVM_DEBUG(printPlans(dbgs()));
7649   if (!MaxFactors.hasVector())
7650     return VectorizationFactor::Disabled();
7651 
7652   // Select the optimal vectorization factor.
7653   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7654 
7655   // Check if it is profitable to vectorize with runtime checks.
7656   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7657   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7658     bool PragmaThresholdReached =
7659         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7660     bool ThresholdReached =
7661         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7662     if ((ThresholdReached && !Hints.allowReordering()) ||
7663         PragmaThresholdReached) {
7664       ORE->emit([&]() {
7665         return OptimizationRemarkAnalysisAliasing(
7666                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7667                    OrigLoop->getHeader())
7668                << "loop not vectorized: cannot prove it is safe to reorder "
7669                   "memory operations";
7670       });
7671       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7672       Hints.emitRemarkWithHints();
7673       return VectorizationFactor::Disabled();
7674     }
7675   }
7676   return SelectedVF;
7677 }
7678 
7679 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7680   assert(count_if(VPlans,
7681                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7682              1 &&
7683          "Best VF has not a single VPlan.");
7684 
7685   for (const VPlanPtr &Plan : VPlans) {
7686     if (Plan->hasVF(VF))
7687       return *Plan.get();
7688   }
7689   llvm_unreachable("No plan found!");
7690 }
7691 
7692 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7693   SmallVector<Metadata *, 4> MDs;
7694   // Reserve first location for self reference to the LoopID metadata node.
7695   MDs.push_back(nullptr);
7696   bool IsUnrollMetadata = false;
7697   MDNode *LoopID = L->getLoopID();
7698   if (LoopID) {
7699     // First find existing loop unrolling disable metadata.
7700     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7701       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7702       if (MD) {
7703         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7704         IsUnrollMetadata =
7705             S && S->getString().startswith("llvm.loop.unroll.disable");
7706       }
7707       MDs.push_back(LoopID->getOperand(i));
7708     }
7709   }
7710 
7711   if (!IsUnrollMetadata) {
7712     // Add runtime unroll disable metadata.
7713     LLVMContext &Context = L->getHeader()->getContext();
7714     SmallVector<Metadata *, 1> DisableOperands;
7715     DisableOperands.push_back(
7716         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7717     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7718     MDs.push_back(DisableNode);
7719     MDNode *NewLoopID = MDNode::get(Context, MDs);
7720     // Set operand 0 to refer to the loop id itself.
7721     NewLoopID->replaceOperandWith(0, NewLoopID);
7722     L->setLoopID(NewLoopID);
7723   }
7724 }
7725 
7726 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7727                                            VPlan &BestVPlan,
7728                                            InnerLoopVectorizer &ILV,
7729                                            DominatorTree *DT) {
7730   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7731                     << '\n');
7732 
7733   // Perform the actual loop transformation.
7734 
7735   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7736   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7737   Value *CanonicalIVStartValue;
7738   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7739       ILV.createVectorizedLoopSkeleton();
7740   ILV.collectPoisonGeneratingRecipes(State);
7741 
7742   ILV.printDebugTracesAtStart();
7743 
7744   //===------------------------------------------------===//
7745   //
7746   // Notice: any optimization or new instruction that go
7747   // into the code below should also be implemented in
7748   // the cost-model.
7749   //
7750   //===------------------------------------------------===//
7751 
7752   // 2. Copy and widen instructions from the old loop into the new loop.
7753   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7754                              ILV.getOrCreateVectorTripCount(nullptr),
7755                              CanonicalIVStartValue, State);
7756   BestVPlan.execute(&State);
7757 
7758   // Keep all loop hints from the original loop on the vector loop (we'll
7759   // replace the vectorizer-specific hints below).
7760   MDNode *OrigLoopID = OrigLoop->getLoopID();
7761 
7762   Optional<MDNode *> VectorizedLoopID =
7763       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7764                                       LLVMLoopVectorizeFollowupVectorized});
7765 
7766   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7767   if (VectorizedLoopID.hasValue())
7768     L->setLoopID(VectorizedLoopID.getValue());
7769   else {
7770     // Keep all loop hints from the original loop on the vector loop (we'll
7771     // replace the vectorizer-specific hints below).
7772     if (MDNode *LID = OrigLoop->getLoopID())
7773       L->setLoopID(LID);
7774 
7775     LoopVectorizeHints Hints(L, true, *ORE);
7776     Hints.setAlreadyVectorized();
7777   }
7778   // Disable runtime unrolling when vectorizing the epilogue loop.
7779   if (CanonicalIVStartValue)
7780     AddRuntimeUnrollDisableMetaData(L);
7781 
7782   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7783   //    predication, updating analyses.
7784   ILV.fixVectorizedLoop(State);
7785 
7786   ILV.printDebugTracesAtEnd();
7787 }
7788 
7789 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7790 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7791   for (const auto &Plan : VPlans)
7792     if (PrintVPlansInDotFormat)
7793       Plan->printDOT(O);
7794     else
7795       Plan->print(O);
7796 }
7797 #endif
7798 
7799 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7800     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7801 
7802   // We create new control-flow for the vectorized loop, so the original exit
7803   // conditions will be dead after vectorization if it's only used by the
7804   // terminator
7805   SmallVector<BasicBlock*> ExitingBlocks;
7806   OrigLoop->getExitingBlocks(ExitingBlocks);
7807   for (auto *BB : ExitingBlocks) {
7808     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7809     if (!Cmp || !Cmp->hasOneUse())
7810       continue;
7811 
7812     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7813     if (!DeadInstructions.insert(Cmp).second)
7814       continue;
7815 
7816     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7817     // TODO: can recurse through operands in general
7818     for (Value *Op : Cmp->operands()) {
7819       if (isa<TruncInst>(Op) && Op->hasOneUse())
7820           DeadInstructions.insert(cast<Instruction>(Op));
7821     }
7822   }
7823 
7824   // We create new "steps" for induction variable updates to which the original
7825   // induction variables map. An original update instruction will be dead if
7826   // all its users except the induction variable are dead.
7827   auto *Latch = OrigLoop->getLoopLatch();
7828   for (auto &Induction : Legal->getInductionVars()) {
7829     PHINode *Ind = Induction.first;
7830     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7831 
7832     // If the tail is to be folded by masking, the primary induction variable,
7833     // if exists, isn't dead: it will be used for masking. Don't kill it.
7834     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7835       continue;
7836 
7837     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7838           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7839         }))
7840       DeadInstructions.insert(IndUpdate);
7841   }
7842 }
7843 
7844 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7845 
7846 //===--------------------------------------------------------------------===//
7847 // EpilogueVectorizerMainLoop
7848 //===--------------------------------------------------------------------===//
7849 
7850 /// This function is partially responsible for generating the control flow
7851 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7852 std::pair<BasicBlock *, Value *>
7853 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7854   MDNode *OrigLoopID = OrigLoop->getLoopID();
7855   Loop *Lp = createVectorLoopSkeleton("");
7856 
7857   // Generate the code to check the minimum iteration count of the vector
7858   // epilogue (see below).
7859   EPI.EpilogueIterationCountCheck =
7860       emitMinimumIterationCountCheck(LoopScalarPreHeader, true);
7861   EPI.EpilogueIterationCountCheck->setName("iter.check");
7862 
7863   // Generate the code to check any assumptions that we've made for SCEV
7864   // expressions.
7865   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7866 
7867   // Generate the code that checks at runtime if arrays overlap. We put the
7868   // checks into a separate block to make the more common case of few elements
7869   // faster.
7870   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7871 
7872   // Generate the iteration count check for the main loop, *after* the check
7873   // for the epilogue loop, so that the path-length is shorter for the case
7874   // that goes directly through the vector epilogue. The longer-path length for
7875   // the main loop is compensated for, by the gain from vectorizing the larger
7876   // trip count. Note: the branch will get updated later on when we vectorize
7877   // the epilogue.
7878   EPI.MainLoopIterationCountCheck =
7879       emitMinimumIterationCountCheck(LoopScalarPreHeader, false);
7880 
7881   // Generate the induction variable.
7882   Value *CountRoundDown = getOrCreateVectorTripCount(LoopVectorPreHeader);
7883   EPI.VectorTripCount = CountRoundDown;
7884   createHeaderBranch(Lp);
7885 
7886   // Skip induction resume value creation here because they will be created in
7887   // the second pass. If we created them here, they wouldn't be used anyway,
7888   // because the vplan in the second pass still contains the inductions from the
7889   // original loop.
7890 
7891   return {completeLoopSkeleton(OrigLoopID), nullptr};
7892 }
7893 
7894 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7895   LLVM_DEBUG({
7896     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7897            << "Main Loop VF:" << EPI.MainLoopVF
7898            << ", Main Loop UF:" << EPI.MainLoopUF
7899            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7900            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7901   });
7902 }
7903 
7904 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7905   DEBUG_WITH_TYPE(VerboseDebug, {
7906     dbgs() << "intermediate fn:\n"
7907            << *OrigLoop->getHeader()->getParent() << "\n";
7908   });
7909 }
7910 
7911 BasicBlock *
7912 EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(BasicBlock *Bypass,
7913                                                            bool ForEpilogue) {
7914   assert(Bypass && "Expected valid bypass basic block.");
7915   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7916   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7917   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7918   // Reuse existing vector loop preheader for TC checks.
7919   // Note that new preheader block is generated for vector loop.
7920   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7921   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7922 
7923   // Generate code to check if the loop's trip count is less than VF * UF of the
7924   // main vector loop.
7925   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7926       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7927 
7928   Value *CheckMinIters = Builder.CreateICmp(
7929       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7930       "min.iters.check");
7931 
7932   if (!ForEpilogue)
7933     TCCheckBlock->setName("vector.main.loop.iter.check");
7934 
7935   // Create new preheader for vector loop.
7936   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7937                                    DT, LI, nullptr, "vector.ph");
7938 
7939   if (ForEpilogue) {
7940     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7941                                  DT->getNode(Bypass)->getIDom()) &&
7942            "TC check is expected to dominate Bypass");
7943 
7944     // Update dominator for Bypass & LoopExit.
7945     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7946     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7947       // For loops with multiple exits, there's no edge from the middle block
7948       // to exit blocks (as the epilogue must run) and thus no need to update
7949       // the immediate dominator of the exit blocks.
7950       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7951 
7952     LoopBypassBlocks.push_back(TCCheckBlock);
7953 
7954     // Save the trip count so we don't have to regenerate it in the
7955     // vec.epilog.iter.check. This is safe to do because the trip count
7956     // generated here dominates the vector epilog iter check.
7957     EPI.TripCount = Count;
7958   }
7959 
7960   ReplaceInstWithInst(
7961       TCCheckBlock->getTerminator(),
7962       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7963 
7964   return TCCheckBlock;
7965 }
7966 
7967 //===--------------------------------------------------------------------===//
7968 // EpilogueVectorizerEpilogueLoop
7969 //===--------------------------------------------------------------------===//
7970 
7971 /// This function is partially responsible for generating the control flow
7972 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7973 std::pair<BasicBlock *, Value *>
7974 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7975   MDNode *OrigLoopID = OrigLoop->getLoopID();
7976   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
7977 
7978   // Now, compare the remaining count and if there aren't enough iterations to
7979   // execute the vectorized epilogue skip to the scalar part.
7980   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7981   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7982   LoopVectorPreHeader =
7983       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7984                  LI, nullptr, "vec.epilog.ph");
7985   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7986                                           VecEpilogueIterationCountCheck);
7987 
7988   // Adjust the control flow taking the state info from the main loop
7989   // vectorization into account.
7990   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7991          "expected this to be saved from the previous pass.");
7992   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7993       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7994 
7995   DT->changeImmediateDominator(LoopVectorPreHeader,
7996                                EPI.MainLoopIterationCountCheck);
7997 
7998   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7999       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8000 
8001   if (EPI.SCEVSafetyCheck)
8002     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8003         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8004   if (EPI.MemSafetyCheck)
8005     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8006         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8007 
8008   DT->changeImmediateDominator(
8009       VecEpilogueIterationCountCheck,
8010       VecEpilogueIterationCountCheck->getSinglePredecessor());
8011 
8012   DT->changeImmediateDominator(LoopScalarPreHeader,
8013                                EPI.EpilogueIterationCountCheck);
8014   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8015     // If there is an epilogue which must run, there's no edge from the
8016     // middle block to exit blocks  and thus no need to update the immediate
8017     // dominator of the exit blocks.
8018     DT->changeImmediateDominator(LoopExitBlock,
8019                                  EPI.EpilogueIterationCountCheck);
8020 
8021   // Keep track of bypass blocks, as they feed start values to the induction
8022   // phis in the scalar loop preheader.
8023   if (EPI.SCEVSafetyCheck)
8024     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8025   if (EPI.MemSafetyCheck)
8026     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8027   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8028 
8029   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
8030   // merge control-flow from the latch block and the middle block. Update the
8031   // incoming values here and move the Phi into the preheader.
8032   SmallVector<PHINode *, 4> PhisInBlock;
8033   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
8034     PhisInBlock.push_back(&Phi);
8035 
8036   for (PHINode *Phi : PhisInBlock) {
8037     Phi->replaceIncomingBlockWith(
8038         VecEpilogueIterationCountCheck->getSinglePredecessor(),
8039         VecEpilogueIterationCountCheck);
8040     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
8041     if (EPI.SCEVSafetyCheck)
8042       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
8043     if (EPI.MemSafetyCheck)
8044       Phi->removeIncomingValue(EPI.MemSafetyCheck);
8045     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
8046   }
8047 
8048   // Generate a resume induction for the vector epilogue and put it in the
8049   // vector epilogue preheader
8050   Type *IdxTy = Legal->getWidestInductionType();
8051   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8052                                          LoopVectorPreHeader->getFirstNonPHI());
8053   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8054   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8055                            EPI.MainLoopIterationCountCheck);
8056 
8057   // Generate the induction variable.
8058   createHeaderBranch(Lp);
8059 
8060   // Generate induction resume values. These variables save the new starting
8061   // indexes for the scalar loop. They are used to test if there are any tail
8062   // iterations left once the vector loop has completed.
8063   // Note that when the vectorized epilogue is skipped due to iteration count
8064   // check, then the resume value for the induction variable comes from
8065   // the trip count of the main vector loop, hence passing the AdditionalBypass
8066   // argument.
8067   createInductionResumeValues({VecEpilogueIterationCountCheck,
8068                                EPI.VectorTripCount} /* AdditionalBypass */);
8069 
8070   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
8071 }
8072 
8073 BasicBlock *
8074 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8075     BasicBlock *Bypass, BasicBlock *Insert) {
8076 
8077   assert(EPI.TripCount &&
8078          "Expected trip count to have been safed in the first pass.");
8079   assert(
8080       (!isa<Instruction>(EPI.TripCount) ||
8081        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8082       "saved trip count does not dominate insertion point.");
8083   Value *TC = EPI.TripCount;
8084   IRBuilder<> Builder(Insert->getTerminator());
8085   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8086 
8087   // Generate code to check if the loop's trip count is less than VF * UF of the
8088   // vector epilogue loop.
8089   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8090       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8091 
8092   Value *CheckMinIters =
8093       Builder.CreateICmp(P, Count,
8094                          createStepForVF(Builder, Count->getType(),
8095                                          EPI.EpilogueVF, EPI.EpilogueUF),
8096                          "min.epilog.iters.check");
8097 
8098   ReplaceInstWithInst(
8099       Insert->getTerminator(),
8100       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8101 
8102   LoopBypassBlocks.push_back(Insert);
8103   return Insert;
8104 }
8105 
8106 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8107   LLVM_DEBUG({
8108     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8109            << "Epilogue Loop VF:" << EPI.EpilogueVF
8110            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8111   });
8112 }
8113 
8114 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8115   DEBUG_WITH_TYPE(VerboseDebug, {
8116     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8117   });
8118 }
8119 
8120 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8121     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8122   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8123   bool PredicateAtRangeStart = Predicate(Range.Start);
8124 
8125   for (ElementCount TmpVF = Range.Start * 2;
8126        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8127     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8128       Range.End = TmpVF;
8129       break;
8130     }
8131 
8132   return PredicateAtRangeStart;
8133 }
8134 
8135 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8136 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8137 /// of VF's starting at a given VF and extending it as much as possible. Each
8138 /// vectorization decision can potentially shorten this sub-range during
8139 /// buildVPlan().
8140 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8141                                            ElementCount MaxVF) {
8142   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8143   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8144     VFRange SubRange = {VF, MaxVFPlusOne};
8145     VPlans.push_back(buildVPlan(SubRange));
8146     VF = SubRange.End;
8147   }
8148 }
8149 
8150 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8151                                          VPlanPtr &Plan) {
8152   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8153 
8154   // Look for cached value.
8155   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8156   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8157   if (ECEntryIt != EdgeMaskCache.end())
8158     return ECEntryIt->second;
8159 
8160   VPValue *SrcMask = createBlockInMask(Src, Plan);
8161 
8162   // The terminator has to be a branch inst!
8163   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8164   assert(BI && "Unexpected terminator found");
8165 
8166   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8167     return EdgeMaskCache[Edge] = SrcMask;
8168 
8169   // If source is an exiting block, we know the exit edge is dynamically dead
8170   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8171   // adding uses of an otherwise potentially dead instruction.
8172   if (OrigLoop->isLoopExiting(Src))
8173     return EdgeMaskCache[Edge] = SrcMask;
8174 
8175   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8176   assert(EdgeMask && "No Edge Mask found for condition");
8177 
8178   if (BI->getSuccessor(0) != Dst)
8179     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8180 
8181   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8182     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8183     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8184     // The select version does not introduce new UB if SrcMask is false and
8185     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8186     VPValue *False = Plan->getOrAddVPValue(
8187         ConstantInt::getFalse(BI->getCondition()->getType()));
8188     EdgeMask =
8189         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8190   }
8191 
8192   return EdgeMaskCache[Edge] = EdgeMask;
8193 }
8194 
8195 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8196   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8197 
8198   // Look for cached value.
8199   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8200   if (BCEntryIt != BlockMaskCache.end())
8201     return BCEntryIt->second;
8202 
8203   // All-one mask is modelled as no-mask following the convention for masked
8204   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8205   VPValue *BlockMask = nullptr;
8206 
8207   if (OrigLoop->getHeader() == BB) {
8208     if (!CM.blockNeedsPredicationForAnyReason(BB))
8209       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8210 
8211     // Introduce the early-exit compare IV <= BTC to form header block mask.
8212     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8213     // constructing the desired canonical IV in the header block as its first
8214     // non-phi instructions.
8215     assert(CM.foldTailByMasking() && "must fold the tail");
8216     VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock();
8217     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8218     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8219     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8220 
8221     VPBuilder::InsertPointGuard Guard(Builder);
8222     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8223     if (CM.TTI.emitGetActiveLaneMask()) {
8224       VPValue *TC = Plan->getOrCreateTripCount();
8225       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8226     } else {
8227       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8228       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8229     }
8230     return BlockMaskCache[BB] = BlockMask;
8231   }
8232 
8233   // This is the block mask. We OR all incoming edges.
8234   for (auto *Predecessor : predecessors(BB)) {
8235     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8236     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8237       return BlockMaskCache[BB] = EdgeMask;
8238 
8239     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8240       BlockMask = EdgeMask;
8241       continue;
8242     }
8243 
8244     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8245   }
8246 
8247   return BlockMaskCache[BB] = BlockMask;
8248 }
8249 
8250 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8251                                                 ArrayRef<VPValue *> Operands,
8252                                                 VFRange &Range,
8253                                                 VPlanPtr &Plan) {
8254   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8255          "Must be called with either a load or store");
8256 
8257   auto willWiden = [&](ElementCount VF) -> bool {
8258     if (VF.isScalar())
8259       return false;
8260     LoopVectorizationCostModel::InstWidening Decision =
8261         CM.getWideningDecision(I, VF);
8262     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8263            "CM decision should be taken at this point.");
8264     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8265       return true;
8266     if (CM.isScalarAfterVectorization(I, VF) ||
8267         CM.isProfitableToScalarize(I, VF))
8268       return false;
8269     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8270   };
8271 
8272   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8273     return nullptr;
8274 
8275   VPValue *Mask = nullptr;
8276   if (Legal->isMaskRequired(I))
8277     Mask = createBlockInMask(I->getParent(), Plan);
8278 
8279   // Determine if the pointer operand of the access is either consecutive or
8280   // reverse consecutive.
8281   LoopVectorizationCostModel::InstWidening Decision =
8282       CM.getWideningDecision(I, Range.Start);
8283   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8284   bool Consecutive =
8285       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8286 
8287   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8288     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8289                                               Consecutive, Reverse);
8290 
8291   StoreInst *Store = cast<StoreInst>(I);
8292   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8293                                             Mask, Consecutive, Reverse);
8294 }
8295 
8296 static VPWidenIntOrFpInductionRecipe *
8297 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8298                            VPValue *Start, const InductionDescriptor &IndDesc,
8299                            LoopVectorizationCostModel &CM, ScalarEvolution &SE,
8300                            Loop &OrigLoop, VFRange &Range) {
8301   // Returns true if an instruction \p I should be scalarized instead of
8302   // vectorized for the chosen vectorization factor.
8303   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8304     return CM.isScalarAfterVectorization(I, VF) ||
8305            CM.isProfitableToScalarize(I, VF);
8306   };
8307 
8308   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8309       [&](ElementCount VF) {
8310         // Returns true if we should generate a scalar version of \p IV.
8311         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8312           return true;
8313         auto isScalarInst = [&](User *U) -> bool {
8314           auto *I = cast<Instruction>(U);
8315           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8316         };
8317         return any_of(PhiOrTrunc->users(), isScalarInst);
8318       },
8319       Range);
8320   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8321       [&](ElementCount VF) {
8322         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8323       },
8324       Range);
8325   assert(IndDesc.getStartValue() ==
8326          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8327   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8328          "step must be loop invariant");
8329   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8330     return new VPWidenIntOrFpInductionRecipe(
8331         Phi, Start, IndDesc, TruncI, NeedsScalarIV, !NeedsScalarIVOnly, SE);
8332   }
8333   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8334   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8335                                            !NeedsScalarIVOnly, SE);
8336 }
8337 
8338 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
8339     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8340 
8341   // Check if this is an integer or fp induction. If so, build the recipe that
8342   // produces its scalar and vector values.
8343   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8344     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM,
8345                                       *PSE.getSE(), *OrigLoop, Range);
8346 
8347   return nullptr;
8348 }
8349 
8350 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8351     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8352     VPlan &Plan) const {
8353   // Optimize the special case where the source is a constant integer
8354   // induction variable. Notice that we can only optimize the 'trunc' case
8355   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8356   // (c) other casts depend on pointer size.
8357 
8358   // Determine whether \p K is a truncation based on an induction variable that
8359   // can be optimized.
8360   auto isOptimizableIVTruncate =
8361       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8362     return [=](ElementCount VF) -> bool {
8363       return CM.isOptimizableIVTruncate(K, VF);
8364     };
8365   };
8366 
8367   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8368           isOptimizableIVTruncate(I), Range)) {
8369 
8370     auto *Phi = cast<PHINode>(I->getOperand(0));
8371     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8372     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8373     return createWidenInductionRecipe(Phi, I, Start, II, CM, *PSE.getSE(),
8374                                       *OrigLoop, Range);
8375   }
8376   return nullptr;
8377 }
8378 
8379 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8380                                                 ArrayRef<VPValue *> Operands,
8381                                                 VPlanPtr &Plan) {
8382   // If all incoming values are equal, the incoming VPValue can be used directly
8383   // instead of creating a new VPBlendRecipe.
8384   VPValue *FirstIncoming = Operands[0];
8385   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8386         return FirstIncoming == Inc;
8387       })) {
8388     return Operands[0];
8389   }
8390 
8391   unsigned NumIncoming = Phi->getNumIncomingValues();
8392   // For in-loop reductions, we do not need to create an additional select.
8393   VPValue *InLoopVal = nullptr;
8394   for (unsigned In = 0; In < NumIncoming; In++) {
8395     PHINode *PhiOp =
8396         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8397     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8398       assert(!InLoopVal && "Found more than one in-loop reduction!");
8399       InLoopVal = Operands[In];
8400     }
8401   }
8402 
8403   assert((!InLoopVal || NumIncoming == 2) &&
8404          "Found an in-loop reduction for PHI with unexpected number of "
8405          "incoming values");
8406   if (InLoopVal)
8407     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8408 
8409   // We know that all PHIs in non-header blocks are converted into selects, so
8410   // we don't have to worry about the insertion order and we can just use the
8411   // builder. At this point we generate the predication tree. There may be
8412   // duplications since this is a simple recursive scan, but future
8413   // optimizations will clean it up.
8414   SmallVector<VPValue *, 2> OperandsWithMask;
8415 
8416   for (unsigned In = 0; In < NumIncoming; In++) {
8417     VPValue *EdgeMask =
8418       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8419     assert((EdgeMask || NumIncoming == 1) &&
8420            "Multiple predecessors with one having a full mask");
8421     OperandsWithMask.push_back(Operands[In]);
8422     if (EdgeMask)
8423       OperandsWithMask.push_back(EdgeMask);
8424   }
8425   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8426 }
8427 
8428 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8429                                                    ArrayRef<VPValue *> Operands,
8430                                                    VFRange &Range) const {
8431 
8432   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8433       [this, CI](ElementCount VF) {
8434         return CM.isScalarWithPredication(CI, VF);
8435       },
8436       Range);
8437 
8438   if (IsPredicated)
8439     return nullptr;
8440 
8441   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8442   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8443              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8444              ID == Intrinsic::pseudoprobe ||
8445              ID == Intrinsic::experimental_noalias_scope_decl))
8446     return nullptr;
8447 
8448   auto willWiden = [&](ElementCount VF) -> bool {
8449     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8450     // The following case may be scalarized depending on the VF.
8451     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8452     // version of the instruction.
8453     // Is it beneficial to perform intrinsic call compared to lib call?
8454     bool NeedToScalarize = false;
8455     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8456     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8457     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8458     return UseVectorIntrinsic || !NeedToScalarize;
8459   };
8460 
8461   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8462     return nullptr;
8463 
8464   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8465   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8466 }
8467 
8468 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8469   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8470          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8471   // Instruction should be widened, unless it is scalar after vectorization,
8472   // scalarization is profitable or it is predicated.
8473   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8474     return CM.isScalarAfterVectorization(I, VF) ||
8475            CM.isProfitableToScalarize(I, VF) ||
8476            CM.isScalarWithPredication(I, VF);
8477   };
8478   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8479                                                              Range);
8480 }
8481 
8482 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8483                                            ArrayRef<VPValue *> Operands) const {
8484   auto IsVectorizableOpcode = [](unsigned Opcode) {
8485     switch (Opcode) {
8486     case Instruction::Add:
8487     case Instruction::And:
8488     case Instruction::AShr:
8489     case Instruction::BitCast:
8490     case Instruction::FAdd:
8491     case Instruction::FCmp:
8492     case Instruction::FDiv:
8493     case Instruction::FMul:
8494     case Instruction::FNeg:
8495     case Instruction::FPExt:
8496     case Instruction::FPToSI:
8497     case Instruction::FPToUI:
8498     case Instruction::FPTrunc:
8499     case Instruction::FRem:
8500     case Instruction::FSub:
8501     case Instruction::ICmp:
8502     case Instruction::IntToPtr:
8503     case Instruction::LShr:
8504     case Instruction::Mul:
8505     case Instruction::Or:
8506     case Instruction::PtrToInt:
8507     case Instruction::SDiv:
8508     case Instruction::Select:
8509     case Instruction::SExt:
8510     case Instruction::Shl:
8511     case Instruction::SIToFP:
8512     case Instruction::SRem:
8513     case Instruction::Sub:
8514     case Instruction::Trunc:
8515     case Instruction::UDiv:
8516     case Instruction::UIToFP:
8517     case Instruction::URem:
8518     case Instruction::Xor:
8519     case Instruction::ZExt:
8520       return true;
8521     }
8522     return false;
8523   };
8524 
8525   if (!IsVectorizableOpcode(I->getOpcode()))
8526     return nullptr;
8527 
8528   // Success: widen this instruction.
8529   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8530 }
8531 
8532 void VPRecipeBuilder::fixHeaderPhis() {
8533   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8534   for (VPHeaderPHIRecipe *R : PhisToFix) {
8535     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8536     VPRecipeBase *IncR =
8537         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8538     R->addOperand(IncR->getVPSingleValue());
8539   }
8540 }
8541 
8542 VPBasicBlock *VPRecipeBuilder::handleReplication(
8543     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8544     VPlanPtr &Plan) {
8545   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8546       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8547       Range);
8548 
8549   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8550       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8551       Range);
8552 
8553   // Even if the instruction is not marked as uniform, there are certain
8554   // intrinsic calls that can be effectively treated as such, so we check for
8555   // them here. Conservatively, we only do this for scalable vectors, since
8556   // for fixed-width VFs we can always fall back on full scalarization.
8557   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8558     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8559     case Intrinsic::assume:
8560     case Intrinsic::lifetime_start:
8561     case Intrinsic::lifetime_end:
8562       // For scalable vectors if one of the operands is variant then we still
8563       // want to mark as uniform, which will generate one instruction for just
8564       // the first lane of the vector. We can't scalarize the call in the same
8565       // way as for fixed-width vectors because we don't know how many lanes
8566       // there are.
8567       //
8568       // The reasons for doing it this way for scalable vectors are:
8569       //   1. For the assume intrinsic generating the instruction for the first
8570       //      lane is still be better than not generating any at all. For
8571       //      example, the input may be a splat across all lanes.
8572       //   2. For the lifetime start/end intrinsics the pointer operand only
8573       //      does anything useful when the input comes from a stack object,
8574       //      which suggests it should always be uniform. For non-stack objects
8575       //      the effect is to poison the object, which still allows us to
8576       //      remove the call.
8577       IsUniform = true;
8578       break;
8579     default:
8580       break;
8581     }
8582   }
8583 
8584   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8585                                        IsUniform, IsPredicated);
8586   setRecipe(I, Recipe);
8587   Plan->addVPValue(I, Recipe);
8588 
8589   // Find if I uses a predicated instruction. If so, it will use its scalar
8590   // value. Avoid hoisting the insert-element which packs the scalar value into
8591   // a vector value, as that happens iff all users use the vector value.
8592   for (VPValue *Op : Recipe->operands()) {
8593     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8594     if (!PredR)
8595       continue;
8596     auto *RepR =
8597         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8598     assert(RepR->isPredicated() &&
8599            "expected Replicate recipe to be predicated");
8600     RepR->setAlsoPack(false);
8601   }
8602 
8603   // Finalize the recipe for Instr, first if it is not predicated.
8604   if (!IsPredicated) {
8605     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8606     VPBB->appendRecipe(Recipe);
8607     return VPBB;
8608   }
8609   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8610 
8611   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8612   assert(SingleSucc && "VPBB must have a single successor when handling "
8613                        "predicated replication.");
8614   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8615   // Record predicated instructions for above packing optimizations.
8616   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8617   VPBlockUtils::insertBlockAfter(Region, VPBB);
8618   auto *RegSucc = new VPBasicBlock();
8619   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8620   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8621   return RegSucc;
8622 }
8623 
8624 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8625                                                       VPRecipeBase *PredRecipe,
8626                                                       VPlanPtr &Plan) {
8627   // Instructions marked for predication are replicated and placed under an
8628   // if-then construct to prevent side-effects.
8629 
8630   // Generate recipes to compute the block mask for this region.
8631   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8632 
8633   // Build the triangular if-then region.
8634   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8635   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8636   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8637   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8638   auto *PHIRecipe = Instr->getType()->isVoidTy()
8639                         ? nullptr
8640                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8641   if (PHIRecipe) {
8642     Plan->removeVPValueFor(Instr);
8643     Plan->addVPValue(Instr, PHIRecipe);
8644   }
8645   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8646   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8647   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8648 
8649   // Note: first set Entry as region entry and then connect successors starting
8650   // from it in order, to propagate the "parent" of each VPBasicBlock.
8651   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8652   VPBlockUtils::connectBlocks(Pred, Exit);
8653 
8654   return Region;
8655 }
8656 
8657 VPRecipeOrVPValueTy
8658 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8659                                         ArrayRef<VPValue *> Operands,
8660                                         VFRange &Range, VPlanPtr &Plan) {
8661   // First, check for specific widening recipes that deal with calls, memory
8662   // operations, inductions and Phi nodes.
8663   if (auto *CI = dyn_cast<CallInst>(Instr))
8664     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8665 
8666   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8667     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8668 
8669   VPRecipeBase *Recipe;
8670   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8671     if (Phi->getParent() != OrigLoop->getHeader())
8672       return tryToBlend(Phi, Operands, Plan);
8673     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8674       return toVPRecipeResult(Recipe);
8675 
8676     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8677     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8678       VPValue *StartV = Operands[0];
8679       if (Legal->isReductionVariable(Phi)) {
8680         const RecurrenceDescriptor &RdxDesc =
8681             Legal->getReductionVars().find(Phi)->second;
8682         assert(RdxDesc.getRecurrenceStartValue() ==
8683                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8684         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8685                                              CM.isInLoopReduction(Phi),
8686                                              CM.useOrderedReductions(RdxDesc));
8687       } else {
8688         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8689       }
8690 
8691       // Record the incoming value from the backedge, so we can add the incoming
8692       // value from the backedge after all recipes have been created.
8693       recordRecipeOf(cast<Instruction>(
8694           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8695       PhisToFix.push_back(PhiRecipe);
8696     } else {
8697       // TODO: record backedge value for remaining pointer induction phis.
8698       assert(Phi->getType()->isPointerTy() &&
8699              "only pointer phis should be handled here");
8700       assert(Legal->getInductionVars().count(Phi) &&
8701              "Not an induction variable");
8702       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8703       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8704       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8705     }
8706 
8707     return toVPRecipeResult(PhiRecipe);
8708   }
8709 
8710   if (isa<TruncInst>(Instr) &&
8711       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8712                                                Range, *Plan)))
8713     return toVPRecipeResult(Recipe);
8714 
8715   if (!shouldWiden(Instr, Range))
8716     return nullptr;
8717 
8718   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8719     return toVPRecipeResult(new VPWidenGEPRecipe(
8720         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8721 
8722   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8723     bool InvariantCond =
8724         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8725     return toVPRecipeResult(new VPWidenSelectRecipe(
8726         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8727   }
8728 
8729   return toVPRecipeResult(tryToWiden(Instr, Operands));
8730 }
8731 
8732 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8733                                                         ElementCount MaxVF) {
8734   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8735 
8736   // Collect instructions from the original loop that will become trivially dead
8737   // in the vectorized loop. We don't need to vectorize these instructions. For
8738   // example, original induction update instructions can become dead because we
8739   // separately emit induction "steps" when generating code for the new loop.
8740   // Similarly, we create a new latch condition when setting up the structure
8741   // of the new loop, so the old one can become dead.
8742   SmallPtrSet<Instruction *, 4> DeadInstructions;
8743   collectTriviallyDeadInstructions(DeadInstructions);
8744 
8745   // Add assume instructions we need to drop to DeadInstructions, to prevent
8746   // them from being added to the VPlan.
8747   // TODO: We only need to drop assumes in blocks that get flattend. If the
8748   // control flow is preserved, we should keep them.
8749   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8750   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8751 
8752   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8753   // Dead instructions do not need sinking. Remove them from SinkAfter.
8754   for (Instruction *I : DeadInstructions)
8755     SinkAfter.erase(I);
8756 
8757   // Cannot sink instructions after dead instructions (there won't be any
8758   // recipes for them). Instead, find the first non-dead previous instruction.
8759   for (auto &P : Legal->getSinkAfter()) {
8760     Instruction *SinkTarget = P.second;
8761     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8762     (void)FirstInst;
8763     while (DeadInstructions.contains(SinkTarget)) {
8764       assert(
8765           SinkTarget != FirstInst &&
8766           "Must find a live instruction (at least the one feeding the "
8767           "first-order recurrence PHI) before reaching beginning of the block");
8768       SinkTarget = SinkTarget->getPrevNode();
8769       assert(SinkTarget != P.first &&
8770              "sink source equals target, no sinking required");
8771     }
8772     P.second = SinkTarget;
8773   }
8774 
8775   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8776   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8777     VFRange SubRange = {VF, MaxVFPlusOne};
8778     VPlans.push_back(
8779         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8780     VF = SubRange.End;
8781   }
8782 }
8783 
8784 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8785 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8786 // BranchOnCount VPInstruction to the latch.
8787 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8788                                   bool HasNUW, bool IsVPlanNative) {
8789   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8790   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8791 
8792   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8793   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8794   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8795   if (IsVPlanNative)
8796     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
8797   Header->insert(CanonicalIVPHI, Header->begin());
8798 
8799   auto *CanonicalIVIncrement =
8800       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8801                                : VPInstruction::CanonicalIVIncrement,
8802                         {CanonicalIVPHI}, DL);
8803   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8804 
8805   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
8806   if (IsVPlanNative) {
8807     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
8808     EB->setCondBit(nullptr);
8809   }
8810   EB->appendRecipe(CanonicalIVIncrement);
8811 
8812   auto *BranchOnCount =
8813       new VPInstruction(VPInstruction::BranchOnCount,
8814                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8815   EB->appendRecipe(BranchOnCount);
8816 }
8817 
8818 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8819     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8820     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8821 
8822   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8823 
8824   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8825 
8826   // ---------------------------------------------------------------------------
8827   // Pre-construction: record ingredients whose recipes we'll need to further
8828   // process after constructing the initial VPlan.
8829   // ---------------------------------------------------------------------------
8830 
8831   // Mark instructions we'll need to sink later and their targets as
8832   // ingredients whose recipe we'll need to record.
8833   for (auto &Entry : SinkAfter) {
8834     RecipeBuilder.recordRecipeOf(Entry.first);
8835     RecipeBuilder.recordRecipeOf(Entry.second);
8836   }
8837   for (auto &Reduction : CM.getInLoopReductionChains()) {
8838     PHINode *Phi = Reduction.first;
8839     RecurKind Kind =
8840         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8841     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8842 
8843     RecipeBuilder.recordRecipeOf(Phi);
8844     for (auto &R : ReductionOperations) {
8845       RecipeBuilder.recordRecipeOf(R);
8846       // For min/max reductions, where we have a pair of icmp/select, we also
8847       // need to record the ICmp recipe, so it can be removed later.
8848       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8849              "Only min/max recurrences allowed for inloop reductions");
8850       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8851         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8852     }
8853   }
8854 
8855   // For each interleave group which is relevant for this (possibly trimmed)
8856   // Range, add it to the set of groups to be later applied to the VPlan and add
8857   // placeholders for its members' Recipes which we'll be replacing with a
8858   // single VPInterleaveRecipe.
8859   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8860     auto applyIG = [IG, this](ElementCount VF) -> bool {
8861       return (VF.isVector() && // Query is illegal for VF == 1
8862               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8863                   LoopVectorizationCostModel::CM_Interleave);
8864     };
8865     if (!getDecisionAndClampRange(applyIG, Range))
8866       continue;
8867     InterleaveGroups.insert(IG);
8868     for (unsigned i = 0; i < IG->getFactor(); i++)
8869       if (Instruction *Member = IG->getMember(i))
8870         RecipeBuilder.recordRecipeOf(Member);
8871   };
8872 
8873   // ---------------------------------------------------------------------------
8874   // Build initial VPlan: Scan the body of the loop in a topological order to
8875   // visit each basic block after having visited its predecessor basic blocks.
8876   // ---------------------------------------------------------------------------
8877 
8878   // Create initial VPlan skeleton, with separate header and latch blocks.
8879   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
8880   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8881   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8882   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8883   auto Plan = std::make_unique<VPlan>(TopRegion);
8884 
8885   Instruction *DLInst =
8886       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8887   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8888                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8889                         !CM.foldTailByMasking(), false);
8890 
8891   // Scan the body of the loop in a topological order to visit each basic block
8892   // after having visited its predecessor basic blocks.
8893   LoopBlocksDFS DFS(OrigLoop);
8894   DFS.perform(LI);
8895 
8896   VPBasicBlock *VPBB = HeaderVPBB;
8897   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8898   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8899     // Relevant instructions from basic block BB will be grouped into VPRecipe
8900     // ingredients and fill a new VPBasicBlock.
8901     unsigned VPBBsForBB = 0;
8902     VPBB->setName(BB->getName());
8903     Builder.setInsertPoint(VPBB);
8904 
8905     // Introduce each ingredient into VPlan.
8906     // TODO: Model and preserve debug instrinsics in VPlan.
8907     for (Instruction &I : BB->instructionsWithoutDebug()) {
8908       Instruction *Instr = &I;
8909 
8910       // First filter out irrelevant instructions, to ensure no recipes are
8911       // built for them.
8912       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8913         continue;
8914 
8915       SmallVector<VPValue *, 4> Operands;
8916       auto *Phi = dyn_cast<PHINode>(Instr);
8917       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8918         Operands.push_back(Plan->getOrAddVPValue(
8919             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8920       } else {
8921         auto OpRange = Plan->mapToVPValues(Instr->operands());
8922         Operands = {OpRange.begin(), OpRange.end()};
8923       }
8924       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8925               Instr, Operands, Range, Plan)) {
8926         // If Instr can be simplified to an existing VPValue, use it.
8927         if (RecipeOrValue.is<VPValue *>()) {
8928           auto *VPV = RecipeOrValue.get<VPValue *>();
8929           Plan->addVPValue(Instr, VPV);
8930           // If the re-used value is a recipe, register the recipe for the
8931           // instruction, in case the recipe for Instr needs to be recorded.
8932           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8933             RecipeBuilder.setRecipe(Instr, R);
8934           continue;
8935         }
8936         // Otherwise, add the new recipe.
8937         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8938         for (auto *Def : Recipe->definedValues()) {
8939           auto *UV = Def->getUnderlyingValue();
8940           Plan->addVPValue(UV, Def);
8941         }
8942 
8943         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8944             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8945           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8946           // of the header block. That can happen for truncates of induction
8947           // variables. Those recipes are moved to the phi section of the header
8948           // block after applying SinkAfter, which relies on the original
8949           // position of the trunc.
8950           assert(isa<TruncInst>(Instr));
8951           InductionsToMove.push_back(
8952               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8953         }
8954         RecipeBuilder.setRecipe(Instr, Recipe);
8955         VPBB->appendRecipe(Recipe);
8956         continue;
8957       }
8958 
8959       // Otherwise, if all widening options failed, Instruction is to be
8960       // replicated. This may create a successor for VPBB.
8961       VPBasicBlock *NextVPBB =
8962           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8963       if (NextVPBB != VPBB) {
8964         VPBB = NextVPBB;
8965         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8966                                     : "");
8967       }
8968     }
8969 
8970     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8971     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8972   }
8973 
8974   // Fold the last, empty block into its predecessor.
8975   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8976   assert(VPBB && "expected to fold last (empty) block");
8977   // After here, VPBB should not be used.
8978   VPBB = nullptr;
8979 
8980   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
8981          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
8982          "entry block must be set to a VPRegionBlock having a non-empty entry "
8983          "VPBasicBlock");
8984   RecipeBuilder.fixHeaderPhis();
8985 
8986   // ---------------------------------------------------------------------------
8987   // Transform initial VPlan: Apply previously taken decisions, in order, to
8988   // bring the VPlan to its final state.
8989   // ---------------------------------------------------------------------------
8990 
8991   // Apply Sink-After legal constraints.
8992   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8993     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8994     if (Region && Region->isReplicator()) {
8995       assert(Region->getNumSuccessors() == 1 &&
8996              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8997       assert(R->getParent()->size() == 1 &&
8998              "A recipe in an original replicator region must be the only "
8999              "recipe in its block");
9000       return Region;
9001     }
9002     return nullptr;
9003   };
9004   for (auto &Entry : SinkAfter) {
9005     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9006     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9007 
9008     auto *TargetRegion = GetReplicateRegion(Target);
9009     auto *SinkRegion = GetReplicateRegion(Sink);
9010     if (!SinkRegion) {
9011       // If the sink source is not a replicate region, sink the recipe directly.
9012       if (TargetRegion) {
9013         // The target is in a replication region, make sure to move Sink to
9014         // the block after it, not into the replication region itself.
9015         VPBasicBlock *NextBlock =
9016             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9017         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9018       } else
9019         Sink->moveAfter(Target);
9020       continue;
9021     }
9022 
9023     // The sink source is in a replicate region. Unhook the region from the CFG.
9024     auto *SinkPred = SinkRegion->getSinglePredecessor();
9025     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9026     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9027     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9028     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9029 
9030     if (TargetRegion) {
9031       // The target recipe is also in a replicate region, move the sink region
9032       // after the target region.
9033       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9034       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9035       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9036       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9037     } else {
9038       // The sink source is in a replicate region, we need to move the whole
9039       // replicate region, which should only contain a single recipe in the
9040       // main block.
9041       auto *SplitBlock =
9042           Target->getParent()->splitAt(std::next(Target->getIterator()));
9043 
9044       auto *SplitPred = SplitBlock->getSinglePredecessor();
9045 
9046       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9047       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9048       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9049     }
9050   }
9051 
9052   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
9053   VPlanTransforms::removeRedundantInductionCasts(*Plan);
9054 
9055   // Now that sink-after is done, move induction recipes for optimized truncates
9056   // to the phi section of the header block.
9057   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9058     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9059 
9060   // Adjust the recipes for any inloop reductions.
9061   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
9062                              RecipeBuilder, Range.Start);
9063 
9064   // Introduce a recipe to combine the incoming and previous values of a
9065   // first-order recurrence.
9066   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9067     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9068     if (!RecurPhi)
9069       continue;
9070 
9071     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9072     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9073     auto *Region = GetReplicateRegion(PrevRecipe);
9074     if (Region)
9075       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9076     if (Region || PrevRecipe->isPhi())
9077       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9078     else
9079       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9080 
9081     auto *RecurSplice = cast<VPInstruction>(
9082         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9083                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9084 
9085     RecurPhi->replaceAllUsesWith(RecurSplice);
9086     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9087     // all users.
9088     RecurSplice->setOperand(0, RecurPhi);
9089   }
9090 
9091   // Interleave memory: for each Interleave Group we marked earlier as relevant
9092   // for this VPlan, replace the Recipes widening its memory instructions with a
9093   // single VPInterleaveRecipe at its insertion point.
9094   for (auto IG : InterleaveGroups) {
9095     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9096         RecipeBuilder.getRecipe(IG->getInsertPos()));
9097     SmallVector<VPValue *, 4> StoredValues;
9098     for (unsigned i = 0; i < IG->getFactor(); ++i)
9099       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9100         auto *StoreR =
9101             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9102         StoredValues.push_back(StoreR->getStoredValue());
9103       }
9104 
9105     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9106                                         Recipe->getMask());
9107     VPIG->insertBefore(Recipe);
9108     unsigned J = 0;
9109     for (unsigned i = 0; i < IG->getFactor(); ++i)
9110       if (Instruction *Member = IG->getMember(i)) {
9111         if (!Member->getType()->isVoidTy()) {
9112           VPValue *OriginalV = Plan->getVPValue(Member);
9113           Plan->removeVPValueFor(Member);
9114           Plan->addVPValue(Member, VPIG->getVPValue(J));
9115           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9116           J++;
9117         }
9118         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9119       }
9120   }
9121 
9122   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9123   // in ways that accessing values using original IR values is incorrect.
9124   Plan->disableValue2VPValue();
9125 
9126   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9127   VPlanTransforms::sinkScalarOperands(*Plan);
9128   VPlanTransforms::mergeReplicateRegions(*Plan);
9129   VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop);
9130 
9131   std::string PlanName;
9132   raw_string_ostream RSO(PlanName);
9133   ElementCount VF = Range.Start;
9134   Plan->addVF(VF);
9135   RSO << "Initial VPlan for VF={" << VF;
9136   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9137     Plan->addVF(VF);
9138     RSO << "," << VF;
9139   }
9140   RSO << "},UF>=1";
9141   RSO.flush();
9142   Plan->setName(PlanName);
9143 
9144   // Fold Exit block into its predecessor if possible.
9145   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9146   // VPBasicBlock as exit.
9147   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9148 
9149   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9150   return Plan;
9151 }
9152 
9153 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9154   // Outer loop handling: They may require CFG and instruction level
9155   // transformations before even evaluating whether vectorization is profitable.
9156   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9157   // the vectorization pipeline.
9158   assert(!OrigLoop->isInnermost());
9159   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9160 
9161   // Create new empty VPlan
9162   auto Plan = std::make_unique<VPlan>();
9163 
9164   // Build hierarchical CFG
9165   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9166   HCFGBuilder.buildHierarchicalCFG();
9167 
9168   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9169        VF *= 2)
9170     Plan->addVF(VF);
9171 
9172   if (EnableVPlanPredication) {
9173     VPlanPredicator VPP(*Plan);
9174     VPP.predicate();
9175 
9176     // Avoid running transformation to recipes until masked code generation in
9177     // VPlan-native path is in place.
9178     return Plan;
9179   }
9180 
9181   SmallPtrSet<Instruction *, 1> DeadInstructions;
9182   VPlanTransforms::VPInstructionsToVPRecipes(
9183       OrigLoop, Plan,
9184       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9185       DeadInstructions, *PSE.getSE());
9186 
9187   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9188                         true, true);
9189   return Plan;
9190 }
9191 
9192 // Adjust the recipes for reductions. For in-loop reductions the chain of
9193 // instructions leading from the loop exit instr to the phi need to be converted
9194 // to reductions, with one operand being vector and the other being the scalar
9195 // reduction chain. For other reductions, a select is introduced between the phi
9196 // and live-out recipes when folding the tail.
9197 void LoopVectorizationPlanner::adjustRecipesForReductions(
9198     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9199     ElementCount MinVF) {
9200   for (auto &Reduction : CM.getInLoopReductionChains()) {
9201     PHINode *Phi = Reduction.first;
9202     const RecurrenceDescriptor &RdxDesc =
9203         Legal->getReductionVars().find(Phi)->second;
9204     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9205 
9206     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9207       continue;
9208 
9209     // ReductionOperations are orders top-down from the phi's use to the
9210     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9211     // which of the two operands will remain scalar and which will be reduced.
9212     // For minmax the chain will be the select instructions.
9213     Instruction *Chain = Phi;
9214     for (Instruction *R : ReductionOperations) {
9215       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9216       RecurKind Kind = RdxDesc.getRecurrenceKind();
9217 
9218       VPValue *ChainOp = Plan->getVPValue(Chain);
9219       unsigned FirstOpId;
9220       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9221              "Only min/max recurrences allowed for inloop reductions");
9222       // Recognize a call to the llvm.fmuladd intrinsic.
9223       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9224       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9225              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9226       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9227         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9228                "Expected to replace a VPWidenSelectSC");
9229         FirstOpId = 1;
9230       } else {
9231         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9232                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9233                "Expected to replace a VPWidenSC");
9234         FirstOpId = 0;
9235       }
9236       unsigned VecOpId =
9237           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9238       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9239 
9240       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9241                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9242                          : nullptr;
9243 
9244       if (IsFMulAdd) {
9245         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9246         // need to create an fmul recipe to use as the vector operand for the
9247         // fadd reduction.
9248         VPInstruction *FMulRecipe = new VPInstruction(
9249             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9250         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9251         WidenRecipe->getParent()->insert(FMulRecipe,
9252                                          WidenRecipe->getIterator());
9253         VecOp = FMulRecipe;
9254       }
9255       VPReductionRecipe *RedRecipe =
9256           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9257       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9258       Plan->removeVPValueFor(R);
9259       Plan->addVPValue(R, RedRecipe);
9260       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9261       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9262       WidenRecipe->eraseFromParent();
9263 
9264       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9265         VPRecipeBase *CompareRecipe =
9266             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9267         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9268                "Expected to replace a VPWidenSC");
9269         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9270                "Expected no remaining users");
9271         CompareRecipe->eraseFromParent();
9272       }
9273       Chain = R;
9274     }
9275   }
9276 
9277   // If tail is folded by masking, introduce selects between the phi
9278   // and the live-out instruction of each reduction, at the beginning of the
9279   // dedicated latch block.
9280   if (CM.foldTailByMasking()) {
9281     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9282     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9283       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9284       if (!PhiR || PhiR->isInLoop())
9285         continue;
9286       VPValue *Cond =
9287           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9288       VPValue *Red = PhiR->getBackedgeValue();
9289       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9290              "reduction recipe must be defined before latch");
9291       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9292     }
9293   }
9294 }
9295 
9296 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9297 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9298                                VPSlotTracker &SlotTracker) const {
9299   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9300   IG->getInsertPos()->printAsOperand(O, false);
9301   O << ", ";
9302   getAddr()->printAsOperand(O, SlotTracker);
9303   VPValue *Mask = getMask();
9304   if (Mask) {
9305     O << ", ";
9306     Mask->printAsOperand(O, SlotTracker);
9307   }
9308 
9309   unsigned OpIdx = 0;
9310   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9311     if (!IG->getMember(i))
9312       continue;
9313     if (getNumStoreOperands() > 0) {
9314       O << "\n" << Indent << "  store ";
9315       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9316       O << " to index " << i;
9317     } else {
9318       O << "\n" << Indent << "  ";
9319       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9320       O << " = load from index " << i;
9321     }
9322     ++OpIdx;
9323   }
9324 }
9325 #endif
9326 
9327 void VPWidenCallRecipe::execute(VPTransformState &State) {
9328   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9329                                   *this, State);
9330 }
9331 
9332 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9333   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9334   State.ILV->setDebugLocFromInst(&I);
9335 
9336   // The condition can be loop invariant  but still defined inside the
9337   // loop. This means that we can't just use the original 'cond' value.
9338   // We have to take the 'vectorized' value and pick the first lane.
9339   // Instcombine will make this a no-op.
9340   auto *InvarCond =
9341       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9342 
9343   for (unsigned Part = 0; Part < State.UF; ++Part) {
9344     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9345     Value *Op0 = State.get(getOperand(1), Part);
9346     Value *Op1 = State.get(getOperand(2), Part);
9347     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9348     State.set(this, Sel, Part);
9349     State.ILV->addMetadata(Sel, &I);
9350   }
9351 }
9352 
9353 void VPWidenRecipe::execute(VPTransformState &State) {
9354   auto &I = *cast<Instruction>(getUnderlyingValue());
9355   auto &Builder = State.Builder;
9356   switch (I.getOpcode()) {
9357   case Instruction::Call:
9358   case Instruction::Br:
9359   case Instruction::PHI:
9360   case Instruction::GetElementPtr:
9361   case Instruction::Select:
9362     llvm_unreachable("This instruction is handled by a different recipe.");
9363   case Instruction::UDiv:
9364   case Instruction::SDiv:
9365   case Instruction::SRem:
9366   case Instruction::URem:
9367   case Instruction::Add:
9368   case Instruction::FAdd:
9369   case Instruction::Sub:
9370   case Instruction::FSub:
9371   case Instruction::FNeg:
9372   case Instruction::Mul:
9373   case Instruction::FMul:
9374   case Instruction::FDiv:
9375   case Instruction::FRem:
9376   case Instruction::Shl:
9377   case Instruction::LShr:
9378   case Instruction::AShr:
9379   case Instruction::And:
9380   case Instruction::Or:
9381   case Instruction::Xor: {
9382     // Just widen unops and binops.
9383     State.ILV->setDebugLocFromInst(&I);
9384 
9385     for (unsigned Part = 0; Part < State.UF; ++Part) {
9386       SmallVector<Value *, 2> Ops;
9387       for (VPValue *VPOp : operands())
9388         Ops.push_back(State.get(VPOp, Part));
9389 
9390       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9391 
9392       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9393         VecOp->copyIRFlags(&I);
9394 
9395         // If the instruction is vectorized and was in a basic block that needed
9396         // predication, we can't propagate poison-generating flags (nuw/nsw,
9397         // exact, etc.). The control flow has been linearized and the
9398         // instruction is no longer guarded by the predicate, which could make
9399         // the flag properties to no longer hold.
9400         if (State.MayGeneratePoisonRecipes.contains(this))
9401           VecOp->dropPoisonGeneratingFlags();
9402       }
9403 
9404       // Use this vector value for all users of the original instruction.
9405       State.set(this, V, Part);
9406       State.ILV->addMetadata(V, &I);
9407     }
9408 
9409     break;
9410   }
9411   case Instruction::ICmp:
9412   case Instruction::FCmp: {
9413     // Widen compares. Generate vector compares.
9414     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9415     auto *Cmp = cast<CmpInst>(&I);
9416     State.ILV->setDebugLocFromInst(Cmp);
9417     for (unsigned Part = 0; Part < State.UF; ++Part) {
9418       Value *A = State.get(getOperand(0), Part);
9419       Value *B = State.get(getOperand(1), Part);
9420       Value *C = nullptr;
9421       if (FCmp) {
9422         // Propagate fast math flags.
9423         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9424         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9425         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9426       } else {
9427         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9428       }
9429       State.set(this, C, Part);
9430       State.ILV->addMetadata(C, &I);
9431     }
9432 
9433     break;
9434   }
9435 
9436   case Instruction::ZExt:
9437   case Instruction::SExt:
9438   case Instruction::FPToUI:
9439   case Instruction::FPToSI:
9440   case Instruction::FPExt:
9441   case Instruction::PtrToInt:
9442   case Instruction::IntToPtr:
9443   case Instruction::SIToFP:
9444   case Instruction::UIToFP:
9445   case Instruction::Trunc:
9446   case Instruction::FPTrunc:
9447   case Instruction::BitCast: {
9448     auto *CI = cast<CastInst>(&I);
9449     State.ILV->setDebugLocFromInst(CI);
9450 
9451     /// Vectorize casts.
9452     Type *DestTy = (State.VF.isScalar())
9453                        ? CI->getType()
9454                        : VectorType::get(CI->getType(), State.VF);
9455 
9456     for (unsigned Part = 0; Part < State.UF; ++Part) {
9457       Value *A = State.get(getOperand(0), Part);
9458       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9459       State.set(this, Cast, Part);
9460       State.ILV->addMetadata(Cast, &I);
9461     }
9462     break;
9463   }
9464   default:
9465     // This instruction is not vectorized by simple widening.
9466     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9467     llvm_unreachable("Unhandled instruction!");
9468   } // end of switch.
9469 }
9470 
9471 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9472   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9473   // Construct a vector GEP by widening the operands of the scalar GEP as
9474   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9475   // results in a vector of pointers when at least one operand of the GEP
9476   // is vector-typed. Thus, to keep the representation compact, we only use
9477   // vector-typed operands for loop-varying values.
9478 
9479   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9480     // If we are vectorizing, but the GEP has only loop-invariant operands,
9481     // the GEP we build (by only using vector-typed operands for
9482     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9483     // produce a vector of pointers, we need to either arbitrarily pick an
9484     // operand to broadcast, or broadcast a clone of the original GEP.
9485     // Here, we broadcast a clone of the original.
9486     //
9487     // TODO: If at some point we decide to scalarize instructions having
9488     //       loop-invariant operands, this special case will no longer be
9489     //       required. We would add the scalarization decision to
9490     //       collectLoopScalars() and teach getVectorValue() to broadcast
9491     //       the lane-zero scalar value.
9492     auto *Clone = State.Builder.Insert(GEP->clone());
9493     for (unsigned Part = 0; Part < State.UF; ++Part) {
9494       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9495       State.set(this, EntryPart, Part);
9496       State.ILV->addMetadata(EntryPart, GEP);
9497     }
9498   } else {
9499     // If the GEP has at least one loop-varying operand, we are sure to
9500     // produce a vector of pointers. But if we are only unrolling, we want
9501     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9502     // produce with the code below will be scalar (if VF == 1) or vector
9503     // (otherwise). Note that for the unroll-only case, we still maintain
9504     // values in the vector mapping with initVector, as we do for other
9505     // instructions.
9506     for (unsigned Part = 0; Part < State.UF; ++Part) {
9507       // The pointer operand of the new GEP. If it's loop-invariant, we
9508       // won't broadcast it.
9509       auto *Ptr = IsPtrLoopInvariant
9510                       ? State.get(getOperand(0), VPIteration(0, 0))
9511                       : State.get(getOperand(0), Part);
9512 
9513       // Collect all the indices for the new GEP. If any index is
9514       // loop-invariant, we won't broadcast it.
9515       SmallVector<Value *, 4> Indices;
9516       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9517         VPValue *Operand = getOperand(I);
9518         if (IsIndexLoopInvariant[I - 1])
9519           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9520         else
9521           Indices.push_back(State.get(Operand, Part));
9522       }
9523 
9524       // If the GEP instruction is vectorized and was in a basic block that
9525       // needed predication, we can't propagate the poison-generating 'inbounds'
9526       // flag. The control flow has been linearized and the GEP is no longer
9527       // guarded by the predicate, which could make the 'inbounds' properties to
9528       // no longer hold.
9529       bool IsInBounds =
9530           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9531 
9532       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9533       // but it should be a vector, otherwise.
9534       auto *NewGEP = IsInBounds
9535                          ? State.Builder.CreateInBoundsGEP(
9536                                GEP->getSourceElementType(), Ptr, Indices)
9537                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9538                                                    Ptr, Indices);
9539       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9540              "NewGEP is not a pointer vector");
9541       State.set(this, NewGEP, Part);
9542       State.ILV->addMetadata(NewGEP, GEP);
9543     }
9544   }
9545 }
9546 
9547 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9548   assert(!State.Instance && "Int or FP induction being replicated.");
9549 
9550   Value *Start = getStartValue()->getLiveInIRValue();
9551   const InductionDescriptor &ID = getInductionDescriptor();
9552   TruncInst *Trunc = getTruncInst();
9553   IRBuilderBase &Builder = State.Builder;
9554   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9555   assert(State.VF.isVector() && "must have vector VF");
9556 
9557   // The value from the original loop to which we are mapping the new induction
9558   // variable.
9559   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9560 
9561   auto &DL = EntryVal->getModule()->getDataLayout();
9562 
9563   // Generate code for the induction step. Note that induction steps are
9564   // required to be loop-invariant
9565   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
9566     if (SE.isSCEVable(IV->getType())) {
9567       SCEVExpander Exp(SE, DL, "induction");
9568       return Exp.expandCodeFor(Step, Step->getType(),
9569                                State.CFG.VectorPreHeader->getTerminator());
9570     }
9571     return cast<SCEVUnknown>(Step)->getValue();
9572   };
9573 
9574   // Fast-math-flags propagate from the original induction instruction.
9575   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9576   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9577     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9578 
9579   // Now do the actual transformations, and start with creating the step value.
9580   Value *Step = CreateStepValue(ID.getStep());
9581 
9582   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9583          "Expected either an induction phi-node or a truncate of it!");
9584 
9585   // Construct the initial value of the vector IV in the vector loop preheader
9586   auto CurrIP = Builder.saveIP();
9587   Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
9588   if (isa<TruncInst>(EntryVal)) {
9589     assert(Start->getType()->isIntegerTy() &&
9590            "Truncation requires an integer type");
9591     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9592     Step = Builder.CreateTrunc(Step, TruncType);
9593     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9594   }
9595 
9596   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9597   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9598   Value *SteppedStart = getStepVector(
9599       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9600 
9601   // We create vector phi nodes for both integer and floating-point induction
9602   // variables. Here, we determine the kind of arithmetic we will perform.
9603   Instruction::BinaryOps AddOp;
9604   Instruction::BinaryOps MulOp;
9605   if (Step->getType()->isIntegerTy()) {
9606     AddOp = Instruction::Add;
9607     MulOp = Instruction::Mul;
9608   } else {
9609     AddOp = ID.getInductionOpcode();
9610     MulOp = Instruction::FMul;
9611   }
9612 
9613   // Multiply the vectorization factor by the step using integer or
9614   // floating-point arithmetic as appropriate.
9615   Type *StepType = Step->getType();
9616   Value *RuntimeVF;
9617   if (Step->getType()->isFloatingPointTy())
9618     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9619   else
9620     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9621   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9622 
9623   // Create a vector splat to use in the induction update.
9624   //
9625   // FIXME: If the step is non-constant, we create the vector splat with
9626   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9627   //        handle a constant vector splat.
9628   Value *SplatVF = isa<Constant>(Mul)
9629                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9630                        : Builder.CreateVectorSplat(State.VF, Mul);
9631   Builder.restoreIP(CurrIP);
9632 
9633   // We may need to add the step a number of times, depending on the unroll
9634   // factor. The last of those goes into the PHI.
9635   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9636                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9637   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9638   Instruction *LastInduction = VecInd;
9639   for (unsigned Part = 0; Part < State.UF; ++Part) {
9640     State.set(this, LastInduction, Part);
9641 
9642     if (isa<TruncInst>(EntryVal))
9643       State.ILV->addMetadata(LastInduction, EntryVal);
9644 
9645     LastInduction = cast<Instruction>(
9646         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9647     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9648   }
9649 
9650   // Move the last step to the end of the latch block. This ensures consistent
9651   // placement of all induction updates.
9652   auto *LoopVectorLatch =
9653       State.LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch();
9654   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
9655   LastInduction->moveBefore(Br);
9656   LastInduction->setName("vec.ind.next");
9657 
9658   VecInd->addIncoming(SteppedStart, State.CFG.VectorPreHeader);
9659   VecInd->addIncoming(LastInduction, LoopVectorLatch);
9660 }
9661 
9662 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9663   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9664 
9665   // Fast-math-flags propagate from the original induction instruction.
9666   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9667   if (IndDesc.getInductionBinOp() &&
9668       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9669     State.Builder.setFastMathFlags(
9670         IndDesc.getInductionBinOp()->getFastMathFlags());
9671 
9672   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9673   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9674     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9675     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9676     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9677       ScalarIV =
9678           Ty->isIntegerTy()
9679               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9680               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9681       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9682                                       getStartValue()->getLiveInIRValue(), Step,
9683                                       IndDesc);
9684       ScalarIV->setName("offset.idx");
9685     }
9686     if (TruncToTy) {
9687       assert(Step->getType()->isIntegerTy() &&
9688              "Truncation requires an integer step");
9689       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9690       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9691     }
9692     return ScalarIV;
9693   };
9694 
9695   Value *ScalarIV = CreateScalarIV(Step);
9696   if (State.VF.isVector()) {
9697     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9698     return;
9699   }
9700 
9701   for (unsigned Part = 0; Part < State.UF; ++Part) {
9702     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9703     Value *EntryPart;
9704     if (Step->getType()->isFloatingPointTy()) {
9705       Value *StartIdx =
9706           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9707       // Floating-point operations inherit FMF via the builder's flags.
9708       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9709       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9710                                             ScalarIV, MulOp);
9711     } else {
9712       Value *StartIdx =
9713           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9714       EntryPart = State.Builder.CreateAdd(
9715           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9716     }
9717     State.set(this, EntryPart, Part);
9718   }
9719 }
9720 
9721 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9722   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9723                                  State);
9724 }
9725 
9726 void VPBlendRecipe::execute(VPTransformState &State) {
9727   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9728   // We know that all PHIs in non-header blocks are converted into
9729   // selects, so we don't have to worry about the insertion order and we
9730   // can just use the builder.
9731   // At this point we generate the predication tree. There may be
9732   // duplications since this is a simple recursive scan, but future
9733   // optimizations will clean it up.
9734 
9735   unsigned NumIncoming = getNumIncomingValues();
9736 
9737   // Generate a sequence of selects of the form:
9738   // SELECT(Mask3, In3,
9739   //        SELECT(Mask2, In2,
9740   //               SELECT(Mask1, In1,
9741   //                      In0)))
9742   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9743   // are essentially undef are taken from In0.
9744   InnerLoopVectorizer::VectorParts Entry(State.UF);
9745   for (unsigned In = 0; In < NumIncoming; ++In) {
9746     for (unsigned Part = 0; Part < State.UF; ++Part) {
9747       // We might have single edge PHIs (blocks) - use an identity
9748       // 'select' for the first PHI operand.
9749       Value *In0 = State.get(getIncomingValue(In), Part);
9750       if (In == 0)
9751         Entry[Part] = In0; // Initialize with the first incoming value.
9752       else {
9753         // Select between the current value and the previous incoming edge
9754         // based on the incoming mask.
9755         Value *Cond = State.get(getMask(In), Part);
9756         Entry[Part] =
9757             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9758       }
9759     }
9760   }
9761   for (unsigned Part = 0; Part < State.UF; ++Part)
9762     State.set(this, Entry[Part], Part);
9763 }
9764 
9765 void VPInterleaveRecipe::execute(VPTransformState &State) {
9766   assert(!State.Instance && "Interleave group being replicated.");
9767   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9768                                       getStoredValues(), getMask());
9769 }
9770 
9771 void VPReductionRecipe::execute(VPTransformState &State) {
9772   assert(!State.Instance && "Reduction being replicated.");
9773   Value *PrevInChain = State.get(getChainOp(), 0);
9774   RecurKind Kind = RdxDesc->getRecurrenceKind();
9775   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9776   // Propagate the fast-math flags carried by the underlying instruction.
9777   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9778   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9779   for (unsigned Part = 0; Part < State.UF; ++Part) {
9780     Value *NewVecOp = State.get(getVecOp(), Part);
9781     if (VPValue *Cond = getCondOp()) {
9782       Value *NewCond = State.get(Cond, Part);
9783       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9784       Value *Iden = RdxDesc->getRecurrenceIdentity(
9785           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9786       Value *IdenVec =
9787           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9788       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9789       NewVecOp = Select;
9790     }
9791     Value *NewRed;
9792     Value *NextInChain;
9793     if (IsOrdered) {
9794       if (State.VF.isVector())
9795         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9796                                         PrevInChain);
9797       else
9798         NewRed = State.Builder.CreateBinOp(
9799             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9800             NewVecOp);
9801       PrevInChain = NewRed;
9802     } else {
9803       PrevInChain = State.get(getChainOp(), Part);
9804       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9805     }
9806     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9807       NextInChain =
9808           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9809                          NewRed, PrevInChain);
9810     } else if (IsOrdered)
9811       NextInChain = NewRed;
9812     else
9813       NextInChain = State.Builder.CreateBinOp(
9814           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9815           PrevInChain);
9816     State.set(this, NextInChain, Part);
9817   }
9818 }
9819 
9820 void VPReplicateRecipe::execute(VPTransformState &State) {
9821   if (State.Instance) { // Generate a single instance.
9822     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9823     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9824                                     IsPredicated, State);
9825     // Insert scalar instance packing it into a vector.
9826     if (AlsoPack && State.VF.isVector()) {
9827       // If we're constructing lane 0, initialize to start from poison.
9828       if (State.Instance->Lane.isFirstLane()) {
9829         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9830         Value *Poison = PoisonValue::get(
9831             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9832         State.set(this, Poison, State.Instance->Part);
9833       }
9834       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9835     }
9836     return;
9837   }
9838 
9839   // Generate scalar instances for all VF lanes of all UF parts, unless the
9840   // instruction is uniform inwhich case generate only the first lane for each
9841   // of the UF parts.
9842   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9843   assert((!State.VF.isScalable() || IsUniform) &&
9844          "Can't scalarize a scalable vector");
9845   for (unsigned Part = 0; Part < State.UF; ++Part)
9846     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9847       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9848                                       VPIteration(Part, Lane), IsPredicated,
9849                                       State);
9850 }
9851 
9852 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9853   assert(State.Instance && "Branch on Mask works only on single instance.");
9854 
9855   unsigned Part = State.Instance->Part;
9856   unsigned Lane = State.Instance->Lane.getKnownLane();
9857 
9858   Value *ConditionBit = nullptr;
9859   VPValue *BlockInMask = getMask();
9860   if (BlockInMask) {
9861     ConditionBit = State.get(BlockInMask, Part);
9862     if (ConditionBit->getType()->isVectorTy())
9863       ConditionBit = State.Builder.CreateExtractElement(
9864           ConditionBit, State.Builder.getInt32(Lane));
9865   } else // Block in mask is all-one.
9866     ConditionBit = State.Builder.getTrue();
9867 
9868   // Replace the temporary unreachable terminator with a new conditional branch,
9869   // whose two destinations will be set later when they are created.
9870   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9871   assert(isa<UnreachableInst>(CurrentTerminator) &&
9872          "Expected to replace unreachable terminator with conditional branch.");
9873   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9874   CondBr->setSuccessor(0, nullptr);
9875   ReplaceInstWithInst(CurrentTerminator, CondBr);
9876 }
9877 
9878 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9879   assert(State.Instance && "Predicated instruction PHI works per instance.");
9880   Instruction *ScalarPredInst =
9881       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9882   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9883   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9884   assert(PredicatingBB && "Predicated block has no single predecessor.");
9885   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9886          "operand must be VPReplicateRecipe");
9887 
9888   // By current pack/unpack logic we need to generate only a single phi node: if
9889   // a vector value for the predicated instruction exists at this point it means
9890   // the instruction has vector users only, and a phi for the vector value is
9891   // needed. In this case the recipe of the predicated instruction is marked to
9892   // also do that packing, thereby "hoisting" the insert-element sequence.
9893   // Otherwise, a phi node for the scalar value is needed.
9894   unsigned Part = State.Instance->Part;
9895   if (State.hasVectorValue(getOperand(0), Part)) {
9896     Value *VectorValue = State.get(getOperand(0), Part);
9897     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9898     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9899     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9900     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9901     if (State.hasVectorValue(this, Part))
9902       State.reset(this, VPhi, Part);
9903     else
9904       State.set(this, VPhi, Part);
9905     // NOTE: Currently we need to update the value of the operand, so the next
9906     // predicated iteration inserts its generated value in the correct vector.
9907     State.reset(getOperand(0), VPhi, Part);
9908   } else {
9909     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9910     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9911     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9912                      PredicatingBB);
9913     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9914     if (State.hasScalarValue(this, *State.Instance))
9915       State.reset(this, Phi, *State.Instance);
9916     else
9917       State.set(this, Phi, *State.Instance);
9918     // NOTE: Currently we need to update the value of the operand, so the next
9919     // predicated iteration inserts its generated value in the correct vector.
9920     State.reset(getOperand(0), Phi, *State.Instance);
9921   }
9922 }
9923 
9924 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9925   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9926 
9927   // Attempt to issue a wide load.
9928   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9929   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9930 
9931   assert((LI || SI) && "Invalid Load/Store instruction");
9932   assert((!SI || StoredValue) && "No stored value provided for widened store");
9933   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9934 
9935   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9936 
9937   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9938   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9939   bool CreateGatherScatter = !Consecutive;
9940 
9941   auto &Builder = State.Builder;
9942   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9943   bool isMaskRequired = getMask();
9944   if (isMaskRequired)
9945     for (unsigned Part = 0; Part < State.UF; ++Part)
9946       BlockInMaskParts[Part] = State.get(getMask(), Part);
9947 
9948   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9949     // Calculate the pointer for the specific unroll-part.
9950     GetElementPtrInst *PartPtr = nullptr;
9951 
9952     bool InBounds = false;
9953     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9954       InBounds = gep->isInBounds();
9955     if (Reverse) {
9956       // If the address is consecutive but reversed, then the
9957       // wide store needs to start at the last vector element.
9958       // RunTimeVF =  VScale * VF.getKnownMinValue()
9959       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9960       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9961       // NumElt = -Part * RunTimeVF
9962       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9963       // LastLane = 1 - RunTimeVF
9964       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9965       PartPtr =
9966           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9967       PartPtr->setIsInBounds(InBounds);
9968       PartPtr = cast<GetElementPtrInst>(
9969           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9970       PartPtr->setIsInBounds(InBounds);
9971       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9972         BlockInMaskParts[Part] =
9973             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9974     } else {
9975       Value *Increment =
9976           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9977       PartPtr = cast<GetElementPtrInst>(
9978           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9979       PartPtr->setIsInBounds(InBounds);
9980     }
9981 
9982     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9983     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9984   };
9985 
9986   // Handle Stores:
9987   if (SI) {
9988     State.ILV->setDebugLocFromInst(SI);
9989 
9990     for (unsigned Part = 0; Part < State.UF; ++Part) {
9991       Instruction *NewSI = nullptr;
9992       Value *StoredVal = State.get(StoredValue, Part);
9993       if (CreateGatherScatter) {
9994         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9995         Value *VectorGep = State.get(getAddr(), Part);
9996         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9997                                             MaskPart);
9998       } else {
9999         if (Reverse) {
10000           // If we store to reverse consecutive memory locations, then we need
10001           // to reverse the order of elements in the stored value.
10002           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
10003           // We don't want to update the value in the map as it might be used in
10004           // another expression. So don't call resetVectorValue(StoredVal).
10005         }
10006         auto *VecPtr =
10007             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10008         if (isMaskRequired)
10009           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
10010                                             BlockInMaskParts[Part]);
10011         else
10012           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
10013       }
10014       State.ILV->addMetadata(NewSI, SI);
10015     }
10016     return;
10017   }
10018 
10019   // Handle loads.
10020   assert(LI && "Must have a load instruction");
10021   State.ILV->setDebugLocFromInst(LI);
10022   for (unsigned Part = 0; Part < State.UF; ++Part) {
10023     Value *NewLI;
10024     if (CreateGatherScatter) {
10025       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10026       Value *VectorGep = State.get(getAddr(), Part);
10027       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10028                                          nullptr, "wide.masked.gather");
10029       State.ILV->addMetadata(NewLI, LI);
10030     } else {
10031       auto *VecPtr =
10032           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10033       if (isMaskRequired)
10034         NewLI = Builder.CreateMaskedLoad(
10035             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10036             PoisonValue::get(DataTy), "wide.masked.load");
10037       else
10038         NewLI =
10039             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10040 
10041       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10042       State.ILV->addMetadata(NewLI, LI);
10043       if (Reverse)
10044         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10045     }
10046 
10047     State.set(this, NewLI, Part);
10048   }
10049 }
10050 
10051 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10052 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10053 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10054 // for predication.
10055 static ScalarEpilogueLowering getScalarEpilogueLowering(
10056     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10057     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10058     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10059     LoopVectorizationLegality &LVL) {
10060   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10061   // don't look at hints or options, and don't request a scalar epilogue.
10062   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10063   // LoopAccessInfo (due to code dependency and not being able to reliably get
10064   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10065   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10066   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10067   // back to the old way and vectorize with versioning when forced. See D81345.)
10068   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10069                                                       PGSOQueryType::IRPass) &&
10070                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10071     return CM_ScalarEpilogueNotAllowedOptSize;
10072 
10073   // 2) If set, obey the directives
10074   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10075     switch (PreferPredicateOverEpilogue) {
10076     case PreferPredicateTy::ScalarEpilogue:
10077       return CM_ScalarEpilogueAllowed;
10078     case PreferPredicateTy::PredicateElseScalarEpilogue:
10079       return CM_ScalarEpilogueNotNeededUsePredicate;
10080     case PreferPredicateTy::PredicateOrDontVectorize:
10081       return CM_ScalarEpilogueNotAllowedUsePredicate;
10082     };
10083   }
10084 
10085   // 3) If set, obey the hints
10086   switch (Hints.getPredicate()) {
10087   case LoopVectorizeHints::FK_Enabled:
10088     return CM_ScalarEpilogueNotNeededUsePredicate;
10089   case LoopVectorizeHints::FK_Disabled:
10090     return CM_ScalarEpilogueAllowed;
10091   };
10092 
10093   // 4) if the TTI hook indicates this is profitable, request predication.
10094   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10095                                        LVL.getLAI()))
10096     return CM_ScalarEpilogueNotNeededUsePredicate;
10097 
10098   return CM_ScalarEpilogueAllowed;
10099 }
10100 
10101 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10102   // If Values have been set for this Def return the one relevant for \p Part.
10103   if (hasVectorValue(Def, Part))
10104     return Data.PerPartOutput[Def][Part];
10105 
10106   if (!hasScalarValue(Def, {Part, 0})) {
10107     Value *IRV = Def->getLiveInIRValue();
10108     Value *B = ILV->getBroadcastInstrs(IRV);
10109     set(Def, B, Part);
10110     return B;
10111   }
10112 
10113   Value *ScalarValue = get(Def, {Part, 0});
10114   // If we aren't vectorizing, we can just copy the scalar map values over
10115   // to the vector map.
10116   if (VF.isScalar()) {
10117     set(Def, ScalarValue, Part);
10118     return ScalarValue;
10119   }
10120 
10121   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10122   bool IsUniform = RepR && RepR->isUniform();
10123 
10124   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10125   // Check if there is a scalar value for the selected lane.
10126   if (!hasScalarValue(Def, {Part, LastLane})) {
10127     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10128     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
10129             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
10130            "unexpected recipe found to be invariant");
10131     IsUniform = true;
10132     LastLane = 0;
10133   }
10134 
10135   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10136   // Set the insert point after the last scalarized instruction or after the
10137   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10138   // will directly follow the scalar definitions.
10139   auto OldIP = Builder.saveIP();
10140   auto NewIP =
10141       isa<PHINode>(LastInst)
10142           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10143           : std::next(BasicBlock::iterator(LastInst));
10144   Builder.SetInsertPoint(&*NewIP);
10145 
10146   // However, if we are vectorizing, we need to construct the vector values.
10147   // If the value is known to be uniform after vectorization, we can just
10148   // broadcast the scalar value corresponding to lane zero for each unroll
10149   // iteration. Otherwise, we construct the vector values using
10150   // insertelement instructions. Since the resulting vectors are stored in
10151   // State, we will only generate the insertelements once.
10152   Value *VectorValue = nullptr;
10153   if (IsUniform) {
10154     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10155     set(Def, VectorValue, Part);
10156   } else {
10157     // Initialize packing with insertelements to start from undef.
10158     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10159     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10160     set(Def, Undef, Part);
10161     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10162       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10163     VectorValue = get(Def, Part);
10164   }
10165   Builder.restoreIP(OldIP);
10166   return VectorValue;
10167 }
10168 
10169 // Process the loop in the VPlan-native vectorization path. This path builds
10170 // VPlan upfront in the vectorization pipeline, which allows to apply
10171 // VPlan-to-VPlan transformations from the very beginning without modifying the
10172 // input LLVM IR.
10173 static bool processLoopInVPlanNativePath(
10174     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10175     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10176     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10177     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10178     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10179     LoopVectorizationRequirements &Requirements) {
10180 
10181   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10182     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10183     return false;
10184   }
10185   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10186   Function *F = L->getHeader()->getParent();
10187   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10188 
10189   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10190       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10191 
10192   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10193                                 &Hints, IAI);
10194   // Use the planner for outer loop vectorization.
10195   // TODO: CM is not used at this point inside the planner. Turn CM into an
10196   // optional argument if we don't need it in the future.
10197   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10198                                Requirements, ORE);
10199 
10200   // Get user vectorization factor.
10201   ElementCount UserVF = Hints.getWidth();
10202 
10203   CM.collectElementTypesForWidening();
10204 
10205   // Plan how to best vectorize, return the best VF and its cost.
10206   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10207 
10208   // If we are stress testing VPlan builds, do not attempt to generate vector
10209   // code. Masked vector code generation support will follow soon.
10210   // Also, do not attempt to vectorize if no vector code will be produced.
10211   if (VPlanBuildStressTest || EnableVPlanPredication ||
10212       VectorizationFactor::Disabled() == VF)
10213     return false;
10214 
10215   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10216 
10217   {
10218     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10219                              F->getParent()->getDataLayout());
10220     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10221                            &CM, BFI, PSI, Checks);
10222     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10223                       << L->getHeader()->getParent()->getName() << "\"\n");
10224     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10225   }
10226 
10227   // Mark the loop as already vectorized to avoid vectorizing again.
10228   Hints.setAlreadyVectorized();
10229   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10230   return true;
10231 }
10232 
10233 // Emit a remark if there are stores to floats that required a floating point
10234 // extension. If the vectorized loop was generated with floating point there
10235 // will be a performance penalty from the conversion overhead and the change in
10236 // the vector width.
10237 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10238   SmallVector<Instruction *, 4> Worklist;
10239   for (BasicBlock *BB : L->getBlocks()) {
10240     for (Instruction &Inst : *BB) {
10241       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10242         if (S->getValueOperand()->getType()->isFloatTy())
10243           Worklist.push_back(S);
10244       }
10245     }
10246   }
10247 
10248   // Traverse the floating point stores upwards searching, for floating point
10249   // conversions.
10250   SmallPtrSet<const Instruction *, 4> Visited;
10251   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10252   while (!Worklist.empty()) {
10253     auto *I = Worklist.pop_back_val();
10254     if (!L->contains(I))
10255       continue;
10256     if (!Visited.insert(I).second)
10257       continue;
10258 
10259     // Emit a remark if the floating point store required a floating
10260     // point conversion.
10261     // TODO: More work could be done to identify the root cause such as a
10262     // constant or a function return type and point the user to it.
10263     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10264       ORE->emit([&]() {
10265         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10266                                           I->getDebugLoc(), L->getHeader())
10267                << "floating point conversion changes vector width. "
10268                << "Mixed floating point precision requires an up/down "
10269                << "cast that will negatively impact performance.";
10270       });
10271 
10272     for (Use &Op : I->operands())
10273       if (auto *OpI = dyn_cast<Instruction>(Op))
10274         Worklist.push_back(OpI);
10275   }
10276 }
10277 
10278 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10279     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10280                                !EnableLoopInterleaving),
10281       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10282                               !EnableLoopVectorization) {}
10283 
10284 bool LoopVectorizePass::processLoop(Loop *L) {
10285   assert((EnableVPlanNativePath || L->isInnermost()) &&
10286          "VPlan-native path is not enabled. Only process inner loops.");
10287 
10288 #ifndef NDEBUG
10289   const std::string DebugLocStr = getDebugLocString(L);
10290 #endif /* NDEBUG */
10291 
10292   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10293                     << L->getHeader()->getParent()->getName() << "' from "
10294                     << DebugLocStr << "\n");
10295 
10296   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10297 
10298   LLVM_DEBUG(
10299       dbgs() << "LV: Loop hints:"
10300              << " force="
10301              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10302                      ? "disabled"
10303                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10304                             ? "enabled"
10305                             : "?"))
10306              << " width=" << Hints.getWidth()
10307              << " interleave=" << Hints.getInterleave() << "\n");
10308 
10309   // Function containing loop
10310   Function *F = L->getHeader()->getParent();
10311 
10312   // Looking at the diagnostic output is the only way to determine if a loop
10313   // was vectorized (other than looking at the IR or machine code), so it
10314   // is important to generate an optimization remark for each loop. Most of
10315   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10316   // generated as OptimizationRemark and OptimizationRemarkMissed are
10317   // less verbose reporting vectorized loops and unvectorized loops that may
10318   // benefit from vectorization, respectively.
10319 
10320   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10321     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10322     return false;
10323   }
10324 
10325   PredicatedScalarEvolution PSE(*SE, *L);
10326 
10327   // Check if it is legal to vectorize the loop.
10328   LoopVectorizationRequirements Requirements;
10329   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10330                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10331   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10332     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10333     Hints.emitRemarkWithHints();
10334     return false;
10335   }
10336 
10337   // Check the function attributes and profiles to find out if this function
10338   // should be optimized for size.
10339   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10340       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10341 
10342   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10343   // here. They may require CFG and instruction level transformations before
10344   // even evaluating whether vectorization is profitable. Since we cannot modify
10345   // the incoming IR, we need to build VPlan upfront in the vectorization
10346   // pipeline.
10347   if (!L->isInnermost())
10348     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10349                                         ORE, BFI, PSI, Hints, Requirements);
10350 
10351   assert(L->isInnermost() && "Inner loop expected.");
10352 
10353   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10354   // count by optimizing for size, to minimize overheads.
10355   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10356   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10357     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10358                       << "This loop is worth vectorizing only if no scalar "
10359                       << "iteration overheads are incurred.");
10360     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10361       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10362     else {
10363       LLVM_DEBUG(dbgs() << "\n");
10364       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10365     }
10366   }
10367 
10368   // Check the function attributes to see if implicit floats are allowed.
10369   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10370   // an integer loop and the vector instructions selected are purely integer
10371   // vector instructions?
10372   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10373     reportVectorizationFailure(
10374         "Can't vectorize when the NoImplicitFloat attribute is used",
10375         "loop not vectorized due to NoImplicitFloat attribute",
10376         "NoImplicitFloat", ORE, L);
10377     Hints.emitRemarkWithHints();
10378     return false;
10379   }
10380 
10381   // Check if the target supports potentially unsafe FP vectorization.
10382   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10383   // for the target we're vectorizing for, to make sure none of the
10384   // additional fp-math flags can help.
10385   if (Hints.isPotentiallyUnsafe() &&
10386       TTI->isFPVectorizationPotentiallyUnsafe()) {
10387     reportVectorizationFailure(
10388         "Potentially unsafe FP op prevents vectorization",
10389         "loop not vectorized due to unsafe FP support.",
10390         "UnsafeFP", ORE, L);
10391     Hints.emitRemarkWithHints();
10392     return false;
10393   }
10394 
10395   bool AllowOrderedReductions;
10396   // If the flag is set, use that instead and override the TTI behaviour.
10397   if (ForceOrderedReductions.getNumOccurrences() > 0)
10398     AllowOrderedReductions = ForceOrderedReductions;
10399   else
10400     AllowOrderedReductions = TTI->enableOrderedReductions();
10401   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10402     ORE->emit([&]() {
10403       auto *ExactFPMathInst = Requirements.getExactFPInst();
10404       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10405                                                  ExactFPMathInst->getDebugLoc(),
10406                                                  ExactFPMathInst->getParent())
10407              << "loop not vectorized: cannot prove it is safe to reorder "
10408                 "floating-point operations";
10409     });
10410     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10411                          "reorder floating-point operations\n");
10412     Hints.emitRemarkWithHints();
10413     return false;
10414   }
10415 
10416   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10417   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10418 
10419   // If an override option has been passed in for interleaved accesses, use it.
10420   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10421     UseInterleaved = EnableInterleavedMemAccesses;
10422 
10423   // Analyze interleaved memory accesses.
10424   if (UseInterleaved) {
10425     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10426   }
10427 
10428   // Use the cost model.
10429   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10430                                 F, &Hints, IAI);
10431   CM.collectValuesToIgnore();
10432   CM.collectElementTypesForWidening();
10433 
10434   // Use the planner for vectorization.
10435   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10436                                Requirements, ORE);
10437 
10438   // Get user vectorization factor and interleave count.
10439   ElementCount UserVF = Hints.getWidth();
10440   unsigned UserIC = Hints.getInterleave();
10441 
10442   // Plan how to best vectorize, return the best VF and its cost.
10443   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10444 
10445   VectorizationFactor VF = VectorizationFactor::Disabled();
10446   unsigned IC = 1;
10447 
10448   if (MaybeVF) {
10449     VF = *MaybeVF;
10450     // Select the interleave count.
10451     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10452   }
10453 
10454   // Identify the diagnostic messages that should be produced.
10455   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10456   bool VectorizeLoop = true, InterleaveLoop = true;
10457   if (VF.Width.isScalar()) {
10458     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10459     VecDiagMsg = std::make_pair(
10460         "VectorizationNotBeneficial",
10461         "the cost-model indicates that vectorization is not beneficial");
10462     VectorizeLoop = false;
10463   }
10464 
10465   if (!MaybeVF && UserIC > 1) {
10466     // Tell the user interleaving was avoided up-front, despite being explicitly
10467     // requested.
10468     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10469                          "interleaving should be avoided up front\n");
10470     IntDiagMsg = std::make_pair(
10471         "InterleavingAvoided",
10472         "Ignoring UserIC, because interleaving was avoided up front");
10473     InterleaveLoop = false;
10474   } else if (IC == 1 && UserIC <= 1) {
10475     // Tell the user interleaving is not beneficial.
10476     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10477     IntDiagMsg = std::make_pair(
10478         "InterleavingNotBeneficial",
10479         "the cost-model indicates that interleaving is not beneficial");
10480     InterleaveLoop = false;
10481     if (UserIC == 1) {
10482       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10483       IntDiagMsg.second +=
10484           " and is explicitly disabled or interleave count is set to 1";
10485     }
10486   } else if (IC > 1 && UserIC == 1) {
10487     // Tell the user interleaving is beneficial, but it explicitly disabled.
10488     LLVM_DEBUG(
10489         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10490     IntDiagMsg = std::make_pair(
10491         "InterleavingBeneficialButDisabled",
10492         "the cost-model indicates that interleaving is beneficial "
10493         "but is explicitly disabled or interleave count is set to 1");
10494     InterleaveLoop = false;
10495   }
10496 
10497   // Override IC if user provided an interleave count.
10498   IC = UserIC > 0 ? UserIC : IC;
10499 
10500   // Emit diagnostic messages, if any.
10501   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10502   if (!VectorizeLoop && !InterleaveLoop) {
10503     // Do not vectorize or interleaving the loop.
10504     ORE->emit([&]() {
10505       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10506                                       L->getStartLoc(), L->getHeader())
10507              << VecDiagMsg.second;
10508     });
10509     ORE->emit([&]() {
10510       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10511                                       L->getStartLoc(), L->getHeader())
10512              << IntDiagMsg.second;
10513     });
10514     return false;
10515   } else if (!VectorizeLoop && InterleaveLoop) {
10516     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10517     ORE->emit([&]() {
10518       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10519                                         L->getStartLoc(), L->getHeader())
10520              << VecDiagMsg.second;
10521     });
10522   } else if (VectorizeLoop && !InterleaveLoop) {
10523     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10524                       << ") in " << DebugLocStr << '\n');
10525     ORE->emit([&]() {
10526       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10527                                         L->getStartLoc(), L->getHeader())
10528              << IntDiagMsg.second;
10529     });
10530   } else if (VectorizeLoop && InterleaveLoop) {
10531     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10532                       << ") in " << DebugLocStr << '\n');
10533     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10534   }
10535 
10536   bool DisableRuntimeUnroll = false;
10537   MDNode *OrigLoopID = L->getLoopID();
10538   {
10539     // Optimistically generate runtime checks. Drop them if they turn out to not
10540     // be profitable. Limit the scope of Checks, so the cleanup happens
10541     // immediately after vector codegeneration is done.
10542     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10543                              F->getParent()->getDataLayout());
10544     if (!VF.Width.isScalar() || IC > 1)
10545       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate());
10546 
10547     using namespace ore;
10548     if (!VectorizeLoop) {
10549       assert(IC > 1 && "interleave count should not be 1 or 0");
10550       // If we decided that it is not legal to vectorize the loop, then
10551       // interleave it.
10552       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10553                                  &CM, BFI, PSI, Checks);
10554 
10555       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10556       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10557 
10558       ORE->emit([&]() {
10559         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10560                                   L->getHeader())
10561                << "interleaved loop (interleaved count: "
10562                << NV("InterleaveCount", IC) << ")";
10563       });
10564     } else {
10565       // If we decided that it is *legal* to vectorize the loop, then do it.
10566 
10567       // Consider vectorizing the epilogue too if it's profitable.
10568       VectorizationFactor EpilogueVF =
10569           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10570       if (EpilogueVF.Width.isVector()) {
10571 
10572         // The first pass vectorizes the main loop and creates a scalar epilogue
10573         // to be vectorized by executing the plan (potentially with a different
10574         // factor) again shortly afterwards.
10575         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10576         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10577                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10578 
10579         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10580         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10581                         DT);
10582         ++LoopsVectorized;
10583 
10584         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10585         formLCSSARecursively(*L, *DT, LI, SE);
10586 
10587         // Second pass vectorizes the epilogue and adjusts the control flow
10588         // edges from the first pass.
10589         EPI.MainLoopVF = EPI.EpilogueVF;
10590         EPI.MainLoopUF = EPI.EpilogueUF;
10591         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10592                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10593                                                  Checks);
10594 
10595         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10596 
10597         // Ensure that the start values for any VPReductionPHIRecipes are
10598         // updated before vectorising the epilogue loop.
10599         VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock();
10600         for (VPRecipeBase &R : Header->phis()) {
10601           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10602             if (auto *Resume = MainILV.getReductionResumeValue(
10603                     ReductionPhi->getRecurrenceDescriptor())) {
10604               VPValue *StartVal = new VPValue(Resume);
10605               BestEpiPlan.addExternalDef(StartVal);
10606               ReductionPhi->setOperand(0, StartVal);
10607             }
10608           }
10609         }
10610 
10611         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10612                         DT);
10613         ++LoopsEpilogueVectorized;
10614 
10615         if (!MainILV.areSafetyChecksAdded())
10616           DisableRuntimeUnroll = true;
10617       } else {
10618         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10619                                &LVL, &CM, BFI, PSI, Checks);
10620 
10621         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10622         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10623         ++LoopsVectorized;
10624 
10625         // Add metadata to disable runtime unrolling a scalar loop when there
10626         // are no runtime checks about strides and memory. A scalar loop that is
10627         // rarely used is not worth unrolling.
10628         if (!LB.areSafetyChecksAdded())
10629           DisableRuntimeUnroll = true;
10630       }
10631       // Report the vectorization decision.
10632       ORE->emit([&]() {
10633         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10634                                   L->getHeader())
10635                << "vectorized loop (vectorization width: "
10636                << NV("VectorizationFactor", VF.Width)
10637                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10638       });
10639     }
10640 
10641     if (ORE->allowExtraAnalysis(LV_NAME))
10642       checkMixedPrecision(L, ORE);
10643   }
10644 
10645   Optional<MDNode *> RemainderLoopID =
10646       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10647                                       LLVMLoopVectorizeFollowupEpilogue});
10648   if (RemainderLoopID.hasValue()) {
10649     L->setLoopID(RemainderLoopID.getValue());
10650   } else {
10651     if (DisableRuntimeUnroll)
10652       AddRuntimeUnrollDisableMetaData(L);
10653 
10654     // Mark the loop as already vectorized to avoid vectorizing again.
10655     Hints.setAlreadyVectorized();
10656   }
10657 
10658   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10659   return true;
10660 }
10661 
10662 LoopVectorizeResult LoopVectorizePass::runImpl(
10663     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10664     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10665     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10666     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10667     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10668   SE = &SE_;
10669   LI = &LI_;
10670   TTI = &TTI_;
10671   DT = &DT_;
10672   BFI = &BFI_;
10673   TLI = TLI_;
10674   AA = &AA_;
10675   AC = &AC_;
10676   GetLAA = &GetLAA_;
10677   DB = &DB_;
10678   ORE = &ORE_;
10679   PSI = PSI_;
10680 
10681   // Don't attempt if
10682   // 1. the target claims to have no vector registers, and
10683   // 2. interleaving won't help ILP.
10684   //
10685   // The second condition is necessary because, even if the target has no
10686   // vector registers, loop vectorization may still enable scalar
10687   // interleaving.
10688   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10689       TTI->getMaxInterleaveFactor(1) < 2)
10690     return LoopVectorizeResult(false, false);
10691 
10692   bool Changed = false, CFGChanged = false;
10693 
10694   // The vectorizer requires loops to be in simplified form.
10695   // Since simplification may add new inner loops, it has to run before the
10696   // legality and profitability checks. This means running the loop vectorizer
10697   // will simplify all loops, regardless of whether anything end up being
10698   // vectorized.
10699   for (auto &L : *LI)
10700     Changed |= CFGChanged |=
10701         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10702 
10703   // Build up a worklist of inner-loops to vectorize. This is necessary as
10704   // the act of vectorizing or partially unrolling a loop creates new loops
10705   // and can invalidate iterators across the loops.
10706   SmallVector<Loop *, 8> Worklist;
10707 
10708   for (Loop *L : *LI)
10709     collectSupportedLoops(*L, LI, ORE, Worklist);
10710 
10711   LoopsAnalyzed += Worklist.size();
10712 
10713   // Now walk the identified inner loops.
10714   while (!Worklist.empty()) {
10715     Loop *L = Worklist.pop_back_val();
10716 
10717     // For the inner loops we actually process, form LCSSA to simplify the
10718     // transform.
10719     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10720 
10721     Changed |= CFGChanged |= processLoop(L);
10722   }
10723 
10724   // Process each loop nest in the function.
10725   return LoopVectorizeResult(Changed, CFGChanged);
10726 }
10727 
10728 PreservedAnalyses LoopVectorizePass::run(Function &F,
10729                                          FunctionAnalysisManager &AM) {
10730     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10731     auto &LI = AM.getResult<LoopAnalysis>(F);
10732     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10733     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10734     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10735     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10736     auto &AA = AM.getResult<AAManager>(F);
10737     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10738     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10739     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10740 
10741     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10742     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10743         [&](Loop &L) -> const LoopAccessInfo & {
10744       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10745                                         TLI, TTI, nullptr, nullptr, nullptr};
10746       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10747     };
10748     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10749     ProfileSummaryInfo *PSI =
10750         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10751     LoopVectorizeResult Result =
10752         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10753     if (!Result.MadeAnyChange)
10754       return PreservedAnalyses::all();
10755     PreservedAnalyses PA;
10756 
10757     // We currently do not preserve loopinfo/dominator analyses with outer loop
10758     // vectorization. Until this is addressed, mark these analyses as preserved
10759     // only for non-VPlan-native path.
10760     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10761     if (!EnableVPlanNativePath) {
10762       PA.preserve<LoopAnalysis>();
10763       PA.preserve<DominatorTreeAnalysis>();
10764     }
10765 
10766     if (Result.MadeCFGChange) {
10767       // Making CFG changes likely means a loop got vectorized. Indicate that
10768       // extra simplification passes should be run.
10769       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10770       // be run if runtime checks have been added.
10771       AM.getResult<ShouldRunExtraVectorPasses>(F);
10772       PA.preserve<ShouldRunExtraVectorPasses>();
10773     } else {
10774       PA.preserveSet<CFGAnalyses>();
10775     }
10776     return PA;
10777 }
10778 
10779 void LoopVectorizePass::printPipeline(
10780     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10781   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10782       OS, MapClassName2PassName);
10783 
10784   OS << "<";
10785   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10786   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10787   OS << ">";
10788 }
10789